Sync libiberty sources with GCC.
[deliverable/binutils-gdb.git] / libiberty / splay-tree.c
1 /* A splay-tree datatype.
2 Copyright (C) 1998-2017 Free Software Foundation, Inc.
3 Contributed by Mark Mitchell (mark@markmitchell.com).
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street - Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 /* For an easily readable description of splay-trees, see:
23
24 Lewis, Harry R. and Denenberg, Larry. Data Structures and Their
25 Algorithms. Harper-Collins, Inc. 1991. */
26
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
30
31 #ifdef HAVE_STDLIB_H
32 #include <stdlib.h>
33 #endif
34
35 #include <stdio.h>
36
37 #include "libiberty.h"
38 #include "splay-tree.h"
39
40 static void splay_tree_delete_helper (splay_tree, splay_tree_node);
41 static inline void rotate_left (splay_tree_node *,
42 splay_tree_node, splay_tree_node);
43 static inline void rotate_right (splay_tree_node *,
44 splay_tree_node, splay_tree_node);
45 static void splay_tree_splay (splay_tree, splay_tree_key);
46 static int splay_tree_foreach_helper (splay_tree_node,
47 splay_tree_foreach_fn, void*);
48
49 /* Deallocate NODE (a member of SP), and all its sub-trees. */
50
51 static void
52 splay_tree_delete_helper (splay_tree sp, splay_tree_node node)
53 {
54 splay_tree_node pending = 0;
55 splay_tree_node active = 0;
56
57 if (!node)
58 return;
59
60 #define KDEL(x) if (sp->delete_key) (*sp->delete_key)(x);
61 #define VDEL(x) if (sp->delete_value) (*sp->delete_value)(x);
62
63 KDEL (node->key);
64 VDEL (node->value);
65
66 /* We use the "key" field to hold the "next" pointer. */
67 node->key = (splay_tree_key)pending;
68 pending = (splay_tree_node)node;
69
70 /* Now, keep processing the pending list until there aren't any
71 more. This is a little more complicated than just recursing, but
72 it doesn't toast the stack for large trees. */
73
74 while (pending)
75 {
76 active = pending;
77 pending = 0;
78 while (active)
79 {
80 splay_tree_node temp;
81
82 /* active points to a node which has its key and value
83 deallocated, we just need to process left and right. */
84
85 if (active->left)
86 {
87 KDEL (active->left->key);
88 VDEL (active->left->value);
89 active->left->key = (splay_tree_key)pending;
90 pending = (splay_tree_node)(active->left);
91 }
92 if (active->right)
93 {
94 KDEL (active->right->key);
95 VDEL (active->right->value);
96 active->right->key = (splay_tree_key)pending;
97 pending = (splay_tree_node)(active->right);
98 }
99
100 temp = active;
101 active = (splay_tree_node)(temp->key);
102 (*sp->deallocate) ((char*) temp, sp->allocate_data);
103 }
104 }
105 #undef KDEL
106 #undef VDEL
107 }
108
109 /* Rotate the edge joining the left child N with its parent P. PP is the
110 grandparents' pointer to P. */
111
112 static inline void
113 rotate_left (splay_tree_node *pp, splay_tree_node p, splay_tree_node n)
114 {
115 splay_tree_node tmp;
116 tmp = n->right;
117 n->right = p;
118 p->left = tmp;
119 *pp = n;
120 }
121
122 /* Rotate the edge joining the right child N with its parent P. PP is the
123 grandparents' pointer to P. */
124
125 static inline void
126 rotate_right (splay_tree_node *pp, splay_tree_node p, splay_tree_node n)
127 {
128 splay_tree_node tmp;
129 tmp = n->left;
130 n->left = p;
131 p->right = tmp;
132 *pp = n;
133 }
134
135 /* Bottom up splay of key. */
136
137 static void
138 splay_tree_splay (splay_tree sp, splay_tree_key key)
139 {
140 if (sp->root == 0)
141 return;
142
143 do {
144 int cmp1, cmp2;
145 splay_tree_node n, c;
146
147 n = sp->root;
148 cmp1 = (*sp->comp) (key, n->key);
149
150 /* Found. */
151 if (cmp1 == 0)
152 return;
153
154 /* Left or right? If no child, then we're done. */
155 if (cmp1 < 0)
156 c = n->left;
157 else
158 c = n->right;
159 if (!c)
160 return;
161
162 /* Next one left or right? If found or no child, we're done
163 after one rotation. */
164 cmp2 = (*sp->comp) (key, c->key);
165 if (cmp2 == 0
166 || (cmp2 < 0 && !c->left)
167 || (cmp2 > 0 && !c->right))
168 {
169 if (cmp1 < 0)
170 rotate_left (&sp->root, n, c);
171 else
172 rotate_right (&sp->root, n, c);
