thp: introduce hugepage_vma_check()
[deliverable/linux.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/mm_inline.h>
16 #include <linux/kthread.h>
17 #include <linux/khugepaged.h>
18 #include <linux/freezer.h>
19 #include <linux/mman.h>
20 #include <linux/pagemap.h>
21 #include <asm/tlb.h>
22 #include <asm/pgalloc.h>
23 #include "internal.h"
24
25 /*
26 * By default transparent hugepage support is enabled for all mappings
27 * and khugepaged scans all mappings. Defrag is only invoked by
28 * khugepaged hugepage allocations and by page faults inside
29 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
30 * allocations.
31 */
32 unsigned long transparent_hugepage_flags __read_mostly =
33 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
34 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
35 #endif
36 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
37 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
38 #endif
39 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
40 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
41
42 /* default scan 8*512 pte (or vmas) every 30 second */
43 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
44 static unsigned int khugepaged_pages_collapsed;
45 static unsigned int khugepaged_full_scans;
46 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
47 /* during fragmentation poll the hugepage allocator once every minute */
48 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
49 static struct task_struct *khugepaged_thread __read_mostly;
50 static DEFINE_MUTEX(khugepaged_mutex);
51 static DEFINE_SPINLOCK(khugepaged_mm_lock);
52 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
53 /*
54 * default collapse hugepages if there is at least one pte mapped like
55 * it would have happened if the vma was large enough during page
56 * fault.
57 */
58 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
59
60 static int khugepaged(void *none);
61 static int mm_slots_hash_init(void);
62 static int khugepaged_slab_init(void);
63 static void khugepaged_slab_free(void);
64
65 #define MM_SLOTS_HASH_HEADS 1024
66 static struct hlist_head *mm_slots_hash __read_mostly;
67 static struct kmem_cache *mm_slot_cache __read_mostly;
68
69 /**
70 * struct mm_slot - hash lookup from mm to mm_slot
71 * @hash: hash collision list
72 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
73 * @mm: the mm that this information is valid for
74 */
75 struct mm_slot {
76 struct hlist_node hash;
77 struct list_head mm_node;
78 struct mm_struct *mm;
79 };
80
81 /**
82 * struct khugepaged_scan - cursor for scanning
83 * @mm_head: the head of the mm list to scan
84 * @mm_slot: the current mm_slot we are scanning
85 * @address: the next address inside that to be scanned
86 *
87 * There is only the one khugepaged_scan instance of this cursor structure.
88 */
89 struct khugepaged_scan {
90 struct list_head mm_head;
91 struct mm_slot *mm_slot;
92 unsigned long address;
93 };
94 static struct khugepaged_scan khugepaged_scan = {
95 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
96 };
97
98
99 static int set_recommended_min_free_kbytes(void)
100 {
101 struct zone *zone;
102 int nr_zones = 0;
103 unsigned long recommended_min;
104 extern int min_free_kbytes;
105
106 if (!khugepaged_enabled())
107 return 0;
108
109 for_each_populated_zone(zone)
110 nr_zones++;
111
112 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
113 recommended_min = pageblock_nr_pages * nr_zones * 2;
114
115 /*
116 * Make sure that on average at least two pageblocks are almost free
117 * of another type, one for a migratetype to fall back to and a
118 * second to avoid subsequent fallbacks of other types There are 3
119 * MIGRATE_TYPES we care about.
120 */
121 recommended_min += pageblock_nr_pages * nr_zones *
122 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
123
124 /* don't ever allow to reserve more than 5% of the lowmem */
125 recommended_min = min(recommended_min,
126 (unsigned long) nr_free_buffer_pages() / 20);
127 recommended_min <<= (PAGE_SHIFT-10);
128
129 if (recommended_min > min_free_kbytes)
130 min_free_kbytes = recommended_min;
131 setup_per_zone_wmarks();
132 return 0;
133 }
134 late_initcall(set_recommended_min_free_kbytes);
135
136 static int start_khugepaged(void)
137 {
138 int err = 0;
139 if (khugepaged_enabled()) {
140 if (!khugepaged_thread)
141 khugepaged_thread = kthread_run(khugepaged, NULL,
142 "khugepaged");
143 if (unlikely(IS_ERR(khugepaged_thread))) {
144 printk(KERN_ERR
145 "khugepaged: kthread_run(khugepaged) failed\n");
146 err = PTR_ERR(khugepaged_thread);
147 khugepaged_thread = NULL;
148 }
149
150 if (!list_empty(&khugepaged_scan.mm_head))
151 wake_up_interruptible(&khugepaged_wait);
152
153 set_recommended_min_free_kbytes();
154 } else if (khugepaged_thread) {
155 kthread_stop(khugepaged_thread);
156 khugepaged_thread = NULL;
157 }
158
159 return err;
160 }
161
162 #ifdef CONFIG_SYSFS
163
164 static ssize_t double_flag_show(struct kobject *kobj,
165 struct kobj_attribute *attr, char *buf,
166 enum transparent_hugepage_flag enabled,
167 enum transparent_hugepage_flag req_madv)
168 {
169 if (test_bit(enabled, &transparent_hugepage_flags)) {
170 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
171 return sprintf(buf, "[always] madvise never\n");
172 } else if (test_bit(req_madv, &transparent_hugepage_flags))
173 return sprintf(buf, "always [madvise] never\n");
174 else
175 return sprintf(buf, "always madvise [never]\n");
176 }
177 static ssize_t double_flag_store(struct kobject *kobj,
178 struct kobj_attribute *attr,
179 const char *buf, size_t count,
180 enum transparent_hugepage_flag enabled,
181 enum transparent_hugepage_flag req_madv)
182 {
183 if (!memcmp("always", buf,
184 min(sizeof("always")-1, count))) {
185 set_bit(enabled, &transparent_hugepage_flags);
186 clear_bit(req_madv, &transparent_hugepage_flags);
187 } else if (!memcmp("madvise", buf,
188 min(sizeof("madvise")-1, count))) {
189 clear_bit(enabled, &transparent_hugepage_flags);
190 set_bit(req_madv, &transparent_hugepage_flags);
191 } else if (!memcmp("never", buf,
192 min(sizeof("never")-1, count))) {
193 clear_bit(enabled, &transparent_hugepage_flags);
194 clear_bit(req_madv, &transparent_hugepage_flags);
195 } else
196 return -EINVAL;
197
198 return count;
199 }
200
201 static ssize_t enabled_show(struct kobject *kobj,
202 struct kobj_attribute *attr, char *buf)
203 {
204 return double_flag_show(kobj, attr, buf,
205 TRANSPARENT_HUGEPAGE_FLAG,
206 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
207 }
208 static ssize_t enabled_store(struct kobject *kobj,
209 struct kobj_attribute *attr,
210 const char *buf, size_t count)
211 {
212 ssize_t ret;
213
214 ret = double_flag_store(kobj, attr, buf, count,
215 TRANSPARENT_HUGEPAGE_FLAG,
216 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
217
218 if (ret > 0) {
219 int err;
220
221 mutex_lock(&khugepaged_mutex);
222 err = start_khugepaged();
223 mutex_unlock(&khugepaged_mutex);
224
225 if (err)
226 ret = err;
227 }
228
229 return ret;
230 }
231 static struct kobj_attribute enabled_attr =
232 __ATTR(enabled, 0644, enabled_show, enabled_store);
233
234 static ssize_t single_flag_show(struct kobject *kobj,
235 struct kobj_attribute *attr, char *buf,
236 enum transparent_hugepage_flag flag)
237 {
238 return sprintf(buf, "%d\n",
239 !!test_bit(flag, &transparent_hugepage_flags));
240 }
241
242 static ssize_t single_flag_store(struct kobject *kobj,
243 struct kobj_attribute *attr,
244 const char *buf, size_t count,
245 enum transparent_hugepage_flag flag)
246 {
247 unsigned long value;
248 int ret;
249
250 ret = kstrtoul(buf, 10, &value);
251 if (ret < 0)
252 return ret;
253 if (value > 1)
254 return -EINVAL;
255
256 if (value)
257 set_bit(flag, &transparent_hugepage_flags);
258 else
259 clear_bit(flag, &transparent_hugepage_flags);
260
261 return count;
262 }
263
264 /*
265 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
266 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
267 * memory just to allocate one more hugepage.
