merge from gcc
[deliverable/binutils-gdb.git] / libiberty / fibheap.c
1 /* A Fibonacci heap datatype.
2 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin (dan@cgsoftware.com).
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #ifdef HAVE_CONFIG_H
23 #include "config.h"
24 #endif
25 #ifdef HAVE_LIMITS_H
26 #include <limits.h>
27 #endif
28 #ifdef HAVE_STDLIB_H
29 #include <stdlib.h>
30 #endif
31 #ifdef HAVE_STRING_H
32 #include <string.h>
33 #endif
34 #include "libiberty.h"
35 #include "fibheap.h"
36
37
38 #define FIBHEAPKEY_MIN LONG_MIN
39
40 static void fibheap_ins_root PARAMS ((fibheap_t, fibnode_t));
41 static void fibheap_rem_root PARAMS ((fibheap_t, fibnode_t));
42 static void fibheap_consolidate PARAMS ((fibheap_t));
43 static void fibheap_link PARAMS ((fibheap_t, fibnode_t, fibnode_t));
44 static void fibheap_cut PARAMS ((fibheap_t, fibnode_t, fibnode_t));
45 static void fibheap_cascading_cut PARAMS ((fibheap_t, fibnode_t));
46 static fibnode_t fibheap_extr_min_node PARAMS ((fibheap_t));
47 static int fibheap_compare PARAMS ((fibheap_t, fibnode_t, fibnode_t));
48 static int fibheap_comp_data PARAMS ((fibheap_t, fibheapkey_t, void *,
49 fibnode_t));
50 static fibnode_t fibnode_new PARAMS ((void));
51 static void fibnode_insert_after PARAMS ((fibnode_t, fibnode_t));
52 #define fibnode_insert_before(a, b) fibnode_insert_after (a->left, b)
53 static fibnode_t fibnode_remove PARAMS ((fibnode_t));
54
55 \f
56 /* Create a new fibonacci heap. */
57 fibheap_t
58 fibheap_new ()
59 {
60 return (fibheap_t) xcalloc (1, sizeof (struct fibheap));
61 }
62
63 /* Create a new fibonacci heap node. */
64 static fibnode_t
65 fibnode_new ()
66 {
67 fibnode_t node;
68
69 node = xcalloc (1, sizeof *node);
70 node->left = node;
71 node->right = node;
72
73 return node;
74 }
75
76 static inline int
77 fibheap_compare (heap, a, b)
78 fibheap_t heap ATTRIBUTE_UNUSED;
79 fibnode_t a;
80 fibnode_t b;
81 {
82 if (a->key < b->key)
83 return -1;
84 if (a->key > b->key)
85 return 1;
86 return 0;
87 }
88
89 static inline int
90 fibheap_comp_data (heap, key, data, b)
91 fibheap_t heap;
92 fibheapkey_t key;
93 void *data;
94 fibnode_t b;
95 {
96 struct fibnode a;
97
98 a.key = key;
99 a.data = data;
100
101 return fibheap_compare (heap, &a, b);
102 }
103
104 /* Insert DATA, with priority KEY, into HEAP. */
105 fibnode_t
106 fibheap_insert (heap, key, data)
107 fibheap_t heap;
108 fibheapkey_t key;
109 void *data;
110 {
111 fibnode_t node;
112
113 /* Create the new node. */
114 node = fibnode_new ();
115
116 /* Set the node's data. */
117 node->data = data;
118 node->key = key;
119
120 /* Insert it into the root list. */
121 fibheap_ins_root (heap, node);
122
123 /* If their was no minimum, or this key is less than the min,
124 it's the new min. */
125 if (heap->min == NULL || node->key < heap->min->key)
126 heap->min = node;
127
128 heap->nodes++;
129
130 return node;
131 }
132
133 /* Return the data of the minimum node (if we know it). */
134 void *
135 fibheap_min (heap)
136 fibheap_t heap;
137 {
138 /* If there is no min, we can't easily return it. */
139 if (heap->min == NULL)
140 return NULL;
141 return heap->min->data;
142 }
143
144 /* Return the key of the minimum node (if we know it). */
145 fibheapkey_t
146 fibheap_min_key (heap)
147 fibheap_t heap;
148 {
149 /* If there is no min, we can't easily return it. */
150 if (heap->min == NULL)
151 return 0;
152 return heap->min->key;
153 }
154
155 /* Union HEAPA and HEAPB into a new heap. */
156 fibheap_t
157 fibheap_union (heapa, heapb)
158 fibheap_t heapa;
159 fibheap_t heapb;
160 {
161 fibnode_t a_root, b_root, temp;
162
163 /* If one of the heaps is empty, the union is just the other heap. */
