mm: Some arch may want to use HPAGE_PMD related values as variables
[deliverable/linux.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/kthread.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/pfn_t.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33
34 #include <asm/tlb.h>
35 #include <asm/pgalloc.h>
36 #include "internal.h"
37
38 enum scan_result {
39 SCAN_FAIL,
40 SCAN_SUCCEED,
41 SCAN_PMD_NULL,
42 SCAN_EXCEED_NONE_PTE,
43 SCAN_PTE_NON_PRESENT,
44 SCAN_PAGE_RO,
45 SCAN_NO_REFERENCED_PAGE,
46 SCAN_PAGE_NULL,
47 SCAN_SCAN_ABORT,
48 SCAN_PAGE_COUNT,
49 SCAN_PAGE_LRU,
50 SCAN_PAGE_LOCK,
51 SCAN_PAGE_ANON,
52 SCAN_PAGE_COMPOUND,
53 SCAN_ANY_PROCESS,
54 SCAN_VMA_NULL,
55 SCAN_VMA_CHECK,
56 SCAN_ADDRESS_RANGE,
57 SCAN_SWAP_CACHE_PAGE,
58 SCAN_DEL_PAGE_LRU,
59 SCAN_ALLOC_HUGE_PAGE_FAIL,
60 SCAN_CGROUP_CHARGE_FAIL
61 };
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/huge_memory.h>
65
66 /*
67 * By default transparent hugepage support is disabled in order that avoid
68 * to risk increase the memory footprint of applications without a guaranteed
69 * benefit. When transparent hugepage support is enabled, is for all mappings,
70 * and khugepaged scans all mappings.
71 * Defrag is invoked by khugepaged hugepage allocations and by page faults
72 * for all hugepage allocations.
73 */
74 unsigned long transparent_hugepage_flags __read_mostly =
75 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
76 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
77 #endif
78 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
79 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
80 #endif
81 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
82 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
83 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
84
85 /* default scan 8*512 pte (or vmas) every 30 second */
86 static unsigned int khugepaged_pages_to_scan __read_mostly;
87 static unsigned int khugepaged_pages_collapsed;
88 static unsigned int khugepaged_full_scans;
89 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
90 /* during fragmentation poll the hugepage allocator once every minute */
91 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
92 static struct task_struct *khugepaged_thread __read_mostly;
93 static DEFINE_MUTEX(khugepaged_mutex);
94 static DEFINE_SPINLOCK(khugepaged_mm_lock);
95 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
96 /*
97 * default collapse hugepages if there is at least one pte mapped like
98 * it would have happened if the vma was large enough during page
99 * fault.
100 */
101 static unsigned int khugepaged_max_ptes_none __read_mostly;
102
103 static int khugepaged(void *none);
104 static int khugepaged_slab_init(void);
105 static void khugepaged_slab_exit(void);
106
107 #define MM_SLOTS_HASH_BITS 10
108 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
109
110 static struct kmem_cache *mm_slot_cache __read_mostly;
111
112 /**
113 * struct mm_slot - hash lookup from mm to mm_slot
114 * @hash: hash collision list
115 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
116 * @mm: the mm that this information is valid for
117 */
118 struct mm_slot {
119 struct hlist_node hash;
120 struct list_head mm_node;
121 struct mm_struct *mm;
122 };
123
124 /**
125 * struct khugepaged_scan - cursor for scanning
126 * @mm_head: the head of the mm list to scan
127 * @mm_slot: the current mm_slot we are scanning
128 * @address: the next address inside that to be scanned
129 *
130 * There is only the one khugepaged_scan instance of this cursor structure.
131 */
132 struct khugepaged_scan {
133 struct list_head mm_head;
134 struct mm_slot *mm_slot;
135 unsigned long address;
136 };
137 static struct khugepaged_scan khugepaged_scan = {
138 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
139 };
140
141 static struct shrinker deferred_split_shrinker;
142
143 static void set_recommended_min_free_kbytes(void)
144 {
145 struct zone *zone;
146 int nr_zones = 0;
147 unsigned long recommended_min;
148
149 for_each_populated_zone(zone)
150 nr_zones++;
151
152 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
153 recommended_min = pageblock_nr_pages * nr_zones * 2;
154
155 /*
156 * Make sure that on average at least two pageblocks are almost free
157 * of another type, one for a migratetype to fall back to and a
158 * second to avoid subsequent fallbacks of other types There are 3
159 * MIGRATE_TYPES we care about.
160 */
161 recommended_min += pageblock_nr_pages * nr_zones *
162 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
163
164 /* don't ever allow to reserve more than 5% of the lowmem */
165 recommended_min = min(recommended_min,
166 (unsigned long) nr_free_buffer_pages() / 20);
167 recommended_min <<= (PAGE_SHIFT-10);
168
169 if (recommended_min > min_free_kbytes) {
170 if (user_min_free_kbytes >= 0)
171 pr_info("raising min_free_kbytes from %d to %lu "
172 "to help transparent hugepage allocations\n",
173 min_free_kbytes, recommended_min);
174
175 min_free_kbytes = recommended_min;
176 }
177 setup_per_zone_wmarks();
178 }
179
180 static int start_stop_khugepaged(void)
181 {
182 int err = 0;
183 if (khugepaged_enabled()) {
184 if (!khugepaged_thread)
185 khugepaged_thread = kthread_run(khugepaged, NULL,
186 "khugepaged");
187 if (IS_ERR(khugepaged_thread)) {
188 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
189 err = PTR_ERR(khugepaged_thread);
190 khugepaged_thread = NULL;
191 goto fail;
192 }
193
194 if (!list_empty(&khugepaged_scan.mm_head))
195 wake_up_interruptible(&khugepaged_wait);
196
197 set_recommended_min_free_kbytes();
198 } else if (khugepaged_thread) {
199 kthread_stop(khugepaged_thread);
200 khugepaged_thread = NULL;
201 }
202 fail:
203 return err;
204 }
205
206 static atomic_t huge_zero_refcount;
207 struct page *huge_zero_page __read_mostly;
208
209 struct page *get_huge_zero_page(void)
210 {
211 struct page *zero_page;
212 retry:
213 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
214 return READ_ONCE(huge_zero_page);
215
216 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
217 HPAGE_PMD_ORDER);
218 if (!zero_page) {
219 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
220 return NULL;
221 }
222 count_vm_event(THP_ZERO_PAGE_ALLOC);
223 preempt_disable();
224 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
225 preempt_enable();
226 __free_pages(zero_page, compound_order(zero_page));
227 goto retry;
228 }
229
230 /* We take additional reference here. It will be put back by shrinker */
231 atomic_set(&huge_zero_refcount, 2);
232 preempt_enable();
233 return READ_ONCE(huge_zero_page);
234 }
235
236 static void put_huge_zero_page(void)
237 {
238 /*
239 * Counter should never go to zero here. Only shrinker can put
240 * last reference.
241 */
242 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
243 }
244
245 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
246 struct shrink_control *sc)
247 {
248 /* we can free zero page only if last reference remains */
249 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
250 }
251
252 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
253 struct shrink_control *sc)
254 {
255 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
256 struct page *zero_page = xchg(&huge_zero_page, NULL);
257 BUG_ON(zero_page == NULL);
258 __free_pages(zero_page, compound_order(zero_page));
259 return HPAGE_PMD_NR;
260 }
261
262 return 0;
263 }
264
265 static struct shrinker huge_zero_page_shrinker = {
266 .count_objects = shrink_huge_zero_page_count,
267 .scan_objects = shrink_huge_zero_page_scan,
268 .seeks = DEFAULT_SEEKS,
269 };
270
271 #ifdef CONFIG_SYSFS
272
273 static ssize_t double_flag_show(struct kobject *kobj,
274 struct kobj_attribute *attr, char *buf,
275 enum transparent_hugepage_flag enabled,
276 enum transparent_hugepage_flag req_madv)
277 {
278 if (test_bit(enabled, &transparent_hugepage_flags)) {
279 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
280 return sprintf(buf, "[always] madvise never\n");
281 } else if (test_bit(req_madv, &transparent_hugepage_flags))
282 return sprintf(buf, "always [madvise] never\n");
283 else
284 return sprintf(buf, "always madvise [never]\n");
285 }
286 static ssize_t double_flag_store(struct kobject *kobj,
287 struct kobj_attribute *attr,
288 const char *buf, size_t count,
289 enum transparent_hugepage_flag enabled,
290 enum transparent_hugepage_flag req_madv)
291 {
292 if (!memcmp("always", buf,
293 min(sizeof("always")-1, count))) {
294 set_bit(enabled, &transparent_hugepage_flags);
295 clear_bit(req_madv, &transparent_hugepage_flags);
296 } else if (!memcmp("madvise", buf,
297 min(sizeof("madvise")-1, count))) {
298 clear_bit(enabled, &transparent_hugepage_flags);
299 set_bit(req_madv, &transparent_hugepage_flags);
300 } else if (!memcmp("never", buf,
301 min(sizeof("never")-1, count))) {
302 clear_bit(enabled, &transparent_hugepage_flags);
303 clear_bit(req_madv, &transparent_hugepage_flags);
304 } else
305 return -EINVAL;
306
307 return count;
308 }
309
310 static ssize_t enabled_show(struct kobject *kobj,
311 struct kobj_attribute *attr, char *buf)
312 {
313 return double_flag_show(kobj, attr, buf,
314 TRANSPARENT_HUGEPAGE_FLAG,
315 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
316 }
317 static ssize_t enabled_store(struct kobject *kobj,
318 struct kobj_attribute *attr,
319 const char *buf, size_t count)
320 {
321 ssize_t ret;
322
323 ret = double_flag_store(kobj, attr, buf, count,
324 TRANSPARENT_HUGEPAGE_FLAG,
325 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
326
327 if (ret > 0) {
328 int err;
329
330 mutex_lock(&khugepaged_mutex);
331 err = start_stop_khugepaged();
332 mutex_unlock(&khugepaged_mutex);
333
334 if (err)
335 ret = err;
336 }
337
338 return ret;
339 }
340 static struct kobj_attribute enabled_attr =
341 __ATTR(enabled, 0644, enabled_show, enabled_store);
342
343 static ssize_t single_flag_show(struct kobject *kobj,
344 struct kobj_attribute *attr, char *buf,
345 enum transparent_hugepage_flag flag)
346 {
347 return sprintf(buf, "%d\n",
348 !!test_bit(flag, &transparent_hugepage_flags));
349 }
350
351 static ssize_t single_flag_store(struct kobject *kobj,
352 struct kobj_attribute *attr,
353 const char *buf, size_t count,
354 enum transparent_hugepage_flag flag)
355 {
356 unsigned long value;
357 int ret;
358
359 ret = kstrtoul(buf, 10, &value);
360 if (ret < 0)
361 return ret;
362 if (value > 1)
363 return -EINVAL;
364
365 if (value)
366 set_bit(flag, &transparent_hugepage_flags);
367 else
368 clear_bit(flag, &transparent_hugepage_flags);
369
370 return count;
371 }
372
373 /*
374 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
375 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
376 * memory just to allocate one more hugepage.
377 */
378 static ssize_t defrag_show(struct kobject *kobj,
379 struct kobj_attribute *attr, char *buf)
380 {
381 return double_flag_show(kobj, attr, buf,
382 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
383 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
384 }
385 static ssize_t defrag_store(struct kobject *kobj,
386 struct kobj_attribute *attr,
387 const char *buf, size_t count)
388 {
389 return double_flag_store(kobj, attr, buf, count,
390 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
391 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
392 }
393 static struct kobj_attribute defrag_attr =
394 __ATTR(defrag, 0644, defrag_show, defrag_store);
395
396 static ssize_t use_zero_page_show(struct kobject *kobj,
397 struct kobj_attribute *attr, char *buf)
398 {
399 return single_flag_show(kobj, attr, buf,
400 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
401 }
402 static ssize_t use_zero_page_store(struct kobject *kobj,
403 struct kobj_attribute *attr, const char *buf, size_t count)
404 {
405 return single_flag_store(kobj, attr, buf, count,
406 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
407 }
408 static struct kobj_attribute use_zero_page_attr =
409 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
410 #ifdef CONFIG_DEBUG_VM
411 static ssize_t debug_cow_show(struct kobject *kobj,
412 struct kobj_attribute *attr, char *buf)
413 {
414 return single_flag_show(kobj, attr, buf,
415 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
416 }
417 static ssize_t debug_cow_store(struct kobject *kobj,
418 struct kobj_attribute *attr,
419 const char *buf, size_t count)
420 {
421 return single_flag_store(kobj, attr, buf, count,
422 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
423 }
424 static struct kobj_attribute debug_cow_attr =
425 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
426 #endif /* CONFIG_DEBUG_VM */
427
428 static struct attribute *hugepage_attr[] = {
429 &enabled_attr.attr,
430 &defrag_attr.attr,
431 &use_zero_page_attr.attr,
432 #ifdef CONFIG_DEBUG_VM
433 &debug_cow_attr.attr,
434 #endif
435 NULL,
436 };
437
438 static struct attribute_group hugepage_attr_group = {
439 .attrs = hugepage_attr,
440 };
441
442 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
443 struct kobj_attribute *attr,
444 char *buf)
445 {
446 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
447 }
448
449 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
450 struct kobj_attribute *attr,
451 const char *buf, size_t count)
452 {
453 unsigned long msecs;
454 int err;
455
456 err = kstrtoul(buf, 10, &msecs);
457 if (err || msecs > UINT_MAX)
458 return -EINVAL;
459
460 khugepaged_scan_sleep_millisecs = msecs;
461 wake_up_interruptible(&khugepaged_wait);
462
463 return count;
464 }
465 static struct kobj_attribute scan_sleep_millisecs_attr =
466 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
467 scan_sleep_millisecs_store);
468
469 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
470 struct kobj_attribute *attr,
471 char *buf)
472 {
473 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
474 }
475
476 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
477 struct kobj_attribute *attr,
478 const char *buf, size_t count)
479 {
480 unsigned long msecs;
481 int err;
482
483 err = kstrtoul(buf, 10, &msecs);
484 if (err || msecs > UINT_MAX)
485 return -EINVAL;
486
487 khugepaged_alloc_sleep_millisecs = msecs;
488 wake_up_interruptible(&khugepaged_wait);
489
490 return count;
491 }
492 static struct kobj_attribute alloc_sleep_millisecs_attr =
493 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
494 alloc_sleep_millisecs_store);
495
496 static ssize_t pages_to_scan_show(struct kobject *kobj,
497 struct kobj_attribute *attr,
498 char *buf)
499 {
500 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
501 }
502 static ssize_t pages_to_scan_store(struct kobject *kobj,
503 struct kobj_attribute *attr,
504 const char *buf, size_t count)
505 {
506 int err;
507 unsigned long pages;
508
509 err = kstrtoul(buf, 10, &pages);
510 if (err || !pages || pages > UINT_MAX)
511 return -EINVAL;
512
513 khugepaged_pages_to_scan = pages;
514
515 return count;
516 }
517 static struct kobj_attribute pages_to_scan_attr =
518 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
519 pages_to_scan_store);
520
521 static ssize_t pages_collapsed_show(struct kobject *kobj,
522 struct kobj_attribute *attr,
523 char *buf)
524 {
525 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
526 }
527 static struct kobj_attribute pages_collapsed_attr =
528 __ATTR_RO(pages_collapsed);
529
530 static ssize_t full_scans_show(struct kobject *kobj,
531 struct kobj_attribute *attr,
532 char *buf)
533 {
534 return sprintf(buf, "%u\n", khugepaged_full_scans);
535 }
536 static struct kobj_attribute full_scans_attr =
537 __ATTR_RO(full_scans);
538
539 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
540 struct kobj_attribute *attr, char *buf)
541 {
542 return single_flag_show(kobj, attr, buf,
543 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
544 }
545 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
546 struct kobj_attribute *attr,
547 const char *buf, size_t count)
548 {
549 return single_flag_store(kobj, attr, buf, count,
550 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
551 }
552 static struct kobj_attribute khugepaged_defrag_attr =
553 __ATTR(defrag, 0644, khugepaged_defrag_show,
554 khugepaged_defrag_store);
555
556 /*
557 * max_ptes_none controls if khugepaged should collapse hugepages over
558 * any unmapped ptes in turn potentially increasing the memory
559 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
560 * reduce the available free memory in the system as it
561 * runs. Increasing max_ptes_none will instead potentially reduce the
562 * free memory in the system during the khugepaged scan.