173 return;
174 }
175
176 /* Now we have the four cases of double-rotation. */
177 if (cmp1 < 0 && cmp2 < 0)
178 {
179 rotate_left (&n->left, c, c->left);
180 rotate_left (&sp->root, n, n->left);
181 }
182 else if (cmp1 > 0 && cmp2 > 0)
183 {
184 rotate_right (&n->right, c, c->right);
185 rotate_right (&sp->root, n, n->right);
186 }
187 else if (cmp1 < 0 && cmp2 > 0)
188 {
189 rotate_right (&n->left, c, c->right);
190 rotate_left (&sp->root, n, n->left);
191 }
192 else if (cmp1 > 0 && cmp2 < 0)
193 {
194 rotate_left (&n->right, c, c->left);
195 rotate_right (&sp->root, n, n->right);
196 }
197 } while (1);
198 }
199
200 /* Call FN, passing it the DATA, for every node below NODE, all of
201 which are from SP, following an in-order traversal. If FN every
202 returns a non-zero value, the iteration ceases immediately, and the
203 value is returned. Otherwise, this function returns 0. */
204
205 static int
206 splay_tree_foreach_helper (splay_tree_node node,
207 splay_tree_foreach_fn fn, void *data)
208 {
209 int val;
210 splay_tree_node *stack;
211 int stack_ptr, stack_size;
212
213 /* A non-recursive implementation is used to avoid filling the stack
214 for large trees. Splay trees are worst case O(n) in the depth of
215 the tree. */
216
217 #define INITIAL_STACK_SIZE 100
218 stack_size = INITIAL_STACK_SIZE;
219 stack_ptr = 0;
220 stack = XNEWVEC (splay_tree_node, stack_size);
221 val = 0;
222
223 for (;;)
224 {
225 while (node != NULL)
226 {
227 if (stack_ptr == stack_size)
228 {
229 stack_size *= 2;
230 stack = XRESIZEVEC (splay_tree_node, stack, stack_size);
231 }
232 stack[stack_ptr++] = node;
233 node = node->left;
234 }
235
236 if (stack_ptr == 0)
237 break;
238
239 node = stack[--stack_ptr];
240
241 val = (*fn) (node, data);
242 if (val)
243 break;
244
245 node = node->right;
246 }
247
248 XDELETEVEC (stack);
249 return val;
250 }
251
252 /* An allocator and deallocator based on xmalloc. */
253 static void *
254 splay_tree_xmalloc_allocate (int size, void *data ATTRIBUTE_UNUSED)
255 {
256 return (void *) xmalloc (size);
257 }
258
259 static void
260 splay_tree_xmalloc_deallocate (void *object, void *data ATTRIBUTE_UNUSED)
261 {
262 free (object);
263 }
264
265
266 /* Allocate a new splay tree, using COMPARE_FN to compare nodes,
267 DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
268 values. Use xmalloc to allocate the splay tree structure, and any
269 nodes added. */
270
271 splay_tree
272 splay_tree_new (splay_tree_compare_fn compare_fn,
273 splay_tree_delete_key_fn delete_key_fn,
274 splay_tree_delete_value_fn delete_value_fn)
275 {
276 return (splay_tree_new_with_allocator
277 (compare_fn, delete_key_fn, delete_value_fn,
278 splay_tree_xmalloc_allocate, splay_tree_xmalloc_deallocate, 0));
279 }
280
281
282 /* Allocate a new splay tree, using COMPARE_FN to compare nodes,
283 DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
284 values. */
285
286 splay_tree
287 splay_tree_new_with_allocator (splay_tree_compare_fn compare_fn,
288 splay_tree_delete_key_fn delete_key_fn,
289 splay_tree_delete_value_fn delete_value_fn,
290 splay_tree_allocate_fn allocate_fn,
291 splay_tree_deallocate_fn deallocate_fn,
292 void *allocate_data)
293 {
294 return
295 splay_tree_new_typed_alloc (compare_fn, delete_key_fn, delete_value_fn,
296 allocate_fn, allocate_fn, deallocate_fn,
297 allocate_data);
298 }
299
300 /*
301
302 @deftypefn Supplemental splay_tree splay_tree_new_with_typed_alloc @
303 (splay_tree_compare_fn @var{compare_fn}, @
304 splay_tree_delete_key_fn @var{delete_key_fn}, @
305 splay_tree_delete_value_fn @var{delete_value_fn}, @
306 splay_tree_allocate_fn @var{tree_allocate_fn}, @
307 splay_tree_allocate_fn @var{node_allocate_fn}, @
308 splay_tree_deallocate_fn @var{deallocate_fn}, @
309 void * @var{allocate_data})
310
311 This function creates a splay tree that uses two different allocators
312 @var{tree_allocate_fn} and @var{node_allocate_fn} to use for allocating the
313 tree itself and its nodes respectively. This is useful when variables of
314 different types need to be allocated with different allocators.