268 */
269 static ssize_t defrag_show(struct kobject *kobj,
270 struct kobj_attribute *attr, char *buf)
271 {
272 return double_flag_show(kobj, attr, buf,
273 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
274 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
275 }
276 static ssize_t defrag_store(struct kobject *kobj,
277 struct kobj_attribute *attr,
278 const char *buf, size_t count)
279 {
280 return double_flag_store(kobj, attr, buf, count,
281 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
282 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
283 }
284 static struct kobj_attribute defrag_attr =
285 __ATTR(defrag, 0644, defrag_show, defrag_store);
286
287 #ifdef CONFIG_DEBUG_VM
288 static ssize_t debug_cow_show(struct kobject *kobj,
289 struct kobj_attribute *attr, char *buf)
290 {
291 return single_flag_show(kobj, attr, buf,
292 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
293 }
294 static ssize_t debug_cow_store(struct kobject *kobj,
295 struct kobj_attribute *attr,
296 const char *buf, size_t count)
297 {
298 return single_flag_store(kobj, attr, buf, count,
299 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
300 }
301 static struct kobj_attribute debug_cow_attr =
302 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
303 #endif /* CONFIG_DEBUG_VM */
304
305 static struct attribute *hugepage_attr[] = {
306 &enabled_attr.attr,
307 &defrag_attr.attr,
308 #ifdef CONFIG_DEBUG_VM
309 &debug_cow_attr.attr,
310 #endif
311 NULL,
312 };
313
314 static struct attribute_group hugepage_attr_group = {
315 .attrs = hugepage_attr,
316 };
317
318 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
319 struct kobj_attribute *attr,
320 char *buf)
321 {
322 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
323 }
324
325 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
326 struct kobj_attribute *attr,
327 const char *buf, size_t count)
328 {
329 unsigned long msecs;
330 int err;
331
332 err = strict_strtoul(buf, 10, &msecs);
333 if (err || msecs > UINT_MAX)
334 return -EINVAL;
335
336 khugepaged_scan_sleep_millisecs = msecs;
337 wake_up_interruptible(&khugepaged_wait);
338
339 return count;
340 }
341 static struct kobj_attribute scan_sleep_millisecs_attr =
342 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
343 scan_sleep_millisecs_store);
344
345 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
346 struct kobj_attribute *attr,
347 char *buf)
348 {
349 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
350 }
351
352 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
353 struct kobj_attribute *attr,
354 const char *buf, size_t count)
355 {
356 unsigned long msecs;
357 int err;
358
359 err = strict_strtoul(buf, 10, &msecs);
360 if (err || msecs > UINT_MAX)
361 return -EINVAL;
362
363 khugepaged_alloc_sleep_millisecs = msecs;
364 wake_up_interruptible(&khugepaged_wait);
365
366 return count;
367 }
368 static struct kobj_attribute alloc_sleep_millisecs_attr =
369 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
370 alloc_sleep_millisecs_store);
371
372 static ssize_t pages_to_scan_show(struct kobject *kobj,
373 struct kobj_attribute *attr,
374 char *buf)
375 {
376 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
377 }
378 static ssize_t pages_to_scan_store(struct kobject *kobj,
379 struct kobj_attribute *attr,
380 const char *buf, size_t count)
381 {
382 int err;
383 unsigned long pages;
384
385 err = strict_strtoul(buf, 10, &pages);
386 if (err || !pages || pages > UINT_MAX)
387 return -EINVAL;
388
389 khugepaged_pages_to_scan = pages;
390
391 return count;
392 }
393 static struct kobj_attribute pages_to_scan_attr =
394 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
395 pages_to_scan_store);
396
397 static ssize_t pages_collapsed_show(struct kobject *kobj,
398 struct kobj_attribute *attr,
399 char *buf)
400 {
401 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
402 }
403 static struct kobj_attribute pages_collapsed_attr =
404 __ATTR_RO(pages_collapsed);
405
406 static ssize_t full_scans_show(struct kobject *kobj,
407 struct kobj_attribute *attr,
408 char *buf)
409 {
410 return sprintf(buf, "%u\n", khugepaged_full_scans);
411 }
412 static struct kobj_attribute full_scans_attr =
413 __ATTR_RO(full_scans);
414
415 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
416 struct kobj_attribute *attr, char *buf)
417 {
418 return single_flag_show(kobj, attr, buf,
419 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
420 }
421 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
422 struct kobj_attribute *attr,
423 const char *buf, size_t count)
424 {
425 return single_flag_store(kobj, attr, buf, count,
426 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
427 }
428 static struct kobj_attribute khugepaged_defrag_attr =
429 __ATTR(defrag, 0644, khugepaged_defrag_show,
430 khugepaged_defrag_store);
431
432 /*
433 * max_ptes_none controls if khugepaged should collapse hugepages over
434 * any unmapped ptes in turn potentially increasing the memory
435 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
436 * reduce the available free memory in the system as it
437 * runs. Increasing max_ptes_none will instead potentially reduce the
438 * free memory in the system during the khugepaged scan.
439 */
440 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
441 struct kobj_attribute *attr,
442 char *buf)
443 {
444 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
445 }
446 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
447 struct kobj_attribute *attr,
448 const char *buf, size_t count)
449 {
450 int err;
451 unsigned long max_ptes_none;
452
453 err = strict_strtoul(buf, 10, &max_ptes_none);
454 if (err || max_ptes_none > HPAGE_PMD_NR-1)
455 return -EINVAL;
456
457 khugepaged_max_ptes_none = max_ptes_none;
458
459 return count;
460 }
461 static struct kobj_attribute khugepaged_max_ptes_none_attr =
462 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
463 khugepaged_max_ptes_none_store);
464
465 static struct attribute *khugepaged_attr[] = {
466 &khugepaged_defrag_attr.attr,
467 &khugepaged_max_ptes_none_attr.attr,
468 &pages_to_scan_attr.attr,
469 &pages_collapsed_attr.attr,
470 &full_scans_attr.attr,
471 &scan_sleep_millisecs_attr.attr,
472 &alloc_sleep_millisecs_attr.attr,
473 NULL,
474 };
475
476 static struct attribute_group khugepaged_attr_group = {
477 .attrs = khugepaged_attr,
478 .name = "khugepaged",
479 };
480
481 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
482 {
483 int err;
484
485 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
486 if (unlikely(!*hugepage_kobj)) {
487 printk(KERN_ERR "hugepage: failed kobject create\n");
488 return -ENOMEM;
489 }
490
491 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
492 if (err) {
493 printk(KERN_ERR "hugepage: failed register hugeage group\n");
494 goto delete_obj;
495 }
496
497 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
498 if (err) {
499 printk(KERN_ERR "hugepage: failed register hugeage group\n");
500 goto remove_hp_group;
501 }
502
503 return 0;
504
505 remove_hp_group:
506 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
507 delete_obj:
508 kobject_put(*hugepage_kobj);
509 return err;
510 }
511
512 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
513 {
514 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
515 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
516 kobject_put(hugepage_kobj);
517 }
518 #else
519 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
520 {
521 return 0;
522 }
523
524 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
525 {
526 }
527 #endif /* CONFIG_SYSFS */
528
529 static int __init hugepage_init(void)
530 {
531 int err;
532 struct kobject *hugepage_kobj;
533
534 if (!has_transparent_hugepage()) {
535 transparent_hugepage_flags = 0;
536 return -EINVAL;
537 }
538
539 err = hugepage_init_sysfs(&hugepage_kobj);
540 if (err)
541 return err;
542
543 err = khugepaged_slab_init();
544 if (err)
545 goto out;
546
547 err = mm_slots_hash_init();
548 if (err) {
549 khugepaged_slab_free();
550 goto out;
551 }
552
553 /*
554 * By default disable transparent hugepages on smaller systems,
555 * where the extra memory used could hurt more than TLB overhead
556 * is likely to save. The admin can still enable it through /sys.
557 */
558 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
559 transparent_hugepage_flags = 0;
560
561 start_khugepaged();
562
563 return 0;
564 out:
565 hugepage_exit_sysfs(hugepage_kobj);
566 return err;
567 }
568 module_init(hugepage_init)
569
570 static int __init setup_transparent_hugepage(char *str)
571 {
572 int ret = 0;
573 if (!str)
574 goto out;
575 if (!strcmp(str, "always")) {
576 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
577 &transparent_hugepage_flags);
578 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
579 &transparent_hugepage_flags);
580 ret = 1;
581 } else if (!strcmp(str, "madvise")) {
582 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
583 &transparent_hugepage_flags);
584 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
585 &transparent_hugepage_flags);
586 ret = 1;
587 } else if (!strcmp(str, "never")) {
588 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
589 &transparent_hugepage_flags);
590 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
591 &transparent_hugepage_flags);
592 ret = 1;
593 }
594 out:
595 if (!ret)
596 printk(KERN_WARNING
597 "transparent_hugepage= cannot parse, ignored\n");
598 return ret;
599 }
600 __setup("transparent_hugepage=", setup_transparent_hugepage);
601
602 static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
603 {
604 if (likely(vma->vm_flags & VM_WRITE))
605 pmd = pmd_mkwrite(pmd);
606 return pmd;
607 }
608
609 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
610 struct vm_area_struct *vma,
611 unsigned long haddr, pmd_t *pmd,
612 struct page *page)
613 {
614 pgtable_t pgtable;
615
616 VM_BUG_ON(!PageCompound(page));
617 pgtable = pte_alloc_one(mm, haddr);
618 if (unlikely(!pgtable))
619 return VM_FAULT_OOM;
620
621 clear_huge_page(page, haddr, HPAGE_PMD_NR);
622 __SetPageUptodate(page);
623
624 spin_lock(&mm->page_table_lock);
625 if (unlikely(!pmd_none(*pmd))) {
626 spin_unlock(&mm->page_table_lock);
627 mem_cgroup_uncharge_page(page);
628 put_page(page);
629 pte_free(mm, pgtable);
630 } else {
631 pmd_t entry;
632 entry = mk_pmd(page, vma->vm_page_prot);
633 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
634 entry = pmd_mkhuge(entry);
635 /*
636 * The spinlocking to take the lru_lock inside
637 * page_add_new_anon_rmap() acts as a full memory
638 * barrier to be sure clear_huge_page writes become
639 * visible after the set_pmd_at() write.