563 */
564 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
565 struct kobj_attribute *attr,
566 char *buf)
567 {
568 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
569 }
570 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
571 struct kobj_attribute *attr,
572 const char *buf, size_t count)
573 {
574 int err;
575 unsigned long max_ptes_none;
576
577 err = kstrtoul(buf, 10, &max_ptes_none);
578 if (err || max_ptes_none > HPAGE_PMD_NR-1)
579 return -EINVAL;
580
581 khugepaged_max_ptes_none = max_ptes_none;
582
583 return count;
584 }
585 static struct kobj_attribute khugepaged_max_ptes_none_attr =
586 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
587 khugepaged_max_ptes_none_store);
588
589 static struct attribute *khugepaged_attr[] = {
590 &khugepaged_defrag_attr.attr,
591 &khugepaged_max_ptes_none_attr.attr,
592 &pages_to_scan_attr.attr,
593 &pages_collapsed_attr.attr,
594 &full_scans_attr.attr,
595 &scan_sleep_millisecs_attr.attr,
596 &alloc_sleep_millisecs_attr.attr,
597 NULL,
598 };
599
600 static struct attribute_group khugepaged_attr_group = {
601 .attrs = khugepaged_attr,
602 .name = "khugepaged",
603 };
604
605 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
606 {
607 int err;
608
609 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
610 if (unlikely(!*hugepage_kobj)) {
611 pr_err("failed to create transparent hugepage kobject\n");
612 return -ENOMEM;
613 }
614
615 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
616 if (err) {
617 pr_err("failed to register transparent hugepage group\n");
618 goto delete_obj;
619 }
620
621 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
622 if (err) {
623 pr_err("failed to register transparent hugepage group\n");
624 goto remove_hp_group;
625 }
626
627 return 0;
628
629 remove_hp_group:
630 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
631 delete_obj:
632 kobject_put(*hugepage_kobj);
633 return err;
634 }
635
636 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
637 {
638 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
639 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
640 kobject_put(hugepage_kobj);
641 }
642 #else
643 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
644 {
645 return 0;
646 }
647
648 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
649 {
650 }
651 #endif /* CONFIG_SYSFS */
652
653 static int __init hugepage_init(void)
654 {
655 int err;
656 struct kobject *hugepage_kobj;
657
658 if (!has_transparent_hugepage()) {
659 transparent_hugepage_flags = 0;
660 return -EINVAL;
661 }
662
663 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
664 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
665 /*
666 * hugepages can't be allocated by the buddy allocator
667 */
668 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
669 /*
670 * we use page->mapping and page->index in second tail page
671 * as list_head: assuming THP order >= 2
672 */
673 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
674
675 err = hugepage_init_sysfs(&hugepage_kobj);
676 if (err)
677 goto err_sysfs;
678
679 err = khugepaged_slab_init();
680 if (err)
681 goto err_slab;
682
683 err = register_shrinker(&huge_zero_page_shrinker);
684 if (err)
685 goto err_hzp_shrinker;
686 err = register_shrinker(&deferred_split_shrinker);
687 if (err)
688 goto err_split_shrinker;
689
690 /*
691 * By default disable transparent hugepages on smaller systems,
692 * where the extra memory used could hurt more than TLB overhead
693 * is likely to save. The admin can still enable it through /sys.
694 */
695 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
696 transparent_hugepage_flags = 0;
697 return 0;
698 }
699
700 err = start_stop_khugepaged();
701 if (err)
702 goto err_khugepaged;
703
704 return 0;
705 err_khugepaged:
706 unregister_shrinker(&deferred_split_shrinker);
707 err_split_shrinker:
708 unregister_shrinker(&huge_zero_page_shrinker);
709 err_hzp_shrinker:
710 khugepaged_slab_exit();
711 err_slab:
712 hugepage_exit_sysfs(hugepage_kobj);
713 err_sysfs:
714 return err;
715 }
716 subsys_initcall(hugepage_init);
717
718 static int __init setup_transparent_hugepage(char *str)
719 {
720 int ret = 0;
721 if (!str)
722 goto out;
723 if (!strcmp(str, "always")) {
724 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
725 &transparent_hugepage_flags);
726 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
727 &transparent_hugepage_flags);
728 ret = 1;
729 } else if (!strcmp(str, "madvise")) {
730 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
731 &transparent_hugepage_flags);
732 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
733 &transparent_hugepage_flags);
734 ret = 1;
735 } else if (!strcmp(str, "never")) {
736 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
737 &transparent_hugepage_flags);
738 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
739 &transparent_hugepage_flags);
740 ret = 1;
741 }
742 out:
743 if (!ret)
744 pr_warn("transparent_hugepage= cannot parse, ignored\n");
745 return ret;
746 }
747 __setup("transparent_hugepage=", setup_transparent_hugepage);
748
749 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
750 {
751 if (likely(vma->vm_flags & VM_WRITE))
752 pmd = pmd_mkwrite(pmd);
753 return pmd;
754 }
755
756 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
757 {
758 pmd_t entry;
759 entry = mk_pmd(page, prot);
760 entry = pmd_mkhuge(entry);
761 return entry;
762 }
763
764 static inline struct list_head *page_deferred_list(struct page *page)
765 {
766 /*
767 * ->lru in the tail pages is occupied by compound_head.
768 * Let's use ->mapping + ->index in the second tail page as list_head.
769 */
770 return (struct list_head *)&page[2].mapping;
771 }
772
773 void prep_transhuge_page(struct page *page)
774 {
775 /*
776 * we use page->mapping and page->indexlru in second tail page
777 * as list_head: assuming THP order >= 2
778 */
779
780 INIT_LIST_HEAD(page_deferred_list(page));
781 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
782 }
783
784 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
785 struct vm_area_struct *vma,
786 unsigned long address, pmd_t *pmd,
787 struct page *page, gfp_t gfp,
788 unsigned int flags)
789 {
790 struct mem_cgroup *memcg;
791 pgtable_t pgtable;
792 spinlock_t *ptl;
793 unsigned long haddr = address & HPAGE_PMD_MASK;
794
795 VM_BUG_ON_PAGE(!PageCompound(page), page);
796
797 if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
798 put_page(page);
799 count_vm_event(THP_FAULT_FALLBACK);
800 return VM_FAULT_FALLBACK;
801 }
802
803 pgtable = pte_alloc_one(mm, haddr);
804 if (unlikely(!pgtable)) {
805 mem_cgroup_cancel_charge(page, memcg, true);
806 put_page(page);
807 return VM_FAULT_OOM;
808 }
809
810 clear_huge_page(page, haddr, HPAGE_PMD_NR);
811 /*
812 * The memory barrier inside __SetPageUptodate makes sure that
813 * clear_huge_page writes become visible before the set_pmd_at()
814 * write.
815 */
816 __SetPageUptodate(page);
817
818 ptl = pmd_lock(mm, pmd);
819 if (unlikely(!pmd_none(*pmd))) {
820 spin_unlock(ptl);
821 mem_cgroup_cancel_charge(page, memcg, true);
822 put_page(page);
823 pte_free(mm, pgtable);
824 } else {
825 pmd_t entry;
826
827 /* Deliver the page fault to userland */
828 if (userfaultfd_missing(vma)) {
829 int ret;
830
831 spin_unlock(ptl);
832 mem_cgroup_cancel_charge(page, memcg, true);
833 put_page(page);
834 pte_free(mm, pgtable);
835 ret = handle_userfault(vma, address, flags,
836 VM_UFFD_MISSING);
837 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
838 return ret;
839 }
840
841 entry = mk_huge_pmd(page, vma->vm_page_prot);
842 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
843 page_add_new_anon_rmap(page, vma, haddr, true);
844 mem_cgroup_commit_charge(page, memcg, false, true);
845 lru_cache_add_active_or_unevictable(page, vma);
846 pgtable_trans_huge_deposit(mm, pmd, pgtable);
847 set_pmd_at(mm, haddr, pmd, entry);
848 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
849 atomic_long_inc(&mm->nr_ptes);
850 spin_unlock(ptl);
851 count_vm_event(THP_FAULT_ALLOC);
852 }
853
854 return 0;
855 }
856
857 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
858 {
859 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_RECLAIM)) | extra_gfp;
860 }
861
862 /* Caller must hold page table lock. */
863 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
864 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
865 struct page *zero_page)
866 {
867 pmd_t entry;
868 if (!pmd_none(*pmd))
869 return false;
870 entry = mk_pmd(zero_page, vma->vm_page_prot);
871 entry = pmd_mkhuge(entry);
872 if (pgtable)
873 pgtable_trans_huge_deposit(mm, pmd, pgtable);
874 set_pmd_at(mm, haddr, pmd, entry);
875 atomic_long_inc(&mm->nr_ptes);
876 return true;
877 }
878
879 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
880 unsigned long address, pmd_t *pmd,
881 unsigned int flags)
882 {
883 gfp_t gfp;
884 struct page *page;
885 unsigned long haddr = address & HPAGE_PMD_MASK;
886
887 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
888 return VM_FAULT_FALLBACK;
889 if (unlikely(anon_vma_prepare(vma)))
890 return VM_FAULT_OOM;
891 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
892 return VM_FAULT_OOM;
893 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
894 transparent_hugepage_use_zero_page()) {
895 spinlock_t *ptl;
896 pgtable_t pgtable;
897 struct page *zero_page;
898 bool set;
899 int ret;
900 pgtable = pte_alloc_one(mm, haddr);
901 if (unlikely(!pgtable))
902 return VM_FAULT_OOM;
903 zero_page = get_huge_zero_page();
904 if (unlikely(!zero_page)) {
905 pte_free(mm, pgtable);
906 count_vm_event(THP_FAULT_FALLBACK);
907 return VM_FAULT_FALLBACK;
908 }
909 ptl = pmd_lock(mm, pmd);
910 ret = 0;
911 set = false;
912 if (pmd_none(*pmd)) {
913 if (userfaultfd_missing(vma)) {
914 spin_unlock(ptl);
915 ret = handle_userfault(vma, address, flags,
916 VM_UFFD_MISSING);
917 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
918 } else {
919 set_huge_zero_page(pgtable, mm, vma,
920 haddr, pmd,
921 zero_page);
922 spin_unlock(ptl);
923 set = true;
924 }
925 } else
926 spin_unlock(ptl);
927 if (!set) {
928 pte_free(mm, pgtable);
929 put_huge_zero_page();
930 }
931 return ret;
932 }
933 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
934 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
935 if (unlikely(!page)) {
936 count_vm_event(THP_FAULT_FALLBACK);
937 return VM_FAULT_FALLBACK;
938 }
939 prep_transhuge_page(page);
940 return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
941 flags);
942 }
943
944 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
945 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
946 {
947 struct mm_struct *mm = vma->vm_mm;
948 pmd_t entry;
949 spinlock_t *ptl;
950
951 ptl = pmd_lock(mm, pmd);
952 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
953 if (pfn_t_devmap(pfn))
954 entry = pmd_mkdevmap(entry);
955 if (write) {
956 entry = pmd_mkyoung(pmd_mkdirty(entry));
957 entry = maybe_pmd_mkwrite(entry, vma);
958 }
959 set_pmd_at(mm, addr, pmd, entry);
960 update_mmu_cache_pmd(vma, addr, pmd);
961 spin_unlock(ptl);
962 }
963
964 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
965 pmd_t *pmd, pfn_t pfn, bool write)
966 {
967 pgprot_t pgprot = vma->vm_page_prot;
968 /*
969 * If we had pmd_special, we could avoid all these restrictions,
970 * but we need to be consistent with PTEs and architectures that
971 * can't support a 'special' bit.
