* floatformat.c (floatformat_to_double): Correctly handle numbers
[deliverable/binutils-gdb.git] / libiberty / floatformat.c
1 /* IEEE floating point support routines, for GDB, the GNU Debugger.
2 Copyright 1991, 1994, 1999, 2000, 2003, 2005, 2006, 2010, 2012
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
20
21 /* This is needed to pick up the NAN macro on some systems. */
22 #define _GNU_SOURCE
23
24 #ifdef HAVE_CONFIG_H
25 #include "config.h"
26 #endif
27
28 #include <math.h>
29
30 #ifdef HAVE_STRING_H
31 #include <string.h>
32 #endif
33
34 /* On some platforms, <float.h> provides DBL_QNAN. */
35 #ifdef STDC_HEADERS
36 #include <float.h>
37 #endif
38
39 #include "ansidecl.h"
40 #include "libiberty.h"
41 #include "floatformat.h"
42
43 #ifndef INFINITY
44 #ifdef HUGE_VAL
45 #define INFINITY HUGE_VAL
46 #else
47 #define INFINITY (1.0 / 0.0)
48 #endif
49 #endif
50
51 #ifndef NAN
52 #ifdef DBL_QNAN
53 #define NAN DBL_QNAN
54 #else
55 #define NAN (0.0 / 0.0)
56 #endif
57 #endif
58
59 static int mant_bits_set (const struct floatformat *, const unsigned char *);
60 static unsigned long get_field (const unsigned char *,
61 enum floatformat_byteorders,
62 unsigned int,
63 unsigned int,
64 unsigned int);
65 static int floatformat_always_valid (const struct floatformat *fmt,
66 const void *from);
67
68 static int
69 floatformat_always_valid (const struct floatformat *fmt ATTRIBUTE_UNUSED,
70 const void *from ATTRIBUTE_UNUSED)
71 {
72 return 1;
73 }
74
75 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
76 going to bother with trying to muck around with whether it is defined in
77 a system header, what we do if not, etc. */
78 #define FLOATFORMAT_CHAR_BIT 8
79
80 /* floatformats for IEEE half, single and double, big and little endian. */
81 const struct floatformat floatformat_ieee_half_big =
82 {
83 floatformat_big, 16, 0, 1, 5, 15, 31, 6, 10,
84 floatformat_intbit_no,
85 "floatformat_ieee_half_big",
86 floatformat_always_valid,
87 NULL
88 };
89 const struct floatformat floatformat_ieee_half_little =
90 {
91 floatformat_little, 16, 0, 1, 5, 15, 31, 6, 10,
92 floatformat_intbit_no,
93 "floatformat_ieee_half_little",
94 floatformat_always_valid,
95 NULL
96 };
97 const struct floatformat floatformat_ieee_single_big =
98 {
99 floatformat_big, 32, 0, 1, 8, 127, 255, 9, 23,
100 floatformat_intbit_no,
101 "floatformat_ieee_single_big",
102 floatformat_always_valid,
103 NULL
104 };
105 const struct floatformat floatformat_ieee_single_little =
106 {
107 floatformat_little, 32, 0, 1, 8, 127, 255, 9, 23,
108 floatformat_intbit_no,
109 "floatformat_ieee_single_little",
110 floatformat_always_valid,
111 NULL
112 };
113 const struct floatformat floatformat_ieee_double_big =
114 {
115 floatformat_big, 64, 0, 1, 11, 1023, 2047, 12, 52,
116 floatformat_intbit_no,
117 "floatformat_ieee_double_big",
118 floatformat_always_valid,
119 NULL
120 };
121 const struct floatformat floatformat_ieee_double_little =
122 {
123 floatformat_little, 64, 0, 1, 11, 1023, 2047, 12, 52,
124 floatformat_intbit_no,
125 "floatformat_ieee_double_little",
126 floatformat_always_valid,
127 NULL
128 };
129
130 /* floatformat for IEEE double, little endian byte order, with big endian word
131 ordering, as on the ARM. */
132
133 const struct floatformat floatformat_ieee_double_littlebyte_bigword =
134 {
135 floatformat_littlebyte_bigword, 64, 0, 1, 11, 1023, 2047, 12, 52,
136 floatformat_intbit_no,
137 "floatformat_ieee_double_littlebyte_bigword",
138 floatformat_always_valid,
139 NULL
140 };
141
142 /* floatformat for VAX. Not quite IEEE, but close enough. */
143
144 const struct floatformat floatformat_vax_f =
145 {
146 floatformat_vax, 32, 0, 1, 8, 129, 0, 9, 23,
147 floatformat_intbit_no,
148 "floatformat_vax_f",
