libctf: add the ctf_link machinery
[deliverable/binutils-gdb.git] / libctf / ctf-open.c
1 /* Opening CTF files.
2 Copyright (C) 2019 Free Software Foundation, Inc.
3
4 This file is part of libctf.
5
6 libctf is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
14 See the GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; see the file COPYING. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include <ctf-impl.h>
21 #include <stddef.h>
22 #include <string.h>
23 #include <sys/types.h>
24 #include <elf.h>
25 #include <assert.h>
26 #include "swap.h"
27 #include <bfd.h>
28 #include <zlib.h>
29
30 #include "elf-bfd.h"
31
32 static const ctf_dmodel_t _libctf_models[] = {
33 {"ILP32", CTF_MODEL_ILP32, 4, 1, 2, 4, 4},
34 {"LP64", CTF_MODEL_LP64, 8, 1, 2, 4, 8},
35 {NULL, 0, 0, 0, 0, 0, 0}
36 };
37
38 const char _CTF_SECTION[] = ".ctf";
39 const char _CTF_NULLSTR[] = "";
40
41 /* Version-sensitive accessors. */
42
43 static uint32_t
44 get_kind_v1 (uint32_t info)
45 {
46 return (CTF_V1_INFO_KIND (info));
47 }
48
49 static uint32_t
50 get_root_v1 (uint32_t info)
51 {
52 return (CTF_V1_INFO_ISROOT (info));
53 }
54
55 static uint32_t
56 get_vlen_v1 (uint32_t info)
57 {
58 return (CTF_V1_INFO_VLEN (info));
59 }
60
61 static uint32_t
62 get_kind_v2 (uint32_t info)
63 {
64 return (CTF_V2_INFO_KIND (info));
65 }
66
67 static uint32_t
68 get_root_v2 (uint32_t info)
69 {
70 return (CTF_V2_INFO_ISROOT (info));
71 }
72
73 static uint32_t
74 get_vlen_v2 (uint32_t info)
75 {
76 return (CTF_V2_INFO_VLEN (info));
77 }
78
79 static inline ssize_t
80 get_ctt_size_common (const ctf_file_t *fp _libctf_unused_,
81 const ctf_type_t *tp _libctf_unused_,
82 ssize_t *sizep, ssize_t *incrementp, size_t lsize,
83 size_t csize, size_t ctf_type_size,
84 size_t ctf_stype_size, size_t ctf_lsize_sent)
85 {
86 ssize_t size, increment;
87
88 if (csize == ctf_lsize_sent)
89 {
90 size = lsize;
91 increment = ctf_type_size;
92 }
93 else
94 {
95 size = csize;
96 increment = ctf_stype_size;
97 }
98
99 if (sizep)
100 *sizep = size;
101 if (incrementp)
102 *incrementp = increment;
103
104 return size;
105 }
106
107 static ssize_t
108 get_ctt_size_v1 (const ctf_file_t *fp, const ctf_type_t *tp,
109 ssize_t *sizep, ssize_t *incrementp)
110 {
111 ctf_type_v1_t *t1p = (ctf_type_v1_t *) tp;
112
113 return (get_ctt_size_common (fp, tp, sizep, incrementp,
114 CTF_TYPE_LSIZE (t1p), t1p->ctt_size,
115 sizeof (ctf_type_v1_t), sizeof (ctf_stype_v1_t),
116 CTF_LSIZE_SENT_V1));
117 }
118
119 /* Return the size that a v1 will be once it is converted to v2. */
120
121 static ssize_t
122 get_ctt_size_v2_unconverted (const ctf_file_t *fp, const ctf_type_t *tp,
123 ssize_t *sizep, ssize_t *incrementp)
124 {
125 ctf_type_v1_t *t1p = (ctf_type_v1_t *) tp;
126
127 return (get_ctt_size_common (fp, tp, sizep, incrementp,
128 CTF_TYPE_LSIZE (t1p), t1p->ctt_size,
129 sizeof (ctf_type_t), sizeof (ctf_stype_t),
130 CTF_LSIZE_SENT));
131 }
132
133 static ssize_t
134 get_ctt_size_v2 (const ctf_file_t *fp, const ctf_type_t *tp,
135 ssize_t *sizep, ssize_t *incrementp)
136 {
137 return (get_ctt_size_common (fp, tp, sizep, incrementp,
138 CTF_TYPE_LSIZE (tp), tp->ctt_size,
139 sizeof (ctf_type_t), sizeof (ctf_stype_t),
140 CTF_LSIZE_SENT));
141 }
142
143 static ssize_t
144 get_vbytes_common (unsigned short kind, ssize_t size _libctf_unused_,
145 size_t vlen)
146 {
147 switch (kind)
148 {
149 case CTF_K_INTEGER:
150 case CTF_K_FLOAT:
151 return (sizeof (uint32_t));
152 case CTF_K_SLICE:
153 return (sizeof (ctf_slice_t));
154 case CTF_K_ENUM:
155 return (sizeof (ctf_enum_t) * vlen);
156 case CTF_K_FORWARD:
157 case CTF_K_UNKNOWN:
158 case CTF_K_POINTER:
159 case CTF_K_TYPEDEF:
160 case CTF_K_VOLATILE:
161 case CTF_K_CONST:
162 case CTF_K_RESTRICT:
163 return 0;
164 default:
165 ctf_dprintf ("detected invalid CTF kind -- %x\n", kind);
166 return ECTF_CORRUPT;
167 }
168 }
169
170 static ssize_t
171 get_vbytes_v1 (unsigned short kind, ssize_t size, size_t vlen)
172 {
173 switch (kind)
174 {
175 case CTF_K_ARRAY:
176 return (sizeof (ctf_array_v1_t));
177 case CTF_K_FUNCTION:
178 return (sizeof (unsigned short) * (vlen + (vlen & 1)));
179 case CTF_K_STRUCT:
180 case CTF_K_UNION:
181 if (size < CTF_LSTRUCT_THRESH_V1)
182 return (sizeof (ctf_member_v1_t) * vlen);
183 else
184 return (sizeof (ctf_lmember_v1_t) * vlen);
185 }
186
187 return (get_vbytes_common (kind, size, vlen));
188 }
189
190 static ssize_t
191 get_vbytes_v2 (unsigned short kind, ssize_t size, size_t vlen)
192 {
193 switch (kind)
194 {
195 case CTF_K_ARRAY:
196 return (sizeof (ctf_array_t));
197 case CTF_K_FUNCTION:
198 return (sizeof (uint32_t) * (vlen + (vlen & 1)));
199 case CTF_K_STRUCT:
200 case CTF_K_UNION:
201 if (size < CTF_LSTRUCT_THRESH)
202 return (sizeof (ctf_member_t) * vlen);
203 else
204 return (sizeof (ctf_lmember_t) * vlen);
205 }
206
207 return (get_vbytes_common (kind, size, vlen));
208 }
209
210 static const ctf_fileops_t ctf_fileops[] = {
211 {NULL, NULL, NULL, NULL, NULL},
212 /* CTF_VERSION_1 */
213 {get_kind_v1, get_root_v1, get_vlen_v1, get_ctt_size_v1, get_vbytes_v1},
214 /* CTF_VERSION_1_UPGRADED_3 */
215 {get_kind_v2, get_root_v2, get_vlen_v2, get_ctt_size_v2, get_vbytes_v2},
216 /* CTF_VERSION_2 */
217 {get_kind_v2, get_root_v2, get_vlen_v2, get_ctt_size_v2, get_vbytes_v2},
218 /* CTF_VERSION_3, identical to 2: only new type kinds */
219 {get_kind_v2, get_root_v2, get_vlen_v2, get_ctt_size_v2, get_vbytes_v2},
220 };
221
222 /* Initialize the symtab translation table by filling each entry with the
223 offset of the CTF type or function data corresponding to each STT_FUNC or
224 STT_OBJECT entry in the symbol table. */
225
226 static int
227 init_symtab (ctf_file_t *fp, const ctf_header_t *hp,
228 const ctf_sect_t *sp, const ctf_sect_t *strp)
229 {
230 const unsigned char *symp = sp->cts_data;
231 uint32_t *xp = fp->ctf_sxlate;
232 uint32_t *xend = xp + fp->ctf_nsyms;
233
234 uint32_t objtoff = hp->cth_objtoff;
235 uint32_t funcoff = hp->cth_funcoff;
236
237 uint32_t info, vlen;
238 Elf64_Sym sym, *gsp;
239 const char *name;
240
241 /* The CTF data object and function type sections are ordered to match
242 the relative order of the respective symbol types in the symtab.