972 */
973 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
974 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
975 (VM_PFNMAP|VM_MIXEDMAP));
976 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
977 BUG_ON(!pfn_t_devmap(pfn));
978
979 if (addr < vma->vm_start || addr >= vma->vm_end)
980 return VM_FAULT_SIGBUS;
981 if (track_pfn_insert(vma, &pgprot, pfn))
982 return VM_FAULT_SIGBUS;
983 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
984 return VM_FAULT_NOPAGE;
985 }
986
987 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
988 pmd_t *pmd)
989 {
990 pmd_t _pmd;
991
992 /*
993 * We should set the dirty bit only for FOLL_WRITE but for now
994 * the dirty bit in the pmd is meaningless. And if the dirty
995 * bit will become meaningful and we'll only set it with
996 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
997 * set the young bit, instead of the current set_pmd_at.
998 */
999 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1000 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1001 pmd, _pmd, 1))
1002 update_mmu_cache_pmd(vma, addr, pmd);
1003 }
1004
1005 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1006 pmd_t *pmd, int flags)
1007 {
1008 unsigned long pfn = pmd_pfn(*pmd);
1009 struct mm_struct *mm = vma->vm_mm;
1010 struct dev_pagemap *pgmap;
1011 struct page *page;
1012
1013 assert_spin_locked(pmd_lockptr(mm, pmd));
1014
1015 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1016 return NULL;
1017
1018 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1019 /* pass */;
1020 else
1021 return NULL;
1022
1023 if (flags & FOLL_TOUCH)
1024 touch_pmd(vma, addr, pmd);
1025
1026 /*
1027 * device mapped pages can only be returned if the
1028 * caller will manage the page reference count.
1029 */
1030 if (!(flags & FOLL_GET))
1031 return ERR_PTR(-EEXIST);
1032
1033 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1034 pgmap = get_dev_pagemap(pfn, NULL);
1035 if (!pgmap)
1036 return ERR_PTR(-EFAULT);
1037 page = pfn_to_page(pfn);
1038 get_page(page);
1039 put_dev_pagemap(pgmap);
1040
1041 return page;
1042 }
1043
1044 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1045 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1046 struct vm_area_struct *vma)
1047 {
1048 spinlock_t *dst_ptl, *src_ptl;
1049 struct page *src_page;
1050 pmd_t pmd;
1051 pgtable_t pgtable = NULL;
1052 int ret;
1053
1054 if (!vma_is_dax(vma)) {
1055 ret = -ENOMEM;
1056 pgtable = pte_alloc_one(dst_mm, addr);
1057 if (unlikely(!pgtable))
1058 goto out;
1059 }
1060
1061 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1062 src_ptl = pmd_lockptr(src_mm, src_pmd);
1063 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1064
1065 ret = -EAGAIN;
1066 pmd = *src_pmd;
1067 if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
1068 pte_free(dst_mm, pgtable);
1069 goto out_unlock;
1070 }
1071 /*
1072 * When page table lock is held, the huge zero pmd should not be
1073 * under splitting since we don't split the page itself, only pmd to
1074 * a page table.
1075 */
1076 if (is_huge_zero_pmd(pmd)) {
1077 struct page *zero_page;
1078 /*
1079 * get_huge_zero_page() will never allocate a new page here,
1080 * since we already have a zero page to copy. It just takes a
1081 * reference.
1082 */
1083 zero_page = get_huge_zero_page();
1084 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1085 zero_page);
1086 ret = 0;
1087 goto out_unlock;
1088 }
1089
1090 if (!vma_is_dax(vma)) {
1091 /* thp accounting separate from pmd_devmap accounting */
1092 src_page = pmd_page(pmd);
1093 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1094 get_page(src_page);
1095 page_dup_rmap(src_page, true);
1096 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1097 atomic_long_inc(&dst_mm->nr_ptes);
1098 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1099 }
1100
1101 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1102 pmd = pmd_mkold(pmd_wrprotect(pmd));
1103 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1104
1105 ret = 0;
1106 out_unlock:
1107 spin_unlock(src_ptl);
1108 spin_unlock(dst_ptl);
1109 out:
1110 return ret;
1111 }
1112
1113 void huge_pmd_set_accessed(struct mm_struct *mm,
1114 struct vm_area_struct *vma,
1115 unsigned long address,
1116 pmd_t *pmd, pmd_t orig_pmd,
1117 int dirty)
1118 {
1119 spinlock_t *ptl;
1120 pmd_t entry;
1121 unsigned long haddr;
1122
1123 ptl = pmd_lock(mm, pmd);
1124 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1125 goto unlock;
1126
1127 entry = pmd_mkyoung(orig_pmd);
1128 haddr = address & HPAGE_PMD_MASK;
1129 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1130 update_mmu_cache_pmd(vma, address, pmd);
1131
1132 unlock:
1133 spin_unlock(ptl);
1134 }
1135
1136 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1137 struct vm_area_struct *vma,
1138 unsigned long address,
1139 pmd_t *pmd, pmd_t orig_pmd,
1140 struct page *page,
1141 unsigned long haddr)
1142 {
1143 struct mem_cgroup *memcg;
1144 spinlock_t *ptl;
1145 pgtable_t pgtable;
1146 pmd_t _pmd;
1147 int ret = 0, i;
1148 struct page **pages;
1149 unsigned long mmun_start; /* For mmu_notifiers */
1150 unsigned long mmun_end; /* For mmu_notifiers */
1151
1152 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1153 GFP_KERNEL);
1154 if (unlikely(!pages)) {
1155 ret |= VM_FAULT_OOM;
1156 goto out;
1157 }
1158
1159 for (i = 0; i < HPAGE_PMD_NR; i++) {
1160 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1161 __GFP_OTHER_NODE,
1162 vma, address, page_to_nid(page));
1163 if (unlikely(!pages[i] ||
1164 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1165 &memcg, false))) {
1166 if (pages[i])
1167 put_page(pages[i]);
1168 while (--i >= 0) {
1169 memcg = (void *)page_private(pages[i]);
1170 set_page_private(pages[i], 0);
1171 mem_cgroup_cancel_charge(pages[i], memcg,
1172 false);
1173 put_page(pages[i]);
1174 }
1175 kfree(pages);
1176 ret |= VM_FAULT_OOM;
1177 goto out;
1178 }
1179 set_page_private(pages[i], (unsigned long)memcg);
1180 }
1181
1182 for (i = 0; i < HPAGE_PMD_NR; i++) {
1183 copy_user_highpage(pages[i], page + i,
1184 haddr + PAGE_SIZE * i, vma);
1185 __SetPageUptodate(pages[i]);
1186 cond_resched();
1187 }
1188
1189 mmun_start = haddr;
1190 mmun_end = haddr + HPAGE_PMD_SIZE;
1191 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1192
1193 ptl = pmd_lock(mm, pmd);
1194 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1195 goto out_free_pages;
1196 VM_BUG_ON_PAGE(!PageHead(page), page);
1197
1198 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1199 /* leave pmd empty until pte is filled */
1200
1201 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1202 pmd_populate(mm, &_pmd, pgtable);
1203
1204 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1205 pte_t *pte, entry;
1206 entry = mk_pte(pages[i], vma->vm_page_prot);
1207 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1208 memcg = (void *)page_private(pages[i]);
1209 set_page_private(pages[i], 0);
1210 page_add_new_anon_rmap(pages[i], vma, haddr, false);
1211 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1212 lru_cache_add_active_or_unevictable(pages[i], vma);
1213 pte = pte_offset_map(&_pmd, haddr);
1214 VM_BUG_ON(!pte_none(*pte));
1215 set_pte_at(mm, haddr, pte, entry);
1216 pte_unmap(pte);
1217 }
1218 kfree(pages);
1219
1220 smp_wmb(); /* make pte visible before pmd */
1221 pmd_populate(mm, pmd, pgtable);
1222 page_remove_rmap(page, true);
1223 spin_unlock(ptl);
1224
1225 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1226
1227 ret |= VM_FAULT_WRITE;
1228 put_page(page);
1229
1230 out:
1231 return ret;
1232
1233 out_free_pages:
1234 spin_unlock(ptl);
1235 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1236 for (i = 0; i < HPAGE_PMD_NR; i++) {
1237 memcg = (void *)page_private(pages[i]);
1238 set_page_private(pages[i], 0);
1239 mem_cgroup_cancel_charge(pages[i], memcg, false);
1240 put_page(pages[i]);
1241 }
1242 kfree(pages);
1243 goto out;
1244 }
1245
1246 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1247 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1248 {
1249 spinlock_t *ptl;
1250 int ret = 0;
1251 struct page *page = NULL, *new_page;
1252 struct mem_cgroup *memcg;
1253 unsigned long haddr;
1254 unsigned long mmun_start; /* For mmu_notifiers */
1255 unsigned long mmun_end; /* For mmu_notifiers */
1256 gfp_t huge_gfp; /* for allocation and charge */
1257
1258 ptl = pmd_lockptr(mm, pmd);
1259 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1260 haddr = address & HPAGE_PMD_MASK;
1261 if (is_huge_zero_pmd(orig_pmd))
1262 goto alloc;
1263 spin_lock(ptl);
1264 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1265 goto out_unlock;
1266
1267 page = pmd_page(orig_pmd);
1268 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1269 /*
1270 * We can only reuse the page if nobody else maps the huge page or it's
1271 * part. We can do it by checking page_mapcount() on each sub-page, but
1272 * it's expensive.
1273 * The cheaper way is to check page_count() to be equal 1: every
1274 * mapcount takes page reference reference, so this way we can
1275 * guarantee, that the PMD is the only mapping.
1276 * This can give false negative if somebody pinned the page, but that's
1277 * fine.
1278 */
1279 if (page_mapcount(page) == 1 && page_count(page) == 1) {
1280 pmd_t entry;
1281 entry = pmd_mkyoung(orig_pmd);
1282 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1283 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1284 update_mmu_cache_pmd(vma, address, pmd);
1285 ret |= VM_FAULT_WRITE;
1286 goto out_unlock;
1287 }
1288 get_page(page);
1289 spin_unlock(ptl);
1290 alloc:
1291 if (transparent_hugepage_enabled(vma) &&
1292 !transparent_hugepage_debug_cow()) {
1293 huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1294 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1295 } else
1296 new_page = NULL;
1297
1298 if (likely(new_page)) {
1299 prep_transhuge_page(new_page);
1300 } else {
1301 if (!page) {
1302 split_huge_pmd(vma, pmd, address);
1303 ret |= VM_FAULT_FALLBACK;
1304 } else {
1305 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1306 pmd, orig_pmd, page, haddr);
1307 if (ret & VM_FAULT_OOM) {
1308 split_huge_pmd(vma, pmd, address);
1309 ret |= VM_FAULT_FALLBACK;
1310 }
1311 put_page(page);
1312 }
1313 count_vm_event(THP_FAULT_FALLBACK);
1314 goto out;
1315 }
1316
1317 if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1318 true))) {
1319 put_page(new_page);
1320 if (page) {
1321 split_huge_pmd(vma, pmd, address);
1322 put_page(page);
1323 } else
1324 split_huge_pmd(vma, pmd, address);
1325 ret |= VM_FAULT_FALLBACK;
1326 count_vm_event(THP_FAULT_FALLBACK);
1327 goto out;
1328 }
1329
1330 count_vm_event(THP_FAULT_ALLOC);
1331
1332 if (!page)
1333 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1334 else
1335 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1336 __SetPageUptodate(new_page);
1337
1338 mmun_start = haddr;
1339 mmun_end = haddr + HPAGE_PMD_SIZE;
1340 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1341
1342 spin_lock(ptl);
1343 if (page)
1344 put_page(page);
1345 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1346 spin_unlock(ptl);
1347 mem_cgroup_cancel_charge(new_page, memcg, true);
1348 put_page(new_page);
1349 goto out_mn;
1350 } else {
1351 pmd_t entry;
1352 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1353 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1354 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1355 page_add_new_anon_rmap(new_page, vma, haddr, true);
1356 mem_cgroup_commit_charge(new_page, memcg, false, true);
1357 lru_cache_add_active_or_unevictable(new_page, vma);
1358 set_pmd_at(mm, haddr, pmd, entry);
1359 update_mmu_cache_pmd(vma, address, pmd);
1360 if (!page) {
1361 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1362 put_huge_zero_page();
1363 } else {
1364 VM_BUG_ON_PAGE(!PageHead(page), page);
1365 page_remove_rmap(page, true);
1366 put_page(page);
1367 }
1368 ret |= VM_FAULT_WRITE;
1369 }
1370 spin_unlock(ptl);
1371 out_mn:
1372 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1373 out:
1374 return ret;
1375 out_unlock:
1376 spin_unlock(ptl);
1377 return ret;
1378 }
1379
1380 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1381 unsigned long addr,
1382 pmd_t *pmd,
1383 unsigned int flags)
1384 {
1385 struct mm_struct *mm = vma->vm_mm;
1386 struct page *page = NULL;
1387
1388 assert_spin_locked(pmd_lockptr(mm, pmd));
1389
1390 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1391 goto out;
1392
1393 /* Avoid dumping huge zero page */
1394 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1395 return ERR_PTR(-EFAULT);
1396
1397 /* Full NUMA hinting faults to serialise migration in fault paths */
1398 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1399 goto out;
1400
1401 page = pmd_page(*pmd);
1402 VM_BUG_ON_PAGE(!PageHead(page), page);
1403 if (flags & FOLL_TOUCH)
1404 touch_pmd(vma, addr, pmd);
1405 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1406 /*
1407 * We don't mlock() pte-mapped THPs. This way we can avoid
1408 * leaking mlocked pages into non-VM_LOCKED VMAs.
1409 *
1410 * In most cases the pmd is the only mapping of the page as we
1411 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1412 * writable private mappings in populate_vma_page_range().
