x86, MCE, AMD: Assign interrupt handler only when bank supports it
[deliverable/linux.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/kthread.h>
20 #include <linux/khugepaged.h>
21 #include <linux/freezer.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/migrate.h>
25 #include <linux/hashtable.h>
26
27 #include <asm/tlb.h>
28 #include <asm/pgalloc.h>
29 #include "internal.h"
30
31 /*
32 * By default transparent hugepage support is disabled in order that avoid
33 * to risk increase the memory footprint of applications without a guaranteed
34 * benefit. When transparent hugepage support is enabled, is for all mappings,
35 * and khugepaged scans all mappings.
36 * Defrag is invoked by khugepaged hugepage allocations and by page faults
37 * for all hugepage allocations.
38 */
39 unsigned long transparent_hugepage_flags __read_mostly =
40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
41 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
42 #endif
43 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
44 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
45 #endif
46 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
47 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
48 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
49
50 /* default scan 8*512 pte (or vmas) every 30 second */
51 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
52 static unsigned int khugepaged_pages_collapsed;
53 static unsigned int khugepaged_full_scans;
54 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
55 /* during fragmentation poll the hugepage allocator once every minute */
56 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
57 static struct task_struct *khugepaged_thread __read_mostly;
58 static DEFINE_MUTEX(khugepaged_mutex);
59 static DEFINE_SPINLOCK(khugepaged_mm_lock);
60 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
61 /*
62 * default collapse hugepages if there is at least one pte mapped like
63 * it would have happened if the vma was large enough during page
64 * fault.
65 */
66 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
67
68 static int khugepaged(void *none);
69 static int khugepaged_slab_init(void);
70
71 #define MM_SLOTS_HASH_BITS 10
72 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
73
74 static struct kmem_cache *mm_slot_cache __read_mostly;
75
76 /**
77 * struct mm_slot - hash lookup from mm to mm_slot
78 * @hash: hash collision list
79 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
80 * @mm: the mm that this information is valid for
81 */
82 struct mm_slot {
83 struct hlist_node hash;
84 struct list_head mm_node;
85 struct mm_struct *mm;
86 };
87
88 /**
89 * struct khugepaged_scan - cursor for scanning
90 * @mm_head: the head of the mm list to scan
91 * @mm_slot: the current mm_slot we are scanning
92 * @address: the next address inside that to be scanned
93 *
94 * There is only the one khugepaged_scan instance of this cursor structure.
95 */
96 struct khugepaged_scan {
97 struct list_head mm_head;
98 struct mm_slot *mm_slot;
99 unsigned long address;
100 };
101 static struct khugepaged_scan khugepaged_scan = {
102 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
103 };
104
105
106 static int set_recommended_min_free_kbytes(void)
107 {
108 struct zone *zone;
109 int nr_zones = 0;
110 unsigned long recommended_min;
111
112 if (!khugepaged_enabled())
113 return 0;
114
115 for_each_populated_zone(zone)
116 nr_zones++;
117
118 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
119 recommended_min = pageblock_nr_pages * nr_zones * 2;
120
121 /*
122 * Make sure that on average at least two pageblocks are almost free
123 * of another type, one for a migratetype to fall back to and a
124 * second to avoid subsequent fallbacks of other types There are 3
125 * MIGRATE_TYPES we care about.
126 */
127 recommended_min += pageblock_nr_pages * nr_zones *
128 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
129
130 /* don't ever allow to reserve more than 5% of the lowmem */
131 recommended_min = min(recommended_min,
132 (unsigned long) nr_free_buffer_pages() / 20);
133 recommended_min <<= (PAGE_SHIFT-10);
134
135 if (recommended_min > min_free_kbytes) {
136 if (user_min_free_kbytes >= 0)
137 pr_info("raising min_free_kbytes from %d to %lu "
138 "to help transparent hugepage allocations\n",
139 min_free_kbytes, recommended_min);
140
141 min_free_kbytes = recommended_min;
142 }
143 setup_per_zone_wmarks();
144 return 0;
145 }
146 late_initcall(set_recommended_min_free_kbytes);
147
148 static int start_khugepaged(void)
149 {
150 int err = 0;
151 if (khugepaged_enabled()) {
152 if (!khugepaged_thread)
153 khugepaged_thread = kthread_run(khugepaged, NULL,
154 "khugepaged");
155 if (unlikely(IS_ERR(khugepaged_thread))) {
156 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
157 err = PTR_ERR(khugepaged_thread);
158 khugepaged_thread = NULL;
159 }
160
161 if (!list_empty(&khugepaged_scan.mm_head))
162 wake_up_interruptible(&khugepaged_wait);
163
164 set_recommended_min_free_kbytes();
165 } else if (khugepaged_thread) {
166 kthread_stop(khugepaged_thread);
167 khugepaged_thread = NULL;
168 }
169
170 return err;
171 }
172
173 static atomic_t huge_zero_refcount;
174 static struct page *huge_zero_page __read_mostly;
175
176 static inline bool is_huge_zero_page(struct page *page)
177 {
178 return ACCESS_ONCE(huge_zero_page) == page;
179 }
180
181 static inline bool is_huge_zero_pmd(pmd_t pmd)
182 {
183 return is_huge_zero_page(pmd_page(pmd));
184 }
185
186 static struct page *get_huge_zero_page(void)
187 {
188 struct page *zero_page;
189 retry:
190 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
191 return ACCESS_ONCE(huge_zero_page);
192
193 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
194 HPAGE_PMD_ORDER);
195 if (!zero_page) {
196 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
197 return NULL;
198 }
199 count_vm_event(THP_ZERO_PAGE_ALLOC);
200 preempt_disable();
201 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
202 preempt_enable();
203 __free_page(zero_page);
204 goto retry;
205 }
206
207 /* We take additional reference here. It will be put back by shrinker */
208 atomic_set(&huge_zero_refcount, 2);
209 preempt_enable();
210 return ACCESS_ONCE(huge_zero_page);
211 }
212
213 static void put_huge_zero_page(void)
214 {
215 /*
216 * Counter should never go to zero here. Only shrinker can put
217 * last reference.
218 */
219 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
220 }
221
222 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
223 struct shrink_control *sc)
224 {
225 /* we can free zero page only if last reference remains */
226 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
227 }
228
229 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
230 struct shrink_control *sc)
231 {
232 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
233 struct page *zero_page = xchg(&huge_zero_page, NULL);
234 BUG_ON(zero_page == NULL);
235 __free_page(zero_page);
236 return HPAGE_PMD_NR;
237 }
238
239 return 0;
240 }
241
242 static struct shrinker huge_zero_page_shrinker = {
243 .count_objects = shrink_huge_zero_page_count,
244 .scan_objects = shrink_huge_zero_page_scan,
245 .seeks = DEFAULT_SEEKS,
246 };
247
248 #ifdef CONFIG_SYSFS
249
250 static ssize_t double_flag_show(struct kobject *kobj,
251 struct kobj_attribute *attr, char *buf,
252 enum transparent_hugepage_flag enabled,
253 enum transparent_hugepage_flag req_madv)
254 {
255 if (test_bit(enabled, &transparent_hugepage_flags)) {
256 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
257 return sprintf(buf, "[always] madvise never\n");
258 } else if (test_bit(req_madv, &transparent_hugepage_flags))
259 return sprintf(buf, "always [madvise] never\n");
260 else
261 return sprintf(buf, "always madvise [never]\n");
262 }
263 static ssize_t double_flag_store(struct kobject *kobj,
264 struct kobj_attribute *attr,
265 const char *buf, size_t count,
266 enum transparent_hugepage_flag enabled,
267 enum transparent_hugepage_flag req_madv)
268 {
269 if (!memcmp("always", buf,
270 min(sizeof("always")-1, count))) {
271 set_bit(enabled, &transparent_hugepage_flags);
272 clear_bit(req_madv, &transparent_hugepage_flags);
273 } else if (!memcmp("madvise", buf,
274 min(sizeof("madvise")-1, count))) {
275 clear_bit(enabled, &transparent_hugepage_flags);
276 set_bit(req_madv, &transparent_hugepage_flags);
277 } else if (!memcmp("never", buf,
278 min(sizeof("never")-1, count))) {
279 clear_bit(enabled, &transparent_hugepage_flags);
280 clear_bit(req_madv, &transparent_hugepage_flags);
281 } else
282 return -EINVAL;
283
284 return count;
285 }
286
287 static ssize_t enabled_show(struct kobject *kobj,
288 struct kobj_attribute *attr, char *buf)
289 {
290 return double_flag_show(kobj, attr, buf,
291 TRANSPARENT_HUGEPAGE_FLAG,
292 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
293 }
294 static ssize_t enabled_store(struct kobject *kobj,
295 struct kobj_attribute *attr,
296 const char *buf, size_t count)
297 {
298 ssize_t ret;
299
300 ret = double_flag_store(kobj, attr, buf, count,
301 TRANSPARENT_HUGEPAGE_FLAG,
302 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
303
304 if (ret > 0) {
305 int err;
306
307 mutex_lock(&khugepaged_mutex);
308 err = start_khugepaged();
309 mutex_unlock(&khugepaged_mutex);
310
311 if (err)
312 ret = err;
313 }
314
315 return ret;
316 }
317 static struct kobj_attribute enabled_attr =
318 __ATTR(enabled, 0644, enabled_show, enabled_store);
319
320 static ssize_t single_flag_show(struct kobject *kobj,
321 struct kobj_attribute *attr, char *buf,
322 enum transparent_hugepage_flag flag)
323 {
324 return sprintf(buf, "%d\n",
325 !!test_bit(flag, &transparent_hugepage_flags));
326 }
327
328 static ssize_t single_flag_store(struct kobject *kobj,
329 struct kobj_attribute *attr,
330 const char *buf, size_t count,
331 enum transparent_hugepage_flag flag)
332 {
333 unsigned long value;
334 int ret;
335
336 ret = kstrtoul(buf, 10, &value);
337 if (ret < 0)
338 return ret;
339 if (value > 1)
340 return -EINVAL;
341
342 if (value)
343 set_bit(flag, &transparent_hugepage_flags);
344 else
345 clear_bit(flag, &transparent_hugepage_flags);
346
347 return count;
348 }
349
350 /*
351 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
352 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
353 * memory just to allocate one more hugepage.