149 floatformat_always_valid,
150 NULL
151 };
152 const struct floatformat floatformat_vax_d =
153 {
154 floatformat_vax, 64, 0, 1, 8, 129, 0, 9, 55,
155 floatformat_intbit_no,
156 "floatformat_vax_d",
157 floatformat_always_valid,
158 NULL
159 };
160 const struct floatformat floatformat_vax_g =
161 {
162 floatformat_vax, 64, 0, 1, 11, 1025, 0, 12, 52,
163 floatformat_intbit_no,
164 "floatformat_vax_g",
165 floatformat_always_valid,
166 NULL
167 };
168
169 static int floatformat_i387_ext_is_valid (const struct floatformat *fmt,
170 const void *from);
171
172 static int
173 floatformat_i387_ext_is_valid (const struct floatformat *fmt, const void *from)
174 {
175 /* In the i387 double-extended format, if the exponent is all ones,
176 then the integer bit must be set. If the exponent is neither 0
177 nor ~0, the intbit must also be set. Only if the exponent is
178 zero can it be zero, and then it must be zero. */
179 unsigned long exponent, int_bit;
180 const unsigned char *ufrom = (const unsigned char *) from;
181
182 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
183 fmt->exp_start, fmt->exp_len);
184 int_bit = get_field (ufrom, fmt->byteorder, fmt->totalsize,
185 fmt->man_start, 1);
186
187 if ((exponent == 0) != (int_bit == 0))
188 return 0;
189 else
190 return 1;
191 }
192
193 const struct floatformat floatformat_i387_ext =
194 {
195 floatformat_little, 80, 0, 1, 15, 0x3fff, 0x7fff, 16, 64,
196 floatformat_intbit_yes,
197 "floatformat_i387_ext",
198 floatformat_i387_ext_is_valid,
199 NULL
200 };
201 const struct floatformat floatformat_m68881_ext =
202 {
203 /* Note that the bits from 16 to 31 are unused. */
204 floatformat_big, 96, 0, 1, 15, 0x3fff, 0x7fff, 32, 64,
205 floatformat_intbit_yes,
206 "floatformat_m68881_ext",
207 floatformat_always_valid,
208 NULL
209 };
210 const struct floatformat floatformat_i960_ext =
211 {
212 /* Note that the bits from 0 to 15 are unused. */
213 floatformat_little, 96, 16, 17, 15, 0x3fff, 0x7fff, 32, 64,
214 floatformat_intbit_yes,
215 "floatformat_i960_ext",
216 floatformat_always_valid,
217 NULL
218 };
219 const struct floatformat floatformat_m88110_ext =
220 {
221 floatformat_big, 80, 0, 1, 15, 0x3fff, 0x7fff, 16, 64,
222 floatformat_intbit_yes,
223 "floatformat_m88110_ext",
224 floatformat_always_valid,
225 NULL
226 };
227 const struct floatformat floatformat_m88110_harris_ext =
228 {
229 /* Harris uses raw format 128 bytes long, but the number is just an ieee
230 double, and the last 64 bits are wasted. */
231 floatformat_big,128, 0, 1, 11, 0x3ff, 0x7ff, 12, 52,
232 floatformat_intbit_no,
233 "floatformat_m88110_ext_harris",
234 floatformat_always_valid,
235 NULL
236 };
237 const struct floatformat floatformat_arm_ext_big =
238 {
239 /* Bits 1 to 16 are unused. */
240 floatformat_big, 96, 0, 17, 15, 0x3fff, 0x7fff, 32, 64,
241 floatformat_intbit_yes,
242 "floatformat_arm_ext_big",
243 floatformat_always_valid,
244 NULL
245 };
246 const struct floatformat floatformat_arm_ext_littlebyte_bigword =
247 {
248 /* Bits 1 to 16 are unused. */
249 floatformat_littlebyte_bigword, 96, 0, 17, 15, 0x3fff, 0x7fff, 32, 64,
250 floatformat_intbit_yes,
251 "floatformat_arm_ext_littlebyte_bigword",
252 floatformat_always_valid,
253 NULL
254 };
255 const struct floatformat floatformat_ia64_spill_big =
256 {
257 floatformat_big, 128, 0, 1, 17, 65535, 0x1ffff, 18, 64,
258 floatformat_intbit_yes,
259 "floatformat_ia64_spill_big",
260 floatformat_always_valid,
261 NULL
262 };
263 const struct floatformat floatformat_ia64_spill_little =
264 {
265 floatformat_little, 128, 0, 1, 17, 65535, 0x1ffff, 18, 64,
266 floatformat_intbit_yes,
267 "floatformat_ia64_spill_little",
268 floatformat_always_valid,
269 NULL
270 };