315
316 The splay tree will use @var{compare_fn} to compare nodes,
317 @var{delete_key_fn} to deallocate keys, and @var{delete_value_fn} to
318 deallocate values.
319
320 @end deftypefn
321
322 */
323
324 splay_tree
325 splay_tree_new_typed_alloc (splay_tree_compare_fn compare_fn,
326 splay_tree_delete_key_fn delete_key_fn,
327 splay_tree_delete_value_fn delete_value_fn,
328 splay_tree_allocate_fn tree_allocate_fn,
329 splay_tree_allocate_fn node_allocate_fn,
330 splay_tree_deallocate_fn deallocate_fn,
331 void * allocate_data)
332 {
333 splay_tree sp = (splay_tree) (*tree_allocate_fn)
334 (sizeof (struct splay_tree_s), allocate_data);
335
336 sp->root = 0;
337 sp->comp = compare_fn;
338 sp->delete_key = delete_key_fn;
339 sp->delete_value = delete_value_fn;
340 sp->allocate = node_allocate_fn;
341 sp->deallocate = deallocate_fn;
342 sp->allocate_data = allocate_data;
343
344 return sp;
345 }
346
347 /* Deallocate SP. */
348
349 void
350 splay_tree_delete (splay_tree sp)
351 {
352 splay_tree_delete_helper (sp, sp->root);
353 (*sp->deallocate) ((char*) sp, sp->allocate_data);
354 }
355
356 /* Insert a new node (associating KEY with DATA) into SP. If a
357 previous node with the indicated KEY exists, its data is replaced
358 with the new value. Returns the new node. */
359
360 splay_tree_node
361 splay_tree_insert (splay_tree sp, splay_tree_key key, splay_tree_value value)
362 {
363 int comparison = 0;
364
365 splay_tree_splay (sp, key);
366
367 if (sp->root)
368 comparison = (*sp->comp)(sp->root->key, key);
369
370 if (sp->root && comparison == 0)
371 {
372 /* If the root of the tree already has the indicated KEY, just
373 replace the value with VALUE. */
374 if (sp->delete_value)
375 (*sp->delete_value)(sp->root->value);
376 sp->root->value = value;
377 }
378 else
379 {
380 /* Create a new node, and insert it at the root. */
381 splay_tree_node node;
382
383 node = ((splay_tree_node)
384 (*sp->allocate) (sizeof (struct splay_tree_node_s),
385 sp->allocate_data));
386 node->key = key;
387 node->value = value;
388
389 if (!sp->root)
390 node->left = node->right = 0;
391 else if (comparison < 0)
392 {
393 node->left = sp->root;
394 node->right = node->left->right;
395 node->left->right = 0;
396 }
397 else
398 {
399 node->right = sp->root;
400 node->left = node->right->left;
401 node->right->left = 0;
402 }
403
404 sp->root = node;
405 }
406
407 return sp->root;
408 }
409
410 /* Remove KEY from SP. It is not an error if it did not exist. */
411
412 void
413 splay_tree_remove (splay_tree sp, splay_tree_key key)
414 {
415 splay_tree_splay (sp, key);
416
417 if (sp->root && (*sp->comp) (sp->root->key, key) == 0)
418 {
419 splay_tree_node left, right;
420
421 left = sp->root->left;
422 right = sp->root->right;
423
424 /* Delete the root node itself. */
425 if (sp->delete_value)
426 (*sp->delete_value) (sp->root->value);
427 (*sp->deallocate) (sp->root, sp->allocate_data);
428
429 /* One of the children is now the root. Doesn't matter much
430 which, so long as we preserve the properties of the tree. */
431 if (left)
432 {
433 sp->root = left;
434
435 /* If there was a right child as well, hang it off the
436 right-most leaf of the left child. */
437 if (right)
438 {
439 while (left->right)
440 left = left->right;
441 left->right = right;
442 }
443 }
444 else
445 sp->root = right;
446 }
447 }
448
449 /* Lookup KEY in SP, returning VALUE if present, and NULL
450 otherwise. */
451
452 splay_tree_node
453 splay_tree_lookup (splay_tree sp, splay_tree_key key)
