x86, fpu: Extend the use of static_cpu_has_safe
[deliverable/linux.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37
38 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
39 unsigned long hugepages_treat_as_movable;
40
41 int hugetlb_max_hstate __read_mostly;
42 unsigned int default_hstate_idx;
43 struct hstate hstates[HUGE_MAX_HSTATE];
44
45 __initdata LIST_HEAD(huge_boot_pages);
46
47 /* for command line parsing */
48 static struct hstate * __initdata parsed_hstate;
49 static unsigned long __initdata default_hstate_max_huge_pages;
50 static unsigned long __initdata default_hstate_size;
51
52 /*
53 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
54 * free_huge_pages, and surplus_huge_pages.
55 */
56 DEFINE_SPINLOCK(hugetlb_lock);
57
58 /*
59 * Serializes faults on the same logical page. This is used to
60 * prevent spurious OOMs when the hugepage pool is fully utilized.
61 */
62 static int num_fault_mutexes;
63 static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
64
65 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
66 {
67 bool free = (spool->count == 0) && (spool->used_hpages == 0);
68
69 spin_unlock(&spool->lock);
70
71 /* If no pages are used, and no other handles to the subpool
72 * remain, free the subpool the subpool remain */
73 if (free)
74 kfree(spool);
75 }
76
77 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
78 {
79 struct hugepage_subpool *spool;
80
81 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
82 if (!spool)
83 return NULL;
84
85 spin_lock_init(&spool->lock);
86 spool->count = 1;
87 spool->max_hpages = nr_blocks;
88 spool->used_hpages = 0;
89
90 return spool;
91 }
92
93 void hugepage_put_subpool(struct hugepage_subpool *spool)
94 {
95 spin_lock(&spool->lock);
96 BUG_ON(!spool->count);
97 spool->count--;
98 unlock_or_release_subpool(spool);
99 }
100
101 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
102 long delta)
103 {
104 int ret = 0;
105
106 if (!spool)
107 return 0;
108
109 spin_lock(&spool->lock);
110 if ((spool->used_hpages + delta) <= spool->max_hpages) {
111 spool->used_hpages += delta;
112 } else {
113 ret = -ENOMEM;
114 }
115 spin_unlock(&spool->lock);
116
117 return ret;
118 }
119
120 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
121 long delta)
122 {
123 if (!spool)
124 return;
125
126 spin_lock(&spool->lock);
127 spool->used_hpages -= delta;
128 /* If hugetlbfs_put_super couldn't free spool due to
129 * an outstanding quota reference, free it now. */
130 unlock_or_release_subpool(spool);
131 }
132
133 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
134 {
135 return HUGETLBFS_SB(inode->i_sb)->spool;
136 }
137
138 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
139 {
140 return subpool_inode(file_inode(vma->vm_file));
141 }
142
143 /*
144 * Region tracking -- allows tracking of reservations and instantiated pages
145 * across the pages in a mapping.
146 *
147 * The region data structures are embedded into a resv_map and
148 * protected by a resv_map's lock
149 */
150 struct file_region {
151 struct list_head link;
152 long from;
153 long to;
154 };
155
156 static long region_add(struct resv_map *resv, long f, long t)
157 {
158 struct list_head *head = &resv->regions;
159 struct file_region *rg, *nrg, *trg;
160
161 spin_lock(&resv->lock);
162 /* Locate the region we are either in or before. */
163 list_for_each_entry(rg, head, link)
164 if (f <= rg->to)
165 break;
166
167 /* Round our left edge to the current segment if it encloses us. */
168 if (f > rg->from)
169 f = rg->from;
170
171 /* Check for and consume any regions we now overlap with. */
172 nrg = rg;
173 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
174 if (&rg->link == head)
175 break;
176 if (rg->from > t)
177 break;
178
179 /* If this area reaches higher then extend our area to
180 * include it completely. If this is not the first area
181 * which we intend to reuse, free it. */
182 if (rg->to > t)
183 t = rg->to;
184 if (rg != nrg) {
185 list_del(&rg->link);
186 kfree(rg);
187 }
188 }
189 nrg->from = f;
190 nrg->to = t;
191 spin_unlock(&resv->lock);
192 return 0;
193 }
194
195 static long region_chg(struct resv_map *resv, long f, long t)
196 {
197 struct list_head *head = &resv->regions;
198 struct file_region *rg, *nrg = NULL;
199 long chg = 0;
200
201 retry:
202 spin_lock(&resv->lock);
203 /* Locate the region we are before or in. */
204 list_for_each_entry(rg, head, link)
205 if (f <= rg->to)
206 break;
207
208 /* If we are below the current region then a new region is required.
209 * Subtle, allocate a new region at the position but make it zero
210 * size such that we can guarantee to record the reservation. */
211 if (&rg->link == head || t < rg->from) {
212 if (!nrg) {
213 spin_unlock(&resv->lock);
214 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
215 if (!nrg)
216 return -ENOMEM;
217
218 nrg->from = f;
219 nrg->to = f;
220 INIT_LIST_HEAD(&nrg->link);
221 goto retry;
222 }
223
224 list_add(&nrg->link, rg->link.prev);
225 chg = t - f;
226 goto out_nrg;
227 }
228
229 /* Round our left edge to the current segment if it encloses us. */
230 if (f > rg->from)
231 f = rg->from;
232 chg = t - f;
233
234 /* Check for and consume any regions we now overlap with. */
235 list_for_each_entry(rg, rg->link.prev, link) {
236 if (&rg->link == head)
237 break;
238 if (rg->from > t)
239 goto out;
240
241 /* We overlap with this area, if it extends further than
242 * us then we must extend ourselves. Account for its
243 * existing reservation. */
244 if (rg->to > t) {
245 chg += rg->to - t;
246 t = rg->to;
247 }
248 chg -= rg->to - rg->from;
249 }
250
251 out:
252 spin_unlock(&resv->lock);
253 /* We already know we raced and no longer need the new region */
254 kfree(nrg);
255 return chg;
256 out_nrg:
257 spin_unlock(&resv->lock);
258 return chg;
259 }
260
261 static long region_truncate(struct resv_map *resv, long end)
262 {
263 struct list_head *head = &resv->regions;
264 struct file_region *rg, *trg;
265 long chg = 0;
266
267 spin_lock(&resv->lock);
268 /* Locate the region we are either in or before. */
269 list_for_each_entry(rg, head, link)
270 if (end <= rg->to)
271 break;
272 if (&rg->link == head)
273 goto out;
274
275 /* If we are in the middle of a region then adjust it. */
276 if (end > rg->from) {
277 chg = rg->to - end;
278 rg->to = end;
279 rg = list_entry(rg->link.next, typeof(*rg), link);
280 }
281
282 /* Drop any remaining regions. */
283 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
284 if (&rg->link == head)
285 break;
286 chg += rg->to - rg->from;
287 list_del(&rg->link);
288 kfree(rg);
289 }
290
291 out:
292 spin_unlock(&resv->lock);
293 return chg;
294 }
295
296 static long region_count(struct resv_map *resv, long f, long t)
297 {
298 struct list_head *head = &resv->regions;
299 struct file_region *rg;
300 long chg = 0;
301
302 spin_lock(&resv->lock);
303 /* Locate each segment we overlap with, and count that overlap. */
304 list_for_each_entry(rg, head, link) {
305 long seg_from;
306 long seg_to;
307
308 if (rg->to <= f)
309 continue;
310 if (rg->from >= t)
311 break;
312
313 seg_from = max(rg->from, f);
314 seg_to = min(rg->to, t);
315
316 chg += seg_to - seg_from;
317 }
318 spin_unlock(&resv->lock);
319
320 return chg;
321 }
322
323 /*
324 * Convert the address within this vma to the page offset within
325 * the mapping, in pagecache page units; huge pages here.
326 */
327 static pgoff_t vma_hugecache_offset(struct hstate *h,
328 struct vm_area_struct *vma, unsigned long address)
329 {
330 return ((address - vma->vm_start) >> huge_page_shift(h)) +
331 (vma->vm_pgoff >> huge_page_order(h));
332 }
333
334 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
335 unsigned long address)
336 {
337 return vma_hugecache_offset(hstate_vma(vma), vma, address);
338 }
339
340 /*
341 * Return the size of the pages allocated when backing a VMA. In the majority
342 * cases this will be same size as used by the page table entries.
343 */
344 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
345 {
346 struct hstate *hstate;
347
348 if (!is_vm_hugetlb_page(vma))
349 return PAGE_SIZE;
350
351 hstate = hstate_vma(vma);
352
353 return 1UL << huge_page_shift(hstate);
354 }
355 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
356
357 /*
358 * Return the page size being used by the MMU to back a VMA. In the majority
359 * of cases, the page size used by the kernel matches the MMU size. On
360 * architectures where it differs, an architecture-specific version of this
361 * function is required.
362 */
363 #ifndef vma_mmu_pagesize
364 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
365 {
366 return vma_kernel_pagesize(vma);
367 }
368 #endif
369
370 /*
371 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
372 * bits of the reservation map pointer, which are always clear due to
373 * alignment.
374 */
375 #define HPAGE_RESV_OWNER (1UL << 0)
376 #define HPAGE_RESV_UNMAPPED (1UL << 1)
377 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
378
379 /*
380 * These helpers are used to track how many pages are reserved for
381 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
382 * is guaranteed to have their future faults succeed.
383 *
384 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
385 * the reserve counters are updated with the hugetlb_lock held. It is safe
386 * to reset the VMA at fork() time as it is not in use yet and there is no
387 * chance of the global counters getting corrupted as a result of the values.
388 *
389 * The private mapping reservation is represented in a subtly different
390 * manner to a shared mapping. A shared mapping has a region map associated
391 * with the underlying file, this region map represents the backing file
392 * pages which have ever had a reservation assigned which this persists even
393 * after the page is instantiated. A private mapping has a region map
394 * associated with the original mmap which is attached to all VMAs which
395 * reference it, this region map represents those offsets which have consumed
396 * reservation ie. where pages have been instantiated.
