strerror.c: Do not declare sys_nerr or sys_errlist if already macros
[deliverable/binutils-gdb.git] / libiberty / floatformat.c
1 /* IEEE floating point support routines, for GDB, the GNU Debugger.
2 Copyright 1991, 1994, 1999, 2000, 2003, 2005, 2006, 2010, 2012
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
20
21 /* This is needed to pick up the NAN macro on some systems. */
22 #define _GNU_SOURCE
23
24 #ifdef HAVE_CONFIG_H
25 #include "config.h"
26 #endif
27
28 #include <math.h>
29
30 #ifdef HAVE_STRING_H
31 #include <string.h>
32 #endif
33
34 /* On some platforms, <float.h> provides DBL_QNAN. */
35 #ifdef STDC_HEADERS
36 #include <float.h>
37 #endif
38
39 #include "ansidecl.h"
40 #include "libiberty.h"
41 #include "floatformat.h"
42
43 #ifndef INFINITY
44 #ifdef HUGE_VAL
45 #define INFINITY HUGE_VAL
46 #else
47 #define INFINITY (1.0 / 0.0)
48 #endif
49 #endif
50
51 #ifndef NAN
52 #ifdef DBL_QNAN
53 #define NAN DBL_QNAN
54 #else
55 #define NAN (0.0 / 0.0)
56 #endif
57 #endif
58
59 static int mant_bits_set (const struct floatformat *, const unsigned char *);
60 static unsigned long get_field (const unsigned char *,
61 enum floatformat_byteorders,
62 unsigned int,
63 unsigned int,
64 unsigned int);
65 static int floatformat_always_valid (const struct floatformat *fmt,
66 const void *from);
67
68 static int
69 floatformat_always_valid (const struct floatformat *fmt ATTRIBUTE_UNUSED,
70 const void *from ATTRIBUTE_UNUSED)
71 {
72 return 1;
73 }
74
75 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
76 going to bother with trying to muck around with whether it is defined in
77 a system header, what we do if not, etc. */
78 #define FLOATFORMAT_CHAR_BIT 8
79
80 /* floatformats for IEEE half, single and double, big and little endian. */
81 const struct floatformat floatformat_ieee_half_big =
82 {
83 floatformat_big, 16, 0, 1, 5, 15, 31, 6, 10,
84 floatformat_intbit_no,
85 "floatformat_ieee_half_big",
86 floatformat_always_valid,
87 NULL
88 };
89 const struct floatformat floatformat_ieee_half_little =
90 {
91 floatformat_little, 16, 0, 1, 5, 15, 31, 6, 10,
92 floatformat_intbit_no,
93 "floatformat_ieee_half_little",
94 floatformat_always_valid,
95 NULL
96 };
97 const struct floatformat floatformat_ieee_single_big =
98 {
99 floatformat_big, 32, 0, 1, 8, 127, 255, 9, 23,
100 floatformat_intbit_no,
101 "floatformat_ieee_single_big",
102 floatformat_always_valid,
103 NULL
104 };
105 const struct floatformat floatformat_ieee_single_little =
106 {
107 floatformat_little, 32, 0, 1, 8, 127, 255, 9, 23,
108 floatformat_intbit_no,
109 "floatformat_ieee_single_little",
110 floatformat_always_valid,
111 NULL
112 };
113 const struct floatformat floatformat_ieee_double_big =
114 {
115 floatformat_big, 64, 0, 1, 11, 1023, 2047, 12, 52,
116 floatformat_intbit_no,
117 "floatformat_ieee_double_big",
118 floatformat_always_valid,
119 NULL
120 };
121 const struct floatformat floatformat_ieee_double_little =
122 {
123 floatformat_little, 64, 0, 1, 11, 1023, 2047, 12, 52,
124 floatformat_intbit_no,
125 "floatformat_ieee_double_little",
126 floatformat_always_valid,
127 NULL
128 };
129
130 /* floatformat for IEEE double, little endian byte order, with big endian word
131 ordering, as on the ARM. */
132
133 const struct floatformat floatformat_ieee_double_littlebyte_bigword =
134 {
135 floatformat_littlebyte_bigword, 64, 0, 1, 11, 1023, 2047, 12, 52,
136 floatformat_intbit_no,
137 "floatformat_ieee_double_littlebyte_bigword",
138 floatformat_always_valid,
139 NULL
140 };
141
142 /* floatformat for VAX. Not quite IEEE, but close enough. */
143
144 const struct floatformat floatformat_vax_f =
145 {
146 floatformat_vax, 32, 0, 1, 8, 129, 0, 9, 23,
147 floatformat_intbit_no,
148 "floatformat_vax_f",
149 floatformat_always_valid,
150 NULL
151 };