454 {
455 splay_tree_splay (sp, key);
456
457 if (sp->root && (*sp->comp)(sp->root->key, key) == 0)
458 return sp->root;
459 else
460 return 0;
461 }
462
463 /* Return the node in SP with the greatest key. */
464
465 splay_tree_node
466 splay_tree_max (splay_tree sp)
467 {
468 splay_tree_node n = sp->root;
469
470 if (!n)
471 return NULL;
472
473 while (n->right)
474 n = n->right;
475
476 return n;
477 }
478
479 /* Return the node in SP with the smallest key. */
480
481 splay_tree_node
482 splay_tree_min (splay_tree sp)
483 {
484 splay_tree_node n = sp->root;
485
486 if (!n)
487 return NULL;
488
489 while (n->left)
490 n = n->left;
491
492 return n;
493 }
494
495 /* Return the immediate predecessor KEY, or NULL if there is no
496 predecessor. KEY need not be present in the tree. */
497
498 splay_tree_node
499 splay_tree_predecessor (splay_tree sp, splay_tree_key key)
500 {
501 int comparison;
502 splay_tree_node node;
503
504 /* If the tree is empty, there is certainly no predecessor. */
505 if (!sp->root)
506 return NULL;
507
508 /* Splay the tree around KEY. That will leave either the KEY
509 itself, its predecessor, or its successor at the root. */
510 splay_tree_splay (sp, key);
511 comparison = (*sp->comp)(sp->root->key, key);
512
513 /* If the predecessor is at the root, just return it. */
514 if (comparison < 0)
515 return sp->root;
516
517 /* Otherwise, find the rightmost element of the left subtree. */
518 node = sp->root->left;
519 if (node)
520 while (node->right)
521 node = node->right;
522
523 return node;
524 }
525
526 /* Return the immediate successor KEY, or NULL if there is no
527 successor. KEY need not be present in the tree. */
528
529 splay_tree_node
530 splay_tree_successor (splay_tree sp, splay_tree_key key)
531 {
532 int comparison;
533 splay_tree_node node;
534
535 /* If the tree is empty, there is certainly no successor. */
536 if (!sp->root)
537 return NULL;
538
539 /* Splay the tree around KEY. That will leave either the KEY
540 itself, its predecessor, or its successor at the root. */
541 splay_tree_splay (sp, key);
542 comparison = (*sp->comp)(sp->root->key, key);
543
544 /* If the successor is at the root, just return it. */
545 if (comparison > 0)
546 return sp->root;
547
548 /* Otherwise, find the leftmost element of the right subtree. */
549 node = sp->root->right;
550 if (node)
551 while (node->left)
552 node = node->left;
553
554 return node;
555 }
556
557 /* Call FN, passing it the DATA, for every node in SP, following an
558 in-order traversal. If FN every returns a non-zero value, the
559 iteration ceases immediately, and the value is returned.
560 Otherwise, this function returns 0. */
561
562 int
563 splay_tree_foreach (splay_tree sp, splay_tree_foreach_fn fn, void *data)
564 {
565 return splay_tree_foreach_helper (sp->root, fn, data);
566 }
567
568 /* Splay-tree comparison function, treating the keys as ints. */
569
570 int
571 splay_tree_compare_ints (splay_tree_key k1, splay_tree_key k2)
572 {
573 if ((int) k1 < (int) k2)
574 return -1;
575 else if ((int) k1 > (int) k2)
576 return 1;
577 else
578 return 0;
579 }
580
581 /* Splay-tree comparison function, treating the keys as pointers. */
582
583 int
584 splay_tree_compare_pointers (splay_tree_key k1, splay_tree_key k2)
585 {
586 if ((char*) k1 < (char*) k2)
587 return -1;
588 else if ((char*) k1 > (char*) k2)
589 return 1;
590 else
591 return 0;
592 }
This page took 0.041815 seconds and 4 git commands to generate.