mm: memory: remove ->vm_file check on shared writable vmas
[deliverable/linux.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/kthread.h>
20 #include <linux/khugepaged.h>
21 #include <linux/freezer.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/migrate.h>
25 #include <linux/hashtable.h>
26
27 #include <asm/tlb.h>
28 #include <asm/pgalloc.h>
29 #include "internal.h"
30
31 /*
32 * By default transparent hugepage support is disabled in order that avoid
33 * to risk increase the memory footprint of applications without a guaranteed
34 * benefit. When transparent hugepage support is enabled, is for all mappings,
35 * and khugepaged scans all mappings.
36 * Defrag is invoked by khugepaged hugepage allocations and by page faults
37 * for all hugepage allocations.
38 */
39 unsigned long transparent_hugepage_flags __read_mostly =
40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
41 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
42 #endif
43 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
44 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
45 #endif
46 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
47 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
48 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
49
50 /* default scan 8*512 pte (or vmas) every 30 second */
51 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
52 static unsigned int khugepaged_pages_collapsed;
53 static unsigned int khugepaged_full_scans;
54 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
55 /* during fragmentation poll the hugepage allocator once every minute */
56 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
57 static struct task_struct *khugepaged_thread __read_mostly;
58 static DEFINE_MUTEX(khugepaged_mutex);
59 static DEFINE_SPINLOCK(khugepaged_mm_lock);
60 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
61 /*
62 * default collapse hugepages if there is at least one pte mapped like
63 * it would have happened if the vma was large enough during page
64 * fault.
65 */
66 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
67
68 static int khugepaged(void *none);
69 static int khugepaged_slab_init(void);
70
71 #define MM_SLOTS_HASH_BITS 10
72 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
73
74 static struct kmem_cache *mm_slot_cache __read_mostly;
75
76 /**
77 * struct mm_slot - hash lookup from mm to mm_slot
78 * @hash: hash collision list
79 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
80 * @mm: the mm that this information is valid for
81 */
82 struct mm_slot {
83 struct hlist_node hash;
84 struct list_head mm_node;
85 struct mm_struct *mm;
86 };
87
88 /**
89 * struct khugepaged_scan - cursor for scanning
90 * @mm_head: the head of the mm list to scan
91 * @mm_slot: the current mm_slot we are scanning
92 * @address: the next address inside that to be scanned
93 *
94 * There is only the one khugepaged_scan instance of this cursor structure.
95 */
96 struct khugepaged_scan {
97 struct list_head mm_head;
98 struct mm_slot *mm_slot;
99 unsigned long address;
100 };
101 static struct khugepaged_scan khugepaged_scan = {
102 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
103 };
104
105
106 static int set_recommended_min_free_kbytes(void)
107 {
108 struct zone *zone;
109 int nr_zones = 0;
110 unsigned long recommended_min;
111
112 if (!khugepaged_enabled())
113 return 0;
114
115 for_each_populated_zone(zone)
116 nr_zones++;
117
118 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
119 recommended_min = pageblock_nr_pages * nr_zones * 2;
120
121 /*
122 * Make sure that on average at least two pageblocks are almost free
123 * of another type, one for a migratetype to fall back to and a
124 * second to avoid subsequent fallbacks of other types There are 3
125 * MIGRATE_TYPES we care about.
126 */
127 recommended_min += pageblock_nr_pages * nr_zones *
128 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
129
130 /* don't ever allow to reserve more than 5% of the lowmem */
131 recommended_min = min(recommended_min,
132 (unsigned long) nr_free_buffer_pages() / 20);
133 recommended_min <<= (PAGE_SHIFT-10);
134
135 if (recommended_min > min_free_kbytes) {
136 if (user_min_free_kbytes >= 0)
137 pr_info("raising min_free_kbytes from %d to %lu "
138 "to help transparent hugepage allocations\n",
139 min_free_kbytes, recommended_min);
140
141 min_free_kbytes = recommended_min;
142 }
143 setup_per_zone_wmarks();
144 return 0;
145 }
146 late_initcall(set_recommended_min_free_kbytes);
147
148 static int start_khugepaged(void)
149 {
150 int err = 0;
151 if (khugepaged_enabled()) {
152 if (!khugepaged_thread)
153 khugepaged_thread = kthread_run(khugepaged, NULL,
154 "khugepaged");
155 if (unlikely(IS_ERR(khugepaged_thread))) {
156 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
157 err = PTR_ERR(khugepaged_thread);
158 khugepaged_thread = NULL;
159 }
160
161 if (!list_empty(&khugepaged_scan.mm_head))
162 wake_up_interruptible(&khugepaged_wait);
163
164 set_recommended_min_free_kbytes();
165 } else if (khugepaged_thread) {
166 kthread_stop(khugepaged_thread);
167 khugepaged_thread = NULL;
168 }
169
170 return err;
171 }
172
173 static atomic_t huge_zero_refcount;
174 static struct page *huge_zero_page __read_mostly;
175
176 static inline bool is_huge_zero_page(struct page *page)
177 {
178 return ACCESS_ONCE(huge_zero_page) == page;
179 }
180
181 static inline bool is_huge_zero_pmd(pmd_t pmd)
182 {
183 return is_huge_zero_page(pmd_page(pmd));
184 }
185
186 static struct page *get_huge_zero_page(void)
187 {
188 struct page *zero_page;
189 retry:
190 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
191 return ACCESS_ONCE(huge_zero_page);
192
193 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
194 HPAGE_PMD_ORDER);
195 if (!zero_page) {
196 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
197 return NULL;
198 }
199 count_vm_event(THP_ZERO_PAGE_ALLOC);
200 preempt_disable();
201 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
202 preempt_enable();
203 __free_pages(zero_page, compound_order(zero_page));
204 goto retry;
205 }
206
207 /* We take additional reference here. It will be put back by shrinker */
208 atomic_set(&huge_zero_refcount, 2);
209 preempt_enable();
210 return ACCESS_ONCE(huge_zero_page);
211 }
212
213 static void put_huge_zero_page(void)
214 {
215 /*
216 * Counter should never go to zero here. Only shrinker can put
217 * last reference.
218 */
219 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
220 }
221
222 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
223 struct shrink_control *sc)
224 {
225 /* we can free zero page only if last reference remains */
226 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
227 }
228
229 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
230 struct shrink_control *sc)
231 {
232 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
233 struct page *zero_page = xchg(&huge_zero_page, NULL);
234 BUG_ON(zero_page == NULL);
235 __free_pages(zero_page, compound_order(zero_page));
236 return HPAGE_PMD_NR;
237 }
238
239 return 0;
240 }
241
242 static struct shrinker huge_zero_page_shrinker = {
243 .count_objects = shrink_huge_zero_page_count,
244 .scan_objects = shrink_huge_zero_page_scan,
245 .seeks = DEFAULT_SEEKS,
246 };
247
248 #ifdef CONFIG_SYSFS
249
250 static ssize_t double_flag_show(struct kobject *kobj,
251 struct kobj_attribute *attr, char *buf,
252 enum transparent_hugepage_flag enabled,
253 enum transparent_hugepage_flag req_madv)
254 {
255 if (test_bit(enabled, &transparent_hugepage_flags)) {
256 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
257 return sprintf(buf, "[always] madvise never\n");
258 } else if (test_bit(req_madv, &transparent_hugepage_flags))
259 return sprintf(buf, "always [madvise] never\n");
260 else
261 return sprintf(buf, "always madvise [never]\n");
262 }
263 static ssize_t double_flag_store(struct kobject *kobj,
264 struct kobj_attribute *attr,
265 const char *buf, size_t count,
266 enum transparent_hugepage_flag enabled,
267 enum transparent_hugepage_flag req_madv)
268 {
269 if (!memcmp("always", buf,
270 min(sizeof("always")-1, count))) {
271 set_bit(enabled, &transparent_hugepage_flags);
272 clear_bit(req_madv, &transparent_hugepage_flags);
273 } else if (!memcmp("madvise", buf,
274 min(sizeof("madvise")-1, count))) {
275 clear_bit(enabled, &transparent_hugepage_flags);
276 set_bit(req_madv, &transparent_hugepage_flags);
277 } else if (!memcmp("never", buf,
278 min(sizeof("never")-1, count))) {
279 clear_bit(enabled, &transparent_hugepage_flags);
280 clear_bit(req_madv, &transparent_hugepage_flags);
281 } else
282 return -EINVAL;
283
284 return count;
285 }
286
287 static ssize_t enabled_show(struct kobject *kobj,
288 struct kobj_attribute *attr, char *buf)
289 {
290 return double_flag_show(kobj, attr, buf,
291 TRANSPARENT_HUGEPAGE_FLAG,
292 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
293 }
294 static ssize_t enabled_store(struct kobject *kobj,
295 struct kobj_attribute *attr,
296 const char *buf, size_t count)
297 {
298 ssize_t ret;
299
300 ret = double_flag_store(kobj, attr, buf, count,
301 TRANSPARENT_HUGEPAGE_FLAG,
302 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
303
304 if (ret > 0) {
305 int err;
306
307 mutex_lock(&khugepaged_mutex);
308 err = start_khugepaged();
309 mutex_unlock(&khugepaged_mutex);
310
311 if (err)
312 ret = err;
313 }
314
315 return ret;
316 }
317 static struct kobj_attribute enabled_attr =
318 __ATTR(enabled, 0644, enabled_show, enabled_store);
319
320 static ssize_t single_flag_show(struct kobject *kobj,
321 struct kobj_attribute *attr, char *buf,
322 enum transparent_hugepage_flag flag)
323 {
324 return sprintf(buf, "%d\n",
325 !!test_bit(flag, &transparent_hugepage_flags));
326 }
327
328 static ssize_t single_flag_store(struct kobject *kobj,
329 struct kobj_attribute *attr,
330 const char *buf, size_t count,
331 enum transparent_hugepage_flag flag)
332 {
333 unsigned long value;
334 int ret;
335
336 ret = kstrtoul(buf, 10, &value);
337 if (ret < 0)
338 return ret;
339 if (value > 1)
340 return -EINVAL;
341
342 if (value)
343 set_bit(flag, &transparent_hugepage_flags);
344 else
345 clear_bit(flag, &transparent_hugepage_flags);
346
347 return count;
348 }
349
350 /*
351 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
352 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
353 * memory just to allocate one more hugepage.
