Synced with libiberty in the gcc repository.
[deliverable/binutils-gdb.git] / libiberty / hashtab.c
1 /* An expandable hash tables datatype.
2 Copyright (C) 1999, 2000 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
4
5 This file is part of the libiberty library.
6 Libiberty is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 2 of the License, or (at your option) any later version.
10
11 Libiberty is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
15
16 You should have received a copy of the GNU Library General Public
17 License along with libiberty; see the file COPYING.LIB. If
18 not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 /* This package implements basic hash table functionality. It is possible
22 to search for an entry, create an entry and destroy an entry.
23
24 Elements in the table are generic pointers.
25
26 The size of the table is not fixed; if the occupancy of the table
27 grows too high the hash table will be expanded.
28
29 The abstract data implementation is based on generalized Algorithm D
30 from Knuth's book "The art of computer programming". Hash table is
31 expanded by creation of new hash table and transferring elements from
32 the old table to the new table. */
33
34 #ifdef HAVE_CONFIG_H
35 #include "config.h"
36 #endif
37
38 #include <sys/types.h>
39
40 #ifdef HAVE_STDLIB_H
41 #include <stdlib.h>
42 #endif
43
44 #ifdef HAVE_STRING_H
45 #include <string.h>
46 #endif
47
48 #include <stdio.h>
49
50 #include "libiberty.h"
51 #include "hashtab.h"
52
53 /* This macro defines reserved value for empty table entry. */
54
55 #define EMPTY_ENTRY ((void *) 0)
56
57 /* This macro defines reserved value for table entry which contained
58 a deleted element. */
59
60 #define DELETED_ENTRY ((void *) 1)
61
62 static unsigned long higher_prime_number PARAMS ((unsigned long));
63 static hashval_t hash_pointer PARAMS ((const void *));
64 static int eq_pointer PARAMS ((const void *, const void *));
65 static void htab_expand PARAMS ((htab_t));
66 static void **find_empty_slot_for_expand PARAMS ((htab_t, hashval_t));
67
68 /* At some point, we could make these be NULL, and modify the
69 hash-table routines to handle NULL specially; that would avoid
70 function-call overhead for the common case of hashing pointers. */
71 htab_hash htab_hash_pointer = hash_pointer;
72 htab_eq htab_eq_pointer = eq_pointer;
73
74 /* The following function returns the nearest prime number which is
75 greater than a given source number, N. */
76
77 static unsigned long
78 higher_prime_number (n)
79 unsigned long n;
80 {
81 unsigned long i;
82
83 /* Ensure we have a larger number and then force to odd. */
84 n++;
85 n |= 0x01;
86
87 /* All odd numbers < 9 are prime. */
88 if (n < 9)
89 return n;
90
91 /* Otherwise find the next prime using a sieve. */
92
93 next:
94
95 for (i = 3; i * i <= n; i += 2)
96 if (n % i == 0)
97 {
98 n += 2;
99 goto next;
100 }
101
102 return n;
103 }
104
105 /* Returns a hash code for P. */
106
107 static hashval_t
108 hash_pointer (p)
109 const void *p;
110 {
111 return (hashval_t) ((long)p >> 3);
112 }
113
114 /* Returns non-zero if P1 and P2 are equal. */
115
116 static int
117 eq_pointer (p1, p2)
118 const void *p1;
119 const void *p2;
120 {
121 return p1 == p2;
122 }
123
124 /* This function creates table with length slightly longer than given
125 source length. Created hash table is initiated as empty (all the
126 hash table entries are EMPTY_ENTRY). The function returns the
127 created hash table. */
128
129 htab_t
130 htab_create (size, hash_f, eq_f, del_f)
131 size_t size;
132 htab_hash hash_f;
133 htab_eq eq_f;
134 htab_del del_f;
135 {
136 htab_t result;
137
138 size = higher_prime_number (size);
139 result = (htab_t) xcalloc (1, sizeof (struct htab));
140 result->entries = (void **) xcalloc (size, sizeof (void *));
141 result->size = size;
142 result->hash_f = hash_f;
143 result->eq_f = eq_f;
144 result->del_f = del_f;
145 return result;
146 }
147
148 /* This function frees all memory allocated for given hash table.