397 */
398 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
399 {
400 return (unsigned long)vma->vm_private_data;
401 }
402
403 static void set_vma_private_data(struct vm_area_struct *vma,
404 unsigned long value)
405 {
406 vma->vm_private_data = (void *)value;
407 }
408
409 struct resv_map *resv_map_alloc(void)
410 {
411 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
412 if (!resv_map)
413 return NULL;
414
415 kref_init(&resv_map->refs);
416 spin_lock_init(&resv_map->lock);
417 INIT_LIST_HEAD(&resv_map->regions);
418
419 return resv_map;
420 }
421
422 void resv_map_release(struct kref *ref)
423 {
424 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
425
426 /* Clear out any active regions before we release the map. */
427 region_truncate(resv_map, 0);
428 kfree(resv_map);
429 }
430
431 static inline struct resv_map *inode_resv_map(struct inode *inode)
432 {
433 return inode->i_mapping->private_data;
434 }
435
436 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
437 {
438 VM_BUG_ON(!is_vm_hugetlb_page(vma));
439 if (vma->vm_flags & VM_MAYSHARE) {
440 struct address_space *mapping = vma->vm_file->f_mapping;
441 struct inode *inode = mapping->host;
442
443 return inode_resv_map(inode);
444
445 } else {
446 return (struct resv_map *)(get_vma_private_data(vma) &
447 ~HPAGE_RESV_MASK);
448 }
449 }
450
451 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
452 {
453 VM_BUG_ON(!is_vm_hugetlb_page(vma));
454 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
455
456 set_vma_private_data(vma, (get_vma_private_data(vma) &
457 HPAGE_RESV_MASK) | (unsigned long)map);
458 }
459
460 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
461 {
462 VM_BUG_ON(!is_vm_hugetlb_page(vma));
463 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
464
465 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
466 }
467
468 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
469 {
470 VM_BUG_ON(!is_vm_hugetlb_page(vma));
471
472 return (get_vma_private_data(vma) & flag) != 0;
473 }
474
475 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
476 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
477 {
478 VM_BUG_ON(!is_vm_hugetlb_page(vma));
479 if (!(vma->vm_flags & VM_MAYSHARE))
480 vma->vm_private_data = (void *)0;
481 }
482
483 /* Returns true if the VMA has associated reserve pages */
484 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
485 {
486 if (vma->vm_flags & VM_NORESERVE) {
487 /*
488 * This address is already reserved by other process(chg == 0),
489 * so, we should decrement reserved count. Without decrementing,
490 * reserve count remains after releasing inode, because this
491 * allocated page will go into page cache and is regarded as
492 * coming from reserved pool in releasing step. Currently, we
493 * don't have any other solution to deal with this situation
494 * properly, so add work-around here.
495 */
496 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
497 return 1;
498 else
499 return 0;
500 }
501
502 /* Shared mappings always use reserves */
503 if (vma->vm_flags & VM_MAYSHARE)
504 return 1;
505
506 /*
507 * Only the process that called mmap() has reserves for
508 * private mappings.
509 */
510 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
511 return 1;
512
513 return 0;
514 }
515
516 static void enqueue_huge_page(struct hstate *h, struct page *page)
517 {
518 int nid = page_to_nid(page);
519 list_move(&page->lru, &h->hugepage_freelists[nid]);
520 h->free_huge_pages++;
521 h->free_huge_pages_node[nid]++;
522 }
523
524 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
525 {
526 struct page *page;
527
528 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
529 if (!is_migrate_isolate_page(page))
530 break;
531 /*
532 * if 'non-isolated free hugepage' not found on the list,
533 * the allocation fails.
534 */
535 if (&h->hugepage_freelists[nid] == &page->lru)
536 return NULL;
537 list_move(&page->lru, &h->hugepage_activelist);
538 set_page_refcounted(page);
539 h->free_huge_pages--;
540 h->free_huge_pages_node[nid]--;
541 return page;
542 }
543
544 /* Movability of hugepages depends on migration support. */
545 static inline gfp_t htlb_alloc_mask(struct hstate *h)
546 {
547 if (hugepages_treat_as_movable || hugepage_migration_support(h))
548 return GFP_HIGHUSER_MOVABLE;
549 else
550 return GFP_HIGHUSER;
551 }
552
553 static struct page *dequeue_huge_page_vma(struct hstate *h,
554 struct vm_area_struct *vma,
555 unsigned long address, int avoid_reserve,
556 long chg)
557 {
558 struct page *page = NULL;
559 struct mempolicy *mpol;
560 nodemask_t *nodemask;
561 struct zonelist *zonelist;
562 struct zone *zone;
563 struct zoneref *z;
564 unsigned int cpuset_mems_cookie;
565
566 /*
567 * A child process with MAP_PRIVATE mappings created by their parent
568 * have no page reserves. This check ensures that reservations are
569 * not "stolen". The child may still get SIGKILLed
570 */
571 if (!vma_has_reserves(vma, chg) &&
572 h->free_huge_pages - h->resv_huge_pages == 0)
573 goto err;
574
575 /* If reserves cannot be used, ensure enough pages are in the pool */
576 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
577 goto err;
578
579 retry_cpuset:
580 cpuset_mems_cookie = read_mems_allowed_begin();
581 zonelist = huge_zonelist(vma, address,
582 htlb_alloc_mask(h), &mpol, &nodemask);
583
584 for_each_zone_zonelist_nodemask(zone, z, zonelist,
585 MAX_NR_ZONES - 1, nodemask) {
586 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
587 page = dequeue_huge_page_node(h, zone_to_nid(zone));
588 if (page) {
589 if (avoid_reserve)
590 break;
591 if (!vma_has_reserves(vma, chg))
592 break;
593
594 SetPagePrivate(page);
595 h->resv_huge_pages--;
596 break;
597 }
598 }
599 }
600
601 mpol_cond_put(mpol);
602 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
603 goto retry_cpuset;
604 return page;
605
606 err:
607 return NULL;
608 }
609
610 static void update_and_free_page(struct hstate *h, struct page *page)
611 {
612 int i;
613
614 VM_BUG_ON(h->order >= MAX_ORDER);
615
616 h->nr_huge_pages--;
617 h->nr_huge_pages_node[page_to_nid(page)]--;
618 for (i = 0; i < pages_per_huge_page(h); i++) {
619 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
620 1 << PG_referenced | 1 << PG_dirty |
621 1 << PG_active | 1 << PG_reserved |
622 1 << PG_private | 1 << PG_writeback);
623 }
624 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
625 set_compound_page_dtor(page, NULL);
626 set_page_refcounted(page);
627 arch_release_hugepage(page);
628 __free_pages(page, huge_page_order(h));
629 }
630
631 struct hstate *size_to_hstate(unsigned long size)
632 {
633 struct hstate *h;
634
635 for_each_hstate(h) {
636 if (huge_page_size(h) == size)
637 return h;
638 }
639 return NULL;
640 }
641
642 static void free_huge_page(struct page *page)
643 {
644 /*
645 * Can't pass hstate in here because it is called from the
646 * compound page destructor.
647 */
648 struct hstate *h = page_hstate(page);
649 int nid = page_to_nid(page);
650 struct hugepage_subpool *spool =
651 (struct hugepage_subpool *)page_private(page);
652 bool restore_reserve;
653
654 set_page_private(page, 0);
655 page->mapping = NULL;
656 BUG_ON(page_count(page));
657 BUG_ON(page_mapcount(page));
658 restore_reserve = PagePrivate(page);
659 ClearPagePrivate(page);
660
661 spin_lock(&hugetlb_lock);
662 hugetlb_cgroup_uncharge_page(hstate_index(h),
663 pages_per_huge_page(h), page);
664 if (restore_reserve)
665 h->resv_huge_pages++;
666
667 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
668 /* remove the page from active list */
669 list_del(&page->lru);
670 update_and_free_page(h, page);
671 h->surplus_huge_pages--;
672 h->surplus_huge_pages_node[nid]--;
673 } else {
674 arch_clear_hugepage_flags(page);
675 enqueue_huge_page(h, page);
676 }
677 spin_unlock(&hugetlb_lock);
678 hugepage_subpool_put_pages(spool, 1);
679 }
680
681 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
682 {
683 INIT_LIST_HEAD(&page->lru);
684 set_compound_page_dtor(page, free_huge_page);
685 spin_lock(&hugetlb_lock);
686 set_hugetlb_cgroup(page, NULL);
687 h->nr_huge_pages++;
688 h->nr_huge_pages_node[nid]++;
689 spin_unlock(&hugetlb_lock);
690 put_page(page); /* free it into the hugepage allocator */
691 }
692
693 static void __init prep_compound_gigantic_page(struct page *page,
694 unsigned long order)
695 {
696 int i;
697 int nr_pages = 1 << order;
698 struct page *p = page + 1;
699
700 /* we rely on prep_new_huge_page to set the destructor */
701 set_compound_order(page, order);
702 __SetPageHead(page);
703 __ClearPageReserved(page);
704 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
705 __SetPageTail(p);
706 /*
707 * For gigantic hugepages allocated through bootmem at
708 * boot, it's safer to be consistent with the not-gigantic
709 * hugepages and clear the PG_reserved bit from all tail pages
710 * too. Otherwse drivers using get_user_pages() to access tail
711 * pages may get the reference counting wrong if they see
712 * PG_reserved set on a tail page (despite the head page not
713 * having PG_reserved set). Enforcing this consistency between
714 * head and tail pages allows drivers to optimize away a check
715 * on the head page when they need know if put_page() is needed
716 * after get_user_pages().
717 */
718 __ClearPageReserved(p);
719 set_page_count(p, 0);
720 p->first_page = page;
721 }
722 }
723
724 /*
725 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
726 * transparent huge pages. See the PageTransHuge() documentation for more
727 * details.
728 */
729 int PageHuge(struct page *page)
730 {
731 if (!PageCompound(page))
732 return 0;
733
734 page = compound_head(page);
735 return get_compound_page_dtor(page) == free_huge_page;
736 }
737 EXPORT_SYMBOL_GPL(PageHuge);
738
739 /*
740 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
741 * normal or transparent huge pages.
742 */
743 int PageHeadHuge(struct page *page_head)
744 {
745 if (!PageHead(page_head))
746 return 0;
747
748 return get_compound_page_dtor(page_head) == free_huge_page;
749 }
750
751 pgoff_t __basepage_index(struct page *page)
752 {
753 struct page *page_head = compound_head(page);
754 pgoff_t index = page_index(page_head);
755 unsigned long compound_idx;
756
757 if (!PageHuge(page_head))
758 return page_index(page);
759
760 if (compound_order(page_head) >= MAX_ORDER)
761 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
762 else
763 compound_idx = page - page_head;
764
765 return (index << compound_order(page_head)) + compound_idx;
766 }
767
768 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
769 {
770 struct page *page;
771
772 if (h->order >= MAX_ORDER)
773 return NULL;
774
775 page = alloc_pages_exact_node(nid,
776 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
777 __GFP_REPEAT|__GFP_NOWARN,
778 huge_page_order(h));
779 if (page) {
780 if (arch_prepare_hugepage(page)) {
781 __free_pages(page, huge_page_order(h));
782 return NULL;
783 }
784 prep_new_huge_page(h, page, nid);
785 }
786
787 return page;
788 }
789
790 /*
791 * common helper functions for hstate_next_node_to_{alloc|free}.
792 * We may have allocated or freed a huge page based on a different
793 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
794 * be outside of *nodes_allowed. Ensure that we use an allowed
795 * node for alloc or free.
796 */
797 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
798 {
799 nid = next_node(nid, *nodes_allowed);
800 if (nid == MAX_NUMNODES)
801 nid = first_node(*nodes_allowed);
802 VM_BUG_ON(nid >= MAX_NUMNODES);
803
804 return nid;
805 }
806
807 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
808 {
809 if (!node_isset(nid, *nodes_allowed))
810 nid = next_node_allowed(nid, nodes_allowed);
811 return nid;
812 }
813
814 /*
815 * returns the previously saved node ["this node"] from which to
816 * allocate a persistent huge page for the pool and advance the
817 * next node from which to allocate, handling wrap at end of node
818 * mask.