354 */
355 static ssize_t defrag_show(struct kobject *kobj,
356 struct kobj_attribute *attr, char *buf)
357 {
358 return double_flag_show(kobj, attr, buf,
359 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
360 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
361 }
362 static ssize_t defrag_store(struct kobject *kobj,
363 struct kobj_attribute *attr,
364 const char *buf, size_t count)
365 {
366 return double_flag_store(kobj, attr, buf, count,
367 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
368 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
369 }
370 static struct kobj_attribute defrag_attr =
371 __ATTR(defrag, 0644, defrag_show, defrag_store);
372
373 static ssize_t use_zero_page_show(struct kobject *kobj,
374 struct kobj_attribute *attr, char *buf)
375 {
376 return single_flag_show(kobj, attr, buf,
377 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
378 }
379 static ssize_t use_zero_page_store(struct kobject *kobj,
380 struct kobj_attribute *attr, const char *buf, size_t count)
381 {
382 return single_flag_store(kobj, attr, buf, count,
383 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
384 }
385 static struct kobj_attribute use_zero_page_attr =
386 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
387 #ifdef CONFIG_DEBUG_VM
388 static ssize_t debug_cow_show(struct kobject *kobj,
389 struct kobj_attribute *attr, char *buf)
390 {
391 return single_flag_show(kobj, attr, buf,
392 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
393 }
394 static ssize_t debug_cow_store(struct kobject *kobj,
395 struct kobj_attribute *attr,
396 const char *buf, size_t count)
397 {
398 return single_flag_store(kobj, attr, buf, count,
399 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
400 }
401 static struct kobj_attribute debug_cow_attr =
402 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
403 #endif /* CONFIG_DEBUG_VM */
404
405 static struct attribute *hugepage_attr[] = {
406 &enabled_attr.attr,
407 &defrag_attr.attr,
408 &use_zero_page_attr.attr,
409 #ifdef CONFIG_DEBUG_VM
410 &debug_cow_attr.attr,
411 #endif
412 NULL,
413 };
414
415 static struct attribute_group hugepage_attr_group = {
416 .attrs = hugepage_attr,
417 };
418
419 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
420 struct kobj_attribute *attr,
421 char *buf)
422 {
423 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
424 }
425
426 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
427 struct kobj_attribute *attr,
428 const char *buf, size_t count)
429 {
430 unsigned long msecs;
431 int err;
432
433 err = kstrtoul(buf, 10, &msecs);
434 if (err || msecs > UINT_MAX)
435 return -EINVAL;
436
437 khugepaged_scan_sleep_millisecs = msecs;
438 wake_up_interruptible(&khugepaged_wait);
439
440 return count;
441 }
442 static struct kobj_attribute scan_sleep_millisecs_attr =
443 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
444 scan_sleep_millisecs_store);
445
446 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
447 struct kobj_attribute *attr,
448 char *buf)
449 {
450 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
451 }
452
453 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
454 struct kobj_attribute *attr,
455 const char *buf, size_t count)
456 {
457 unsigned long msecs;
458 int err;
459
460 err = kstrtoul(buf, 10, &msecs);
461 if (err || msecs > UINT_MAX)
462 return -EINVAL;
463
464 khugepaged_alloc_sleep_millisecs = msecs;
465 wake_up_interruptible(&khugepaged_wait);
466
467 return count;
468 }
469 static struct kobj_attribute alloc_sleep_millisecs_attr =
470 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
471 alloc_sleep_millisecs_store);
472
473 static ssize_t pages_to_scan_show(struct kobject *kobj,
474 struct kobj_attribute *attr,
475 char *buf)
476 {
477 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
478 }
479 static ssize_t pages_to_scan_store(struct kobject *kobj,
480 struct kobj_attribute *attr,
481 const char *buf, size_t count)
482 {
483 int err;
484 unsigned long pages;
485
486 err = kstrtoul(buf, 10, &pages);
487 if (err || !pages || pages > UINT_MAX)
488 return -EINVAL;
489
490 khugepaged_pages_to_scan = pages;
491
492 return count;
493 }
494 static struct kobj_attribute pages_to_scan_attr =
495 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
496 pages_to_scan_store);
497
498 static ssize_t pages_collapsed_show(struct kobject *kobj,
499 struct kobj_attribute *attr,
500 char *buf)
501 {
502 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
503 }
504 static struct kobj_attribute pages_collapsed_attr =
505 __ATTR_RO(pages_collapsed);
506
507 static ssize_t full_scans_show(struct kobject *kobj,
508 struct kobj_attribute *attr,
509 char *buf)
510 {
511 return sprintf(buf, "%u\n", khugepaged_full_scans);
512 }
513 static struct kobj_attribute full_scans_attr =
514 __ATTR_RO(full_scans);
515
516 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
517 struct kobj_attribute *attr, char *buf)
518 {
519 return single_flag_show(kobj, attr, buf,
520 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
521 }
522 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
523 struct kobj_attribute *attr,
524 const char *buf, size_t count)
525 {
526 return single_flag_store(kobj, attr, buf, count,
527 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
528 }
529 static struct kobj_attribute khugepaged_defrag_attr =
530 __ATTR(defrag, 0644, khugepaged_defrag_show,
531 khugepaged_defrag_store);
532
533 /*
534 * max_ptes_none controls if khugepaged should collapse hugepages over
535 * any unmapped ptes in turn potentially increasing the memory
536 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
537 * reduce the available free memory in the system as it
538 * runs. Increasing max_ptes_none will instead potentially reduce the
539 * free memory in the system during the khugepaged scan.
540 */
541 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
542 struct kobj_attribute *attr,
543 char *buf)
544 {
545 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
546 }
547 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
548 struct kobj_attribute *attr,
549 const char *buf, size_t count)
550 {
551 int err;
552 unsigned long max_ptes_none;
553
554 err = kstrtoul(buf, 10, &max_ptes_none);
555 if (err || max_ptes_none > HPAGE_PMD_NR-1)
556 return -EINVAL;
557
558 khugepaged_max_ptes_none = max_ptes_none;
559
560 return count;
561 }
562 static struct kobj_attribute khugepaged_max_ptes_none_attr =
563 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
564 khugepaged_max_ptes_none_store);
565
566 static struct attribute *khugepaged_attr[] = {
567 &khugepaged_defrag_attr.attr,
568 &khugepaged_max_ptes_none_attr.attr,
569 &pages_to_scan_attr.attr,
570 &pages_collapsed_attr.attr,
571 &full_scans_attr.attr,
572 &scan_sleep_millisecs_attr.attr,
573 &alloc_sleep_millisecs_attr.attr,
574 NULL,
575 };
576
577 static struct attribute_group khugepaged_attr_group = {
578 .attrs = khugepaged_attr,
579 .name = "khugepaged",
580 };
581
582 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
583 {
584 int err;
585
586 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
587 if (unlikely(!*hugepage_kobj)) {
588 pr_err("failed to create transparent hugepage kobject\n");
589 return -ENOMEM;
590 }
591
592 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
593 if (err) {
594 pr_err("failed to register transparent hugepage group\n");
595 goto delete_obj;
596 }
597
598 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
599 if (err) {
600 pr_err("failed to register transparent hugepage group\n");
601 goto remove_hp_group;
602 }
603
604 return 0;
605
606 remove_hp_group:
607 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
608 delete_obj:
609 kobject_put(*hugepage_kobj);
610 return err;
611 }
612
613 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
614 {
615 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
616 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
617 kobject_put(hugepage_kobj);
618 }
619 #else
620 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
621 {
622 return 0;
623 }
624
625 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
626 {
627 }
628 #endif /* CONFIG_SYSFS */
629
630 static int __init hugepage_init(void)
631 {
632 int err;
633 struct kobject *hugepage_kobj;
634
635 if (!has_transparent_hugepage()) {
636 transparent_hugepage_flags = 0;
637 return -EINVAL;
638 }
639
640 err = hugepage_init_sysfs(&hugepage_kobj);
641 if (err)
642 return err;
643
644 err = khugepaged_slab_init();
645 if (err)
646 goto out;
647
648 register_shrinker(&huge_zero_page_shrinker);
649
650 /*
651 * By default disable transparent hugepages on smaller systems,
652 * where the extra memory used could hurt more than TLB overhead
653 * is likely to save. The admin can still enable it through /sys.
654 */
655 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
656 transparent_hugepage_flags = 0;
657
658 start_khugepaged();
659
660 return 0;
661 out:
662 hugepage_exit_sysfs(hugepage_kobj);
663 return err;
664 }
665 subsys_initcall(hugepage_init);
666
667 static int __init setup_transparent_hugepage(char *str)
668 {
669 int ret = 0;
670 if (!str)
671 goto out;
672 if (!strcmp(str, "always")) {
673 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
674 &transparent_hugepage_flags);
675 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
676 &transparent_hugepage_flags);
677 ret = 1;
678 } else if (!strcmp(str, "madvise")) {
679 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
680 &transparent_hugepage_flags);
681 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
682 &transparent_hugepage_flags);
683 ret = 1;
684 } else if (!strcmp(str, "never")) {
685 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
686 &transparent_hugepage_flags);
687 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
688 &transparent_hugepage_flags);
689 ret = 1;
690 }
691 out:
692 if (!ret)
693 pr_warn("transparent_hugepage= cannot parse, ignored\n");
694 return ret;
695 }
696 __setup("transparent_hugepage=", setup_transparent_hugepage);
697
698 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
699 {
700 if (likely(vma->vm_flags & VM_WRITE))
701 pmd = pmd_mkwrite(pmd);
702 return pmd;
703 }
704
705 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
706 {
707 pmd_t entry;
708 entry = mk_pmd(page, prot);
709 entry = pmd_mkhuge(entry);
710 return entry;
711 }
712
713 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
714 struct vm_area_struct *vma,
715 unsigned long haddr, pmd_t *pmd,
716 struct page *page)
717 {
718 struct mem_cgroup *memcg;
719 pgtable_t pgtable;
720 spinlock_t *ptl;
721
722 VM_BUG_ON_PAGE(!PageCompound(page), page);
723
724 if (mem_cgroup_try_charge(page, mm, GFP_TRANSHUGE, &memcg))
725 return VM_FAULT_OOM;
726
727 pgtable = pte_alloc_one(mm, haddr);
728 if (unlikely(!pgtable)) {
729 mem_cgroup_cancel_charge(page, memcg);
730 return VM_FAULT_OOM;
731 }
732
733 clear_huge_page(page, haddr, HPAGE_PMD_NR);
734 /*
735 * The memory barrier inside __SetPageUptodate makes sure that
736 * clear_huge_page writes become visible before the set_pmd_at()
737 * write.
738 */
739 __SetPageUptodate(page);
740
741 ptl = pmd_lock(mm, pmd);
742 if (unlikely(!pmd_none(*pmd))) {
743 spin_unlock(ptl);
744 mem_cgroup_cancel_charge(page, memcg);
745 put_page(page);
746 pte_free(mm, pgtable);
747 } else {
748 pmd_t entry;
749 entry = mk_huge_pmd(page, vma->vm_page_prot);
750 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
751 page_add_new_anon_rmap(page, vma, haddr);
752 mem_cgroup_commit_charge(page, memcg, false);
753 lru_cache_add_active_or_unevictable(page, vma);
754 pgtable_trans_huge_deposit(mm, pmd, pgtable);
755 set_pmd_at(mm, haddr, pmd, entry);
756 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
757 atomic_long_inc(&mm->nr_ptes);
758 spin_unlock(ptl);
759 }
760
761 return 0;
762 }
763
764 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
765 {
766 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
767 }
768
769 static inline struct page *alloc_hugepage_vma(int defrag,
770 struct vm_area_struct *vma,
771 unsigned long haddr, int nd,
772 gfp_t extra_gfp)
773 {
774 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
775 HPAGE_PMD_ORDER, vma, haddr, nd);
776 }
777
778 /* Caller must hold page table lock. */
779 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
780 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
781 struct page *zero_page)
782 {
783 pmd_t entry;
784 if (!pmd_none(*pmd))
785 return false;
786 entry = mk_pmd(zero_page, vma->vm_page_prot);
787 entry = pmd_mkhuge(entry);
788 pgtable_trans_huge_deposit(mm, pmd, pgtable);
789 set_pmd_at(mm, haddr, pmd, entry);
790 atomic_long_inc(&mm->nr_ptes);
791 return true;
792 }
793
794 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
795 unsigned long address, pmd_t *pmd,
796 unsigned int flags)
797 {
798 struct page *page;
799 unsigned long haddr = address & HPAGE_PMD_MASK;
800
801 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
802 return VM_FAULT_FALLBACK;
803 if (unlikely(anon_vma_prepare(vma)))
804 return VM_FAULT_OOM;
805 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
806 return VM_FAULT_OOM;
807 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
808 transparent_hugepage_use_zero_page()) {
809 spinlock_t *ptl;
810 pgtable_t pgtable;
811 struct page *zero_page;
812 bool set;
813 pgtable = pte_alloc_one(mm, haddr);
814 if (unlikely(!pgtable))
815 return VM_FAULT_OOM;
816 zero_page = get_huge_zero_page();
817 if (unlikely(!zero_page)) {
818 pte_free(mm, pgtable);
819 count_vm_event(THP_FAULT_FALLBACK);
820 return VM_FAULT_FALLBACK;
821 }
822 ptl = pmd_lock(mm, pmd);
823 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
824 zero_page);
825 spin_unlock(ptl);
826 if (!set) {
827 pte_free(mm, pgtable);
828 put_huge_zero_page();
829 }
830 return 0;
831 }
832 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
833 vma, haddr, numa_node_id(), 0);
834 if (unlikely(!page)) {
835 count_vm_event(THP_FAULT_FALLBACK);
836 return VM_FAULT_FALLBACK;
837 }
838 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
839 put_page(page);
840 count_vm_event(THP_FAULT_FALLBACK);
841 return VM_FAULT_FALLBACK;
842 }
843
844 count_vm_event(THP_FAULT_ALLOC);
845 return 0;
846 }
847
848 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
849 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
850 struct vm_area_struct *vma)
851 {
852 spinlock_t *dst_ptl, *src_ptl;
853 struct page *src_page;
854 pmd_t pmd;
855 pgtable_t pgtable;
856 int ret;
857
858 ret = -ENOMEM;
859 pgtable = pte_alloc_one(dst_mm, addr);
860 if (unlikely(!pgtable))
861 goto out;
862
863 dst_ptl = pmd_lock(dst_mm, dst_pmd);
864 src_ptl = pmd_lockptr(src_mm, src_pmd);
865 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
866
867 ret = -EAGAIN;
868 pmd = *src_pmd;
869 if (unlikely(!pmd_trans_huge(pmd))) {
870 pte_free(dst_mm, pgtable);
871 goto out_unlock;
872 }
873 /*
874 * When page table lock is held, the huge zero pmd should not be
875 * under splitting since we don't split the page itself, only pmd to
876 * a page table.