243 If no type information is available for a symbol table entry, a
244 pad is inserted in the CTF section. As a further optimization,
245 anonymous or undefined symbols are omitted from the CTF data. */
246
247 for (; xp < xend; xp++, symp += sp->cts_entsize)
248 {
249 if (sp->cts_entsize == sizeof (Elf32_Sym))
250 gsp = ctf_sym_to_elf64 ((Elf32_Sym *) (uintptr_t) symp, &sym);
251 else
252 gsp = (Elf64_Sym *) (uintptr_t) symp;
253
254 if (gsp->st_name < strp->cts_size)
255 name = (const char *) strp->cts_data + gsp->st_name;
256 else
257 name = _CTF_NULLSTR;
258
259 if (gsp->st_name == 0 || gsp->st_shndx == SHN_UNDEF
260 || strcmp (name, "_START_") == 0 || strcmp (name, "_END_") == 0)
261 {
262 *xp = -1u;
263 continue;
264 }
265
266 switch (ELF64_ST_TYPE (gsp->st_info))
267 {
268 case STT_OBJECT:
269 if (objtoff >= hp->cth_funcoff
270 || (gsp->st_shndx == SHN_EXTABS && gsp->st_value == 0))
271 {
272 *xp = -1u;
273 break;
274 }
275
276 *xp = objtoff;
277 objtoff += sizeof (uint32_t);
278 break;
279
280 case STT_FUNC:
281 if (funcoff >= hp->cth_objtidxoff)
282 {
283 *xp = -1u;
284 break;
285 }
286
287 *xp = funcoff;
288
289 info = *(uint32_t *) ((uintptr_t) fp->ctf_buf + funcoff);
290 vlen = LCTF_INFO_VLEN (fp, info);
291
292 /* If we encounter a zero pad at the end, just skip it. Otherwise
293 skip over the function and its return type (+2) and the argument
294 list (vlen).
295 */
296 if (LCTF_INFO_KIND (fp, info) == CTF_K_UNKNOWN && vlen == 0)
297 funcoff += sizeof (uint32_t); /* Skip pad. */
298 else
299 funcoff += sizeof (uint32_t) * (vlen + 2);
300 break;
301
302 default:
303 *xp = -1u;
304 break;
305 }
306 }
307
308 ctf_dprintf ("loaded %lu symtab entries\n", fp->ctf_nsyms);
309 return 0;
310 }
311
312 /* Reset the CTF base pointer and derive the buf pointer from it, initializing
313 everything in the ctf_file that depends on the base or buf pointers.
314
315 The original gap between the buf and base pointers, if any -- the original,
316 unconverted CTF header -- is kept, but its contents are not specified and are
317 never used. */
318
319 static void
320 ctf_set_base (ctf_file_t *fp, const ctf_header_t *hp, unsigned char *base)
321 {
322 fp->ctf_buf = base + (fp->ctf_buf - fp->ctf_base);
323 fp->ctf_base = base;
324 fp->ctf_vars = (ctf_varent_t *) ((const char *) fp->ctf_buf +
325 hp->cth_varoff);
326 fp->ctf_nvars = (hp->cth_typeoff - hp->cth_varoff) / sizeof (ctf_varent_t);
327
328 fp->ctf_str[CTF_STRTAB_0].cts_strs = (const char *) fp->ctf_buf
329 + hp->cth_stroff;
330 fp->ctf_str[CTF_STRTAB_0].cts_len = hp->cth_strlen;
331
332 /* If we have a parent container name and label, store the relocated
333 string pointers in the CTF container for easy access later. */
334
335 /* Note: before conversion, these will be set to values that will be
336 immediately invalidated by the conversion process, but the conversion
337 process will call ctf_set_base() again to fix things up. */
338
339 if (hp->cth_parlabel != 0)
340 fp->ctf_parlabel = ctf_strptr (fp, hp->cth_parlabel);
341 if (hp->cth_parname != 0)
342 fp->ctf_parname = ctf_strptr (fp, hp->cth_parname);
343 if (hp->cth_cuname != 0)
344 fp->ctf_cuname = ctf_strptr (fp, hp->cth_cuname);
345
346 if (fp->ctf_cuname)
347 ctf_dprintf ("ctf_set_base: CU name %s\n", fp->ctf_cuname);
348 if (fp->ctf_parname)
349 ctf_dprintf ("ctf_set_base: parent name %s (label %s)\n",
350 fp->ctf_parname,
351 fp->ctf_parlabel ? fp->ctf_parlabel : "<NULL>");
352 }
353
354 /* Set the version of the CTF file. */
355
356 /* When this is reset, LCTF_* changes behaviour, but there is no guarantee that
357 the variable data list associated with each type has been upgraded: the
358 caller must ensure this has been done in advance. */
359
360 static void
361 ctf_set_version (ctf_file_t *fp, ctf_header_t *cth, int ctf_version)
362 {
363 fp->ctf_version = ctf_version;
364 cth->cth_version = ctf_version;
365 fp->ctf_fileops = &ctf_fileops[ctf_version];
366 }
367
368
369 /* Upgrade the header to CTF_VERSION_3. The upgrade is done in-place. */
370 static void
371 upgrade_header (ctf_header_t *hp)
372 {
373 ctf_header_v2_t *oldhp = (ctf_header_v2_t *) hp;
374
375 hp->cth_strlen = oldhp->cth_strlen;
376 hp->cth_stroff = oldhp->cth_stroff;
377 hp->cth_typeoff = oldhp->cth_typeoff;
378 hp->cth_varoff = oldhp->cth_varoff;
379 hp->cth_funcidxoff = hp->cth_varoff; /* No index sections. */
380 hp->cth_objtidxoff = hp->cth_funcidxoff;
381 hp->cth_funcoff = oldhp->cth_funcoff;
382 hp->cth_objtoff = oldhp->cth_objtoff;
383 hp->cth_lbloff = oldhp->cth_lbloff;
384 hp->cth_cuname = 0; /* No CU name. */
385 }
386
387 /* Upgrade the type table to CTF_VERSION_3 (really CTF_VERSION_1_UPGRADED_3)
388 from CTF_VERSION_1.
389
390 The upgrade is not done in-place: the ctf_base is moved. ctf_strptr() must
391 not be called before reallocation is complete.
392
393 Sections not checked here due to nonexistence or nonpopulated state in older
394 formats: objtidx, funcidx.
395
396 Type kinds not checked here due to nonexistence in older formats:
397 CTF_K_SLICE. */
398 static int
399 upgrade_types_v1 (ctf_file_t *fp, ctf_header_t *cth)
400 {
401 const ctf_type_v1_t *tbuf;
402 const ctf_type_v1_t *tend;
403 unsigned char *ctf_base, *old_ctf_base = (unsigned char *) fp->ctf_dynbase;
404 ctf_type_t *t2buf;
405
406 ssize_t increase = 0, size, increment, v2increment, vbytes, v2bytes;
407 const ctf_type_v1_t *tp;
408 ctf_type_t *t2p;
409
410 tbuf = (ctf_type_v1_t *) (fp->ctf_buf + cth->cth_typeoff);
411 tend = (ctf_type_v1_t *) (fp->ctf_buf + cth->cth_stroff);
412
413 /* Much like init_types(), this is a two-pass process.
414
415 First, figure out the new type-section size needed. (It is possible,
416 in theory, for it to be less than the old size, but this is very
417 unlikely. It cannot be so small that cth_typeoff ends up of negative
418 size. We validate this with an assertion below.)
419
420 We must cater not only for changes in vlen and types sizes but also
421 for changes in 'increment', which happen because v2 places some types
422 into ctf_stype_t where v1 would be forced to use the larger non-stype. */
423
424 for (tp = tbuf; tp < tend;
425 tp = (ctf_type_v1_t *) ((uintptr_t) tp + increment + vbytes))
426 {
427 unsigned short kind = CTF_V1_INFO_KIND (tp->ctt_info);
428 unsigned long vlen = CTF_V1_INFO_VLEN (tp->ctt_info);
429
430 size = get_ctt_size_v1 (fp, (const ctf_type_t *) tp, NULL, &increment);
431 vbytes = get_vbytes_v1 (kind, size, vlen);
432
433 get_ctt_size_v2_unconverted (fp, (const ctf_type_t *) tp, NULL,
434 &v2increment);
435 v2bytes = get_vbytes_v2 (kind, size, vlen);
436
437 if ((vbytes < 0) || (size < 0))
438 return ECTF_CORRUPT;
439
440 increase += v2increment - increment; /* May be negative. */
441 increase += v2bytes - vbytes;
442 }
443
444 /* Allocate enough room for the new buffer, then copy everything but the type
445 section into place, and reset the base accordingly. Leave the version
446 number unchanged, so that LCTF_INFO_* still works on the
447 as-yet-untranslated type info. */
448
449 if ((ctf_base = ctf_alloc (fp->ctf_size + increase)) == NULL)
450 return ECTF_ZALLOC;
451
452 /* Start at ctf_buf, not ctf_base, to squeeze out the original header: we
453 never use it and it is unconverted. */
454
455 memcpy (ctf_base, fp->ctf_buf, cth->cth_typeoff);
456 memcpy (ctf_base + cth->cth_stroff + increase,
457 fp->ctf_buf + cth->cth_stroff, cth->cth_strlen);
458
459 memset (ctf_base + cth->cth_typeoff, 0, cth->cth_stroff - cth->cth_typeoff
460 + increase);
461
462 cth->cth_stroff += increase;
463 fp->ctf_size += increase;
464 assert (cth->cth_stroff >= cth->cth_typeoff);
465 fp->ctf_base = ctf_base;
466 fp->ctf_buf = ctf_base;
467 fp->ctf_dynbase = ctf_base;
468 ctf_set_base (fp, cth, ctf_base);
469
470 t2buf = (ctf_type_t *) (fp->ctf_buf + cth->cth_typeoff);
471
472 /* Iterate through all the types again, upgrading them.