149 Naturally the hash table must already exist. */
150
151 void
152 htab_delete (htab)
153 htab_t htab;
154 {
155 int i;
156
157 if (htab->del_f)
158 for (i = htab->size - 1; i >= 0; i--)
159 if (htab->entries[i] != EMPTY_ENTRY
160 && htab->entries[i] != DELETED_ENTRY)
161 (*htab->del_f) (htab->entries[i]);
162
163 free (htab->entries);
164 free (htab);
165 }
166
167 /* This function clears all entries in the given hash table. */
168
169 void
170 htab_empty (htab)
171 htab_t htab;
172 {
173 int i;
174
175 if (htab->del_f)
176 for (i = htab->size - 1; i >= 0; i--)
177 if (htab->entries[i] != EMPTY_ENTRY
178 && htab->entries[i] != DELETED_ENTRY)
179 (*htab->del_f) (htab->entries[i]);
180
181 memset (htab->entries, 0, htab->size * sizeof (void *));
182 }
183
184 /* Similar to htab_find_slot, but without several unwanted side effects:
185 - Does not call htab->eq_f when it finds an existing entry.
186 - Does not change the count of elements/searches/collisions in the
187 hash table.
188 This function also assumes there are no deleted entries in the table.
189 HASH is the hash value for the element to be inserted. */
190
191 static void **
192 find_empty_slot_for_expand (htab, hash)
193 htab_t htab;
194 hashval_t hash;
195 {
196 size_t size = htab->size;
197 hashval_t hash2 = 1 + hash % (size - 2);
198 unsigned int index = hash % size;
199
200 for (;;)
201 {
202 void **slot = htab->entries + index;
203
204 if (*slot == EMPTY_ENTRY)
205 return slot;
206 else if (*slot == DELETED_ENTRY)
207 abort ();
208
209 index += hash2;
210 if (index >= size)
211 index -= size;
212 }
213 }
214
215 /* The following function changes size of memory allocated for the
216 entries and repeatedly inserts the table elements. The occupancy
217 of the table after the call will be about 50%. Naturally the hash
218 table must already exist. Remember also that the place of the
219 table entries is changed. */
220
221 static void
222 htab_expand (htab)
223 htab_t htab;
224 {
225 void **oentries;
226 void **olimit;
227 void **p;
228
229 oentries = htab->entries;
230 olimit = oentries + htab->size;
231
232 htab->size = higher_prime_number (htab->size * 2);
233 htab->entries = (void **) xcalloc (htab->size, sizeof (void **));
234
235 htab->n_elements -= htab->n_deleted;
236 htab->n_deleted = 0;
237
238 p = oentries;
239 do
240 {
241 void *x = *p;
242
243 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
244 {
245 void **q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
246
247 *q = x;
248 }
249
250 p++;
251 }
252 while (p < olimit);
253
254 free (oentries);
255 }
256
257 /* This function searches for a hash table entry equal to the given
258 element. It cannot be used to insert or delete an element. */
259
260 void *
261 htab_find_with_hash (htab, element, hash)
262 htab_t htab;
263 const void *element;
264 hashval_t hash;
265 {
266 unsigned int index;
267 hashval_t hash2;
268 size_t size;
269 void *entry;
270
271 htab->searches++;
272 size = htab->size;
273 index = hash % size;
274
275 entry = htab->entries[index];
276 if (entry == EMPTY_ENTRY
277 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
278 return entry;
279
280 hash2 = 1 + hash % (size - 2);
281
282 for (;;)
283 {
284 htab->collisions++;
285 index += hash2;
286 if (index >= size)
287 index -= size;
288
289 entry = htab->entries[index];
290 if (entry == EMPTY_ENTRY
291 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
292 return entry;
293 }
294 }
295
296 /* Like htab_find_slot_with_hash, but compute the hash value from the
297 element. */
298
299 void *
300 htab_find (htab, element)
301 htab_t htab;
302 const void *element;
303 {
304 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
305 }
306
307 /* This function searches for a hash table slot containing an entry
308 equal to the given element. To delete an entry, call this with