640 */
641 page_add_new_anon_rmap(page, vma, haddr);
642 set_pmd_at(mm, haddr, pmd, entry);
643 pgtable_trans_huge_deposit(mm, pgtable);
644 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
645 mm->nr_ptes++;
646 spin_unlock(&mm->page_table_lock);
647 }
648
649 return 0;
650 }
651
652 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
653 {
654 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
655 }
656
657 static inline struct page *alloc_hugepage_vma(int defrag,
658 struct vm_area_struct *vma,
659 unsigned long haddr, int nd,
660 gfp_t extra_gfp)
661 {
662 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
663 HPAGE_PMD_ORDER, vma, haddr, nd);
664 }
665
666 #ifndef CONFIG_NUMA
667 static inline struct page *alloc_hugepage(int defrag)
668 {
669 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
670 HPAGE_PMD_ORDER);
671 }
672 #endif
673
674 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
675 unsigned long address, pmd_t *pmd,
676 unsigned int flags)
677 {
678 struct page *page;
679 unsigned long haddr = address & HPAGE_PMD_MASK;
680 pte_t *pte;
681
682 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
683 if (unlikely(anon_vma_prepare(vma)))
684 return VM_FAULT_OOM;
685 if (unlikely(khugepaged_enter(vma)))
686 return VM_FAULT_OOM;
687 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
688 vma, haddr, numa_node_id(), 0);
689 if (unlikely(!page)) {
690 count_vm_event(THP_FAULT_FALLBACK);
691 goto out;
692 }
693 count_vm_event(THP_FAULT_ALLOC);
694 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
695 put_page(page);
696 goto out;
697 }
698 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
699 page))) {
700 mem_cgroup_uncharge_page(page);
701 put_page(page);
702 goto out;
703 }
704
705 return 0;
706 }
707 out:
708 /*
709 * Use __pte_alloc instead of pte_alloc_map, because we can't
710 * run pte_offset_map on the pmd, if an huge pmd could
711 * materialize from under us from a different thread.
712 */
713 if (unlikely(__pte_alloc(mm, vma, pmd, address)))
714 return VM_FAULT_OOM;
715 /* if an huge pmd materialized from under us just retry later */
716 if (unlikely(pmd_trans_huge(*pmd)))
717 return 0;
718 /*
719 * A regular pmd is established and it can't morph into a huge pmd
720 * from under us anymore at this point because we hold the mmap_sem
721 * read mode and khugepaged takes it in write mode. So now it's
722 * safe to run pte_offset_map().
723 */
724 pte = pte_offset_map(pmd, address);
725 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
726 }
727
728 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
729 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
730 struct vm_area_struct *vma)
731 {
732 struct page *src_page;
733 pmd_t pmd;
734 pgtable_t pgtable;
735 int ret;
736
737 ret = -ENOMEM;
738 pgtable = pte_alloc_one(dst_mm, addr);
739 if (unlikely(!pgtable))
740 goto out;
741
742 spin_lock(&dst_mm->page_table_lock);
743 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
744
745 ret = -EAGAIN;
746 pmd = *src_pmd;
747 if (unlikely(!pmd_trans_huge(pmd))) {
748 pte_free(dst_mm, pgtable);
749 goto out_unlock;
750 }
751 if (unlikely(pmd_trans_splitting(pmd))) {
752 /* split huge page running from under us */
753 spin_unlock(&src_mm->page_table_lock);
754 spin_unlock(&dst_mm->page_table_lock);
755 pte_free(dst_mm, pgtable);
756
757 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
758 goto out;
759 }
760 src_page = pmd_page(pmd);
761 VM_BUG_ON(!PageHead(src_page));
762 get_page(src_page);
763 page_dup_rmap(src_page);
764 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
765
766 pmdp_set_wrprotect(src_mm, addr, src_pmd);
767 pmd = pmd_mkold(pmd_wrprotect(pmd));
768 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
769 pgtable_trans_huge_deposit(dst_mm, pgtable);
770 dst_mm->nr_ptes++;
771
772 ret = 0;
773 out_unlock:
774 spin_unlock(&src_mm->page_table_lock);
775 spin_unlock(&dst_mm->page_table_lock);
776 out:
777 return ret;
778 }
779
780 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
781 struct vm_area_struct *vma,
782 unsigned long address,
783 pmd_t *pmd, pmd_t orig_pmd,
784 struct page *page,
785 unsigned long haddr)
786 {
787 pgtable_t pgtable;
788 pmd_t _pmd;
789 int ret = 0, i;
790 struct page **pages;
791 unsigned long mmun_start; /* For mmu_notifiers */
792 unsigned long mmun_end; /* For mmu_notifiers */
793
794 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
795 GFP_KERNEL);
796 if (unlikely(!pages)) {
797 ret |= VM_FAULT_OOM;
798 goto out;
799 }
800
801 for (i = 0; i < HPAGE_PMD_NR; i++) {
802 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
803 __GFP_OTHER_NODE,
804 vma, address, page_to_nid(page));
805 if (unlikely(!pages[i] ||
806 mem_cgroup_newpage_charge(pages[i], mm,
807 GFP_KERNEL))) {
808 if (pages[i])
809 put_page(pages[i]);
810 mem_cgroup_uncharge_start();
811 while (--i >= 0) {
812 mem_cgroup_uncharge_page(pages[i]);
813 put_page(pages[i]);
814 }
815 mem_cgroup_uncharge_end();
816 kfree(pages);
817 ret |= VM_FAULT_OOM;
818 goto out;
819 }
820 }
821
822 for (i = 0; i < HPAGE_PMD_NR; i++) {
823 copy_user_highpage(pages[i], page + i,
824 haddr + PAGE_SIZE * i, vma);
825 __SetPageUptodate(pages[i]);
826 cond_resched();
827 }
828
829 mmun_start = haddr;
830 mmun_end = haddr + HPAGE_PMD_SIZE;
831 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
832
833 spin_lock(&mm->page_table_lock);
834 if (unlikely(!pmd_same(*pmd, orig_pmd)))
835 goto out_free_pages;
836 VM_BUG_ON(!PageHead(page));
837
838 pmdp_clear_flush(vma, haddr, pmd);
839 /* leave pmd empty until pte is filled */
840
841 pgtable = pgtable_trans_huge_withdraw(mm);
842 pmd_populate(mm, &_pmd, pgtable);
843
844 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
845 pte_t *pte, entry;
846 entry = mk_pte(pages[i], vma->vm_page_prot);
847 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
848 page_add_new_anon_rmap(pages[i], vma, haddr);
849 pte = pte_offset_map(&_pmd, haddr);
850 VM_BUG_ON(!pte_none(*pte));
851 set_pte_at(mm, haddr, pte, entry);
852 pte_unmap(pte);
853 }
854 kfree(pages);
855
856 smp_wmb(); /* make pte visible before pmd */
857 pmd_populate(mm, pmd, pgtable);
858 page_remove_rmap(page);
859 spin_unlock(&mm->page_table_lock);
860
861 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
862
863 ret |= VM_FAULT_WRITE;
864 put_page(page);
865
866 out:
867 return ret;
868
869 out_free_pages:
870 spin_unlock(&mm->page_table_lock);
871 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
872 mem_cgroup_uncharge_start();
873 for (i = 0; i < HPAGE_PMD_NR; i++) {
874 mem_cgroup_uncharge_page(pages[i]);
875 put_page(pages[i]);
876 }
877 mem_cgroup_uncharge_end();
878 kfree(pages);
879 goto out;
880 }
881
882 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
883 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
884 {
885 int ret = 0;
886 struct page *page, *new_page;
887 unsigned long haddr;
888 unsigned long mmun_start; /* For mmu_notifiers */
889 unsigned long mmun_end; /* For mmu_notifiers */
890
891 VM_BUG_ON(!vma->anon_vma);
892 spin_lock(&mm->page_table_lock);
893 if (unlikely(!pmd_same(*pmd, orig_pmd)))
894 goto out_unlock;
895
896 page = pmd_page(orig_pmd);
897 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
898 haddr = address & HPAGE_PMD_MASK;
899 if (page_mapcount(page) == 1) {
900 pmd_t entry;
901 entry = pmd_mkyoung(orig_pmd);
902 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
903 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
904 update_mmu_cache_pmd(vma, address, pmd);
905 ret |= VM_FAULT_WRITE;
906 goto out_unlock;
907 }
908 get_page(page);
909 spin_unlock(&mm->page_table_lock);
910
911 if (transparent_hugepage_enabled(vma) &&
912 !transparent_hugepage_debug_cow())
913 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
914 vma, haddr, numa_node_id(), 0);
915 else
916 new_page = NULL;
917
918 if (unlikely(!new_page)) {
919 count_vm_event(THP_FAULT_FALLBACK);
920 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
921 pmd, orig_pmd, page, haddr);
922 if (ret & VM_FAULT_OOM)
923 split_huge_page(page);
924 put_page(page);
925 goto out;
926 }
927 count_vm_event(THP_FAULT_ALLOC);
928
929 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
930 put_page(new_page);
931 split_huge_page(page);
932 put_page(page);
933 ret |= VM_FAULT_OOM;
934 goto out;
935 }
936
937 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
938 __SetPageUptodate(new_page);
939
940 mmun_start = haddr;
941 mmun_end = haddr + HPAGE_PMD_SIZE;
942 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
943
944 spin_lock(&mm->page_table_lock);
945 put_page(page);
946 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
947 spin_unlock(&mm->page_table_lock);
948 mem_cgroup_uncharge_page(new_page);
949 put_page(new_page);
950 goto out_mn;
951 } else {
952 pmd_t entry;
953 VM_BUG_ON(!PageHead(page));
954 entry = mk_pmd(new_page, vma->vm_page_prot);
955 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
956 entry = pmd_mkhuge(entry);
957 pmdp_clear_flush(vma, haddr, pmd);
958 page_add_new_anon_rmap(new_page, vma, haddr);
959 set_pmd_at(mm, haddr, pmd, entry);
960 update_mmu_cache_pmd(vma, address, pmd);
961 page_remove_rmap(page);
962 put_page(page);
963 ret |= VM_FAULT_WRITE;
964 }
965 spin_unlock(&mm->page_table_lock);
966 out_mn:
967 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
968 out:
969 return ret;
970 out_unlock:
971 spin_unlock(&mm->page_table_lock);
972 return ret;
973 }
974
975 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
976 unsigned long addr,
977 pmd_t *pmd,
978 unsigned int flags)
979 {
980 struct mm_struct *mm = vma->vm_mm;
981 struct page *page = NULL;
982
983 assert_spin_locked(&mm->page_table_lock);
984
985 if (flags & FOLL_WRITE && !pmd_write(*pmd))
986 goto out;
987
988 page = pmd_page(*pmd);
989 VM_BUG_ON(!PageHead(page));
990 if (flags & FOLL_TOUCH) {
991 pmd_t _pmd;
992 /*
993 * We should set the dirty bit only for FOLL_WRITE but
994 * for now the dirty bit in the pmd is meaningless.