473
474 Everything that hasn't changed can just be outright memcpy()ed.
475 Things that have changed need field-by-field consideration. */
476
477 for (tp = tbuf, t2p = t2buf; tp < tend;
478 tp = (ctf_type_v1_t *) ((uintptr_t) tp + increment + vbytes),
479 t2p = (ctf_type_t *) ((uintptr_t) t2p + v2increment + v2bytes))
480 {
481 unsigned short kind = CTF_V1_INFO_KIND (tp->ctt_info);
482 int isroot = CTF_V1_INFO_ISROOT (tp->ctt_info);
483 unsigned long vlen = CTF_V1_INFO_VLEN (tp->ctt_info);
484 ssize_t v2size;
485 void *vdata, *v2data;
486
487 size = get_ctt_size_v1 (fp, (const ctf_type_t *) tp, NULL, &increment);
488 vbytes = get_vbytes_v1 (kind, size, vlen);
489
490 t2p->ctt_name = tp->ctt_name;
491 t2p->ctt_info = CTF_TYPE_INFO (kind, isroot, vlen);
492
493 switch (kind)
494 {
495 case CTF_K_FUNCTION:
496 case CTF_K_FORWARD:
497 case CTF_K_TYPEDEF:
498 case CTF_K_POINTER:
499 case CTF_K_VOLATILE:
500 case CTF_K_CONST:
501 case CTF_K_RESTRICT:
502 t2p->ctt_type = tp->ctt_type;
503 break;
504 case CTF_K_INTEGER:
505 case CTF_K_FLOAT:
506 case CTF_K_ARRAY:
507 case CTF_K_STRUCT:
508 case CTF_K_UNION:
509 case CTF_K_ENUM:
510 case CTF_K_UNKNOWN:
511 if ((size_t) size <= CTF_MAX_SIZE)
512 t2p->ctt_size = size;
513 else
514 {
515 t2p->ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI (size);
516 t2p->ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO (size);
517 }
518 break;
519 }
520
521 v2size = get_ctt_size_v2 (fp, t2p, NULL, &v2increment);
522 v2bytes = get_vbytes_v2 (kind, v2size, vlen);
523
524 /* Catch out-of-sync get_ctt_size_*(). The count goes wrong if
525 these are not identical (and having them different makes no
526 sense semantically). */
527
528 assert (size == v2size);
529
530 /* Now the varlen info. */
531
532 vdata = (void *) ((uintptr_t) tp + increment);
533 v2data = (void *) ((uintptr_t) t2p + v2increment);
534
535 switch (kind)
536 {
537 case CTF_K_ARRAY:
538 {
539 const ctf_array_v1_t *ap = (const ctf_array_v1_t *) vdata;
540 ctf_array_t *a2p = (ctf_array_t *) v2data;
541
542 a2p->cta_contents = ap->cta_contents;
543 a2p->cta_index = ap->cta_index;
544 a2p->cta_nelems = ap->cta_nelems;
545 break;
546 }
547 case CTF_K_STRUCT:
548 case CTF_K_UNION:
549 {
550 ctf_member_t tmp;
551 const ctf_member_v1_t *m1 = (const ctf_member_v1_t *) vdata;
552 const ctf_lmember_v1_t *lm1 = (const ctf_lmember_v1_t *) m1;
553 ctf_member_t *m2 = (ctf_member_t *) v2data;
554 ctf_lmember_t *lm2 = (ctf_lmember_t *) m2;
555 unsigned long i;
556
557 /* We walk all four pointers forward, but only reference the two
558 that are valid for the given size, to avoid quadruplicating all
559 the code. */
560
561 for (i = vlen; i != 0; i--, m1++, lm1++, m2++, lm2++)
562 {
563 size_t offset;
564 if (size < CTF_LSTRUCT_THRESH_V1)
565 {
566 offset = m1->ctm_offset;
567 tmp.ctm_name = m1->ctm_name;
568 tmp.ctm_type = m1->ctm_type;
569 }
570 else
571 {
572 offset = CTF_LMEM_OFFSET (lm1);
573 tmp.ctm_name = lm1->ctlm_name;
574 tmp.ctm_type = lm1->ctlm_type;
575 }
576 if (size < CTF_LSTRUCT_THRESH)
577 {
578 m2->ctm_name = tmp.ctm_name;
579 m2->ctm_type = tmp.ctm_type;
580 m2->ctm_offset = offset;
581 }
582 else
583 {
584 lm2->ctlm_name = tmp.ctm_name;
585 lm2->ctlm_type = tmp.ctm_type;
586 lm2->ctlm_offsethi = CTF_OFFSET_TO_LMEMHI (offset);
587 lm2->ctlm_offsetlo = CTF_OFFSET_TO_LMEMLO (offset);
588 }
589 }
590 break;
591 }
592 case CTF_K_FUNCTION:
593 {
594 unsigned long i;
595 unsigned short *a1 = (unsigned short *) vdata;
596 uint32_t *a2 = (uint32_t *) v2data;
597
598 for (i = vlen; i != 0; i--, a1++, a2++)
599 *a2 = *a1;
600 }
601 /* FALLTHRU */
602 default:
603 /* Catch out-of-sync get_vbytes_*(). */
604 assert (vbytes == v2bytes);
605 memcpy (v2data, vdata, vbytes);
606 }
607 }
608
609 /* Verify that the entire region was converted. If not, we are either
610 converting too much, or too little (leading to a buffer overrun either here
611 or at read time, in init_types().) */
612
613 assert ((size_t) t2p - (size_t) fp->ctf_buf == cth->cth_stroff);
614
615 ctf_set_version (fp, cth, CTF_VERSION_1_UPGRADED_3);
616 ctf_free (old_ctf_base);
617
618 return 0;
619 }
620
621 /* Upgrade from any earlier version. */
622 static int
623 upgrade_types (ctf_file_t *fp, ctf_header_t *cth)
624 {
625 switch (cth->cth_version)
626 {
627 /* v1 requires a full pass and reformatting. */
628 case CTF_VERSION_1:
629 upgrade_types_v1 (fp, cth);
630 /* FALLTHRU */
631 /* Already-converted v1 is just like later versions except that its
632 parent/child boundary is unchanged (and much lower). */
633
634 case CTF_VERSION_1_UPGRADED_3:
635 fp->ctf_parmax = CTF_MAX_PTYPE_V1;
636
637 /* v2 is just the same as v3 except for new types and sections:
638 no upgrading required. */
639 case CTF_VERSION_2: ;
640 /* FALLTHRU */
641 }
642 return 0;
643 }
644
645 /* Initialize the type ID translation table with the byte offset of each type,
646 and initialize the hash tables of each named type. Upgrade the type table to
647 the latest supported representation in the process, if needed, and if this
648 recension of libctf supports upgrading. */
649
650 static int
651 init_types (ctf_file_t *fp, ctf_header_t *cth)
652 {
653 const ctf_type_t *tbuf;
654 const ctf_type_t *tend;
655
656 unsigned long pop[CTF_K_MAX + 1] = { 0 };
657 const ctf_type_t *tp;
658 ctf_hash_t *hp;
659 uint32_t id, dst;
660 uint32_t *xp;
661
662 /* We determine whether the container is a child or a parent based on
663 the value of cth_parname. */
664
665 int child = cth->cth_parname != 0;
666 int nlstructs = 0, nlunions = 0;
667 int err;
668
669 if (_libctf_unlikely_ (fp->ctf_version == CTF_VERSION_1))
670 {
671 int err;
672 if ((err = upgrade_types (fp, cth)) != 0)
673 return err; /* Upgrade failed. */
674 }
675
676 tbuf = (ctf_type_t *) (fp->ctf_buf + cth->cth_typeoff);
677 tend = (ctf_type_t *) (fp->ctf_buf + cth->cth_stroff);
678
679 /* We make two passes through the entire type section. In this first
680 pass, we count the number of each type and the total number of types. */
681
682 for (tp = tbuf; tp < tend; fp->ctf_typemax++)
683 {
684 unsigned short kind = LCTF_INFO_KIND (fp, tp->ctt_info);
685 unsigned long vlen = LCTF_INFO_VLEN (fp, tp->ctt_info);
686 ssize_t size, increment, vbytes;
687
688 (void) ctf_get_ctt_size (fp, tp, &size, &increment);
689 vbytes = LCTF_VBYTES (fp, kind, size, vlen);
690
691 if (vbytes < 0)
692 return ECTF_CORRUPT;
693
694 if (kind == CTF_K_FORWARD)
695 {
696 /* For forward declarations, ctt_type is the CTF_K_* kind for the tag,
697 so bump that population count too. If ctt_type is unknown, treat
698 the tag as a struct. */
699
700 if (tp->ctt_type == CTF_K_UNKNOWN || tp->ctt_type >= CTF_K_MAX)
701 pop[CTF_K_STRUCT]++;
702 else
703 pop[tp->ctt_type]++;
704 }
705 tp = (ctf_type_t *) ((uintptr_t) tp + increment + vbytes);