877 */
878 if (is_huge_zero_pmd(pmd)) {
879 struct page *zero_page;
880 bool set;
881 /*
882 * get_huge_zero_page() will never allocate a new page here,
883 * since we already have a zero page to copy. It just takes a
884 * reference.
885 */
886 zero_page = get_huge_zero_page();
887 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
888 zero_page);
889 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
890 ret = 0;
891 goto out_unlock;
892 }
893
894 if (unlikely(pmd_trans_splitting(pmd))) {
895 /* split huge page running from under us */
896 spin_unlock(src_ptl);
897 spin_unlock(dst_ptl);
898 pte_free(dst_mm, pgtable);
899
900 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
901 goto out;
902 }
903 src_page = pmd_page(pmd);
904 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
905 get_page(src_page);
906 page_dup_rmap(src_page);
907 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
908
909 pmdp_set_wrprotect(src_mm, addr, src_pmd);
910 pmd = pmd_mkold(pmd_wrprotect(pmd));
911 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
912 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
913 atomic_long_inc(&dst_mm->nr_ptes);
914
915 ret = 0;
916 out_unlock:
917 spin_unlock(src_ptl);
918 spin_unlock(dst_ptl);
919 out:
920 return ret;
921 }
922
923 void huge_pmd_set_accessed(struct mm_struct *mm,
924 struct vm_area_struct *vma,
925 unsigned long address,
926 pmd_t *pmd, pmd_t orig_pmd,
927 int dirty)
928 {
929 spinlock_t *ptl;
930 pmd_t entry;
931 unsigned long haddr;
932
933 ptl = pmd_lock(mm, pmd);
934 if (unlikely(!pmd_same(*pmd, orig_pmd)))
935 goto unlock;
936
937 entry = pmd_mkyoung(orig_pmd);
938 haddr = address & HPAGE_PMD_MASK;
939 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
940 update_mmu_cache_pmd(vma, address, pmd);
941
942 unlock:
943 spin_unlock(ptl);
944 }
945
946 /*
947 * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
948 * during copy_user_huge_page()'s copy_page_rep(): in the case when
949 * the source page gets split and a tail freed before copy completes.
950 * Called under pmd_lock of checked pmd, so safe from splitting itself.
951 */
952 static void get_user_huge_page(struct page *page)
953 {
954 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
955 struct page *endpage = page + HPAGE_PMD_NR;
956
957 atomic_add(HPAGE_PMD_NR, &page->_count);
958 while (++page < endpage)
959 get_huge_page_tail(page);
960 } else {
961 get_page(page);
962 }
963 }
964
965 static void put_user_huge_page(struct page *page)
966 {
967 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
968 struct page *endpage = page + HPAGE_PMD_NR;
969
970 while (page < endpage)
971 put_page(page++);
972 } else {
973 put_page(page);
974 }
975 }
976
977 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
978 struct vm_area_struct *vma,
979 unsigned long address,
980 pmd_t *pmd, pmd_t orig_pmd,
981 struct page *page,
982 unsigned long haddr)
983 {
984 struct mem_cgroup *memcg;
985 spinlock_t *ptl;
986 pgtable_t pgtable;
987 pmd_t _pmd;
988 int ret = 0, i;
989 struct page **pages;
990 unsigned long mmun_start; /* For mmu_notifiers */
991 unsigned long mmun_end; /* For mmu_notifiers */
992
993 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
994 GFP_KERNEL);
995 if (unlikely(!pages)) {
996 ret |= VM_FAULT_OOM;
997 goto out;
998 }
999
1000 for (i = 0; i < HPAGE_PMD_NR; i++) {
1001 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1002 __GFP_OTHER_NODE,
1003 vma, address, page_to_nid(page));
1004 if (unlikely(!pages[i] ||
1005 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1006 &memcg))) {
1007 if (pages[i])
1008 put_page(pages[i]);
1009 while (--i >= 0) {
1010 memcg = (void *)page_private(pages[i]);
1011 set_page_private(pages[i], 0);
1012 mem_cgroup_cancel_charge(pages[i], memcg);
1013 put_page(pages[i]);
1014 }
1015 kfree(pages);
1016 ret |= VM_FAULT_OOM;
1017 goto out;
1018 }
1019 set_page_private(pages[i], (unsigned long)memcg);
1020 }
1021
1022 for (i = 0; i < HPAGE_PMD_NR; i++) {
1023 copy_user_highpage(pages[i], page + i,
1024 haddr + PAGE_SIZE * i, vma);
1025 __SetPageUptodate(pages[i]);
1026 cond_resched();
1027 }
1028
1029 mmun_start = haddr;
1030 mmun_end = haddr + HPAGE_PMD_SIZE;
1031 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1032
1033 ptl = pmd_lock(mm, pmd);
1034 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1035 goto out_free_pages;
1036 VM_BUG_ON_PAGE(!PageHead(page), page);
1037
1038 pmdp_clear_flush_notify(vma, haddr, pmd);
1039 /* leave pmd empty until pte is filled */
1040
1041 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1042 pmd_populate(mm, &_pmd, pgtable);
1043
1044 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1045 pte_t *pte, entry;
1046 entry = mk_pte(pages[i], vma->vm_page_prot);
1047 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1048 memcg = (void *)page_private(pages[i]);
1049 set_page_private(pages[i], 0);
1050 page_add_new_anon_rmap(pages[i], vma, haddr);
1051 mem_cgroup_commit_charge(pages[i], memcg, false);
1052 lru_cache_add_active_or_unevictable(pages[i], vma);
1053 pte = pte_offset_map(&_pmd, haddr);
1054 VM_BUG_ON(!pte_none(*pte));
1055 set_pte_at(mm, haddr, pte, entry);
1056 pte_unmap(pte);
1057 }
1058 kfree(pages);
1059
1060 smp_wmb(); /* make pte visible before pmd */
1061 pmd_populate(mm, pmd, pgtable);
1062 page_remove_rmap(page);
1063 spin_unlock(ptl);
1064
1065 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1066
1067 ret |= VM_FAULT_WRITE;
1068 put_page(page);
1069
1070 out:
1071 return ret;
1072
1073 out_free_pages:
1074 spin_unlock(ptl);
1075 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1076 for (i = 0; i < HPAGE_PMD_NR; i++) {
1077 memcg = (void *)page_private(pages[i]);
1078 set_page_private(pages[i], 0);
1079 mem_cgroup_cancel_charge(pages[i], memcg);
1080 put_page(pages[i]);
1081 }
1082 kfree(pages);
1083 goto out;
1084 }
1085
1086 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1087 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1088 {
1089 spinlock_t *ptl;
1090 int ret = 0;
1091 struct page *page = NULL, *new_page;
1092 struct mem_cgroup *memcg;
1093 unsigned long haddr;
1094 unsigned long mmun_start; /* For mmu_notifiers */
1095 unsigned long mmun_end; /* For mmu_notifiers */
1096
1097 ptl = pmd_lockptr(mm, pmd);
1098 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1099 haddr = address & HPAGE_PMD_MASK;
1100 if (is_huge_zero_pmd(orig_pmd))
1101 goto alloc;
1102 spin_lock(ptl);
1103 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1104 goto out_unlock;
1105
1106 page = pmd_page(orig_pmd);
1107 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1108 if (page_mapcount(page) == 1) {
1109 pmd_t entry;
1110 entry = pmd_mkyoung(orig_pmd);
1111 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1112 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1113 update_mmu_cache_pmd(vma, address, pmd);
1114 ret |= VM_FAULT_WRITE;
1115 goto out_unlock;
1116 }
1117 get_user_huge_page(page);
1118 spin_unlock(ptl);
1119 alloc:
1120 if (transparent_hugepage_enabled(vma) &&
1121 !transparent_hugepage_debug_cow())
1122 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1123 vma, haddr, numa_node_id(), 0);
1124 else
1125 new_page = NULL;
1126
1127 if (unlikely(!new_page)) {
1128 if (!page) {
1129 split_huge_page_pmd(vma, address, pmd);
1130 ret |= VM_FAULT_FALLBACK;
1131 } else {
1132 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1133 pmd, orig_pmd, page, haddr);
1134 if (ret & VM_FAULT_OOM) {
1135 split_huge_page(page);
1136 ret |= VM_FAULT_FALLBACK;
1137 }
1138 put_user_huge_page(page);
1139 }
1140 count_vm_event(THP_FAULT_FALLBACK);
1141 goto out;
1142 }
1143
1144 if (unlikely(mem_cgroup_try_charge(new_page, mm,
1145 GFP_TRANSHUGE, &memcg))) {
1146 put_page(new_page);
1147 if (page) {
1148 split_huge_page(page);
1149 put_user_huge_page(page);
1150 } else
1151 split_huge_page_pmd(vma, address, pmd);
1152 ret |= VM_FAULT_FALLBACK;
1153 count_vm_event(THP_FAULT_FALLBACK);
1154 goto out;
1155 }
1156
1157 count_vm_event(THP_FAULT_ALLOC);
1158
1159 if (!page)
1160 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1161 else
1162 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1163 __SetPageUptodate(new_page);
1164
1165 mmun_start = haddr;
1166 mmun_end = haddr + HPAGE_PMD_SIZE;
1167 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1168
1169 spin_lock(ptl);
1170 if (page)
1171 put_user_huge_page(page);
1172 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1173 spin_unlock(ptl);
1174 mem_cgroup_cancel_charge(new_page, memcg);
1175 put_page(new_page);
1176 goto out_mn;
1177 } else {
1178 pmd_t entry;
1179 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1180 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1181 pmdp_clear_flush_notify(vma, haddr, pmd);
1182 page_add_new_anon_rmap(new_page, vma, haddr);
1183 mem_cgroup_commit_charge(new_page, memcg, false);
1184 lru_cache_add_active_or_unevictable(new_page, vma);
1185 set_pmd_at(mm, haddr, pmd, entry);
1186 update_mmu_cache_pmd(vma, address, pmd);
1187 if (!page) {
1188 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1189 put_huge_zero_page();
1190 } else {
1191 VM_BUG_ON_PAGE(!PageHead(page), page);
1192 page_remove_rmap(page);
1193 put_page(page);
1194 }
1195 ret |= VM_FAULT_WRITE;
1196 }
1197 spin_unlock(ptl);
1198 out_mn:
1199 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1200 out:
1201 return ret;
1202 out_unlock:
1203 spin_unlock(ptl);
1204 return ret;
1205 }
1206
1207 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1208 unsigned long addr,
1209 pmd_t *pmd,
1210 unsigned int flags)
1211 {
1212 struct mm_struct *mm = vma->vm_mm;
1213 struct page *page = NULL;
1214
1215 assert_spin_locked(pmd_lockptr(mm, pmd));
1216
1217 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1218 goto out;
1219
1220 /* Avoid dumping huge zero page */
1221 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1222 return ERR_PTR(-EFAULT);
1223
1224 /* Full NUMA hinting faults to serialise migration in fault paths */
1225 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1226 goto out;
1227
1228 page = pmd_page(*pmd);
1229 VM_BUG_ON_PAGE(!PageHead(page), page);
1230 if (flags & FOLL_TOUCH) {
1231 pmd_t _pmd;
1232 /*
1233 * We should set the dirty bit only for FOLL_WRITE but
1234 * for now the dirty bit in the pmd is meaningless.