152 const struct floatformat floatformat_vax_d =
153 {
154 floatformat_vax, 64, 0, 1, 8, 129, 0, 9, 55,
155 floatformat_intbit_no,
156 "floatformat_vax_d",
157 floatformat_always_valid,
158 NULL
159 };
160 const struct floatformat floatformat_vax_g =
161 {
162 floatformat_vax, 64, 0, 1, 11, 1025, 0, 12, 52,
163 floatformat_intbit_no,
164 "floatformat_vax_g",
165 floatformat_always_valid,
166 NULL
167 };
168
169 static int floatformat_i387_ext_is_valid (const struct floatformat *fmt,
170 const void *from);
171
172 static int
173 floatformat_i387_ext_is_valid (const struct floatformat *fmt, const void *from)
174 {
175 /* In the i387 double-extended format, if the exponent is all ones,
176 then the integer bit must be set. If the exponent is neither 0
177 nor ~0, the intbit must also be set. Only if the exponent is
178 zero can it be zero, and then it must be zero. */
179 unsigned long exponent, int_bit;
180 const unsigned char *ufrom = (const unsigned char *) from;
181
182 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
183 fmt->exp_start, fmt->exp_len);
184 int_bit = get_field (ufrom, fmt->byteorder, fmt->totalsize,
185 fmt->man_start, 1);
186
187 if ((exponent == 0) != (int_bit == 0))
188 return 0;
189 else
190 return 1;
191 }
192
193 const struct floatformat floatformat_i387_ext =
194 {
195 floatformat_little, 80, 0, 1, 15, 0x3fff, 0x7fff, 16, 64,
196 floatformat_intbit_yes,
197 "floatformat_i387_ext",
198 floatformat_i387_ext_is_valid,
199 NULL
200 };
201 const struct floatformat floatformat_m68881_ext =
202 {
203 /* Note that the bits from 16 to 31 are unused. */
204 floatformat_big, 96, 0, 1, 15, 0x3fff, 0x7fff, 32, 64,
205 floatformat_intbit_yes,
206 "floatformat_m68881_ext",
207 floatformat_always_valid,
208 NULL
209 };
210 const struct floatformat floatformat_i960_ext =
211 {
212 /* Note that the bits from 0 to 15 are unused. */
213 floatformat_little, 96, 16, 17, 15, 0x3fff, 0x7fff, 32, 64,
214 floatformat_intbit_yes,
215 "floatformat_i960_ext",
216 floatformat_always_valid,
217 NULL
218 };
219 const struct floatformat floatformat_m88110_ext =
220 {
221 floatformat_big, 80, 0, 1, 15, 0x3fff, 0x7fff, 16, 64,
222 floatformat_intbit_yes,
223 "floatformat_m88110_ext",
224 floatformat_always_valid,
225 NULL
226 };
227 const struct floatformat floatformat_m88110_harris_ext =
228 {
229 /* Harris uses raw format 128 bytes long, but the number is just an ieee
230 double, and the last 64 bits are wasted. */
231 floatformat_big,128, 0, 1, 11, 0x3ff, 0x7ff, 12, 52,
232 floatformat_intbit_no,
233 "floatformat_m88110_ext_harris",
234 floatformat_always_valid,
235 NULL
236 };
237 const struct floatformat floatformat_arm_ext_big =
238 {
239 /* Bits 1 to 16 are unused. */
240 floatformat_big, 96, 0, 17, 15, 0x3fff, 0x7fff, 32, 64,
241 floatformat_intbit_yes,
242 "floatformat_arm_ext_big",
243 floatformat_always_valid,
244 NULL
245 };
246 const struct floatformat floatformat_arm_ext_littlebyte_bigword =
247 {
248 /* Bits 1 to 16 are unused. */
249 floatformat_littlebyte_bigword, 96, 0, 17, 15, 0x3fff, 0x7fff, 32, 64,
250 floatformat_intbit_yes,
251 "floatformat_arm_ext_littlebyte_bigword",
252 floatformat_always_valid,
253 NULL
254 };
255 const struct floatformat floatformat_ia64_spill_big =
256 {
257 floatformat_big, 128, 0, 1, 17, 65535, 0x1ffff, 18, 64,
258 floatformat_intbit_yes,
259 "floatformat_ia64_spill_big",
260 floatformat_always_valid,
261 NULL
262 };
263 const struct floatformat floatformat_ia64_spill_little =
264 {
265 floatformat_little, 128, 0, 1, 17, 65535, 0x1ffff, 18, 64,
266 floatformat_intbit_yes,
267 "floatformat_ia64_spill_little",
268 floatformat_always_valid,
269 NULL
270 };
271 const struct floatformat floatformat_ia64_quad_big =
272 {
273 floatformat_big, 128, 0, 1, 15, 16383, 0x7fff, 16, 112,
274 floatformat_intbit_no,
275 "floatformat_ia64_quad_big",