1413 *
1414 * The only scenario when we have the page shared here is if we
1415 * mlocking read-only mapping shared over fork(). We skip
1416 * mlocking such pages.
1417 */
1418 if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1419 page->mapping && trylock_page(page)) {
1420 lru_add_drain();
1421 if (page->mapping)
1422 mlock_vma_page(page);
1423 unlock_page(page);
1424 }
1425 }
1426 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1427 VM_BUG_ON_PAGE(!PageCompound(page), page);
1428 if (flags & FOLL_GET)
1429 get_page(page);
1430
1431 out:
1432 return page;
1433 }
1434
1435 /* NUMA hinting page fault entry point for trans huge pmds */
1436 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1437 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1438 {
1439 spinlock_t *ptl;
1440 struct anon_vma *anon_vma = NULL;
1441 struct page *page;
1442 unsigned long haddr = addr & HPAGE_PMD_MASK;
1443 int page_nid = -1, this_nid = numa_node_id();
1444 int target_nid, last_cpupid = -1;
1445 bool page_locked;
1446 bool migrated = false;
1447 bool was_writable;
1448 int flags = 0;
1449
1450 /* A PROT_NONE fault should not end up here */
1451 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1452
1453 ptl = pmd_lock(mm, pmdp);
1454 if (unlikely(!pmd_same(pmd, *pmdp)))
1455 goto out_unlock;
1456
1457 /*
1458 * If there are potential migrations, wait for completion and retry
1459 * without disrupting NUMA hinting information. Do not relock and
1460 * check_same as the page may no longer be mapped.
1461 */
1462 if (unlikely(pmd_trans_migrating(*pmdp))) {
1463 page = pmd_page(*pmdp);
1464 spin_unlock(ptl);
1465 wait_on_page_locked(page);
1466 goto out;
1467 }
1468
1469 page = pmd_page(pmd);
1470 BUG_ON(is_huge_zero_page(page));
1471 page_nid = page_to_nid(page);
1472 last_cpupid = page_cpupid_last(page);
1473 count_vm_numa_event(NUMA_HINT_FAULTS);
1474 if (page_nid == this_nid) {
1475 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1476 flags |= TNF_FAULT_LOCAL;
1477 }
1478
1479 /* See similar comment in do_numa_page for explanation */
1480 if (!(vma->vm_flags & VM_WRITE))
1481 flags |= TNF_NO_GROUP;
1482
1483 /*
1484 * Acquire the page lock to serialise THP migrations but avoid dropping
1485 * page_table_lock if at all possible
1486 */
1487 page_locked = trylock_page(page);
1488 target_nid = mpol_misplaced(page, vma, haddr);
1489 if (target_nid == -1) {
1490 /* If the page was locked, there are no parallel migrations */
1491 if (page_locked)
1492 goto clear_pmdnuma;
1493 }
1494
1495 /* Migration could have started since the pmd_trans_migrating check */
1496 if (!page_locked) {
1497 spin_unlock(ptl);
1498 wait_on_page_locked(page);
1499 page_nid = -1;
1500 goto out;
1501 }
1502
1503 /*
1504 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1505 * to serialises splits
1506 */
1507 get_page(page);
1508 spin_unlock(ptl);
1509 anon_vma = page_lock_anon_vma_read(page);
1510
1511 /* Confirm the PMD did not change while page_table_lock was released */
1512 spin_lock(ptl);
1513 if (unlikely(!pmd_same(pmd, *pmdp))) {
1514 unlock_page(page);
1515 put_page(page);
1516 page_nid = -1;
1517 goto out_unlock;
1518 }
1519
1520 /* Bail if we fail to protect against THP splits for any reason */
1521 if (unlikely(!anon_vma)) {
1522 put_page(page);
1523 page_nid = -1;
1524 goto clear_pmdnuma;
1525 }
1526
1527 /*
1528 * Migrate the THP to the requested node, returns with page unlocked
1529 * and access rights restored.
1530 */
1531 spin_unlock(ptl);
1532 migrated = migrate_misplaced_transhuge_page(mm, vma,
1533 pmdp, pmd, addr, page, target_nid);
1534 if (migrated) {
1535 flags |= TNF_MIGRATED;
1536 page_nid = target_nid;
1537 } else
1538 flags |= TNF_MIGRATE_FAIL;
1539
1540 goto out;
1541 clear_pmdnuma:
1542 BUG_ON(!PageLocked(page));
1543 was_writable = pmd_write(pmd);
1544 pmd = pmd_modify(pmd, vma->vm_page_prot);
1545 pmd = pmd_mkyoung(pmd);
1546 if (was_writable)
1547 pmd = pmd_mkwrite(pmd);
1548 set_pmd_at(mm, haddr, pmdp, pmd);
1549 update_mmu_cache_pmd(vma, addr, pmdp);
1550 unlock_page(page);
1551 out_unlock:
1552 spin_unlock(ptl);
1553
1554 out:
1555 if (anon_vma)
1556 page_unlock_anon_vma_read(anon_vma);
1557
1558 if (page_nid != -1)
1559 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1560
1561 return 0;
1562 }
1563
1564 int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1565 pmd_t *pmd, unsigned long addr, unsigned long next)
1566
1567 {
1568 spinlock_t *ptl;
1569 pmd_t orig_pmd;
1570 struct page *page;
1571 struct mm_struct *mm = tlb->mm;
1572 int ret = 0;
1573
1574 ptl = pmd_trans_huge_lock(pmd, vma);
1575 if (!ptl)
1576 goto out_unlocked;
1577
1578 orig_pmd = *pmd;
1579 if (is_huge_zero_pmd(orig_pmd)) {
1580 ret = 1;
1581 goto out;
1582 }
1583
1584 page = pmd_page(orig_pmd);
1585 /*
1586 * If other processes are mapping this page, we couldn't discard
1587 * the page unless they all do MADV_FREE so let's skip the page.
1588 */
1589 if (page_mapcount(page) != 1)
1590 goto out;
1591
1592 if (!trylock_page(page))
1593 goto out;
1594
1595 /*
1596 * If user want to discard part-pages of THP, split it so MADV_FREE
1597 * will deactivate only them.
1598 */
1599 if (next - addr != HPAGE_PMD_SIZE) {
1600 get_page(page);
1601 spin_unlock(ptl);
1602 if (split_huge_page(page)) {
1603 put_page(page);
1604 unlock_page(page);
1605 goto out_unlocked;
1606 }
1607 put_page(page);
1608 unlock_page(page);
1609 ret = 1;
1610 goto out_unlocked;
1611 }
1612
1613 if (PageDirty(page))
1614 ClearPageDirty(page);
1615 unlock_page(page);
1616
1617 if (PageActive(page))
1618 deactivate_page(page);
1619
1620 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1621 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1622 tlb->fullmm);
1623 orig_pmd = pmd_mkold(orig_pmd);
1624 orig_pmd = pmd_mkclean(orig_pmd);
1625
1626 set_pmd_at(mm, addr, pmd, orig_pmd);
1627 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1628 }
1629 ret = 1;
1630 out:
1631 spin_unlock(ptl);
1632 out_unlocked:
1633 return ret;
1634 }
1635
1636 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1637 pmd_t *pmd, unsigned long addr)
1638 {
1639 pmd_t orig_pmd;
1640 spinlock_t *ptl;
1641
1642 ptl = __pmd_trans_huge_lock(pmd, vma);
1643 if (!ptl)
1644 return 0;
1645 /*
1646 * For architectures like ppc64 we look at deposited pgtable
1647 * when calling pmdp_huge_get_and_clear. So do the
1648 * pgtable_trans_huge_withdraw after finishing pmdp related
1649 * operations.
1650 */
1651 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1652 tlb->fullmm);
1653 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1654 if (vma_is_dax(vma)) {
1655 spin_unlock(ptl);
1656 if (is_huge_zero_pmd(orig_pmd))
1657 put_huge_zero_page();
1658 } else if (is_huge_zero_pmd(orig_pmd)) {
1659 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1660 atomic_long_dec(&tlb->mm->nr_ptes);
1661 spin_unlock(ptl);
1662 put_huge_zero_page();
1663 } else {
1664 struct page *page = pmd_page(orig_pmd);
1665 page_remove_rmap(page, true);
1666 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1667 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1668 VM_BUG_ON_PAGE(!PageHead(page), page);
1669 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1670 atomic_long_dec(&tlb->mm->nr_ptes);
1671 spin_unlock(ptl);
1672 tlb_remove_page(tlb, page);
1673 }
1674 return 1;
1675 }
1676
1677 bool move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1678 unsigned long old_addr,
1679 unsigned long new_addr, unsigned long old_end,
1680 pmd_t *old_pmd, pmd_t *new_pmd)
1681 {
1682 spinlock_t *old_ptl, *new_ptl;
1683 pmd_t pmd;
1684
1685 struct mm_struct *mm = vma->vm_mm;
1686
1687 if ((old_addr & ~HPAGE_PMD_MASK) ||
1688 (new_addr & ~HPAGE_PMD_MASK) ||
1689 old_end - old_addr < HPAGE_PMD_SIZE ||
1690 (new_vma->vm_flags & VM_NOHUGEPAGE))
1691 return false;
1692
1693 /*
1694 * The destination pmd shouldn't be established, free_pgtables()
1695 * should have release it.
1696 */
1697 if (WARN_ON(!pmd_none(*new_pmd))) {
1698 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1699 return false;
1700 }
1701
1702 /*
1703 * We don't have to worry about the ordering of src and dst
1704 * ptlocks because exclusive mmap_sem prevents deadlock.
1705 */
1706 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1707 if (old_ptl) {
1708 new_ptl = pmd_lockptr(mm, new_pmd);
1709 if (new_ptl != old_ptl)
1710 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1711 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1712 VM_BUG_ON(!pmd_none(*new_pmd));
1713
1714 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1715 pgtable_t pgtable;
1716 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1717 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1718 }
1719 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1720 if (new_ptl != old_ptl)
1721 spin_unlock(new_ptl);
1722 spin_unlock(old_ptl);
1723 return true;
1724 }
1725 return false;
1726 }
1727
1728 /*
1729 * Returns
1730 * - 0 if PMD could not be locked
1731 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1732 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1733 */
1734 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1735 unsigned long addr, pgprot_t newprot, int prot_numa)
1736 {
1737 struct mm_struct *mm = vma->vm_mm;
1738 spinlock_t *ptl;
1739 int ret = 0;
1740
1741 ptl = __pmd_trans_huge_lock(pmd, vma);
1742 if (ptl) {
1743 pmd_t entry;
1744 bool preserve_write = prot_numa && pmd_write(*pmd);
1745 ret = 1;
1746
1747 /*
1748 * Avoid trapping faults against the zero page. The read-only
1749 * data is likely to be read-cached on the local CPU and
1750 * local/remote hits to the zero page are not interesting.
1751 */
1752 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1753 spin_unlock(ptl);
1754 return ret;
1755 }
1756
1757 if (!prot_numa || !pmd_protnone(*pmd)) {
1758 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1759 entry = pmd_modify(entry, newprot);
1760 if (preserve_write)
1761 entry = pmd_mkwrite(entry);
1762 ret = HPAGE_PMD_NR;
1763 set_pmd_at(mm, addr, pmd, entry);
1764 BUG_ON(!preserve_write && pmd_write(entry));
1765 }
1766 spin_unlock(ptl);
1767 }
1768
1769 return ret;
1770 }
1771
1772 /*
1773 * Returns true if a given pmd maps a thp, false otherwise.
1774 *
1775 * Note that if it returns true, this routine returns without unlocking page
1776 * table lock. So callers must unlock it.
1777 */
1778 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1779 {
1780 spinlock_t *ptl;
1781 ptl = pmd_lock(vma->vm_mm, pmd);
1782 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1783 return ptl;
1784 spin_unlock(ptl);
1785 return NULL;
1786 }
1787
1788 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1789
1790 int hugepage_madvise(struct vm_area_struct *vma,
1791 unsigned long *vm_flags, int advice)
1792 {
1793 switch (advice) {
1794 case MADV_HUGEPAGE:
1795 #ifdef CONFIG_S390
1796 /*
1797 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1798 * can't handle this properly after s390_enable_sie, so we simply
1799 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1800 */
1801 if (mm_has_pgste(vma->vm_mm))
1802 return 0;
1803 #endif
1804 /*
1805 * Be somewhat over-protective like KSM for now!
1806 */
1807 if (*vm_flags & VM_NO_THP)
1808 return -EINVAL;
1809 *vm_flags &= ~VM_NOHUGEPAGE;
1810 *vm_flags |= VM_HUGEPAGE;
1811 /*
1812 * If the vma become good for khugepaged to scan,
1813 * register it here without waiting a page fault that
1814 * may not happen any time soon.
1815 */
1816 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1817 return -ENOMEM;
1818 break;
1819 case MADV_NOHUGEPAGE:
1820 /*
1821 * Be somewhat over-protective like KSM for now!
1822 */
1823 if (*vm_flags & VM_NO_THP)
1824 return -EINVAL;
1825 *vm_flags &= ~VM_HUGEPAGE;
1826 *vm_flags |= VM_NOHUGEPAGE;
1827 /*
1828 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1829 * this vma even if we leave the mm registered in khugepaged if
1830 * it got registered before VM_NOHUGEPAGE was set.