1235 * And if the dirty bit will become meaningful and
1236 * we'll only set it with FOLL_WRITE, an atomic
1237 * set_bit will be required on the pmd to set the
1238 * young bit, instead of the current set_pmd_at.
1239 */
1240 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1241 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1242 pmd, _pmd, 1))
1243 update_mmu_cache_pmd(vma, addr, pmd);
1244 }
1245 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1246 if (page->mapping && trylock_page(page)) {
1247 lru_add_drain();
1248 if (page->mapping)
1249 mlock_vma_page(page);
1250 unlock_page(page);
1251 }
1252 }
1253 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1254 VM_BUG_ON_PAGE(!PageCompound(page), page);
1255 if (flags & FOLL_GET)
1256 get_page_foll(page);
1257
1258 out:
1259 return page;
1260 }
1261
1262 /* NUMA hinting page fault entry point for trans huge pmds */
1263 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1264 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1265 {
1266 spinlock_t *ptl;
1267 struct anon_vma *anon_vma = NULL;
1268 struct page *page;
1269 unsigned long haddr = addr & HPAGE_PMD_MASK;
1270 int page_nid = -1, this_nid = numa_node_id();
1271 int target_nid, last_cpupid = -1;
1272 bool page_locked;
1273 bool migrated = false;
1274 int flags = 0;
1275
1276 ptl = pmd_lock(mm, pmdp);
1277 if (unlikely(!pmd_same(pmd, *pmdp)))
1278 goto out_unlock;
1279
1280 /*
1281 * If there are potential migrations, wait for completion and retry
1282 * without disrupting NUMA hinting information. Do not relock and
1283 * check_same as the page may no longer be mapped.
1284 */
1285 if (unlikely(pmd_trans_migrating(*pmdp))) {
1286 spin_unlock(ptl);
1287 wait_migrate_huge_page(vma->anon_vma, pmdp);
1288 goto out;
1289 }
1290
1291 page = pmd_page(pmd);
1292 BUG_ON(is_huge_zero_page(page));
1293 page_nid = page_to_nid(page);
1294 last_cpupid = page_cpupid_last(page);
1295 count_vm_numa_event(NUMA_HINT_FAULTS);
1296 if (page_nid == this_nid) {
1297 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1298 flags |= TNF_FAULT_LOCAL;
1299 }
1300
1301 /*
1302 * Avoid grouping on DSO/COW pages in specific and RO pages
1303 * in general, RO pages shouldn't hurt as much anyway since
1304 * they can be in shared cache state.
1305 */
1306 if (!pmd_write(pmd))
1307 flags |= TNF_NO_GROUP;
1308
1309 /*
1310 * Acquire the page lock to serialise THP migrations but avoid dropping
1311 * page_table_lock if at all possible
1312 */
1313 page_locked = trylock_page(page);
1314 target_nid = mpol_misplaced(page, vma, haddr);
1315 if (target_nid == -1) {
1316 /* If the page was locked, there are no parallel migrations */
1317 if (page_locked)
1318 goto clear_pmdnuma;
1319 }
1320
1321 /* Migration could have started since the pmd_trans_migrating check */
1322 if (!page_locked) {
1323 spin_unlock(ptl);
1324 wait_on_page_locked(page);
1325 page_nid = -1;
1326 goto out;
1327 }
1328
1329 /*
1330 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1331 * to serialises splits
1332 */
1333 get_page(page);
1334 spin_unlock(ptl);
1335 anon_vma = page_lock_anon_vma_read(page);
1336
1337 /* Confirm the PMD did not change while page_table_lock was released */
1338 spin_lock(ptl);
1339 if (unlikely(!pmd_same(pmd, *pmdp))) {
1340 unlock_page(page);
1341 put_page(page);
1342 page_nid = -1;
1343 goto out_unlock;
1344 }
1345
1346 /* Bail if we fail to protect against THP splits for any reason */
1347 if (unlikely(!anon_vma)) {
1348 put_page(page);
1349 page_nid = -1;
1350 goto clear_pmdnuma;
1351 }
1352
1353 /*
1354 * Migrate the THP to the requested node, returns with page unlocked
1355 * and pmd_numa cleared.
1356 */
1357 spin_unlock(ptl);
1358 migrated = migrate_misplaced_transhuge_page(mm, vma,
1359 pmdp, pmd, addr, page, target_nid);
1360 if (migrated) {
1361 flags |= TNF_MIGRATED;
1362 page_nid = target_nid;
1363 }
1364
1365 goto out;
1366 clear_pmdnuma:
1367 BUG_ON(!PageLocked(page));
1368 pmd = pmd_mknonnuma(pmd);
1369 set_pmd_at(mm, haddr, pmdp, pmd);
1370 VM_BUG_ON(pmd_numa(*pmdp));
1371 update_mmu_cache_pmd(vma, addr, pmdp);
1372 unlock_page(page);
1373 out_unlock:
1374 spin_unlock(ptl);
1375
1376 out:
1377 if (anon_vma)
1378 page_unlock_anon_vma_read(anon_vma);
1379
1380 if (page_nid != -1)
1381 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1382
1383 return 0;
1384 }
1385
1386 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1387 pmd_t *pmd, unsigned long addr)
1388 {
1389 spinlock_t *ptl;
1390 int ret = 0;
1391
1392 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1393 struct page *page;
1394 pgtable_t pgtable;
1395 pmd_t orig_pmd;
1396 /*
1397 * For architectures like ppc64 we look at deposited pgtable
1398 * when calling pmdp_get_and_clear. So do the
1399 * pgtable_trans_huge_withdraw after finishing pmdp related
1400 * operations.
1401 */
1402 orig_pmd = pmdp_get_and_clear_full(tlb->mm, addr, pmd,
1403 tlb->fullmm);
1404 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1405 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1406 if (is_huge_zero_pmd(orig_pmd)) {
1407 atomic_long_dec(&tlb->mm->nr_ptes);
1408 spin_unlock(ptl);
1409 put_huge_zero_page();
1410 } else {
1411 page = pmd_page(orig_pmd);
1412 page_remove_rmap(page);
1413 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1414 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1415 VM_BUG_ON_PAGE(!PageHead(page), page);
1416 atomic_long_dec(&tlb->mm->nr_ptes);
1417 spin_unlock(ptl);
1418 tlb_remove_page(tlb, page);
1419 }
1420 pte_free(tlb->mm, pgtable);
1421 ret = 1;
1422 }
1423 return ret;
1424 }
1425
1426 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1427 unsigned long addr, unsigned long end,
1428 unsigned char *vec)
1429 {
1430 spinlock_t *ptl;
1431 int ret = 0;
1432
1433 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1434 /*
1435 * All logical pages in the range are present
1436 * if backed by a huge page.
1437 */
1438 spin_unlock(ptl);
1439 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1440 ret = 1;
1441 }
1442
1443 return ret;
1444 }
1445
1446 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1447 unsigned long old_addr,
1448 unsigned long new_addr, unsigned long old_end,
1449 pmd_t *old_pmd, pmd_t *new_pmd)
1450 {
1451 spinlock_t *old_ptl, *new_ptl;
1452 int ret = 0;
1453 pmd_t pmd;
1454
1455 struct mm_struct *mm = vma->vm_mm;
1456
1457 if ((old_addr & ~HPAGE_PMD_MASK) ||
1458 (new_addr & ~HPAGE_PMD_MASK) ||
1459 old_end - old_addr < HPAGE_PMD_SIZE ||
1460 (new_vma->vm_flags & VM_NOHUGEPAGE))
1461 goto out;
1462
1463 /*
1464 * The destination pmd shouldn't be established, free_pgtables()
1465 * should have release it.
1466 */
1467 if (WARN_ON(!pmd_none(*new_pmd))) {
1468 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1469 goto out;
1470 }
1471
1472 /*
1473 * We don't have to worry about the ordering of src and dst
1474 * ptlocks because exclusive mmap_sem prevents deadlock.
1475 */
1476 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1477 if (ret == 1) {
1478 new_ptl = pmd_lockptr(mm, new_pmd);
1479 if (new_ptl != old_ptl)
1480 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1481 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1482 VM_BUG_ON(!pmd_none(*new_pmd));
1483
1484 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1485 pgtable_t pgtable;
1486 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1487 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1488 }
1489 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1490 if (new_ptl != old_ptl)
1491 spin_unlock(new_ptl);
1492 spin_unlock(old_ptl);
1493 }
1494 out:
1495 return ret;
1496 }
1497
1498 /*
1499 * Returns
1500 * - 0 if PMD could not be locked
1501 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1502 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1503 */
1504 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1505 unsigned long addr, pgprot_t newprot, int prot_numa)
1506 {
1507 struct mm_struct *mm = vma->vm_mm;
1508 spinlock_t *ptl;
1509 int ret = 0;
1510
1511 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1512 pmd_t entry;
1513 ret = 1;
1514 if (!prot_numa) {
1515 entry = pmdp_get_and_clear_notify(mm, addr, pmd);
1516 if (pmd_numa(entry))
1517 entry = pmd_mknonnuma(entry);
1518 entry = pmd_modify(entry, newprot);
1519 ret = HPAGE_PMD_NR;
1520 set_pmd_at(mm, addr, pmd, entry);
1521 BUG_ON(pmd_write(entry));
1522 } else {
1523 struct page *page = pmd_page(*pmd);
1524
1525 /*
1526 * Do not trap faults against the zero page. The
1527 * read-only data is likely to be read-cached on the
1528 * local CPU cache and it is less useful to know about
1529 * local vs remote hits on the zero page.
1530 */
1531 if (!is_huge_zero_page(page) &&
1532 !pmd_numa(*pmd)) {
1533 pmdp_set_numa(mm, addr, pmd);
1534 ret = HPAGE_PMD_NR;
1535 }
1536 }
1537 spin_unlock(ptl);
1538 }
1539
1540 return ret;
1541 }
1542
1543 /*
1544 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1545 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1546 *
1547 * Note that if it returns 1, this routine returns without unlocking page
1548 * table locks. So callers must unlock them.