276 floatformat_always_valid,
277 NULL
278 };
279 const struct floatformat floatformat_ia64_quad_little =
280 {
281 floatformat_little, 128, 0, 1, 15, 16383, 0x7fff, 16, 112,
282 floatformat_intbit_no,
283 "floatformat_ia64_quad_little",
284 floatformat_always_valid,
285 NULL
286 };
287
288 static int
289 floatformat_ibm_long_double_is_valid (const struct floatformat *fmt,
290 const void *from)
291 {
292 const unsigned char *ufrom = (const unsigned char *) from;
293 const struct floatformat *hfmt = fmt->split_half;
294 long top_exp, bot_exp;
295 int top_nan = 0;
296
297 top_exp = get_field (ufrom, hfmt->byteorder, hfmt->totalsize,
298 hfmt->exp_start, hfmt->exp_len);
299 bot_exp = get_field (ufrom + 8, hfmt->byteorder, hfmt->totalsize,
300 hfmt->exp_start, hfmt->exp_len);
301
302 if ((unsigned long) top_exp == hfmt->exp_nan)
303 top_nan = mant_bits_set (hfmt, ufrom);
304
305 /* A NaN is valid with any low part. */
306 if (top_nan)
307 return 1;
308
309 /* An infinity, zero or denormal requires low part 0 (positive or
310 negative). */
311 if ((unsigned long) top_exp == hfmt->exp_nan || top_exp == 0)
312 {
313 if (bot_exp != 0)
314 return 0;
315
316 return !mant_bits_set (hfmt, ufrom + 8);
317 }
318
319 /* The top part is now a finite normal value. The long double value
320 is the sum of the two parts, and the top part must equal the
321 result of rounding the long double value to nearest double. Thus
322 the bottom part must be <= 0.5ulp of the top part in absolute
323 value, and if it is < 0.5ulp then the long double is definitely
324 valid. */
325 if (bot_exp < top_exp - 53)
326 return 1;
327 if (bot_exp > top_exp - 53 && bot_exp != 0)
328 return 0;
329 if (bot_exp == 0)
330 {
331 /* The bottom part is 0 or denormal. Determine which, and if
332 denormal the first two set bits. */
333 int first_bit = -1, second_bit = -1, cur_bit;
334 for (cur_bit = 0; (unsigned int) cur_bit < hfmt->man_len; cur_bit++)
335 if (get_field (ufrom + 8, hfmt->byteorder, hfmt->totalsize,
336 hfmt->man_start + cur_bit, 1))
337 {
338 if (first_bit == -1)
339 first_bit = cur_bit;
340 else
341 {
342 second_bit = cur_bit;
343 break;
344 }
345 }
346 /* Bottom part 0 is OK. */
347 if (first_bit == -1)
348 return 1;
349 /* The real exponent of the bottom part is -first_bit. */
350 if (-first_bit < top_exp - 53)
351 return 1;
352 if (-first_bit > top_exp - 53)
353 return 0;
354 /* The bottom part is at least 0.5ulp of the top part. For this
355 to be OK, the bottom part must be exactly 0.5ulp (i.e. no
356 more bits set) and the top part must have last bit 0. */
357 if (second_bit != -1)
358 return 0;
359 return !get_field (ufrom, hfmt->byteorder, hfmt->totalsize,
360 hfmt->man_start + hfmt->man_len - 1, 1);
361 }
362 else
363 {
364 /* The bottom part is at least 0.5ulp of the top part. For this
365 to be OK, it must be exactly 0.5ulp (i.e. no explicit bits
366 set) and the top part must have last bit 0. */
367 if (get_field (ufrom, hfmt->byteorder, hfmt->totalsize,
368 hfmt->man_start + hfmt->man_len - 1, 1))
369 return 0;
370 return !mant_bits_set (hfmt, ufrom + 8);
371 }
372 }
373
374 const struct floatformat floatformat_ibm_long_double_big =
375 {
376 floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
377 floatformat_intbit_no,
378 "floatformat_ibm_long_double_big",
379 floatformat_ibm_long_double_is_valid,
380 &floatformat_ieee_double_big
381 };
382
383 const struct floatformat floatformat_ibm_long_double_little =
384 {
385 floatformat_little, 128, 0, 1, 11, 1023, 2047, 12, 52,
386 floatformat_intbit_no,
387 "floatformat_ibm_long_double_little",
388 floatformat_ibm_long_double_is_valid,
389 &floatformat_ieee_double_little
390 };
391 \f
392
393 #ifndef min
394 #define min(a, b) ((a) < (b) ? (a) : (b))
395 #endif
396
397 /* Return 1 if any bits are explicitly set in the mantissa of UFROM,