271 const struct floatformat floatformat_ia64_quad_big =
272 {
273 floatformat_big, 128, 0, 1, 15, 16383, 0x7fff, 16, 112,
274 floatformat_intbit_no,
275 "floatformat_ia64_quad_big",
276 floatformat_always_valid,
277 NULL
278 };
279 const struct floatformat floatformat_ia64_quad_little =
280 {
281 floatformat_little, 128, 0, 1, 15, 16383, 0x7fff, 16, 112,
282 floatformat_intbit_no,
283 "floatformat_ia64_quad_little",
284 floatformat_always_valid,
285 NULL
286 };
287
288 static int
289 floatformat_ibm_long_double_is_valid (const struct floatformat *fmt,
290 const void *from)
291 {
292 const unsigned char *ufrom = (const unsigned char *) from;
293 const struct floatformat *hfmt = fmt->split_half;
294 long top_exp, bot_exp;
295 int top_nan = 0;
296
297 top_exp = get_field (ufrom, hfmt->byteorder, hfmt->totalsize,
298 hfmt->exp_start, hfmt->exp_len);
299 bot_exp = get_field (ufrom + 8, hfmt->byteorder, hfmt->totalsize,
300 hfmt->exp_start, hfmt->exp_len);
301
302 if ((unsigned long) top_exp == hfmt->exp_nan)
303 top_nan = mant_bits_set (hfmt, ufrom);
304
305 /* A NaN is valid with any low part. */
306 if (top_nan)
307 return 1;
308
309 /* An infinity, zero or denormal requires low part 0 (positive or
310 negative). */
311 if ((unsigned long) top_exp == hfmt->exp_nan || top_exp == 0)
312 {
313 if (bot_exp != 0)
314 return 0;
315
316 return !mant_bits_set (hfmt, ufrom + 8);
317 }
318
319 /* The top part is now a finite normal value. The long double value
320 is the sum of the two parts, and the top part must equal the
321 result of rounding the long double value to nearest double. Thus
322 the bottom part must be <= 0.5ulp of the top part in absolute
323 value, and if it is < 0.5ulp then the long double is definitely
324 valid. */
325 if (bot_exp < top_exp - 53)
326 return 1;
327 if (bot_exp > top_exp - 53 && bot_exp != 0)
328 return 0;
329 if (bot_exp == 0)
330 {
331 /* The bottom part is 0 or denormal. Determine which, and if
332 denormal the first two set bits. */
333 int first_bit = -1, second_bit = -1, cur_bit;
334 for (cur_bit = 0; (unsigned int) cur_bit < hfmt->man_len; cur_bit++)
335 if (get_field (ufrom + 8, hfmt->byteorder, hfmt->totalsize,
336 hfmt->man_start + cur_bit, 1))
337 {
338 if (first_bit == -1)
339 first_bit = cur_bit;
340 else
341 {
342 second_bit = cur_bit;
343 break;
344 }
345 }
346 /* Bottom part 0 is OK. */
347 if (first_bit == -1)
348 return 1;
349 /* The real exponent of the bottom part is -first_bit. */
350 if (-first_bit < top_exp - 53)
351 return 1;
352 if (-first_bit > top_exp - 53)
353 return 0;
354 /* The bottom part is at least 0.5ulp of the top part. For this
355 to be OK, the bottom part must be exactly 0.5ulp (i.e. no
356 more bits set) and the top part must have last bit 0. */
357 if (second_bit != -1)
358 return 0;
359 return !get_field (ufrom, hfmt->byteorder, hfmt->totalsize,
360 hfmt->man_start + hfmt->man_len - 1, 1);
361 }
362 else
363 {
364 /* The bottom part is at least 0.5ulp of the top part. For this
365 to be OK, it must be exactly 0.5ulp (i.e. no explicit bits
366 set) and the top part must have last bit 0. */
367 if (get_field (ufrom, hfmt->byteorder, hfmt->totalsize,
368 hfmt->man_start + hfmt->man_len - 1, 1))
369 return 0;
370 return !mant_bits_set (hfmt, ufrom + 8);
371 }
372 }
373
374 const struct floatformat floatformat_ibm_long_double =
375 {
376 floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
377 floatformat_intbit_no,
378 "floatformat_ibm_long_double",
379 floatformat_ibm_long_double_is_valid,
380 &floatformat_ieee_double_big
381 };
382 \f
383
384 #ifndef min
385 #define min(a, b) ((a) < (b) ? (a) : (b))
386 #endif
387
388 /* Return 1 if any bits are explicitly set in the mantissa of UFROM,
389 format FMT, 0 otherwise. */
390 static int