706 pop[kind]++;
707 }
708
709 if (child)
710 {
711 ctf_dprintf ("CTF container %p is a child\n", (void *) fp);
712 fp->ctf_flags |= LCTF_CHILD;
713 }
714 else
715 ctf_dprintf ("CTF container %p is a parent\n", (void *) fp);
716
717 /* Now that we've counted up the number of each type, we can allocate
718 the hash tables, type translation table, and pointer table. */
719
720 if ((fp->ctf_structs = ctf_hash_create (pop[CTF_K_STRUCT], ctf_hash_string,
721 ctf_hash_eq_string)) == NULL)
722 return ENOMEM;
723
724 if ((fp->ctf_unions = ctf_hash_create (pop[CTF_K_UNION], ctf_hash_string,
725 ctf_hash_eq_string)) == NULL)
726 return ENOMEM;
727
728 if ((fp->ctf_enums = ctf_hash_create (pop[CTF_K_ENUM], ctf_hash_string,
729 ctf_hash_eq_string)) == NULL)
730 return ENOMEM;
731
732 if ((fp->ctf_names = ctf_hash_create (pop[CTF_K_INTEGER] +
733 pop[CTF_K_FLOAT] +
734 pop[CTF_K_FUNCTION] +
735 pop[CTF_K_TYPEDEF] +
736 pop[CTF_K_POINTER] +
737 pop[CTF_K_VOLATILE] +
738 pop[CTF_K_CONST] +
739 pop[CTF_K_RESTRICT],
740 ctf_hash_string,
741 ctf_hash_eq_string)) == NULL)
742 return ENOMEM;
743
744 fp->ctf_txlate = ctf_alloc (sizeof (uint32_t) * (fp->ctf_typemax + 1));
745 fp->ctf_ptrtab = ctf_alloc (sizeof (uint32_t) * (fp->ctf_typemax + 1));
746
747 if (fp->ctf_txlate == NULL || fp->ctf_ptrtab == NULL)
748 return ENOMEM; /* Memory allocation failed. */
749
750 xp = fp->ctf_txlate;
751 *xp++ = 0; /* Type id 0 is used as a sentinel value. */
752
753 memset (fp->ctf_txlate, 0, sizeof (uint32_t) * (fp->ctf_typemax + 1));
754 memset (fp->ctf_ptrtab, 0, sizeof (uint32_t) * (fp->ctf_typemax + 1));
755
756 /* In the second pass through the types, we fill in each entry of the
757 type and pointer tables and add names to the appropriate hashes. */
758
759 for (id = 1, tp = tbuf; tp < tend; xp++, id++)
760 {
761 unsigned short kind = LCTF_INFO_KIND (fp, tp->ctt_info);
762 unsigned short flag = LCTF_INFO_ISROOT (fp, tp->ctt_info);
763 unsigned long vlen = LCTF_INFO_VLEN (fp, tp->ctt_info);
764 ssize_t size, increment, vbytes;
765
766 const char *name;
767
768 (void) ctf_get_ctt_size (fp, tp, &size, &increment);
769 name = ctf_strptr (fp, tp->ctt_name);
770 vbytes = LCTF_VBYTES (fp, kind, size, vlen);
771
772 switch (kind)
773 {
774 case CTF_K_INTEGER:
775 case CTF_K_FLOAT:
776 /* Names are reused by bit-fields, which are differentiated by their
777 encodings, and so typically we'd record only the first instance of
778 a given intrinsic. However, we replace an existing type with a
779 root-visible version so that we can be sure to find it when
780 checking for conflicting definitions in ctf_add_type(). */
781
782 if (((ctf_hash_lookup_type (fp->ctf_names, fp, name)) == 0)
783 || (flag & CTF_ADD_ROOT))
784 {
785 err = ctf_hash_define_type (fp->ctf_names, fp,
786 LCTF_INDEX_TO_TYPE (fp, id, child),
787 tp->ctt_name);
788 if (err != 0)
789 return err;
790 }
791 break;
792
793 /* These kinds have no name, so do not need interning into any
794 hashtables. */
795 case CTF_K_ARRAY:
796 case CTF_K_SLICE:
797 break;
798
799 case CTF_K_FUNCTION:
800 err = ctf_hash_insert_type (fp->ctf_names, fp,
801 LCTF_INDEX_TO_TYPE (fp, id, child),
802 tp->ctt_name);
803 if (err != 0)
804 return err;
805 break;
806
807 case CTF_K_STRUCT:
808 err = ctf_hash_define_type (fp->ctf_structs, fp,
809 LCTF_INDEX_TO_TYPE (fp, id, child),
810 tp->ctt_name);
811
812 if (err != 0)
813 return err;
814
815 if (size >= CTF_LSTRUCT_THRESH)
816 nlstructs++;
817 break;
818
819 case CTF_K_UNION:
820 err = ctf_hash_define_type (fp->ctf_unions, fp,
821 LCTF_INDEX_TO_TYPE (fp, id, child),
822 tp->ctt_name);
823
824 if (err != 0)
825 return err;
826
827 if (size >= CTF_LSTRUCT_THRESH)
828 nlunions++;
829 break;
830
831 case CTF_K_ENUM:
832 err = ctf_hash_define_type (fp->ctf_enums, fp,
833 LCTF_INDEX_TO_TYPE (fp, id, child),
834 tp->ctt_name);
835
836 if (err != 0)
837 return err;
838 break;
839
840 case CTF_K_TYPEDEF:
841 err = ctf_hash_insert_type (fp->ctf_names, fp,
842 LCTF_INDEX_TO_TYPE (fp, id, child),
843 tp->ctt_name);
844 if (err != 0)
845 return err;
846 break;
847
848 case CTF_K_FORWARD:
849 /* Only insert forward tags into the given hash if the type or tag
850 name is not already present. */
851 switch (tp->ctt_type)
852 {
853 case CTF_K_STRUCT:
854 hp = fp->ctf_structs;
855 break;
856 case CTF_K_UNION:
857 hp = fp->ctf_unions;
858 break;
859 case CTF_K_ENUM:
860 hp = fp->ctf_enums;
861 break;
862 default:
863 hp = fp->ctf_structs;
864 }
865
866 if (ctf_hash_lookup_type (hp, fp, name) == 0)
867 {
868 err = ctf_hash_insert_type (hp, fp,
869 LCTF_INDEX_TO_TYPE (fp, id, child),
870 tp->ctt_name);
871 if (err != 0)
872 return err;
873 }
874 break;
875
876 case CTF_K_POINTER:
877 /* If the type referenced by the pointer is in this CTF container,
878 then store the index of the pointer type in
879 fp->ctf_ptrtab[ index of referenced type ]. */
880
881 if (LCTF_TYPE_ISCHILD (fp, tp->ctt_type) == child
882 && LCTF_TYPE_TO_INDEX (fp, tp->ctt_type) <= fp->ctf_typemax)
883 fp->ctf_ptrtab[LCTF_TYPE_TO_INDEX (fp, tp->ctt_type)] = id;
884 /*FALLTHRU*/
885
886 case CTF_K_VOLATILE:
887 case CTF_K_CONST:
888 case CTF_K_RESTRICT:
889 err = ctf_hash_insert_type (fp->ctf_names, fp,
890 LCTF_INDEX_TO_TYPE (fp, id, child),
891 tp->ctt_name);
892 if (err != 0)
893 return err;
894 break;
895 default:
896 ctf_dprintf ("unhandled CTF kind in endianness conversion -- %x\n",
897 kind);
898 return ECTF_CORRUPT;
899 }
900
901 *xp = (uint32_t) ((uintptr_t) tp - (uintptr_t) fp->ctf_buf);
902 tp = (ctf_type_t *) ((uintptr_t) tp + increment + vbytes);
903 }
904
905 ctf_dprintf ("%lu total types processed\n", fp->ctf_typemax);
906 ctf_dprintf ("%u enum names hashed\n", ctf_hash_size (fp->ctf_enums));
907 ctf_dprintf ("%u struct names hashed (%d long)\n",
908 ctf_hash_size (fp->ctf_structs), nlstructs);
909 ctf_dprintf ("%u union names hashed (%d long)\n",
910 ctf_hash_size (fp->ctf_unions), nlunions);
911 ctf_dprintf ("%u base type names hashed\n", ctf_hash_size (fp->ctf_names));
912
913 /* Make an additional pass through the pointer table to find pointers that
914 point to anonymous typedef nodes. If we find one, modify the pointer table
915 so that the pointer is also known to point to the node that is referenced
916 by the anonymous typedef node. */
917
918 for (id = 1; id <= fp->ctf_typemax; id++)
919 {
920 if ((dst = fp->ctf_ptrtab[id]) != 0)
921 {
922 tp = LCTF_INDEX_TO_TYPEPTR (fp, id);
923
924 if (LCTF_INFO_KIND (fp, tp->ctt_info) == CTF_K_TYPEDEF &&
925 strcmp (ctf_strptr (fp, tp->ctt_name), "") == 0 &&
926 LCTF_TYPE_ISCHILD (fp, tp->ctt_type) == child &&
927 LCTF_TYPE_TO_INDEX (fp, tp->ctt_type) <= fp->ctf_typemax)
928 fp->ctf_ptrtab[LCTF_TYPE_TO_INDEX (fp, tp->ctt_type)] = dst;
929 }
930 }
931
932 return 0;
933 }
934
935 /* Endianness-flipping routines.