398 format FMT, 0 otherwise. */
399 static int
400 mant_bits_set (const struct floatformat *fmt, const unsigned char *ufrom)
401 {
402 unsigned int mant_bits, mant_off;
403 int mant_bits_left;
404
405 mant_off = fmt->man_start;
406 mant_bits_left = fmt->man_len;
407 while (mant_bits_left > 0)
408 {
409 mant_bits = min (mant_bits_left, 32);
410
411 if (get_field (ufrom, fmt->byteorder, fmt->totalsize,
412 mant_off, mant_bits) != 0)
413 return 1;
414
415 mant_off += mant_bits;
416 mant_bits_left -= mant_bits;
417 }
418 return 0;
419 }
420
421 /* Extract a field which starts at START and is LEN bits long. DATA and
422 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
423 static unsigned long
424 get_field (const unsigned char *data, enum floatformat_byteorders order,
425 unsigned int total_len, unsigned int start, unsigned int len)
426 {
427 unsigned long result = 0;
428 unsigned int cur_byte;
429 int lo_bit, hi_bit, cur_bitshift = 0;
430 int nextbyte = (order == floatformat_little) ? 1 : -1;
431
432 /* Start is in big-endian bit order! Fix that first. */
433 start = total_len - (start + len);
434
435 /* Start at the least significant part of the field. */
436 if (order == floatformat_little)
437 cur_byte = start / FLOATFORMAT_CHAR_BIT;
438 else
439 cur_byte = (total_len - start - 1) / FLOATFORMAT_CHAR_BIT;
440
441 lo_bit = start % FLOATFORMAT_CHAR_BIT;
442 hi_bit = min (lo_bit + len, FLOATFORMAT_CHAR_BIT);
443
444 do
445 {
446 unsigned int shifted = *(data + cur_byte) >> lo_bit;
447 unsigned int bits = hi_bit - lo_bit;
448 unsigned int mask = (1 << bits) - 1;
449 result |= (shifted & mask) << cur_bitshift;
450 len -= bits;
451 cur_bitshift += bits;
452 cur_byte += nextbyte;
453 lo_bit = 0;
454 hi_bit = min (len, FLOATFORMAT_CHAR_BIT);
455 }
456 while (len != 0);
457
458 return result;
459 }
460
461 /* Convert from FMT to a double.
462 FROM is the address of the extended float.
463 Store the double in *TO. */
464
465 void
466 floatformat_to_double (const struct floatformat *fmt,
467 const void *from, double *to)
468 {
469 const unsigned char *ufrom = (const unsigned char *) from;
470 double dto;
471 long exponent;
472 unsigned long mant;
473 unsigned int mant_bits, mant_off;
474 int mant_bits_left;
475
476 /* Split values are not handled specially, since the top half has
477 the correctly rounded double value (in the only supported case of
478 split values). */
479
480 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
481 fmt->exp_start, fmt->exp_len);
482
483 /* If the exponent indicates a NaN, we don't have information to
484 decide what to do. So we handle it like IEEE, except that we
485 don't try to preserve the type of NaN. FIXME. */
486 if ((unsigned long) exponent == fmt->exp_nan)
487 {
488 int nan = mant_bits_set (fmt, ufrom);
489
490 /* On certain systems (such as GNU/Linux), the use of the
491 INFINITY macro below may generate a warning that can not be
492 silenced due to a bug in GCC (PR preprocessor/11931). The
493 preprocessor fails to recognise the __extension__ keyword in
494 conjunction with the GNU/C99 extension for hexadecimal
495 floating point constants and will issue a warning when
496 compiling with -pedantic. */
497 if (nan)
498 dto = NAN;
499 else
500 dto = INFINITY;
501
502 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
503 dto = -dto;
504
505 *to = dto;
506
507 return;
508 }
509
510 mant_bits_left = fmt->man_len;
511 mant_off = fmt->man_start;
512 dto = 0.0;
513
514 /* Build the result algebraically. Might go infinite, underflow, etc;
515 who cares. */
516
517 /* For denorms use minimum exponent. */
518 if (exponent == 0)
519 exponent = 1 - fmt->exp_bias;
520 else
521 {
522 exponent -= fmt->exp_bias;
523
524 /* If this format uses a hidden bit, explicitly add it in now.
