Merge branch 'libnvdimm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdim...
[deliverable/linux.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44 * FIXME: remove all knowledge of the buffer layer from the core VM
45 */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * though.
53 *
54 * Shared mappings now work. 15.8.1995 Bruno.
55 *
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 *
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 */
61
62 /*
63 * Lock ordering:
64 *
65 * ->i_mmap_rwsem (truncate_pagecache)
66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
69 *
70 * ->i_mutex
71 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
72 *
73 * ->mmap_sem
74 * ->i_mmap_rwsem
75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 *
78 * ->mmap_sem
79 * ->lock_page (access_process_vm)
80 *
81 * ->i_mutex (generic_perform_write)
82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
83 *
84 * bdi->wb.list_lock
85 * sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
88 * ->i_mmap_rwsem
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 *
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
104 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
106 * ->inode->i_lock (zap_pte_range->set_page_dirty)
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 *
109 * ->i_mmap_rwsem
110 * ->tasklist_lock (memory_failure, collect_procs_ao)
111 */
112
113 static void page_cache_tree_delete(struct address_space *mapping,
114 struct page *page, void *shadow)
115 {
116 struct radix_tree_node *node;
117
118 VM_BUG_ON(!PageLocked(page));
119
120 node = radix_tree_replace_clear_tags(&mapping->page_tree, page->index,
121 shadow);
122
123 if (shadow) {
124 mapping->nrexceptional++;
125 /*
126 * Make sure the nrexceptional update is committed before
127 * the nrpages update so that final truncate racing
128 * with reclaim does not see both counters 0 at the
129 * same time and miss a shadow entry.
130 */
131 smp_wmb();
132 }
133 mapping->nrpages--;
134
135 if (!node)
136 return;
137
138 workingset_node_pages_dec(node);
139 if (shadow)
140 workingset_node_shadows_inc(node);
141 else
142 if (__radix_tree_delete_node(&mapping->page_tree, node))
143 return;
144
145 /*
146 * Track node that only contains shadow entries. DAX mappings contain
147 * no shadow entries and may contain other exceptional entries so skip
148 * those.
149 *
150 * Avoid acquiring the list_lru lock if already tracked. The
151 * list_empty() test is safe as node->private_list is
152 * protected by mapping->tree_lock.
153 */
154 if (!dax_mapping(mapping) && !workingset_node_pages(node) &&
155 list_empty(&node->private_list)) {
156 node->private_data = mapping;
157 list_lru_add(&workingset_shadow_nodes, &node->private_list);
158 }
159 }
160
161 /*
162 * Delete a page from the page cache and free it. Caller has to make
163 * sure the page is locked and that nobody else uses it - or that usage
164 * is safe. The caller must hold the mapping's tree_lock.
165 */
166 void __delete_from_page_cache(struct page *page, void *shadow)
167 {
168 struct address_space *mapping = page->mapping;
169
170 trace_mm_filemap_delete_from_page_cache(page);
171 /*
172 * if we're uptodate, flush out into the cleancache, otherwise
173 * invalidate any existing cleancache entries. We can't leave
174 * stale data around in the cleancache once our page is gone
175 */
176 if (PageUptodate(page) && PageMappedToDisk(page))
177 cleancache_put_page(page);
178 else
179 cleancache_invalidate_page(mapping, page);
180
181 VM_BUG_ON_PAGE(page_mapped(page), page);
182 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
183 int mapcount;
184
185 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
186 current->comm, page_to_pfn(page));
187 dump_page(page, "still mapped when deleted");
188 dump_stack();
189 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
190
191 mapcount = page_mapcount(page);
192 if (mapping_exiting(mapping) &&
193 page_count(page) >= mapcount + 2) {
194 /*
195 * All vmas have already been torn down, so it's
196 * a good bet that actually the page is unmapped,
197 * and we'd prefer not to leak it: if we're wrong,
198 * some other bad page check should catch it later.
199 */
200 page_mapcount_reset(page);
201 page_ref_sub(page, mapcount);
202 }
203 }
204
205 page_cache_tree_delete(mapping, page, shadow);
206
207 page->mapping = NULL;
208 /* Leave page->index set: truncation lookup relies upon it */
209
210 /* hugetlb pages do not participate in page cache accounting. */
211 if (!PageHuge(page))
212 __dec_zone_page_state(page, NR_FILE_PAGES);
213 if (PageSwapBacked(page))
214 __dec_zone_page_state(page, NR_SHMEM);
215
216 /*
217 * At this point page must be either written or cleaned by truncate.
218 * Dirty page here signals a bug and loss of unwritten data.
219 *
220 * This fixes dirty accounting after removing the page entirely but
221 * leaves PageDirty set: it has no effect for truncated page and
222 * anyway will be cleared before returning page into buddy allocator.
223 */
224 if (WARN_ON_ONCE(PageDirty(page)))
225 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
226 }
227
228 /**
229 * delete_from_page_cache - delete page from page cache
230 * @page: the page which the kernel is trying to remove from page cache
231 *
232 * This must be called only on pages that have been verified to be in the page
233 * cache and locked. It will never put the page into the free list, the caller
234 * has a reference on the page.
235 */
236 void delete_from_page_cache(struct page *page)
237 {
238 struct address_space *mapping = page->mapping;
239 unsigned long flags;
240
241 void (*freepage)(struct page *);
242
243 BUG_ON(!PageLocked(page));
244
245 freepage = mapping->a_ops->freepage;
246
247 spin_lock_irqsave(&mapping->tree_lock, flags);
248 __delete_from_page_cache(page, NULL);
249 spin_unlock_irqrestore(&mapping->tree_lock, flags);
250
251 if (freepage)
252 freepage(page);
253 put_page(page);
254 }
255 EXPORT_SYMBOL(delete_from_page_cache);
256
257 static int filemap_check_errors(struct address_space *mapping)
258 {
259 int ret = 0;
260 /* Check for outstanding write errors */
261 if (test_bit(AS_ENOSPC, &mapping->flags) &&
262 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
263 ret = -ENOSPC;
264 if (test_bit(AS_EIO, &mapping->flags) &&
265 test_and_clear_bit(AS_EIO, &mapping->flags))
266 ret = -EIO;
267 return ret;
268 }
269
270 /**
271 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
272 * @mapping: address space structure to write
273 * @start: offset in bytes where the range starts
274 * @end: offset in bytes where the range ends (inclusive)
275 * @sync_mode: enable synchronous operation
276 *
277 * Start writeback against all of a mapping's dirty pages that lie
278 * within the byte offsets <start, end> inclusive.
279 *
280 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
281 * opposed to a regular memory cleansing writeback. The difference between
282 * these two operations is that if a dirty page/buffer is encountered, it must
283 * be waited upon, and not just skipped over.
284 */
285 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
286 loff_t end, int sync_mode)
287 {
288 int ret;
289 struct writeback_control wbc = {
290 .sync_mode = sync_mode,
291 .nr_to_write = LONG_MAX,
292 .range_start = start,
293 .range_end = end,
294 };
295
296 if (!mapping_cap_writeback_dirty(mapping))
297 return 0;
298
299 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
300 ret = do_writepages(mapping, &wbc);
301 wbc_detach_inode(&wbc);
302 return ret;
303 }
304
305 static inline int __filemap_fdatawrite(struct address_space *mapping,
306 int sync_mode)
307 {
308 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
309 }
310
311 int filemap_fdatawrite(struct address_space *mapping)
312 {
313 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
314 }
315 EXPORT_SYMBOL(filemap_fdatawrite);
316
317 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
318 loff_t end)
319 {
320 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
321 }
322 EXPORT_SYMBOL(filemap_fdatawrite_range);
323
324 /**
325 * filemap_flush - mostly a non-blocking flush
326 * @mapping: target address_space
327 *
328 * This is a mostly non-blocking flush. Not suitable for data-integrity
329 * purposes - I/O may not be started against all dirty pages.
330 */
331 int filemap_flush(struct address_space *mapping)
332 {
333 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
334 }
335 EXPORT_SYMBOL(filemap_flush);
336
337 static int __filemap_fdatawait_range(struct address_space *mapping,
338 loff_t start_byte, loff_t end_byte)
339 {
340 pgoff_t index = start_byte >> PAGE_SHIFT;
341 pgoff_t end = end_byte >> PAGE_SHIFT;
342 struct pagevec pvec;
343 int nr_pages;
344 int ret = 0;
345
346 if (end_byte < start_byte)
347 goto out;
348
349 pagevec_init(&pvec, 0);
350 while ((index <= end) &&
351 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
352 PAGECACHE_TAG_WRITEBACK,
353 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
354 unsigned i;
355
356 for (i = 0; i < nr_pages; i++) {
357 struct page *page = pvec.pages[i];
358
359 /* until radix tree lookup accepts end_index */
360 if (page->index > end)
361 continue;
362
363 wait_on_page_writeback(page);
364 if (TestClearPageError(page))
365 ret = -EIO;
366 }
367 pagevec_release(&pvec);
368 cond_resched();
369 }
370 out:
371 return ret;
372 }
373
374 /**
375 * filemap_fdatawait_range - wait for writeback to complete
376 * @mapping: address space structure to wait for
377 * @start_byte: offset in bytes where the range starts
378 * @end_byte: offset in bytes where the range ends (inclusive)
379 *
380 * Walk the list of under-writeback pages of the given address space
381 * in the given range and wait for all of them. Check error status of
382 * the address space and return it.
383 *
384 * Since the error status of the address space is cleared by this function,
385 * callers are responsible for checking the return value and handling and/or
386 * reporting the error.
387 */
388 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
389 loff_t end_byte)
390 {
391 int ret, ret2;
392
393 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
394 ret2 = filemap_check_errors(mapping);
395 if (!ret)
396 ret = ret2;
397
398 return ret;
399 }
400 EXPORT_SYMBOL(filemap_fdatawait_range);
401
402 /**
403 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
404 * @mapping: address space structure to wait for
405 *
406 * Walk the list of under-writeback pages of the given address space
407 * and wait for all of them. Unlike filemap_fdatawait(), this function
408 * does not clear error status of the address space.
409 *
410 * Use this function if callers don't handle errors themselves. Expected
411 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
412 * fsfreeze(8)
413 */
414 void filemap_fdatawait_keep_errors(struct address_space *mapping)
415 {
416 loff_t i_size = i_size_read(mapping->host);
417
418 if (i_size == 0)
419 return;
420
421 __filemap_fdatawait_range(mapping, 0, i_size - 1);
422 }
423
424 /**
425 * filemap_fdatawait - wait for all under-writeback pages to complete
426 * @mapping: address space structure to wait for
427 *
428 * Walk the list of under-writeback pages of the given address space
429 * and wait for all of them. Check error status of the address space
430 * and return it.