819 */
820 static int hstate_next_node_to_alloc(struct hstate *h,
821 nodemask_t *nodes_allowed)
822 {
823 int nid;
824
825 VM_BUG_ON(!nodes_allowed);
826
827 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
828 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
829
830 return nid;
831 }
832
833 /*
834 * helper for free_pool_huge_page() - return the previously saved
835 * node ["this node"] from which to free a huge page. Advance the
836 * next node id whether or not we find a free huge page to free so
837 * that the next attempt to free addresses the next node.
838 */
839 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
840 {
841 int nid;
842
843 VM_BUG_ON(!nodes_allowed);
844
845 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
846 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
847
848 return nid;
849 }
850
851 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
852 for (nr_nodes = nodes_weight(*mask); \
853 nr_nodes > 0 && \
854 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
855 nr_nodes--)
856
857 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
858 for (nr_nodes = nodes_weight(*mask); \
859 nr_nodes > 0 && \
860 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
861 nr_nodes--)
862
863 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
864 {
865 struct page *page;
866 int nr_nodes, node;
867 int ret = 0;
868
869 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
870 page = alloc_fresh_huge_page_node(h, node);
871 if (page) {
872 ret = 1;
873 break;
874 }
875 }
876
877 if (ret)
878 count_vm_event(HTLB_BUDDY_PGALLOC);
879 else
880 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
881
882 return ret;
883 }
884
885 /*
886 * Free huge page from pool from next node to free.
887 * Attempt to keep persistent huge pages more or less
888 * balanced over allowed nodes.
889 * Called with hugetlb_lock locked.
890 */
891 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
892 bool acct_surplus)
893 {
894 int nr_nodes, node;
895 int ret = 0;
896
897 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
898 /*
899 * If we're returning unused surplus pages, only examine
900 * nodes with surplus pages.
901 */
902 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
903 !list_empty(&h->hugepage_freelists[node])) {
904 struct page *page =
905 list_entry(h->hugepage_freelists[node].next,
906 struct page, lru);
907 list_del(&page->lru);
908 h->free_huge_pages--;
909 h->free_huge_pages_node[node]--;
910 if (acct_surplus) {
911 h->surplus_huge_pages--;
912 h->surplus_huge_pages_node[node]--;
913 }
914 update_and_free_page(h, page);
915 ret = 1;
916 break;
917 }
918 }
919
920 return ret;
921 }
922
923 /*
924 * Dissolve a given free hugepage into free buddy pages. This function does
925 * nothing for in-use (including surplus) hugepages.
926 */
927 static void dissolve_free_huge_page(struct page *page)
928 {
929 spin_lock(&hugetlb_lock);
930 if (PageHuge(page) && !page_count(page)) {
931 struct hstate *h = page_hstate(page);
932 int nid = page_to_nid(page);
933 list_del(&page->lru);
934 h->free_huge_pages--;
935 h->free_huge_pages_node[nid]--;
936 update_and_free_page(h, page);
937 }
938 spin_unlock(&hugetlb_lock);
939 }
940
941 /*
942 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
943 * make specified memory blocks removable from the system.
944 * Note that start_pfn should aligned with (minimum) hugepage size.
945 */
946 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
947 {
948 unsigned int order = 8 * sizeof(void *);
949 unsigned long pfn;
950 struct hstate *h;
951
952 /* Set scan step to minimum hugepage size */
953 for_each_hstate(h)
954 if (order > huge_page_order(h))
955 order = huge_page_order(h);
956 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
957 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
958 dissolve_free_huge_page(pfn_to_page(pfn));
959 }
960
961 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
962 {
963 struct page *page;
964 unsigned int r_nid;
965
966 if (h->order >= MAX_ORDER)
967 return NULL;
968
969 /*
970 * Assume we will successfully allocate the surplus page to
971 * prevent racing processes from causing the surplus to exceed
972 * overcommit
973 *
974 * This however introduces a different race, where a process B
975 * tries to grow the static hugepage pool while alloc_pages() is
976 * called by process A. B will only examine the per-node
977 * counters in determining if surplus huge pages can be
978 * converted to normal huge pages in adjust_pool_surplus(). A
979 * won't be able to increment the per-node counter, until the
980 * lock is dropped by B, but B doesn't drop hugetlb_lock until
981 * no more huge pages can be converted from surplus to normal
982 * state (and doesn't try to convert again). Thus, we have a
983 * case where a surplus huge page exists, the pool is grown, and
984 * the surplus huge page still exists after, even though it
985 * should just have been converted to a normal huge page. This
986 * does not leak memory, though, as the hugepage will be freed
987 * once it is out of use. It also does not allow the counters to
988 * go out of whack in adjust_pool_surplus() as we don't modify
989 * the node values until we've gotten the hugepage and only the
990 * per-node value is checked there.
991 */
992 spin_lock(&hugetlb_lock);
993 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
994 spin_unlock(&hugetlb_lock);
995 return NULL;
996 } else {
997 h->nr_huge_pages++;
998 h->surplus_huge_pages++;
999 }
1000 spin_unlock(&hugetlb_lock);
1001
1002 if (nid == NUMA_NO_NODE)
1003 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1004 __GFP_REPEAT|__GFP_NOWARN,
1005 huge_page_order(h));
1006 else
1007 page = alloc_pages_exact_node(nid,
1008 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1009 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1010
1011 if (page && arch_prepare_hugepage(page)) {
1012 __free_pages(page, huge_page_order(h));
1013 page = NULL;
1014 }
1015
1016 spin_lock(&hugetlb_lock);
1017 if (page) {
1018 INIT_LIST_HEAD(&page->lru);
1019 r_nid = page_to_nid(page);
1020 set_compound_page_dtor(page, free_huge_page);
1021 set_hugetlb_cgroup(page, NULL);
1022 /*
1023 * We incremented the global counters already
1024 */
1025 h->nr_huge_pages_node[r_nid]++;
1026 h->surplus_huge_pages_node[r_nid]++;
1027 __count_vm_event(HTLB_BUDDY_PGALLOC);
1028 } else {
1029 h->nr_huge_pages--;
1030 h->surplus_huge_pages--;
1031 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1032 }
1033 spin_unlock(&hugetlb_lock);
1034
1035 return page;
1036 }
1037
1038 /*
1039 * This allocation function is useful in the context where vma is irrelevant.
1040 * E.g. soft-offlining uses this function because it only cares physical
1041 * address of error page.
1042 */
1043 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1044 {
1045 struct page *page = NULL;
1046
1047 spin_lock(&hugetlb_lock);
1048 if (h->free_huge_pages - h->resv_huge_pages > 0)
1049 page = dequeue_huge_page_node(h, nid);
1050 spin_unlock(&hugetlb_lock);
1051
1052 if (!page)
1053 page = alloc_buddy_huge_page(h, nid);
1054
1055 return page;
1056 }
1057
1058 /*
1059 * Increase the hugetlb pool such that it can accommodate a reservation
1060 * of size 'delta'.
1061 */
1062 static int gather_surplus_pages(struct hstate *h, int delta)
1063 {
1064 struct list_head surplus_list;
1065 struct page *page, *tmp;
1066 int ret, i;
1067 int needed, allocated;
1068 bool alloc_ok = true;
1069
1070 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1071 if (needed <= 0) {
1072 h->resv_huge_pages += delta;
1073 return 0;
1074 }
1075
1076 allocated = 0;
1077 INIT_LIST_HEAD(&surplus_list);
1078
1079 ret = -ENOMEM;
1080 retry:
1081 spin_unlock(&hugetlb_lock);
1082 for (i = 0; i < needed; i++) {
1083 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1084 if (!page) {
1085 alloc_ok = false;
1086 break;
1087 }
1088 list_add(&page->lru, &surplus_list);
1089 }
1090 allocated += i;
1091
1092 /*
1093 * After retaking hugetlb_lock, we need to recalculate 'needed'
1094 * because either resv_huge_pages or free_huge_pages may have changed.
1095 */
1096 spin_lock(&hugetlb_lock);
1097 needed = (h->resv_huge_pages + delta) -
1098 (h->free_huge_pages + allocated);
1099 if (needed > 0) {
1100 if (alloc_ok)
1101 goto retry;
1102 /*
1103 * We were not able to allocate enough pages to
1104 * satisfy the entire reservation so we free what
1105 * we've allocated so far.
1106 */
1107 goto free;
1108 }
1109 /*
1110 * The surplus_list now contains _at_least_ the number of extra pages
1111 * needed to accommodate the reservation. Add the appropriate number
1112 * of pages to the hugetlb pool and free the extras back to the buddy
1113 * allocator. Commit the entire reservation here to prevent another
1114 * process from stealing the pages as they are added to the pool but
1115 * before they are reserved.
1116 */
1117 needed += allocated;
1118 h->resv_huge_pages += delta;
1119 ret = 0;
1120
1121 /* Free the needed pages to the hugetlb pool */
1122 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1123 if ((--needed) < 0)
1124 break;
1125 /*
1126 * This page is now managed by the hugetlb allocator and has
1127 * no users -- drop the buddy allocator's reference.
1128 */
1129 put_page_testzero(page);
1130 VM_BUG_ON_PAGE(page_count(page), page);
1131 enqueue_huge_page(h, page);
1132 }
1133 free:
1134 spin_unlock(&hugetlb_lock);
1135
1136 /* Free unnecessary surplus pages to the buddy allocator */
1137 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1138 put_page(page);
1139 spin_lock(&hugetlb_lock);
1140
1141 return ret;
1142 }
1143
1144 /*
1145 * When releasing a hugetlb pool reservation, any surplus pages that were
1146 * allocated to satisfy the reservation must be explicitly freed if they were
1147 * never used.
1148 * Called with hugetlb_lock held.
1149 */
1150 static void return_unused_surplus_pages(struct hstate *h,
1151 unsigned long unused_resv_pages)
1152 {
1153 unsigned long nr_pages;
1154
1155 /* Uncommit the reservation */
1156 h->resv_huge_pages -= unused_resv_pages;
1157
1158 /* Cannot return gigantic pages currently */
1159 if (h->order >= MAX_ORDER)
1160 return;
1161
1162 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1163
1164 /*
1165 * We want to release as many surplus pages as possible, spread
1166 * evenly across all nodes with memory. Iterate across these nodes
1167 * until we can no longer free unreserved surplus pages. This occurs
1168 * when the nodes with surplus pages have no free pages.
1169 * free_pool_huge_page() will balance the the freed pages across the
1170 * on-line nodes with memory and will handle the hstate accounting.
1171 */
1172 while (nr_pages--) {
1173 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1174 break;
1175 }
1176 }
1177
1178 /*
1179 * Determine if the huge page at addr within the vma has an associated
1180 * reservation. Where it does not we will need to logically increase
1181 * reservation and actually increase subpool usage before an allocation
1182 * can occur. Where any new reservation would be required the
1183 * reservation change is prepared, but not committed. Once the page
1184 * has been allocated from the subpool and instantiated the change should
1185 * be committed via vma_commit_reservation. No action is required on
1186 * failure.