391 mant_bits_set (const struct floatformat *fmt, const unsigned char *ufrom)
392 {
393 unsigned int mant_bits, mant_off;
394 int mant_bits_left;
395
396 mant_off = fmt->man_start;
397 mant_bits_left = fmt->man_len;
398 while (mant_bits_left > 0)
399 {
400 mant_bits = min (mant_bits_left, 32);
401
402 if (get_field (ufrom, fmt->byteorder, fmt->totalsize,
403 mant_off, mant_bits) != 0)
404 return 1;
405
406 mant_off += mant_bits;
407 mant_bits_left -= mant_bits;
408 }
409 return 0;
410 }
411
412 /* Extract a field which starts at START and is LEN bits long. DATA and
413 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
414 static unsigned long
415 get_field (const unsigned char *data, enum floatformat_byteorders order,
416 unsigned int total_len, unsigned int start, unsigned int len)
417 {
418 unsigned long result = 0;
419 unsigned int cur_byte;
420 int lo_bit, hi_bit, cur_bitshift = 0;
421 int nextbyte = (order == floatformat_little) ? 1 : -1;
422
423 /* Start is in big-endian bit order! Fix that first. */
424 start = total_len - (start + len);
425
426 /* Start at the least significant part of the field. */
427 if (order == floatformat_little)
428 cur_byte = start / FLOATFORMAT_CHAR_BIT;
429 else
430 cur_byte = (total_len - start - 1) / FLOATFORMAT_CHAR_BIT;
431
432 lo_bit = start % FLOATFORMAT_CHAR_BIT;
433 hi_bit = min (lo_bit + len, FLOATFORMAT_CHAR_BIT);
434
435 do
436 {
437 unsigned int shifted = *(data + cur_byte) >> lo_bit;
438 unsigned int bits = hi_bit - lo_bit;
439 unsigned int mask = (1 << bits) - 1;
440 result |= (shifted & mask) << cur_bitshift;
441 len -= bits;
442 cur_bitshift += bits;
443 cur_byte += nextbyte;
444 lo_bit = 0;
445 hi_bit = min (len, FLOATFORMAT_CHAR_BIT);
446 }
447 while (len != 0);
448
449 return result;
450 }
451
452 /* Convert from FMT to a double.
453 FROM is the address of the extended float.
454 Store the double in *TO. */
455
456 void
457 floatformat_to_double (const struct floatformat *fmt,
458 const void *from, double *to)
459 {
460 const unsigned char *ufrom = (const unsigned char *) from;
461 double dto;
462 long exponent;
463 unsigned long mant;
464 unsigned int mant_bits, mant_off;
465 int mant_bits_left;
466
467 /* Split values are not handled specially, since the top half has
468 the correctly rounded double value (in the only supported case of
469 split values). */
470
471 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
472 fmt->exp_start, fmt->exp_len);
473
474 /* If the exponent indicates a NaN, we don't have information to
475 decide what to do. So we handle it like IEEE, except that we
476 don't try to preserve the type of NaN. FIXME. */
477 if ((unsigned long) exponent == fmt->exp_nan)
478 {
479 int nan = mant_bits_set (fmt, ufrom);
480
481 /* On certain systems (such as GNU/Linux), the use of the
482 INFINITY macro below may generate a warning that can not be
483 silenced due to a bug in GCC (PR preprocessor/11931). The
484 preprocessor fails to recognise the __extension__ keyword in
485 conjunction with the GNU/C99 extension for hexadecimal
486 floating point constants and will issue a warning when
487 compiling with -pedantic. */
488 if (nan)
489 dto = NAN;
490 else
491 dto = INFINITY;
492
493 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
494 dto = -dto;
495
496 *to = dto;
497
498 return;
499 }
500
501 mant_bits_left = fmt->man_len;
502 mant_off = fmt->man_start;
503 dto = 0.0;
504
505 /* Build the result algebraically. Might go infinite, underflow, etc;
506 who cares. */
507
508 /* For denorms use minimum exponent. */
509 if (exponent == 0)
510 exponent = 1 - fmt->exp_bias;
511 else
512 {
513 exponent -= fmt->exp_bias;
514
515 /* If this format uses a hidden bit, explicitly add it in now.