431 *
432 * Since the error status of the address space is cleared by this function,
433 * callers are responsible for checking the return value and handling and/or
434 * reporting the error.
435 */
436 int filemap_fdatawait(struct address_space *mapping)
437 {
438 loff_t i_size = i_size_read(mapping->host);
439
440 if (i_size == 0)
441 return 0;
442
443 return filemap_fdatawait_range(mapping, 0, i_size - 1);
444 }
445 EXPORT_SYMBOL(filemap_fdatawait);
446
447 int filemap_write_and_wait(struct address_space *mapping)
448 {
449 int err = 0;
450
451 if ((!dax_mapping(mapping) && mapping->nrpages) ||
452 (dax_mapping(mapping) && mapping->nrexceptional)) {
453 err = filemap_fdatawrite(mapping);
454 /*
455 * Even if the above returned error, the pages may be
456 * written partially (e.g. -ENOSPC), so we wait for it.
457 * But the -EIO is special case, it may indicate the worst
458 * thing (e.g. bug) happened, so we avoid waiting for it.
459 */
460 if (err != -EIO) {
461 int err2 = filemap_fdatawait(mapping);
462 if (!err)
463 err = err2;
464 }
465 } else {
466 err = filemap_check_errors(mapping);
467 }
468 return err;
469 }
470 EXPORT_SYMBOL(filemap_write_and_wait);
471
472 /**
473 * filemap_write_and_wait_range - write out & wait on a file range
474 * @mapping: the address_space for the pages
475 * @lstart: offset in bytes where the range starts
476 * @lend: offset in bytes where the range ends (inclusive)
477 *
478 * Write out and wait upon file offsets lstart->lend, inclusive.
479 *
480 * Note that `lend' is inclusive (describes the last byte to be written) so
481 * that this function can be used to write to the very end-of-file (end = -1).
482 */
483 int filemap_write_and_wait_range(struct address_space *mapping,
484 loff_t lstart, loff_t lend)
485 {
486 int err = 0;
487
488 if ((!dax_mapping(mapping) && mapping->nrpages) ||
489 (dax_mapping(mapping) && mapping->nrexceptional)) {
490 err = __filemap_fdatawrite_range(mapping, lstart, lend,
491 WB_SYNC_ALL);
492 /* See comment of filemap_write_and_wait() */
493 if (err != -EIO) {
494 int err2 = filemap_fdatawait_range(mapping,
495 lstart, lend);
496 if (!err)
497 err = err2;
498 }
499 } else {
500 err = filemap_check_errors(mapping);
501 }
502 return err;
503 }
504 EXPORT_SYMBOL(filemap_write_and_wait_range);
505
506 /**
507 * replace_page_cache_page - replace a pagecache page with a new one
508 * @old: page to be replaced
509 * @new: page to replace with
510 * @gfp_mask: allocation mode
511 *
512 * This function replaces a page in the pagecache with a new one. On
513 * success it acquires the pagecache reference for the new page and
514 * drops it for the old page. Both the old and new pages must be
515 * locked. This function does not add the new page to the LRU, the
516 * caller must do that.
517 *
518 * The remove + add is atomic. The only way this function can fail is
519 * memory allocation failure.
520 */
521 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
522 {
523 int error;
524
525 VM_BUG_ON_PAGE(!PageLocked(old), old);
526 VM_BUG_ON_PAGE(!PageLocked(new), new);
527 VM_BUG_ON_PAGE(new->mapping, new);
528
529 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
530 if (!error) {
531 struct address_space *mapping = old->mapping;
532 void (*freepage)(struct page *);
533 unsigned long flags;
534
535 pgoff_t offset = old->index;
536 freepage = mapping->a_ops->freepage;
537
538 get_page(new);
539 new->mapping = mapping;
540 new->index = offset;
541
542 spin_lock_irqsave(&mapping->tree_lock, flags);
543 __delete_from_page_cache(old, NULL);
544 error = radix_tree_insert(&mapping->page_tree, offset, new);
545 BUG_ON(error);
546 mapping->nrpages++;
547
548 /*
549 * hugetlb pages do not participate in page cache accounting.
550 */
551 if (!PageHuge(new))
552 __inc_zone_page_state(new, NR_FILE_PAGES);
553 if (PageSwapBacked(new))
554 __inc_zone_page_state(new, NR_SHMEM);
555 spin_unlock_irqrestore(&mapping->tree_lock, flags);
556 mem_cgroup_migrate(old, new);
557 radix_tree_preload_end();
558 if (freepage)
559 freepage(old);
560 put_page(old);
561 }
562
563 return error;
564 }
565 EXPORT_SYMBOL_GPL(replace_page_cache_page);
566
567 static int page_cache_tree_insert(struct address_space *mapping,
568 struct page *page, void **shadowp)
569 {
570 struct radix_tree_node *node;
571 void **slot;
572 int error;
573
574 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
575 &node, &slot);
576 if (error)
577 return error;
578 if (*slot) {
579 void *p;
580
581 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
582 if (!radix_tree_exceptional_entry(p))
583 return -EEXIST;
584
585 mapping->nrexceptional--;
586 if (!dax_mapping(mapping)) {
587 if (shadowp)
588 *shadowp = p;
589 if (node)
590 workingset_node_shadows_dec(node);
591 } else {
592 /* DAX can replace empty locked entry with a hole */
593 WARN_ON_ONCE(p !=
594 (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
595 RADIX_DAX_ENTRY_LOCK));
596 /* DAX accounts exceptional entries as normal pages */
597 if (node)
598 workingset_node_pages_dec(node);
599 /* Wakeup waiters for exceptional entry lock */
600 dax_wake_mapping_entry_waiter(mapping, page->index,
601 false);
602 }
603 }
604 radix_tree_replace_slot(slot, page);
605 mapping->nrpages++;
606 if (node) {
607 workingset_node_pages_inc(node);
608 /*
609 * Don't track node that contains actual pages.
610 *
611 * Avoid acquiring the list_lru lock if already
612 * untracked. The list_empty() test is safe as
613 * node->private_list is protected by
614 * mapping->tree_lock.
615 */
616 if (!list_empty(&node->private_list))
617 list_lru_del(&workingset_shadow_nodes,
618 &node->private_list);
619 }
620 return 0;
621 }
622
623 static int __add_to_page_cache_locked(struct page *page,
624 struct address_space *mapping,
625 pgoff_t offset, gfp_t gfp_mask,
626 void **shadowp)
627 {
628 int huge = PageHuge(page);
629 struct mem_cgroup *memcg;
630 int error;
631
632 VM_BUG_ON_PAGE(!PageLocked(page), page);
633 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
634
635 if (!huge) {
636 error = mem_cgroup_try_charge(page, current->mm,
637 gfp_mask, &memcg, false);
638 if (error)
639 return error;
640 }
641
642 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
643 if (error) {
644 if (!huge)
645 mem_cgroup_cancel_charge(page, memcg, false);
646 return error;
647 }
648
649 get_page(page);
650 page->mapping = mapping;
651 page->index = offset;
652
653 spin_lock_irq(&mapping->tree_lock);
654 error = page_cache_tree_insert(mapping, page, shadowp);
655 radix_tree_preload_end();
656 if (unlikely(error))
657 goto err_insert;
658
659 /* hugetlb pages do not participate in page cache accounting. */
660 if (!huge)
661 __inc_zone_page_state(page, NR_FILE_PAGES);
662 spin_unlock_irq(&mapping->tree_lock);
663 if (!huge)
664 mem_cgroup_commit_charge(page, memcg, false, false);
665 trace_mm_filemap_add_to_page_cache(page);
666 return 0;
667 err_insert:
668 page->mapping = NULL;
669 /* Leave page->index set: truncation relies upon it */
670 spin_unlock_irq(&mapping->tree_lock);
671 if (!huge)
672 mem_cgroup_cancel_charge(page, memcg, false);
673 put_page(page);
674 return error;
675 }
676
677 /**
678 * add_to_page_cache_locked - add a locked page to the pagecache
679 * @page: page to add
680 * @mapping: the page's address_space
681 * @offset: page index
682 * @gfp_mask: page allocation mode
683 *
684 * This function is used to add a page to the pagecache. It must be locked.
685 * This function does not add the page to the LRU. The caller must do that.
686 */
687 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
688 pgoff_t offset, gfp_t gfp_mask)
689 {
690 return __add_to_page_cache_locked(page, mapping, offset,
691 gfp_mask, NULL);
692 }
693 EXPORT_SYMBOL(add_to_page_cache_locked);
694
695 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
696 pgoff_t offset, gfp_t gfp_mask)
697 {
698 void *shadow = NULL;
699 int ret;
700
701 __SetPageLocked(page);
702 ret = __add_to_page_cache_locked(page, mapping, offset,
703 gfp_mask, &shadow);
704 if (unlikely(ret))
705 __ClearPageLocked(page);
706 else {
707 /*
708 * The page might have been evicted from cache only
709 * recently, in which case it should be activated like
710 * any other repeatedly accessed page.
711 * The exception is pages getting rewritten; evicting other
712 * data from the working set, only to cache data that will
713 * get overwritten with something else, is a waste of memory.
714 */
715 if (!(gfp_mask & __GFP_WRITE) &&
716 shadow && workingset_refault(shadow)) {
717 SetPageActive(page);
718 workingset_activation(page);
719 } else
720 ClearPageActive(page);
721 lru_cache_add(page);
722 }
723 return ret;
724 }
725 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
726
727 #ifdef CONFIG_NUMA
728 struct page *__page_cache_alloc(gfp_t gfp)
729 {
730 int n;
731 struct page *page;
732
733 if (cpuset_do_page_mem_spread()) {
734 unsigned int cpuset_mems_cookie;
735 do {
736 cpuset_mems_cookie = read_mems_allowed_begin();
737 n = cpuset_mem_spread_node();
738 page = __alloc_pages_node(n, gfp, 0);
739 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
740
741 return page;
742 }
743 return alloc_pages(gfp, 0);
744 }
745 EXPORT_SYMBOL(__page_cache_alloc);
746 #endif
747
748 /*
749 * In order to wait for pages to become available there must be
750 * waitqueues associated with pages. By using a hash table of
751 * waitqueues where the bucket discipline is to maintain all
752 * waiters on the same queue and wake all when any of the pages
753 * become available, and for the woken contexts to check to be
754 * sure the appropriate page became available, this saves space
755 * at a cost of "thundering herd" phenomena during rare hash
756 * collisions.