1187 */
1188 static long vma_needs_reservation(struct hstate *h,
1189 struct vm_area_struct *vma, unsigned long addr)
1190 {
1191 struct resv_map *resv;
1192 pgoff_t idx;
1193 long chg;
1194
1195 resv = vma_resv_map(vma);
1196 if (!resv)
1197 return 1;
1198
1199 idx = vma_hugecache_offset(h, vma, addr);
1200 chg = region_chg(resv, idx, idx + 1);
1201
1202 if (vma->vm_flags & VM_MAYSHARE)
1203 return chg;
1204 else
1205 return chg < 0 ? chg : 0;
1206 }
1207 static void vma_commit_reservation(struct hstate *h,
1208 struct vm_area_struct *vma, unsigned long addr)
1209 {
1210 struct resv_map *resv;
1211 pgoff_t idx;
1212
1213 resv = vma_resv_map(vma);
1214 if (!resv)
1215 return;
1216
1217 idx = vma_hugecache_offset(h, vma, addr);
1218 region_add(resv, idx, idx + 1);
1219 }
1220
1221 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1222 unsigned long addr, int avoid_reserve)
1223 {
1224 struct hugepage_subpool *spool = subpool_vma(vma);
1225 struct hstate *h = hstate_vma(vma);
1226 struct page *page;
1227 long chg;
1228 int ret, idx;
1229 struct hugetlb_cgroup *h_cg;
1230
1231 idx = hstate_index(h);
1232 /*
1233 * Processes that did not create the mapping will have no
1234 * reserves and will not have accounted against subpool
1235 * limit. Check that the subpool limit can be made before
1236 * satisfying the allocation MAP_NORESERVE mappings may also
1237 * need pages and subpool limit allocated allocated if no reserve
1238 * mapping overlaps.
1239 */
1240 chg = vma_needs_reservation(h, vma, addr);
1241 if (chg < 0)
1242 return ERR_PTR(-ENOMEM);
1243 if (chg || avoid_reserve)
1244 if (hugepage_subpool_get_pages(spool, 1))
1245 return ERR_PTR(-ENOSPC);
1246
1247 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1248 if (ret) {
1249 if (chg || avoid_reserve)
1250 hugepage_subpool_put_pages(spool, 1);
1251 return ERR_PTR(-ENOSPC);
1252 }
1253 spin_lock(&hugetlb_lock);
1254 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1255 if (!page) {
1256 spin_unlock(&hugetlb_lock);
1257 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1258 if (!page) {
1259 hugetlb_cgroup_uncharge_cgroup(idx,
1260 pages_per_huge_page(h),
1261 h_cg);
1262 if (chg || avoid_reserve)
1263 hugepage_subpool_put_pages(spool, 1);
1264 return ERR_PTR(-ENOSPC);
1265 }
1266 spin_lock(&hugetlb_lock);
1267 list_move(&page->lru, &h->hugepage_activelist);
1268 /* Fall through */
1269 }
1270 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1271 spin_unlock(&hugetlb_lock);
1272
1273 set_page_private(page, (unsigned long)spool);
1274
1275 vma_commit_reservation(h, vma, addr);
1276 return page;
1277 }
1278
1279 /*
1280 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1281 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1282 * where no ERR_VALUE is expected to be returned.
1283 */
1284 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1285 unsigned long addr, int avoid_reserve)
1286 {
1287 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1288 if (IS_ERR(page))
1289 page = NULL;
1290 return page;
1291 }
1292
1293 int __weak alloc_bootmem_huge_page(struct hstate *h)
1294 {
1295 struct huge_bootmem_page *m;
1296 int nr_nodes, node;
1297
1298 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1299 void *addr;
1300
1301 addr = memblock_virt_alloc_try_nid_nopanic(
1302 huge_page_size(h), huge_page_size(h),
1303 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1304 if (addr) {
1305 /*
1306 * Use the beginning of the huge page to store the
1307 * huge_bootmem_page struct (until gather_bootmem
1308 * puts them into the mem_map).
1309 */
1310 m = addr;
1311 goto found;
1312 }
1313 }
1314 return 0;
1315
1316 found:
1317 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1318 /* Put them into a private list first because mem_map is not up yet */
1319 list_add(&m->list, &huge_boot_pages);
1320 m->hstate = h;
1321 return 1;
1322 }
1323
1324 static void __init prep_compound_huge_page(struct page *page, int order)
1325 {
1326 if (unlikely(order > (MAX_ORDER - 1)))
1327 prep_compound_gigantic_page(page, order);
1328 else
1329 prep_compound_page(page, order);
1330 }
1331
1332 /* Put bootmem huge pages into the standard lists after mem_map is up */
1333 static void __init gather_bootmem_prealloc(void)
1334 {
1335 struct huge_bootmem_page *m;
1336
1337 list_for_each_entry(m, &huge_boot_pages, list) {
1338 struct hstate *h = m->hstate;
1339 struct page *page;
1340
1341 #ifdef CONFIG_HIGHMEM
1342 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1343 memblock_free_late(__pa(m),
1344 sizeof(struct huge_bootmem_page));
1345 #else
1346 page = virt_to_page(m);
1347 #endif
1348 WARN_ON(page_count(page) != 1);
1349 prep_compound_huge_page(page, h->order);
1350 WARN_ON(PageReserved(page));
1351 prep_new_huge_page(h, page, page_to_nid(page));
1352 /*
1353 * If we had gigantic hugepages allocated at boot time, we need
1354 * to restore the 'stolen' pages to totalram_pages in order to
1355 * fix confusing memory reports from free(1) and another
1356 * side-effects, like CommitLimit going negative.
1357 */
1358 if (h->order > (MAX_ORDER - 1))
1359 adjust_managed_page_count(page, 1 << h->order);
1360 }
1361 }
1362
1363 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1364 {
1365 unsigned long i;
1366
1367 for (i = 0; i < h->max_huge_pages; ++i) {
1368 if (h->order >= MAX_ORDER) {
1369 if (!alloc_bootmem_huge_page(h))
1370 break;
1371 } else if (!alloc_fresh_huge_page(h,
1372 &node_states[N_MEMORY]))
1373 break;
1374 }
1375 h->max_huge_pages = i;
1376 }
1377
1378 static void __init hugetlb_init_hstates(void)
1379 {
1380 struct hstate *h;
1381
1382 for_each_hstate(h) {
1383 /* oversize hugepages were init'ed in early boot */
1384 if (h->order < MAX_ORDER)
1385 hugetlb_hstate_alloc_pages(h);
1386 }
1387 }
1388
1389 static char * __init memfmt(char *buf, unsigned long n)
1390 {
1391 if (n >= (1UL << 30))
1392 sprintf(buf, "%lu GB", n >> 30);
1393 else if (n >= (1UL << 20))
1394 sprintf(buf, "%lu MB", n >> 20);
1395 else
1396 sprintf(buf, "%lu KB", n >> 10);
1397 return buf;
1398 }
1399
1400 static void __init report_hugepages(void)
1401 {
1402 struct hstate *h;
1403
1404 for_each_hstate(h) {
1405 char buf[32];
1406 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1407 memfmt(buf, huge_page_size(h)),
1408 h->free_huge_pages);
1409 }
1410 }
1411
1412 #ifdef CONFIG_HIGHMEM
1413 static void try_to_free_low(struct hstate *h, unsigned long count,
1414 nodemask_t *nodes_allowed)
1415 {
1416 int i;
1417
1418 if (h->order >= MAX_ORDER)
1419 return;
1420
1421 for_each_node_mask(i, *nodes_allowed) {
1422 struct page *page, *next;
1423 struct list_head *freel = &h->hugepage_freelists[i];
1424 list_for_each_entry_safe(page, next, freel, lru) {
1425 if (count >= h->nr_huge_pages)
1426 return;
1427 if (PageHighMem(page))
1428 continue;
1429 list_del(&page->lru);
1430 update_and_free_page(h, page);
1431 h->free_huge_pages--;
1432 h->free_huge_pages_node[page_to_nid(page)]--;
1433 }
1434 }
1435 }
1436 #else
1437 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1438 nodemask_t *nodes_allowed)
1439 {
1440 }
1441 #endif
1442
1443 /*
1444 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1445 * balanced by operating on them in a round-robin fashion.
1446 * Returns 1 if an adjustment was made.
1447 */
1448 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1449 int delta)
1450 {
1451 int nr_nodes, node;
1452
1453 VM_BUG_ON(delta != -1 && delta != 1);
1454
1455 if (delta < 0) {
1456 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1457 if (h->surplus_huge_pages_node[node])
1458 goto found;
1459 }
1460 } else {
1461 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1462 if (h->surplus_huge_pages_node[node] <
1463 h->nr_huge_pages_node[node])
1464 goto found;
1465 }
1466 }
1467 return 0;
1468
1469 found:
1470 h->surplus_huge_pages += delta;
1471 h->surplus_huge_pages_node[node] += delta;
1472 return 1;
1473 }
1474
1475 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1476 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1477 nodemask_t *nodes_allowed)
1478 {
1479 unsigned long min_count, ret;
1480
1481 if (h->order >= MAX_ORDER)
1482 return h->max_huge_pages;
1483
1484 /*
1485 * Increase the pool size
1486 * First take pages out of surplus state. Then make up the
1487 * remaining difference by allocating fresh huge pages.
1488 *
1489 * We might race with alloc_buddy_huge_page() here and be unable
1490 * to convert a surplus huge page to a normal huge page. That is
1491 * not critical, though, it just means the overall size of the
1492 * pool might be one hugepage larger than it needs to be, but
1493 * within all the constraints specified by the sysctls.
1494 */
1495 spin_lock(&hugetlb_lock);
1496 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1497 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1498 break;
1499 }
1500
1501 while (count > persistent_huge_pages(h)) {
1502 /*
1503 * If this allocation races such that we no longer need the
1504 * page, free_huge_page will handle it by freeing the page
1505 * and reducing the surplus.
1506 */
1507 spin_unlock(&hugetlb_lock);
1508 ret = alloc_fresh_huge_page(h, nodes_allowed);
1509 spin_lock(&hugetlb_lock);
1510 if (!ret)
1511 goto out;
1512
1513 /* Bail for signals. Probably ctrl-c from user */
1514 if (signal_pending(current))
1515 goto out;
1516 }
1517
1518 /*
1519 * Decrease the pool size
1520 * First return free pages to the buddy allocator (being careful
1521 * to keep enough around to satisfy reservations). Then place
1522 * pages into surplus state as needed so the pool will shrink
1523 * to the desired size as pages become free.
1524 *
1525 * By placing pages into the surplus state independent of the
1526 * overcommit value, we are allowing the surplus pool size to
1527 * exceed overcommit. There are few sane options here. Since
1528 * alloc_buddy_huge_page() is checking the global counter,
1529 * though, we'll note that we're not allowed to exceed surplus
1530 * and won't grow the pool anywhere else. Not until one of the
1531 * sysctls are changed, or the surplus pages go out of use.