1831 */
1832 break;
1833 }
1834
1835 return 0;
1836 }
1837
1838 static int __init khugepaged_slab_init(void)
1839 {
1840 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1841 sizeof(struct mm_slot),
1842 __alignof__(struct mm_slot), 0, NULL);
1843 if (!mm_slot_cache)
1844 return -ENOMEM;
1845
1846 return 0;
1847 }
1848
1849 static void __init khugepaged_slab_exit(void)
1850 {
1851 kmem_cache_destroy(mm_slot_cache);
1852 }
1853
1854 static inline struct mm_slot *alloc_mm_slot(void)
1855 {
1856 if (!mm_slot_cache) /* initialization failed */
1857 return NULL;
1858 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1859 }
1860
1861 static inline void free_mm_slot(struct mm_slot *mm_slot)
1862 {
1863 kmem_cache_free(mm_slot_cache, mm_slot);
1864 }
1865
1866 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1867 {
1868 struct mm_slot *mm_slot;
1869
1870 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1871 if (mm == mm_slot->mm)
1872 return mm_slot;
1873
1874 return NULL;
1875 }
1876
1877 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1878 struct mm_slot *mm_slot)
1879 {
1880 mm_slot->mm = mm;
1881 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1882 }
1883
1884 static inline int khugepaged_test_exit(struct mm_struct *mm)
1885 {
1886 return atomic_read(&mm->mm_users) == 0;
1887 }
1888
1889 int __khugepaged_enter(struct mm_struct *mm)
1890 {
1891 struct mm_slot *mm_slot;
1892 int wakeup;
1893
1894 mm_slot = alloc_mm_slot();
1895 if (!mm_slot)
1896 return -ENOMEM;
1897
1898 /* __khugepaged_exit() must not run from under us */
1899 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
1900 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1901 free_mm_slot(mm_slot);
1902 return 0;
1903 }
1904
1905 spin_lock(&khugepaged_mm_lock);
1906 insert_to_mm_slots_hash(mm, mm_slot);
1907 /*
1908 * Insert just behind the scanning cursor, to let the area settle
1909 * down a little.
1910 */
1911 wakeup = list_empty(&khugepaged_scan.mm_head);
1912 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1913 spin_unlock(&khugepaged_mm_lock);
1914
1915 atomic_inc(&mm->mm_count);
1916 if (wakeup)
1917 wake_up_interruptible(&khugepaged_wait);
1918
1919 return 0;
1920 }
1921
1922 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1923 unsigned long vm_flags)
1924 {
1925 unsigned long hstart, hend;
1926 if (!vma->anon_vma)
1927 /*
1928 * Not yet faulted in so we will register later in the
1929 * page fault if needed.
1930 */
1931 return 0;
1932 if (vma->vm_ops)
1933 /* khugepaged not yet working on file or special mappings */
1934 return 0;
1935 VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
1936 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1937 hend = vma->vm_end & HPAGE_PMD_MASK;
1938 if (hstart < hend)
1939 return khugepaged_enter(vma, vm_flags);
1940 return 0;
1941 }
1942
1943 void __khugepaged_exit(struct mm_struct *mm)
1944 {
1945 struct mm_slot *mm_slot;
1946 int free = 0;
1947
1948 spin_lock(&khugepaged_mm_lock);
1949 mm_slot = get_mm_slot(mm);
1950 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1951 hash_del(&mm_slot->hash);
1952 list_del(&mm_slot->mm_node);
1953 free = 1;
1954 }
1955 spin_unlock(&khugepaged_mm_lock);
1956
1957 if (free) {
1958 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1959 free_mm_slot(mm_slot);
1960 mmdrop(mm);
1961 } else if (mm_slot) {
1962 /*
1963 * This is required to serialize against
1964 * khugepaged_test_exit() (which is guaranteed to run
1965 * under mmap sem read mode). Stop here (after we
1966 * return all pagetables will be destroyed) until
1967 * khugepaged has finished working on the pagetables
1968 * under the mmap_sem.
1969 */
1970 down_write(&mm->mmap_sem);
1971 up_write(&mm->mmap_sem);
1972 }
1973 }
1974
1975 static void release_pte_page(struct page *page)
1976 {
1977 /* 0 stands for page_is_file_cache(page) == false */
1978 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1979 unlock_page(page);
1980 putback_lru_page(page);
1981 }
1982
1983 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1984 {
1985 while (--_pte >= pte) {
1986 pte_t pteval = *_pte;
1987 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
1988 release_pte_page(pte_page(pteval));
1989 }
1990 }
1991
1992 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1993 unsigned long address,
1994 pte_t *pte)
1995 {
1996 struct page *page = NULL;
1997 pte_t *_pte;
1998 int none_or_zero = 0, result = 0;
1999 bool referenced = false, writable = false;
2000
2001 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2002 _pte++, address += PAGE_SIZE) {
2003 pte_t pteval = *_pte;
2004 if (pte_none(pteval) || (pte_present(pteval) &&
2005 is_zero_pfn(pte_pfn(pteval)))) {
2006 if (!userfaultfd_armed(vma) &&
2007 ++none_or_zero <= khugepaged_max_ptes_none) {
2008 continue;
2009 } else {
2010 result = SCAN_EXCEED_NONE_PTE;
2011 goto out;
2012 }
2013 }
2014 if (!pte_present(pteval)) {
2015 result = SCAN_PTE_NON_PRESENT;
2016 goto out;
2017 }
2018 page = vm_normal_page(vma, address, pteval);
2019 if (unlikely(!page)) {
2020 result = SCAN_PAGE_NULL;
2021 goto out;
2022 }
2023
2024 VM_BUG_ON_PAGE(PageCompound(page), page);
2025 VM_BUG_ON_PAGE(!PageAnon(page), page);
2026 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2027
2028 /*
2029 * We can do it before isolate_lru_page because the
2030 * page can't be freed from under us. NOTE: PG_lock
2031 * is needed to serialize against split_huge_page
2032 * when invoked from the VM.
2033 */
2034 if (!trylock_page(page)) {
2035 result = SCAN_PAGE_LOCK;
2036 goto out;
2037 }
2038
2039 /*
2040 * cannot use mapcount: can't collapse if there's a gup pin.
2041 * The page must only be referenced by the scanned process
2042 * and page swap cache.
2043 */
2044 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2045 unlock_page(page);
2046 result = SCAN_PAGE_COUNT;
2047 goto out;
2048 }
2049 if (pte_write(pteval)) {
2050 writable = true;
2051 } else {
2052 if (PageSwapCache(page) && !reuse_swap_page(page)) {
2053 unlock_page(page);
2054 result = SCAN_SWAP_CACHE_PAGE;
2055 goto out;
2056 }
2057 /*
2058 * Page is not in the swap cache. It can be collapsed
2059 * into a THP.
2060 */
2061 }
2062
2063 /*
2064 * Isolate the page to avoid collapsing an hugepage
2065 * currently in use by the VM.
2066 */
2067 if (isolate_lru_page(page)) {
2068 unlock_page(page);
2069 result = SCAN_DEL_PAGE_LRU;
2070 goto out;
2071 }
2072 /* 0 stands for page_is_file_cache(page) == false */
2073 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2074 VM_BUG_ON_PAGE(!PageLocked(page), page);
2075 VM_BUG_ON_PAGE(PageLRU(page), page);
2076
2077 /* If there is no mapped pte young don't collapse the page */
2078 if (pte_young(pteval) ||
2079 page_is_young(page) || PageReferenced(page) ||
2080 mmu_notifier_test_young(vma->vm_mm, address))
2081 referenced = true;
2082 }
2083 if (likely(writable)) {
2084 if (likely(referenced)) {
2085 result = SCAN_SUCCEED;
2086 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2087 referenced, writable, result);
2088 return 1;
2089 }
2090 } else {
2091 result = SCAN_PAGE_RO;
2092 }
2093
2094 out:
2095 release_pte_pages(pte, _pte);
2096 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2097 referenced, writable, result);
2098 return 0;
2099 }
2100
2101 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2102 struct vm_area_struct *vma,
2103 unsigned long address,
2104 spinlock_t *ptl)
2105 {
2106 pte_t *_pte;
2107 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2108 pte_t pteval = *_pte;
2109 struct page *src_page;
2110
2111 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2112 clear_user_highpage(page, address);
2113 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2114 if (is_zero_pfn(pte_pfn(pteval))) {
2115 /*
2116 * ptl mostly unnecessary.
2117 */
2118 spin_lock(ptl);
2119 /*
2120 * paravirt calls inside pte_clear here are
2121 * superfluous.
2122 */
2123 pte_clear(vma->vm_mm, address, _pte);
2124 spin_unlock(ptl);
2125 }
2126 } else {
2127 src_page = pte_page(pteval);
2128 copy_user_highpage(page, src_page, address, vma);
2129 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2130 release_pte_page(src_page);
2131 /*
2132 * ptl mostly unnecessary, but preempt has to
2133 * be disabled to update the per-cpu stats
2134 * inside page_remove_rmap().
2135 */
2136 spin_lock(ptl);
2137 /*
2138 * paravirt calls inside pte_clear here are
2139 * superfluous.
2140 */
2141 pte_clear(vma->vm_mm, address, _pte);
2142 page_remove_rmap(src_page, false);
2143 spin_unlock(ptl);
2144 free_page_and_swap_cache(src_page);
2145 }
2146
2147 address += PAGE_SIZE;
2148 page++;
2149 }
2150 }
2151
2152 static void khugepaged_alloc_sleep(void)
2153 {
2154 DEFINE_WAIT(wait);
2155
2156 add_wait_queue(&khugepaged_wait, &wait);
2157 freezable_schedule_timeout_interruptible(
2158 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2159 remove_wait_queue(&khugepaged_wait, &wait);
2160 }
2161
2162 static int khugepaged_node_load[MAX_NUMNODES];
2163
2164 static bool khugepaged_scan_abort(int nid)
2165 {
2166 int i;
2167
2168 /*
2169 * If zone_reclaim_mode is disabled, then no extra effort is made to
2170 * allocate memory locally.
2171 */
2172 if (!zone_reclaim_mode)
2173 return false;
2174
2175 /* If there is a count for this node already, it must be acceptable */
2176 if (khugepaged_node_load[nid])
2177 return false;
2178
2179 for (i = 0; i < MAX_NUMNODES; i++) {
2180 if (!khugepaged_node_load[i])
2181 continue;
2182 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2183 return true;
2184 }
2185 return false;
2186 }
2187
2188 #ifdef CONFIG_NUMA
2189 static int khugepaged_find_target_node(void)
2190 {
2191 static int last_khugepaged_target_node = NUMA_NO_NODE;
2192 int nid, target_node = 0, max_value = 0;
2193
2194 /* find first node with max normal pages hit */
2195 for (nid = 0; nid < MAX_NUMNODES; nid++)
2196 if (khugepaged_node_load[nid] > max_value) {
2197 max_value = khugepaged_node_load[nid];
2198 target_node = nid;
2199 }
2200
2201 /* do some balance if several nodes have the same hit record */
2202 if (target_node <= last_khugepaged_target_node)
2203 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2204 nid++)
2205 if (max_value == khugepaged_node_load[nid]) {
2206 target_node = nid;
2207 break;
2208 }
2209
2210 last_khugepaged_target_node = target_node;
2211 return target_node;
2212 }
2213
2214 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2215 {
2216 if (IS_ERR(*hpage)) {
2217 if (!*wait)
2218 return false;
2219
2220 *wait = false;
2221 *hpage = NULL;
2222 khugepaged_alloc_sleep();
2223 } else if (*hpage) {
2224 put_page(*hpage);
2225 *hpage = NULL;
2226 }
2227
2228 return true;
2229 }
2230
2231 static struct page *
2232 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2233 unsigned long address, int node)
2234 {
2235 VM_BUG_ON_PAGE(*hpage, *hpage);
2236
2237 /*
2238 * Before allocating the hugepage, release the mmap_sem read lock.
2239 * The allocation can take potentially a long time if it involves
2240 * sync compaction, and we do not need to hold the mmap_sem during
2241 * that. We will recheck the vma after taking it again in write mode.
2242 */
2243 up_read(&mm->mmap_sem);
2244
2245 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2246 if (unlikely(!*hpage)) {
2247 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2248 *hpage = ERR_PTR(-ENOMEM);
2249 return NULL;
2250 }
2251
2252 prep_transhuge_page(*hpage);
2253 count_vm_event(THP_COLLAPSE_ALLOC);
2254 return *hpage;
2255 }
2256 #else
2257 static int khugepaged_find_target_node(void)
2258 {
2259 return 0;
2260 }
2261
2262 static inline struct page *alloc_hugepage(int defrag)
2263 {
2264 struct page *page;
2265
2266 page = alloc_pages(alloc_hugepage_gfpmask(defrag, 0), HPAGE_PMD_ORDER);
2267 if (page)
2268 prep_transhuge_page(page);
2269 return page;
2270 }
2271
2272 static struct page *khugepaged_alloc_hugepage(bool *wait)
2273 {
2274 struct page *hpage;
2275
2276 do {
2277 hpage = alloc_hugepage(khugepaged_defrag());
2278 if (!hpage) {
2279 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2280 if (!*wait)
2281 return NULL;
2282
2283 *wait = false;
2284 khugepaged_alloc_sleep();
2285 } else
2286 count_vm_event(THP_COLLAPSE_ALLOC);
2287 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2288
2289 return hpage;
2290 }
2291
2292 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2293 {
2294 if (!*hpage)
2295 *hpage = khugepaged_alloc_hugepage(wait);
2296
2297 if (unlikely(!*hpage))
2298 return false;
2299
2300 return true;
2301 }
2302
2303 static struct page *
2304 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2305 unsigned long address, int node)
2306 {
2307 up_read(&mm->mmap_sem);
2308 VM_BUG_ON(!*hpage);
2309
2310 return *hpage;
2311 }
2312 #endif
2313
2314 static bool hugepage_vma_check(struct vm_area_struct *vma)
2315 {
2316 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2317 (vma->vm_flags & VM_NOHUGEPAGE))
2318 return false;
2319 if (!vma->anon_vma || vma->vm_ops)
2320 return false;
2321 if (is_vma_temporary_stack(vma))
2322 return false;
2323 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
2324 return true;
2325 }
2326
2327 static void collapse_huge_page(struct mm_struct *mm,
2328 unsigned long address,
2329 struct page **hpage,
2330 struct vm_area_struct *vma,
2331 int node)
2332 {
2333 pmd_t *pmd, _pmd;
2334 pte_t *pte;
2335 pgtable_t pgtable;
2336 struct page *new_page;
2337 spinlock_t *pmd_ptl, *pte_ptl;
2338 int isolated = 0, result = 0;
2339 unsigned long hstart, hend;
2340 struct mem_cgroup *memcg;
2341 unsigned long mmun_start; /* For mmu_notifiers */
2342 unsigned long mmun_end; /* For mmu_notifiers */
2343 gfp_t gfp;
2344
2345 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2346
2347 /* Only allocate from the target node */
2348 gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2349 __GFP_THISNODE;
2350
2351 /* release the mmap_sem read lock. */
2352 new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2353 if (!new_page) {
2354 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2355 goto out_nolock;
2356 }
2357
2358 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
2359 result = SCAN_CGROUP_CHARGE_FAIL;
2360 goto out_nolock;
2361 }
2362
2363 /*
2364 * Prevent all access to pagetables with the exception of
2365 * gup_fast later hanlded by the ptep_clear_flush and the VM
2366 * handled by the anon_vma lock + PG_lock.