757 */
758 wait_queue_head_t *page_waitqueue(struct page *page)
759 {
760 const struct zone *zone = page_zone(page);
761
762 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
763 }
764 EXPORT_SYMBOL(page_waitqueue);
765
766 void wait_on_page_bit(struct page *page, int bit_nr)
767 {
768 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
769
770 if (test_bit(bit_nr, &page->flags))
771 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
772 TASK_UNINTERRUPTIBLE);
773 }
774 EXPORT_SYMBOL(wait_on_page_bit);
775
776 int wait_on_page_bit_killable(struct page *page, int bit_nr)
777 {
778 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
779
780 if (!test_bit(bit_nr, &page->flags))
781 return 0;
782
783 return __wait_on_bit(page_waitqueue(page), &wait,
784 bit_wait_io, TASK_KILLABLE);
785 }
786
787 int wait_on_page_bit_killable_timeout(struct page *page,
788 int bit_nr, unsigned long timeout)
789 {
790 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
791
792 wait.key.timeout = jiffies + timeout;
793 if (!test_bit(bit_nr, &page->flags))
794 return 0;
795 return __wait_on_bit(page_waitqueue(page), &wait,
796 bit_wait_io_timeout, TASK_KILLABLE);
797 }
798 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
799
800 /**
801 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
802 * @page: Page defining the wait queue of interest
803 * @waiter: Waiter to add to the queue
804 *
805 * Add an arbitrary @waiter to the wait queue for the nominated @page.
806 */
807 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
808 {
809 wait_queue_head_t *q = page_waitqueue(page);
810 unsigned long flags;
811
812 spin_lock_irqsave(&q->lock, flags);
813 __add_wait_queue(q, waiter);
814 spin_unlock_irqrestore(&q->lock, flags);
815 }
816 EXPORT_SYMBOL_GPL(add_page_wait_queue);
817
818 /**
819 * unlock_page - unlock a locked page
820 * @page: the page
821 *
822 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
823 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
824 * mechanism between PageLocked pages and PageWriteback pages is shared.
825 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
826 *
827 * The mb is necessary to enforce ordering between the clear_bit and the read
828 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
829 */
830 void unlock_page(struct page *page)
831 {
832 page = compound_head(page);
833 VM_BUG_ON_PAGE(!PageLocked(page), page);
834 clear_bit_unlock(PG_locked, &page->flags);
835 smp_mb__after_atomic();
836 wake_up_page(page, PG_locked);
837 }
838 EXPORT_SYMBOL(unlock_page);
839
840 /**
841 * end_page_writeback - end writeback against a page
842 * @page: the page
843 */
844 void end_page_writeback(struct page *page)
845 {
846 /*
847 * TestClearPageReclaim could be used here but it is an atomic
848 * operation and overkill in this particular case. Failing to
849 * shuffle a page marked for immediate reclaim is too mild to
850 * justify taking an atomic operation penalty at the end of
851 * ever page writeback.
852 */
853 if (PageReclaim(page)) {
854 ClearPageReclaim(page);
855 rotate_reclaimable_page(page);
856 }
857
858 if (!test_clear_page_writeback(page))
859 BUG();
860
861 smp_mb__after_atomic();
862 wake_up_page(page, PG_writeback);
863 }
864 EXPORT_SYMBOL(end_page_writeback);
865
866 /*
867 * After completing I/O on a page, call this routine to update the page
868 * flags appropriately
869 */
870 void page_endio(struct page *page, int rw, int err)
871 {
872 if (rw == READ) {
873 if (!err) {
874 SetPageUptodate(page);
875 } else {
876 ClearPageUptodate(page);
877 SetPageError(page);
878 }
879 unlock_page(page);
880 } else { /* rw == WRITE */
881 if (err) {
882 SetPageError(page);
883 if (page->mapping)
884 mapping_set_error(page->mapping, err);
885 }
886 end_page_writeback(page);
887 }
888 }
889 EXPORT_SYMBOL_GPL(page_endio);
890
891 /**
892 * __lock_page - get a lock on the page, assuming we need to sleep to get it
893 * @page: the page to lock
894 */
895 void __lock_page(struct page *page)
896 {
897 struct page *page_head = compound_head(page);
898 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
899
900 __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
901 TASK_UNINTERRUPTIBLE);
902 }
903 EXPORT_SYMBOL(__lock_page);
904
905 int __lock_page_killable(struct page *page)
906 {
907 struct page *page_head = compound_head(page);
908 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
909
910 return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
911 bit_wait_io, TASK_KILLABLE);
912 }
913 EXPORT_SYMBOL_GPL(__lock_page_killable);
914
915 /*
916 * Return values:
917 * 1 - page is locked; mmap_sem is still held.
918 * 0 - page is not locked.
919 * mmap_sem has been released (up_read()), unless flags had both
920 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
921 * which case mmap_sem is still held.
922 *
923 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
924 * with the page locked and the mmap_sem unperturbed.
925 */
926 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
927 unsigned int flags)
928 {
929 if (flags & FAULT_FLAG_ALLOW_RETRY) {
930 /*
931 * CAUTION! In this case, mmap_sem is not released
932 * even though return 0.
933 */
934 if (flags & FAULT_FLAG_RETRY_NOWAIT)
935 return 0;
936
937 up_read(&mm->mmap_sem);
938 if (flags & FAULT_FLAG_KILLABLE)
939 wait_on_page_locked_killable(page);
940 else
941 wait_on_page_locked(page);
942 return 0;
943 } else {
944 if (flags & FAULT_FLAG_KILLABLE) {
945 int ret;
946
947 ret = __lock_page_killable(page);
948 if (ret) {
949 up_read(&mm->mmap_sem);
950 return 0;
951 }
952 } else
953 __lock_page(page);
954 return 1;
955 }
956 }
957
958 /**
959 * page_cache_next_hole - find the next hole (not-present entry)
960 * @mapping: mapping
961 * @index: index
962 * @max_scan: maximum range to search
963 *
964 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
965 * lowest indexed hole.
966 *
967 * Returns: the index of the hole if found, otherwise returns an index
968 * outside of the set specified (in which case 'return - index >=
969 * max_scan' will be true). In rare cases of index wrap-around, 0 will
970 * be returned.
971 *
972 * page_cache_next_hole may be called under rcu_read_lock. However,
973 * like radix_tree_gang_lookup, this will not atomically search a
974 * snapshot of the tree at a single point in time. For example, if a
975 * hole is created at index 5, then subsequently a hole is created at
976 * index 10, page_cache_next_hole covering both indexes may return 10
977 * if called under rcu_read_lock.
978 */
979 pgoff_t page_cache_next_hole(struct address_space *mapping,
980 pgoff_t index, unsigned long max_scan)
981 {
982 unsigned long i;
983
984 for (i = 0; i < max_scan; i++) {
985 struct page *page;
986
987 page = radix_tree_lookup(&mapping->page_tree, index);
988 if (!page || radix_tree_exceptional_entry(page))
989 break;
990 index++;
991 if (index == 0)
992 break;
993 }
994
995 return index;
996 }
997 EXPORT_SYMBOL(page_cache_next_hole);
998
999 /**
1000 * page_cache_prev_hole - find the prev hole (not-present entry)
1001 * @mapping: mapping
1002 * @index: index
1003 * @max_scan: maximum range to search
1004 *
1005 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1006 * the first hole.
1007 *
1008 * Returns: the index of the hole if found, otherwise returns an index
1009 * outside of the set specified (in which case 'index - return >=
1010 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1011 * will be returned.
1012 *
1013 * page_cache_prev_hole may be called under rcu_read_lock. However,
1014 * like radix_tree_gang_lookup, this will not atomically search a
1015 * snapshot of the tree at a single point in time. For example, if a
1016 * hole is created at index 10, then subsequently a hole is created at
1017 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1018 * called under rcu_read_lock.
1019 */
1020 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1021 pgoff_t index, unsigned long max_scan)
1022 {
1023 unsigned long i;
1024
1025 for (i = 0; i < max_scan; i++) {
1026 struct page *page;
1027
1028 page = radix_tree_lookup(&mapping->page_tree, index);
1029 if (!page || radix_tree_exceptional_entry(page))
1030 break;
1031 index--;
1032 if (index == ULONG_MAX)
1033 break;
1034 }
1035
1036 return index;
1037 }
1038 EXPORT_SYMBOL(page_cache_prev_hole);
1039
1040 /**
1041 * find_get_entry - find and get a page cache entry
1042 * @mapping: the address_space to search
1043 * @offset: the page cache index
1044 *
1045 * Looks up the page cache slot at @mapping & @offset. If there is a
1046 * page cache page, it is returned with an increased refcount.
1047 *
1048 * If the slot holds a shadow entry of a previously evicted page, or a
1049 * swap entry from shmem/tmpfs, it is returned.
1050 *
1051 * Otherwise, %NULL is returned.
1052 */
1053 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1054 {
1055 void **pagep;
1056 struct page *page;
1057
1058 rcu_read_lock();
1059 repeat:
1060 page = NULL;
1061 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1062 if (pagep) {
1063 page = radix_tree_deref_slot(pagep);
1064 if (unlikely(!page))
1065 goto out;
1066 if (radix_tree_exception(page)) {
1067 if (radix_tree_deref_retry(page))
1068 goto repeat;
1069 /*
1070 * A shadow entry of a recently evicted page,
1071 * or a swap entry from shmem/tmpfs. Return
1072 * it without attempting to raise page count.
1073 */
1074 goto out;
1075 }
1076 if (!page_cache_get_speculative(page))
1077 goto repeat;
1078
1079 /*
1080 * Has the page moved?
1081 * This is part of the lockless pagecache protocol. See
1082 * include/linux/pagemap.h for details.
1083 */
1084 if (unlikely(page != *pagep)) {
1085 put_page(page);
1086 goto repeat;
1087 }
1088 }
1089 out:
1090 rcu_read_unlock();
1091
1092 return page;
1093 }
1094 EXPORT_SYMBOL(find_get_entry);
1095
1096 /**
1097 * find_lock_entry - locate, pin and lock a page cache entry
1098 * @mapping: the address_space to search
1099 * @offset: the page cache index
1100 *
1101 * Looks up the page cache slot at @mapping & @offset. If there is a
1102 * page cache page, it is returned locked and with an increased
1103 * refcount.
1104 *
1105 * If the slot holds a shadow entry of a previously evicted page, or a
1106 * swap entry from shmem/tmpfs, it is returned.
1107 *
1108 * Otherwise, %NULL is returned.
1109 *
1110 * find_lock_entry() may sleep.