525 Otherwise, increment the exponent by one to account for the
526 integer bit. */
527
528 if (fmt->intbit == floatformat_intbit_no)
529 dto = ldexp (1.0, exponent);
530 else
531 exponent++;
532 }
533
534 while (mant_bits_left > 0)
535 {
536 mant_bits = min (mant_bits_left, 32);
537
538 mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
539 mant_off, mant_bits);
540
541 dto += ldexp ((double) mant, exponent - mant_bits);
542 exponent -= mant_bits;
543 mant_off += mant_bits;
544 mant_bits_left -= mant_bits;
545 }
546
547 /* Negate it if negative. */
548 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
549 dto = -dto;
550 *to = dto;
551 }
552 \f
553 static void put_field (unsigned char *, enum floatformat_byteorders,
554 unsigned int,
555 unsigned int,
556 unsigned int,
557 unsigned long);
558
559 /* Set a field which starts at START and is LEN bits long. DATA and
560 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
561 static void
562 put_field (unsigned char *data, enum floatformat_byteorders order,
563 unsigned int total_len, unsigned int start, unsigned int len,
564 unsigned long stuff_to_put)
565 {
566 unsigned int cur_byte;
567 int lo_bit, hi_bit;
568 int nextbyte = (order == floatformat_little) ? 1 : -1;
569
570 /* Start is in big-endian bit order! Fix that first. */
571 start = total_len - (start + len);
572
573 /* Start at the least significant part of the field. */
574 if (order == floatformat_little)
575 cur_byte = start / FLOATFORMAT_CHAR_BIT;
576 else
577 cur_byte = (total_len - start - 1) / FLOATFORMAT_CHAR_BIT;
578
579 lo_bit = start % FLOATFORMAT_CHAR_BIT;
580 hi_bit = min (lo_bit + len, FLOATFORMAT_CHAR_BIT);
581
582 do
583 {
584 unsigned char *byte_ptr = data + cur_byte;
585 unsigned int bits = hi_bit - lo_bit;
586 unsigned int mask = ((1 << bits) - 1) << lo_bit;
587 *byte_ptr = (*byte_ptr & ~mask) | ((stuff_to_put << lo_bit) & mask);
588 stuff_to_put >>= bits;
589 len -= bits;
590 cur_byte += nextbyte;
591 lo_bit = 0;
592 hi_bit = min (len, FLOATFORMAT_CHAR_BIT);
593 }
594 while (len != 0);
595 }
596
597 /* The converse: convert the double *FROM to an extended float
598 and store where TO points. Neither FROM nor TO have any alignment
599 restrictions. */
600
601 void
602 floatformat_from_double (const struct floatformat *fmt,
603 const double *from, void *to)
604 {
605 double dfrom;
606 int exponent;
607 double mant;
608 unsigned int mant_bits, mant_off;
609 int mant_bits_left;
610 unsigned char *uto = (unsigned char *) to;
611
612 dfrom = *from;
613 memset (uto, 0, fmt->totalsize / FLOATFORMAT_CHAR_BIT);
614
615 /* Split values are not handled specially, since a bottom half of
616 zero is correct for any value representable as double (in the
617 only supported case of split values). */
618
619 /* If negative, set the sign bit. */
620 if (dfrom < 0)
621 {
622 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
623 dfrom = -dfrom;
624 }
625
626 if (dfrom == 0)
627 {
628 /* 0.0. */
629 return;
630 }
631
632 if (dfrom != dfrom)
633 {
634 /* NaN. */
635 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
636 fmt->exp_len, fmt->exp_nan);
637 /* Be sure it's not infinity, but NaN value is irrelevant. */
638 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
639 32, 1);
640 return;
641 }
642
643 if (dfrom + dfrom == dfrom)
644 {
645 /* This can only happen for an infinite value (or zero, which we
646 already handled above). */
647 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