354 */
355 static ssize_t defrag_show(struct kobject *kobj,
356 struct kobj_attribute *attr, char *buf)
357 {
358 return double_flag_show(kobj, attr, buf,
359 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
360 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
361 }
362 static ssize_t defrag_store(struct kobject *kobj,
363 struct kobj_attribute *attr,
364 const char *buf, size_t count)
365 {
366 return double_flag_store(kobj, attr, buf, count,
367 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
368 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
369 }
370 static struct kobj_attribute defrag_attr =
371 __ATTR(defrag, 0644, defrag_show, defrag_store);
372
373 static ssize_t use_zero_page_show(struct kobject *kobj,
374 struct kobj_attribute *attr, char *buf)
375 {
376 return single_flag_show(kobj, attr, buf,
377 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
378 }
379 static ssize_t use_zero_page_store(struct kobject *kobj,
380 struct kobj_attribute *attr, const char *buf, size_t count)
381 {
382 return single_flag_store(kobj, attr, buf, count,
383 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
384 }
385 static struct kobj_attribute use_zero_page_attr =
386 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
387 #ifdef CONFIG_DEBUG_VM
388 static ssize_t debug_cow_show(struct kobject *kobj,
389 struct kobj_attribute *attr, char *buf)
390 {
391 return single_flag_show(kobj, attr, buf,
392 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
393 }
394 static ssize_t debug_cow_store(struct kobject *kobj,
395 struct kobj_attribute *attr,
396 const char *buf, size_t count)
397 {
398 return single_flag_store(kobj, attr, buf, count,
399 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
400 }
401 static struct kobj_attribute debug_cow_attr =
402 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
403 #endif /* CONFIG_DEBUG_VM */
404
405 static struct attribute *hugepage_attr[] = {
406 &enabled_attr.attr,
407 &defrag_attr.attr,
408 &use_zero_page_attr.attr,
409 #ifdef CONFIG_DEBUG_VM
410 &debug_cow_attr.attr,
411 #endif
412 NULL,
413 };
414
415 static struct attribute_group hugepage_attr_group = {
416 .attrs = hugepage_attr,
417 };
418
419 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
420 struct kobj_attribute *attr,
421 char *buf)
422 {
423 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
424 }
425
426 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
427 struct kobj_attribute *attr,
428 const char *buf, size_t count)
429 {
430 unsigned long msecs;
431 int err;
432
433 err = kstrtoul(buf, 10, &msecs);
434 if (err || msecs > UINT_MAX)
435 return -EINVAL;
436
437 khugepaged_scan_sleep_millisecs = msecs;
438 wake_up_interruptible(&khugepaged_wait);
439
440 return count;
441 }
442 static struct kobj_attribute scan_sleep_millisecs_attr =
443 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
444 scan_sleep_millisecs_store);
445
446 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
447 struct kobj_attribute *attr,
448 char *buf)
449 {
450 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
451 }
452
453 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
454 struct kobj_attribute *attr,
455 const char *buf, size_t count)
456 {
457 unsigned long msecs;
458 int err;
459
460 err = kstrtoul(buf, 10, &msecs);
461 if (err || msecs > UINT_MAX)
462 return -EINVAL;
463
464 khugepaged_alloc_sleep_millisecs = msecs;
465 wake_up_interruptible(&khugepaged_wait);
466
467 return count;
468 }
469 static struct kobj_attribute alloc_sleep_millisecs_attr =
470 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
471 alloc_sleep_millisecs_store);
472
473 static ssize_t pages_to_scan_show(struct kobject *kobj,
474 struct kobj_attribute *attr,
475 char *buf)
476 {
477 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
478 }
479 static ssize_t pages_to_scan_store(struct kobject *kobj,
480 struct kobj_attribute *attr,
481 const char *buf, size_t count)
482 {
483 int err;
484 unsigned long pages;
485
486 err = kstrtoul(buf, 10, &pages);
487 if (err || !pages || pages > UINT_MAX)
488 return -EINVAL;
489
490 khugepaged_pages_to_scan = pages;
491
492 return count;
493 }
494 static struct kobj_attribute pages_to_scan_attr =
495 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
496 pages_to_scan_store);
497
498 static ssize_t pages_collapsed_show(struct kobject *kobj,
499 struct kobj_attribute *attr,
500 char *buf)
501 {
502 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
503 }
504 static struct kobj_attribute pages_collapsed_attr =
505 __ATTR_RO(pages_collapsed);
506
507 static ssize_t full_scans_show(struct kobject *kobj,
508 struct kobj_attribute *attr,
509 char *buf)
510 {
511 return sprintf(buf, "%u\n", khugepaged_full_scans);
512 }
513 static struct kobj_attribute full_scans_attr =
514 __ATTR_RO(full_scans);
515
516 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
517 struct kobj_attribute *attr, char *buf)
518 {
519 return single_flag_show(kobj, attr, buf,
520 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
521 }
522 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
523 struct kobj_attribute *attr,
524 const char *buf, size_t count)
525 {
526 return single_flag_store(kobj, attr, buf, count,
527 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
528 }
529 static struct kobj_attribute khugepaged_defrag_attr =
530 __ATTR(defrag, 0644, khugepaged_defrag_show,
531 khugepaged_defrag_store);
532
533 /*
534 * max_ptes_none controls if khugepaged should collapse hugepages over
535 * any unmapped ptes in turn potentially increasing the memory
536 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
537 * reduce the available free memory in the system as it
538 * runs. Increasing max_ptes_none will instead potentially reduce the
539 * free memory in the system during the khugepaged scan.
540 */
541 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
542 struct kobj_attribute *attr,
543 char *buf)
544 {
545 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
546 }
547 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
548 struct kobj_attribute *attr,
549 const char *buf, size_t count)
550 {
551 int err;
552 unsigned long max_ptes_none;
553
554 err = kstrtoul(buf, 10, &max_ptes_none);
555 if (err || max_ptes_none > HPAGE_PMD_NR-1)
556 return -EINVAL;
557
558 khugepaged_max_ptes_none = max_ptes_none;
559
560 return count;
561 }
562 static struct kobj_attribute khugepaged_max_ptes_none_attr =
563 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
564 khugepaged_max_ptes_none_store);
565
566 static struct attribute *khugepaged_attr[] = {
567 &khugepaged_defrag_attr.attr,
568 &khugepaged_max_ptes_none_attr.attr,
569 &pages_to_scan_attr.attr,
570 &pages_collapsed_attr.attr,
571 &full_scans_attr.attr,
572 &scan_sleep_millisecs_attr.attr,
573 &alloc_sleep_millisecs_attr.attr,
574 NULL,
575 };
576
577 static struct attribute_group khugepaged_attr_group = {
578 .attrs = khugepaged_attr,
579 .name = "khugepaged",
580 };
581
582 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
583 {
584 int err;
585
586 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
587 if (unlikely(!*hugepage_kobj)) {
588 pr_err("failed to create transparent hugepage kobject\n");
589 return -ENOMEM;
590 }
591
592 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
593 if (err) {
594 pr_err("failed to register transparent hugepage group\n");
595 goto delete_obj;
596 }
597
598 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
599 if (err) {
600 pr_err("failed to register transparent hugepage group\n");
601 goto remove_hp_group;
602 }
603
604 return 0;
605
606 remove_hp_group:
607 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
608 delete_obj:
609 kobject_put(*hugepage_kobj);
610 return err;
611 }
612
613 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
614 {
615 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
616 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
617 kobject_put(hugepage_kobj);
618 }
619 #else
620 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
621 {
622 return 0;
623 }
624
625 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
626 {
627 }
628 #endif /* CONFIG_SYSFS */
629
630 static int __init hugepage_init(void)
631 {
632 int err;
633 struct kobject *hugepage_kobj;
634
635 if (!has_transparent_hugepage()) {
636 transparent_hugepage_flags = 0;
637 return -EINVAL;
638 }
639
640 err = hugepage_init_sysfs(&hugepage_kobj);
641 if (err)
642 return err;
643
644 err = khugepaged_slab_init();
645 if (err)
646 goto out;
647
648 register_shrinker(&huge_zero_page_shrinker);
649
650 /*
651 * By default disable transparent hugepages on smaller systems,
652 * where the extra memory used could hurt more than TLB overhead
653 * is likely to save. The admin can still enable it through /sys.
654 */
655 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
656 transparent_hugepage_flags = 0;
657
658 start_khugepaged();
659
660 return 0;
661 out:
662 hugepage_exit_sysfs(hugepage_kobj);
663 return err;
664 }
665 subsys_initcall(hugepage_init);
666
667 static int __init setup_transparent_hugepage(char *str)
668 {
669 int ret = 0;
670 if (!str)
671 goto out;
672 if (!strcmp(str, "always")) {
673 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
674 &transparent_hugepage_flags);
675 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
676 &transparent_hugepage_flags);
677 ret = 1;
678 } else if (!strcmp(str, "madvise")) {
679 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
680 &transparent_hugepage_flags);
681 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
682 &transparent_hugepage_flags);
683 ret = 1;
684 } else if (!strcmp(str, "never")) {
685 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
686 &transparent_hugepage_flags);
687 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
688 &transparent_hugepage_flags);
689 ret = 1;
690 }
691 out:
692 if (!ret)
693 pr_warn("transparent_hugepage= cannot parse, ignored\n");
694 return ret;
695 }
696 __setup("transparent_hugepage=", setup_transparent_hugepage);
697
698 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
699 {
700 if (likely(vma->vm_flags & VM_WRITE))
701 pmd = pmd_mkwrite(pmd);
702 return pmd;
703 }
704
705 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
706 {
707 pmd_t entry;
708 entry = mk_pmd(page, prot);
709 entry = pmd_mkhuge(entry);
710 return entry;
711 }
712
713 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
714 struct vm_area_struct *vma,
715 unsigned long haddr, pmd_t *pmd,
716 struct page *page)
717 {
718 struct mem_cgroup *memcg;
719 pgtable_t pgtable;
720 spinlock_t *ptl;
721
722 VM_BUG_ON_PAGE(!PageCompound(page), page);
723
724 if (mem_cgroup_try_charge(page, mm, GFP_TRANSHUGE, &memcg))
725 return VM_FAULT_OOM;
726
727 pgtable = pte_alloc_one(mm, haddr);
728 if (unlikely(!pgtable)) {
729 mem_cgroup_cancel_charge(page, memcg);
730 return VM_FAULT_OOM;
731 }
732
733 clear_huge_page(page, haddr, HPAGE_PMD_NR);
734 /*
735 * The memory barrier inside __SetPageUptodate makes sure that
736 * clear_huge_page writes become visible before the set_pmd_at()
737 * write.
738 */
739 __SetPageUptodate(page);
740
741 ptl = pmd_lock(mm, pmd);
742 if (unlikely(!pmd_none(*pmd))) {
743 spin_unlock(ptl);
744 mem_cgroup_cancel_charge(page, memcg);
745 put_page(page);
746 pte_free(mm, pgtable);
747 } else {
748 pmd_t entry;
749 entry = mk_huge_pmd(page, vma->vm_page_prot);
750 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
751 page_add_new_anon_rmap(page, vma, haddr);
752 mem_cgroup_commit_charge(page, memcg, false);
753 lru_cache_add_active_or_unevictable(page, vma);
754 pgtable_trans_huge_deposit(mm, pmd, pgtable);
755 set_pmd_at(mm, haddr, pmd, entry);
756 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
757 atomic_long_inc(&mm->nr_ptes);
758 spin_unlock(ptl);
759 }
760
761 return 0;
762 }
763
764 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
765 {
766 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
767 }
768
769 static inline struct page *alloc_hugepage_vma(int defrag,
770 struct vm_area_struct *vma,
771 unsigned long haddr, int nd,
772 gfp_t extra_gfp)
773 {
774 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
775 HPAGE_PMD_ORDER, vma, haddr, nd);
776 }
777
778 /* Caller must hold page table lock. */
779 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
780 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
781 struct page *zero_page)
782 {
783 pmd_t entry;
784 if (!pmd_none(*pmd))
785 return false;
786 entry = mk_pmd(zero_page, vma->vm_page_prot);
787 entry = pmd_wrprotect(entry);
788 entry = pmd_mkhuge(entry);
789 pgtable_trans_huge_deposit(mm, pmd, pgtable);
790 set_pmd_at(mm, haddr, pmd, entry);
791 atomic_long_inc(&mm->nr_ptes);
792 return true;
793 }
794
795 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
796 unsigned long address, pmd_t *pmd,
797 unsigned int flags)
798 {
799 struct page *page;
800 unsigned long haddr = address & HPAGE_PMD_MASK;
801
802 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
803 return VM_FAULT_FALLBACK;
804 if (unlikely(anon_vma_prepare(vma)))
805 return VM_FAULT_OOM;
806 if (unlikely(khugepaged_enter(vma)))
807 return VM_FAULT_OOM;
808 if (!(flags & FAULT_FLAG_WRITE) &&
809 transparent_hugepage_use_zero_page()) {
810 spinlock_t *ptl;
811 pgtable_t pgtable;
812 struct page *zero_page;
813 bool set;
814 pgtable = pte_alloc_one(mm, haddr);
815 if (unlikely(!pgtable))
816 return VM_FAULT_OOM;
817 zero_page = get_huge_zero_page();
818 if (unlikely(!zero_page)) {
819 pte_free(mm, pgtable);
820 count_vm_event(THP_FAULT_FALLBACK);
821 return VM_FAULT_FALLBACK;
822 }
823 ptl = pmd_lock(mm, pmd);
824 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
825 zero_page);
826 spin_unlock(ptl);
827 if (!set) {
828 pte_free(mm, pgtable);
829 put_huge_zero_page();
830 }
831 return 0;
832 }
833 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
834 vma, haddr, numa_node_id(), 0);
835 if (unlikely(!page)) {
836 count_vm_event(THP_FAULT_FALLBACK);
837 return VM_FAULT_FALLBACK;
838 }
839 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
840 put_page(page);
841 count_vm_event(THP_FAULT_FALLBACK);
842 return VM_FAULT_FALLBACK;
843 }
844
845 count_vm_event(THP_FAULT_ALLOC);
846 return 0;
847 }
848
849 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
850 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
851 struct vm_area_struct *vma)
852 {
853 spinlock_t *dst_ptl, *src_ptl;
854 struct page *src_page;
855 pmd_t pmd;
856 pgtable_t pgtable;
857 int ret;
858
859 ret = -ENOMEM;
860 pgtable = pte_alloc_one(dst_mm, addr);
861 if (unlikely(!pgtable))
862 goto out;
863
864 dst_ptl = pmd_lock(dst_mm, dst_pmd);
865 src_ptl = pmd_lockptr(src_mm, src_pmd);
866 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
867
868 ret = -EAGAIN;
869 pmd = *src_pmd;
870 if (unlikely(!pmd_trans_huge(pmd))) {
871 pte_free(dst_mm, pgtable);
872 goto out_unlock;
873 }
874 /*
875 * When page table lock is held, the huge zero pmd should not be
876 * under splitting since we don't split the page itself, only pmd to
877 * a page table.