1532 */
1533 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1534 min_count = max(count, min_count);
1535 try_to_free_low(h, min_count, nodes_allowed);
1536 while (min_count < persistent_huge_pages(h)) {
1537 if (!free_pool_huge_page(h, nodes_allowed, 0))
1538 break;
1539 cond_resched_lock(&hugetlb_lock);
1540 }
1541 while (count < persistent_huge_pages(h)) {
1542 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1543 break;
1544 }
1545 out:
1546 ret = persistent_huge_pages(h);
1547 spin_unlock(&hugetlb_lock);
1548 return ret;
1549 }
1550
1551 #define HSTATE_ATTR_RO(_name) \
1552 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1553
1554 #define HSTATE_ATTR(_name) \
1555 static struct kobj_attribute _name##_attr = \
1556 __ATTR(_name, 0644, _name##_show, _name##_store)
1557
1558 static struct kobject *hugepages_kobj;
1559 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1560
1561 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1562
1563 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1564 {
1565 int i;
1566
1567 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1568 if (hstate_kobjs[i] == kobj) {
1569 if (nidp)
1570 *nidp = NUMA_NO_NODE;
1571 return &hstates[i];
1572 }
1573
1574 return kobj_to_node_hstate(kobj, nidp);
1575 }
1576
1577 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1578 struct kobj_attribute *attr, char *buf)
1579 {
1580 struct hstate *h;
1581 unsigned long nr_huge_pages;
1582 int nid;
1583
1584 h = kobj_to_hstate(kobj, &nid);
1585 if (nid == NUMA_NO_NODE)
1586 nr_huge_pages = h->nr_huge_pages;
1587 else
1588 nr_huge_pages = h->nr_huge_pages_node[nid];
1589
1590 return sprintf(buf, "%lu\n", nr_huge_pages);
1591 }
1592
1593 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1594 struct kobject *kobj, struct kobj_attribute *attr,
1595 const char *buf, size_t len)
1596 {
1597 int err;
1598 int nid;
1599 unsigned long count;
1600 struct hstate *h;
1601 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1602
1603 err = kstrtoul(buf, 10, &count);
1604 if (err)
1605 goto out;
1606
1607 h = kobj_to_hstate(kobj, &nid);
1608 if (h->order >= MAX_ORDER) {
1609 err = -EINVAL;
1610 goto out;
1611 }
1612
1613 if (nid == NUMA_NO_NODE) {
1614 /*
1615 * global hstate attribute
1616 */
1617 if (!(obey_mempolicy &&
1618 init_nodemask_of_mempolicy(nodes_allowed))) {
1619 NODEMASK_FREE(nodes_allowed);
1620 nodes_allowed = &node_states[N_MEMORY];
1621 }
1622 } else if (nodes_allowed) {
1623 /*
1624 * per node hstate attribute: adjust count to global,
1625 * but restrict alloc/free to the specified node.
1626 */
1627 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1628 init_nodemask_of_node(nodes_allowed, nid);
1629 } else
1630 nodes_allowed = &node_states[N_MEMORY];
1631
1632 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1633
1634 if (nodes_allowed != &node_states[N_MEMORY])
1635 NODEMASK_FREE(nodes_allowed);
1636
1637 return len;
1638 out:
1639 NODEMASK_FREE(nodes_allowed);
1640 return err;
1641 }
1642
1643 static ssize_t nr_hugepages_show(struct kobject *kobj,
1644 struct kobj_attribute *attr, char *buf)
1645 {
1646 return nr_hugepages_show_common(kobj, attr, buf);
1647 }
1648
1649 static ssize_t nr_hugepages_store(struct kobject *kobj,
1650 struct kobj_attribute *attr, const char *buf, size_t len)
1651 {
1652 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1653 }
1654 HSTATE_ATTR(nr_hugepages);
1655
1656 #ifdef CONFIG_NUMA
1657
1658 /*
1659 * hstate attribute for optionally mempolicy-based constraint on persistent
1660 * huge page alloc/free.
1661 */
1662 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1663 struct kobj_attribute *attr, char *buf)
1664 {
1665 return nr_hugepages_show_common(kobj, attr, buf);
1666 }
1667
1668 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1669 struct kobj_attribute *attr, const char *buf, size_t len)
1670 {
1671 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1672 }
1673 HSTATE_ATTR(nr_hugepages_mempolicy);
1674 #endif
1675
1676
1677 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1678 struct kobj_attribute *attr, char *buf)
1679 {
1680 struct hstate *h = kobj_to_hstate(kobj, NULL);
1681 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1682 }
1683
1684 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1685 struct kobj_attribute *attr, const char *buf, size_t count)
1686 {
1687 int err;
1688 unsigned long input;
1689 struct hstate *h = kobj_to_hstate(kobj, NULL);
1690
1691 if (h->order >= MAX_ORDER)
1692 return -EINVAL;
1693
1694 err = kstrtoul(buf, 10, &input);
1695 if (err)
1696 return err;
1697
1698 spin_lock(&hugetlb_lock);
1699 h->nr_overcommit_huge_pages = input;
1700 spin_unlock(&hugetlb_lock);
1701
1702 return count;
1703 }
1704 HSTATE_ATTR(nr_overcommit_hugepages);
1705
1706 static ssize_t free_hugepages_show(struct kobject *kobj,
1707 struct kobj_attribute *attr, char *buf)
1708 {
1709 struct hstate *h;
1710 unsigned long free_huge_pages;
1711 int nid;
1712
1713 h = kobj_to_hstate(kobj, &nid);
1714 if (nid == NUMA_NO_NODE)
1715 free_huge_pages = h->free_huge_pages;
1716 else
1717 free_huge_pages = h->free_huge_pages_node[nid];
1718
1719 return sprintf(buf, "%lu\n", free_huge_pages);
1720 }
1721 HSTATE_ATTR_RO(free_hugepages);
1722
1723 static ssize_t resv_hugepages_show(struct kobject *kobj,
1724 struct kobj_attribute *attr, char *buf)
1725 {
1726 struct hstate *h = kobj_to_hstate(kobj, NULL);
1727 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1728 }
1729 HSTATE_ATTR_RO(resv_hugepages);
1730
1731 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1732 struct kobj_attribute *attr, char *buf)
1733 {
1734 struct hstate *h;
1735 unsigned long surplus_huge_pages;
1736 int nid;
1737
1738 h = kobj_to_hstate(kobj, &nid);
1739 if (nid == NUMA_NO_NODE)
1740 surplus_huge_pages = h->surplus_huge_pages;
1741 else
1742 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1743
1744 return sprintf(buf, "%lu\n", surplus_huge_pages);
1745 }
1746 HSTATE_ATTR_RO(surplus_hugepages);
1747
1748 static struct attribute *hstate_attrs[] = {
1749 &nr_hugepages_attr.attr,
1750 &nr_overcommit_hugepages_attr.attr,
1751 &free_hugepages_attr.attr,
1752 &resv_hugepages_attr.attr,
1753 &surplus_hugepages_attr.attr,
1754 #ifdef CONFIG_NUMA
1755 &nr_hugepages_mempolicy_attr.attr,
1756 #endif
1757 NULL,
1758 };
1759
1760 static struct attribute_group hstate_attr_group = {
1761 .attrs = hstate_attrs,
1762 };
1763
1764 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1765 struct kobject **hstate_kobjs,
1766 struct attribute_group *hstate_attr_group)
1767 {
1768 int retval;
1769 int hi = hstate_index(h);
1770
1771 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1772 if (!hstate_kobjs[hi])
1773 return -ENOMEM;
1774
1775 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1776 if (retval)
1777 kobject_put(hstate_kobjs[hi]);
1778
1779 return retval;
1780 }
1781
1782 static void __init hugetlb_sysfs_init(void)
1783 {
1784 struct hstate *h;
1785 int err;
1786
1787 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1788 if (!hugepages_kobj)
1789 return;
1790
1791 for_each_hstate(h) {
1792 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1793 hstate_kobjs, &hstate_attr_group);
1794 if (err)
1795 pr_err("Hugetlb: Unable to add hstate %s", h->name);
1796 }
1797 }
1798
1799 #ifdef CONFIG_NUMA
1800
1801 /*
1802 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1803 * with node devices in node_devices[] using a parallel array. The array
1804 * index of a node device or _hstate == node id.
1805 * This is here to avoid any static dependency of the node device driver, in
1806 * the base kernel, on the hugetlb module.
1807 */
1808 struct node_hstate {
1809 struct kobject *hugepages_kobj;
1810 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1811 };
1812 struct node_hstate node_hstates[MAX_NUMNODES];
1813
1814 /*
1815 * A subset of global hstate attributes for node devices
1816 */
1817 static struct attribute *per_node_hstate_attrs[] = {
1818 &nr_hugepages_attr.attr,
1819 &free_hugepages_attr.attr,
1820 &surplus_hugepages_attr.attr,
1821 NULL,
1822 };
1823
1824 static struct attribute_group per_node_hstate_attr_group = {
1825 .attrs = per_node_hstate_attrs,
1826 };
1827
1828 /*
1829 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1830 * Returns node id via non-NULL nidp.
1831 */
1832 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1833 {
1834 int nid;
1835
1836 for (nid = 0; nid < nr_node_ids; nid++) {
1837 struct node_hstate *nhs = &node_hstates[nid];
1838 int i;
1839 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1840 if (nhs->hstate_kobjs[i] == kobj) {
1841 if (nidp)
1842 *nidp = nid;
1843 return &hstates[i];
1844 }
1845 }
1846
1847 BUG();
1848 return NULL;
1849 }
1850
1851 /*
1852 * Unregister hstate attributes from a single node device.
1853 * No-op if no hstate attributes attached.
1854 */
1855 static void hugetlb_unregister_node(struct node *node)
1856 {
1857 struct hstate *h;
1858 struct node_hstate *nhs = &node_hstates[node->dev.id];
1859
1860 if (!nhs->hugepages_kobj)
1861 return; /* no hstate attributes */
1862
1863 for_each_hstate(h) {
1864 int idx = hstate_index(h);
1865 if (nhs->hstate_kobjs[idx]) {
1866 kobject_put(nhs->hstate_kobjs[idx]);
1867 nhs->hstate_kobjs[idx] = NULL;
1868 }
1869 }
1870
1871 kobject_put(nhs->hugepages_kobj);
1872 nhs->hugepages_kobj = NULL;
1873 }
1874
1875 /*
1876 * hugetlb module exit: unregister hstate attributes from node devices
1877 * that have them.
1878 */
1879 static void hugetlb_unregister_all_nodes(void)
1880 {
1881 int nid;
1882
1883 /*
1884 * disable node device registrations.
1885 */
1886 register_hugetlbfs_with_node(NULL, NULL);
1887
1888 /*
1889 * remove hstate attributes from any nodes that have them.
1890 */
1891 for (nid = 0; nid < nr_node_ids; nid++)
1892 hugetlb_unregister_node(node_devices[nid]);
1893 }
1894
1895 /*
1896 * Register hstate attributes for a single node device.
1897 * No-op if attributes already registered.