995 * And if the dirty bit will become meaningful and
996 * we'll only set it with FOLL_WRITE, an atomic
997 * set_bit will be required on the pmd to set the
998 * young bit, instead of the current set_pmd_at.
999 */
1000 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1001 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1002 }
1003 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1004 if (page->mapping && trylock_page(page)) {
1005 lru_add_drain();
1006 if (page->mapping)
1007 mlock_vma_page(page);
1008 unlock_page(page);
1009 }
1010 }
1011 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1012 VM_BUG_ON(!PageCompound(page));
1013 if (flags & FOLL_GET)
1014 get_page_foll(page);
1015
1016 out:
1017 return page;
1018 }
1019
1020 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1021 pmd_t *pmd, unsigned long addr)
1022 {
1023 int ret = 0;
1024
1025 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1026 struct page *page;
1027 pgtable_t pgtable;
1028 pmd_t orig_pmd;
1029 pgtable = pgtable_trans_huge_withdraw(tlb->mm);
1030 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1031 page = pmd_page(orig_pmd);
1032 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1033 page_remove_rmap(page);
1034 VM_BUG_ON(page_mapcount(page) < 0);
1035 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1036 VM_BUG_ON(!PageHead(page));
1037 tlb->mm->nr_ptes--;
1038 spin_unlock(&tlb->mm->page_table_lock);
1039 tlb_remove_page(tlb, page);
1040 pte_free(tlb->mm, pgtable);
1041 ret = 1;
1042 }
1043 return ret;
1044 }
1045
1046 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1047 unsigned long addr, unsigned long end,
1048 unsigned char *vec)
1049 {
1050 int ret = 0;
1051
1052 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1053 /*
1054 * All logical pages in the range are present
1055 * if backed by a huge page.
1056 */
1057 spin_unlock(&vma->vm_mm->page_table_lock);
1058 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1059 ret = 1;
1060 }
1061
1062 return ret;
1063 }
1064
1065 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1066 unsigned long old_addr,
1067 unsigned long new_addr, unsigned long old_end,
1068 pmd_t *old_pmd, pmd_t *new_pmd)
1069 {
1070 int ret = 0;
1071 pmd_t pmd;
1072
1073 struct mm_struct *mm = vma->vm_mm;
1074
1075 if ((old_addr & ~HPAGE_PMD_MASK) ||
1076 (new_addr & ~HPAGE_PMD_MASK) ||
1077 old_end - old_addr < HPAGE_PMD_SIZE ||
1078 (new_vma->vm_flags & VM_NOHUGEPAGE))
1079 goto out;
1080
1081 /*
1082 * The destination pmd shouldn't be established, free_pgtables()
1083 * should have release it.
1084 */
1085 if (WARN_ON(!pmd_none(*new_pmd))) {
1086 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1087 goto out;
1088 }
1089
1090 ret = __pmd_trans_huge_lock(old_pmd, vma);
1091 if (ret == 1) {
1092 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1093 VM_BUG_ON(!pmd_none(*new_pmd));
1094 set_pmd_at(mm, new_addr, new_pmd, pmd);
1095 spin_unlock(&mm->page_table_lock);
1096 }
1097 out:
1098 return ret;
1099 }
1100
1101 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1102 unsigned long addr, pgprot_t newprot)
1103 {
1104 struct mm_struct *mm = vma->vm_mm;
1105 int ret = 0;
1106
1107 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1108 pmd_t entry;
1109 entry = pmdp_get_and_clear(mm, addr, pmd);
1110 entry = pmd_modify(entry, newprot);
1111 set_pmd_at(mm, addr, pmd, entry);
1112 spin_unlock(&vma->vm_mm->page_table_lock);
1113 ret = 1;
1114 }
1115
1116 return ret;
1117 }
1118
1119 /*
1120 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1121 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1122 *
1123 * Note that if it returns 1, this routine returns without unlocking page
1124 * table locks. So callers must unlock them.
1125 */
1126 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1127 {
1128 spin_lock(&vma->vm_mm->page_table_lock);
1129 if (likely(pmd_trans_huge(*pmd))) {
1130 if (unlikely(pmd_trans_splitting(*pmd))) {
1131 spin_unlock(&vma->vm_mm->page_table_lock);
1132 wait_split_huge_page(vma->anon_vma, pmd);
1133 return -1;
1134 } else {
1135 /* Thp mapped by 'pmd' is stable, so we can
1136 * handle it as it is. */
1137 return 1;
1138 }
1139 }
1140 spin_unlock(&vma->vm_mm->page_table_lock);
1141 return 0;
1142 }
1143
1144 pmd_t *page_check_address_pmd(struct page *page,
1145 struct mm_struct *mm,
1146 unsigned long address,
1147 enum page_check_address_pmd_flag flag)
1148 {
1149 pmd_t *pmd, *ret = NULL;
1150
1151 if (address & ~HPAGE_PMD_MASK)
1152 goto out;
1153
1154 pmd = mm_find_pmd(mm, address);
1155 if (!pmd)
1156 goto out;
1157 if (pmd_none(*pmd))
1158 goto out;
1159 if (pmd_page(*pmd) != page)
1160 goto out;
1161 /*
1162 * split_vma() may create temporary aliased mappings. There is
1163 * no risk as long as all huge pmd are found and have their
1164 * splitting bit set before __split_huge_page_refcount
1165 * runs. Finding the same huge pmd more than once during the
1166 * same rmap walk is not a problem.
1167 */
1168 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1169 pmd_trans_splitting(*pmd))
1170 goto out;
1171 if (pmd_trans_huge(*pmd)) {
1172 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1173 !pmd_trans_splitting(*pmd));
1174 ret = pmd;
1175 }
1176 out:
1177 return ret;
1178 }
1179
1180 static int __split_huge_page_splitting(struct page *page,
1181 struct vm_area_struct *vma,
1182 unsigned long address)
1183 {
1184 struct mm_struct *mm = vma->vm_mm;
1185 pmd_t *pmd;
1186 int ret = 0;
1187 /* For mmu_notifiers */
1188 const unsigned long mmun_start = address;
1189 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1190
1191 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1192 spin_lock(&mm->page_table_lock);
1193 pmd = page_check_address_pmd(page, mm, address,
1194 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1195 if (pmd) {
1196 /*
1197 * We can't temporarily set the pmd to null in order
1198 * to split it, the pmd must remain marked huge at all
1199 * times or the VM won't take the pmd_trans_huge paths
1200 * and it won't wait on the anon_vma->root->mutex to
1201 * serialize against split_huge_page*.
1202 */
1203 pmdp_splitting_flush(vma, address, pmd);
1204 ret = 1;
1205 }
1206 spin_unlock(&mm->page_table_lock);
1207 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1208
1209 return ret;
1210 }
1211
1212 static void __split_huge_page_refcount(struct page *page)
1213 {
1214 int i;
1215 struct zone *zone = page_zone(page);
1216 struct lruvec *lruvec;
1217 int tail_count = 0;
1218
1219 /* prevent PageLRU to go away from under us, and freeze lru stats */
1220 spin_lock_irq(&zone->lru_lock);
1221 lruvec = mem_cgroup_page_lruvec(page, zone);
1222
1223 compound_lock(page);
1224 /* complete memcg works before add pages to LRU */
1225 mem_cgroup_split_huge_fixup(page);
1226
1227 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1228 struct page *page_tail = page + i;
1229
1230 /* tail_page->_mapcount cannot change */
1231 BUG_ON(page_mapcount(page_tail) < 0);
1232 tail_count += page_mapcount(page_tail);
1233 /* check for overflow */
1234 BUG_ON(tail_count < 0);
1235 BUG_ON(atomic_read(&page_tail->_count) != 0);
1236 /*
1237 * tail_page->_count is zero and not changing from
1238 * under us. But get_page_unless_zero() may be running
1239 * from under us on the tail_page. If we used
1240 * atomic_set() below instead of atomic_add(), we
1241 * would then run atomic_set() concurrently with
1242 * get_page_unless_zero(), and atomic_set() is
1243 * implemented in C not using locked ops. spin_unlock
1244 * on x86 sometime uses locked ops because of PPro
1245 * errata 66, 92, so unless somebody can guarantee
1246 * atomic_set() here would be safe on all archs (and
1247 * not only on x86), it's safer to use atomic_add().