878 */
879 if (is_huge_zero_pmd(pmd)) {
880 struct page *zero_page;
881 bool set;
882 /*
883 * get_huge_zero_page() will never allocate a new page here,
884 * since we already have a zero page to copy. It just takes a
885 * reference.
886 */
887 zero_page = get_huge_zero_page();
888 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
889 zero_page);
890 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
891 ret = 0;
892 goto out_unlock;
893 }
894
895 if (unlikely(pmd_trans_splitting(pmd))) {
896 /* split huge page running from under us */
897 spin_unlock(src_ptl);
898 spin_unlock(dst_ptl);
899 pte_free(dst_mm, pgtable);
900
901 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
902 goto out;
903 }
904 src_page = pmd_page(pmd);
905 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
906 get_page(src_page);
907 page_dup_rmap(src_page);
908 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
909
910 pmdp_set_wrprotect(src_mm, addr, src_pmd);
911 pmd = pmd_mkold(pmd_wrprotect(pmd));
912 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
913 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
914 atomic_long_inc(&dst_mm->nr_ptes);
915
916 ret = 0;
917 out_unlock:
918 spin_unlock(src_ptl);
919 spin_unlock(dst_ptl);
920 out:
921 return ret;
922 }
923
924 void huge_pmd_set_accessed(struct mm_struct *mm,
925 struct vm_area_struct *vma,
926 unsigned long address,
927 pmd_t *pmd, pmd_t orig_pmd,
928 int dirty)
929 {
930 spinlock_t *ptl;
931 pmd_t entry;
932 unsigned long haddr;
933
934 ptl = pmd_lock(mm, pmd);
935 if (unlikely(!pmd_same(*pmd, orig_pmd)))
936 goto unlock;
937
938 entry = pmd_mkyoung(orig_pmd);
939 haddr = address & HPAGE_PMD_MASK;
940 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
941 update_mmu_cache_pmd(vma, address, pmd);
942
943 unlock:
944 spin_unlock(ptl);
945 }
946
947 /*
948 * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
949 * during copy_user_huge_page()'s copy_page_rep(): in the case when
950 * the source page gets split and a tail freed before copy completes.
951 * Called under pmd_lock of checked pmd, so safe from splitting itself.
952 */
953 static void get_user_huge_page(struct page *page)
954 {
955 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
956 struct page *endpage = page + HPAGE_PMD_NR;
957
958 atomic_add(HPAGE_PMD_NR, &page->_count);
959 while (++page < endpage)
960 get_huge_page_tail(page);
961 } else {
962 get_page(page);
963 }
964 }
965
966 static void put_user_huge_page(struct page *page)
967 {
968 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
969 struct page *endpage = page + HPAGE_PMD_NR;
970
971 while (page < endpage)
972 put_page(page++);
973 } else {
974 put_page(page);
975 }
976 }
977
978 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
979 struct vm_area_struct *vma,
980 unsigned long address,
981 pmd_t *pmd, pmd_t orig_pmd,
982 struct page *page,
983 unsigned long haddr)
984 {
985 struct mem_cgroup *memcg;
986 spinlock_t *ptl;
987 pgtable_t pgtable;
988 pmd_t _pmd;
989 int ret = 0, i;
990 struct page **pages;
991 unsigned long mmun_start; /* For mmu_notifiers */
992 unsigned long mmun_end; /* For mmu_notifiers */
993
994 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
995 GFP_KERNEL);
996 if (unlikely(!pages)) {
997 ret |= VM_FAULT_OOM;
998 goto out;
999 }
1000
1001 for (i = 0; i < HPAGE_PMD_NR; i++) {
1002 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1003 __GFP_OTHER_NODE,
1004 vma, address, page_to_nid(page));
1005 if (unlikely(!pages[i] ||
1006 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1007 &memcg))) {
1008 if (pages[i])
1009 put_page(pages[i]);
1010 while (--i >= 0) {
1011 memcg = (void *)page_private(pages[i]);
1012 set_page_private(pages[i], 0);
1013 mem_cgroup_cancel_charge(pages[i], memcg);
1014 put_page(pages[i]);
1015 }
1016 kfree(pages);
1017 ret |= VM_FAULT_OOM;
1018 goto out;
1019 }
1020 set_page_private(pages[i], (unsigned long)memcg);
1021 }
1022
1023 for (i = 0; i < HPAGE_PMD_NR; i++) {
1024 copy_user_highpage(pages[i], page + i,
1025 haddr + PAGE_SIZE * i, vma);
1026 __SetPageUptodate(pages[i]);
1027 cond_resched();
1028 }
1029
1030 mmun_start = haddr;
1031 mmun_end = haddr + HPAGE_PMD_SIZE;
1032 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1033
1034 ptl = pmd_lock(mm, pmd);
1035 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1036 goto out_free_pages;
1037 VM_BUG_ON_PAGE(!PageHead(page), page);
1038
1039 pmdp_clear_flush(vma, haddr, pmd);
1040 /* leave pmd empty until pte is filled */
1041
1042 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1043 pmd_populate(mm, &_pmd, pgtable);
1044
1045 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1046 pte_t *pte, entry;
1047 entry = mk_pte(pages[i], vma->vm_page_prot);
1048 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1049 memcg = (void *)page_private(pages[i]);
1050 set_page_private(pages[i], 0);
1051 page_add_new_anon_rmap(pages[i], vma, haddr);
1052 mem_cgroup_commit_charge(pages[i], memcg, false);
1053 lru_cache_add_active_or_unevictable(pages[i], vma);
1054 pte = pte_offset_map(&_pmd, haddr);
1055 VM_BUG_ON(!pte_none(*pte));
1056 set_pte_at(mm, haddr, pte, entry);
1057 pte_unmap(pte);
1058 }
1059 kfree(pages);
1060
1061 smp_wmb(); /* make pte visible before pmd */
1062 pmd_populate(mm, pmd, pgtable);
1063 page_remove_rmap(page);
1064 spin_unlock(ptl);
1065
1066 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1067
1068 ret |= VM_FAULT_WRITE;
1069 put_page(page);
1070
1071 out:
1072 return ret;
1073
1074 out_free_pages:
1075 spin_unlock(ptl);
1076 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1077 for (i = 0; i < HPAGE_PMD_NR; i++) {
1078 memcg = (void *)page_private(pages[i]);
1079 set_page_private(pages[i], 0);
1080 mem_cgroup_cancel_charge(pages[i], memcg);
1081 put_page(pages[i]);
1082 }
1083 kfree(pages);
1084 goto out;
1085 }
1086
1087 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1088 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1089 {
1090 spinlock_t *ptl;
1091 int ret = 0;
1092 struct page *page = NULL, *new_page;
1093 struct mem_cgroup *memcg;
1094 unsigned long haddr;
1095 unsigned long mmun_start; /* For mmu_notifiers */
1096 unsigned long mmun_end; /* For mmu_notifiers */
1097
1098 ptl = pmd_lockptr(mm, pmd);
1099 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1100 haddr = address & HPAGE_PMD_MASK;
1101 if (is_huge_zero_pmd(orig_pmd))
1102 goto alloc;
1103 spin_lock(ptl);
1104 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1105 goto out_unlock;
1106
1107 page = pmd_page(orig_pmd);
1108 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1109 if (page_mapcount(page) == 1) {
1110 pmd_t entry;
1111 entry = pmd_mkyoung(orig_pmd);
1112 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1113 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1114 update_mmu_cache_pmd(vma, address, pmd);
1115 ret |= VM_FAULT_WRITE;
1116 goto out_unlock;
1117 }
1118 get_user_huge_page(page);
1119 spin_unlock(ptl);
1120 alloc:
1121 if (transparent_hugepage_enabled(vma) &&
1122 !transparent_hugepage_debug_cow())
1123 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1124 vma, haddr, numa_node_id(), 0);
1125 else
1126 new_page = NULL;
1127
1128 if (unlikely(!new_page)) {
1129 if (!page) {
1130 split_huge_page_pmd(vma, address, pmd);
1131 ret |= VM_FAULT_FALLBACK;
1132 } else {
1133 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1134 pmd, orig_pmd, page, haddr);
1135 if (ret & VM_FAULT_OOM) {
1136 split_huge_page(page);
1137 ret |= VM_FAULT_FALLBACK;
1138 }
1139 put_user_huge_page(page);
1140 }
1141 count_vm_event(THP_FAULT_FALLBACK);
1142 goto out;
1143 }
1144
1145 if (unlikely(mem_cgroup_try_charge(new_page, mm,
1146 GFP_TRANSHUGE, &memcg))) {
1147 put_page(new_page);
1148 if (page) {
1149 split_huge_page(page);
1150 put_user_huge_page(page);
1151 } else
1152 split_huge_page_pmd(vma, address, pmd);
1153 ret |= VM_FAULT_FALLBACK;
1154 count_vm_event(THP_FAULT_FALLBACK);
1155 goto out;
1156 }
1157
1158 count_vm_event(THP_FAULT_ALLOC);
1159
1160 if (!page)
1161 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1162 else
1163 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1164 __SetPageUptodate(new_page);
1165
1166 mmun_start = haddr;
1167 mmun_end = haddr + HPAGE_PMD_SIZE;
1168 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1169
1170 spin_lock(ptl);
1171 if (page)
1172 put_user_huge_page(page);
1173 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1174 spin_unlock(ptl);
1175 mem_cgroup_cancel_charge(new_page, memcg);
1176 put_page(new_page);
1177 goto out_mn;
1178 } else {
1179 pmd_t entry;
1180 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1181 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1182 pmdp_clear_flush(vma, haddr, pmd);
1183 page_add_new_anon_rmap(new_page, vma, haddr);
1184 mem_cgroup_commit_charge(new_page, memcg, false);
1185 lru_cache_add_active_or_unevictable(new_page, vma);
1186 set_pmd_at(mm, haddr, pmd, entry);
1187 update_mmu_cache_pmd(vma, address, pmd);
1188 if (!page) {
1189 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1190 put_huge_zero_page();
1191 } else {
1192 VM_BUG_ON_PAGE(!PageHead(page), page);
1193 page_remove_rmap(page);
1194 put_page(page);
1195 }
1196 ret |= VM_FAULT_WRITE;
1197 }
1198 spin_unlock(ptl);
1199 out_mn:
1200 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1201 out:
1202 return ret;
1203 out_unlock:
1204 spin_unlock(ptl);
1205 return ret;
1206 }
1207
1208 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1209 unsigned long addr,
1210 pmd_t *pmd,
1211 unsigned int flags)
1212 {
1213 struct mm_struct *mm = vma->vm_mm;
1214 struct page *page = NULL;
1215
1216 assert_spin_locked(pmd_lockptr(mm, pmd));
1217
1218 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1219 goto out;
1220
1221 /* Avoid dumping huge zero page */
1222 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1223 return ERR_PTR(-EFAULT);
1224
1225 /* Full NUMA hinting faults to serialise migration in fault paths */
1226 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1227 goto out;
1228
1229 page = pmd_page(*pmd);
1230 VM_BUG_ON_PAGE(!PageHead(page), page);
1231 if (flags & FOLL_TOUCH) {
1232 pmd_t _pmd;
1233 /*
1234 * We should set the dirty bit only for FOLL_WRITE but
1235 * for now the dirty bit in the pmd is meaningless.