936
937 We flip everything, mindlessly, even 1-byte entities, so that future
938 expansions do not require changes to this code. */
939
940 /* < C11? define away static assertions. */
941
942 #if !defined (__STDC_VERSION__) || __STDC_VERSION__ < 201112L
943 #define _Static_assert(cond, err)
944 #endif
945
946 /* Swap the endianness of something. */
947
948 #define swap_thing(x) \
949 do { \
950 _Static_assert (sizeof (x) == 1 || (sizeof (x) % 2 == 0 \
951 && sizeof (x) <= 8), \
952 "Invalid size, update endianness code"); \
953 switch (sizeof (x)) { \
954 case 2: x = bswap_16 (x); break; \
955 case 4: x = bswap_32 (x); break; \
956 case 8: x = bswap_64 (x); break; \
957 case 1: /* Nothing needs doing */ \
958 break; \
959 } \
960 } while (0);
961
962 /* Flip the endianness of the CTF header. */
963
964 static void
965 flip_header (ctf_header_t *cth)
966 {
967 swap_thing (cth->cth_preamble.ctp_magic);
968 swap_thing (cth->cth_preamble.ctp_version);
969 swap_thing (cth->cth_preamble.ctp_flags);
970 swap_thing (cth->cth_parlabel);
971 swap_thing (cth->cth_parname);
972 swap_thing (cth->cth_cuname);
973 swap_thing (cth->cth_objtoff);
974 swap_thing (cth->cth_funcoff);
975 swap_thing (cth->cth_objtidxoff);
976 swap_thing (cth->cth_funcidxoff);
977 swap_thing (cth->cth_varoff);
978 swap_thing (cth->cth_typeoff);
979 swap_thing (cth->cth_stroff);
980 swap_thing (cth->cth_strlen);
981 }
982
983 /* Flip the endianness of the label section, an array of ctf_lblent_t. */
984
985 static void
986 flip_lbls (void *start, size_t len)
987 {
988 ctf_lblent_t *lbl = start;
989
990 for (ssize_t i = len / sizeof (struct ctf_lblent); i > 0; lbl++, i--)
991 {
992 swap_thing (lbl->ctl_label);
993 swap_thing (lbl->ctl_type);
994 }
995 }
996
997 /* Flip the endianness of the data-object or function sections or their indexes,
998 all arrays of uint32_t. (The function section has more internal structure,
999 but that structure is an array of uint32_t, so can be treated as one big
1000 array for byte-swapping.) */
1001
1002 static void
1003 flip_objts (void *start, size_t len)
1004 {
1005 uint32_t *obj = start;
1006
1007 for (ssize_t i = len / sizeof (uint32_t); i > 0; obj++, i--)
1008 swap_thing (*obj);
1009 }
1010
1011 /* Flip the endianness of the variable section, an array of ctf_varent_t. */
1012
1013 static void
1014 flip_vars (void *start, size_t len)
1015 {
1016 ctf_varent_t *var = start;
1017
1018 for (ssize_t i = len / sizeof (struct ctf_varent); i > 0; var++, i--)
1019 {
1020 swap_thing (var->ctv_name);
1021 swap_thing (var->ctv_type);
1022 }
1023 }
1024
1025 /* Flip the endianness of the type section, a tagged array of ctf_type or
1026 ctf_stype followed by variable data. */
1027
1028 static int
1029 flip_types (void *start, size_t len)
1030 {
1031 ctf_type_t *t = start;
1032
1033 while ((uintptr_t) t < ((uintptr_t) start) + len)
1034 {
1035 swap_thing (t->ctt_name);
1036 swap_thing (t->ctt_info);
1037 swap_thing (t->ctt_size);
1038
1039 uint32_t kind = CTF_V2_INFO_KIND (t->ctt_info);
1040 size_t size = t->ctt_size;
1041 uint32_t vlen = CTF_V2_INFO_VLEN (t->ctt_info);
1042 size_t vbytes = get_vbytes_v2 (kind, size, vlen);
1043
1044 if (_libctf_unlikely_ (size == CTF_LSIZE_SENT))
1045 {
1046 swap_thing (t->ctt_lsizehi);
1047 swap_thing (t->ctt_lsizelo);
1048 size = CTF_TYPE_LSIZE (t);
1049 t = (ctf_type_t *) ((uintptr_t) t + sizeof (ctf_type_t));
1050 }
1051 else
1052 t = (ctf_type_t *) ((uintptr_t) t + sizeof (ctf_stype_t));
1053
1054 switch (kind)
1055 {
1056 case CTF_K_FORWARD:
1057 case CTF_K_UNKNOWN:
1058 case CTF_K_POINTER:
1059 case CTF_K_TYPEDEF:
1060 case CTF_K_VOLATILE:
1061 case CTF_K_CONST:
1062 case CTF_K_RESTRICT:
1063 /* These types have no vlen data to swap. */
1064 assert (vbytes == 0);
1065 break;
1066
1067 case CTF_K_INTEGER:
1068 case CTF_K_FLOAT:
1069 {
1070 /* These types have a single uint32_t. */
1071
1072 uint32_t *item = (uint32_t *) t;
1073
1074 swap_thing (*item);
1075 break;
1076 }
1077
1078 case CTF_K_FUNCTION:
1079 {
1080 /* This type has a bunch of uint32_ts. */
1081
1082 uint32_t *item = (uint32_t *) t;
1083
1084 for (ssize_t i = vlen; i > 0; item++, i--)
1085 swap_thing (*item);
1086 break;
1087 }
1088
1089 case CTF_K_ARRAY:
1090 {
1091 /* This has a single ctf_array_t. */
1092
1093 ctf_array_t *a = (ctf_array_t *) t;
1094
1095 assert (vbytes == sizeof (ctf_array_t));
1096 swap_thing (a->cta_contents);
1097 swap_thing (a->cta_index);
1098 swap_thing (a->cta_nelems);
1099
1100 break;
1101 }
1102
1103 case CTF_K_SLICE:
1104 {
1105 /* This has a single ctf_slice_t. */
1106
1107 ctf_slice_t *s = (ctf_slice_t *) t;
1108
1109 assert (vbytes == sizeof (ctf_slice_t));
1110 swap_thing (s->cts_type);
1111 swap_thing (s->cts_offset);
1112 swap_thing (s->cts_bits);
1113
1114 break;
1115 }
1116
1117 case CTF_K_STRUCT:
1118 case CTF_K_UNION:
1119 {
1120 /* This has an array of ctf_member or ctf_lmember, depending on
1121 size. We could consider it to be a simple array of uint32_t,
1122 but for safety's sake in case these structures ever acquire
1123 non-uint32_t members, do it member by member. */
1124
1125 if (_libctf_unlikely_ (size >= CTF_LSTRUCT_THRESH))
1126 {
1127 ctf_lmember_t *lm = (ctf_lmember_t *) t;
1128 for (ssize_t i = vlen; i > 0; i--, lm++)
1129 {
1130 swap_thing (lm->ctlm_name);
1131 swap_thing (lm->ctlm_offsethi);
1132 swap_thing (lm->ctlm_type);
1133 swap_thing (lm->ctlm_offsetlo);
1134 }
1135 }
1136 else
1137 {
1138 ctf_member_t *m = (ctf_member_t *) t;
1139 for (ssize_t i = vlen; i > 0; i--, m++)
1140 {
1141 swap_thing (m->ctm_name);
1142 swap_thing (m->ctm_offset);
1143 swap_thing (m->ctm_type);
1144 }
1145 }
1146 break;
1147 }
1148
1149 case CTF_K_ENUM:
1150 {
1151 /* This has an array of ctf_enum_t. */
1152
1153 ctf_enum_t *item = (ctf_enum_t *) t;
1154
1155 for (ssize_t i = vlen; i > 0; item++, i--)
1156 {
1157 swap_thing (item->cte_name);
1158 swap_thing (item->cte_value);
1159 }
1160 break;
1161 }
1162 default:
1163 ctf_dprintf ("unhandled CTF kind in endianness conversion -- %x\n",
1164 kind);
1165 return ECTF_CORRUPT;
1166 }
1167
1168 t = (ctf_type_t *) ((uintptr_t) t + vbytes);
1169 }
1170
1171 return 0;
1172 }
1173
1174 /* Flip the endianness of BUF, given the offsets in the (already endian-
1175 converted) CTH.