1549 */
1550 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1551 spinlock_t **ptl)
1552 {
1553 *ptl = pmd_lock(vma->vm_mm, pmd);
1554 if (likely(pmd_trans_huge(*pmd))) {
1555 if (unlikely(pmd_trans_splitting(*pmd))) {
1556 spin_unlock(*ptl);
1557 wait_split_huge_page(vma->anon_vma, pmd);
1558 return -1;
1559 } else {
1560 /* Thp mapped by 'pmd' is stable, so we can
1561 * handle it as it is. */
1562 return 1;
1563 }
1564 }
1565 spin_unlock(*ptl);
1566 return 0;
1567 }
1568
1569 /*
1570 * This function returns whether a given @page is mapped onto the @address
1571 * in the virtual space of @mm.
1572 *
1573 * When it's true, this function returns *pmd with holding the page table lock
1574 * and passing it back to the caller via @ptl.
1575 * If it's false, returns NULL without holding the page table lock.
1576 */
1577 pmd_t *page_check_address_pmd(struct page *page,
1578 struct mm_struct *mm,
1579 unsigned long address,
1580 enum page_check_address_pmd_flag flag,
1581 spinlock_t **ptl)
1582 {
1583 pgd_t *pgd;
1584 pud_t *pud;
1585 pmd_t *pmd;
1586
1587 if (address & ~HPAGE_PMD_MASK)
1588 return NULL;
1589
1590 pgd = pgd_offset(mm, address);
1591 if (!pgd_present(*pgd))
1592 return NULL;
1593 pud = pud_offset(pgd, address);
1594 if (!pud_present(*pud))
1595 return NULL;
1596 pmd = pmd_offset(pud, address);
1597
1598 *ptl = pmd_lock(mm, pmd);
1599 if (!pmd_present(*pmd))
1600 goto unlock;
1601 if (pmd_page(*pmd) != page)
1602 goto unlock;
1603 /*
1604 * split_vma() may create temporary aliased mappings. There is
1605 * no risk as long as all huge pmd are found and have their
1606 * splitting bit set before __split_huge_page_refcount
1607 * runs. Finding the same huge pmd more than once during the
1608 * same rmap walk is not a problem.
1609 */
1610 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1611 pmd_trans_splitting(*pmd))
1612 goto unlock;
1613 if (pmd_trans_huge(*pmd)) {
1614 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1615 !pmd_trans_splitting(*pmd));
1616 return pmd;
1617 }
1618 unlock:
1619 spin_unlock(*ptl);
1620 return NULL;
1621 }
1622
1623 static int __split_huge_page_splitting(struct page *page,
1624 struct vm_area_struct *vma,
1625 unsigned long address)
1626 {
1627 struct mm_struct *mm = vma->vm_mm;
1628 spinlock_t *ptl;
1629 pmd_t *pmd;
1630 int ret = 0;
1631 /* For mmu_notifiers */
1632 const unsigned long mmun_start = address;
1633 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1634
1635 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1636 pmd = page_check_address_pmd(page, mm, address,
1637 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1638 if (pmd) {
1639 /*
1640 * We can't temporarily set the pmd to null in order
1641 * to split it, the pmd must remain marked huge at all
1642 * times or the VM won't take the pmd_trans_huge paths
1643 * and it won't wait on the anon_vma->root->rwsem to
1644 * serialize against split_huge_page*.
1645 */
1646 pmdp_splitting_flush(vma, address, pmd);
1647
1648 ret = 1;
1649 spin_unlock(ptl);
1650 }
1651 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1652
1653 return ret;
1654 }
1655
1656 static void __split_huge_page_refcount(struct page *page,
1657 struct list_head *list)
1658 {
1659 int i;
1660 struct zone *zone = page_zone(page);
1661 struct lruvec *lruvec;
1662 int tail_count = 0;
1663
1664 /* prevent PageLRU to go away from under us, and freeze lru stats */
1665 spin_lock_irq(&zone->lru_lock);
1666 lruvec = mem_cgroup_page_lruvec(page, zone);
1667
1668 compound_lock(page);
1669 /* complete memcg works before add pages to LRU */
1670 mem_cgroup_split_huge_fixup(page);
1671
1672 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1673 struct page *page_tail = page + i;
1674
1675 /* tail_page->_mapcount cannot change */
1676 BUG_ON(page_mapcount(page_tail) < 0);
1677 tail_count += page_mapcount(page_tail);
1678 /* check for overflow */
1679 BUG_ON(tail_count < 0);
1680 BUG_ON(atomic_read(&page_tail->_count) != 0);
1681 /*
1682 * tail_page->_count is zero and not changing from
1683 * under us. But get_page_unless_zero() may be running
1684 * from under us on the tail_page. If we used
1685 * atomic_set() below instead of atomic_add(), we
1686 * would then run atomic_set() concurrently with
1687 * get_page_unless_zero(), and atomic_set() is
1688 * implemented in C not using locked ops. spin_unlock
1689 * on x86 sometime uses locked ops because of PPro
1690 * errata 66, 92, so unless somebody can guarantee
1691 * atomic_set() here would be safe on all archs (and
1692 * not only on x86), it's safer to use atomic_add().
1693 */
1694 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1695 &page_tail->_count);
1696
1697 /* after clearing PageTail the gup refcount can be released */
1698 smp_mb__after_atomic();
1699
1700 /*
1701 * retain hwpoison flag of the poisoned tail page:
1702 * fix for the unsuitable process killed on Guest Machine(KVM)
1703 * by the memory-failure.
1704 */
1705 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1706 page_tail->flags |= (page->flags &
1707 ((1L << PG_referenced) |
1708 (1L << PG_swapbacked) |
1709 (1L << PG_mlocked) |
1710 (1L << PG_uptodate) |
1711 (1L << PG_active) |
1712 (1L << PG_unevictable)));
1713 page_tail->flags |= (1L << PG_dirty);
1714
1715 /* clear PageTail before overwriting first_page */
1716 smp_wmb();
1717
1718 /*
1719 * __split_huge_page_splitting() already set the
1720 * splitting bit in all pmd that could map this
1721 * hugepage, that will ensure no CPU can alter the
1722 * mapcount on the head page. The mapcount is only
1723 * accounted in the head page and it has to be
1724 * transferred to all tail pages in the below code. So
1725 * for this code to be safe, the split the mapcount
1726 * can't change. But that doesn't mean userland can't
1727 * keep changing and reading the page contents while
1728 * we transfer the mapcount, so the pmd splitting
1729 * status is achieved setting a reserved bit in the
1730 * pmd, not by clearing the present bit.
1731 */
1732 page_tail->_mapcount = page->_mapcount;
1733
1734 BUG_ON(page_tail->mapping);
1735 page_tail->mapping = page->mapping;
1736
1737 page_tail->index = page->index + i;
1738 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1739
1740 BUG_ON(!PageAnon(page_tail));
1741 BUG_ON(!PageUptodate(page_tail));
1742 BUG_ON(!PageDirty(page_tail));
1743 BUG_ON(!PageSwapBacked(page_tail));
1744
1745 lru_add_page_tail(page, page_tail, lruvec, list);
1746 }
1747 atomic_sub(tail_count, &page->_count);
1748 BUG_ON(atomic_read(&page->_count) <= 0);
1749
1750 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1751
1752 ClearPageCompound(page);
1753 compound_unlock(page);
1754 spin_unlock_irq(&zone->lru_lock);
1755
1756 for (i = 1; i < HPAGE_PMD_NR; i++) {
1757 struct page *page_tail = page + i;
1758 BUG_ON(page_count(page_tail) <= 0);
1759 /*
1760 * Tail pages may be freed if there wasn't any mapping
1761 * like if add_to_swap() is running on a lru page that
1762 * had its mapping zapped. And freeing these pages
1763 * requires taking the lru_lock so we do the put_page
1764 * of the tail pages after the split is complete.
1765 */
1766 put_page(page_tail);
1767 }
1768
1769 /*
1770 * Only the head page (now become a regular page) is required
1771 * to be pinned by the caller.
1772 */
1773 BUG_ON(page_count(page) <= 0);
1774 }
1775
1776 static int __split_huge_page_map(struct page *page,
1777 struct vm_area_struct *vma,
1778 unsigned long address)
1779 {
1780 struct mm_struct *mm = vma->vm_mm;
1781 spinlock_t *ptl;
1782 pmd_t *pmd, _pmd;
1783 int ret = 0, i;
1784 pgtable_t pgtable;
1785 unsigned long haddr;
1786
1787 pmd = page_check_address_pmd(page, mm, address,
1788 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1789 if (pmd) {
1790 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1791 pmd_populate(mm, &_pmd, pgtable);
1792 if (pmd_write(*pmd))
1793 BUG_ON(page_mapcount(page) != 1);
1794
1795 haddr = address;
1796 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1797 pte_t *pte, entry;
1798 BUG_ON(PageCompound(page+i));
1799 /*
1800 * Note that pmd_numa is not transferred deliberately
1801 * to avoid any possibility that pte_numa leaks to
1802 * a PROT_NONE VMA by accident.
1803 */
1804 entry = mk_pte(page + i, vma->vm_page_prot);
1805 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1806 if (!pmd_write(*pmd))
1807 entry = pte_wrprotect(entry);
1808 if (!pmd_young(*pmd))
1809 entry = pte_mkold(entry);
1810 pte = pte_offset_map(&_pmd, haddr);
1811 BUG_ON(!pte_none(*pte));
1812 set_pte_at(mm, haddr, pte, entry);
1813 pte_unmap(pte);
1814 }
1815
1816 smp_wmb(); /* make pte visible before pmd */
1817 /*
1818 * Up to this point the pmd is present and huge and
1819 * userland has the whole access to the hugepage
1820 * during the split (which happens in place). If we
1821 * overwrite the pmd with the not-huge version
1822 * pointing to the pte here (which of course we could
1823 * if all CPUs were bug free), userland could trigger
1824 * a small page size TLB miss on the small sized TLB
1825 * while the hugepage TLB entry is still established
1826 * in the huge TLB. Some CPU doesn't like that. See
1827 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1828 * Erratum 383 on page 93. Intel should be safe but is
1829 * also warns that it's only safe if the permission
1830 * and cache attributes of the two entries loaded in
1831 * the two TLB is identical (which should be the case
1832 * here). But it is generally safer to never allow
1833 * small and huge TLB entries for the same virtual
1834 * address to be loaded simultaneously. So instead of
1835 * doing "pmd_populate(); flush_tlb_range();" we first
1836 * mark the current pmd notpresent (atomically because
1837 * here the pmd_trans_huge and pmd_trans_splitting
1838 * must remain set at all times on the pmd until the
1839 * split is complete for this pmd), then we flush the
1840 * SMP TLB and finally we write the non-huge version
1841 * of the pmd entry with pmd_populate.