516 Otherwise, increment the exponent by one to account for the
517 integer bit. */
518
519 if (fmt->intbit == floatformat_intbit_no)
520 dto = ldexp (1.0, exponent);
521 else
522 exponent++;
523 }
524
525 while (mant_bits_left > 0)
526 {
527 mant_bits = min (mant_bits_left, 32);
528
529 mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
530 mant_off, mant_bits);
531
532 dto += ldexp ((double) mant, exponent - mant_bits);
533 exponent -= mant_bits;
534 mant_off += mant_bits;
535 mant_bits_left -= mant_bits;
536 }
537
538 /* Negate it if negative. */
539 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
540 dto = -dto;
541 *to = dto;
542 }
543 \f
544 static void put_field (unsigned char *, enum floatformat_byteorders,
545 unsigned int,
546 unsigned int,
547 unsigned int,
548 unsigned long);
549
550 /* Set a field which starts at START and is LEN bits long. DATA and
551 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
552 static void
553 put_field (unsigned char *data, enum floatformat_byteorders order,
554 unsigned int total_len, unsigned int start, unsigned int len,
555 unsigned long stuff_to_put)
556 {
557 unsigned int cur_byte;
558 int lo_bit, hi_bit;
559 int nextbyte = (order == floatformat_little) ? 1 : -1;
560
561 /* Start is in big-endian bit order! Fix that first. */
562 start = total_len - (start + len);
563
564 /* Start at the least significant part of the field. */
565 if (order == floatformat_little)
566 cur_byte = start / FLOATFORMAT_CHAR_BIT;
567 else
568 cur_byte = (total_len - start - 1) / FLOATFORMAT_CHAR_BIT;
569
570 lo_bit = start % FLOATFORMAT_CHAR_BIT;
571 hi_bit = min (lo_bit + len, FLOATFORMAT_CHAR_BIT);
572
573 do
574 {
575 unsigned char *byte_ptr = data + cur_byte;
576 unsigned int bits = hi_bit - lo_bit;
577 unsigned int mask = ((1 << bits) - 1) << lo_bit;
578 *byte_ptr = (*byte_ptr & ~mask) | ((stuff_to_put << lo_bit) & mask);
579 stuff_to_put >>= bits;
580 len -= bits;
581 cur_byte += nextbyte;
582 lo_bit = 0;
583 hi_bit = min (len, FLOATFORMAT_CHAR_BIT);
584 }
585 while (len != 0);
586 }
587
588 /* The converse: convert the double *FROM to an extended float
589 and store where TO points. Neither FROM nor TO have any alignment
590 restrictions. */
591
592 void
593 floatformat_from_double (const struct floatformat *fmt,
594 const double *from, void *to)
595 {
596 double dfrom;
597 int exponent;
598 double mant;
599 unsigned int mant_bits, mant_off;
600 int mant_bits_left;
601 unsigned char *uto = (unsigned char *) to;
602
603 dfrom = *from;
604 memset (uto, 0, fmt->totalsize / FLOATFORMAT_CHAR_BIT);
605
606 /* Split values are not handled specially, since a bottom half of
607 zero is correct for any value representable as double (in the
608 only supported case of split values). */
609
610 /* If negative, set the sign bit. */
611 if (dfrom < 0)
612 {
613 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
614 dfrom = -dfrom;
615 }
616
617 if (dfrom == 0)
618 {
619 /* 0.0. */
620 return;
621 }
622
623 if (dfrom != dfrom)
624 {
625 /* NaN. */
626 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
627 fmt->exp_len, fmt->exp_nan);
628 /* Be sure it's not infinity, but NaN value is irrelevant. */
629 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
630 32, 1);
631 return;
632 }
633
634 if (dfrom + dfrom == dfrom)
635 {
636 /* This can only happen for an infinite value (or zero, which we
637 already handled above). */
638 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