1176
1177 All of this stuff happens before the header is fully initialized, so the
1178 LCTF_*() macros cannot be used yet. Since we do not try to endian-convert v1
1179 data, this is no real loss. */
1180
1181 static int
1182 flip_ctf (ctf_header_t *cth, unsigned char *buf)
1183 {
1184 flip_lbls (buf + cth->cth_lbloff, cth->cth_objtoff - cth->cth_lbloff);
1185 flip_objts (buf + cth->cth_objtoff, cth->cth_funcoff - cth->cth_objtoff);
1186 flip_objts (buf + cth->cth_funcoff, cth->cth_objtidxoff - cth->cth_funcoff);
1187 flip_objts (buf + cth->cth_objtidxoff, cth->cth_funcidxoff - cth->cth_objtidxoff);
1188 flip_objts (buf + cth->cth_funcidxoff, cth->cth_varoff - cth->cth_funcidxoff);
1189 flip_vars (buf + cth->cth_varoff, cth->cth_typeoff - cth->cth_varoff);
1190 return flip_types (buf + cth->cth_typeoff, cth->cth_stroff - cth->cth_typeoff);
1191 }
1192
1193 /* Open a CTF file, mocking up a suitable ctf_sect. */
1194
1195 ctf_file_t *ctf_simple_open (const char *ctfsect, size_t ctfsect_size,
1196 const char *symsect, size_t symsect_size,
1197 size_t symsect_entsize,
1198 const char *strsect, size_t strsect_size,
1199 int *errp)
1200 {
1201 return ctf_simple_open_internal (ctfsect, ctfsect_size, symsect, symsect_size,
1202 symsect_entsize, strsect, strsect_size, NULL,
1203 errp);
1204 }
1205
1206 /* Open a CTF file, mocking up a suitable ctf_sect and overriding the external
1207 strtab with a synthetic one. */
1208
1209 ctf_file_t *ctf_simple_open_internal (const char *ctfsect, size_t ctfsect_size,
1210 const char *symsect, size_t symsect_size,
1211 size_t symsect_entsize,
1212 const char *strsect, size_t strsect_size,
1213 ctf_dynhash_t *syn_strtab, int *errp)
1214 {
1215 ctf_sect_t skeleton;
1216
1217 ctf_sect_t ctf_sect, sym_sect, str_sect;
1218 ctf_sect_t *ctfsectp = NULL;
1219 ctf_sect_t *symsectp = NULL;
1220 ctf_sect_t *strsectp = NULL;
1221
1222 skeleton.cts_name = _CTF_SECTION;
1223 skeleton.cts_entsize = 1;
1224
1225 if (ctfsect)
1226 {
1227 memcpy (&ctf_sect, &skeleton, sizeof (struct ctf_sect));
1228 ctf_sect.cts_data = ctfsect;
1229 ctf_sect.cts_size = ctfsect_size;
1230 ctfsectp = &ctf_sect;
1231 }
1232
1233 if (symsect)
1234 {
1235 memcpy (&sym_sect, &skeleton, sizeof (struct ctf_sect));
1236 sym_sect.cts_data = symsect;
1237 sym_sect.cts_size = symsect_size;
1238 sym_sect.cts_entsize = symsect_entsize;
1239 symsectp = &sym_sect;
1240 }
1241
1242 if (strsect)
1243 {
1244 memcpy (&str_sect, &skeleton, sizeof (struct ctf_sect));
1245 str_sect.cts_data = strsect;
1246 str_sect.cts_size = strsect_size;
1247 strsectp = &str_sect;
1248 }
1249
1250 return ctf_bufopen_internal (ctfsectp, symsectp, strsectp, syn_strtab, errp);
1251 }
1252
1253 /* Decode the specified CTF buffer and optional symbol table, and create a new
1254 CTF container representing the symbolic debugging information. This code can
1255 be used directly by the debugger, or it can be used as the engine for
1256 ctf_fdopen() or ctf_open(), below. */
1257
1258 ctf_file_t *
1259 ctf_bufopen (const ctf_sect_t *ctfsect, const ctf_sect_t *symsect,
1260 const ctf_sect_t *strsect, int *errp)
1261 {
1262 return ctf_bufopen_internal (ctfsect, symsect, strsect, NULL, errp);
1263 }
1264
1265 /* Like ctf_bufopen, but overriding the external strtab with a synthetic one. */
1266
1267 ctf_file_t *
1268 ctf_bufopen_internal (const ctf_sect_t *ctfsect, const ctf_sect_t *symsect,
1269 const ctf_sect_t *strsect, ctf_dynhash_t *syn_strtab,
1270 int *errp)
1271 {
1272 const ctf_preamble_t *pp;
1273 size_t hdrsz = sizeof (ctf_header_t);
1274 ctf_header_t *hp;
1275 ctf_file_t *fp;
1276 int foreign_endian = 0;
1277 int err;
1278
1279 libctf_init_debug();
1280
1281 if ((ctfsect == NULL) || ((symsect != NULL) &&
1282 ((strsect == NULL) && syn_strtab == NULL)))
1283 return (ctf_set_open_errno (errp, EINVAL));
1284
1285 if (symsect != NULL && symsect->cts_entsize != sizeof (Elf32_Sym) &&
1286 symsect->cts_entsize != sizeof (Elf64_Sym))
1287 return (ctf_set_open_errno (errp, ECTF_SYMTAB));
1288
1289 if (symsect != NULL && symsect->cts_data == NULL)
1290 return (ctf_set_open_errno (errp, ECTF_SYMBAD));
1291
1292 if (strsect != NULL && strsect->cts_data == NULL)
1293 return (ctf_set_open_errno (errp, ECTF_STRBAD));
1294
1295 if (ctfsect->cts_size < sizeof (ctf_preamble_t))
1296 return (ctf_set_open_errno (errp, ECTF_NOCTFBUF));
1297
1298 pp = (const ctf_preamble_t *) ctfsect->cts_data;
1299
1300 ctf_dprintf ("ctf_bufopen: magic=0x%x version=%u\n",
1301 pp->ctp_magic, pp->ctp_version);
1302
1303 /* Validate each part of the CTF header.
1304
1305 First, we validate the preamble (common to all versions). At that point,
1306 we know the endianness and specific header version, and can validate the
1307 version-specific parts including section offsets and alignments.
1308
1309 We specifically do not support foreign-endian old versions. */
1310
1311 if (_libctf_unlikely_ (pp->ctp_magic != CTF_MAGIC))
1312 {
1313 if (pp->ctp_magic == bswap_16 (CTF_MAGIC))
1314 {
1315 if (pp->ctp_version != CTF_VERSION_3)
1316 return (ctf_set_open_errno (errp, ECTF_CTFVERS));
1317 foreign_endian = 1;
1318 }
1319 else
1320 return (ctf_set_open_errno (errp, ECTF_NOCTFBUF));
1321 }
1322
1323 if (_libctf_unlikely_ ((pp->ctp_version < CTF_VERSION_1)
1324 || (pp->ctp_version > CTF_VERSION_3)))
1325 return (ctf_set_open_errno (errp, ECTF_CTFVERS));
1326
1327 if ((symsect != NULL) && (pp->ctp_version < CTF_VERSION_2))
1328 {
1329 /* The symtab can contain function entries which contain embedded ctf
1330 info. We do not support dynamically upgrading such entries (none
1331 should exist in any case, since dwarf2ctf does not create them). */
1332
1333 ctf_dprintf ("ctf_bufopen: CTF version %d symsect not "
1334 "supported\n", pp->ctp_version);
1335 return (ctf_set_open_errno (errp, ECTF_NOTSUP));
1336 }
1337
1338 if (pp->ctp_version < CTF_VERSION_3)
1339 hdrsz = sizeof (ctf_header_v2_t);
1340
1341 if (ctfsect->cts_size < hdrsz)
1342 return (ctf_set_open_errno (errp, ECTF_NOCTFBUF));
1343
1344 if ((fp = ctf_alloc (sizeof (ctf_file_t))) == NULL)
1345 return (ctf_set_open_errno (errp, ENOMEM));
1346
1347 memset (fp, 0, sizeof (ctf_file_t));
1348
1349 if ((fp->ctf_header = ctf_alloc (sizeof (struct ctf_header))) == NULL)
1350 {
1351 ctf_free (fp);
1352 return (ctf_set_open_errno (errp, ENOMEM));