1842 */
1843 pmdp_invalidate(vma, address, pmd);
1844 pmd_populate(mm, pmd, pgtable);
1845 ret = 1;
1846 spin_unlock(ptl);
1847 }
1848
1849 return ret;
1850 }
1851
1852 /* must be called with anon_vma->root->rwsem held */
1853 static void __split_huge_page(struct page *page,
1854 struct anon_vma *anon_vma,
1855 struct list_head *list)
1856 {
1857 int mapcount, mapcount2;
1858 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1859 struct anon_vma_chain *avc;
1860
1861 BUG_ON(!PageHead(page));
1862 BUG_ON(PageTail(page));
1863
1864 mapcount = 0;
1865 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1866 struct vm_area_struct *vma = avc->vma;
1867 unsigned long addr = vma_address(page, vma);
1868 BUG_ON(is_vma_temporary_stack(vma));
1869 mapcount += __split_huge_page_splitting(page, vma, addr);
1870 }
1871 /*
1872 * It is critical that new vmas are added to the tail of the
1873 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1874 * and establishes a child pmd before
1875 * __split_huge_page_splitting() freezes the parent pmd (so if
1876 * we fail to prevent copy_huge_pmd() from running until the
1877 * whole __split_huge_page() is complete), we will still see
1878 * the newly established pmd of the child later during the
1879 * walk, to be able to set it as pmd_trans_splitting too.
1880 */
1881 if (mapcount != page_mapcount(page)) {
1882 pr_err("mapcount %d page_mapcount %d\n",
1883 mapcount, page_mapcount(page));
1884 BUG();
1885 }
1886
1887 __split_huge_page_refcount(page, list);
1888
1889 mapcount2 = 0;
1890 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1891 struct vm_area_struct *vma = avc->vma;
1892 unsigned long addr = vma_address(page, vma);
1893 BUG_ON(is_vma_temporary_stack(vma));
1894 mapcount2 += __split_huge_page_map(page, vma, addr);
1895 }
1896 if (mapcount != mapcount2) {
1897 pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1898 mapcount, mapcount2, page_mapcount(page));
1899 BUG();
1900 }
1901 }
1902
1903 /*
1904 * Split a hugepage into normal pages. This doesn't change the position of head
1905 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1906 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1907 * from the hugepage.
1908 * Return 0 if the hugepage is split successfully otherwise return 1.
1909 */
1910 int split_huge_page_to_list(struct page *page, struct list_head *list)
1911 {
1912 struct anon_vma *anon_vma;
1913 int ret = 1;
1914
1915 BUG_ON(is_huge_zero_page(page));
1916 BUG_ON(!PageAnon(page));
1917
1918 /*
1919 * The caller does not necessarily hold an mmap_sem that would prevent
1920 * the anon_vma disappearing so we first we take a reference to it
1921 * and then lock the anon_vma for write. This is similar to
1922 * page_lock_anon_vma_read except the write lock is taken to serialise
1923 * against parallel split or collapse operations.
1924 */
1925 anon_vma = page_get_anon_vma(page);
1926 if (!anon_vma)
1927 goto out;
1928 anon_vma_lock_write(anon_vma);
1929
1930 ret = 0;
1931 if (!PageCompound(page))
1932 goto out_unlock;
1933
1934 BUG_ON(!PageSwapBacked(page));
1935 __split_huge_page(page, anon_vma, list);
1936 count_vm_event(THP_SPLIT);
1937
1938 BUG_ON(PageCompound(page));
1939 out_unlock:
1940 anon_vma_unlock_write(anon_vma);
1941 put_anon_vma(anon_vma);
1942 out:
1943 return ret;
1944 }
1945
1946 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1947
1948 int hugepage_madvise(struct vm_area_struct *vma,
1949 unsigned long *vm_flags, int advice)
1950 {
1951 switch (advice) {
1952 case MADV_HUGEPAGE:
1953 #ifdef CONFIG_S390
1954 /*
1955 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1956 * can't handle this properly after s390_enable_sie, so we simply
1957 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1958 */
1959 if (mm_has_pgste(vma->vm_mm))
1960 return 0;
1961 #endif
1962 /*
1963 * Be somewhat over-protective like KSM for now!
1964 */
1965 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1966 return -EINVAL;
1967 *vm_flags &= ~VM_NOHUGEPAGE;
1968 *vm_flags |= VM_HUGEPAGE;
1969 /*
1970 * If the vma become good for khugepaged to scan,
1971 * register it here without waiting a page fault that
1972 * may not happen any time soon.
1973 */
1974 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1975 return -ENOMEM;
1976 break;
1977 case MADV_NOHUGEPAGE:
1978 /*
1979 * Be somewhat over-protective like KSM for now!
1980 */
1981 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1982 return -EINVAL;
1983 *vm_flags &= ~VM_HUGEPAGE;
1984 *vm_flags |= VM_NOHUGEPAGE;
1985 /*
1986 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1987 * this vma even if we leave the mm registered in khugepaged if
1988 * it got registered before VM_NOHUGEPAGE was set.
1989 */
1990 break;
1991 }
1992
1993 return 0;
1994 }
1995
1996 static int __init khugepaged_slab_init(void)
1997 {
1998 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1999 sizeof(struct mm_slot),
2000 __alignof__(struct mm_slot), 0, NULL);
2001 if (!mm_slot_cache)
2002 return -ENOMEM;
2003
2004 return 0;
2005 }
2006
2007 static inline struct mm_slot *alloc_mm_slot(void)
2008 {
2009 if (!mm_slot_cache) /* initialization failed */
2010 return NULL;
2011 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
2012 }
2013
2014 static inline void free_mm_slot(struct mm_slot *mm_slot)
2015 {
2016 kmem_cache_free(mm_slot_cache, mm_slot);
2017 }
2018
2019 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2020 {
2021 struct mm_slot *mm_slot;
2022
2023 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
2024 if (mm == mm_slot->mm)
2025 return mm_slot;
2026
2027 return NULL;
2028 }
2029
2030 static void insert_to_mm_slots_hash(struct mm_struct *mm,
2031 struct mm_slot *mm_slot)
2032 {
2033 mm_slot->mm = mm;
2034 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
2035 }
2036
2037 static inline int khugepaged_test_exit(struct mm_struct *mm)
2038 {
2039 return atomic_read(&mm->mm_users) == 0;
2040 }
2041
2042 int __khugepaged_enter(struct mm_struct *mm)
2043 {
2044 struct mm_slot *mm_slot;
2045 int wakeup;
2046
2047 mm_slot = alloc_mm_slot();
2048 if (!mm_slot)
2049 return -ENOMEM;
2050
2051 /* __khugepaged_exit() must not run from under us */
2052 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
2053 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2054 free_mm_slot(mm_slot);
2055 return 0;
2056 }
2057
2058 spin_lock(&khugepaged_mm_lock);
2059 insert_to_mm_slots_hash(mm, mm_slot);
2060 /*
2061 * Insert just behind the scanning cursor, to let the area settle
2062 * down a little.
2063 */
2064 wakeup = list_empty(&khugepaged_scan.mm_head);
2065 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2066 spin_unlock(&khugepaged_mm_lock);
2067
2068 atomic_inc(&mm->mm_count);
2069 if (wakeup)
2070 wake_up_interruptible(&khugepaged_wait);
2071
2072 return 0;
2073 }
2074
2075 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
2076 unsigned long vm_flags)
2077 {
2078 unsigned long hstart, hend;
2079 if (!vma->anon_vma)
2080 /*
2081 * Not yet faulted in so we will register later in the
2082 * page fault if needed.
2083 */
2084 return 0;
2085 if (vma->vm_ops)
2086 /* khugepaged not yet working on file or special mappings */
2087 return 0;
2088 VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
2089 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2090 hend = vma->vm_end & HPAGE_PMD_MASK;
2091 if (hstart < hend)
2092 return khugepaged_enter(vma, vm_flags);
2093 return 0;
2094 }
2095
2096 void __khugepaged_exit(struct mm_struct *mm)
2097 {
2098 struct mm_slot *mm_slot;
2099 int free = 0;
2100
2101 spin_lock(&khugepaged_mm_lock);
2102 mm_slot = get_mm_slot(mm);
2103 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2104 hash_del(&mm_slot->hash);
2105 list_del(&mm_slot->mm_node);
2106 free = 1;
2107 }
2108 spin_unlock(&khugepaged_mm_lock);
2109
2110 if (free) {
2111 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2112 free_mm_slot(mm_slot);
2113 mmdrop(mm);
2114 } else if (mm_slot) {
2115 /*
2116 * This is required to serialize against
2117 * khugepaged_test_exit() (which is guaranteed to run
2118 * under mmap sem read mode). Stop here (after we
2119 * return all pagetables will be destroyed) until
2120 * khugepaged has finished working on the pagetables
2121 * under the mmap_sem.
2122 */
2123 down_write(&mm->mmap_sem);
2124 up_write(&mm->mmap_sem);
2125 }
2126 }
2127
2128 static void release_pte_page(struct page *page)
2129 {
2130 /* 0 stands for page_is_file_cache(page) == false */
2131 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2132 unlock_page(page);
2133 putback_lru_page(page);
2134 }
2135
2136 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2137 {
2138 while (--_pte >= pte) {
2139 pte_t pteval = *_pte;
2140 if (!pte_none(pteval))
2141 release_pte_page(pte_page(pteval));
2142 }
2143 }
2144
2145 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2146 unsigned long address,
2147 pte_t *pte)
2148 {
2149 struct page *page;
2150 pte_t *_pte;
2151 int referenced = 0, none = 0;
2152 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2153 _pte++, address += PAGE_SIZE) {
2154 pte_t pteval = *_pte;
2155 if (pte_none(pteval)) {
2156 if (++none <= khugepaged_max_ptes_none)
2157 continue;
2158 else
2159 goto out;
2160 }
2161 if (!pte_present(pteval) || !pte_write(pteval))
2162 goto out;
2163 page = vm_normal_page(vma, address, pteval);
2164 if (unlikely(!page))
2165 goto out;
2166
2167 VM_BUG_ON_PAGE(PageCompound(page), page);
2168 VM_BUG_ON_PAGE(!PageAnon(page), page);
2169 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2170
2171 /* cannot use mapcount: can't collapse if there's a gup pin */
2172 if (page_count(page) != 1)
2173 goto out;
2174 /*
2175 * We can do it before isolate_lru_page because the
2176 * page can't be freed from under us. NOTE: PG_lock
2177 * is needed to serialize against split_huge_page
2178 * when invoked from the VM.
2179 */
2180 if (!trylock_page(page))
2181 goto out;
2182 /*
2183 * Isolate the page to avoid collapsing an hugepage
2184 * currently in use by the VM.
2185 */
2186 if (isolate_lru_page(page)) {
2187 unlock_page(page);
2188 goto out;
2189 }
2190 /* 0 stands for page_is_file_cache(page) == false */
2191 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2192 VM_BUG_ON_PAGE(!PageLocked(page), page);
2193 VM_BUG_ON_PAGE(PageLRU(page), page);
2194
2195 /* If there is no mapped pte young don't collapse the page */
2196 if (pte_young(pteval) || PageReferenced(page) ||
2197 mmu_notifier_test_young(vma->vm_mm, address))
2198 referenced = 1;
2199 }
2200 if (likely(referenced))
2201 return 1;
2202 out:
2203 release_pte_pages(pte, _pte);
2204 return 0;
2205 }
2206
2207 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2208 struct vm_area_struct *vma,
2209 unsigned long address,
2210 spinlock_t *ptl)
2211 {
2212 pte_t *_pte;
2213 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2214 pte_t pteval = *_pte;
2215 struct page *src_page;
2216
2217 if (pte_none(pteval)) {
2218 clear_user_highpage(page, address);
2219 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2220 } else {
2221 src_page = pte_page(pteval);
2222 copy_user_highpage(page, src_page, address, vma);
2223 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2224 release_pte_page(src_page);
2225 /*
2226 * ptl mostly unnecessary, but preempt has to
2227 * be disabled to update the per-cpu stats
2228 * inside page_remove_rmap().
2229 */
2230 spin_lock(ptl);
2231 /*
2232 * paravirt calls inside pte_clear here are
2233 * superfluous.