648 fmt->exp_len, fmt->exp_nan);
649 return;
650 }
651
652 mant = frexp (dfrom, &exponent);
653 if (exponent + fmt->exp_bias - 1 > 0)
654 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
655 fmt->exp_len, exponent + fmt->exp_bias - 1);
656 else
657 {
658 /* Handle a denormalized number. FIXME: What should we do for
659 non-IEEE formats? */
660 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
661 fmt->exp_len, 0);
662 mant = ldexp (mant, exponent + fmt->exp_bias - 1);
663 }
664
665 mant_bits_left = fmt->man_len;
666 mant_off = fmt->man_start;
667 while (mant_bits_left > 0)
668 {
669 unsigned long mant_long;
670 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
671
672 mant *= 4294967296.0;
673 mant_long = (unsigned long)mant;
674 mant -= mant_long;
675
676 /* If the integer bit is implicit, and we are not creating a
677 denormalized number, then we need to discard it. */
678 if ((unsigned int) mant_bits_left == fmt->man_len
679 && fmt->intbit == floatformat_intbit_no
680 && exponent + fmt->exp_bias - 1 > 0)
681 {
682 mant_long &= 0x7fffffff;
683 mant_bits -= 1;
684 }
685 else if (mant_bits < 32)
686 {
687 /* The bits we want are in the most significant MANT_BITS bits of
688 mant_long. Move them to the least significant. */
689 mant_long >>= 32 - mant_bits;
690 }
691
692 put_field (uto, fmt->byteorder, fmt->totalsize,
693 mant_off, mant_bits, mant_long);
694 mant_off += mant_bits;
695 mant_bits_left -= mant_bits;
696 }
697 }
698
699 /* Return non-zero iff the data at FROM is a valid number in format FMT. */
700
701 int
702 floatformat_is_valid (const struct floatformat *fmt, const void *from)
703 {
704 return fmt->is_valid (fmt, from);
705 }
706
707
708 #ifdef IEEE_DEBUG
709
710 #include <stdio.h>
711
712 /* This is to be run on a host which uses IEEE floating point. */
713
714 void
715 ieee_test (double n)
716 {
717 double result;
718
719 floatformat_to_double (&floatformat_ieee_double_little, &n, &result);
720 if ((n != result && (! isnan (n) || ! isnan (result)))
721 || (n < 0 && result >= 0)
722 || (n >= 0 && result < 0))
723 printf ("Differ(to): %.20g -> %.20g\n", n, result);
724
725 floatformat_from_double (&floatformat_ieee_double_little, &n, &result);
726 if ((n != result && (! isnan (n) || ! isnan (result)))
727 || (n < 0 && result >= 0)
728 || (n >= 0 && result < 0))
729 printf ("Differ(from): %.20g -> %.20g\n", n, result);
730
731 #if 0
732 {
733 char exten[16];
734
735 floatformat_from_double (&floatformat_m68881_ext, &n, exten);
736 floatformat_to_double (&floatformat_m68881_ext, exten, &result);
737 if (n != result)
738 printf ("Differ(to+from): %.20g -> %.20g\n", n, result);
739 }
740 #endif
741
742 #if IEEE_DEBUG > 1
743 /* This is to be run on a host which uses 68881 format. */
744 {
745 long double ex = *(long double *)exten;
746 if (ex != n)
747 printf ("Differ(from vs. extended): %.20g\n", n);
748 }
749 #endif
750 }
751
752 int
753 main (void)
754 {
755 ieee_test (0.0);
756 ieee_test (0.5);
757 ieee_test (1.1);
758 ieee_test (256.0);
759 ieee_test (0.12345);
760 ieee_test (234235.78907234);
761 ieee_test (-512.0);
762 ieee_test (-0.004321);
763 ieee_test (1.2E-70);
764 ieee_test (1.2E-316);
765 ieee_test (4.9406564584124654E-324);
766 ieee_test (- 4.9406564584124654E-324);
767 ieee_test (- 0.0);
768 ieee_test (- INFINITY);
769 ieee_test (- NAN);
770 ieee_test (INFINITY);
771 ieee_test (NAN);
772 return 0;
773 }
774 #endif
This page took 0.066817 seconds and 4 git commands to generate.