1353 }
1354 hp = fp->ctf_header;
1355 memcpy (hp, ctfsect->cts_data, hdrsz);
1356 if (pp->ctp_version < CTF_VERSION_3)
1357 upgrade_header (hp);
1358
1359 if (foreign_endian)
1360 flip_header (hp);
1361 fp->ctf_openflags = hp->cth_flags;
1362 fp->ctf_size = hp->cth_stroff + hp->cth_strlen;
1363
1364 ctf_dprintf ("ctf_bufopen: uncompressed size=%lu\n",
1365 (unsigned long) fp->ctf_size);
1366
1367 if (hp->cth_lbloff > fp->ctf_size || hp->cth_objtoff > fp->ctf_size
1368 || hp->cth_funcoff > fp->ctf_size || hp->cth_objtidxoff > fp->ctf_size
1369 || hp->cth_funcidxoff > fp->ctf_size || hp->cth_typeoff > fp->ctf_size
1370 || hp->cth_stroff > fp->ctf_size)
1371 return (ctf_set_open_errno (errp, ECTF_CORRUPT));
1372
1373 if (hp->cth_lbloff > hp->cth_objtoff
1374 || hp->cth_objtoff > hp->cth_funcoff
1375 || hp->cth_funcoff > hp->cth_typeoff
1376 || hp->cth_funcoff > hp->cth_objtidxoff
1377 || hp->cth_objtidxoff > hp->cth_funcidxoff
1378 || hp->cth_funcidxoff > hp->cth_varoff
1379 || hp->cth_varoff > hp->cth_typeoff || hp->cth_typeoff > hp->cth_stroff)
1380 return (ctf_set_open_errno (errp, ECTF_CORRUPT));
1381
1382 if ((hp->cth_lbloff & 3) || (hp->cth_objtoff & 2)
1383 || (hp->cth_funcoff & 2) || (hp->cth_objtidxoff & 2)
1384 || (hp->cth_funcidxoff & 2) || (hp->cth_varoff & 3)
1385 || (hp->cth_typeoff & 3))
1386 return (ctf_set_open_errno (errp, ECTF_CORRUPT));
1387
1388 /* Once everything is determined to be valid, attempt to decompress the CTF
1389 data buffer if it is compressed, or copy it into new storage if it is not
1390 compressed but needs endian-flipping. Otherwise we just put the data
1391 section's buffer pointer into ctf_buf, below. */
1392
1393 /* Note: if this is a v1 buffer, it will be reallocated and expanded by
1394 init_types(). */
1395
1396 if (hp->cth_flags & CTF_F_COMPRESS)
1397 {
1398 size_t srclen;
1399 uLongf dstlen;
1400 const void *src;
1401 int rc = Z_OK;
1402
1403 /* We are allocating this ourselves, so we can drop the ctf header
1404 copy in favour of ctf->ctf_header. */
1405
1406 if ((fp->ctf_base = ctf_alloc (fp->ctf_size)) == NULL)
1407 {
1408 err = ECTF_ZALLOC;
1409 goto bad;
1410 }
1411 fp->ctf_dynbase = fp->ctf_base;
1412 hp->cth_flags &= ~CTF_F_COMPRESS;
1413
1414 src = (unsigned char *) ctfsect->cts_data + hdrsz;
1415 srclen = ctfsect->cts_size - hdrsz;
1416 dstlen = fp->ctf_size;
1417 fp->ctf_buf = fp->ctf_base;
1418
1419 if ((rc = uncompress (fp->ctf_base, &dstlen, src, srclen)) != Z_OK)
1420 {
1421 ctf_dprintf ("zlib inflate err: %s\n", zError (rc));
1422 err = ECTF_DECOMPRESS;
1423 goto bad;
1424 }
1425
1426 if ((size_t) dstlen != fp->ctf_size)
1427 {
1428 ctf_dprintf ("zlib inflate short -- got %lu of %lu "
1429 "bytes\n", (unsigned long) dstlen,
1430 (unsigned long) fp->ctf_size);
1431 err = ECTF_CORRUPT;
1432 goto bad;
1433 }
1434 }
1435 else if (foreign_endian)
1436 {
1437 if ((fp->ctf_base = ctf_alloc (fp->ctf_size)) == NULL)
1438 {
1439 err = ECTF_ZALLOC;
1440 goto bad;
1441 }
1442 fp->ctf_dynbase = fp->ctf_base;
1443 memcpy (fp->ctf_base, ((unsigned char *) ctfsect->cts_data) + hdrsz,
1444 fp->ctf_size);
1445 fp->ctf_buf = fp->ctf_base;
1446 }
1447 else
1448 {
1449 /* We are just using the section passed in -- but its header may be an old
1450 version. Point ctf_buf past the old header, and never touch it
1451 again. */
1452 fp->ctf_base = (unsigned char *) ctfsect->cts_data;
1453 fp->ctf_dynbase = NULL;
1454 fp->ctf_buf = fp->ctf_base + hdrsz;
1455 }
1456
1457 /* Once we have uncompressed and validated the CTF data buffer, we can
1458 proceed with initializing the ctf_file_t we allocated above.
1459
1460 Nothing that depends on buf or base should be set directly in this function
1461 before the init_types() call, because it may be reallocated during
1462 transparent upgrade if this recension of libctf is so configured: see
1463 ctf_set_base(). */
1464
1465 ctf_set_version (fp, hp, hp->cth_version);
1466 ctf_str_create_atoms (fp);
1467 fp->ctf_parmax = CTF_MAX_PTYPE;
1468 memcpy (&fp->ctf_data, ctfsect, sizeof (ctf_sect_t));
1469
1470 if (symsect != NULL)
1471 {
1472 memcpy (&fp->ctf_symtab, symsect, sizeof (ctf_sect_t));
1473 memcpy (&fp->ctf_strtab, strsect, sizeof (ctf_sect_t));
1474 }
1475
1476 if (fp->ctf_data.cts_name != NULL)
1477 fp->ctf_data.cts_name = ctf_strdup (fp->ctf_data.cts_name);
1478 if (fp->ctf_symtab.cts_name != NULL)
1479 fp->ctf_symtab.cts_name = ctf_strdup (fp->ctf_symtab.cts_name);
1480 if (fp->ctf_strtab.cts_name != NULL)
1481 fp->ctf_strtab.cts_name = ctf_strdup (fp->ctf_strtab.cts_name);
1482
1483 if (fp->ctf_data.cts_name == NULL)
1484 fp->ctf_data.cts_name = _CTF_NULLSTR;
1485 if (fp->ctf_symtab.cts_name == NULL)
1486 fp->ctf_symtab.cts_name = _CTF_NULLSTR;
1487 if (fp->ctf_strtab.cts_name == NULL)
1488 fp->ctf_strtab.cts_name = _CTF_NULLSTR;
1489
1490 if (strsect != NULL)
1491 {
1492 fp->ctf_str[CTF_STRTAB_1].cts_strs = strsect->cts_data;
1493 fp->ctf_str[CTF_STRTAB_1].cts_len = strsect->cts_size;
1494 }
1495 fp->ctf_syn_ext_strtab = syn_strtab;
1496
1497 if (foreign_endian &&
1498 (err = flip_ctf (hp, fp->ctf_buf)) != 0)
1499 {
1500 /* We can be certain that flip_ctf() will have endian-flipped everything
1501 other than the types table when we return. In particular the header
1502 is fine, so set it, to allow freeing to use the usual code path. */
1503
1504 ctf_set_base (fp, hp, fp->ctf_base);
1505 goto bad;
1506 }
1507
1508 ctf_set_base (fp, hp, fp->ctf_base);
1509
1510 if ((err = init_types (fp, hp)) != 0)
1511 goto bad;
1512
1513 /* If we have a symbol table section, allocate and initialize
1514 the symtab translation table, pointed to by ctf_sxlate. This table may be
1515 too large for the actual size of the object and function info sections: if
1516 so, ctf_nsyms will be adjusted and the excess will never be used. */
1517
1518 if (symsect != NULL)
1519 {
1520 fp->ctf_nsyms = symsect->cts_size / symsect->cts_entsize;
1521 fp->ctf_sxlate = ctf_alloc (fp->ctf_nsyms * sizeof (uint32_t));
1522
1523 if (fp->ctf_sxlate == NULL)
1524 {
1525 err = ENOMEM;
1526 goto bad;
1527 }
1528
1529 if ((err = init_symtab (fp, hp, symsect, strsect)) != 0)
1530 goto bad;
1531 }
1532
1533 /* Initialize the ctf_lookup_by_name top-level dictionary. We keep an
1534 array of type name prefixes and the corresponding ctf_hash to use.