1111 */
1112 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1113 {
1114 struct page *page;
1115
1116 repeat:
1117 page = find_get_entry(mapping, offset);
1118 if (page && !radix_tree_exception(page)) {
1119 lock_page(page);
1120 /* Has the page been truncated? */
1121 if (unlikely(page->mapping != mapping)) {
1122 unlock_page(page);
1123 put_page(page);
1124 goto repeat;
1125 }
1126 VM_BUG_ON_PAGE(page->index != offset, page);
1127 }
1128 return page;
1129 }
1130 EXPORT_SYMBOL(find_lock_entry);
1131
1132 /**
1133 * pagecache_get_page - find and get a page reference
1134 * @mapping: the address_space to search
1135 * @offset: the page index
1136 * @fgp_flags: PCG flags
1137 * @gfp_mask: gfp mask to use for the page cache data page allocation
1138 *
1139 * Looks up the page cache slot at @mapping & @offset.
1140 *
1141 * PCG flags modify how the page is returned.
1142 *
1143 * FGP_ACCESSED: the page will be marked accessed
1144 * FGP_LOCK: Page is return locked
1145 * FGP_CREAT: If page is not present then a new page is allocated using
1146 * @gfp_mask and added to the page cache and the VM's LRU
1147 * list. The page is returned locked and with an increased
1148 * refcount. Otherwise, %NULL is returned.
1149 *
1150 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1151 * if the GFP flags specified for FGP_CREAT are atomic.
1152 *
1153 * If there is a page cache page, it is returned with an increased refcount.
1154 */
1155 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1156 int fgp_flags, gfp_t gfp_mask)
1157 {
1158 struct page *page;
1159
1160 repeat:
1161 page = find_get_entry(mapping, offset);
1162 if (radix_tree_exceptional_entry(page))
1163 page = NULL;
1164 if (!page)
1165 goto no_page;
1166
1167 if (fgp_flags & FGP_LOCK) {
1168 if (fgp_flags & FGP_NOWAIT) {
1169 if (!trylock_page(page)) {
1170 put_page(page);
1171 return NULL;
1172 }
1173 } else {
1174 lock_page(page);
1175 }
1176
1177 /* Has the page been truncated? */
1178 if (unlikely(page->mapping != mapping)) {
1179 unlock_page(page);
1180 put_page(page);
1181 goto repeat;
1182 }
1183 VM_BUG_ON_PAGE(page->index != offset, page);
1184 }
1185
1186 if (page && (fgp_flags & FGP_ACCESSED))
1187 mark_page_accessed(page);
1188
1189 no_page:
1190 if (!page && (fgp_flags & FGP_CREAT)) {
1191 int err;
1192 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1193 gfp_mask |= __GFP_WRITE;
1194 if (fgp_flags & FGP_NOFS)
1195 gfp_mask &= ~__GFP_FS;
1196
1197 page = __page_cache_alloc(gfp_mask);
1198 if (!page)
1199 return NULL;
1200
1201 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1202 fgp_flags |= FGP_LOCK;
1203
1204 /* Init accessed so avoid atomic mark_page_accessed later */
1205 if (fgp_flags & FGP_ACCESSED)
1206 __SetPageReferenced(page);
1207
1208 err = add_to_page_cache_lru(page, mapping, offset,
1209 gfp_mask & GFP_RECLAIM_MASK);
1210 if (unlikely(err)) {
1211 put_page(page);
1212 page = NULL;
1213 if (err == -EEXIST)
1214 goto repeat;
1215 }
1216 }
1217
1218 return page;
1219 }
1220 EXPORT_SYMBOL(pagecache_get_page);
1221
1222 /**
1223 * find_get_entries - gang pagecache lookup
1224 * @mapping: The address_space to search
1225 * @start: The starting page cache index
1226 * @nr_entries: The maximum number of entries
1227 * @entries: Where the resulting entries are placed
1228 * @indices: The cache indices corresponding to the entries in @entries
1229 *
1230 * find_get_entries() will search for and return a group of up to
1231 * @nr_entries entries in the mapping. The entries are placed at
1232 * @entries. find_get_entries() takes a reference against any actual
1233 * pages it returns.
1234 *
1235 * The search returns a group of mapping-contiguous page cache entries
1236 * with ascending indexes. There may be holes in the indices due to
1237 * not-present pages.
1238 *
1239 * Any shadow entries of evicted pages, or swap entries from
1240 * shmem/tmpfs, are included in the returned array.
1241 *
1242 * find_get_entries() returns the number of pages and shadow entries
1243 * which were found.
1244 */
1245 unsigned find_get_entries(struct address_space *mapping,
1246 pgoff_t start, unsigned int nr_entries,
1247 struct page **entries, pgoff_t *indices)
1248 {
1249 void **slot;
1250 unsigned int ret = 0;
1251 struct radix_tree_iter iter;
1252
1253 if (!nr_entries)
1254 return 0;
1255
1256 rcu_read_lock();
1257 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1258 struct page *page;
1259 repeat:
1260 page = radix_tree_deref_slot(slot);
1261 if (unlikely(!page))
1262 continue;
1263 if (radix_tree_exception(page)) {
1264 if (radix_tree_deref_retry(page)) {
1265 slot = radix_tree_iter_retry(&iter);
1266 continue;
1267 }
1268 /*
1269 * A shadow entry of a recently evicted page, a swap
1270 * entry from shmem/tmpfs or a DAX entry. Return it
1271 * without attempting to raise page count.
1272 */
1273 goto export;
1274 }
1275 if (!page_cache_get_speculative(page))
1276 goto repeat;
1277
1278 /* Has the page moved? */
1279 if (unlikely(page != *slot)) {
1280 put_page(page);
1281 goto repeat;
1282 }
1283 export:
1284 indices[ret] = iter.index;
1285 entries[ret] = page;
1286 if (++ret == nr_entries)
1287 break;
1288 }
1289 rcu_read_unlock();
1290 return ret;
1291 }
1292
1293 /**
1294 * find_get_pages - gang pagecache lookup
1295 * @mapping: The address_space to search
1296 * @start: The starting page index
1297 * @nr_pages: The maximum number of pages
1298 * @pages: Where the resulting pages are placed
1299 *
1300 * find_get_pages() will search for and return a group of up to
1301 * @nr_pages pages in the mapping. The pages are placed at @pages.
1302 * find_get_pages() takes a reference against the returned pages.
1303 *
1304 * The search returns a group of mapping-contiguous pages with ascending
1305 * indexes. There may be holes in the indices due to not-present pages.
1306 *
1307 * find_get_pages() returns the number of pages which were found.
1308 */
1309 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1310 unsigned int nr_pages, struct page **pages)
1311 {
1312 struct radix_tree_iter iter;
1313 void **slot;
1314 unsigned ret = 0;
1315
1316 if (unlikely(!nr_pages))
1317 return 0;
1318
1319 rcu_read_lock();
1320 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1321 struct page *page;
1322 repeat:
1323 page = radix_tree_deref_slot(slot);
1324 if (unlikely(!page))
1325 continue;
1326
1327 if (radix_tree_exception(page)) {
1328 if (radix_tree_deref_retry(page)) {
1329 slot = radix_tree_iter_retry(&iter);
1330 continue;
1331 }
1332 /*
1333 * A shadow entry of a recently evicted page,
1334 * or a swap entry from shmem/tmpfs. Skip
1335 * over it.
1336 */
1337 continue;
1338 }
1339
1340 if (!page_cache_get_speculative(page))
1341 goto repeat;
1342
1343 /* Has the page moved? */
1344 if (unlikely(page != *slot)) {
1345 put_page(page);
1346 goto repeat;
1347 }
1348
1349 pages[ret] = page;
1350 if (++ret == nr_pages)
1351 break;
1352 }
1353
1354 rcu_read_unlock();
1355 return ret;
1356 }
1357
1358 /**
1359 * find_get_pages_contig - gang contiguous pagecache lookup
1360 * @mapping: The address_space to search
1361 * @index: The starting page index
1362 * @nr_pages: The maximum number of pages
1363 * @pages: Where the resulting pages are placed
1364 *
1365 * find_get_pages_contig() works exactly like find_get_pages(), except
1366 * that the returned number of pages are guaranteed to be contiguous.
1367 *
1368 * find_get_pages_contig() returns the number of pages which were found.
1369 */
1370 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1371 unsigned int nr_pages, struct page **pages)
1372 {
1373 struct radix_tree_iter iter;
1374 void **slot;
1375 unsigned int ret = 0;
1376
1377 if (unlikely(!nr_pages))
1378 return 0;
1379
1380 rcu_read_lock();
1381 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1382 struct page *page;
1383 repeat:
1384 page = radix_tree_deref_slot(slot);
1385 /* The hole, there no reason to continue */
1386 if (unlikely(!page))
1387 break;
1388
1389 if (radix_tree_exception(page)) {
1390 if (radix_tree_deref_retry(page)) {
1391 slot = radix_tree_iter_retry(&iter);
1392 continue;
1393 }
1394 /*
1395 * A shadow entry of a recently evicted page,
1396 * or a swap entry from shmem/tmpfs. Stop
1397 * looking for contiguous pages.
1398 */
1399 break;
1400 }
1401
1402 if (!page_cache_get_speculative(page))
1403 goto repeat;
1404
1405 /* Has the page moved? */
1406 if (unlikely(page != *slot)) {
1407 put_page(page);
1408 goto repeat;
1409 }
1410
1411 /*
1412 * must check mapping and index after taking the ref.
1413 * otherwise we can get both false positives and false
1414 * negatives, which is just confusing to the caller.
1415 */
1416 if (page->mapping == NULL || page->index != iter.index) {
1417 put_page(page);
1418 break;
1419 }
1420
1421 pages[ret] = page;
1422 if (++ret == nr_pages)
1423 break;
1424 }
1425 rcu_read_unlock();
1426 return ret;
1427 }
1428 EXPORT_SYMBOL(find_get_pages_contig);
1429
1430 /**
1431 * find_get_pages_tag - find and return pages that match @tag
1432 * @mapping: the address_space to search
1433 * @index: the starting page index
1434 * @tag: the tag index
1435 * @nr_pages: the maximum number of pages
1436 * @pages: where the resulting pages are placed
1437 *
1438 * Like find_get_pages, except we only return pages which are tagged with
1439 * @tag. We update @index to index the next page for the traversal.
1440 */
1441 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1442 int tag, unsigned int nr_pages, struct page **pages)
1443 {
1444 struct radix_tree_iter iter;
1445 void **slot;
1446 unsigned ret = 0;
1447
1448 if (unlikely(!nr_pages))
1449 return 0;
1450
1451 rcu_read_lock();
1452 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1453 &iter, *index, tag) {
1454 struct page *page;
1455 repeat:
1456 page = radix_tree_deref_slot(slot);
1457 if (unlikely(!page))
1458 continue;
1459
1460 if (radix_tree_exception(page)) {
1461 if (radix_tree_deref_retry(page)) {
1462 slot = radix_tree_iter_retry(&iter);
1463 continue;
1464 }
1465 /*
1466 * A shadow entry of a recently evicted page.