1236 * And if the dirty bit will become meaningful and
1237 * we'll only set it with FOLL_WRITE, an atomic
1238 * set_bit will be required on the pmd to set the
1239 * young bit, instead of the current set_pmd_at.
1240 */
1241 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1242 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1243 pmd, _pmd, 1))
1244 update_mmu_cache_pmd(vma, addr, pmd);
1245 }
1246 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1247 if (page->mapping && trylock_page(page)) {
1248 lru_add_drain();
1249 if (page->mapping)
1250 mlock_vma_page(page);
1251 unlock_page(page);
1252 }
1253 }
1254 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1255 VM_BUG_ON_PAGE(!PageCompound(page), page);
1256 if (flags & FOLL_GET)
1257 get_page_foll(page);
1258
1259 out:
1260 return page;
1261 }
1262
1263 /* NUMA hinting page fault entry point for trans huge pmds */
1264 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1265 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1266 {
1267 spinlock_t *ptl;
1268 struct anon_vma *anon_vma = NULL;
1269 struct page *page;
1270 unsigned long haddr = addr & HPAGE_PMD_MASK;
1271 int page_nid = -1, this_nid = numa_node_id();
1272 int target_nid, last_cpupid = -1;
1273 bool page_locked;
1274 bool migrated = false;
1275 int flags = 0;
1276
1277 ptl = pmd_lock(mm, pmdp);
1278 if (unlikely(!pmd_same(pmd, *pmdp)))
1279 goto out_unlock;
1280
1281 /*
1282 * If there are potential migrations, wait for completion and retry
1283 * without disrupting NUMA hinting information. Do not relock and
1284 * check_same as the page may no longer be mapped.
1285 */
1286 if (unlikely(pmd_trans_migrating(*pmdp))) {
1287 spin_unlock(ptl);
1288 wait_migrate_huge_page(vma->anon_vma, pmdp);
1289 goto out;
1290 }
1291
1292 page = pmd_page(pmd);
1293 BUG_ON(is_huge_zero_page(page));
1294 page_nid = page_to_nid(page);
1295 last_cpupid = page_cpupid_last(page);
1296 count_vm_numa_event(NUMA_HINT_FAULTS);
1297 if (page_nid == this_nid) {
1298 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1299 flags |= TNF_FAULT_LOCAL;
1300 }
1301
1302 /*
1303 * Avoid grouping on DSO/COW pages in specific and RO pages
1304 * in general, RO pages shouldn't hurt as much anyway since
1305 * they can be in shared cache state.
1306 */
1307 if (!pmd_write(pmd))
1308 flags |= TNF_NO_GROUP;
1309
1310 /*
1311 * Acquire the page lock to serialise THP migrations but avoid dropping
1312 * page_table_lock if at all possible
1313 */
1314 page_locked = trylock_page(page);
1315 target_nid = mpol_misplaced(page, vma, haddr);
1316 if (target_nid == -1) {
1317 /* If the page was locked, there are no parallel migrations */
1318 if (page_locked)
1319 goto clear_pmdnuma;
1320 }
1321
1322 /* Migration could have started since the pmd_trans_migrating check */
1323 if (!page_locked) {
1324 spin_unlock(ptl);
1325 wait_on_page_locked(page);
1326 page_nid = -1;
1327 goto out;
1328 }
1329
1330 /*
1331 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1332 * to serialises splits
1333 */
1334 get_page(page);
1335 spin_unlock(ptl);
1336 anon_vma = page_lock_anon_vma_read(page);
1337
1338 /* Confirm the PMD did not change while page_table_lock was released */
1339 spin_lock(ptl);
1340 if (unlikely(!pmd_same(pmd, *pmdp))) {
1341 unlock_page(page);
1342 put_page(page);
1343 page_nid = -1;
1344 goto out_unlock;
1345 }
1346
1347 /* Bail if we fail to protect against THP splits for any reason */
1348 if (unlikely(!anon_vma)) {
1349 put_page(page);
1350 page_nid = -1;
1351 goto clear_pmdnuma;
1352 }
1353
1354 /*
1355 * Migrate the THP to the requested node, returns with page unlocked
1356 * and pmd_numa cleared.
1357 */
1358 spin_unlock(ptl);
1359 migrated = migrate_misplaced_transhuge_page(mm, vma,
1360 pmdp, pmd, addr, page, target_nid);
1361 if (migrated) {
1362 flags |= TNF_MIGRATED;
1363 page_nid = target_nid;
1364 }
1365
1366 goto out;
1367 clear_pmdnuma:
1368 BUG_ON(!PageLocked(page));
1369 pmd = pmd_mknonnuma(pmd);
1370 set_pmd_at(mm, haddr, pmdp, pmd);
1371 VM_BUG_ON(pmd_numa(*pmdp));
1372 update_mmu_cache_pmd(vma, addr, pmdp);
1373 unlock_page(page);
1374 out_unlock:
1375 spin_unlock(ptl);
1376
1377 out:
1378 if (anon_vma)
1379 page_unlock_anon_vma_read(anon_vma);
1380
1381 if (page_nid != -1)
1382 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1383
1384 return 0;
1385 }
1386
1387 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1388 pmd_t *pmd, unsigned long addr)
1389 {
1390 spinlock_t *ptl;
1391 int ret = 0;
1392
1393 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1394 struct page *page;
1395 pgtable_t pgtable;
1396 pmd_t orig_pmd;
1397 /*
1398 * For architectures like ppc64 we look at deposited pgtable
1399 * when calling pmdp_get_and_clear. So do the
1400 * pgtable_trans_huge_withdraw after finishing pmdp related
1401 * operations.
1402 */
1403 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1404 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1405 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1406 if (is_huge_zero_pmd(orig_pmd)) {
1407 atomic_long_dec(&tlb->mm->nr_ptes);
1408 spin_unlock(ptl);
1409 put_huge_zero_page();
1410 } else {
1411 page = pmd_page(orig_pmd);
1412 page_remove_rmap(page);
1413 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1414 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1415 VM_BUG_ON_PAGE(!PageHead(page), page);
1416 atomic_long_dec(&tlb->mm->nr_ptes);
1417 spin_unlock(ptl);
1418 tlb_remove_page(tlb, page);
1419 }
1420 pte_free(tlb->mm, pgtable);
1421 ret = 1;
1422 }
1423 return ret;
1424 }
1425
1426 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1427 unsigned long addr, unsigned long end,
1428 unsigned char *vec)
1429 {
1430 spinlock_t *ptl;
1431 int ret = 0;
1432
1433 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1434 /*
1435 * All logical pages in the range are present
1436 * if backed by a huge page.
1437 */
1438 spin_unlock(ptl);
1439 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1440 ret = 1;
1441 }
1442
1443 return ret;
1444 }
1445
1446 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1447 unsigned long old_addr,
1448 unsigned long new_addr, unsigned long old_end,
1449 pmd_t *old_pmd, pmd_t *new_pmd)
1450 {
1451 spinlock_t *old_ptl, *new_ptl;
1452 int ret = 0;
1453 pmd_t pmd;
1454
1455 struct mm_struct *mm = vma->vm_mm;
1456
1457 if ((old_addr & ~HPAGE_PMD_MASK) ||
1458 (new_addr & ~HPAGE_PMD_MASK) ||
1459 old_end - old_addr < HPAGE_PMD_SIZE ||
1460 (new_vma->vm_flags & VM_NOHUGEPAGE))
1461 goto out;
1462
1463 /*
1464 * The destination pmd shouldn't be established, free_pgtables()
1465 * should have release it.
1466 */
1467 if (WARN_ON(!pmd_none(*new_pmd))) {
1468 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1469 goto out;
1470 }
1471
1472 /*
1473 * We don't have to worry about the ordering of src and dst
1474 * ptlocks because exclusive mmap_sem prevents deadlock.
1475 */
1476 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1477 if (ret == 1) {
1478 new_ptl = pmd_lockptr(mm, new_pmd);
1479 if (new_ptl != old_ptl)
1480 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1481 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1482 VM_BUG_ON(!pmd_none(*new_pmd));
1483
1484 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1485 pgtable_t pgtable;
1486 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1487 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1488 }
1489 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1490 if (new_ptl != old_ptl)
1491 spin_unlock(new_ptl);
1492 spin_unlock(old_ptl);
1493 }
1494 out:
1495 return ret;
1496 }
1497
1498 /*
1499 * Returns
1500 * - 0 if PMD could not be locked
1501 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1502 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1503 */
1504 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1505 unsigned long addr, pgprot_t newprot, int prot_numa)
1506 {
1507 struct mm_struct *mm = vma->vm_mm;
1508 spinlock_t *ptl;
1509 int ret = 0;
1510
1511 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1512 pmd_t entry;
1513 ret = 1;
1514 if (!prot_numa) {
1515 entry = pmdp_get_and_clear(mm, addr, pmd);
1516 if (pmd_numa(entry))
1517 entry = pmd_mknonnuma(entry);
1518 entry = pmd_modify(entry, newprot);
1519 ret = HPAGE_PMD_NR;
1520 set_pmd_at(mm, addr, pmd, entry);
1521 BUG_ON(pmd_write(entry));
1522 } else {
1523 struct page *page = pmd_page(*pmd);
1524
1525 /*
1526 * Do not trap faults against the zero page. The
1527 * read-only data is likely to be read-cached on the
1528 * local CPU cache and it is less useful to know about
1529 * local vs remote hits on the zero page.
1530 */
1531 if (!is_huge_zero_page(page) &&
1532 !pmd_numa(*pmd)) {
1533 pmdp_set_numa(mm, addr, pmd);
1534 ret = HPAGE_PMD_NR;
1535 }
1536 }
1537 spin_unlock(ptl);
1538 }
1539
1540 return ret;
1541 }
1542
1543 /*
1544 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1545 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1546 *
1547 * Note that if it returns 1, this routine returns without unlocking page
1548 * table locks. So callers must unlock them.