164 if ((a_root = heapa->root) == NULL)
165 {
166 free (heapa);
167 return heapb;
168 }
169 if ((b_root = heapb->root) == NULL)
170 {
171 free (heapb);
172 return heapa;
173 }
174
175 /* Merge them to the next nodes on the opposite chain. */
176 a_root->left->right = b_root;
177 b_root->left->right = a_root;
178 temp = a_root->left;
179 a_root->left = b_root->left;
180 b_root->left = temp;
181 heapa->nodes += heapb->nodes;
182
183 /* And set the new minimum, if it's changed. */
184 if (fibheap_compare (heapa, heapb->min, heapa->min) < 0)
185 heapa->min = heapb->min;
186
187 free (heapb);
188 return heapa;
189 }
190
191 /* Extract the data of the minimum node from HEAP. */
192 void *
193 fibheap_extract_min (heap)
194 fibheap_t heap;
195 {
196 fibnode_t z;
197 void *ret = NULL;
198
199 /* If we don't have a min set, it means we have no nodes. */
200 if (heap->min != NULL)
201 {
202 /* Otherwise, extract the min node, free the node, and return the
203 node's data. */
204 z = fibheap_extr_min_node (heap);
205 ret = z->data;
206 free (z);
207 }
208
209 return ret;
210 }
211
212 /* Replace both the KEY and the DATA associated with NODE. */
213 void *
214 fibheap_replace_key_data (heap, node, key, data)
215 fibheap_t heap;
216 fibnode_t node;
217 fibheapkey_t key;
218 void *data;
219 {
220 void *odata;
221 int okey;
222 fibnode_t y;
223
224 /* If we wanted to, we could actually do a real increase by redeleting and
225 inserting. However, this would require O (log n) time. So just bail out
226 for now. */
227 if (fibheap_comp_data (heap, key, data, node) > 0)
228 return NULL;
229
230 odata = node->data;
231 okey = node->key;
232 node->data = data;
233 node->key = key;
234 y = node->parent;
235
236 if (okey == key)
237 return odata;
238
239 /* These two compares are specifically <= 0 to make sure that in the case
240 of equality, a node we replaced the data on, becomes the new min. This
241 is needed so that delete's call to extractmin gets the right node. */
242 if (y != NULL && fibheap_compare (heap, node, y) <= 0)
243 {
244 fibheap_cut (heap, node, y);
245 fibheap_cascading_cut (heap, y);
246 }
247
248 if (fibheap_compare (heap, node, heap->min) <= 0)
249 heap->min = node;
250
251 return odata;
252 }
253
254 /* Replace the DATA associated with NODE. */
255 void *
256 fibheap_replace_data (heap, node, data)
257 fibheap_t heap;
258 fibnode_t node;
259 void *data;
260 {
261 return fibheap_replace_key_data (heap, node, node->key, data);
262 }
263
264 /* Replace the KEY associated with NODE. */
265 fibheapkey_t
266 fibheap_replace_key (heap, node, key)
267 fibheap_t heap;
268 fibnode_t node;
269 fibheapkey_t key;
270 {
271 int okey = node->key;
272 fibheap_replace_key_data (heap, node, key, node->data);
273 return okey;
274 }
275
276 /* Delete NODE from HEAP. */
277 void *
278 fibheap_delete_node (heap, node)
279 fibheap_t heap;
280 fibnode_t node;
281 {
282 void *ret = node->data;
283
284 /* To perform delete, we just make it the min key, and extract. */
285 fibheap_replace_key (heap, node, FIBHEAPKEY_MIN);
286 fibheap_extract_min (heap);
287
288 return ret;
289 }
290
291 /* Delete HEAP. */
292 void
293 fibheap_delete (heap)
294 fibheap_t heap;
295 {
296 while (heap->min != NULL)
297 free (fibheap_extr_min_node (heap));
298
299 free (heap);
300 }
301
302 /* Determine if HEAP is empty. */
303 int
304 fibheap_empty (heap)
305 fibheap_t heap;
306 {
307 return heap->nodes == 0;
308 }
309
310 /* Extract the minimum node of the heap. */
311 static fibnode_t
312 fibheap_extr_min_node (heap)
313 fibheap_t heap;
314 {
315 fibnode_t ret = heap->min;
316 fibnode_t x, y, orig;
317
318 /* Attach the child list of the minimum node to the root list of the heap.