1467 *
1468 * Those entries should never be tagged, but
1469 * this tree walk is lockless and the tags are
1470 * looked up in bulk, one radix tree node at a
1471 * time, so there is a sizable window for page
1472 * reclaim to evict a page we saw tagged.
1473 *
1474 * Skip over it.
1475 */
1476 continue;
1477 }
1478
1479 if (!page_cache_get_speculative(page))
1480 goto repeat;
1481
1482 /* Has the page moved? */
1483 if (unlikely(page != *slot)) {
1484 put_page(page);
1485 goto repeat;
1486 }
1487
1488 pages[ret] = page;
1489 if (++ret == nr_pages)
1490 break;
1491 }
1492
1493 rcu_read_unlock();
1494
1495 if (ret)
1496 *index = pages[ret - 1]->index + 1;
1497
1498 return ret;
1499 }
1500 EXPORT_SYMBOL(find_get_pages_tag);
1501
1502 /**
1503 * find_get_entries_tag - find and return entries that match @tag
1504 * @mapping: the address_space to search
1505 * @start: the starting page cache index
1506 * @tag: the tag index
1507 * @nr_entries: the maximum number of entries
1508 * @entries: where the resulting entries are placed
1509 * @indices: the cache indices corresponding to the entries in @entries
1510 *
1511 * Like find_get_entries, except we only return entries which are tagged with
1512 * @tag.
1513 */
1514 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1515 int tag, unsigned int nr_entries,
1516 struct page **entries, pgoff_t *indices)
1517 {
1518 void **slot;
1519 unsigned int ret = 0;
1520 struct radix_tree_iter iter;
1521
1522 if (!nr_entries)
1523 return 0;
1524
1525 rcu_read_lock();
1526 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1527 &iter, start, tag) {
1528 struct page *page;
1529 repeat:
1530 page = radix_tree_deref_slot(slot);
1531 if (unlikely(!page))
1532 continue;
1533 if (radix_tree_exception(page)) {
1534 if (radix_tree_deref_retry(page)) {
1535 slot = radix_tree_iter_retry(&iter);
1536 continue;
1537 }
1538
1539 /*
1540 * A shadow entry of a recently evicted page, a swap
1541 * entry from shmem/tmpfs or a DAX entry. Return it
1542 * without attempting to raise page count.
1543 */
1544 goto export;
1545 }
1546 if (!page_cache_get_speculative(page))
1547 goto repeat;
1548
1549 /* Has the page moved? */
1550 if (unlikely(page != *slot)) {
1551 put_page(page);
1552 goto repeat;
1553 }
1554 export:
1555 indices[ret] = iter.index;
1556 entries[ret] = page;
1557 if (++ret == nr_entries)
1558 break;
1559 }
1560 rcu_read_unlock();
1561 return ret;
1562 }
1563 EXPORT_SYMBOL(find_get_entries_tag);
1564
1565 /*
1566 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1567 * a _large_ part of the i/o request. Imagine the worst scenario:
1568 *
1569 * ---R__________________________________________B__________
1570 * ^ reading here ^ bad block(assume 4k)
1571 *
1572 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1573 * => failing the whole request => read(R) => read(R+1) =>
1574 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1575 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1576 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1577 *
1578 * It is going insane. Fix it by quickly scaling down the readahead size.
1579 */
1580 static void shrink_readahead_size_eio(struct file *filp,
1581 struct file_ra_state *ra)
1582 {
1583 ra->ra_pages /= 4;
1584 }
1585
1586 /**
1587 * do_generic_file_read - generic file read routine
1588 * @filp: the file to read
1589 * @ppos: current file position
1590 * @iter: data destination
1591 * @written: already copied
1592 *
1593 * This is a generic file read routine, and uses the
1594 * mapping->a_ops->readpage() function for the actual low-level stuff.
1595 *
1596 * This is really ugly. But the goto's actually try to clarify some
1597 * of the logic when it comes to error handling etc.
1598 */
1599 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1600 struct iov_iter *iter, ssize_t written)
1601 {
1602 struct address_space *mapping = filp->f_mapping;
1603 struct inode *inode = mapping->host;
1604 struct file_ra_state *ra = &filp->f_ra;
1605 pgoff_t index;
1606 pgoff_t last_index;
1607 pgoff_t prev_index;
1608 unsigned long offset; /* offset into pagecache page */
1609 unsigned int prev_offset;
1610 int error = 0;
1611
1612 index = *ppos >> PAGE_SHIFT;
1613 prev_index = ra->prev_pos >> PAGE_SHIFT;
1614 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1615 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1616 offset = *ppos & ~PAGE_MASK;
1617
1618 for (;;) {
1619 struct page *page;
1620 pgoff_t end_index;
1621 loff_t isize;
1622 unsigned long nr, ret;
1623
1624 cond_resched();
1625 find_page:
1626 page = find_get_page(mapping, index);
1627 if (!page) {
1628 page_cache_sync_readahead(mapping,
1629 ra, filp,
1630 index, last_index - index);
1631 page = find_get_page(mapping, index);
1632 if (unlikely(page == NULL))
1633 goto no_cached_page;
1634 }
1635 if (PageReadahead(page)) {
1636 page_cache_async_readahead(mapping,
1637 ra, filp, page,
1638 index, last_index - index);
1639 }
1640 if (!PageUptodate(page)) {
1641 /*
1642 * See comment in do_read_cache_page on why
1643 * wait_on_page_locked is used to avoid unnecessarily
1644 * serialisations and why it's safe.
1645 */
1646 wait_on_page_locked_killable(page);
1647 if (PageUptodate(page))
1648 goto page_ok;
1649
1650 if (inode->i_blkbits == PAGE_SHIFT ||
1651 !mapping->a_ops->is_partially_uptodate)
1652 goto page_not_up_to_date;
1653 if (!trylock_page(page))
1654 goto page_not_up_to_date;
1655 /* Did it get truncated before we got the lock? */
1656 if (!page->mapping)
1657 goto page_not_up_to_date_locked;
1658 if (!mapping->a_ops->is_partially_uptodate(page,
1659 offset, iter->count))
1660 goto page_not_up_to_date_locked;
1661 unlock_page(page);
1662 }
1663 page_ok:
1664 /*
1665 * i_size must be checked after we know the page is Uptodate.
1666 *
1667 * Checking i_size after the check allows us to calculate
1668 * the correct value for "nr", which means the zero-filled
1669 * part of the page is not copied back to userspace (unless
1670 * another truncate extends the file - this is desired though).
1671 */
1672
1673 isize = i_size_read(inode);
1674 end_index = (isize - 1) >> PAGE_SHIFT;
1675 if (unlikely(!isize || index > end_index)) {
1676 put_page(page);
1677 goto out;
1678 }
1679
1680 /* nr is the maximum number of bytes to copy from this page */
1681 nr = PAGE_SIZE;
1682 if (index == end_index) {
1683 nr = ((isize - 1) & ~PAGE_MASK) + 1;
1684 if (nr <= offset) {
1685 put_page(page);
1686 goto out;
1687 }
1688 }
1689 nr = nr - offset;
1690
1691 /* If users can be writing to this page using arbitrary
1692 * virtual addresses, take care about potential aliasing
1693 * before reading the page on the kernel side.
1694 */
1695 if (mapping_writably_mapped(mapping))
1696 flush_dcache_page(page);
1697
1698 /*
1699 * When a sequential read accesses a page several times,
1700 * only mark it as accessed the first time.
1701 */
1702 if (prev_index != index || offset != prev_offset)
1703 mark_page_accessed(page);
1704 prev_index = index;
1705
1706 /*
1707 * Ok, we have the page, and it's up-to-date, so
1708 * now we can copy it to user space...
1709 */
1710
1711 ret = copy_page_to_iter(page, offset, nr, iter);
1712 offset += ret;
1713 index += offset >> PAGE_SHIFT;
1714 offset &= ~PAGE_MASK;
1715 prev_offset = offset;
1716
1717 put_page(page);
1718 written += ret;
1719 if (!iov_iter_count(iter))
1720 goto out;
1721 if (ret < nr) {
1722 error = -EFAULT;
1723 goto out;
1724 }
1725 continue;
1726
1727 page_not_up_to_date:
1728 /* Get exclusive access to the page ... */
1729 error = lock_page_killable(page);
1730 if (unlikely(error))
1731 goto readpage_error;
1732
1733 page_not_up_to_date_locked:
1734 /* Did it get truncated before we got the lock? */
1735 if (!page->mapping) {
1736 unlock_page(page);
1737 put_page(page);
1738 continue;
1739 }
1740
1741 /* Did somebody else fill it already? */
1742 if (PageUptodate(page)) {
1743 unlock_page(page);
1744 goto page_ok;
1745 }
1746
1747 readpage:
1748 /*
1749 * A previous I/O error may have been due to temporary
1750 * failures, eg. multipath errors.
1751 * PG_error will be set again if readpage fails.
1752 */
1753 ClearPageError(page);
1754 /* Start the actual read. The read will unlock the page. */
1755 error = mapping->a_ops->readpage(filp, page);
1756
1757 if (unlikely(error)) {
1758 if (error == AOP_TRUNCATED_PAGE) {
1759 put_page(page);
1760 error = 0;
1761 goto find_page;
1762 }
1763 goto readpage_error;
1764 }
1765
1766 if (!PageUptodate(page)) {
1767 error = lock_page_killable(page);
1768 if (unlikely(error))
1769 goto readpage_error;
1770 if (!PageUptodate(page)) {
1771 if (page->mapping == NULL) {
1772 /*
1773 * invalidate_mapping_pages got it
1774 */
1775 unlock_page(page);
1776 put_page(page);
1777 goto find_page;
1778 }
1779 unlock_page(page);
1780 shrink_readahead_size_eio(filp, ra);
1781 error = -EIO;
1782 goto readpage_error;
1783 }
1784 unlock_page(page);
1785 }
1786
1787 goto page_ok;
1788
1789 readpage_error:
1790 /* UHHUH! A synchronous read error occurred. Report it */
1791 put_page(page);
1792 goto out;
1793
1794 no_cached_page:
1795 /*
1796 * Ok, it wasn't cached, so we need to create a new
1797 * page..
1798 */
1799 page = page_cache_alloc_cold(mapping);
1800 if (!page) {
1801 error = -ENOMEM;
1802 goto out;
1803 }
1804 error = add_to_page_cache_lru(page, mapping, index,
1805 mapping_gfp_constraint(mapping, GFP_KERNEL));
1806 if (error) {
1807 put_page(page);
1808 if (error == -EEXIST) {
1809 error = 0;
1810 goto find_page;
1811 }
1812 goto out;
1813 }
1814 goto readpage;
1815 }
1816
1817 out:
1818 ra->prev_pos = prev_index;
1819 ra->prev_pos <<= PAGE_SHIFT;
1820 ra->prev_pos |= prev_offset;
1821
1822 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1823 file_accessed(filp);
1824 return written ? written : error;
1825 }
1826
1827 /**
1828 * generic_file_read_iter - generic filesystem read routine
1829 * @iocb: kernel I/O control block
1830 * @iter: destination for the data read
1831 *
1832 * This is the "read_iter()" routine for all filesystems
1833 * that can use the page cache directly.