1549 */
1550 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1551 spinlock_t **ptl)
1552 {
1553 *ptl = pmd_lock(vma->vm_mm, pmd);
1554 if (likely(pmd_trans_huge(*pmd))) {
1555 if (unlikely(pmd_trans_splitting(*pmd))) {
1556 spin_unlock(*ptl);
1557 wait_split_huge_page(vma->anon_vma, pmd);
1558 return -1;
1559 } else {
1560 /* Thp mapped by 'pmd' is stable, so we can
1561 * handle it as it is. */
1562 return 1;
1563 }
1564 }
1565 spin_unlock(*ptl);
1566 return 0;
1567 }
1568
1569 /*
1570 * This function returns whether a given @page is mapped onto the @address
1571 * in the virtual space of @mm.
1572 *
1573 * When it's true, this function returns *pmd with holding the page table lock
1574 * and passing it back to the caller via @ptl.
1575 * If it's false, returns NULL without holding the page table lock.
1576 */
1577 pmd_t *page_check_address_pmd(struct page *page,
1578 struct mm_struct *mm,
1579 unsigned long address,
1580 enum page_check_address_pmd_flag flag,
1581 spinlock_t **ptl)
1582 {
1583 pgd_t *pgd;
1584 pud_t *pud;
1585 pmd_t *pmd;
1586
1587 if (address & ~HPAGE_PMD_MASK)
1588 return NULL;
1589
1590 pgd = pgd_offset(mm, address);
1591 if (!pgd_present(*pgd))
1592 return NULL;
1593 pud = pud_offset(pgd, address);
1594 if (!pud_present(*pud))
1595 return NULL;
1596 pmd = pmd_offset(pud, address);
1597
1598 *ptl = pmd_lock(mm, pmd);
1599 if (!pmd_present(*pmd))
1600 goto unlock;
1601 if (pmd_page(*pmd) != page)
1602 goto unlock;
1603 /*
1604 * split_vma() may create temporary aliased mappings. There is
1605 * no risk as long as all huge pmd are found and have their
1606 * splitting bit set before __split_huge_page_refcount
1607 * runs. Finding the same huge pmd more than once during the
1608 * same rmap walk is not a problem.
1609 */
1610 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1611 pmd_trans_splitting(*pmd))
1612 goto unlock;
1613 if (pmd_trans_huge(*pmd)) {
1614 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1615 !pmd_trans_splitting(*pmd));
1616 return pmd;
1617 }
1618 unlock:
1619 spin_unlock(*ptl);
1620 return NULL;
1621 }
1622
1623 static int __split_huge_page_splitting(struct page *page,
1624 struct vm_area_struct *vma,
1625 unsigned long address)
1626 {
1627 struct mm_struct *mm = vma->vm_mm;
1628 spinlock_t *ptl;
1629 pmd_t *pmd;
1630 int ret = 0;
1631 /* For mmu_notifiers */
1632 const unsigned long mmun_start = address;
1633 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1634
1635 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1636 pmd = page_check_address_pmd(page, mm, address,
1637 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1638 if (pmd) {
1639 /*
1640 * We can't temporarily set the pmd to null in order
1641 * to split it, the pmd must remain marked huge at all
1642 * times or the VM won't take the pmd_trans_huge paths
1643 * and it won't wait on the anon_vma->root->rwsem to
1644 * serialize against split_huge_page*.
1645 */
1646 pmdp_splitting_flush(vma, address, pmd);
1647 ret = 1;
1648 spin_unlock(ptl);
1649 }
1650 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1651
1652 return ret;
1653 }
1654
1655 static void __split_huge_page_refcount(struct page *page,
1656 struct list_head *list)
1657 {
1658 int i;
1659 struct zone *zone = page_zone(page);
1660 struct lruvec *lruvec;
1661 int tail_count = 0;
1662
1663 /* prevent PageLRU to go away from under us, and freeze lru stats */
1664 spin_lock_irq(&zone->lru_lock);
1665 lruvec = mem_cgroup_page_lruvec(page, zone);
1666
1667 compound_lock(page);
1668 /* complete memcg works before add pages to LRU */
1669 mem_cgroup_split_huge_fixup(page);
1670
1671 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1672 struct page *page_tail = page + i;
1673
1674 /* tail_page->_mapcount cannot change */
1675 BUG_ON(page_mapcount(page_tail) < 0);
1676 tail_count += page_mapcount(page_tail);
1677 /* check for overflow */
1678 BUG_ON(tail_count < 0);
1679 BUG_ON(atomic_read(&page_tail->_count) != 0);
1680 /*
1681 * tail_page->_count is zero and not changing from
1682 * under us. But get_page_unless_zero() may be running
1683 * from under us on the tail_page. If we used
1684 * atomic_set() below instead of atomic_add(), we
1685 * would then run atomic_set() concurrently with
1686 * get_page_unless_zero(), and atomic_set() is
1687 * implemented in C not using locked ops. spin_unlock
1688 * on x86 sometime uses locked ops because of PPro
1689 * errata 66, 92, so unless somebody can guarantee
1690 * atomic_set() here would be safe on all archs (and
1691 * not only on x86), it's safer to use atomic_add().
1692 */
1693 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1694 &page_tail->_count);
1695
1696 /* after clearing PageTail the gup refcount can be released */
1697 smp_mb__after_atomic();
1698
1699 /*
1700 * retain hwpoison flag of the poisoned tail page:
1701 * fix for the unsuitable process killed on Guest Machine(KVM)
1702 * by the memory-failure.
1703 */
1704 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1705 page_tail->flags |= (page->flags &
1706 ((1L << PG_referenced) |
1707 (1L << PG_swapbacked) |
1708 (1L << PG_mlocked) |
1709 (1L << PG_uptodate) |
1710 (1L << PG_active) |
1711 (1L << PG_unevictable)));
1712 page_tail->flags |= (1L << PG_dirty);
1713
1714 /* clear PageTail before overwriting first_page */
1715 smp_wmb();
1716
1717 /*
1718 * __split_huge_page_splitting() already set the
1719 * splitting bit in all pmd that could map this
1720 * hugepage, that will ensure no CPU can alter the
1721 * mapcount on the head page. The mapcount is only
1722 * accounted in the head page and it has to be
1723 * transferred to all tail pages in the below code. So
1724 * for this code to be safe, the split the mapcount
1725 * can't change. But that doesn't mean userland can't
1726 * keep changing and reading the page contents while
1727 * we transfer the mapcount, so the pmd splitting
1728 * status is achieved setting a reserved bit in the
1729 * pmd, not by clearing the present bit.
1730 */
1731 page_tail->_mapcount = page->_mapcount;
1732
1733 BUG_ON(page_tail->mapping);
1734 page_tail->mapping = page->mapping;
1735
1736 page_tail->index = page->index + i;
1737 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1738
1739 BUG_ON(!PageAnon(page_tail));
1740 BUG_ON(!PageUptodate(page_tail));
1741 BUG_ON(!PageDirty(page_tail));
1742 BUG_ON(!PageSwapBacked(page_tail));
1743
1744 lru_add_page_tail(page, page_tail, lruvec, list);
1745 }
1746 atomic_sub(tail_count, &page->_count);
1747 BUG_ON(atomic_read(&page->_count) <= 0);
1748
1749 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1750
1751 ClearPageCompound(page);
1752 compound_unlock(page);
1753 spin_unlock_irq(&zone->lru_lock);
1754
1755 for (i = 1; i < HPAGE_PMD_NR; i++) {
1756 struct page *page_tail = page + i;
1757 BUG_ON(page_count(page_tail) <= 0);
1758 /*
1759 * Tail pages may be freed if there wasn't any mapping
1760 * like if add_to_swap() is running on a lru page that
1761 * had its mapping zapped. And freeing these pages
1762 * requires taking the lru_lock so we do the put_page
1763 * of the tail pages after the split is complete.
1764 */
1765 put_page(page_tail);
1766 }
1767
1768 /*
1769 * Only the head page (now become a regular page) is required
1770 * to be pinned by the caller.
1771 */
1772 BUG_ON(page_count(page) <= 0);
1773 }
1774
1775 static int __split_huge_page_map(struct page *page,
1776 struct vm_area_struct *vma,
1777 unsigned long address)
1778 {
1779 struct mm_struct *mm = vma->vm_mm;
1780 spinlock_t *ptl;
1781 pmd_t *pmd, _pmd;
1782 int ret = 0, i;
1783 pgtable_t pgtable;
1784 unsigned long haddr;
1785
1786 pmd = page_check_address_pmd(page, mm, address,
1787 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1788 if (pmd) {
1789 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1790 pmd_populate(mm, &_pmd, pgtable);
1791 if (pmd_write(*pmd))
1792 BUG_ON(page_mapcount(page) != 1);
1793
1794 haddr = address;
1795 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1796 pte_t *pte, entry;
1797 BUG_ON(PageCompound(page+i));
1798 /*
1799 * Note that pmd_numa is not transferred deliberately
1800 * to avoid any possibility that pte_numa leaks to
1801 * a PROT_NONE VMA by accident.
1802 */
1803 entry = mk_pte(page + i, vma->vm_page_prot);
1804 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1805 if (!pmd_write(*pmd))
1806 entry = pte_wrprotect(entry);
1807 if (!pmd_young(*pmd))
1808 entry = pte_mkold(entry);
1809 pte = pte_offset_map(&_pmd, haddr);
1810 BUG_ON(!pte_none(*pte));
1811 set_pte_at(mm, haddr, pte, entry);
1812 pte_unmap(pte);
1813 }
1814
1815 smp_wmb(); /* make pte visible before pmd */
1816 /*
1817 * Up to this point the pmd is present and huge and
1818 * userland has the whole access to the hugepage
1819 * during the split (which happens in place). If we
1820 * overwrite the pmd with the not-huge version
1821 * pointing to the pte here (which of course we could
1822 * if all CPUs were bug free), userland could trigger
1823 * a small page size TLB miss on the small sized TLB
1824 * while the hugepage TLB entry is still established
1825 * in the huge TLB. Some CPU doesn't like that. See
1826 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1827 * Erratum 383 on page 93. Intel should be safe but is
1828 * also warns that it's only safe if the permission
1829 * and cache attributes of the two entries loaded in
1830 * the two TLB is identical (which should be the case
1831 * here). But it is generally safer to never allow
1832 * small and huge TLB entries for the same virtual
1833 * address to be loaded simultaneously. So instead of
1834 * doing "pmd_populate(); flush_tlb_range();" we first
1835 * mark the current pmd notpresent (atomically because
1836 * here the pmd_trans_huge and pmd_trans_splitting
1837 * must remain set at all times on the pmd until the
1838 * split is complete for this pmd), then we flush the
1839 * SMP TLB and finally we write the non-huge version
1840 * of the pmd entry with pmd_populate.
1841 */
1842 pmdp_invalidate(vma, address, pmd);
1843 pmd_populate(mm, pmd, pgtable);
1844 ret = 1;
1845 spin_unlock(ptl);
1846 }
1847
1848 return ret;
1849 }
1850
1851 /* must be called with anon_vma->root->rwsem held */
1852 static void __split_huge_page(struct page *page,
1853 struct anon_vma *anon_vma,
1854 struct list_head *list)
1855 {
1856 int mapcount, mapcount2;
1857 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1858 struct anon_vma_chain *avc;
1859
1860 BUG_ON(!PageHead(page));
1861 BUG_ON(PageTail(page));
1862
1863 mapcount = 0;
1864 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1865 struct vm_area_struct *vma = avc->vma;
1866 unsigned long addr = vma_address(page, vma);
1867 BUG_ON(is_vma_temporary_stack(vma));
1868 mapcount += __split_huge_page_splitting(page, vma, addr);
1869 }
1870 /*
1871 * It is critical that new vmas are added to the tail of the
1872 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1873 * and establishes a child pmd before
1874 * __split_huge_page_splitting() freezes the parent pmd (so if
1875 * we fail to prevent copy_huge_pmd() from running until the
1876 * whole __split_huge_page() is complete), we will still see
1877 * the newly established pmd of the child later during the
1878 * walk, to be able to set it as pmd_trans_splitting too.