2367 */
2368 down_write(&mm->mmap_sem);
2369 if (unlikely(khugepaged_test_exit(mm))) {
2370 result = SCAN_ANY_PROCESS;
2371 goto out;
2372 }
2373
2374 vma = find_vma(mm, address);
2375 if (!vma) {
2376 result = SCAN_VMA_NULL;
2377 goto out;
2378 }
2379 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2380 hend = vma->vm_end & HPAGE_PMD_MASK;
2381 if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2382 result = SCAN_ADDRESS_RANGE;
2383 goto out;
2384 }
2385 if (!hugepage_vma_check(vma)) {
2386 result = SCAN_VMA_CHECK;
2387 goto out;
2388 }
2389 pmd = mm_find_pmd(mm, address);
2390 if (!pmd) {
2391 result = SCAN_PMD_NULL;
2392 goto out;
2393 }
2394
2395 anon_vma_lock_write(vma->anon_vma);
2396
2397 pte = pte_offset_map(pmd, address);
2398 pte_ptl = pte_lockptr(mm, pmd);
2399
2400 mmun_start = address;
2401 mmun_end = address + HPAGE_PMD_SIZE;
2402 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2403 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2404 /*
2405 * After this gup_fast can't run anymore. This also removes
2406 * any huge TLB entry from the CPU so we won't allow
2407 * huge and small TLB entries for the same virtual address
2408 * to avoid the risk of CPU bugs in that area.
2409 */
2410 _pmd = pmdp_collapse_flush(vma, address, pmd);
2411 spin_unlock(pmd_ptl);
2412 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2413
2414 spin_lock(pte_ptl);
2415 isolated = __collapse_huge_page_isolate(vma, address, pte);
2416 spin_unlock(pte_ptl);
2417
2418 if (unlikely(!isolated)) {
2419 pte_unmap(pte);
2420 spin_lock(pmd_ptl);
2421 BUG_ON(!pmd_none(*pmd));
2422 /*
2423 * We can only use set_pmd_at when establishing
2424 * hugepmds and never for establishing regular pmds that
2425 * points to regular pagetables. Use pmd_populate for that
2426 */
2427 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2428 spin_unlock(pmd_ptl);
2429 anon_vma_unlock_write(vma->anon_vma);
2430 result = SCAN_FAIL;
2431 goto out;
2432 }
2433
2434 /*
2435 * All pages are isolated and locked so anon_vma rmap
2436 * can't run anymore.
2437 */
2438 anon_vma_unlock_write(vma->anon_vma);
2439
2440 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2441 pte_unmap(pte);
2442 __SetPageUptodate(new_page);
2443 pgtable = pmd_pgtable(_pmd);
2444
2445 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2446 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2447
2448 /*
2449 * spin_lock() below is not the equivalent of smp_wmb(), so
2450 * this is needed to avoid the copy_huge_page writes to become
2451 * visible after the set_pmd_at() write.
2452 */
2453 smp_wmb();
2454
2455 spin_lock(pmd_ptl);
2456 BUG_ON(!pmd_none(*pmd));
2457 page_add_new_anon_rmap(new_page, vma, address, true);
2458 mem_cgroup_commit_charge(new_page, memcg, false, true);
2459 lru_cache_add_active_or_unevictable(new_page, vma);
2460 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2461 set_pmd_at(mm, address, pmd, _pmd);
2462 update_mmu_cache_pmd(vma, address, pmd);
2463 spin_unlock(pmd_ptl);
2464
2465 *hpage = NULL;
2466
2467 khugepaged_pages_collapsed++;
2468 result = SCAN_SUCCEED;
2469 out_up_write:
2470 up_write(&mm->mmap_sem);
2471 trace_mm_collapse_huge_page(mm, isolated, result);
2472 return;
2473
2474 out_nolock:
2475 trace_mm_collapse_huge_page(mm, isolated, result);
2476 return;
2477 out:
2478 mem_cgroup_cancel_charge(new_page, memcg, true);
2479 goto out_up_write;
2480 }
2481
2482 static int khugepaged_scan_pmd(struct mm_struct *mm,
2483 struct vm_area_struct *vma,
2484 unsigned long address,
2485 struct page **hpage)
2486 {
2487 pmd_t *pmd;
2488 pte_t *pte, *_pte;
2489 int ret = 0, none_or_zero = 0, result = 0;
2490 struct page *page = NULL;
2491 unsigned long _address;
2492 spinlock_t *ptl;
2493 int node = NUMA_NO_NODE;
2494 bool writable = false, referenced = false;
2495
2496 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2497
2498 pmd = mm_find_pmd(mm, address);
2499 if (!pmd) {
2500 result = SCAN_PMD_NULL;
2501 goto out;
2502 }
2503
2504 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2505 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2506 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2507 _pte++, _address += PAGE_SIZE) {
2508 pte_t pteval = *_pte;
2509 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2510 if (!userfaultfd_armed(vma) &&
2511 ++none_or_zero <= khugepaged_max_ptes_none) {
2512 continue;
2513 } else {
2514 result = SCAN_EXCEED_NONE_PTE;
2515 goto out_unmap;
2516 }
2517 }
2518 if (!pte_present(pteval)) {
2519 result = SCAN_PTE_NON_PRESENT;
2520 goto out_unmap;
2521 }
2522 if (pte_write(pteval))
2523 writable = true;
2524
2525 page = vm_normal_page(vma, _address, pteval);
2526 if (unlikely(!page)) {
2527 result = SCAN_PAGE_NULL;
2528 goto out_unmap;
2529 }
2530
2531 /* TODO: teach khugepaged to collapse THP mapped with pte */
2532 if (PageCompound(page)) {
2533 result = SCAN_PAGE_COMPOUND;
2534 goto out_unmap;
2535 }
2536
2537 /*
2538 * Record which node the original page is from and save this
2539 * information to khugepaged_node_load[].
2540 * Khupaged will allocate hugepage from the node has the max
2541 * hit record.
2542 */
2543 node = page_to_nid(page);
2544 if (khugepaged_scan_abort(node)) {
2545 result = SCAN_SCAN_ABORT;
2546 goto out_unmap;
2547 }
2548 khugepaged_node_load[node]++;
2549 if (!PageLRU(page)) {
2550 result = SCAN_SCAN_ABORT;
2551 goto out_unmap;
2552 }
2553 if (PageLocked(page)) {
2554 result = SCAN_PAGE_LOCK;
2555 goto out_unmap;
2556 }
2557 if (!PageAnon(page)) {
2558 result = SCAN_PAGE_ANON;
2559 goto out_unmap;
2560 }
2561
2562 /*
2563 * cannot use mapcount: can't collapse if there's a gup pin.
2564 * The page must only be referenced by the scanned process
2565 * and page swap cache.
2566 */
2567 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2568 result = SCAN_PAGE_COUNT;
2569 goto out_unmap;
2570 }
2571 if (pte_young(pteval) ||
2572 page_is_young(page) || PageReferenced(page) ||
2573 mmu_notifier_test_young(vma->vm_mm, address))
2574 referenced = true;
2575 }
2576 if (writable) {
2577 if (referenced) {
2578 result = SCAN_SUCCEED;
2579 ret = 1;
2580 } else {
2581 result = SCAN_NO_REFERENCED_PAGE;
2582 }
2583 } else {
2584 result = SCAN_PAGE_RO;
2585 }
2586 out_unmap:
2587 pte_unmap_unlock(pte, ptl);
2588 if (ret) {
2589 node = khugepaged_find_target_node();
2590 /* collapse_huge_page will return with the mmap_sem released */
2591 collapse_huge_page(mm, address, hpage, vma, node);
2592 }
2593 out:
2594 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
2595 none_or_zero, result);
2596 return ret;
2597 }
2598
2599 static void collect_mm_slot(struct mm_slot *mm_slot)
2600 {
2601 struct mm_struct *mm = mm_slot->mm;
2602
2603 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2604
2605 if (khugepaged_test_exit(mm)) {
2606 /* free mm_slot */
2607 hash_del(&mm_slot->hash);
2608 list_del(&mm_slot->mm_node);
2609
2610 /*
2611 * Not strictly needed because the mm exited already.
2612 *
2613 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2614 */
2615
2616 /* khugepaged_mm_lock actually not necessary for the below */
2617 free_mm_slot(mm_slot);
2618 mmdrop(mm);
2619 }
2620 }
2621
2622 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2623 struct page **hpage)
2624 __releases(&khugepaged_mm_lock)
2625 __acquires(&khugepaged_mm_lock)
2626 {
2627 struct mm_slot *mm_slot;
2628 struct mm_struct *mm;
2629 struct vm_area_struct *vma;
2630 int progress = 0;
2631
2632 VM_BUG_ON(!pages);
2633 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2634
2635 if (khugepaged_scan.mm_slot)
2636 mm_slot = khugepaged_scan.mm_slot;
2637 else {
2638 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2639 struct mm_slot, mm_node);
2640 khugepaged_scan.address = 0;
2641 khugepaged_scan.mm_slot = mm_slot;
2642 }
2643 spin_unlock(&khugepaged_mm_lock);
2644
2645 mm = mm_slot->mm;
2646 down_read(&mm->mmap_sem);
2647 if (unlikely(khugepaged_test_exit(mm)))
2648 vma = NULL;
2649 else
2650 vma = find_vma(mm, khugepaged_scan.address);
2651
2652 progress++;
2653 for (; vma; vma = vma->vm_next) {
2654 unsigned long hstart, hend;
2655
2656 cond_resched();
2657 if (unlikely(khugepaged_test_exit(mm))) {
2658 progress++;
2659 break;
2660 }
2661 if (!hugepage_vma_check(vma)) {
2662 skip:
2663 progress++;
2664 continue;
2665 }
2666 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2667 hend = vma->vm_end & HPAGE_PMD_MASK;
2668 if (hstart >= hend)
2669 goto skip;
2670 if (khugepaged_scan.address > hend)
2671 goto skip;
2672 if (khugepaged_scan.address < hstart)
2673 khugepaged_scan.address = hstart;
2674 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2675
2676 while (khugepaged_scan.address < hend) {
2677 int ret;
2678 cond_resched();
2679 if (unlikely(khugepaged_test_exit(mm)))
2680 goto breakouterloop;
2681
2682 VM_BUG_ON(khugepaged_scan.address < hstart ||
2683 khugepaged_scan.address + HPAGE_PMD_SIZE >
2684 hend);
2685 ret = khugepaged_scan_pmd(mm, vma,
2686 khugepaged_scan.address,
2687 hpage);
2688 /* move to next address */
2689 khugepaged_scan.address += HPAGE_PMD_SIZE;
2690 progress += HPAGE_PMD_NR;
2691 if (ret)
2692 /* we released mmap_sem so break loop */
2693 goto breakouterloop_mmap_sem;
2694 if (progress >= pages)
2695 goto breakouterloop;
2696 }
2697 }
2698 breakouterloop:
2699 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2700 breakouterloop_mmap_sem:
2701
2702 spin_lock(&khugepaged_mm_lock);
2703 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2704 /*
2705 * Release the current mm_slot if this mm is about to die, or
2706 * if we scanned all vmas of this mm.
2707 */
2708 if (khugepaged_test_exit(mm) || !vma) {
2709 /*
2710 * Make sure that if mm_users is reaching zero while
2711 * khugepaged runs here, khugepaged_exit will find
2712 * mm_slot not pointing to the exiting mm.