1898 */
1899 static void hugetlb_register_node(struct node *node)
1900 {
1901 struct hstate *h;
1902 struct node_hstate *nhs = &node_hstates[node->dev.id];
1903 int err;
1904
1905 if (nhs->hugepages_kobj)
1906 return; /* already allocated */
1907
1908 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1909 &node->dev.kobj);
1910 if (!nhs->hugepages_kobj)
1911 return;
1912
1913 for_each_hstate(h) {
1914 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1915 nhs->hstate_kobjs,
1916 &per_node_hstate_attr_group);
1917 if (err) {
1918 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1919 h->name, node->dev.id);
1920 hugetlb_unregister_node(node);
1921 break;
1922 }
1923 }
1924 }
1925
1926 /*
1927 * hugetlb init time: register hstate attributes for all registered node
1928 * devices of nodes that have memory. All on-line nodes should have
1929 * registered their associated device by this time.
1930 */
1931 static void hugetlb_register_all_nodes(void)
1932 {
1933 int nid;
1934
1935 for_each_node_state(nid, N_MEMORY) {
1936 struct node *node = node_devices[nid];
1937 if (node->dev.id == nid)
1938 hugetlb_register_node(node);
1939 }
1940
1941 /*
1942 * Let the node device driver know we're here so it can
1943 * [un]register hstate attributes on node hotplug.
1944 */
1945 register_hugetlbfs_with_node(hugetlb_register_node,
1946 hugetlb_unregister_node);
1947 }
1948 #else /* !CONFIG_NUMA */
1949
1950 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1951 {
1952 BUG();
1953 if (nidp)
1954 *nidp = -1;
1955 return NULL;
1956 }
1957
1958 static void hugetlb_unregister_all_nodes(void) { }
1959
1960 static void hugetlb_register_all_nodes(void) { }
1961
1962 #endif
1963
1964 static void __exit hugetlb_exit(void)
1965 {
1966 struct hstate *h;
1967
1968 hugetlb_unregister_all_nodes();
1969
1970 for_each_hstate(h) {
1971 kobject_put(hstate_kobjs[hstate_index(h)]);
1972 }
1973
1974 kobject_put(hugepages_kobj);
1975 kfree(htlb_fault_mutex_table);
1976 }
1977 module_exit(hugetlb_exit);
1978
1979 static int __init hugetlb_init(void)
1980 {
1981 int i;
1982
1983 /* Some platform decide whether they support huge pages at boot
1984 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1985 * there is no such support
1986 */
1987 if (HPAGE_SHIFT == 0)
1988 return 0;
1989
1990 if (!size_to_hstate(default_hstate_size)) {
1991 default_hstate_size = HPAGE_SIZE;
1992 if (!size_to_hstate(default_hstate_size))
1993 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1994 }
1995 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1996 if (default_hstate_max_huge_pages)
1997 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1998
1999 hugetlb_init_hstates();
2000 gather_bootmem_prealloc();
2001 report_hugepages();
2002
2003 hugetlb_sysfs_init();
2004 hugetlb_register_all_nodes();
2005 hugetlb_cgroup_file_init();
2006
2007 #ifdef CONFIG_SMP
2008 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2009 #else
2010 num_fault_mutexes = 1;
2011 #endif
2012 htlb_fault_mutex_table =
2013 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2014 BUG_ON(!htlb_fault_mutex_table);
2015
2016 for (i = 0; i < num_fault_mutexes; i++)
2017 mutex_init(&htlb_fault_mutex_table[i]);
2018 return 0;
2019 }
2020 module_init(hugetlb_init);
2021
2022 /* Should be called on processing a hugepagesz=... option */
2023 void __init hugetlb_add_hstate(unsigned order)
2024 {
2025 struct hstate *h;
2026 unsigned long i;
2027
2028 if (size_to_hstate(PAGE_SIZE << order)) {
2029 pr_warning("hugepagesz= specified twice, ignoring\n");
2030 return;
2031 }
2032 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2033 BUG_ON(order == 0);
2034 h = &hstates[hugetlb_max_hstate++];
2035 h->order = order;
2036 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2037 h->nr_huge_pages = 0;
2038 h->free_huge_pages = 0;
2039 for (i = 0; i < MAX_NUMNODES; ++i)
2040 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2041 INIT_LIST_HEAD(&h->hugepage_activelist);
2042 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2043 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2044 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2045 huge_page_size(h)/1024);
2046
2047 parsed_hstate = h;
2048 }
2049
2050 static int __init hugetlb_nrpages_setup(char *s)
2051 {
2052 unsigned long *mhp;
2053 static unsigned long *last_mhp;
2054
2055 /*
2056 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2057 * so this hugepages= parameter goes to the "default hstate".
2058 */
2059 if (!hugetlb_max_hstate)
2060 mhp = &default_hstate_max_huge_pages;
2061 else
2062 mhp = &parsed_hstate->max_huge_pages;
2063
2064 if (mhp == last_mhp) {
2065 pr_warning("hugepages= specified twice without "
2066 "interleaving hugepagesz=, ignoring\n");
2067 return 1;
2068 }
2069
2070 if (sscanf(s, "%lu", mhp) <= 0)
2071 *mhp = 0;
2072
2073 /*
2074 * Global state is always initialized later in hugetlb_init.
2075 * But we need to allocate >= MAX_ORDER hstates here early to still
2076 * use the bootmem allocator.
2077 */
2078 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2079 hugetlb_hstate_alloc_pages(parsed_hstate);
2080
2081 last_mhp = mhp;
2082
2083 return 1;
2084 }
2085 __setup("hugepages=", hugetlb_nrpages_setup);
2086
2087 static int __init hugetlb_default_setup(char *s)
2088 {
2089 default_hstate_size = memparse(s, &s);
2090 return 1;
2091 }
2092 __setup("default_hugepagesz=", hugetlb_default_setup);
2093
2094 static unsigned int cpuset_mems_nr(unsigned int *array)
2095 {
2096 int node;
2097 unsigned int nr = 0;
2098
2099 for_each_node_mask(node, cpuset_current_mems_allowed)
2100 nr += array[node];
2101
2102 return nr;
2103 }
2104
2105 #ifdef CONFIG_SYSCTL
2106 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2107 struct ctl_table *table, int write,
2108 void __user *buffer, size_t *length, loff_t *ppos)
2109 {
2110 struct hstate *h = &default_hstate;
2111 unsigned long tmp;
2112 int ret;
2113
2114 tmp = h->max_huge_pages;
2115
2116 if (write && h->order >= MAX_ORDER)
2117 return -EINVAL;
2118
2119 table->data = &tmp;
2120 table->maxlen = sizeof(unsigned long);
2121 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2122 if (ret)
2123 goto out;
2124
2125 if (write) {
2126 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2127 GFP_KERNEL | __GFP_NORETRY);
2128 if (!(obey_mempolicy &&
2129 init_nodemask_of_mempolicy(nodes_allowed))) {
2130 NODEMASK_FREE(nodes_allowed);
2131 nodes_allowed = &node_states[N_MEMORY];
2132 }
2133 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2134
2135 if (nodes_allowed != &node_states[N_MEMORY])
2136 NODEMASK_FREE(nodes_allowed);
2137 }
2138 out:
2139 return ret;
2140 }
2141
2142 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2143 void __user *buffer, size_t *length, loff_t *ppos)
2144 {
2145
2146 return hugetlb_sysctl_handler_common(false, table, write,
2147 buffer, length, ppos);
2148 }
2149
2150 #ifdef CONFIG_NUMA
2151 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2152 void __user *buffer, size_t *length, loff_t *ppos)
2153 {
2154 return hugetlb_sysctl_handler_common(true, table, write,
2155 buffer, length, ppos);
2156 }
2157 #endif /* CONFIG_NUMA */
2158
2159 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2160 void __user *buffer,
2161 size_t *length, loff_t *ppos)
2162 {
2163 struct hstate *h = &default_hstate;
2164 unsigned long tmp;
2165 int ret;
2166
2167 tmp = h->nr_overcommit_huge_pages;
2168
2169 if (write && h->order >= MAX_ORDER)
2170 return -EINVAL;
2171
2172 table->data = &tmp;
2173 table->maxlen = sizeof(unsigned long);
2174 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2175 if (ret)
2176 goto out;
2177
2178 if (write) {
2179 spin_lock(&hugetlb_lock);
2180 h->nr_overcommit_huge_pages = tmp;
2181 spin_unlock(&hugetlb_lock);
2182 }
2183 out:
2184 return ret;
2185 }
2186
2187 #endif /* CONFIG_SYSCTL */
2188
2189 void hugetlb_report_meminfo(struct seq_file *m)
2190 {
2191 struct hstate *h = &default_hstate;
2192 seq_printf(m,
2193 "HugePages_Total: %5lu\n"
2194 "HugePages_Free: %5lu\n"
2195 "HugePages_Rsvd: %5lu\n"
2196 "HugePages_Surp: %5lu\n"
2197 "Hugepagesize: %8lu kB\n",
2198 h->nr_huge_pages,
2199 h->free_huge_pages,
2200 h->resv_huge_pages,
2201 h->surplus_huge_pages,
2202 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2203 }
2204
2205 int hugetlb_report_node_meminfo(int nid, char *buf)
2206 {
2207 struct hstate *h = &default_hstate;
2208 return sprintf(buf,
2209 "Node %d HugePages_Total: %5u\n"
2210 "Node %d HugePages_Free: %5u\n"
2211 "Node %d HugePages_Surp: %5u\n",
2212 nid, h->nr_huge_pages_node[nid],
2213 nid, h->free_huge_pages_node[nid],
2214 nid, h->surplus_huge_pages_node[nid]);
2215 }
2216
2217 void hugetlb_show_meminfo(void)
2218 {
2219 struct hstate *h;
2220 int nid;
2221
2222 for_each_node_state(nid, N_MEMORY)
2223 for_each_hstate(h)
2224 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2225 nid,
2226 h->nr_huge_pages_node[nid],
2227 h->free_huge_pages_node[nid],
2228 h->surplus_huge_pages_node[nid],
2229 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2230 }
2231
2232 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2233 unsigned long hugetlb_total_pages(void)
2234 {
2235 struct hstate *h;
2236 unsigned long nr_total_pages = 0;
2237
2238 for_each_hstate(h)
2239 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2240 return nr_total_pages;
2241 }
2242
2243 static int hugetlb_acct_memory(struct hstate *h, long delta)
2244 {
2245 int ret = -ENOMEM;
2246
2247 spin_lock(&hugetlb_lock);
2248 /*
2249 * When cpuset is configured, it breaks the strict hugetlb page
2250 * reservation as the accounting is done on a global variable. Such
2251 * reservation is completely rubbish in the presence of cpuset because
2252 * the reservation is not checked against page availability for the
2253 * current cpuset. Application can still potentially OOM'ed by kernel
2254 * with lack of free htlb page in cpuset that the task is in.
2255 * Attempt to enforce strict accounting with cpuset is almost
2256 * impossible (or too ugly) because cpuset is too fluid that
2257 * task or memory node can be dynamically moved between cpusets.