1879 */
1880 if (mapcount != page_mapcount(page)) {
1881 pr_err("mapcount %d page_mapcount %d\n",
1882 mapcount, page_mapcount(page));
1883 BUG();
1884 }
1885
1886 __split_huge_page_refcount(page, list);
1887
1888 mapcount2 = 0;
1889 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1890 struct vm_area_struct *vma = avc->vma;
1891 unsigned long addr = vma_address(page, vma);
1892 BUG_ON(is_vma_temporary_stack(vma));
1893 mapcount2 += __split_huge_page_map(page, vma, addr);
1894 }
1895 if (mapcount != mapcount2) {
1896 pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1897 mapcount, mapcount2, page_mapcount(page));
1898 BUG();
1899 }
1900 }
1901
1902 /*
1903 * Split a hugepage into normal pages. This doesn't change the position of head
1904 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1905 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1906 * from the hugepage.
1907 * Return 0 if the hugepage is split successfully otherwise return 1.
1908 */
1909 int split_huge_page_to_list(struct page *page, struct list_head *list)
1910 {
1911 struct anon_vma *anon_vma;
1912 int ret = 1;
1913
1914 BUG_ON(is_huge_zero_page(page));
1915 BUG_ON(!PageAnon(page));
1916
1917 /*
1918 * The caller does not necessarily hold an mmap_sem that would prevent
1919 * the anon_vma disappearing so we first we take a reference to it
1920 * and then lock the anon_vma for write. This is similar to
1921 * page_lock_anon_vma_read except the write lock is taken to serialise
1922 * against parallel split or collapse operations.
1923 */
1924 anon_vma = page_get_anon_vma(page);
1925 if (!anon_vma)
1926 goto out;
1927 anon_vma_lock_write(anon_vma);
1928
1929 ret = 0;
1930 if (!PageCompound(page))
1931 goto out_unlock;
1932
1933 BUG_ON(!PageSwapBacked(page));
1934 __split_huge_page(page, anon_vma, list);
1935 count_vm_event(THP_SPLIT);
1936
1937 BUG_ON(PageCompound(page));
1938 out_unlock:
1939 anon_vma_unlock_write(anon_vma);
1940 put_anon_vma(anon_vma);
1941 out:
1942 return ret;
1943 }
1944
1945 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1946
1947 int hugepage_madvise(struct vm_area_struct *vma,
1948 unsigned long *vm_flags, int advice)
1949 {
1950 switch (advice) {
1951 case MADV_HUGEPAGE:
1952 #ifdef CONFIG_S390
1953 /*
1954 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1955 * can't handle this properly after s390_enable_sie, so we simply
1956 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1957 */
1958 if (mm_has_pgste(vma->vm_mm))
1959 return 0;
1960 #endif
1961 /*
1962 * Be somewhat over-protective like KSM for now!
1963 */
1964 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1965 return -EINVAL;
1966 *vm_flags &= ~VM_NOHUGEPAGE;
1967 *vm_flags |= VM_HUGEPAGE;
1968 /*
1969 * If the vma become good for khugepaged to scan,
1970 * register it here without waiting a page fault that
1971 * may not happen any time soon.
1972 */
1973 if (unlikely(khugepaged_enter_vma_merge(vma)))
1974 return -ENOMEM;
1975 break;
1976 case MADV_NOHUGEPAGE:
1977 /*
1978 * Be somewhat over-protective like KSM for now!
1979 */
1980 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1981 return -EINVAL;
1982 *vm_flags &= ~VM_HUGEPAGE;
1983 *vm_flags |= VM_NOHUGEPAGE;
1984 /*
1985 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1986 * this vma even if we leave the mm registered in khugepaged if
1987 * it got registered before VM_NOHUGEPAGE was set.
1988 */
1989 break;
1990 }
1991
1992 return 0;
1993 }
1994
1995 static int __init khugepaged_slab_init(void)
1996 {
1997 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1998 sizeof(struct mm_slot),
1999 __alignof__(struct mm_slot), 0, NULL);
2000 if (!mm_slot_cache)
2001 return -ENOMEM;
2002
2003 return 0;
2004 }
2005
2006 static inline struct mm_slot *alloc_mm_slot(void)
2007 {
2008 if (!mm_slot_cache) /* initialization failed */
2009 return NULL;
2010 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
2011 }
2012
2013 static inline void free_mm_slot(struct mm_slot *mm_slot)
2014 {
2015 kmem_cache_free(mm_slot_cache, mm_slot);
2016 }
2017
2018 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2019 {
2020 struct mm_slot *mm_slot;
2021
2022 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
2023 if (mm == mm_slot->mm)
2024 return mm_slot;
2025
2026 return NULL;
2027 }
2028
2029 static void insert_to_mm_slots_hash(struct mm_struct *mm,
2030 struct mm_slot *mm_slot)
2031 {
2032 mm_slot->mm = mm;
2033 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
2034 }
2035
2036 static inline int khugepaged_test_exit(struct mm_struct *mm)
2037 {
2038 return atomic_read(&mm->mm_users) == 0;
2039 }
2040
2041 int __khugepaged_enter(struct mm_struct *mm)
2042 {
2043 struct mm_slot *mm_slot;
2044 int wakeup;
2045
2046 mm_slot = alloc_mm_slot();
2047 if (!mm_slot)
2048 return -ENOMEM;
2049
2050 /* __khugepaged_exit() must not run from under us */
2051 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
2052 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2053 free_mm_slot(mm_slot);
2054 return 0;
2055 }
2056
2057 spin_lock(&khugepaged_mm_lock);
2058 insert_to_mm_slots_hash(mm, mm_slot);
2059 /*
2060 * Insert just behind the scanning cursor, to let the area settle
2061 * down a little.
2062 */
2063 wakeup = list_empty(&khugepaged_scan.mm_head);
2064 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2065 spin_unlock(&khugepaged_mm_lock);
2066
2067 atomic_inc(&mm->mm_count);
2068 if (wakeup)
2069 wake_up_interruptible(&khugepaged_wait);
2070
2071 return 0;
2072 }
2073
2074 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
2075 {
2076 unsigned long hstart, hend;
2077 if (!vma->anon_vma)
2078 /*
2079 * Not yet faulted in so we will register later in the
2080 * page fault if needed.
2081 */
2082 return 0;
2083 if (vma->vm_ops)
2084 /* khugepaged not yet working on file or special mappings */
2085 return 0;
2086 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
2087 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2088 hend = vma->vm_end & HPAGE_PMD_MASK;
2089 if (hstart < hend)
2090 return khugepaged_enter(vma);
2091 return 0;
2092 }
2093
2094 void __khugepaged_exit(struct mm_struct *mm)
2095 {
2096 struct mm_slot *mm_slot;
2097 int free = 0;
2098
2099 spin_lock(&khugepaged_mm_lock);
2100 mm_slot = get_mm_slot(mm);
2101 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2102 hash_del(&mm_slot->hash);
2103 list_del(&mm_slot->mm_node);
2104 free = 1;
2105 }
2106 spin_unlock(&khugepaged_mm_lock);
2107
2108 if (free) {
2109 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2110 free_mm_slot(mm_slot);
2111 mmdrop(mm);
2112 } else if (mm_slot) {
2113 /*
2114 * This is required to serialize against
2115 * khugepaged_test_exit() (which is guaranteed to run
2116 * under mmap sem read mode). Stop here (after we
2117 * return all pagetables will be destroyed) until
2118 * khugepaged has finished working on the pagetables
2119 * under the mmap_sem.
2120 */
2121 down_write(&mm->mmap_sem);
2122 up_write(&mm->mmap_sem);
2123 }
2124 }
2125
2126 static void release_pte_page(struct page *page)
2127 {
2128 /* 0 stands for page_is_file_cache(page) == false */
2129 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2130 unlock_page(page);
2131 putback_lru_page(page);
2132 }
2133
2134 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2135 {
2136 while (--_pte >= pte) {
2137 pte_t pteval = *_pte;
2138 if (!pte_none(pteval))
2139 release_pte_page(pte_page(pteval));
2140 }
2141 }
2142
2143 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2144 unsigned long address,
2145 pte_t *pte)
2146 {
2147 struct page *page;
2148 pte_t *_pte;
2149 int referenced = 0, none = 0;
2150 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2151 _pte++, address += PAGE_SIZE) {
2152 pte_t pteval = *_pte;
2153 if (pte_none(pteval)) {
2154 if (++none <= khugepaged_max_ptes_none)
2155 continue;
2156 else
2157 goto out;
2158 }
2159 if (!pte_present(pteval) || !pte_write(pteval))
2160 goto out;
2161 page = vm_normal_page(vma, address, pteval);
2162 if (unlikely(!page))
2163 goto out;
2164
2165 VM_BUG_ON_PAGE(PageCompound(page), page);
2166 VM_BUG_ON_PAGE(!PageAnon(page), page);
2167 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2168
2169 /* cannot use mapcount: can't collapse if there's a gup pin */
2170 if (page_count(page) != 1)
2171 goto out;
2172 /*
2173 * We can do it before isolate_lru_page because the
2174 * page can't be freed from under us. NOTE: PG_lock
2175 * is needed to serialize against split_huge_page
2176 * when invoked from the VM.
2177 */
2178 if (!trylock_page(page))
2179 goto out;
2180 /*
2181 * Isolate the page to avoid collapsing an hugepage
2182 * currently in use by the VM.
2183 */
2184 if (isolate_lru_page(page)) {
2185 unlock_page(page);
2186 goto out;
2187 }
2188 /* 0 stands for page_is_file_cache(page) == false */
2189 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2190 VM_BUG_ON_PAGE(!PageLocked(page), page);
2191 VM_BUG_ON_PAGE(PageLRU(page), page);
2192
2193 /* If there is no mapped pte young don't collapse the page */
2194 if (pte_young(pteval) || PageReferenced(page) ||
2195 mmu_notifier_test_young(vma->vm_mm, address))
2196 referenced = 1;
2197 }
2198 if (likely(referenced))
2199 return 1;
2200 out:
2201 release_pte_pages(pte, _pte);
2202 return 0;
2203 }
2204
2205 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2206 struct vm_area_struct *vma,
2207 unsigned long address,
2208 spinlock_t *ptl)
2209 {
2210 pte_t *_pte;
2211 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2212 pte_t pteval = *_pte;
2213 struct page *src_page;
2214
2215 if (pte_none(pteval)) {
2216 clear_user_highpage(page, address);
2217 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2218 } else {
2219 src_page = pte_page(pteval);
2220 copy_user_highpage(page, src_page, address, vma);
2221 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2222 release_pte_page(src_page);
2223 /*
2224 * ptl mostly unnecessary, but preempt has to
2225 * be disabled to update the per-cpu stats
2226 * inside page_remove_rmap().
2227 */
2228 spin_lock(ptl);
2229 /*
2230 * paravirt calls inside pte_clear here are
2231 * superfluous.