1834 */
1835 ssize_t
1836 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1837 {
1838 struct file *file = iocb->ki_filp;
1839 ssize_t retval = 0;
1840 size_t count = iov_iter_count(iter);
1841
1842 if (!count)
1843 goto out; /* skip atime */
1844
1845 if (iocb->ki_flags & IOCB_DIRECT) {
1846 struct address_space *mapping = file->f_mapping;
1847 struct inode *inode = mapping->host;
1848 loff_t size;
1849
1850 size = i_size_read(inode);
1851 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1852 iocb->ki_pos + count - 1);
1853 if (!retval) {
1854 struct iov_iter data = *iter;
1855 retval = mapping->a_ops->direct_IO(iocb, &data);
1856 }
1857
1858 if (retval > 0) {
1859 iocb->ki_pos += retval;
1860 iov_iter_advance(iter, retval);
1861 }
1862
1863 /*
1864 * Btrfs can have a short DIO read if we encounter
1865 * compressed extents, so if there was an error, or if
1866 * we've already read everything we wanted to, or if
1867 * there was a short read because we hit EOF, go ahead
1868 * and return. Otherwise fallthrough to buffered io for
1869 * the rest of the read. Buffered reads will not work for
1870 * DAX files, so don't bother trying.
1871 */
1872 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
1873 IS_DAX(inode)) {
1874 file_accessed(file);
1875 goto out;
1876 }
1877 }
1878
1879 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1880 out:
1881 return retval;
1882 }
1883 EXPORT_SYMBOL(generic_file_read_iter);
1884
1885 #ifdef CONFIG_MMU
1886 /**
1887 * page_cache_read - adds requested page to the page cache if not already there
1888 * @file: file to read
1889 * @offset: page index
1890 * @gfp_mask: memory allocation flags
1891 *
1892 * This adds the requested page to the page cache if it isn't already there,
1893 * and schedules an I/O to read in its contents from disk.
1894 */
1895 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1896 {
1897 struct address_space *mapping = file->f_mapping;
1898 struct page *page;
1899 int ret;
1900
1901 do {
1902 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1903 if (!page)
1904 return -ENOMEM;
1905
1906 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1907 if (ret == 0)
1908 ret = mapping->a_ops->readpage(file, page);
1909 else if (ret == -EEXIST)
1910 ret = 0; /* losing race to add is OK */
1911
1912 put_page(page);
1913
1914 } while (ret == AOP_TRUNCATED_PAGE);
1915
1916 return ret;
1917 }
1918
1919 #define MMAP_LOTSAMISS (100)
1920
1921 /*
1922 * Synchronous readahead happens when we don't even find
1923 * a page in the page cache at all.
1924 */
1925 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1926 struct file_ra_state *ra,
1927 struct file *file,
1928 pgoff_t offset)
1929 {
1930 struct address_space *mapping = file->f_mapping;
1931
1932 /* If we don't want any read-ahead, don't bother */
1933 if (vma->vm_flags & VM_RAND_READ)
1934 return;
1935 if (!ra->ra_pages)
1936 return;
1937
1938 if (vma->vm_flags & VM_SEQ_READ) {
1939 page_cache_sync_readahead(mapping, ra, file, offset,
1940 ra->ra_pages);
1941 return;
1942 }
1943
1944 /* Avoid banging the cache line if not needed */
1945 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1946 ra->mmap_miss++;
1947
1948 /*
1949 * Do we miss much more than hit in this file? If so,
1950 * stop bothering with read-ahead. It will only hurt.
1951 */
1952 if (ra->mmap_miss > MMAP_LOTSAMISS)
1953 return;
1954
1955 /*
1956 * mmap read-around
1957 */
1958 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1959 ra->size = ra->ra_pages;
1960 ra->async_size = ra->ra_pages / 4;
1961 ra_submit(ra, mapping, file);
1962 }
1963
1964 /*
1965 * Asynchronous readahead happens when we find the page and PG_readahead,
1966 * so we want to possibly extend the readahead further..
1967 */
1968 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1969 struct file_ra_state *ra,
1970 struct file *file,
1971 struct page *page,
1972 pgoff_t offset)
1973 {
1974 struct address_space *mapping = file->f_mapping;
1975
1976 /* If we don't want any read-ahead, don't bother */
1977 if (vma->vm_flags & VM_RAND_READ)
1978 return;
1979 if (ra->mmap_miss > 0)
1980 ra->mmap_miss--;
1981 if (PageReadahead(page))
1982 page_cache_async_readahead(mapping, ra, file,
1983 page, offset, ra->ra_pages);
1984 }
1985
1986 /**
1987 * filemap_fault - read in file data for page fault handling
1988 * @vma: vma in which the fault was taken
1989 * @vmf: struct vm_fault containing details of the fault
1990 *
1991 * filemap_fault() is invoked via the vma operations vector for a
1992 * mapped memory region to read in file data during a page fault.
1993 *
1994 * The goto's are kind of ugly, but this streamlines the normal case of having
1995 * it in the page cache, and handles the special cases reasonably without
1996 * having a lot of duplicated code.
1997 *
1998 * vma->vm_mm->mmap_sem must be held on entry.
1999 *
2000 * If our return value has VM_FAULT_RETRY set, it's because
2001 * lock_page_or_retry() returned 0.
2002 * The mmap_sem has usually been released in this case.
2003 * See __lock_page_or_retry() for the exception.
2004 *
2005 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2006 * has not been released.
2007 *
2008 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2009 */
2010 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2011 {
2012 int error;
2013 struct file *file = vma->vm_file;
2014 struct address_space *mapping = file->f_mapping;
2015 struct file_ra_state *ra = &file->f_ra;
2016 struct inode *inode = mapping->host;
2017 pgoff_t offset = vmf->pgoff;
2018 struct page *page;
2019 loff_t size;
2020 int ret = 0;
2021
2022 size = round_up(i_size_read(inode), PAGE_SIZE);
2023 if (offset >= size >> PAGE_SHIFT)
2024 return VM_FAULT_SIGBUS;
2025
2026 /*
2027 * Do we have something in the page cache already?
2028 */
2029 page = find_get_page(mapping, offset);
2030 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2031 /*
2032 * We found the page, so try async readahead before
2033 * waiting for the lock.
2034 */
2035 do_async_mmap_readahead(vma, ra, file, page, offset);
2036 } else if (!page) {
2037 /* No page in the page cache at all */
2038 do_sync_mmap_readahead(vma, ra, file, offset);
2039 count_vm_event(PGMAJFAULT);
2040 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2041 ret = VM_FAULT_MAJOR;
2042 retry_find:
2043 page = find_get_page(mapping, offset);
2044 if (!page)
2045 goto no_cached_page;
2046 }
2047
2048 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2049 put_page(page);
2050 return ret | VM_FAULT_RETRY;
2051 }
2052
2053 /* Did it get truncated? */
2054 if (unlikely(page->mapping != mapping)) {
2055 unlock_page(page);
2056 put_page(page);
2057 goto retry_find;
2058 }
2059 VM_BUG_ON_PAGE(page->index != offset, page);
2060
2061 /*
2062 * We have a locked page in the page cache, now we need to check
2063 * that it's up-to-date. If not, it is going to be due to an error.
2064 */
2065 if (unlikely(!PageUptodate(page)))
2066 goto page_not_uptodate;
2067
2068 /*
2069 * Found the page and have a reference on it.
2070 * We must recheck i_size under page lock.
2071 */
2072 size = round_up(i_size_read(inode), PAGE_SIZE);
2073 if (unlikely(offset >= size >> PAGE_SHIFT)) {
2074 unlock_page(page);
2075 put_page(page);
2076 return VM_FAULT_SIGBUS;
2077 }
2078
2079 vmf->page = page;
2080 return ret | VM_FAULT_LOCKED;
2081
2082 no_cached_page:
2083 /*
2084 * We're only likely to ever get here if MADV_RANDOM is in
2085 * effect.
2086 */
2087 error = page_cache_read(file, offset, vmf->gfp_mask);
2088
2089 /*
2090 * The page we want has now been added to the page cache.
2091 * In the unlikely event that someone removed it in the
2092 * meantime, we'll just come back here and read it again.
2093 */
2094 if (error >= 0)
2095 goto retry_find;
2096
2097 /*
2098 * An error return from page_cache_read can result if the
2099 * system is low on memory, or a problem occurs while trying
2100 * to schedule I/O.
2101 */
2102 if (error == -ENOMEM)
2103 return VM_FAULT_OOM;
2104 return VM_FAULT_SIGBUS;
2105
2106 page_not_uptodate:
2107 /*
2108 * Umm, take care of errors if the page isn't up-to-date.
2109 * Try to re-read it _once_. We do this synchronously,
2110 * because there really aren't any performance issues here
2111 * and we need to check for errors.