1535 NOTE: This code must be kept in sync with the code in ctf_update(). */
1536 fp->ctf_lookups[0].ctl_prefix = "struct";
1537 fp->ctf_lookups[0].ctl_len = strlen (fp->ctf_lookups[0].ctl_prefix);
1538 fp->ctf_lookups[0].ctl_hash = fp->ctf_structs;
1539 fp->ctf_lookups[1].ctl_prefix = "union";
1540 fp->ctf_lookups[1].ctl_len = strlen (fp->ctf_lookups[1].ctl_prefix);
1541 fp->ctf_lookups[1].ctl_hash = fp->ctf_unions;
1542 fp->ctf_lookups[2].ctl_prefix = "enum";
1543 fp->ctf_lookups[2].ctl_len = strlen (fp->ctf_lookups[2].ctl_prefix);
1544 fp->ctf_lookups[2].ctl_hash = fp->ctf_enums;
1545 fp->ctf_lookups[3].ctl_prefix = _CTF_NULLSTR;
1546 fp->ctf_lookups[3].ctl_len = strlen (fp->ctf_lookups[3].ctl_prefix);
1547 fp->ctf_lookups[3].ctl_hash = fp->ctf_names;
1548 fp->ctf_lookups[4].ctl_prefix = NULL;
1549 fp->ctf_lookups[4].ctl_len = 0;
1550 fp->ctf_lookups[4].ctl_hash = NULL;
1551
1552 if (symsect != NULL)
1553 {
1554 if (symsect->cts_entsize == sizeof (Elf64_Sym))
1555 (void) ctf_setmodel (fp, CTF_MODEL_LP64);
1556 else
1557 (void) ctf_setmodel (fp, CTF_MODEL_ILP32);
1558 }
1559 else
1560 (void) ctf_setmodel (fp, CTF_MODEL_NATIVE);
1561
1562 fp->ctf_refcnt = 1;
1563 return fp;
1564
1565 bad:
1566 ctf_set_open_errno (errp, err);
1567 ctf_file_close (fp);
1568 return NULL;
1569 }
1570
1571 /* Close the specified CTF container and free associated data structures. Note
1572 that ctf_file_close() is a reference counted operation: if the specified file
1573 is the parent of other active containers, its reference count will be greater
1574 than one and it will be freed later when no active children exist. */
1575
1576 void
1577 ctf_file_close (ctf_file_t *fp)
1578 {
1579 ctf_dtdef_t *dtd, *ntd;
1580 ctf_dvdef_t *dvd, *nvd;
1581
1582 if (fp == NULL)
1583 return; /* Allow ctf_file_close(NULL) to simplify caller code. */
1584
1585 ctf_dprintf ("ctf_file_close(%p) refcnt=%u\n", (void *) fp, fp->ctf_refcnt);
1586
1587 if (fp->ctf_refcnt > 1)
1588 {
1589 fp->ctf_refcnt--;
1590 return;
1591 }
1592
1593 ctf_free (fp->ctf_dyncuname);
1594 ctf_free (fp->ctf_dynparname);
1595 ctf_file_close (fp->ctf_parent);
1596
1597 for (dtd = ctf_list_next (&fp->ctf_dtdefs); dtd != NULL; dtd = ntd)
1598 {
1599 ntd = ctf_list_next (dtd);
1600 ctf_dtd_delete (fp, dtd);
1601 }
1602 ctf_dynhash_destroy (fp->ctf_dthash);
1603 ctf_dynhash_destroy (fp->ctf_dtbyname);
1604
1605 for (dvd = ctf_list_next (&fp->ctf_dvdefs); dvd != NULL; dvd = nvd)
1606 {
1607 nvd = ctf_list_next (dvd);
1608 ctf_dvd_delete (fp, dvd);
1609 }
1610 ctf_dynhash_destroy (fp->ctf_dvhash);
1611 ctf_str_free_atoms (fp);
1612 ctf_free (fp->ctf_tmp_typeslice);
1613
1614 if (fp->ctf_data.cts_name != _CTF_NULLSTR)
1615 ctf_free ((char *) fp->ctf_data.cts_name);
1616
1617 if (fp->ctf_symtab.cts_name != _CTF_NULLSTR)
1618 ctf_free ((char *) fp->ctf_symtab.cts_name);
1619
1620 if (fp->ctf_strtab.cts_name != _CTF_NULLSTR)
1621 ctf_free ((char *) fp->ctf_strtab.cts_name);
1622 else if (fp->ctf_data_mmapped)
1623 ctf_munmap (fp->ctf_data_mmapped, fp->ctf_data_mmapped_len);
1624
1625 ctf_free (fp->ctf_dynbase);
1626
1627 ctf_dynhash_destroy (fp->ctf_syn_ext_strtab);
1628 ctf_dynhash_destroy (fp->ctf_link_inputs);
1629 ctf_dynhash_destroy (fp->ctf_link_outputs);
1630
1631 ctf_free (fp->ctf_sxlate);
1632 ctf_free (fp->ctf_txlate);
1633 ctf_free (fp->ctf_ptrtab);
1634
1635 ctf_hash_destroy (fp->ctf_structs);
1636 ctf_hash_destroy (fp->ctf_unions);
1637 ctf_hash_destroy (fp->ctf_enums);
1638 ctf_hash_destroy (fp->ctf_names);
1639
1640 ctf_free (fp->ctf_header);
1641 ctf_free (fp);
1642 }
1643
1644 /* The converse of ctf_open(). ctf_open() disguises whatever it opens as an
1645 archive, so closing one is just like closing an archive. */
1646 void
1647 ctf_close (ctf_archive_t *arc)
1648 {
1649 ctf_arc_close (arc);
1650 }
1651
1652 /* Get the CTF archive from which this ctf_file_t is derived. */
1653 ctf_archive_t *
1654 ctf_get_arc (const ctf_file_t *fp)
1655 {
1656 return fp->ctf_archive;
1657 }
1658
1659 /* Return the ctfsect out of the core ctf_impl. Useful for freeing the
1660 ctfsect's data * after ctf_file_close(), which is why we return the actual
1661 structure, not a pointer to it, since that is likely to become a pointer to
1662 freed data before the return value is used under the expected use case of
1663 ctf_getsect()/ ctf_file_close()/free(). */
1664 extern ctf_sect_t
1665 ctf_getdatasect (const ctf_file_t *fp)
1666 {
1667 return fp->ctf_data;
1668 }
1669
1670 /* Return the CTF handle for the parent CTF container, if one exists.
1671 Otherwise return NULL to indicate this container has no imported parent. */
1672 ctf_file_t *
1673 ctf_parent_file (ctf_file_t *fp)
1674 {
1675 return fp->ctf_parent;
1676 }
1677
1678 /* Return the name of the parent CTF container, if one exists. Otherwise
1679 return NULL to indicate this container is a root container. */
1680 const char *
1681 ctf_parent_name (ctf_file_t *fp)
1682 {
1683 return fp->ctf_parname;
1684 }
1685
1686 /* Set the parent name. It is an error to call this routine without calling
1687 ctf_import() at some point. */
1688 void
1689 ctf_parent_name_set (ctf_file_t *fp, const char *name)
1690 {
1691 if (fp->ctf_dynparname != NULL)
1692 ctf_free (fp->ctf_dynparname);
1693
1694 fp->ctf_dynparname = ctf_strdup (name);
1695 fp->ctf_parname = fp->ctf_dynparname;
1696 }
1697
1698 /* Return the name of the compilation unit this CTF file applies to. Usually
1699 non-NULL only for non-parent containers. */
1700 const char *
1701 ctf_cuname (ctf_file_t *fp)
1702 {
1703 return fp->ctf_cuname;
1704 }
1705
1706 /* Set the compilation unit name. */
1707 void
1708 ctf_cuname_set (ctf_file_t *fp, const char *name)
1709 {
1710 if (fp->ctf_dyncuname != NULL)
1711 ctf_free (fp->ctf_dyncuname);
1712
1713 fp->ctf_dyncuname = ctf_strdup (name);
1714 fp->ctf_cuname = fp->ctf_dyncuname;
1715 }
1716
1717 /* Import the types from the specified parent container by storing a pointer
1718 to it in ctf_parent and incrementing its reference count. Only one parent
1719 is allowed: if a parent already exists, it is replaced by the new parent. */
1720 int
1721 ctf_import (ctf_file_t *fp, ctf_file_t *pfp)
1722 {
1723 if (fp == NULL || fp == pfp || (pfp != NULL && pfp->ctf_refcnt == 0))
1724 return (ctf_set_errno (fp, EINVAL));
1725
1726 if (pfp != NULL && pfp->ctf_dmodel != fp->ctf_dmodel)
1727 return (ctf_set_errno (fp, ECTF_DMODEL));
1728
1729 if (fp->ctf_parent != NULL)
1730 ctf_file_close (fp->ctf_parent);
1731
1732 if (pfp != NULL)
1733 {
1734 fp->ctf_flags |= LCTF_CHILD;
1735 pfp->ctf_refcnt++;
1736
1737 if (fp->ctf_parname == NULL)
1738 ctf_parent_name_set (fp, "PARENT");
1739 }
1740 fp->ctf_parent = pfp;
1741 return 0;
1742 }
1743
1744 /* Set the data model constant for the CTF container. */
1745 int
1746 ctf_setmodel (ctf_file_t *fp, int model)
1747 {
1748 const ctf_dmodel_t *dp;
1749
1750 for (dp = _libctf_models; dp->ctd_name != NULL; dp++)
1751 {
1752 if (dp->ctd_code == model)
1753 {
1754 fp->ctf_dmodel = dp;
1755 return 0;
1756 }
1757 }
1758
1759 return (ctf_set_errno (fp, EINVAL));
1760 }
1761
1762 /* Return the data model constant for the CTF container. */
1763 int
1764 ctf_getmodel (ctf_file_t *fp)
1765 {
1766 return fp->ctf_dmodel->ctd_code;
1767 }
1768
1769 /* The caller can hang an arbitrary pointer off each ctf_file_t using this
1770 function. */
1771 void
1772 ctf_setspecific (ctf_file_t *fp, void *data)
1773 {
1774 fp->ctf_specific = data;
1775 }
1776
1777 /* Retrieve the arbitrary pointer again. */
1778 void *
1779 ctf_getspecific (ctf_file_t *fp)
1780 {
1781 return fp->ctf_specific;
1782 }
This page took 0.063694 seconds and 5 git commands to generate.