1248 */
1249 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1250 &page_tail->_count);
1251
1252 /* after clearing PageTail the gup refcount can be released */
1253 smp_mb();
1254
1255 /*
1256 * retain hwpoison flag of the poisoned tail page:
1257 * fix for the unsuitable process killed on Guest Machine(KVM)
1258 * by the memory-failure.
1259 */
1260 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1261 page_tail->flags |= (page->flags &
1262 ((1L << PG_referenced) |
1263 (1L << PG_swapbacked) |
1264 (1L << PG_mlocked) |
1265 (1L << PG_uptodate)));
1266 page_tail->flags |= (1L << PG_dirty);
1267
1268 /* clear PageTail before overwriting first_page */
1269 smp_wmb();
1270
1271 /*
1272 * __split_huge_page_splitting() already set the
1273 * splitting bit in all pmd that could map this
1274 * hugepage, that will ensure no CPU can alter the
1275 * mapcount on the head page. The mapcount is only
1276 * accounted in the head page and it has to be
1277 * transferred to all tail pages in the below code. So
1278 * for this code to be safe, the split the mapcount
1279 * can't change. But that doesn't mean userland can't
1280 * keep changing and reading the page contents while
1281 * we transfer the mapcount, so the pmd splitting
1282 * status is achieved setting a reserved bit in the
1283 * pmd, not by clearing the present bit.
1284 */
1285 page_tail->_mapcount = page->_mapcount;
1286
1287 BUG_ON(page_tail->mapping);
1288 page_tail->mapping = page->mapping;
1289
1290 page_tail->index = page->index + i;
1291
1292 BUG_ON(!PageAnon(page_tail));
1293 BUG_ON(!PageUptodate(page_tail));
1294 BUG_ON(!PageDirty(page_tail));
1295 BUG_ON(!PageSwapBacked(page_tail));
1296
1297 lru_add_page_tail(page, page_tail, lruvec);
1298 }
1299 atomic_sub(tail_count, &page->_count);
1300 BUG_ON(atomic_read(&page->_count) <= 0);
1301
1302 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1303 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1304
1305 ClearPageCompound(page);
1306 compound_unlock(page);
1307 spin_unlock_irq(&zone->lru_lock);
1308
1309 for (i = 1; i < HPAGE_PMD_NR; i++) {
1310 struct page *page_tail = page + i;
1311 BUG_ON(page_count(page_tail) <= 0);
1312 /*
1313 * Tail pages may be freed if there wasn't any mapping
1314 * like if add_to_swap() is running on a lru page that
1315 * had its mapping zapped. And freeing these pages
1316 * requires taking the lru_lock so we do the put_page
1317 * of the tail pages after the split is complete.
1318 */
1319 put_page(page_tail);
1320 }
1321
1322 /*
1323 * Only the head page (now become a regular page) is required
1324 * to be pinned by the caller.
1325 */
1326 BUG_ON(page_count(page) <= 0);
1327 }
1328
1329 static int __split_huge_page_map(struct page *page,
1330 struct vm_area_struct *vma,
1331 unsigned long address)
1332 {
1333 struct mm_struct *mm = vma->vm_mm;
1334 pmd_t *pmd, _pmd;
1335 int ret = 0, i;
1336 pgtable_t pgtable;
1337 unsigned long haddr;
1338
1339 spin_lock(&mm->page_table_lock);
1340 pmd = page_check_address_pmd(page, mm, address,
1341 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1342 if (pmd) {
1343 pgtable = pgtable_trans_huge_withdraw(mm);
1344 pmd_populate(mm, &_pmd, pgtable);
1345
1346 haddr = address;
1347 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1348 pte_t *pte, entry;
1349 BUG_ON(PageCompound(page+i));
1350 entry = mk_pte(page + i, vma->vm_page_prot);
1351 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1352 if (!pmd_write(*pmd))
1353 entry = pte_wrprotect(entry);
1354 else
1355 BUG_ON(page_mapcount(page) != 1);
1356 if (!pmd_young(*pmd))
1357 entry = pte_mkold(entry);
1358 pte = pte_offset_map(&_pmd, haddr);
1359 BUG_ON(!pte_none(*pte));
1360 set_pte_at(mm, haddr, pte, entry);
1361 pte_unmap(pte);
1362 }
1363
1364 smp_wmb(); /* make pte visible before pmd */
1365 /*
1366 * Up to this point the pmd is present and huge and
1367 * userland has the whole access to the hugepage
1368 * during the split (which happens in place). If we
1369 * overwrite the pmd with the not-huge version
1370 * pointing to the pte here (which of course we could
1371 * if all CPUs were bug free), userland could trigger
1372 * a small page size TLB miss on the small sized TLB
1373 * while the hugepage TLB entry is still established
1374 * in the huge TLB. Some CPU doesn't like that. See
1375 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1376 * Erratum 383 on page 93. Intel should be safe but is
1377 * also warns that it's only safe if the permission
1378 * and cache attributes of the two entries loaded in
1379 * the two TLB is identical (which should be the case
1380 * here). But it is generally safer to never allow
1381 * small and huge TLB entries for the same virtual
1382 * address to be loaded simultaneously. So instead of
1383 * doing "pmd_populate(); flush_tlb_range();" we first
1384 * mark the current pmd notpresent (atomically because
1385 * here the pmd_trans_huge and pmd_trans_splitting
1386 * must remain set at all times on the pmd until the
1387 * split is complete for this pmd), then we flush the
1388 * SMP TLB and finally we write the non-huge version
1389 * of the pmd entry with pmd_populate.
1390 */
1391 pmdp_invalidate(vma, address, pmd);
1392 pmd_populate(mm, pmd, pgtable);
1393 ret = 1;
1394 }
1395 spin_unlock(&mm->page_table_lock);
1396
1397 return ret;
1398 }
1399
1400 /* must be called with anon_vma->root->mutex hold */
1401 static void __split_huge_page(struct page *page,
1402 struct anon_vma *anon_vma)
1403 {
1404 int mapcount, mapcount2;
1405 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1406 struct anon_vma_chain *avc;
1407
1408 BUG_ON(!PageHead(page));
1409 BUG_ON(PageTail(page));
1410
1411 mapcount = 0;
1412 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1413 struct vm_area_struct *vma = avc->vma;
1414 unsigned long addr = vma_address(page, vma);
1415 BUG_ON(is_vma_temporary_stack(vma));
1416 mapcount += __split_huge_page_splitting(page, vma, addr);
1417 }
1418 /*
1419 * It is critical that new vmas are added to the tail of the
1420 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1421 * and establishes a child pmd before
1422 * __split_huge_page_splitting() freezes the parent pmd (so if
1423 * we fail to prevent copy_huge_pmd() from running until the
1424 * whole __split_huge_page() is complete), we will still see
1425 * the newly established pmd of the child later during the
1426 * walk, to be able to set it as pmd_trans_splitting too.
1427 */
1428 if (mapcount != page_mapcount(page))
1429 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1430 mapcount, page_mapcount(page));
1431 BUG_ON(mapcount != page_mapcount(page));
1432
1433 __split_huge_page_refcount(page);
1434
1435 mapcount2 = 0;
1436 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1437 struct vm_area_struct *vma = avc->vma;
1438 unsigned long addr = vma_address(page, vma);
1439 BUG_ON(is_vma_temporary_stack(vma));
1440 mapcount2 += __split_huge_page_map(page, vma, addr);
1441 }
1442 if (mapcount != mapcount2)
1443 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1444 mapcount, mapcount2, page_mapcount(page));
1445 BUG_ON(mapcount != mapcount2);
1446 }
1447
1448 int split_huge_page(struct page *page)
1449 {
1450 struct anon_vma *anon_vma;
1451 int ret = 1;
1452
1453 BUG_ON(!PageAnon(page));
1454 anon_vma = page_lock_anon_vma(page);
1455 if (!anon_vma)
1456 goto out;
1457 ret = 0;
1458 if (!PageCompound(page))
1459 goto out_unlock;
1460
1461 BUG_ON(!PageSwapBacked(page));
1462 __split_huge_page(page, anon_vma);
1463 count_vm_event(THP_SPLIT);
1464
1465 BUG_ON(PageCompound(page));
1466 out_unlock:
1467 page_unlock_anon_vma(anon_vma);
1468 out:
1469 return ret;
1470 }
1471
1472 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1473
1474 int hugepage_madvise(struct vm_area_struct *vma,
1475 unsigned long *vm_flags, int advice)
1476 {
1477 struct mm_struct *mm = vma->vm_mm;
1478
1479 switch (advice) {
1480 case MADV_HUGEPAGE:
1481 /*
1482 * Be somewhat over-protective like KSM for now!
1483 */
1484 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1485 return -EINVAL;
1486 if (mm->def_flags & VM_NOHUGEPAGE)
1487 return -EINVAL;
1488 *vm_flags &= ~VM_NOHUGEPAGE;
1489 *vm_flags |= VM_HUGEPAGE;
1490 /*
1491 * If the vma become good for khugepaged to scan,
1492 * register it here without waiting a page fault that
1493 * may not happen any time soon.