2258 *
2259 * The change of semantics for shared hugetlb mapping with cpuset is
2260 * undesirable. However, in order to preserve some of the semantics,
2261 * we fall back to check against current free page availability as
2262 * a best attempt and hopefully to minimize the impact of changing
2263 * semantics that cpuset has.
2264 */
2265 if (delta > 0) {
2266 if (gather_surplus_pages(h, delta) < 0)
2267 goto out;
2268
2269 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2270 return_unused_surplus_pages(h, delta);
2271 goto out;
2272 }
2273 }
2274
2275 ret = 0;
2276 if (delta < 0)
2277 return_unused_surplus_pages(h, (unsigned long) -delta);
2278
2279 out:
2280 spin_unlock(&hugetlb_lock);
2281 return ret;
2282 }
2283
2284 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2285 {
2286 struct resv_map *resv = vma_resv_map(vma);
2287
2288 /*
2289 * This new VMA should share its siblings reservation map if present.
2290 * The VMA will only ever have a valid reservation map pointer where
2291 * it is being copied for another still existing VMA. As that VMA
2292 * has a reference to the reservation map it cannot disappear until
2293 * after this open call completes. It is therefore safe to take a
2294 * new reference here without additional locking.
2295 */
2296 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2297 kref_get(&resv->refs);
2298 }
2299
2300 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2301 {
2302 struct hstate *h = hstate_vma(vma);
2303 struct resv_map *resv = vma_resv_map(vma);
2304 struct hugepage_subpool *spool = subpool_vma(vma);
2305 unsigned long reserve, start, end;
2306
2307 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2308 return;
2309
2310 start = vma_hugecache_offset(h, vma, vma->vm_start);
2311 end = vma_hugecache_offset(h, vma, vma->vm_end);
2312
2313 reserve = (end - start) - region_count(resv, start, end);
2314
2315 kref_put(&resv->refs, resv_map_release);
2316
2317 if (reserve) {
2318 hugetlb_acct_memory(h, -reserve);
2319 hugepage_subpool_put_pages(spool, reserve);
2320 }
2321 }
2322
2323 /*
2324 * We cannot handle pagefaults against hugetlb pages at all. They cause
2325 * handle_mm_fault() to try to instantiate regular-sized pages in the
2326 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2327 * this far.
2328 */
2329 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2330 {
2331 BUG();
2332 return 0;
2333 }
2334
2335 const struct vm_operations_struct hugetlb_vm_ops = {
2336 .fault = hugetlb_vm_op_fault,
2337 .open = hugetlb_vm_op_open,
2338 .close = hugetlb_vm_op_close,
2339 };
2340
2341 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2342 int writable)
2343 {
2344 pte_t entry;
2345
2346 if (writable) {
2347 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2348 vma->vm_page_prot)));
2349 } else {
2350 entry = huge_pte_wrprotect(mk_huge_pte(page,
2351 vma->vm_page_prot));
2352 }
2353 entry = pte_mkyoung(entry);
2354 entry = pte_mkhuge(entry);
2355 entry = arch_make_huge_pte(entry, vma, page, writable);
2356
2357 return entry;
2358 }
2359
2360 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2361 unsigned long address, pte_t *ptep)
2362 {
2363 pte_t entry;
2364
2365 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2366 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2367 update_mmu_cache(vma, address, ptep);
2368 }
2369
2370
2371 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2372 struct vm_area_struct *vma)
2373 {
2374 pte_t *src_pte, *dst_pte, entry;
2375 struct page *ptepage;
2376 unsigned long addr;
2377 int cow;
2378 struct hstate *h = hstate_vma(vma);
2379 unsigned long sz = huge_page_size(h);
2380 unsigned long mmun_start; /* For mmu_notifiers */
2381 unsigned long mmun_end; /* For mmu_notifiers */
2382 int ret = 0;
2383
2384 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2385
2386 mmun_start = vma->vm_start;
2387 mmun_end = vma->vm_end;
2388 if (cow)
2389 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2390
2391 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2392 spinlock_t *src_ptl, *dst_ptl;
2393 src_pte = huge_pte_offset(src, addr);
2394 if (!src_pte)
2395 continue;
2396 dst_pte = huge_pte_alloc(dst, addr, sz);
2397 if (!dst_pte) {
2398 ret = -ENOMEM;
2399 break;
2400 }
2401
2402 /* If the pagetables are shared don't copy or take references */
2403 if (dst_pte == src_pte)
2404 continue;
2405
2406 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2407 src_ptl = huge_pte_lockptr(h, src, src_pte);
2408 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2409 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2410 if (cow)
2411 huge_ptep_set_wrprotect(src, addr, src_pte);
2412 entry = huge_ptep_get(src_pte);
2413 ptepage = pte_page(entry);
2414 get_page(ptepage);
2415 page_dup_rmap(ptepage);
2416 set_huge_pte_at(dst, addr, dst_pte, entry);
2417 }
2418 spin_unlock(src_ptl);
2419 spin_unlock(dst_ptl);
2420 }
2421
2422 if (cow)
2423 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2424
2425 return ret;
2426 }
2427
2428 static int is_hugetlb_entry_migration(pte_t pte)
2429 {
2430 swp_entry_t swp;
2431
2432 if (huge_pte_none(pte) || pte_present(pte))
2433 return 0;
2434 swp = pte_to_swp_entry(pte);
2435 if (non_swap_entry(swp) && is_migration_entry(swp))
2436 return 1;
2437 else
2438 return 0;
2439 }
2440
2441 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2442 {
2443 swp_entry_t swp;
2444
2445 if (huge_pte_none(pte) || pte_present(pte))
2446 return 0;
2447 swp = pte_to_swp_entry(pte);
2448 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2449 return 1;
2450 else
2451 return 0;
2452 }
2453
2454 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2455 unsigned long start, unsigned long end,
2456 struct page *ref_page)
2457 {
2458 int force_flush = 0;
2459 struct mm_struct *mm = vma->vm_mm;
2460 unsigned long address;
2461 pte_t *ptep;
2462 pte_t pte;
2463 spinlock_t *ptl;
2464 struct page *page;
2465 struct hstate *h = hstate_vma(vma);
2466 unsigned long sz = huge_page_size(h);
2467 const unsigned long mmun_start = start; /* For mmu_notifiers */
2468 const unsigned long mmun_end = end; /* For mmu_notifiers */
2469
2470 WARN_ON(!is_vm_hugetlb_page(vma));
2471 BUG_ON(start & ~huge_page_mask(h));
2472 BUG_ON(end & ~huge_page_mask(h));
2473
2474 tlb_start_vma(tlb, vma);
2475 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2476 again:
2477 for (address = start; address < end; address += sz) {
2478 ptep = huge_pte_offset(mm, address);
2479 if (!ptep)
2480 continue;
2481
2482 ptl = huge_pte_lock(h, mm, ptep);
2483 if (huge_pmd_unshare(mm, &address, ptep))
2484 goto unlock;
2485
2486 pte = huge_ptep_get(ptep);
2487 if (huge_pte_none(pte))
2488 goto unlock;
2489
2490 /*
2491 * HWPoisoned hugepage is already unmapped and dropped reference
2492 */
2493 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2494 huge_pte_clear(mm, address, ptep);
2495 goto unlock;
2496 }
2497
2498 page = pte_page(pte);
2499 /*
2500 * If a reference page is supplied, it is because a specific
2501 * page is being unmapped, not a range. Ensure the page we
2502 * are about to unmap is the actual page of interest.
2503 */
2504 if (ref_page) {
2505 if (page != ref_page)
2506 goto unlock;
2507
2508 /*
2509 * Mark the VMA as having unmapped its page so that
2510 * future faults in this VMA will fail rather than
2511 * looking like data was lost
2512 */
2513 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2514 }
2515
2516 pte = huge_ptep_get_and_clear(mm, address, ptep);
2517 tlb_remove_tlb_entry(tlb, ptep, address);
2518 if (huge_pte_dirty(pte))
2519 set_page_dirty(page);
2520
2521 page_remove_rmap(page);
2522 force_flush = !__tlb_remove_page(tlb, page);
2523 if (force_flush) {
2524 spin_unlock(ptl);
2525 break;
2526 }
2527 /* Bail out after unmapping reference page if supplied */
2528 if (ref_page) {
2529 spin_unlock(ptl);
2530 break;
2531 }
2532 unlock:
2533 spin_unlock(ptl);
2534 }
2535 /*
2536 * mmu_gather ran out of room to batch pages, we break out of
2537 * the PTE lock to avoid doing the potential expensive TLB invalidate
2538 * and page-free while holding it.
2539 */
2540 if (force_flush) {
2541 force_flush = 0;
2542 tlb_flush_mmu(tlb);
2543 if (address < end && !ref_page)
2544 goto again;
2545 }
2546 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2547 tlb_end_vma(tlb, vma);
2548 }
2549
2550 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2551 struct vm_area_struct *vma, unsigned long start,
2552 unsigned long end, struct page *ref_page)
2553 {
2554 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2555
2556 /*
2557 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2558 * test will fail on a vma being torn down, and not grab a page table
2559 * on its way out. We're lucky that the flag has such an appropriate
2560 * name, and can in fact be safely cleared here. We could clear it
2561 * before the __unmap_hugepage_range above, but all that's necessary
2562 * is to clear it before releasing the i_mmap_mutex. This works
2563 * because in the context this is called, the VMA is about to be
2564 * destroyed and the i_mmap_mutex is held.
2565 */
2566 vma->vm_flags &= ~VM_MAYSHARE;
2567 }
2568
2569 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2570 unsigned long end, struct page *ref_page)
2571 {
2572 struct mm_struct *mm;
2573 struct mmu_gather tlb;
2574
2575 mm = vma->vm_mm;
2576
2577 tlb_gather_mmu(&tlb, mm, start, end);
2578 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2579 tlb_finish_mmu(&tlb, start, end);
2580 }
2581
2582 /*
2583 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2584 * mappping it owns the reserve page for. The intention is to unmap the page
2585 * from other VMAs and let the children be SIGKILLed if they are faulting the
2586 * same region.
2587 */
2588 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2589 struct page *page, unsigned long address)
2590 {
2591 struct hstate *h = hstate_vma(vma);
2592 struct vm_area_struct *iter_vma;
2593 struct address_space *mapping;
2594 pgoff_t pgoff;
2595
2596 /*
2597 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2598 * from page cache lookup which is in HPAGE_SIZE units.
2599 */
2600 address = address & huge_page_mask(h);
2601 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2602 vma->vm_pgoff;
2603 mapping = file_inode(vma->vm_file)->i_mapping;
2604
2605 /*
2606 * Take the mapping lock for the duration of the table walk. As
2607 * this mapping should be shared between all the VMAs,
2608 * __unmap_hugepage_range() is called as the lock is already held
2609 */
2610 mutex_lock(&mapping->i_mmap_mutex);
2611 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2612 /* Do not unmap the current VMA */
2613 if (iter_vma == vma)
2614 continue;
2615
2616 /*
2617 * Unmap the page from other VMAs without their own reserves.