2232 */
2233 pte_clear(vma->vm_mm, address, _pte);
2234 page_remove_rmap(src_page);
2235 spin_unlock(ptl);
2236 free_page_and_swap_cache(src_page);
2237 }
2238
2239 address += PAGE_SIZE;
2240 page++;
2241 }
2242 }
2243
2244 static void khugepaged_alloc_sleep(void)
2245 {
2246 wait_event_freezable_timeout(khugepaged_wait, false,
2247 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2248 }
2249
2250 static int khugepaged_node_load[MAX_NUMNODES];
2251
2252 static bool khugepaged_scan_abort(int nid)
2253 {
2254 int i;
2255
2256 /*
2257 * If zone_reclaim_mode is disabled, then no extra effort is made to
2258 * allocate memory locally.
2259 */
2260 if (!zone_reclaim_mode)
2261 return false;
2262
2263 /* If there is a count for this node already, it must be acceptable */
2264 if (khugepaged_node_load[nid])
2265 return false;
2266
2267 for (i = 0; i < MAX_NUMNODES; i++) {
2268 if (!khugepaged_node_load[i])
2269 continue;
2270 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2271 return true;
2272 }
2273 return false;
2274 }
2275
2276 #ifdef CONFIG_NUMA
2277 static int khugepaged_find_target_node(void)
2278 {
2279 static int last_khugepaged_target_node = NUMA_NO_NODE;
2280 int nid, target_node = 0, max_value = 0;
2281
2282 /* find first node with max normal pages hit */
2283 for (nid = 0; nid < MAX_NUMNODES; nid++)
2284 if (khugepaged_node_load[nid] > max_value) {
2285 max_value = khugepaged_node_load[nid];
2286 target_node = nid;
2287 }
2288
2289 /* do some balance if several nodes have the same hit record */
2290 if (target_node <= last_khugepaged_target_node)
2291 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2292 nid++)
2293 if (max_value == khugepaged_node_load[nid]) {
2294 target_node = nid;
2295 break;
2296 }
2297
2298 last_khugepaged_target_node = target_node;
2299 return target_node;
2300 }
2301
2302 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2303 {
2304 if (IS_ERR(*hpage)) {
2305 if (!*wait)
2306 return false;
2307
2308 *wait = false;
2309 *hpage = NULL;
2310 khugepaged_alloc_sleep();
2311 } else if (*hpage) {
2312 put_page(*hpage);
2313 *hpage = NULL;
2314 }
2315
2316 return true;
2317 }
2318
2319 static struct page
2320 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2321 struct vm_area_struct *vma, unsigned long address,
2322 int node)
2323 {
2324 VM_BUG_ON_PAGE(*hpage, *hpage);
2325
2326 /*
2327 * Before allocating the hugepage, release the mmap_sem read lock.
2328 * The allocation can take potentially a long time if it involves
2329 * sync compaction, and we do not need to hold the mmap_sem during
2330 * that. We will recheck the vma after taking it again in write mode.
2331 */
2332 up_read(&mm->mmap_sem);
2333
2334 *hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2335 khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
2336 if (unlikely(!*hpage)) {
2337 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2338 *hpage = ERR_PTR(-ENOMEM);
2339 return NULL;
2340 }
2341
2342 count_vm_event(THP_COLLAPSE_ALLOC);
2343 return *hpage;
2344 }
2345 #else
2346 static int khugepaged_find_target_node(void)
2347 {
2348 return 0;
2349 }
2350
2351 static inline struct page *alloc_hugepage(int defrag)
2352 {
2353 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2354 HPAGE_PMD_ORDER);
2355 }
2356
2357 static struct page *khugepaged_alloc_hugepage(bool *wait)
2358 {
2359 struct page *hpage;
2360
2361 do {
2362 hpage = alloc_hugepage(khugepaged_defrag());
2363 if (!hpage) {
2364 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2365 if (!*wait)
2366 return NULL;
2367
2368 *wait = false;
2369 khugepaged_alloc_sleep();
2370 } else
2371 count_vm_event(THP_COLLAPSE_ALLOC);
2372 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2373
2374 return hpage;
2375 }
2376
2377 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2378 {
2379 if (!*hpage)
2380 *hpage = khugepaged_alloc_hugepage(wait);
2381
2382 if (unlikely(!*hpage))
2383 return false;
2384
2385 return true;
2386 }
2387
2388 static struct page
2389 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2390 struct vm_area_struct *vma, unsigned long address,
2391 int node)
2392 {
2393 up_read(&mm->mmap_sem);
2394 VM_BUG_ON(!*hpage);
2395 return *hpage;
2396 }
2397 #endif
2398
2399 static bool hugepage_vma_check(struct vm_area_struct *vma)
2400 {
2401 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2402 (vma->vm_flags & VM_NOHUGEPAGE))
2403 return false;
2404
2405 if (!vma->anon_vma || vma->vm_ops)
2406 return false;
2407 if (is_vma_temporary_stack(vma))
2408 return false;
2409 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
2410 return true;
2411 }
2412
2413 static void collapse_huge_page(struct mm_struct *mm,
2414 unsigned long address,
2415 struct page **hpage,
2416 struct vm_area_struct *vma,
2417 int node)
2418 {
2419 pmd_t *pmd, _pmd;
2420 pte_t *pte;
2421 pgtable_t pgtable;
2422 struct page *new_page;
2423 spinlock_t *pmd_ptl, *pte_ptl;
2424 int isolated;
2425 unsigned long hstart, hend;
2426 struct mem_cgroup *memcg;
2427 unsigned long mmun_start; /* For mmu_notifiers */
2428 unsigned long mmun_end; /* For mmu_notifiers */
2429
2430 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2431
2432 /* release the mmap_sem read lock. */
2433 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2434 if (!new_page)
2435 return;
2436
2437 if (unlikely(mem_cgroup_try_charge(new_page, mm,
2438 GFP_TRANSHUGE, &memcg)))
2439 return;
2440
2441 /*
2442 * Prevent all access to pagetables with the exception of
2443 * gup_fast later hanlded by the ptep_clear_flush and the VM
2444 * handled by the anon_vma lock + PG_lock.
2445 */
2446 down_write(&mm->mmap_sem);
2447 if (unlikely(khugepaged_test_exit(mm)))
2448 goto out;
2449
2450 vma = find_vma(mm, address);
2451 if (!vma)
2452 goto out;
2453 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2454 hend = vma->vm_end & HPAGE_PMD_MASK;
2455 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2456 goto out;
2457 if (!hugepage_vma_check(vma))
2458 goto out;
2459 pmd = mm_find_pmd(mm, address);
2460 if (!pmd)
2461 goto out;
2462
2463 anon_vma_lock_write(vma->anon_vma);
2464
2465 pte = pte_offset_map(pmd, address);
2466 pte_ptl = pte_lockptr(mm, pmd);
2467
2468 mmun_start = address;
2469 mmun_end = address + HPAGE_PMD_SIZE;
2470 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2471 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2472 /*
2473 * After this gup_fast can't run anymore. This also removes
2474 * any huge TLB entry from the CPU so we won't allow
2475 * huge and small TLB entries for the same virtual address
2476 * to avoid the risk of CPU bugs in that area.
2477 */
2478 _pmd = pmdp_clear_flush(vma, address, pmd);
2479 spin_unlock(pmd_ptl);
2480 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2481
2482 spin_lock(pte_ptl);
2483 isolated = __collapse_huge_page_isolate(vma, address, pte);
2484 spin_unlock(pte_ptl);
2485
2486 if (unlikely(!isolated)) {
2487 pte_unmap(pte);
2488 spin_lock(pmd_ptl);
2489 BUG_ON(!pmd_none(*pmd));
2490 /*
2491 * We can only use set_pmd_at when establishing
2492 * hugepmds and never for establishing regular pmds that
2493 * points to regular pagetables. Use pmd_populate for that
2494 */
2495 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2496 spin_unlock(pmd_ptl);
2497 anon_vma_unlock_write(vma->anon_vma);
2498 goto out;
2499 }
2500
2501 /*
2502 * All pages are isolated and locked so anon_vma rmap
2503 * can't run anymore.
2504 */
2505 anon_vma_unlock_write(vma->anon_vma);
2506
2507 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2508 pte_unmap(pte);
2509 __SetPageUptodate(new_page);
2510 pgtable = pmd_pgtable(_pmd);
2511
2512 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2513 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2514
2515 /*
2516 * spin_lock() below is not the equivalent of smp_wmb(), so
2517 * this is needed to avoid the copy_huge_page writes to become
2518 * visible after the set_pmd_at() write.
2519 */
2520 smp_wmb();
2521
2522 spin_lock(pmd_ptl);
2523 BUG_ON(!pmd_none(*pmd));
2524 page_add_new_anon_rmap(new_page, vma, address);
2525 mem_cgroup_commit_charge(new_page, memcg, false);
2526 lru_cache_add_active_or_unevictable(new_page, vma);
2527 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2528 set_pmd_at(mm, address, pmd, _pmd);
2529 update_mmu_cache_pmd(vma, address, pmd);
2530 spin_unlock(pmd_ptl);
2531
2532 *hpage = NULL;
2533
2534 khugepaged_pages_collapsed++;
2535 out_up_write:
2536 up_write(&mm->mmap_sem);
2537 return;
2538
2539 out:
2540 mem_cgroup_cancel_charge(new_page, memcg);
2541 goto out_up_write;
2542 }
2543
2544 static int khugepaged_scan_pmd(struct mm_struct *mm,
2545 struct vm_area_struct *vma,
2546 unsigned long address,
2547 struct page **hpage)
2548 {
2549 pmd_t *pmd;
2550 pte_t *pte, *_pte;
2551 int ret = 0, referenced = 0, none = 0;
2552 struct page *page;
2553 unsigned long _address;
2554 spinlock_t *ptl;
2555 int node = NUMA_NO_NODE;
2556
2557 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2558
2559 pmd = mm_find_pmd(mm, address);
2560 if (!pmd)
2561 goto out;
2562
2563 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2564 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2565 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2566 _pte++, _address += PAGE_SIZE) {
2567 pte_t pteval = *_pte;
2568 if (pte_none(pteval)) {
2569 if (++none <= khugepaged_max_ptes_none)
2570 continue;
2571 else
2572 goto out_unmap;
2573 }
2574 if (!pte_present(pteval) || !pte_write(pteval))
2575 goto out_unmap;
2576 page = vm_normal_page(vma, _address, pteval);
2577 if (unlikely(!page))
2578 goto out_unmap;
2579 /*
2580 * Record which node the original page is from and save this
2581 * information to khugepaged_node_load[].
2582 * Khupaged will allocate hugepage from the node has the max
2583 * hit record.
2584 */
2585 node = page_to_nid(page);
2586 if (khugepaged_scan_abort(node))
2587 goto out_unmap;
2588 khugepaged_node_load[node]++;
2589 VM_BUG_ON_PAGE(PageCompound(page), page);
2590 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2591 goto out_unmap;
2592 /* cannot use mapcount: can't collapse if there's a gup pin */
2593 if (page_count(page) != 1)
2594 goto out_unmap;
2595 if (pte_young(pteval) || PageReferenced(page) ||
2596 mmu_notifier_test_young(vma->vm_mm, address))
2597 referenced = 1;
2598 }
2599 if (referenced)
2600 ret = 1;
2601 out_unmap:
2602 pte_unmap_unlock(pte, ptl);
2603 if (ret) {
2604 node = khugepaged_find_target_node();
2605 /* collapse_huge_page will return with the mmap_sem released */
2606 collapse_huge_page(mm, address, hpage, vma, node);
2607 }
2608 out:
2609 return ret;
2610 }
2611
2612 static void collect_mm_slot(struct mm_slot *mm_slot)
2613 {
2614 struct mm_struct *mm = mm_slot->mm;
2615
2616 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2617
2618 if (khugepaged_test_exit(mm)) {
2619 /* free mm_slot */
2620 hash_del(&mm_slot->hash);
2621 list_del(&mm_slot->mm_node);
2622
2623 /*
2624 * Not strictly needed because the mm exited already.