1494 */
1495 if (unlikely(khugepaged_enter_vma_merge(vma)))
1496 return -ENOMEM;
1497 break;
1498 case MADV_NOHUGEPAGE:
1499 /*
1500 * Be somewhat over-protective like KSM for now!
1501 */
1502 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1503 return -EINVAL;
1504 *vm_flags &= ~VM_HUGEPAGE;
1505 *vm_flags |= VM_NOHUGEPAGE;
1506 /*
1507 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1508 * this vma even if we leave the mm registered in khugepaged if
1509 * it got registered before VM_NOHUGEPAGE was set.
1510 */
1511 break;
1512 }
1513
1514 return 0;
1515 }
1516
1517 static int __init khugepaged_slab_init(void)
1518 {
1519 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1520 sizeof(struct mm_slot),
1521 __alignof__(struct mm_slot), 0, NULL);
1522 if (!mm_slot_cache)
1523 return -ENOMEM;
1524
1525 return 0;
1526 }
1527
1528 static void __init khugepaged_slab_free(void)
1529 {
1530 kmem_cache_destroy(mm_slot_cache);
1531 mm_slot_cache = NULL;
1532 }
1533
1534 static inline struct mm_slot *alloc_mm_slot(void)
1535 {
1536 if (!mm_slot_cache) /* initialization failed */
1537 return NULL;
1538 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1539 }
1540
1541 static inline void free_mm_slot(struct mm_slot *mm_slot)
1542 {
1543 kmem_cache_free(mm_slot_cache, mm_slot);
1544 }
1545
1546 static int __init mm_slots_hash_init(void)
1547 {
1548 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1549 GFP_KERNEL);
1550 if (!mm_slots_hash)
1551 return -ENOMEM;
1552 return 0;
1553 }
1554
1555 #if 0
1556 static void __init mm_slots_hash_free(void)
1557 {
1558 kfree(mm_slots_hash);
1559 mm_slots_hash = NULL;
1560 }
1561 #endif
1562
1563 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1564 {
1565 struct mm_slot *mm_slot;
1566 struct hlist_head *bucket;
1567 struct hlist_node *node;
1568
1569 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1570 % MM_SLOTS_HASH_HEADS];
1571 hlist_for_each_entry(mm_slot, node, bucket, hash) {
1572 if (mm == mm_slot->mm)
1573 return mm_slot;
1574 }
1575 return NULL;
1576 }
1577
1578 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1579 struct mm_slot *mm_slot)
1580 {
1581 struct hlist_head *bucket;
1582
1583 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1584 % MM_SLOTS_HASH_HEADS];
1585 mm_slot->mm = mm;
1586 hlist_add_head(&mm_slot->hash, bucket);
1587 }
1588
1589 static inline int khugepaged_test_exit(struct mm_struct *mm)
1590 {
1591 return atomic_read(&mm->mm_users) == 0;
1592 }
1593
1594 int __khugepaged_enter(struct mm_struct *mm)
1595 {
1596 struct mm_slot *mm_slot;
1597 int wakeup;
1598
1599 mm_slot = alloc_mm_slot();
1600 if (!mm_slot)
1601 return -ENOMEM;
1602
1603 /* __khugepaged_exit() must not run from under us */
1604 VM_BUG_ON(khugepaged_test_exit(mm));
1605 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1606 free_mm_slot(mm_slot);
1607 return 0;
1608 }
1609
1610 spin_lock(&khugepaged_mm_lock);
1611 insert_to_mm_slots_hash(mm, mm_slot);
1612 /*
1613 * Insert just behind the scanning cursor, to let the area settle
1614 * down a little.
1615 */
1616 wakeup = list_empty(&khugepaged_scan.mm_head);
1617 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1618 spin_unlock(&khugepaged_mm_lock);
1619
1620 atomic_inc(&mm->mm_count);
1621 if (wakeup)
1622 wake_up_interruptible(&khugepaged_wait);
1623
1624 return 0;
1625 }
1626
1627 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1628 {
1629 unsigned long hstart, hend;
1630 if (!vma->anon_vma)
1631 /*
1632 * Not yet faulted in so we will register later in the
1633 * page fault if needed.
1634 */
1635 return 0;
1636 if (vma->vm_ops)
1637 /* khugepaged not yet working on file or special mappings */
1638 return 0;
1639 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
1640 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1641 hend = vma->vm_end & HPAGE_PMD_MASK;
1642 if (hstart < hend)
1643 return khugepaged_enter(vma);
1644 return 0;
1645 }
1646
1647 void __khugepaged_exit(struct mm_struct *mm)
1648 {
1649 struct mm_slot *mm_slot;
1650 int free = 0;
1651
1652 spin_lock(&khugepaged_mm_lock);
1653 mm_slot = get_mm_slot(mm);
1654 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1655 hlist_del(&mm_slot->hash);
1656 list_del(&mm_slot->mm_node);
1657 free = 1;
1658 }
1659 spin_unlock(&khugepaged_mm_lock);
1660
1661 if (free) {
1662 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1663 free_mm_slot(mm_slot);
1664 mmdrop(mm);
1665 } else if (mm_slot) {
1666 /*
1667 * This is required to serialize against
1668 * khugepaged_test_exit() (which is guaranteed to run
1669 * under mmap sem read mode). Stop here (after we
1670 * return all pagetables will be destroyed) until
1671 * khugepaged has finished working on the pagetables
1672 * under the mmap_sem.
1673 */
1674 down_write(&mm->mmap_sem);
1675 up_write(&mm->mmap_sem);
1676 }
1677 }
1678
1679 static void release_pte_page(struct page *page)
1680 {
1681 /* 0 stands for page_is_file_cache(page) == false */
1682 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1683 unlock_page(page);
1684 putback_lru_page(page);
1685 }
1686
1687 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1688 {
1689 while (--_pte >= pte) {
1690 pte_t pteval = *_pte;
1691 if (!pte_none(pteval))
1692 release_pte_page(pte_page(pteval));
1693 }
1694 }
1695
1696 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1697 unsigned long address,
1698 pte_t *pte)
1699 {
1700 struct page *page;
1701 pte_t *_pte;
1702 int referenced = 0, none = 0;
1703 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1704 _pte++, address += PAGE_SIZE) {
1705 pte_t pteval = *_pte;
1706 if (pte_none(pteval)) {
1707 if (++none <= khugepaged_max_ptes_none)
1708 continue;
1709 else
1710 goto out;
1711 }
1712 if (!pte_present(pteval) || !pte_write(pteval))
1713 goto out;
1714 page = vm_normal_page(vma, address, pteval);
1715 if (unlikely(!page))
1716 goto out;
1717
1718 VM_BUG_ON(PageCompound(page));
1719 BUG_ON(!PageAnon(page));
1720 VM_BUG_ON(!PageSwapBacked(page));
1721
1722 /* cannot use mapcount: can't collapse if there's a gup pin */
1723 if (page_count(page) != 1)
1724 goto out;
1725 /*
1726 * We can do it before isolate_lru_page because the
1727 * page can't be freed from under us. NOTE: PG_lock
1728 * is needed to serialize against split_huge_page
1729 * when invoked from the VM.
1730 */
1731 if (!trylock_page(page))
1732 goto out;
1733 /*
1734 * Isolate the page to avoid collapsing an hugepage
1735 * currently in use by the VM.
1736 */
1737 if (isolate_lru_page(page)) {
1738 unlock_page(page);
1739 goto out;
1740 }
1741 /* 0 stands for page_is_file_cache(page) == false */
1742 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1743 VM_BUG_ON(!PageLocked(page));
1744 VM_BUG_ON(PageLRU(page));
1745
1746 /* If there is no mapped pte young don't collapse the page */
1747 if (pte_young(pteval) || PageReferenced(page) ||
1748 mmu_notifier_test_young(vma->vm_mm, address))
1749 referenced = 1;
1750 }
1751 if (likely(referenced))
1752 return 1;
1753 out:
1754 release_pte_pages(pte, _pte);
1755 return 0;
1756 }
1757
1758 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1759 struct vm_area_struct *vma,
1760 unsigned long address,
1761 spinlock_t *ptl)
1762 {
1763 pte_t *_pte;
1764 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1765 pte_t pteval = *_pte;
1766 struct page *src_page;
1767
1768 if (pte_none(pteval)) {
1769 clear_user_highpage(page, address);
1770 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1771 } else {
1772 src_page = pte_page(pteval);
1773 copy_user_highpage(page, src_page, address, vma);
1774 VM_BUG_ON(page_mapcount(src_page) != 1);
1775 release_pte_page(src_page);
1776 /*
1777 * ptl mostly unnecessary, but preempt has to
1778 * be disabled to update the per-cpu stats
1779 * inside page_remove_rmap().
1780 */
1781 spin_lock(ptl);
1782 /*
1783 * paravirt calls inside pte_clear here are
1784 * superfluous.