2713 */
2714 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2715 khugepaged_scan.mm_slot = list_entry(
2716 mm_slot->mm_node.next,
2717 struct mm_slot, mm_node);
2718 khugepaged_scan.address = 0;
2719 } else {
2720 khugepaged_scan.mm_slot = NULL;
2721 khugepaged_full_scans++;
2722 }
2723
2724 collect_mm_slot(mm_slot);
2725 }
2726
2727 return progress;
2728 }
2729
2730 static int khugepaged_has_work(void)
2731 {
2732 return !list_empty(&khugepaged_scan.mm_head) &&
2733 khugepaged_enabled();
2734 }
2735
2736 static int khugepaged_wait_event(void)
2737 {
2738 return !list_empty(&khugepaged_scan.mm_head) ||
2739 kthread_should_stop();
2740 }
2741
2742 static void khugepaged_do_scan(void)
2743 {
2744 struct page *hpage = NULL;
2745 unsigned int progress = 0, pass_through_head = 0;
2746 unsigned int pages = khugepaged_pages_to_scan;
2747 bool wait = true;
2748
2749 barrier(); /* write khugepaged_pages_to_scan to local stack */
2750
2751 while (progress < pages) {
2752 if (!khugepaged_prealloc_page(&hpage, &wait))
2753 break;
2754
2755 cond_resched();
2756
2757 if (unlikely(kthread_should_stop() || try_to_freeze()))
2758 break;
2759
2760 spin_lock(&khugepaged_mm_lock);
2761 if (!khugepaged_scan.mm_slot)
2762 pass_through_head++;
2763 if (khugepaged_has_work() &&
2764 pass_through_head < 2)
2765 progress += khugepaged_scan_mm_slot(pages - progress,
2766 &hpage);
2767 else
2768 progress = pages;
2769 spin_unlock(&khugepaged_mm_lock);
2770 }
2771
2772 if (!IS_ERR_OR_NULL(hpage))
2773 put_page(hpage);
2774 }
2775
2776 static void khugepaged_wait_work(void)
2777 {
2778 if (khugepaged_has_work()) {
2779 if (!khugepaged_scan_sleep_millisecs)
2780 return;
2781
2782 wait_event_freezable_timeout(khugepaged_wait,
2783 kthread_should_stop(),
2784 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2785 return;
2786 }
2787
2788 if (khugepaged_enabled())
2789 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2790 }
2791
2792 static int khugepaged(void *none)
2793 {
2794 struct mm_slot *mm_slot;
2795
2796 set_freezable();
2797 set_user_nice(current, MAX_NICE);
2798
2799 while (!kthread_should_stop()) {
2800 khugepaged_do_scan();
2801 khugepaged_wait_work();
2802 }
2803
2804 spin_lock(&khugepaged_mm_lock);
2805 mm_slot = khugepaged_scan.mm_slot;
2806 khugepaged_scan.mm_slot = NULL;
2807 if (mm_slot)
2808 collect_mm_slot(mm_slot);
2809 spin_unlock(&khugepaged_mm_lock);
2810 return 0;
2811 }
2812
2813 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2814 unsigned long haddr, pmd_t *pmd)
2815 {
2816 struct mm_struct *mm = vma->vm_mm;
2817 pgtable_t pgtable;
2818 pmd_t _pmd;
2819 int i;
2820
2821 /* leave pmd empty until pte is filled */
2822 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2823
2824 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2825 pmd_populate(mm, &_pmd, pgtable);
2826
2827 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2828 pte_t *pte, entry;
2829 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2830 entry = pte_mkspecial(entry);
2831 pte = pte_offset_map(&_pmd, haddr);
2832 VM_BUG_ON(!pte_none(*pte));
2833 set_pte_at(mm, haddr, pte, entry);
2834 pte_unmap(pte);
2835 }
2836 smp_wmb(); /* make pte visible before pmd */
2837 pmd_populate(mm, pmd, pgtable);
2838 put_huge_zero_page();
2839 }
2840
2841 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2842 unsigned long haddr, bool freeze)
2843 {
2844 struct mm_struct *mm = vma->vm_mm;
2845 struct page *page;
2846 pgtable_t pgtable;
2847 pmd_t _pmd;
2848 bool young, write, dirty;
2849 int i;
2850
2851 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2852 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2853 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2854 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
2855
2856 count_vm_event(THP_SPLIT_PMD);
2857
2858 if (vma_is_dax(vma)) {
2859 pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2860 if (is_huge_zero_pmd(_pmd))
2861 put_huge_zero_page();
2862 return;
2863 } else if (is_huge_zero_pmd(*pmd)) {
2864 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2865 }
2866
2867 page = pmd_page(*pmd);
2868 VM_BUG_ON_PAGE(!page_count(page), page);
2869 atomic_add(HPAGE_PMD_NR - 1, &page->_count);
2870 write = pmd_write(*pmd);
2871 young = pmd_young(*pmd);
2872 dirty = pmd_dirty(*pmd);
2873
2874 pmdp_huge_split_prepare(vma, haddr, pmd);
2875 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2876 pmd_populate(mm, &_pmd, pgtable);
2877
2878 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2879 pte_t entry, *pte;
2880 /*
2881 * Note that NUMA hinting access restrictions are not
2882 * transferred to avoid any possibility of altering
2883 * permissions across VMAs.
2884 */
2885 if (freeze) {
2886 swp_entry_t swp_entry;
2887 swp_entry = make_migration_entry(page + i, write);
2888 entry = swp_entry_to_pte(swp_entry);
2889 } else {
2890 entry = mk_pte(page + i, vma->vm_page_prot);
2891 entry = maybe_mkwrite(entry, vma);
2892 if (!write)
2893 entry = pte_wrprotect(entry);
2894 if (!young)
2895 entry = pte_mkold(entry);
2896 }
2897 if (dirty)
2898 SetPageDirty(page + i);
2899 pte = pte_offset_map(&_pmd, haddr);
2900 BUG_ON(!pte_none(*pte));
2901 set_pte_at(mm, haddr, pte, entry);
2902 atomic_inc(&page[i]._mapcount);
2903 pte_unmap(pte);
2904 }
2905
2906 /*
2907 * Set PG_double_map before dropping compound_mapcount to avoid
2908 * false-negative page_mapped().
2909 */
2910 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2911 for (i = 0; i < HPAGE_PMD_NR; i++)
2912 atomic_inc(&page[i]._mapcount);
2913 }
2914
2915 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2916 /* Last compound_mapcount is gone. */
2917 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
2918 if (TestClearPageDoubleMap(page)) {
2919 /* No need in mapcount reference anymore */
2920 for (i = 0; i < HPAGE_PMD_NR; i++)
2921 atomic_dec(&page[i]._mapcount);
2922 }
2923 }
2924
2925 smp_wmb(); /* make pte visible before pmd */
2926 /*
2927 * Up to this point the pmd is present and huge and userland has the
2928 * whole access to the hugepage during the split (which happens in
2929 * place). If we overwrite the pmd with the not-huge version pointing
2930 * to the pte here (which of course we could if all CPUs were bug
2931 * free), userland could trigger a small page size TLB miss on the
2932 * small sized TLB while the hugepage TLB entry is still established in
2933 * the huge TLB. Some CPU doesn't like that.
2934 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2935 * 383 on page 93. Intel should be safe but is also warns that it's
2936 * only safe if the permission and cache attributes of the two entries
2937 * loaded in the two TLB is identical (which should be the case here).
2938 * But it is generally safer to never allow small and huge TLB entries
2939 * for the same virtual address to be loaded simultaneously. So instead
2940 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2941 * current pmd notpresent (atomically because here the pmd_trans_huge
2942 * and pmd_trans_splitting must remain set at all times on the pmd
2943 * until the split is complete for this pmd), then we flush the SMP TLB
2944 * and finally we write the non-huge version of the pmd entry with
2945 * pmd_populate.
2946 */
2947 pmdp_invalidate(vma, haddr, pmd);
2948 pmd_populate(mm, pmd, pgtable);
2949
2950 if (freeze) {
2951 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2952 page_remove_rmap(page + i, false);
2953 put_page(page + i);
2954 }
2955 }
2956 }
2957
2958 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2959 unsigned long address)
2960 {
2961 spinlock_t *ptl;
2962 struct mm_struct *mm = vma->vm_mm;
2963 struct page *page = NULL;
2964 unsigned long haddr = address & HPAGE_PMD_MASK;
2965
2966 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2967 ptl = pmd_lock(mm, pmd);
2968 if (pmd_trans_huge(*pmd)) {
2969 page = pmd_page(*pmd);
2970 if (PageMlocked(page))
2971 get_page(page);
2972 else
2973 page = NULL;
2974 } else if (!pmd_devmap(*pmd))
2975 goto out;
2976 __split_huge_pmd_locked(vma, pmd, haddr, false);
2977 out:
2978 spin_unlock(ptl);
2979 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
2980 if (page) {
2981 lock_page(page);
2982 munlock_vma_page(page);
2983 unlock_page(page);
2984 put_page(page);
2985 }
2986 }
2987
2988 static void split_huge_pmd_address(struct vm_area_struct *vma,
2989 unsigned long address)
2990 {
2991 pgd_t *pgd;
2992 pud_t *pud;
2993 pmd_t *pmd;
2994
2995 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2996
2997 pgd = pgd_offset(vma->vm_mm, address);
2998 if (!pgd_present(*pgd))
2999 return;
3000
3001 pud = pud_offset(pgd, address);
3002 if (!pud_present(*pud))
3003 return;
3004
3005 pmd = pmd_offset(pud, address);
3006 if (!pmd_present(*pmd) || (!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)))
3007 return;
3008 /*
3009 * Caller holds the mmap_sem write mode, so a huge pmd cannot
3010 * materialize from under us.
3011 */
3012 split_huge_pmd(vma, pmd, address);
3013 }
3014
3015 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3016 unsigned long start,
3017 unsigned long end,
3018 long adjust_next)
3019 {
3020 /*
3021 * If the new start address isn't hpage aligned and it could
3022 * previously contain an hugepage: check if we need to split
3023 * an huge pmd.
3024 */
3025 if (start & ~HPAGE_PMD_MASK &&
3026 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3027 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3028 split_huge_pmd_address(vma, start);
3029
3030 /*
3031 * If the new end address isn't hpage aligned and it could
3032 * previously contain an hugepage: check if we need to split
3033 * an huge pmd.
3034 */
3035 if (end & ~HPAGE_PMD_MASK &&
3036 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3037 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3038 split_huge_pmd_address(vma, end);
3039
3040 /*
3041 * If we're also updating the vma->vm_next->vm_start, if the new
3042 * vm_next->vm_start isn't page aligned and it could previously
3043 * contain an hugepage: check if we need to split an huge pmd.
3044 */
3045 if (adjust_next > 0) {
3046 struct vm_area_struct *next = vma->vm_next;
3047 unsigned long nstart = next->vm_start;
3048 nstart += adjust_next << PAGE_SHIFT;
3049 if (nstart & ~HPAGE_PMD_MASK &&
3050 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3051 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3052 split_huge_pmd_address(next, nstart);
3053 }
3054 }
3055
3056 static void freeze_page_vma(struct vm_area_struct *vma, struct page *page,
3057 unsigned long address)
3058 {
3059 unsigned long haddr = address & HPAGE_PMD_MASK;
3060 spinlock_t *ptl;
3061 pgd_t *pgd;
3062 pud_t *pud;
3063 pmd_t *pmd;
3064 pte_t *pte;
3065 int i, nr = HPAGE_PMD_NR;
3066
3067 /* Skip pages which doesn't belong to the VMA */
3068 if (address < vma->vm_start) {
3069 int off = (vma->vm_start - address) >> PAGE_SHIFT;
3070 page += off;
3071 nr -= off;
3072 address = vma->vm_start;
3073 }
3074
3075 pgd = pgd_offset(vma->vm_mm, address);
3076 if (!pgd_present(*pgd))
3077 return;
3078 pud = pud_offset(pgd, address);
3079 if (!pud_present(*pud))
3080 return;
3081 pmd = pmd_offset(pud, address);
3082 ptl = pmd_lock(vma->vm_mm, pmd);
3083 if (!pmd_present(*pmd)) {
3084 spin_unlock(ptl);
3085 return;
3086 }
3087 if (pmd_trans_huge(*pmd)) {
3088 if (page == pmd_page(*pmd))
3089 __split_huge_pmd_locked(vma, pmd, haddr, true);
3090 spin_unlock(ptl);
3091 return;
3092 }
3093 spin_unlock(ptl);
3094
3095 pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
3096 for (i = 0; i < nr; i++, address += PAGE_SIZE, page++, pte++) {
3097 pte_t entry, swp_pte;
3098 swp_entry_t swp_entry;
3099
3100 /*
3101 * We've just crossed page table boundary: need to map next one.
3102 * It can happen if THP was mremaped to non PMD-aligned address.
3103 */
3104 if (unlikely(address == haddr + HPAGE_PMD_SIZE)) {
3105 pte_unmap_unlock(pte - 1, ptl);
3106 pmd = mm_find_pmd(vma->vm_mm, address);
3107 if (!pmd)
3108 return;
3109 pte = pte_offset_map_lock(vma->vm_mm, pmd,
3110 address, &ptl);
3111 }
3112
3113 if (!pte_present(*pte))
3114 continue;
3115 if (page_to_pfn(page) != pte_pfn(*pte))
3116 continue;
3117 flush_cache_page(vma, address, page_to_pfn(page));
3118 entry = ptep_clear_flush(vma, address, pte);
3119 if (pte_dirty(entry))
3120 SetPageDirty(page);
3121 swp_entry = make_migration_entry(page, pte_write(entry));
3122 swp_pte = swp_entry_to_pte(swp_entry);
3123 if (pte_soft_dirty(entry))
3124 swp_pte = pte_swp_mksoft_dirty(swp_pte);
3125 set_pte_at(vma->vm_mm, address, pte, swp_pte);
3126 page_remove_rmap(page, false);
3127 put_page(page);
3128 }
3129 pte_unmap_unlock(pte - 1, ptl);
3130 }
3131
3132 static void freeze_page(struct anon_vma *anon_vma, struct page *page)
3133 {
3134 struct anon_vma_chain *avc;
3135 pgoff_t pgoff = page_to_pgoff(page);
3136
3137 VM_BUG_ON_PAGE(!PageHead(page), page);
3138
3139 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff,
3140 pgoff + HPAGE_PMD_NR - 1) {
3141 unsigned long address = __vma_address(page, avc->vma);
3142
3143 mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
3144 address, address + HPAGE_PMD_SIZE);
3145 freeze_page_vma(avc->vma, page, address);
3146 mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
3147 address, address + HPAGE_PMD_SIZE);
3148 }
3149 }
3150
3151 static void unfreeze_page_vma(struct vm_area_struct *vma, struct page *page,
3152 unsigned long address)
3153 {
3154 spinlock_t *ptl;
3155 pmd_t *pmd;
3156 pte_t *pte, entry;
3157 swp_entry_t swp_entry;
3158 unsigned long haddr = address & HPAGE_PMD_MASK;
3159 int i, nr = HPAGE_PMD_NR;
3160
3161 /* Skip pages which doesn't belong to the VMA */
3162 if (address < vma->vm_start) {
3163 int off = (vma->vm_start - address) >> PAGE_SHIFT;
3164 page += off;
3165 nr -= off;
3166 address = vma->vm_start;
3167 }
3168
3169 pmd = mm_find_pmd(vma->vm_mm, address);
3170 if (!pmd)
3171 return;
3172
3173 pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
3174 for (i = 0; i < nr; i++, address += PAGE_SIZE, page++, pte++) {
3175 /*
3176 * We've just crossed page table boundary: need to map next one.