2112 */
2113 ClearPageError(page);
2114 error = mapping->a_ops->readpage(file, page);
2115 if (!error) {
2116 wait_on_page_locked(page);
2117 if (!PageUptodate(page))
2118 error = -EIO;
2119 }
2120 put_page(page);
2121
2122 if (!error || error == AOP_TRUNCATED_PAGE)
2123 goto retry_find;
2124
2125 /* Things didn't work out. Return zero to tell the mm layer so. */
2126 shrink_readahead_size_eio(file, ra);
2127 return VM_FAULT_SIGBUS;
2128 }
2129 EXPORT_SYMBOL(filemap_fault);
2130
2131 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2132 {
2133 struct radix_tree_iter iter;
2134 void **slot;
2135 struct file *file = vma->vm_file;
2136 struct address_space *mapping = file->f_mapping;
2137 loff_t size;
2138 struct page *page;
2139 unsigned long address = (unsigned long) vmf->virtual_address;
2140 unsigned long addr;
2141 pte_t *pte;
2142
2143 rcu_read_lock();
2144 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2145 if (iter.index > vmf->max_pgoff)
2146 break;
2147 repeat:
2148 page = radix_tree_deref_slot(slot);
2149 if (unlikely(!page))
2150 goto next;
2151 if (radix_tree_exception(page)) {
2152 if (radix_tree_deref_retry(page)) {
2153 slot = radix_tree_iter_retry(&iter);
2154 continue;
2155 }
2156 goto next;
2157 }
2158
2159 if (!page_cache_get_speculative(page))
2160 goto repeat;
2161
2162 /* Has the page moved? */
2163 if (unlikely(page != *slot)) {
2164 put_page(page);
2165 goto repeat;
2166 }
2167
2168 if (!PageUptodate(page) ||
2169 PageReadahead(page) ||
2170 PageHWPoison(page))
2171 goto skip;
2172 if (!trylock_page(page))
2173 goto skip;
2174
2175 if (page->mapping != mapping || !PageUptodate(page))
2176 goto unlock;
2177
2178 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2179 if (page->index >= size >> PAGE_SHIFT)
2180 goto unlock;
2181
2182 pte = vmf->pte + page->index - vmf->pgoff;
2183 if (!pte_none(*pte))
2184 goto unlock;
2185
2186 if (file->f_ra.mmap_miss > 0)
2187 file->f_ra.mmap_miss--;
2188 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2189 do_set_pte(vma, addr, page, pte, false, false);
2190 unlock_page(page);
2191 goto next;
2192 unlock:
2193 unlock_page(page);
2194 skip:
2195 put_page(page);
2196 next:
2197 if (iter.index == vmf->max_pgoff)
2198 break;
2199 }
2200 rcu_read_unlock();
2201 }
2202 EXPORT_SYMBOL(filemap_map_pages);
2203
2204 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2205 {
2206 struct page *page = vmf->page;
2207 struct inode *inode = file_inode(vma->vm_file);
2208 int ret = VM_FAULT_LOCKED;
2209
2210 sb_start_pagefault(inode->i_sb);
2211 file_update_time(vma->vm_file);
2212 lock_page(page);
2213 if (page->mapping != inode->i_mapping) {
2214 unlock_page(page);
2215 ret = VM_FAULT_NOPAGE;
2216 goto out;
2217 }
2218 /*
2219 * We mark the page dirty already here so that when freeze is in
2220 * progress, we are guaranteed that writeback during freezing will
2221 * see the dirty page and writeprotect it again.
2222 */
2223 set_page_dirty(page);
2224 wait_for_stable_page(page);
2225 out:
2226 sb_end_pagefault(inode->i_sb);
2227 return ret;
2228 }
2229 EXPORT_SYMBOL(filemap_page_mkwrite);
2230
2231 const struct vm_operations_struct generic_file_vm_ops = {
2232 .fault = filemap_fault,
2233 .map_pages = filemap_map_pages,
2234 .page_mkwrite = filemap_page_mkwrite,
2235 };
2236
2237 /* This is used for a general mmap of a disk file */
2238
2239 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2240 {
2241 struct address_space *mapping = file->f_mapping;
2242
2243 if (!mapping->a_ops->readpage)
2244 return -ENOEXEC;
2245 file_accessed(file);
2246 vma->vm_ops = &generic_file_vm_ops;
2247 return 0;
2248 }
2249
2250 /*
2251 * This is for filesystems which do not implement ->writepage.
2252 */
2253 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2254 {
2255 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2256 return -EINVAL;
2257 return generic_file_mmap(file, vma);
2258 }
2259 #else
2260 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2261 {
2262 return -ENOSYS;
2263 }
2264 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2265 {
2266 return -ENOSYS;
2267 }
2268 #endif /* CONFIG_MMU */
2269
2270 EXPORT_SYMBOL(generic_file_mmap);
2271 EXPORT_SYMBOL(generic_file_readonly_mmap);
2272
2273 static struct page *wait_on_page_read(struct page *page)
2274 {
2275 if (!IS_ERR(page)) {
2276 wait_on_page_locked(page);
2277 if (!PageUptodate(page)) {
2278 put_page(page);
2279 page = ERR_PTR(-EIO);
2280 }
2281 }
2282 return page;
2283 }
2284
2285 static struct page *do_read_cache_page(struct address_space *mapping,
2286 pgoff_t index,
2287 int (*filler)(void *, struct page *),
2288 void *data,
2289 gfp_t gfp)
2290 {
2291 struct page *page;
2292 int err;
2293 repeat:
2294 page = find_get_page(mapping, index);
2295 if (!page) {
2296 page = __page_cache_alloc(gfp | __GFP_COLD);
2297 if (!page)
2298 return ERR_PTR(-ENOMEM);
2299 err = add_to_page_cache_lru(page, mapping, index, gfp);
2300 if (unlikely(err)) {
2301 put_page(page);
2302 if (err == -EEXIST)
2303 goto repeat;
2304 /* Presumably ENOMEM for radix tree node */
2305 return ERR_PTR(err);
2306 }
2307
2308 filler:
2309 err = filler(data, page);
2310 if (err < 0) {
2311 put_page(page);
2312 return ERR_PTR(err);
2313 }
2314
2315 page = wait_on_page_read(page);
2316 if (IS_ERR(page))
2317 return page;
2318 goto out;
2319 }
2320 if (PageUptodate(page))
2321 goto out;
2322
2323 /*
2324 * Page is not up to date and may be locked due one of the following
2325 * case a: Page is being filled and the page lock is held
2326 * case b: Read/write error clearing the page uptodate status
2327 * case c: Truncation in progress (page locked)
2328 * case d: Reclaim in progress
2329 *
2330 * Case a, the page will be up to date when the page is unlocked.
2331 * There is no need to serialise on the page lock here as the page
2332 * is pinned so the lock gives no additional protection. Even if the
2333 * the page is truncated, the data is still valid if PageUptodate as
2334 * it's a race vs truncate race.
2335 * Case b, the page will not be up to date
2336 * Case c, the page may be truncated but in itself, the data may still
2337 * be valid after IO completes as it's a read vs truncate race. The
2338 * operation must restart if the page is not uptodate on unlock but
2339 * otherwise serialising on page lock to stabilise the mapping gives
2340 * no additional guarantees to the caller as the page lock is
2341 * released before return.
2342 * Case d, similar to truncation. If reclaim holds the page lock, it
2343 * will be a race with remove_mapping that determines if the mapping
2344 * is valid on unlock but otherwise the data is valid and there is
2345 * no need to serialise with page lock.
2346 *
2347 * As the page lock gives no additional guarantee, we optimistically
2348 * wait on the page to be unlocked and check if it's up to date and
2349 * use the page if it is. Otherwise, the page lock is required to
2350 * distinguish between the different cases. The motivation is that we
2351 * avoid spurious serialisations and wakeups when multiple processes
2352 * wait on the same page for IO to complete.
2353 */
2354 wait_on_page_locked(page);
2355 if (PageUptodate(page))
2356 goto out;
2357
2358 /* Distinguish between all the cases under the safety of the lock */
2359 lock_page(page);
2360
2361 /* Case c or d, restart the operation */
2362 if (!page->mapping) {
2363 unlock_page(page);
2364 put_page(page);
2365 goto repeat;
2366 }
2367
2368 /* Someone else locked and filled the page in a very small window */
2369 if (PageUptodate(page)) {
2370 unlock_page(page);
2371 goto out;
2372 }
2373 goto filler;
2374
2375 out:
2376 mark_page_accessed(page);
2377 return page;
2378 }
2379
2380 /**
2381 * read_cache_page - read into page cache, fill it if needed
2382 * @mapping: the page's address_space
2383 * @index: the page index
2384 * @filler: function to perform the read
2385 * @data: first arg to filler(data, page) function, often left as NULL
2386 *
2387 * Read into the page cache. If a page already exists, and PageUptodate() is
2388 * not set, try to fill the page and wait for it to become unlocked.
2389 *
2390 * If the page does not get brought uptodate, return -EIO.
2391 */
2392 struct page *read_cache_page(struct address_space *mapping,
2393 pgoff_t index,
2394 int (*filler)(void *, struct page *),
2395 void *data)
2396 {
2397 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2398 }
2399 EXPORT_SYMBOL(read_cache_page);
2400
2401 /**
2402 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2403 * @mapping: the page's address_space
2404 * @index: the page index
2405 * @gfp: the page allocator flags to use if allocating
2406 *
2407 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2408 * any new page allocations done using the specified allocation flags.
2409 *
2410 * If the page does not get brought uptodate, return -EIO.
2411 */
2412 struct page *read_cache_page_gfp(struct address_space *mapping,
2413 pgoff_t index,
2414 gfp_t gfp)
2415 {
2416 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2417
2418 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2419 }
2420 EXPORT_SYMBOL(read_cache_page_gfp);
2421
2422 /*
2423 * Performs necessary checks before doing a write
2424 *
2425 * Can adjust writing position or amount of bytes to write.
2426 * Returns appropriate error code that caller should return or
2427 * zero in case that write should be allowed.
2428 */
2429 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2430 {
2431 struct file *file = iocb->ki_filp;
2432 struct inode *inode = file->f_mapping->host;
2433 unsigned long limit = rlimit(RLIMIT_FSIZE);
2434 loff_t pos;
2435
2436 if (!iov_iter_count(from))
2437 return 0;
2438
2439 /* FIXME: this is for backwards compatibility with 2.4 */
2440 if (iocb->ki_flags & IOCB_APPEND)
2441 iocb->ki_pos = i_size_read(inode);
2442
2443 pos = iocb->ki_pos;
2444
2445 if (limit != RLIM_INFINITY) {
2446 if (iocb->ki_pos >= limit) {
2447 send_sig(SIGXFSZ, current, 0);
2448 return -EFBIG;
2449 }
2450 iov_iter_truncate(from, limit - (unsigned long)pos);
2451 }
2452
2453 /*
2454 * LFS rule
2455 */
2456 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2457 !(file->f_flags & O_LARGEFILE))) {
2458 if (pos >= MAX_NON_LFS)
2459 return -EFBIG;
2460 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2461 }
2462
2463 /*
2464 * Are we about to exceed the fs block limit ?
2465 *
2466 * If we have written data it becomes a short write. If we have
2467 * exceeded without writing data we send a signal and return EFBIG.
2468 * Linus frestrict idea will clean these up nicely..