1785 */
1786 pte_clear(vma->vm_mm, address, _pte);
1787 page_remove_rmap(src_page);
1788 spin_unlock(ptl);
1789 free_page_and_swap_cache(src_page);
1790 }
1791
1792 address += PAGE_SIZE;
1793 page++;
1794 }
1795 }
1796
1797 static void khugepaged_alloc_sleep(void)
1798 {
1799 wait_event_freezable_timeout(khugepaged_wait, false,
1800 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
1801 }
1802
1803 #ifdef CONFIG_NUMA
1804 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
1805 {
1806 if (IS_ERR(*hpage)) {
1807 if (!*wait)
1808 return false;
1809
1810 *wait = false;
1811 *hpage = NULL;
1812 khugepaged_alloc_sleep();
1813 } else if (*hpage) {
1814 put_page(*hpage);
1815 *hpage = NULL;
1816 }
1817
1818 return true;
1819 }
1820
1821 static struct page
1822 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
1823 struct vm_area_struct *vma, unsigned long address,
1824 int node)
1825 {
1826 VM_BUG_ON(*hpage);
1827 /*
1828 * Allocate the page while the vma is still valid and under
1829 * the mmap_sem read mode so there is no memory allocation
1830 * later when we take the mmap_sem in write mode. This is more
1831 * friendly behavior (OTOH it may actually hide bugs) to
1832 * filesystems in userland with daemons allocating memory in
1833 * the userland I/O paths. Allocating memory with the
1834 * mmap_sem in read mode is good idea also to allow greater
1835 * scalability.
1836 */
1837 *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1838 node, __GFP_OTHER_NODE);
1839
1840 /*
1841 * After allocating the hugepage, release the mmap_sem read lock in
1842 * preparation for taking it in write mode.
1843 */
1844 up_read(&mm->mmap_sem);
1845 if (unlikely(!*hpage)) {
1846 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1847 *hpage = ERR_PTR(-ENOMEM);
1848 return NULL;
1849 }
1850
1851 count_vm_event(THP_COLLAPSE_ALLOC);
1852 return *hpage;
1853 }
1854 #else
1855 static struct page *khugepaged_alloc_hugepage(bool *wait)
1856 {
1857 struct page *hpage;
1858
1859 do {
1860 hpage = alloc_hugepage(khugepaged_defrag());
1861 if (!hpage) {
1862 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1863 if (!*wait)
1864 return NULL;
1865
1866 *wait = false;
1867 khugepaged_alloc_sleep();
1868 } else
1869 count_vm_event(THP_COLLAPSE_ALLOC);
1870 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
1871
1872 return hpage;
1873 }
1874
1875 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
1876 {
1877 if (!*hpage)
1878 *hpage = khugepaged_alloc_hugepage(wait);
1879
1880 if (unlikely(!*hpage))
1881 return false;
1882
1883 return true;
1884 }
1885
1886 static struct page
1887 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
1888 struct vm_area_struct *vma, unsigned long address,
1889 int node)
1890 {
1891 up_read(&mm->mmap_sem);
1892 VM_BUG_ON(!*hpage);
1893 return *hpage;
1894 }
1895 #endif
1896
1897 static bool hugepage_vma_check(struct vm_area_struct *vma)
1898 {
1899 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1900 (vma->vm_flags & VM_NOHUGEPAGE))
1901 return false;
1902
1903 if (!vma->anon_vma || vma->vm_ops)
1904 return false;
1905 if (is_vma_temporary_stack(vma))
1906 return false;
1907 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
1908 return true;
1909 }
1910
1911 static void collapse_huge_page(struct mm_struct *mm,
1912 unsigned long address,
1913 struct page **hpage,
1914 struct vm_area_struct *vma,
1915 int node)
1916 {
1917 pmd_t *pmd, _pmd;
1918 pte_t *pte;
1919 pgtable_t pgtable;
1920 struct page *new_page;
1921 spinlock_t *ptl;
1922 int isolated;
1923 unsigned long hstart, hend;
1924 unsigned long mmun_start; /* For mmu_notifiers */
1925 unsigned long mmun_end; /* For mmu_notifiers */
1926
1927 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1928
1929 /* release the mmap_sem read lock. */
1930 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
1931 if (!new_page)
1932 return;
1933
1934 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
1935 return;
1936
1937 /*
1938 * Prevent all access to pagetables with the exception of
1939 * gup_fast later hanlded by the ptep_clear_flush and the VM
1940 * handled by the anon_vma lock + PG_lock.
1941 */
1942 down_write(&mm->mmap_sem);
1943 if (unlikely(khugepaged_test_exit(mm)))
1944 goto out;
1945
1946 vma = find_vma(mm, address);
1947 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1948 hend = vma->vm_end & HPAGE_PMD_MASK;
1949 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1950 goto out;
1951 if (!hugepage_vma_check(vma))
1952 goto out;
1953 pmd = mm_find_pmd(mm, address);
1954 if (!pmd)
1955 goto out;
1956 if (pmd_trans_huge(*pmd))
1957 goto out;
1958
1959 anon_vma_lock(vma->anon_vma);
1960
1961 pte = pte_offset_map(pmd, address);
1962 ptl = pte_lockptr(mm, pmd);
1963
1964 mmun_start = address;
1965 mmun_end = address + HPAGE_PMD_SIZE;
1966 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1967 spin_lock(&mm->page_table_lock); /* probably unnecessary */
1968 /*
1969 * After this gup_fast can't run anymore. This also removes
1970 * any huge TLB entry from the CPU so we won't allow
1971 * huge and small TLB entries for the same virtual address
1972 * to avoid the risk of CPU bugs in that area.
1973 */
1974 _pmd = pmdp_clear_flush(vma, address, pmd);
1975 spin_unlock(&mm->page_table_lock);
1976 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1977
1978 spin_lock(ptl);
1979 isolated = __collapse_huge_page_isolate(vma, address, pte);
1980 spin_unlock(ptl);
1981
1982 if (unlikely(!isolated)) {
1983 pte_unmap(pte);
1984 spin_lock(&mm->page_table_lock);
1985 BUG_ON(!pmd_none(*pmd));
1986 set_pmd_at(mm, address, pmd, _pmd);
1987 spin_unlock(&mm->page_table_lock);
1988 anon_vma_unlock(vma->anon_vma);
1989 goto out;
1990 }
1991
1992 /*
1993 * All pages are isolated and locked so anon_vma rmap
1994 * can't run anymore.
1995 */
1996 anon_vma_unlock(vma->anon_vma);
1997
1998 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1999 pte_unmap(pte);
2000 __SetPageUptodate(new_page);
2001 pgtable = pmd_pgtable(_pmd);
2002
2003 _pmd = mk_pmd(new_page, vma->vm_page_prot);
2004 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2005 _pmd = pmd_mkhuge(_pmd);
2006
2007 /*
2008 * spin_lock() below is not the equivalent of smp_wmb(), so
2009 * this is needed to avoid the copy_huge_page writes to become
2010 * visible after the set_pmd_at() write.
2011 */
2012 smp_wmb();
2013
2014 spin_lock(&mm->page_table_lock);
2015 BUG_ON(!pmd_none(*pmd));
2016 page_add_new_anon_rmap(new_page, vma, address);
2017 set_pmd_at(mm, address, pmd, _pmd);
2018 update_mmu_cache_pmd(vma, address, pmd);
2019 pgtable_trans_huge_deposit(mm, pgtable);
2020 spin_unlock(&mm->page_table_lock);
2021
2022 *hpage = NULL;
2023
2024 khugepaged_pages_collapsed++;
2025 out_up_write:
2026 up_write(&mm->mmap_sem);
2027 return;
2028
2029 out:
2030 mem_cgroup_uncharge_page(new_page);
2031 goto out_up_write;
2032 }
2033
2034 static int khugepaged_scan_pmd(struct mm_struct *mm,
2035 struct vm_area_struct *vma,
2036 unsigned long address,
2037 struct page **hpage)
2038 {
2039 pmd_t *pmd;
2040 pte_t *pte, *_pte;
2041 int ret = 0, referenced = 0, none = 0;
2042 struct page *page;
2043 unsigned long _address;
2044 spinlock_t *ptl;
2045 int node = -1;
2046
2047 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2048
2049 pmd = mm_find_pmd(mm, address);
2050 if (!pmd)
2051 goto out;
2052 if (pmd_trans_huge(*pmd))
2053 goto out;
2054
2055 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2056 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2057 _pte++, _address += PAGE_SIZE) {
2058 pte_t pteval = *_pte;
2059 if (pte_none(pteval)) {
2060 if (++none <= khugepaged_max_ptes_none)
2061 continue;
2062 else
2063 goto out_unmap;
2064 }
2065 if (!pte_present(pteval) || !pte_write(pteval))
2066 goto out_unmap;
2067 page = vm_normal_page(vma, _address, pteval);
2068 if (unlikely(!page))
2069 goto out_unmap;
2070 /*
2071 * Chose the node of the first page. This could
2072 * be more sophisticated and look at more pages,
2073 * but isn't for now.
2074 */
2075 if (node == -1)
2076 node = page_to_nid(page);
2077 VM_BUG_ON(PageCompound(page));
2078 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2079 goto out_unmap;
2080 /* cannot use mapcount: can't collapse if there's a gup pin */
2081 if (page_count(page) != 1)
2082 goto out_unmap;
2083 if (pte_young(pteval) || PageReferenced(page) ||
2084 mmu_notifier_test_young(vma->vm_mm, address))
2085 referenced = 1;
2086 }
2087 if (referenced)
2088 ret = 1;
2089 out_unmap:
2090 pte_unmap_unlock(pte, ptl);
2091 if (ret)
2092 /* collapse_huge_page will return with the mmap_sem released */
2093 collapse_huge_page(mm, address, hpage, vma, node);
2094 out:
2095 return ret;
2096 }
2097
2098 static void collect_mm_slot(struct mm_slot *mm_slot)
2099 {
2100 struct mm_struct *mm = mm_slot->mm;
2101
2102 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2103
2104 if (khugepaged_test_exit(mm)) {
2105 /* free mm_slot */
2106 hlist_del(&mm_slot->hash);
2107 list_del(&mm_slot->mm_node);
2108
2109 /*
2110 * Not strictly needed because the mm exited already.