2625 *
2626 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2627 */
2628
2629 /* khugepaged_mm_lock actually not necessary for the below */
2630 free_mm_slot(mm_slot);
2631 mmdrop(mm);
2632 }
2633 }
2634
2635 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2636 struct page **hpage)
2637 __releases(&khugepaged_mm_lock)
2638 __acquires(&khugepaged_mm_lock)
2639 {
2640 struct mm_slot *mm_slot;
2641 struct mm_struct *mm;
2642 struct vm_area_struct *vma;
2643 int progress = 0;
2644
2645 VM_BUG_ON(!pages);
2646 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2647
2648 if (khugepaged_scan.mm_slot)
2649 mm_slot = khugepaged_scan.mm_slot;
2650 else {
2651 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2652 struct mm_slot, mm_node);
2653 khugepaged_scan.address = 0;
2654 khugepaged_scan.mm_slot = mm_slot;
2655 }
2656 spin_unlock(&khugepaged_mm_lock);
2657
2658 mm = mm_slot->mm;
2659 down_read(&mm->mmap_sem);
2660 if (unlikely(khugepaged_test_exit(mm)))
2661 vma = NULL;
2662 else
2663 vma = find_vma(mm, khugepaged_scan.address);
2664
2665 progress++;
2666 for (; vma; vma = vma->vm_next) {
2667 unsigned long hstart, hend;
2668
2669 cond_resched();
2670 if (unlikely(khugepaged_test_exit(mm))) {
2671 progress++;
2672 break;
2673 }
2674 if (!hugepage_vma_check(vma)) {
2675 skip:
2676 progress++;
2677 continue;
2678 }
2679 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2680 hend = vma->vm_end & HPAGE_PMD_MASK;
2681 if (hstart >= hend)
2682 goto skip;
2683 if (khugepaged_scan.address > hend)
2684 goto skip;
2685 if (khugepaged_scan.address < hstart)
2686 khugepaged_scan.address = hstart;
2687 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2688
2689 while (khugepaged_scan.address < hend) {
2690 int ret;
2691 cond_resched();
2692 if (unlikely(khugepaged_test_exit(mm)))
2693 goto breakouterloop;
2694
2695 VM_BUG_ON(khugepaged_scan.address < hstart ||
2696 khugepaged_scan.address + HPAGE_PMD_SIZE >
2697 hend);
2698 ret = khugepaged_scan_pmd(mm, vma,
2699 khugepaged_scan.address,
2700 hpage);
2701 /* move to next address */
2702 khugepaged_scan.address += HPAGE_PMD_SIZE;
2703 progress += HPAGE_PMD_NR;
2704 if (ret)
2705 /* we released mmap_sem so break loop */
2706 goto breakouterloop_mmap_sem;
2707 if (progress >= pages)
2708 goto breakouterloop;
2709 }
2710 }
2711 breakouterloop:
2712 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2713 breakouterloop_mmap_sem:
2714
2715 spin_lock(&khugepaged_mm_lock);
2716 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2717 /*
2718 * Release the current mm_slot if this mm is about to die, or
2719 * if we scanned all vmas of this mm.
2720 */
2721 if (khugepaged_test_exit(mm) || !vma) {
2722 /*
2723 * Make sure that if mm_users is reaching zero while
2724 * khugepaged runs here, khugepaged_exit will find
2725 * mm_slot not pointing to the exiting mm.
2726 */
2727 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2728 khugepaged_scan.mm_slot = list_entry(
2729 mm_slot->mm_node.next,
2730 struct mm_slot, mm_node);
2731 khugepaged_scan.address = 0;
2732 } else {
2733 khugepaged_scan.mm_slot = NULL;
2734 khugepaged_full_scans++;
2735 }
2736
2737 collect_mm_slot(mm_slot);
2738 }
2739
2740 return progress;
2741 }
2742
2743 static int khugepaged_has_work(void)
2744 {
2745 return !list_empty(&khugepaged_scan.mm_head) &&
2746 khugepaged_enabled();
2747 }
2748
2749 static int khugepaged_wait_event(void)
2750 {
2751 return !list_empty(&khugepaged_scan.mm_head) ||
2752 kthread_should_stop();
2753 }
2754
2755 static void khugepaged_do_scan(void)
2756 {
2757 struct page *hpage = NULL;
2758 unsigned int progress = 0, pass_through_head = 0;
2759 unsigned int pages = khugepaged_pages_to_scan;
2760 bool wait = true;
2761
2762 barrier(); /* write khugepaged_pages_to_scan to local stack */
2763
2764 while (progress < pages) {
2765 if (!khugepaged_prealloc_page(&hpage, &wait))
2766 break;
2767
2768 cond_resched();
2769
2770 if (unlikely(kthread_should_stop() || freezing(current)))
2771 break;
2772
2773 spin_lock(&khugepaged_mm_lock);
2774 if (!khugepaged_scan.mm_slot)
2775 pass_through_head++;
2776 if (khugepaged_has_work() &&
2777 pass_through_head < 2)
2778 progress += khugepaged_scan_mm_slot(pages - progress,
2779 &hpage);
2780 else
2781 progress = pages;
2782 spin_unlock(&khugepaged_mm_lock);
2783 }
2784
2785 if (!IS_ERR_OR_NULL(hpage))
2786 put_page(hpage);
2787 }
2788
2789 static void khugepaged_wait_work(void)
2790 {
2791 try_to_freeze();
2792
2793 if (khugepaged_has_work()) {
2794 if (!khugepaged_scan_sleep_millisecs)
2795 return;
2796
2797 wait_event_freezable_timeout(khugepaged_wait,
2798 kthread_should_stop(),
2799 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2800 return;
2801 }
2802
2803 if (khugepaged_enabled())
2804 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2805 }
2806
2807 static int khugepaged(void *none)
2808 {
2809 struct mm_slot *mm_slot;
2810
2811 set_freezable();
2812 set_user_nice(current, MAX_NICE);
2813
2814 while (!kthread_should_stop()) {
2815 khugepaged_do_scan();
2816 khugepaged_wait_work();
2817 }
2818
2819 spin_lock(&khugepaged_mm_lock);
2820 mm_slot = khugepaged_scan.mm_slot;
2821 khugepaged_scan.mm_slot = NULL;
2822 if (mm_slot)
2823 collect_mm_slot(mm_slot);
2824 spin_unlock(&khugepaged_mm_lock);
2825 return 0;
2826 }
2827
2828 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2829 unsigned long haddr, pmd_t *pmd)
2830 {
2831 struct mm_struct *mm = vma->vm_mm;
2832 pgtable_t pgtable;
2833 pmd_t _pmd;
2834 int i;
2835
2836 pmdp_clear_flush(vma, haddr, pmd);
2837 /* leave pmd empty until pte is filled */
2838
2839 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2840 pmd_populate(mm, &_pmd, pgtable);
2841
2842 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2843 pte_t *pte, entry;
2844 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2845 entry = pte_mkspecial(entry);
2846 pte = pte_offset_map(&_pmd, haddr);
2847 VM_BUG_ON(!pte_none(*pte));
2848 set_pte_at(mm, haddr, pte, entry);
2849 pte_unmap(pte);
2850 }
2851 smp_wmb(); /* make pte visible before pmd */
2852 pmd_populate(mm, pmd, pgtable);
2853 put_huge_zero_page();
2854 }
2855
2856 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2857 pmd_t *pmd)
2858 {
2859 spinlock_t *ptl;
2860 struct page *page;
2861 struct mm_struct *mm = vma->vm_mm;
2862 unsigned long haddr = address & HPAGE_PMD_MASK;
2863 unsigned long mmun_start; /* For mmu_notifiers */
2864 unsigned long mmun_end; /* For mmu_notifiers */
2865
2866 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2867
2868 mmun_start = haddr;
2869 mmun_end = haddr + HPAGE_PMD_SIZE;
2870 again:
2871 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2872 ptl = pmd_lock(mm, pmd);
2873 if (unlikely(!pmd_trans_huge(*pmd))) {
2874 spin_unlock(ptl);
2875 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2876 return;
2877 }
2878 if (is_huge_zero_pmd(*pmd)) {
2879 __split_huge_zero_page_pmd(vma, haddr, pmd);
2880 spin_unlock(ptl);
2881 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2882 return;
2883 }
2884 page = pmd_page(*pmd);
2885 VM_BUG_ON_PAGE(!page_count(page), page);
2886 get_page(page);
2887 spin_unlock(ptl);
2888 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2889
2890 split_huge_page(page);
2891
2892 put_page(page);
2893
2894 /*
2895 * We don't always have down_write of mmap_sem here: a racing
2896 * do_huge_pmd_wp_page() might have copied-on-write to another
2897 * huge page before our split_huge_page() got the anon_vma lock.
2898 */
2899 if (unlikely(pmd_trans_huge(*pmd)))
2900 goto again;
2901 }
2902
2903 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2904 pmd_t *pmd)
2905 {
2906 struct vm_area_struct *vma;
2907
2908 vma = find_vma(mm, address);
2909 BUG_ON(vma == NULL);
2910 split_huge_page_pmd(vma, address, pmd);
2911 }
2912
2913 static void split_huge_page_address(struct mm_struct *mm,
2914 unsigned long address)
2915 {
2916 pgd_t *pgd;
2917 pud_t *pud;
2918 pmd_t *pmd;
2919
2920 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2921
2922 pgd = pgd_offset(mm, address);
2923 if (!pgd_present(*pgd))
2924 return;
2925
2926 pud = pud_offset(pgd, address);
2927 if (!pud_present(*pud))
2928 return;
2929
2930 pmd = pmd_offset(pud, address);
2931 if (!pmd_present(*pmd))
2932 return;
2933 /*
2934 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2935 * materialize from under us.
2936 */
2937 split_huge_page_pmd_mm(mm, address, pmd);
2938 }
2939
2940 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2941 unsigned long start,
2942 unsigned long end,
2943 long adjust_next)
2944 {
2945 /*
2946 * If the new start address isn't hpage aligned and it could
2947 * previously contain an hugepage: check if we need to split
2948 * an huge pmd.
2949 */
2950 if (start & ~HPAGE_PMD_MASK &&
2951 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2952 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2953 split_huge_page_address(vma->vm_mm, start);
2954
2955 /*
2956 * If the new end address isn't hpage aligned and it could
2957 * previously contain an hugepage: check if we need to split
2958 * an huge pmd.
2959 */
2960 if (end & ~HPAGE_PMD_MASK &&
2961 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2962 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2963 split_huge_page_address(vma->vm_mm, end);
2964
2965 /*
2966 * If we're also updating the vma->vm_next->vm_start, if the new
2967 * vm_next->vm_start isn't page aligned and it could previously
2968 * contain an hugepage: check if we need to split an huge pmd.
2969 */
2970 if (adjust_next > 0) {
2971 struct vm_area_struct *next = vma->vm_next;
2972 unsigned long nstart = next->vm_start;
2973 nstart += adjust_next << PAGE_SHIFT;
2974 if (nstart & ~HPAGE_PMD_MASK &&
2975 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2976 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2977 split_huge_page_address(next->vm_mm, nstart);
2978 }
2979 }
This page took 0.095123 seconds and 5 git commands to generate.