2234 */
2235 pte_clear(vma->vm_mm, address, _pte);
2236 page_remove_rmap(src_page);
2237 spin_unlock(ptl);
2238 free_page_and_swap_cache(src_page);
2239 }
2240
2241 address += PAGE_SIZE;
2242 page++;
2243 }
2244 }
2245
2246 static void khugepaged_alloc_sleep(void)
2247 {
2248 wait_event_freezable_timeout(khugepaged_wait, false,
2249 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2250 }
2251
2252 static int khugepaged_node_load[MAX_NUMNODES];
2253
2254 static bool khugepaged_scan_abort(int nid)
2255 {
2256 int i;
2257
2258 /*
2259 * If zone_reclaim_mode is disabled, then no extra effort is made to
2260 * allocate memory locally.
2261 */
2262 if (!zone_reclaim_mode)
2263 return false;
2264
2265 /* If there is a count for this node already, it must be acceptable */
2266 if (khugepaged_node_load[nid])
2267 return false;
2268
2269 for (i = 0; i < MAX_NUMNODES; i++) {
2270 if (!khugepaged_node_load[i])
2271 continue;
2272 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2273 return true;
2274 }
2275 return false;
2276 }
2277
2278 #ifdef CONFIG_NUMA
2279 static int khugepaged_find_target_node(void)
2280 {
2281 static int last_khugepaged_target_node = NUMA_NO_NODE;
2282 int nid, target_node = 0, max_value = 0;
2283
2284 /* find first node with max normal pages hit */
2285 for (nid = 0; nid < MAX_NUMNODES; nid++)
2286 if (khugepaged_node_load[nid] > max_value) {
2287 max_value = khugepaged_node_load[nid];
2288 target_node = nid;
2289 }
2290
2291 /* do some balance if several nodes have the same hit record */
2292 if (target_node <= last_khugepaged_target_node)
2293 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2294 nid++)
2295 if (max_value == khugepaged_node_load[nid]) {
2296 target_node = nid;
2297 break;
2298 }
2299
2300 last_khugepaged_target_node = target_node;
2301 return target_node;
2302 }
2303
2304 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2305 {
2306 if (IS_ERR(*hpage)) {
2307 if (!*wait)
2308 return false;
2309
2310 *wait = false;
2311 *hpage = NULL;
2312 khugepaged_alloc_sleep();
2313 } else if (*hpage) {
2314 put_page(*hpage);
2315 *hpage = NULL;
2316 }
2317
2318 return true;
2319 }
2320
2321 static struct page
2322 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2323 struct vm_area_struct *vma, unsigned long address,
2324 int node)
2325 {
2326 VM_BUG_ON_PAGE(*hpage, *hpage);
2327
2328 /*
2329 * Before allocating the hugepage, release the mmap_sem read lock.
2330 * The allocation can take potentially a long time if it involves
2331 * sync compaction, and we do not need to hold the mmap_sem during
2332 * that. We will recheck the vma after taking it again in write mode.
2333 */
2334 up_read(&mm->mmap_sem);
2335
2336 *hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2337 khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
2338 if (unlikely(!*hpage)) {
2339 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2340 *hpage = ERR_PTR(-ENOMEM);
2341 return NULL;
2342 }
2343
2344 count_vm_event(THP_COLLAPSE_ALLOC);
2345 return *hpage;
2346 }
2347 #else
2348 static int khugepaged_find_target_node(void)
2349 {
2350 return 0;
2351 }
2352
2353 static inline struct page *alloc_hugepage(int defrag)
2354 {
2355 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2356 HPAGE_PMD_ORDER);
2357 }
2358
2359 static struct page *khugepaged_alloc_hugepage(bool *wait)
2360 {
2361 struct page *hpage;
2362
2363 do {
2364 hpage = alloc_hugepage(khugepaged_defrag());
2365 if (!hpage) {
2366 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2367 if (!*wait)
2368 return NULL;
2369
2370 *wait = false;
2371 khugepaged_alloc_sleep();
2372 } else
2373 count_vm_event(THP_COLLAPSE_ALLOC);
2374 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2375
2376 return hpage;
2377 }
2378
2379 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2380 {
2381 if (!*hpage)
2382 *hpage = khugepaged_alloc_hugepage(wait);
2383
2384 if (unlikely(!*hpage))
2385 return false;
2386
2387 return true;
2388 }
2389
2390 static struct page
2391 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2392 struct vm_area_struct *vma, unsigned long address,
2393 int node)
2394 {
2395 up_read(&mm->mmap_sem);
2396 VM_BUG_ON(!*hpage);
2397 return *hpage;
2398 }
2399 #endif
2400
2401 static bool hugepage_vma_check(struct vm_area_struct *vma)
2402 {
2403 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2404 (vma->vm_flags & VM_NOHUGEPAGE))
2405 return false;
2406
2407 if (!vma->anon_vma || vma->vm_ops)
2408 return false;
2409 if (is_vma_temporary_stack(vma))
2410 return false;
2411 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
2412 return true;
2413 }
2414
2415 static void collapse_huge_page(struct mm_struct *mm,
2416 unsigned long address,
2417 struct page **hpage,
2418 struct vm_area_struct *vma,
2419 int node)
2420 {
2421 pmd_t *pmd, _pmd;
2422 pte_t *pte;
2423 pgtable_t pgtable;
2424 struct page *new_page;
2425 spinlock_t *pmd_ptl, *pte_ptl;
2426 int isolated;
2427 unsigned long hstart, hend;
2428 struct mem_cgroup *memcg;
2429 unsigned long mmun_start; /* For mmu_notifiers */
2430 unsigned long mmun_end; /* For mmu_notifiers */
2431
2432 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2433
2434 /* release the mmap_sem read lock. */
2435 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2436 if (!new_page)
2437 return;
2438
2439 if (unlikely(mem_cgroup_try_charge(new_page, mm,
2440 GFP_TRANSHUGE, &memcg)))
2441 return;
2442
2443 /*
2444 * Prevent all access to pagetables with the exception of
2445 * gup_fast later hanlded by the ptep_clear_flush and the VM
2446 * handled by the anon_vma lock + PG_lock.
2447 */
2448 down_write(&mm->mmap_sem);
2449 if (unlikely(khugepaged_test_exit(mm)))
2450 goto out;
2451
2452 vma = find_vma(mm, address);
2453 if (!vma)
2454 goto out;
2455 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2456 hend = vma->vm_end & HPAGE_PMD_MASK;
2457 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2458 goto out;
2459 if (!hugepage_vma_check(vma))
2460 goto out;
2461 pmd = mm_find_pmd(mm, address);
2462 if (!pmd)
2463 goto out;
2464
2465 anon_vma_lock_write(vma->anon_vma);
2466
2467 pte = pte_offset_map(pmd, address);
2468 pte_ptl = pte_lockptr(mm, pmd);
2469
2470 mmun_start = address;
2471 mmun_end = address + HPAGE_PMD_SIZE;
2472 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2473 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2474 /*
2475 * After this gup_fast can't run anymore. This also removes
2476 * any huge TLB entry from the CPU so we won't allow
2477 * huge and small TLB entries for the same virtual address
2478 * to avoid the risk of CPU bugs in that area.
2479 */
2480 _pmd = pmdp_clear_flush(vma, address, pmd);
2481 spin_unlock(pmd_ptl);
2482 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2483
2484 spin_lock(pte_ptl);
2485 isolated = __collapse_huge_page_isolate(vma, address, pte);
2486 spin_unlock(pte_ptl);
2487
2488 if (unlikely(!isolated)) {
2489 pte_unmap(pte);
2490 spin_lock(pmd_ptl);
2491 BUG_ON(!pmd_none(*pmd));
2492 /*
2493 * We can only use set_pmd_at when establishing
2494 * hugepmds and never for establishing regular pmds that
2495 * points to regular pagetables. Use pmd_populate for that
2496 */
2497 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2498 spin_unlock(pmd_ptl);
2499 anon_vma_unlock_write(vma->anon_vma);
2500 goto out;
2501 }
2502
2503 /*
2504 * All pages are isolated and locked so anon_vma rmap
2505 * can't run anymore.
2506 */
2507 anon_vma_unlock_write(vma->anon_vma);
2508
2509 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2510 pte_unmap(pte);
2511 __SetPageUptodate(new_page);
2512 pgtable = pmd_pgtable(_pmd);
2513
2514 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2515 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2516
2517 /*
2518 * spin_lock() below is not the equivalent of smp_wmb(), so
2519 * this is needed to avoid the copy_huge_page writes to become
2520 * visible after the set_pmd_at() write.
2521 */
2522 smp_wmb();
2523
2524 spin_lock(pmd_ptl);
2525 BUG_ON(!pmd_none(*pmd));
2526 page_add_new_anon_rmap(new_page, vma, address);
2527 mem_cgroup_commit_charge(new_page, memcg, false);
2528 lru_cache_add_active_or_unevictable(new_page, vma);
2529 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2530 set_pmd_at(mm, address, pmd, _pmd);
2531 update_mmu_cache_pmd(vma, address, pmd);
2532 spin_unlock(pmd_ptl);
2533
2534 *hpage = NULL;
2535
2536 khugepaged_pages_collapsed++;
2537 out_up_write:
2538 up_write(&mm->mmap_sem);
2539 return;
2540
2541 out:
2542 mem_cgroup_cancel_charge(new_page, memcg);
2543 goto out_up_write;
2544 }
2545
2546 static int khugepaged_scan_pmd(struct mm_struct *mm,
2547 struct vm_area_struct *vma,
2548 unsigned long address,
2549 struct page **hpage)
2550 {
2551 pmd_t *pmd;
2552 pte_t *pte, *_pte;
2553 int ret = 0, referenced = 0, none = 0;
2554 struct page *page;
2555 unsigned long _address;
2556 spinlock_t *ptl;
2557 int node = NUMA_NO_NODE;
2558
2559 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2560
2561 pmd = mm_find_pmd(mm, address);
2562 if (!pmd)
2563 goto out;
2564
2565 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2566 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2567 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2568 _pte++, _address += PAGE_SIZE) {
2569 pte_t pteval = *_pte;
2570 if (pte_none(pteval)) {
2571 if (++none <= khugepaged_max_ptes_none)
2572 continue;
2573 else
2574 goto out_unmap;
2575 }
2576 if (!pte_present(pteval) || !pte_write(pteval))
2577 goto out_unmap;
2578 page = vm_normal_page(vma, _address, pteval);
2579 if (unlikely(!page))
2580 goto out_unmap;
2581 /*
2582 * Record which node the original page is from and save this
2583 * information to khugepaged_node_load[].
2584 * Khupaged will allocate hugepage from the node has the max
2585 * hit record.
2586 */
2587 node = page_to_nid(page);
2588 if (khugepaged_scan_abort(node))
2589 goto out_unmap;
2590 khugepaged_node_load[node]++;
2591 VM_BUG_ON_PAGE(PageCompound(page), page);
2592 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2593 goto out_unmap;
2594 /* cannot use mapcount: can't collapse if there's a gup pin */
2595 if (page_count(page) != 1)
2596 goto out_unmap;
2597 if (pte_young(pteval) || PageReferenced(page) ||
2598 mmu_notifier_test_young(vma->vm_mm, address))
2599 referenced = 1;
2600 }
2601 if (referenced)
2602 ret = 1;
2603 out_unmap:
2604 pte_unmap_unlock(pte, ptl);
2605 if (ret) {
2606 node = khugepaged_find_target_node();
2607 /* collapse_huge_page will return with the mmap_sem released */
2608 collapse_huge_page(mm, address, hpage, vma, node);
2609 }
2610 out:
2611 return ret;
2612 }
2613
2614 static void collect_mm_slot(struct mm_slot *mm_slot)
2615 {
2616 struct mm_struct *mm = mm_slot->mm;
2617
2618 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2619
2620 if (khugepaged_test_exit(mm)) {
2621 /* free mm_slot */
2622 hash_del(&mm_slot->hash);
2623 list_del(&mm_slot->mm_node);
2624
2625 /*
2626 * Not strictly needed because the mm exited already.