2111 *
2112 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2113 */
2114
2115 /* khugepaged_mm_lock actually not necessary for the below */
2116 free_mm_slot(mm_slot);
2117 mmdrop(mm);
2118 }
2119 }
2120
2121 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2122 struct page **hpage)
2123 __releases(&khugepaged_mm_lock)
2124 __acquires(&khugepaged_mm_lock)
2125 {
2126 struct mm_slot *mm_slot;
2127 struct mm_struct *mm;
2128 struct vm_area_struct *vma;
2129 int progress = 0;
2130
2131 VM_BUG_ON(!pages);
2132 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2133
2134 if (khugepaged_scan.mm_slot)
2135 mm_slot = khugepaged_scan.mm_slot;
2136 else {
2137 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2138 struct mm_slot, mm_node);
2139 khugepaged_scan.address = 0;
2140 khugepaged_scan.mm_slot = mm_slot;
2141 }
2142 spin_unlock(&khugepaged_mm_lock);
2143
2144 mm = mm_slot->mm;
2145 down_read(&mm->mmap_sem);
2146 if (unlikely(khugepaged_test_exit(mm)))
2147 vma = NULL;
2148 else
2149 vma = find_vma(mm, khugepaged_scan.address);
2150
2151 progress++;
2152 for (; vma; vma = vma->vm_next) {
2153 unsigned long hstart, hend;
2154
2155 cond_resched();
2156 if (unlikely(khugepaged_test_exit(mm))) {
2157 progress++;
2158 break;
2159 }
2160 if (!hugepage_vma_check(vma)) {
2161 skip:
2162 progress++;
2163 continue;
2164 }
2165 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2166 hend = vma->vm_end & HPAGE_PMD_MASK;
2167 if (hstart >= hend)
2168 goto skip;
2169 if (khugepaged_scan.address > hend)
2170 goto skip;
2171 if (khugepaged_scan.address < hstart)
2172 khugepaged_scan.address = hstart;
2173 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2174
2175 while (khugepaged_scan.address < hend) {
2176 int ret;
2177 cond_resched();
2178 if (unlikely(khugepaged_test_exit(mm)))
2179 goto breakouterloop;
2180
2181 VM_BUG_ON(khugepaged_scan.address < hstart ||
2182 khugepaged_scan.address + HPAGE_PMD_SIZE >
2183 hend);
2184 ret = khugepaged_scan_pmd(mm, vma,
2185 khugepaged_scan.address,
2186 hpage);
2187 /* move to next address */
2188 khugepaged_scan.address += HPAGE_PMD_SIZE;
2189 progress += HPAGE_PMD_NR;
2190 if (ret)
2191 /* we released mmap_sem so break loop */
2192 goto breakouterloop_mmap_sem;
2193 if (progress >= pages)
2194 goto breakouterloop;
2195 }
2196 }
2197 breakouterloop:
2198 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2199 breakouterloop_mmap_sem:
2200
2201 spin_lock(&khugepaged_mm_lock);
2202 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2203 /*
2204 * Release the current mm_slot if this mm is about to die, or
2205 * if we scanned all vmas of this mm.
2206 */
2207 if (khugepaged_test_exit(mm) || !vma) {
2208 /*
2209 * Make sure that if mm_users is reaching zero while
2210 * khugepaged runs here, khugepaged_exit will find
2211 * mm_slot not pointing to the exiting mm.
2212 */
2213 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2214 khugepaged_scan.mm_slot = list_entry(
2215 mm_slot->mm_node.next,
2216 struct mm_slot, mm_node);
2217 khugepaged_scan.address = 0;
2218 } else {
2219 khugepaged_scan.mm_slot = NULL;
2220 khugepaged_full_scans++;
2221 }
2222
2223 collect_mm_slot(mm_slot);
2224 }
2225
2226 return progress;
2227 }
2228
2229 static int khugepaged_has_work(void)
2230 {
2231 return !list_empty(&khugepaged_scan.mm_head) &&
2232 khugepaged_enabled();
2233 }
2234
2235 static int khugepaged_wait_event(void)
2236 {
2237 return !list_empty(&khugepaged_scan.mm_head) ||
2238 kthread_should_stop();
2239 }
2240
2241 static void khugepaged_do_scan(void)
2242 {
2243 struct page *hpage = NULL;
2244 unsigned int progress = 0, pass_through_head = 0;
2245 unsigned int pages = khugepaged_pages_to_scan;
2246 bool wait = true;
2247
2248 barrier(); /* write khugepaged_pages_to_scan to local stack */
2249
2250 while (progress < pages) {
2251 if (!khugepaged_prealloc_page(&hpage, &wait))
2252 break;
2253
2254 cond_resched();
2255
2256 if (unlikely(kthread_should_stop() || freezing(current)))
2257 break;
2258
2259 spin_lock(&khugepaged_mm_lock);
2260 if (!khugepaged_scan.mm_slot)
2261 pass_through_head++;
2262 if (khugepaged_has_work() &&
2263 pass_through_head < 2)
2264 progress += khugepaged_scan_mm_slot(pages - progress,
2265 &hpage);
2266 else
2267 progress = pages;
2268 spin_unlock(&khugepaged_mm_lock);
2269 }
2270
2271 if (!IS_ERR_OR_NULL(hpage))
2272 put_page(hpage);
2273 }
2274
2275 static void khugepaged_wait_work(void)
2276 {
2277 try_to_freeze();
2278
2279 if (khugepaged_has_work()) {
2280 if (!khugepaged_scan_sleep_millisecs)
2281 return;
2282
2283 wait_event_freezable_timeout(khugepaged_wait,
2284 kthread_should_stop(),
2285 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2286 return;
2287 }
2288
2289 if (khugepaged_enabled())
2290 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2291 }
2292
2293 static int khugepaged(void *none)
2294 {
2295 struct mm_slot *mm_slot;
2296
2297 set_freezable();
2298 set_user_nice(current, 19);
2299
2300 while (!kthread_should_stop()) {
2301 khugepaged_do_scan();
2302 khugepaged_wait_work();
2303 }
2304
2305 spin_lock(&khugepaged_mm_lock);
2306 mm_slot = khugepaged_scan.mm_slot;
2307 khugepaged_scan.mm_slot = NULL;
2308 if (mm_slot)
2309 collect_mm_slot(mm_slot);
2310 spin_unlock(&khugepaged_mm_lock);
2311 return 0;
2312 }
2313
2314 void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2315 {
2316 struct page *page;
2317
2318 spin_lock(&mm->page_table_lock);
2319 if (unlikely(!pmd_trans_huge(*pmd))) {
2320 spin_unlock(&mm->page_table_lock);
2321 return;
2322 }
2323 page = pmd_page(*pmd);
2324 VM_BUG_ON(!page_count(page));
2325 get_page(page);
2326 spin_unlock(&mm->page_table_lock);
2327
2328 split_huge_page(page);
2329
2330 put_page(page);
2331 BUG_ON(pmd_trans_huge(*pmd));
2332 }
2333
2334 static void split_huge_page_address(struct mm_struct *mm,
2335 unsigned long address)
2336 {
2337 pmd_t *pmd;
2338
2339 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2340
2341 pmd = mm_find_pmd(mm, address);
2342 if (!pmd)
2343 return;
2344 /*
2345 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2346 * materialize from under us.
2347 */
2348 split_huge_page_pmd(mm, pmd);
2349 }
2350
2351 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2352 unsigned long start,
2353 unsigned long end,
2354 long adjust_next)
2355 {
2356 /*
2357 * If the new start address isn't hpage aligned and it could
2358 * previously contain an hugepage: check if we need to split
2359 * an huge pmd.
2360 */
2361 if (start & ~HPAGE_PMD_MASK &&
2362 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2363 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2364 split_huge_page_address(vma->vm_mm, start);
2365
2366 /*
2367 * If the new end address isn't hpage aligned and it could
2368 * previously contain an hugepage: check if we need to split
2369 * an huge pmd.
2370 */
2371 if (end & ~HPAGE_PMD_MASK &&
2372 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2373 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2374 split_huge_page_address(vma->vm_mm, end);
2375
2376 /*
2377 * If we're also updating the vma->vm_next->vm_start, if the new
2378 * vm_next->vm_start isn't page aligned and it could previously
2379 * contain an hugepage: check if we need to split an huge pmd.
2380 */
2381 if (adjust_next > 0) {
2382 struct vm_area_struct *next = vma->vm_next;
2383 unsigned long nstart = next->vm_start;
2384 nstart += adjust_next << PAGE_SHIFT;
2385 if (nstart & ~HPAGE_PMD_MASK &&
2386 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2387 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2388 split_huge_page_address(next->vm_mm, nstart);
2389 }
2390 }
This page took 0.080606 seconds and 5 git commands to generate.