3177 * It can happen if THP was mremaped to non-PMD aligned address.
3178 */
3179 if (unlikely(address == haddr + HPAGE_PMD_SIZE)) {
3180 pte_unmap_unlock(pte - 1, ptl);
3181 pmd = mm_find_pmd(vma->vm_mm, address);
3182 if (!pmd)
3183 return;
3184 pte = pte_offset_map_lock(vma->vm_mm, pmd,
3185 address, &ptl);
3186 }
3187
3188 if (!is_swap_pte(*pte))
3189 continue;
3190
3191 swp_entry = pte_to_swp_entry(*pte);
3192 if (!is_migration_entry(swp_entry))
3193 continue;
3194 if (migration_entry_to_page(swp_entry) != page)
3195 continue;
3196
3197 get_page(page);
3198 page_add_anon_rmap(page, vma, address, false);
3199
3200 entry = pte_mkold(mk_pte(page, vma->vm_page_prot));
3201 if (PageDirty(page))
3202 entry = pte_mkdirty(entry);
3203 if (is_write_migration_entry(swp_entry))
3204 entry = maybe_mkwrite(entry, vma);
3205
3206 flush_dcache_page(page);
3207 set_pte_at(vma->vm_mm, address, pte, entry);
3208
3209 /* No need to invalidate - it was non-present before */
3210 update_mmu_cache(vma, address, pte);
3211 }
3212 pte_unmap_unlock(pte - 1, ptl);
3213 }
3214
3215 static void unfreeze_page(struct anon_vma *anon_vma, struct page *page)
3216 {
3217 struct anon_vma_chain *avc;
3218 pgoff_t pgoff = page_to_pgoff(page);
3219
3220 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
3221 pgoff, pgoff + HPAGE_PMD_NR - 1) {
3222 unsigned long address = __vma_address(page, avc->vma);
3223
3224 mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
3225 address, address + HPAGE_PMD_SIZE);
3226 unfreeze_page_vma(avc->vma, page, address);
3227 mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
3228 address, address + HPAGE_PMD_SIZE);
3229 }
3230 }
3231
3232 static int __split_huge_page_tail(struct page *head, int tail,
3233 struct lruvec *lruvec, struct list_head *list)
3234 {
3235 int mapcount;
3236 struct page *page_tail = head + tail;
3237
3238 mapcount = atomic_read(&page_tail->_mapcount) + 1;
3239 VM_BUG_ON_PAGE(atomic_read(&page_tail->_count) != 0, page_tail);
3240
3241 /*
3242 * tail_page->_count is zero and not changing from under us. But
3243 * get_page_unless_zero() may be running from under us on the
3244 * tail_page. If we used atomic_set() below instead of atomic_add(), we
3245 * would then run atomic_set() concurrently with
3246 * get_page_unless_zero(), and atomic_set() is implemented in C not
3247 * using locked ops. spin_unlock on x86 sometime uses locked ops
3248 * because of PPro errata 66, 92, so unless somebody can guarantee
3249 * atomic_set() here would be safe on all archs (and not only on x86),
3250 * it's safer to use atomic_add().
3251 */
3252 atomic_add(mapcount + 1, &page_tail->_count);
3253
3254
3255 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3256 page_tail->flags |= (head->flags &
3257 ((1L << PG_referenced) |
3258 (1L << PG_swapbacked) |
3259 (1L << PG_mlocked) |
3260 (1L << PG_uptodate) |
3261 (1L << PG_active) |
3262 (1L << PG_locked) |
3263 (1L << PG_unevictable) |
3264 (1L << PG_dirty)));
3265
3266 /*
3267 * After clearing PageTail the gup refcount can be released.
3268 * Page flags also must be visible before we make the page non-compound.
3269 */
3270 smp_wmb();
3271
3272 clear_compound_head(page_tail);
3273
3274 if (page_is_young(head))
3275 set_page_young(page_tail);
3276 if (page_is_idle(head))
3277 set_page_idle(page_tail);
3278
3279 /* ->mapping in first tail page is compound_mapcount */
3280 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3281 page_tail);
3282 page_tail->mapping = head->mapping;
3283
3284 page_tail->index = head->index + tail;
3285 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3286 lru_add_page_tail(head, page_tail, lruvec, list);
3287
3288 return mapcount;
3289 }
3290
3291 static void __split_huge_page(struct page *page, struct list_head *list)
3292 {
3293 struct page *head = compound_head(page);
3294 struct zone *zone = page_zone(head);
3295 struct lruvec *lruvec;
3296 int i, tail_mapcount;
3297
3298 /* prevent PageLRU to go away from under us, and freeze lru stats */
3299 spin_lock_irq(&zone->lru_lock);
3300 lruvec = mem_cgroup_page_lruvec(head, zone);
3301
3302 /* complete memcg works before add pages to LRU */
3303 mem_cgroup_split_huge_fixup(head);
3304
3305 tail_mapcount = 0;
3306 for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
3307 tail_mapcount += __split_huge_page_tail(head, i, lruvec, list);
3308 atomic_sub(tail_mapcount, &head->_count);
3309
3310 ClearPageCompound(head);
3311 spin_unlock_irq(&zone->lru_lock);
3312
3313 unfreeze_page(page_anon_vma(head), head);
3314
3315 for (i = 0; i < HPAGE_PMD_NR; i++) {
3316 struct page *subpage = head + i;
3317 if (subpage == page)
3318 continue;
3319 unlock_page(subpage);
3320
3321 /*
3322 * Subpages may be freed if there wasn't any mapping
3323 * like if add_to_swap() is running on a lru page that
3324 * had its mapping zapped. And freeing these pages
3325 * requires taking the lru_lock so we do the put_page
3326 * of the tail pages after the split is complete.
3327 */
3328 put_page(subpage);
3329 }
3330 }
3331
3332 int total_mapcount(struct page *page)
3333 {
3334 int i, ret;
3335
3336 VM_BUG_ON_PAGE(PageTail(page), page);
3337
3338 if (likely(!PageCompound(page)))
3339 return atomic_read(&page->_mapcount) + 1;
3340
3341 ret = compound_mapcount(page);
3342 if (PageHuge(page))
3343 return ret;
3344 for (i = 0; i < HPAGE_PMD_NR; i++)
3345 ret += atomic_read(&page[i]._mapcount) + 1;
3346 if (PageDoubleMap(page))
3347 ret -= HPAGE_PMD_NR;
3348 return ret;
3349 }
3350
3351 /*
3352 * This function splits huge page into normal pages. @page can point to any
3353 * subpage of huge page to split. Split doesn't change the position of @page.
3354 *
3355 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3356 * The huge page must be locked.
3357 *
3358 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3359 *
3360 * Both head page and tail pages will inherit mapping, flags, and so on from
3361 * the hugepage.
3362 *
3363 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3364 * they are not mapped.
3365 *
3366 * Returns 0 if the hugepage is split successfully.
3367 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3368 * us.
3369 */
3370 int split_huge_page_to_list(struct page *page, struct list_head *list)
3371 {
3372 struct page *head = compound_head(page);
3373 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
3374 struct anon_vma *anon_vma;
3375 int count, mapcount, ret;
3376 bool mlocked;
3377 unsigned long flags;
3378
3379 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3380 VM_BUG_ON_PAGE(!PageAnon(page), page);
3381 VM_BUG_ON_PAGE(!PageLocked(page), page);
3382 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3383 VM_BUG_ON_PAGE(!PageCompound(page), page);
3384
3385 /*
3386 * The caller does not necessarily hold an mmap_sem that would prevent
3387 * the anon_vma disappearing so we first we take a reference to it
3388 * and then lock the anon_vma for write. This is similar to
3389 * page_lock_anon_vma_read except the write lock is taken to serialise
3390 * against parallel split or collapse operations.
3391 */
3392 anon_vma = page_get_anon_vma(head);
3393 if (!anon_vma) {
3394 ret = -EBUSY;
3395 goto out;
3396 }
3397 anon_vma_lock_write(anon_vma);
3398
3399 /*
3400 * Racy check if we can split the page, before freeze_page() will
3401 * split PMDs
3402 */
3403 if (total_mapcount(head) != page_count(head) - 1) {
3404 ret = -EBUSY;
3405 goto out_unlock;
3406 }
3407
3408 mlocked = PageMlocked(page);
3409 freeze_page(anon_vma, head);
3410 VM_BUG_ON_PAGE(compound_mapcount(head), head);
3411
3412 /* Make sure the page is not on per-CPU pagevec as it takes pin */
3413 if (mlocked)
3414 lru_add_drain();
3415
3416 /* Prevent deferred_split_scan() touching ->_count */
3417 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3418 count = page_count(head);
3419 mapcount = total_mapcount(head);
3420 if (!mapcount && count == 1) {
3421 if (!list_empty(page_deferred_list(head))) {
3422 pgdata->split_queue_len--;
3423 list_del(page_deferred_list(head));
3424 }
3425 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3426 __split_huge_page(page, list);
3427 ret = 0;
3428 } else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
3429 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3430 pr_alert("total_mapcount: %u, page_count(): %u\n",
3431 mapcount, count);
3432 if (PageTail(page))
3433 dump_page(head, NULL);
3434 dump_page(page, "total_mapcount(head) > 0");
3435 BUG();
3436 } else {
3437 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3438 unfreeze_page(anon_vma, head);
3439 ret = -EBUSY;
3440 }
3441
3442 out_unlock:
3443 anon_vma_unlock_write(anon_vma);
3444 put_anon_vma(anon_vma);
3445 out:
3446 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3447 return ret;
3448 }
3449
3450 void free_transhuge_page(struct page *page)
3451 {
3452 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3453 unsigned long flags;
3454
3455 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3456 if (!list_empty(page_deferred_list(page))) {
3457 pgdata->split_queue_len--;
3458 list_del(page_deferred_list(page));
3459 }
3460 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3461 free_compound_page(page);
3462 }
3463
3464 void deferred_split_huge_page(struct page *page)
3465 {
3466 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3467 unsigned long flags;
3468
3469 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3470
3471 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3472 if (list_empty(page_deferred_list(page))) {
3473 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
3474 pgdata->split_queue_len++;
3475 }
3476 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3477 }
3478
3479 static unsigned long deferred_split_count(struct shrinker *shrink,
3480 struct shrink_control *sc)
3481 {
3482 struct pglist_data *pgdata = NODE_DATA(sc->nid);
3483 return ACCESS_ONCE(pgdata->split_queue_len);
3484 }
3485
3486 static unsigned long deferred_split_scan(struct shrinker *shrink,
3487 struct shrink_control *sc)
3488 {
3489 struct pglist_data *pgdata = NODE_DATA(sc->nid);
3490 unsigned long flags;
3491 LIST_HEAD(list), *pos, *next;
3492 struct page *page;
3493 int split = 0;
3494
3495 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3496 /* Take pin on all head pages to avoid freeing them under us */
3497 list_for_each_safe(pos, next, &pgdata->split_queue) {
3498 page = list_entry((void *)pos, struct page, mapping);
3499 page = compound_head(page);
3500 if (get_page_unless_zero(page)) {
3501 list_move(page_deferred_list(page), &list);
3502 } else {
3503 /* We lost race with put_compound_page() */
3504 list_del_init(page_deferred_list(page));
3505 pgdata->split_queue_len--;
3506 }
3507 if (!--sc->nr_to_scan)
3508 break;
3509 }
3510 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3511
3512 list_for_each_safe(pos, next, &list) {
3513 page = list_entry((void *)pos, struct page, mapping);
3514 lock_page(page);
3515 /* split_huge_page() removes page from list on success */
3516 if (!split_huge_page(page))
3517 split++;
3518 unlock_page(page);
3519 put_page(page);
3520 }
3521
3522 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3523 list_splice_tail(&list, &pgdata->split_queue);
3524 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3525
3526 /*
3527 * Stop shrinker if we didn't split any page, but the queue is empty.
3528 * This can happen if pages were freed under us.
3529 */
3530 if (!split && list_empty(&pgdata->split_queue))
3531 return SHRINK_STOP;
3532 return split;
3533 }
3534
3535 static struct shrinker deferred_split_shrinker = {
3536 .count_objects = deferred_split_count,
3537 .scan_objects = deferred_split_scan,
3538 .seeks = DEFAULT_SEEKS,
3539 .flags = SHRINKER_NUMA_AWARE,
3540 };
3541
3542 #ifdef CONFIG_DEBUG_FS
3543 static int split_huge_pages_set(void *data, u64 val)
3544 {
3545 struct zone *zone;
3546 struct page *page;
3547 unsigned long pfn, max_zone_pfn;
3548 unsigned long total = 0, split = 0;
3549
3550 if (val != 1)
3551 return -EINVAL;
3552
3553 for_each_populated_zone(zone) {
3554 max_zone_pfn = zone_end_pfn(zone);
3555 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3556 if (!pfn_valid(pfn))
3557 continue;
3558
3559 page = pfn_to_page(pfn);
3560 if (!get_page_unless_zero(page))
3561 continue;
3562
3563 if (zone != page_zone(page))
3564 goto next;
3565
3566 if (!PageHead(page) || !PageAnon(page) ||
3567 PageHuge(page))
3568 goto next;
3569
3570 total++;
3571 lock_page(page);
3572 if (!split_huge_page(page))
3573 split++;
3574 unlock_page(page);
3575 next:
3576 put_page(page);
3577 }
3578 }
3579
3580 pr_info("%lu of %lu THP split", split, total);
3581
3582 return 0;
3583 }
3584 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3585 "%llu\n");
3586
3587 static int __init split_huge_pages_debugfs(void)
3588 {
3589 void *ret;
3590
3591 ret = debugfs_create_file("split_huge_pages", 0644, NULL, NULL,
3592 &split_huge_pages_fops);
3593 if (!ret)
3594 pr_warn("Failed to create split_huge_pages in debugfs");
3595 return 0;
3596 }
3597 late_initcall(split_huge_pages_debugfs);
3598 #endif
This page took 0.162088 seconds and 5 git commands to generate.