2469 */
2470 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2471 return -EFBIG;
2472
2473 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2474 return iov_iter_count(from);
2475 }
2476 EXPORT_SYMBOL(generic_write_checks);
2477
2478 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2479 loff_t pos, unsigned len, unsigned flags,
2480 struct page **pagep, void **fsdata)
2481 {
2482 const struct address_space_operations *aops = mapping->a_ops;
2483
2484 return aops->write_begin(file, mapping, pos, len, flags,
2485 pagep, fsdata);
2486 }
2487 EXPORT_SYMBOL(pagecache_write_begin);
2488
2489 int pagecache_write_end(struct file *file, struct address_space *mapping,
2490 loff_t pos, unsigned len, unsigned copied,
2491 struct page *page, void *fsdata)
2492 {
2493 const struct address_space_operations *aops = mapping->a_ops;
2494
2495 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2496 }
2497 EXPORT_SYMBOL(pagecache_write_end);
2498
2499 ssize_t
2500 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2501 {
2502 struct file *file = iocb->ki_filp;
2503 struct address_space *mapping = file->f_mapping;
2504 struct inode *inode = mapping->host;
2505 loff_t pos = iocb->ki_pos;
2506 ssize_t written;
2507 size_t write_len;
2508 pgoff_t end;
2509 struct iov_iter data;
2510
2511 write_len = iov_iter_count(from);
2512 end = (pos + write_len - 1) >> PAGE_SHIFT;
2513
2514 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2515 if (written)
2516 goto out;
2517
2518 /*
2519 * After a write we want buffered reads to be sure to go to disk to get
2520 * the new data. We invalidate clean cached page from the region we're
2521 * about to write. We do this *before* the write so that we can return
2522 * without clobbering -EIOCBQUEUED from ->direct_IO().
2523 */
2524 if (mapping->nrpages) {
2525 written = invalidate_inode_pages2_range(mapping,
2526 pos >> PAGE_SHIFT, end);
2527 /*
2528 * If a page can not be invalidated, return 0 to fall back
2529 * to buffered write.
2530 */
2531 if (written) {
2532 if (written == -EBUSY)
2533 return 0;
2534 goto out;
2535 }
2536 }
2537
2538 data = *from;
2539 written = mapping->a_ops->direct_IO(iocb, &data);
2540
2541 /*
2542 * Finally, try again to invalidate clean pages which might have been
2543 * cached by non-direct readahead, or faulted in by get_user_pages()
2544 * if the source of the write was an mmap'ed region of the file
2545 * we're writing. Either one is a pretty crazy thing to do,
2546 * so we don't support it 100%. If this invalidation
2547 * fails, tough, the write still worked...
2548 */
2549 if (mapping->nrpages) {
2550 invalidate_inode_pages2_range(mapping,
2551 pos >> PAGE_SHIFT, end);
2552 }
2553
2554 if (written > 0) {
2555 pos += written;
2556 iov_iter_advance(from, written);
2557 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2558 i_size_write(inode, pos);
2559 mark_inode_dirty(inode);
2560 }
2561 iocb->ki_pos = pos;
2562 }
2563 out:
2564 return written;
2565 }
2566 EXPORT_SYMBOL(generic_file_direct_write);
2567
2568 /*
2569 * Find or create a page at the given pagecache position. Return the locked
2570 * page. This function is specifically for buffered writes.
2571 */
2572 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2573 pgoff_t index, unsigned flags)
2574 {
2575 struct page *page;
2576 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2577
2578 if (flags & AOP_FLAG_NOFS)
2579 fgp_flags |= FGP_NOFS;
2580
2581 page = pagecache_get_page(mapping, index, fgp_flags,
2582 mapping_gfp_mask(mapping));
2583 if (page)
2584 wait_for_stable_page(page);
2585
2586 return page;
2587 }
2588 EXPORT_SYMBOL(grab_cache_page_write_begin);
2589
2590 ssize_t generic_perform_write(struct file *file,
2591 struct iov_iter *i, loff_t pos)
2592 {
2593 struct address_space *mapping = file->f_mapping;
2594 const struct address_space_operations *a_ops = mapping->a_ops;
2595 long status = 0;
2596 ssize_t written = 0;
2597 unsigned int flags = 0;
2598
2599 /*
2600 * Copies from kernel address space cannot fail (NFSD is a big user).
2601 */
2602 if (!iter_is_iovec(i))
2603 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2604
2605 do {
2606 struct page *page;
2607 unsigned long offset; /* Offset into pagecache page */
2608 unsigned long bytes; /* Bytes to write to page */
2609 size_t copied; /* Bytes copied from user */
2610 void *fsdata;
2611
2612 offset = (pos & (PAGE_SIZE - 1));
2613 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2614 iov_iter_count(i));
2615
2616 again:
2617 /*
2618 * Bring in the user page that we will copy from _first_.
2619 * Otherwise there's a nasty deadlock on copying from the
2620 * same page as we're writing to, without it being marked
2621 * up-to-date.
2622 *
2623 * Not only is this an optimisation, but it is also required
2624 * to check that the address is actually valid, when atomic
2625 * usercopies are used, below.
2626 */
2627 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2628 status = -EFAULT;
2629 break;
2630 }
2631
2632 if (fatal_signal_pending(current)) {
2633 status = -EINTR;
2634 break;
2635 }
2636
2637 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2638 &page, &fsdata);
2639 if (unlikely(status < 0))
2640 break;
2641
2642 if (mapping_writably_mapped(mapping))
2643 flush_dcache_page(page);
2644
2645 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2646 flush_dcache_page(page);
2647
2648 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2649 page, fsdata);
2650 if (unlikely(status < 0))
2651 break;
2652 copied = status;
2653
2654 cond_resched();
2655
2656 iov_iter_advance(i, copied);
2657 if (unlikely(copied == 0)) {
2658 /*
2659 * If we were unable to copy any data at all, we must
2660 * fall back to a single segment length write.
2661 *
2662 * If we didn't fallback here, we could livelock
2663 * because not all segments in the iov can be copied at
2664 * once without a pagefault.
2665 */
2666 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2667 iov_iter_single_seg_count(i));
2668 goto again;
2669 }
2670 pos += copied;
2671 written += copied;
2672
2673 balance_dirty_pages_ratelimited(mapping);
2674 } while (iov_iter_count(i));
2675
2676 return written ? written : status;
2677 }
2678 EXPORT_SYMBOL(generic_perform_write);
2679
2680 /**
2681 * __generic_file_write_iter - write data to a file
2682 * @iocb: IO state structure (file, offset, etc.)
2683 * @from: iov_iter with data to write
2684 *
2685 * This function does all the work needed for actually writing data to a
2686 * file. It does all basic checks, removes SUID from the file, updates
2687 * modification times and calls proper subroutines depending on whether we
2688 * do direct IO or a standard buffered write.
2689 *
2690 * It expects i_mutex to be grabbed unless we work on a block device or similar
2691 * object which does not need locking at all.
2692 *
2693 * This function does *not* take care of syncing data in case of O_SYNC write.
2694 * A caller has to handle it. This is mainly due to the fact that we want to
2695 * avoid syncing under i_mutex.
2696 */
2697 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2698 {
2699 struct file *file = iocb->ki_filp;
2700 struct address_space * mapping = file->f_mapping;
2701 struct inode *inode = mapping->host;
2702 ssize_t written = 0;
2703 ssize_t err;
2704 ssize_t status;
2705
2706 /* We can write back this queue in page reclaim */
2707 current->backing_dev_info = inode_to_bdi(inode);
2708 err = file_remove_privs(file);
2709 if (err)
2710 goto out;
2711
2712 err = file_update_time(file);
2713 if (err)
2714 goto out;
2715
2716 if (iocb->ki_flags & IOCB_DIRECT) {
2717 loff_t pos, endbyte;
2718
2719 written = generic_file_direct_write(iocb, from);
2720 /*
2721 * If the write stopped short of completing, fall back to
2722 * buffered writes. Some filesystems do this for writes to
2723 * holes, for example. For DAX files, a buffered write will
2724 * not succeed (even if it did, DAX does not handle dirty
2725 * page-cache pages correctly).
2726 */
2727 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2728 goto out;
2729
2730 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2731 /*
2732 * If generic_perform_write() returned a synchronous error
2733 * then we want to return the number of bytes which were
2734 * direct-written, or the error code if that was zero. Note
2735 * that this differs from normal direct-io semantics, which
2736 * will return -EFOO even if some bytes were written.
2737 */
2738 if (unlikely(status < 0)) {
2739 err = status;
2740 goto out;
2741 }
2742 /*
2743 * We need to ensure that the page cache pages are written to
2744 * disk and invalidated to preserve the expected O_DIRECT
2745 * semantics.
2746 */
2747 endbyte = pos + status - 1;
2748 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2749 if (err == 0) {
2750 iocb->ki_pos = endbyte + 1;
2751 written += status;
2752 invalidate_mapping_pages(mapping,
2753 pos >> PAGE_SHIFT,
2754 endbyte >> PAGE_SHIFT);
2755 } else {
2756 /*
2757 * We don't know how much we wrote, so just return
2758 * the number of bytes which were direct-written
2759 */
2760 }
2761 } else {
2762 written = generic_perform_write(file, from, iocb->ki_pos);
2763 if (likely(written > 0))
2764 iocb->ki_pos += written;
2765 }
2766 out:
2767 current->backing_dev_info = NULL;
2768 return written ? written : err;
2769 }
2770 EXPORT_SYMBOL(__generic_file_write_iter);
2771
2772 /**
2773 * generic_file_write_iter - write data to a file
2774 * @iocb: IO state structure
2775 * @from: iov_iter with data to write
2776 *
2777 * This is a wrapper around __generic_file_write_iter() to be used by most
2778 * filesystems. It takes care of syncing the file in case of O_SYNC file
2779 * and acquires i_mutex as needed.
2780 */
2781 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2782 {
2783 struct file *file = iocb->ki_filp;
2784 struct inode *inode = file->f_mapping->host;
2785 ssize_t ret;
2786
2787 inode_lock(inode);
2788 ret = generic_write_checks(iocb, from);
2789 if (ret > 0)
2790 ret = __generic_file_write_iter(iocb, from);
2791 inode_unlock(inode);
2792
2793 if (ret > 0)
2794 ret = generic_write_sync(iocb, ret);
2795 return ret;
2796 }
2797 EXPORT_SYMBOL(generic_file_write_iter);
2798
2799 /**
2800 * try_to_release_page() - release old fs-specific metadata on a page
2801 *
2802 * @page: the page which the kernel is trying to free
2803 * @gfp_mask: memory allocation flags (and I/O mode)
2804 *
2805 * The address_space is to try to release any data against the page
2806 * (presumably at page->private). If the release was successful, return `1'.
2807 * Otherwise return zero.
2808 *
2809 * This may also be called if PG_fscache is set on a page, indicating that the
2810 * page is known to the local caching routines.
2811 *
2812 * The @gfp_mask argument specifies whether I/O may be performed to release
2813 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2814 *
2815 */
2816 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2817 {
2818 struct address_space * const mapping = page->mapping;
2819
2820 BUG_ON(!PageLocked(page));
2821 if (PageWriteback(page))
2822 return 0;
2823
2824 if (mapping && mapping->a_ops->releasepage)
2825 return mapping->a_ops->releasepage(page, gfp_mask);
2826 return try_to_free_buffers(page);
2827 }
2828
2829 EXPORT_SYMBOL(try_to_release_page);
This page took 0.0907 seconds and 5 git commands to generate.