2627 *
2628 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2629 */
2630
2631 /* khugepaged_mm_lock actually not necessary for the below */
2632 free_mm_slot(mm_slot);
2633 mmdrop(mm);
2634 }
2635 }
2636
2637 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2638 struct page **hpage)
2639 __releases(&khugepaged_mm_lock)
2640 __acquires(&khugepaged_mm_lock)
2641 {
2642 struct mm_slot *mm_slot;
2643 struct mm_struct *mm;
2644 struct vm_area_struct *vma;
2645 int progress = 0;
2646
2647 VM_BUG_ON(!pages);
2648 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2649
2650 if (khugepaged_scan.mm_slot)
2651 mm_slot = khugepaged_scan.mm_slot;
2652 else {
2653 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2654 struct mm_slot, mm_node);
2655 khugepaged_scan.address = 0;
2656 khugepaged_scan.mm_slot = mm_slot;
2657 }
2658 spin_unlock(&khugepaged_mm_lock);
2659
2660 mm = mm_slot->mm;
2661 down_read(&mm->mmap_sem);
2662 if (unlikely(khugepaged_test_exit(mm)))
2663 vma = NULL;
2664 else
2665 vma = find_vma(mm, khugepaged_scan.address);
2666
2667 progress++;
2668 for (; vma; vma = vma->vm_next) {
2669 unsigned long hstart, hend;
2670
2671 cond_resched();
2672 if (unlikely(khugepaged_test_exit(mm))) {
2673 progress++;
2674 break;
2675 }
2676 if (!hugepage_vma_check(vma)) {
2677 skip:
2678 progress++;
2679 continue;
2680 }
2681 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2682 hend = vma->vm_end & HPAGE_PMD_MASK;
2683 if (hstart >= hend)
2684 goto skip;
2685 if (khugepaged_scan.address > hend)
2686 goto skip;
2687 if (khugepaged_scan.address < hstart)
2688 khugepaged_scan.address = hstart;
2689 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2690
2691 while (khugepaged_scan.address < hend) {
2692 int ret;
2693 cond_resched();
2694 if (unlikely(khugepaged_test_exit(mm)))
2695 goto breakouterloop;
2696
2697 VM_BUG_ON(khugepaged_scan.address < hstart ||
2698 khugepaged_scan.address + HPAGE_PMD_SIZE >
2699 hend);
2700 ret = khugepaged_scan_pmd(mm, vma,
2701 khugepaged_scan.address,
2702 hpage);
2703 /* move to next address */
2704 khugepaged_scan.address += HPAGE_PMD_SIZE;
2705 progress += HPAGE_PMD_NR;
2706 if (ret)
2707 /* we released mmap_sem so break loop */
2708 goto breakouterloop_mmap_sem;
2709 if (progress >= pages)
2710 goto breakouterloop;
2711 }
2712 }
2713 breakouterloop:
2714 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2715 breakouterloop_mmap_sem:
2716
2717 spin_lock(&khugepaged_mm_lock);
2718 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2719 /*
2720 * Release the current mm_slot if this mm is about to die, or
2721 * if we scanned all vmas of this mm.
2722 */
2723 if (khugepaged_test_exit(mm) || !vma) {
2724 /*
2725 * Make sure that if mm_users is reaching zero while
2726 * khugepaged runs here, khugepaged_exit will find
2727 * mm_slot not pointing to the exiting mm.
2728 */
2729 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2730 khugepaged_scan.mm_slot = list_entry(
2731 mm_slot->mm_node.next,
2732 struct mm_slot, mm_node);
2733 khugepaged_scan.address = 0;
2734 } else {
2735 khugepaged_scan.mm_slot = NULL;
2736 khugepaged_full_scans++;
2737 }
2738
2739 collect_mm_slot(mm_slot);
2740 }
2741
2742 return progress;
2743 }
2744
2745 static int khugepaged_has_work(void)
2746 {
2747 return !list_empty(&khugepaged_scan.mm_head) &&
2748 khugepaged_enabled();
2749 }
2750
2751 static int khugepaged_wait_event(void)
2752 {
2753 return !list_empty(&khugepaged_scan.mm_head) ||
2754 kthread_should_stop();
2755 }
2756
2757 static void khugepaged_do_scan(void)
2758 {
2759 struct page *hpage = NULL;
2760 unsigned int progress = 0, pass_through_head = 0;
2761 unsigned int pages = khugepaged_pages_to_scan;
2762 bool wait = true;
2763
2764 barrier(); /* write khugepaged_pages_to_scan to local stack */
2765
2766 while (progress < pages) {
2767 if (!khugepaged_prealloc_page(&hpage, &wait))
2768 break;
2769
2770 cond_resched();
2771
2772 if (unlikely(kthread_should_stop() || freezing(current)))
2773 break;
2774
2775 spin_lock(&khugepaged_mm_lock);
2776 if (!khugepaged_scan.mm_slot)
2777 pass_through_head++;
2778 if (khugepaged_has_work() &&
2779 pass_through_head < 2)
2780 progress += khugepaged_scan_mm_slot(pages - progress,
2781 &hpage);
2782 else
2783 progress = pages;
2784 spin_unlock(&khugepaged_mm_lock);
2785 }
2786
2787 if (!IS_ERR_OR_NULL(hpage))
2788 put_page(hpage);
2789 }
2790
2791 static void khugepaged_wait_work(void)
2792 {
2793 try_to_freeze();
2794
2795 if (khugepaged_has_work()) {
2796 if (!khugepaged_scan_sleep_millisecs)
2797 return;
2798
2799 wait_event_freezable_timeout(khugepaged_wait,
2800 kthread_should_stop(),
2801 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2802 return;
2803 }
2804
2805 if (khugepaged_enabled())
2806 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2807 }
2808
2809 static int khugepaged(void *none)
2810 {
2811 struct mm_slot *mm_slot;
2812
2813 set_freezable();
2814 set_user_nice(current, MAX_NICE);
2815
2816 while (!kthread_should_stop()) {
2817 khugepaged_do_scan();
2818 khugepaged_wait_work();
2819 }
2820
2821 spin_lock(&khugepaged_mm_lock);
2822 mm_slot = khugepaged_scan.mm_slot;
2823 khugepaged_scan.mm_slot = NULL;
2824 if (mm_slot)
2825 collect_mm_slot(mm_slot);
2826 spin_unlock(&khugepaged_mm_lock);
2827 return 0;
2828 }
2829
2830 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2831 unsigned long haddr, pmd_t *pmd)
2832 {
2833 struct mm_struct *mm = vma->vm_mm;
2834 pgtable_t pgtable;
2835 pmd_t _pmd;
2836 int i;
2837
2838 pmdp_clear_flush_notify(vma, haddr, pmd);
2839 /* leave pmd empty until pte is filled */
2840
2841 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2842 pmd_populate(mm, &_pmd, pgtable);
2843
2844 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2845 pte_t *pte, entry;
2846 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2847 entry = pte_mkspecial(entry);
2848 pte = pte_offset_map(&_pmd, haddr);
2849 VM_BUG_ON(!pte_none(*pte));
2850 set_pte_at(mm, haddr, pte, entry);
2851 pte_unmap(pte);
2852 }
2853 smp_wmb(); /* make pte visible before pmd */
2854 pmd_populate(mm, pmd, pgtable);
2855 put_huge_zero_page();
2856 }
2857
2858 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2859 pmd_t *pmd)
2860 {
2861 spinlock_t *ptl;
2862 struct page *page;
2863 struct mm_struct *mm = vma->vm_mm;
2864 unsigned long haddr = address & HPAGE_PMD_MASK;
2865 unsigned long mmun_start; /* For mmu_notifiers */
2866 unsigned long mmun_end; /* For mmu_notifiers */
2867
2868 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2869
2870 mmun_start = haddr;
2871 mmun_end = haddr + HPAGE_PMD_SIZE;
2872 again:
2873 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2874 ptl = pmd_lock(mm, pmd);
2875 if (unlikely(!pmd_trans_huge(*pmd))) {
2876 spin_unlock(ptl);
2877 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2878 return;
2879 }
2880 if (is_huge_zero_pmd(*pmd)) {
2881 __split_huge_zero_page_pmd(vma, haddr, pmd);
2882 spin_unlock(ptl);
2883 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2884 return;
2885 }
2886 page = pmd_page(*pmd);
2887 VM_BUG_ON_PAGE(!page_count(page), page);
2888 get_page(page);
2889 spin_unlock(ptl);
2890 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2891
2892 split_huge_page(page);
2893
2894 put_page(page);
2895
2896 /*
2897 * We don't always have down_write of mmap_sem here: a racing
2898 * do_huge_pmd_wp_page() might have copied-on-write to another
2899 * huge page before our split_huge_page() got the anon_vma lock.
2900 */
2901 if (unlikely(pmd_trans_huge(*pmd)))
2902 goto again;
2903 }
2904
2905 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2906 pmd_t *pmd)
2907 {
2908 struct vm_area_struct *vma;
2909
2910 vma = find_vma(mm, address);
2911 BUG_ON(vma == NULL);
2912 split_huge_page_pmd(vma, address, pmd);
2913 }
2914
2915 static void split_huge_page_address(struct mm_struct *mm,
2916 unsigned long address)
2917 {
2918 pgd_t *pgd;
2919 pud_t *pud;
2920 pmd_t *pmd;
2921
2922 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2923
2924 pgd = pgd_offset(mm, address);
2925 if (!pgd_present(*pgd))
2926 return;
2927
2928 pud = pud_offset(pgd, address);
2929 if (!pud_present(*pud))
2930 return;
2931
2932 pmd = pmd_offset(pud, address);
2933 if (!pmd_present(*pmd))
2934 return;
2935 /*
2936 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2937 * materialize from under us.
2938 */
2939 split_huge_page_pmd_mm(mm, address, pmd);
2940 }
2941
2942 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2943 unsigned long start,
2944 unsigned long end,
2945 long adjust_next)
2946 {
2947 /*
2948 * If the new start address isn't hpage aligned and it could
2949 * previously contain an hugepage: check if we need to split
2950 * an huge pmd.
2951 */
2952 if (start & ~HPAGE_PMD_MASK &&
2953 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2954 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2955 split_huge_page_address(vma->vm_mm, start);
2956
2957 /*
2958 * If the new end address isn't hpage aligned and it could
2959 * previously contain an hugepage: check if we need to split
2960 * an huge pmd.
2961 */
2962 if (end & ~HPAGE_PMD_MASK &&
2963 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2964 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2965 split_huge_page_address(vma->vm_mm, end);
2966
2967 /*
2968 * If we're also updating the vma->vm_next->vm_start, if the new
2969 * vm_next->vm_start isn't page aligned and it could previously
2970 * contain an hugepage: check if we need to split an huge pmd.
2971 */
2972 if (adjust_next > 0) {
2973 struct vm_area_struct *next = vma->vm_next;
2974 unsigned long nstart = next->vm_start;
2975 nstart += adjust_next << PAGE_SHIFT;
2976 if (nstart & ~HPAGE_PMD_MASK &&
2977 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2978 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2979 split_huge_page_address(next->vm_mm, nstart);
2980 }
2981 }
This page took 0.129771 seconds and 5 git commands to generate.