309 INSERT = 0, then call htab_clear_slot on the slot returned (possibly
310 after doing some checks). To insert an entry, call this with
311 INSERT = 1, then write the value you want into the returned slot. */
312
313 void **
314 htab_find_slot_with_hash (htab, element, hash, insert)
315 htab_t htab;
316 const void *element;
317 hashval_t hash;
318 enum insert_option insert;
319 {
320 void **first_deleted_slot;
321 unsigned int index;
322 hashval_t hash2;
323 size_t size;
324
325 if (insert == INSERT && htab->size * 3 <= htab->n_elements * 4)
326 htab_expand (htab);
327
328 size = htab->size;
329 hash2 = 1 + hash % (size - 2);
330 index = hash % size;
331
332 htab->searches++;
333 first_deleted_slot = NULL;
334
335 for (;;)
336 {
337 void *entry = htab->entries[index];
338 if (entry == EMPTY_ENTRY)
339 {
340 if (insert == NO_INSERT)
341 return NULL;
342
343 htab->n_elements++;
344
345 if (first_deleted_slot)
346 {
347 *first_deleted_slot = EMPTY_ENTRY;
348 return first_deleted_slot;
349 }
350
351 return &htab->entries[index];
352 }
353
354 if (entry == DELETED_ENTRY)
355 {
356 if (!first_deleted_slot)
357 first_deleted_slot = &htab->entries[index];
358 }
359 else if ((*htab->eq_f) (entry, element))
360 return &htab->entries[index];
361
362 htab->collisions++;
363 index += hash2;
364 if (index >= size)
365 index -= size;
366 }
367 }
368
369 /* Like htab_find_slot_with_hash, but compute the hash value from the
370 element. */
371
372 void **
373 htab_find_slot (htab, element, insert)
374 htab_t htab;
375 const void *element;
376 enum insert_option insert;
377 {
378 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
379 insert);
380 }
381
382 /* This function deletes an element with the given value from hash
383 table. If there is no matching element in the hash table, this
384 function does nothing. */
385
386 void
387 htab_remove_elt (htab, element)
388 htab_t htab;
389 void *element;
390 {
391 void **slot;
392
393 slot = htab_find_slot (htab, element, NO_INSERT);
394 if (*slot == EMPTY_ENTRY)
395 return;
396
397 if (htab->del_f)
398 (*htab->del_f) (*slot);
399
400 *slot = DELETED_ENTRY;
401 htab->n_deleted++;
402 }
403
404 /* This function clears a specified slot in a hash table. It is
405 useful when you've already done the lookup and don't want to do it
406 again. */
407
408 void
409 htab_clear_slot (htab, slot)
410 htab_t htab;
411 void **slot;
412 {
413 if (slot < htab->entries || slot >= htab->entries + htab->size
414 || *slot == EMPTY_ENTRY || *slot == DELETED_ENTRY)
415 abort ();
416
417 if (htab->del_f)
418 (*htab->del_f) (*slot);
419
420 *slot = DELETED_ENTRY;
421 htab->n_deleted++;
422 }
423
424 /* This function scans over the entire hash table calling
425 CALLBACK for each live entry. If CALLBACK returns false,
426 the iteration stops. INFO is passed as CALLBACK's second
427 argument. */
428
429 void
430 htab_traverse (htab, callback, info)
431 htab_t htab;
432 htab_trav callback;
433 void *info;
434 {
435 void **slot = htab->entries;
436 void **limit = slot + htab->size;
437
438 do
439 {
440 void *x = *slot;
441
442 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
443 if (!(*callback) (slot, info))
444 break;
445 }
446 while (++slot < limit);
447 }
448
449 /* Return the current size of given hash table. */
450
451 size_t
452 htab_size (htab)
453 htab_t htab;
454 {
455 return htab->size;
456 }
457
458 /* Return the current number of elements in given hash table. */
459
460 size_t
461 htab_elements (htab)
462 htab_t htab;
463 {
464 return htab->n_elements - htab->n_deleted;
465 }
466
467 /* Return the fraction of fixed collisions during all work with given
468 hash table. */
469
470 double
471 htab_collisions (htab)
472 htab_t htab;
473 {
474 if (htab->searches == 0)
475 return 0.0;
476
477 return (double) htab->collisions / (double) htab->searches;
478 }
This page took 0.045578 seconds and 5 git commands to generate.