319 If there is no child list, we don't do squat. */
320 for (x = ret->child, orig = NULL; x != orig && x != NULL; x = y)
321 {
322 if (orig == NULL)
323 orig = x;
324 y = x->right;
325 x->parent = NULL;
326 fibheap_ins_root (heap, x);
327 }
328
329 /* Remove the old root. */
330 fibheap_rem_root (heap, ret);
331 heap->nodes--;
332
333 /* If we are left with no nodes, then the min is NULL. */
334 if (heap->nodes == 0)
335 heap->min = NULL;
336 else
337 {
338 /* Otherwise, consolidate to find new minimum, as well as do the reorg
339 work that needs to be done. */
340 heap->min = ret->right;
341 fibheap_consolidate (heap);
342 }
343
344 return ret;
345 }
346
347 /* Insert NODE into the root list of HEAP. */
348 static void
349 fibheap_ins_root (heap, node)
350 fibheap_t heap;
351 fibnode_t node;
352 {
353 /* If the heap is currently empty, the new node becomes the singleton
354 circular root list. */
355 if (heap->root == NULL)
356 {
357 heap->root = node;
358 node->left = node;
359 node->right = node;
360 return;
361 }
362
363 /* Otherwise, insert it in the circular root list between the root
364 and it's right node. */
365 fibnode_insert_after (heap->root, node);
366 }
367
368 /* Remove NODE from the rootlist of HEAP. */
369 static void
370 fibheap_rem_root (heap, node)
371 fibheap_t heap;
372 fibnode_t node;
373 {
374 if (node->left == node)
375 heap->root = NULL;
376 else
377 heap->root = fibnode_remove (node);
378 }
379
380 /* Consolidate the heap. */
381 static void
382 fibheap_consolidate (heap)
383 fibheap_t heap;
384 {
385 fibnode_t a[1 + 8 * sizeof (long)];
386 fibnode_t w;
387 fibnode_t y;
388 fibnode_t x;
389 int i;
390 int d;
391 int D;
392
393 D = 1 + 8 * sizeof (long);
394
395 memset (a, 0, sizeof (fibnode_t) * D);
396
397 while ((w = heap->root) != NULL)
398 {
399 x = w;
400 fibheap_rem_root (heap, w);
401 d = x->degree;
402 while (a[d] != NULL)
403 {
404 y = a[d];
405 if (fibheap_compare (heap, x, y) > 0)
406 {
407 fibnode_t temp;
408 temp = x;
409 x = y;
410 y = temp;
411 }
412 fibheap_link (heap, y, x);
413 a[d] = NULL;
414 d++;
415 }
416 a[d] = x;
417 }
418 heap->min = NULL;
419 for (i = 0; i < D; i++)
420 if (a[i] != NULL)
421 {
422 fibheap_ins_root (heap, a[i]);
423 if (heap->min == NULL || fibheap_compare (heap, a[i], heap->min) < 0)
424 heap->min = a[i];
425 }
426 }
427
428 /* Make NODE a child of PARENT. */
429 static void
430 fibheap_link (heap, node, parent)
431 fibheap_t heap ATTRIBUTE_UNUSED;
432 fibnode_t node;
433 fibnode_t parent;
434 {
435 if (parent->child == NULL)
436 parent->child = node;
437 else
438 fibnode_insert_before (parent->child, node);
439 node->parent = parent;
440 parent->degree++;
441 node->mark = 0;
442 }
443
444 /* Remove NODE from PARENT's child list. */
445 static void
446 fibheap_cut (heap, node, parent)
447 fibheap_t heap;
448 fibnode_t node;
449 fibnode_t parent;
450 {
451 fibnode_remove (node);
452 parent->degree--;
453 fibheap_ins_root (heap, node);
454 node->parent = NULL;
455 node->mark = 0;
456 }
457
458 static void
459 fibheap_cascading_cut (heap, y)
460 fibheap_t heap;
461 fibnode_t y;
462 {
463 fibnode_t z;
464
465 while ((z = y->parent) != NULL)
466 {
467 if (y->mark == 0)
468 {
469 y->mark = 1;
470 return;
471 }
472 else
473 {
474 fibheap_cut (heap, y, z);
475 y = z;
476 }
477 }
478 }
479
480 static void
481 fibnode_insert_after (a, b)
482 fibnode_t a;
483 fibnode_t b;
484 {
485 if (a == a->right)
486 {
487 a->right = b;
488 a->left = b;
489 b->right = a;
490 b->left = a;
491 }
492 else
493 {
494 b->right = a->right;
495 a->right->left = b;
496 a->right = b;
497 b->left = a;
498 }
499 }
500
501 static fibnode_t
502 fibnode_remove (node)
503 fibnode_t node;
504 {
505 fibnode_t ret;
506
507 if (node == node->left)
508 ret = NULL;
509 else
510 ret = node->left;
511
512 if (node->parent != NULL && node->parent->child == node)
513 node->parent->child = ret;
514
515 node->right->left = node->left;
516 node->left->right = node->right;
517
518 node->parent = NULL;
519 node->left = node;
520 node->right = node;
521
522 return ret;
523 }
This page took 0.041793 seconds and 5 git commands to generate.