639 fmt->exp_len, fmt->exp_nan);
640 return;
641 }
642
643 mant = frexp (dfrom, &exponent);
644 if (exponent + fmt->exp_bias - 1 > 0)
645 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
646 fmt->exp_len, exponent + fmt->exp_bias - 1);
647 else
648 {
649 /* Handle a denormalized number. FIXME: What should we do for
650 non-IEEE formats? */
651 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
652 fmt->exp_len, 0);
653 mant = ldexp (mant, exponent + fmt->exp_bias - 1);
654 }
655
656 mant_bits_left = fmt->man_len;
657 mant_off = fmt->man_start;
658 while (mant_bits_left > 0)
659 {
660 unsigned long mant_long;
661 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
662
663 mant *= 4294967296.0;
664 mant_long = (unsigned long)mant;
665 mant -= mant_long;
666
667 /* If the integer bit is implicit, and we are not creating a
668 denormalized number, then we need to discard it. */
669 if ((unsigned int) mant_bits_left == fmt->man_len
670 && fmt->intbit == floatformat_intbit_no
671 && exponent + fmt->exp_bias - 1 > 0)
672 {
673 mant_long &= 0x7fffffff;
674 mant_bits -= 1;
675 }
676 else if (mant_bits < 32)
677 {
678 /* The bits we want are in the most significant MANT_BITS bits of
679 mant_long. Move them to the least significant. */
680 mant_long >>= 32 - mant_bits;
681 }
682
683 put_field (uto, fmt->byteorder, fmt->totalsize,
684 mant_off, mant_bits, mant_long);
685 mant_off += mant_bits;
686 mant_bits_left -= mant_bits;
687 }
688 }
689
690 /* Return non-zero iff the data at FROM is a valid number in format FMT. */
691
692 int
693 floatformat_is_valid (const struct floatformat *fmt, const void *from)
694 {
695 return fmt->is_valid (fmt, from);
696 }
697
698
699 #ifdef IEEE_DEBUG
700
701 #include <stdio.h>
702
703 /* This is to be run on a host which uses IEEE floating point. */
704
705 void
706 ieee_test (double n)
707 {
708 double result;
709
710 floatformat_to_double (&floatformat_ieee_double_little, &n, &result);
711 if ((n != result && (! isnan (n) || ! isnan (result)))
712 || (n < 0 && result >= 0)
713 || (n >= 0 && result < 0))
714 printf ("Differ(to): %.20g -> %.20g\n", n, result);
715
716 floatformat_from_double (&floatformat_ieee_double_little, &n, &result);
717 if ((n != result && (! isnan (n) || ! isnan (result)))
718 || (n < 0 && result >= 0)
719 || (n >= 0 && result < 0))
720 printf ("Differ(from): %.20g -> %.20g\n", n, result);
721
722 #if 0
723 {
724 char exten[16];
725
726 floatformat_from_double (&floatformat_m68881_ext, &n, exten);
727 floatformat_to_double (&floatformat_m68881_ext, exten, &result);
728 if (n != result)
729 printf ("Differ(to+from): %.20g -> %.20g\n", n, result);
730 }
731 #endif
732
733 #if IEEE_DEBUG > 1
734 /* This is to be run on a host which uses 68881 format. */
735 {
736 long double ex = *(long double *)exten;
737 if (ex != n)
738 printf ("Differ(from vs. extended): %.20g\n", n);
739 }
740 #endif
741 }
742
743 int
744 main (void)
745 {
746 ieee_test (0.0);
747 ieee_test (0.5);
748 ieee_test (1.1);
749 ieee_test (256.0);
750 ieee_test (0.12345);
751 ieee_test (234235.78907234);
752 ieee_test (-512.0);
753 ieee_test (-0.004321);
754 ieee_test (1.2E-70);
755 ieee_test (1.2E-316);
756 ieee_test (4.9406564584124654E-324);
757 ieee_test (- 4.9406564584124654E-324);
758 ieee_test (- 0.0);
759 ieee_test (- INFINITY);
760 ieee_test (- NAN);
761 ieee_test (INFINITY);
762 ieee_test (NAN);
763 return 0;
764 }
765 #endif
This page took 0.046062 seconds and 5 git commands to generate.