2618 * They get marked to be SIGKILLed if they fault in these
2619 * areas. This is because a future no-page fault on this VMA
2620 * could insert a zeroed page instead of the data existing
2621 * from the time of fork. This would look like data corruption
2622 */
2623 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2624 unmap_hugepage_range(iter_vma, address,
2625 address + huge_page_size(h), page);
2626 }
2627 mutex_unlock(&mapping->i_mmap_mutex);
2628
2629 return 1;
2630 }
2631
2632 /*
2633 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2634 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2635 * cannot race with other handlers or page migration.
2636 * Keep the pte_same checks anyway to make transition from the mutex easier.
2637 */
2638 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2639 unsigned long address, pte_t *ptep, pte_t pte,
2640 struct page *pagecache_page, spinlock_t *ptl)
2641 {
2642 struct hstate *h = hstate_vma(vma);
2643 struct page *old_page, *new_page;
2644 int outside_reserve = 0;
2645 unsigned long mmun_start; /* For mmu_notifiers */
2646 unsigned long mmun_end; /* For mmu_notifiers */
2647
2648 old_page = pte_page(pte);
2649
2650 retry_avoidcopy:
2651 /* If no-one else is actually using this page, avoid the copy
2652 * and just make the page writable */
2653 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2654 page_move_anon_rmap(old_page, vma, address);
2655 set_huge_ptep_writable(vma, address, ptep);
2656 return 0;
2657 }
2658
2659 /*
2660 * If the process that created a MAP_PRIVATE mapping is about to
2661 * perform a COW due to a shared page count, attempt to satisfy
2662 * the allocation without using the existing reserves. The pagecache
2663 * page is used to determine if the reserve at this address was
2664 * consumed or not. If reserves were used, a partial faulted mapping
2665 * at the time of fork() could consume its reserves on COW instead
2666 * of the full address range.
2667 */
2668 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2669 old_page != pagecache_page)
2670 outside_reserve = 1;
2671
2672 page_cache_get(old_page);
2673
2674 /* Drop page table lock as buddy allocator may be called */
2675 spin_unlock(ptl);
2676 new_page = alloc_huge_page(vma, address, outside_reserve);
2677
2678 if (IS_ERR(new_page)) {
2679 long err = PTR_ERR(new_page);
2680 page_cache_release(old_page);
2681
2682 /*
2683 * If a process owning a MAP_PRIVATE mapping fails to COW,
2684 * it is due to references held by a child and an insufficient
2685 * huge page pool. To guarantee the original mappers
2686 * reliability, unmap the page from child processes. The child
2687 * may get SIGKILLed if it later faults.
2688 */
2689 if (outside_reserve) {
2690 BUG_ON(huge_pte_none(pte));
2691 if (unmap_ref_private(mm, vma, old_page, address)) {
2692 BUG_ON(huge_pte_none(pte));
2693 spin_lock(ptl);
2694 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2695 if (likely(ptep &&
2696 pte_same(huge_ptep_get(ptep), pte)))
2697 goto retry_avoidcopy;
2698 /*
2699 * race occurs while re-acquiring page table
2700 * lock, and our job is done.
2701 */
2702 return 0;
2703 }
2704 WARN_ON_ONCE(1);
2705 }
2706
2707 /* Caller expects lock to be held */
2708 spin_lock(ptl);
2709 if (err == -ENOMEM)
2710 return VM_FAULT_OOM;
2711 else
2712 return VM_FAULT_SIGBUS;
2713 }
2714
2715 /*
2716 * When the original hugepage is shared one, it does not have
2717 * anon_vma prepared.
2718 */
2719 if (unlikely(anon_vma_prepare(vma))) {
2720 page_cache_release(new_page);
2721 page_cache_release(old_page);
2722 /* Caller expects lock to be held */
2723 spin_lock(ptl);
2724 return VM_FAULT_OOM;
2725 }
2726
2727 copy_user_huge_page(new_page, old_page, address, vma,
2728 pages_per_huge_page(h));
2729 __SetPageUptodate(new_page);
2730
2731 mmun_start = address & huge_page_mask(h);
2732 mmun_end = mmun_start + huge_page_size(h);
2733 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2734 /*
2735 * Retake the page table lock to check for racing updates
2736 * before the page tables are altered
2737 */
2738 spin_lock(ptl);
2739 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2740 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
2741 ClearPagePrivate(new_page);
2742
2743 /* Break COW */
2744 huge_ptep_clear_flush(vma, address, ptep);
2745 set_huge_pte_at(mm, address, ptep,
2746 make_huge_pte(vma, new_page, 1));
2747 page_remove_rmap(old_page);
2748 hugepage_add_new_anon_rmap(new_page, vma, address);
2749 /* Make the old page be freed below */
2750 new_page = old_page;
2751 }
2752 spin_unlock(ptl);
2753 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2754 page_cache_release(new_page);
2755 page_cache_release(old_page);
2756
2757 /* Caller expects lock to be held */
2758 spin_lock(ptl);
2759 return 0;
2760 }
2761
2762 /* Return the pagecache page at a given address within a VMA */
2763 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2764 struct vm_area_struct *vma, unsigned long address)
2765 {
2766 struct address_space *mapping;
2767 pgoff_t idx;
2768
2769 mapping = vma->vm_file->f_mapping;
2770 idx = vma_hugecache_offset(h, vma, address);
2771
2772 return find_lock_page(mapping, idx);
2773 }
2774
2775 /*
2776 * Return whether there is a pagecache page to back given address within VMA.
2777 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2778 */
2779 static bool hugetlbfs_pagecache_present(struct hstate *h,
2780 struct vm_area_struct *vma, unsigned long address)
2781 {
2782 struct address_space *mapping;
2783 pgoff_t idx;
2784 struct page *page;
2785
2786 mapping = vma->vm_file->f_mapping;
2787 idx = vma_hugecache_offset(h, vma, address);
2788
2789 page = find_get_page(mapping, idx);
2790 if (page)
2791 put_page(page);
2792 return page != NULL;
2793 }
2794
2795 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2796 struct address_space *mapping, pgoff_t idx,
2797 unsigned long address, pte_t *ptep, unsigned int flags)
2798 {
2799 struct hstate *h = hstate_vma(vma);
2800 int ret = VM_FAULT_SIGBUS;
2801 int anon_rmap = 0;
2802 unsigned long size;
2803 struct page *page;
2804 pte_t new_pte;
2805 spinlock_t *ptl;
2806
2807 /*
2808 * Currently, we are forced to kill the process in the event the
2809 * original mapper has unmapped pages from the child due to a failed
2810 * COW. Warn that such a situation has occurred as it may not be obvious
2811 */
2812 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2813 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2814 current->pid);
2815 return ret;
2816 }
2817
2818 /*
2819 * Use page lock to guard against racing truncation
2820 * before we get page_table_lock.
2821 */
2822 retry:
2823 page = find_lock_page(mapping, idx);
2824 if (!page) {
2825 size = i_size_read(mapping->host) >> huge_page_shift(h);
2826 if (idx >= size)
2827 goto out;
2828 page = alloc_huge_page(vma, address, 0);
2829 if (IS_ERR(page)) {
2830 ret = PTR_ERR(page);
2831 if (ret == -ENOMEM)
2832 ret = VM_FAULT_OOM;
2833 else
2834 ret = VM_FAULT_SIGBUS;
2835 goto out;
2836 }
2837 clear_huge_page(page, address, pages_per_huge_page(h));
2838 __SetPageUptodate(page);
2839
2840 if (vma->vm_flags & VM_MAYSHARE) {
2841 int err;
2842 struct inode *inode = mapping->host;
2843
2844 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2845 if (err) {
2846 put_page(page);
2847 if (err == -EEXIST)
2848 goto retry;
2849 goto out;
2850 }
2851 ClearPagePrivate(page);
2852
2853 spin_lock(&inode->i_lock);
2854 inode->i_blocks += blocks_per_huge_page(h);
2855 spin_unlock(&inode->i_lock);
2856 } else {
2857 lock_page(page);
2858 if (unlikely(anon_vma_prepare(vma))) {
2859 ret = VM_FAULT_OOM;
2860 goto backout_unlocked;
2861 }
2862 anon_rmap = 1;
2863 }
2864 } else {
2865 /*
2866 * If memory error occurs between mmap() and fault, some process
2867 * don't have hwpoisoned swap entry for errored virtual address.
2868 * So we need to block hugepage fault by PG_hwpoison bit check.
2869 */
2870 if (unlikely(PageHWPoison(page))) {
2871 ret = VM_FAULT_HWPOISON |
2872 VM_FAULT_SET_HINDEX(hstate_index(h));
2873 goto backout_unlocked;
2874 }
2875 }
2876
2877 /*
2878 * If we are going to COW a private mapping later, we examine the
2879 * pending reservations for this page now. This will ensure that
2880 * any allocations necessary to record that reservation occur outside
2881 * the spinlock.
2882 */
2883 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2884 if (vma_needs_reservation(h, vma, address) < 0) {
2885 ret = VM_FAULT_OOM;
2886 goto backout_unlocked;
2887 }
2888
2889 ptl = huge_pte_lockptr(h, mm, ptep);
2890 spin_lock(ptl);
2891 size = i_size_read(mapping->host) >> huge_page_shift(h);
2892 if (idx >= size)
2893 goto backout;
2894
2895 ret = 0;
2896 if (!huge_pte_none(huge_ptep_get(ptep)))
2897 goto backout;
2898
2899 if (anon_rmap) {
2900 ClearPagePrivate(page);
2901 hugepage_add_new_anon_rmap(page, vma, address);
2902 } else
2903 page_dup_rmap(page);
2904 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2905 && (vma->vm_flags & VM_SHARED)));
2906 set_huge_pte_at(mm, address, ptep, new_pte);
2907
2908 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2909 /* Optimization, do the COW without a second fault */
2910 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2911 }
2912
2913 spin_unlock(ptl);
2914 unlock_page(page);
2915 out:
2916 return ret;
2917
2918 backout:
2919 spin_unlock(ptl);
2920 backout_unlocked:
2921 unlock_page(page);
2922 put_page(page);
2923 goto out;
2924 }
2925
2926 #ifdef CONFIG_SMP
2927 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
2928 struct vm_area_struct *vma,
2929 struct address_space *mapping,
2930 pgoff_t idx, unsigned long address)
2931 {
2932 unsigned long key[2];
2933 u32 hash;
2934
2935 if (vma->vm_flags & VM_SHARED) {
2936 key[0] = (unsigned long) mapping;
2937 key[1] = idx;
2938 } else {
2939 key[0] = (unsigned long) mm;
2940 key[1] = address >> huge_page_shift(h);
2941 }
2942
2943 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
2944
2945 return hash & (num_fault_mutexes - 1);
2946 }
2947 #else
2948 /*
2949 * For uniprocesor systems we always use a single mutex, so just
2950 * return 0 and avoid the hashing overhead.
2951 */
2952 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
2953 struct vm_area_struct *vma,
2954 struct address_space *mapping,
2955 pgoff_t idx, unsigned long address)
2956 {
2957 return 0;
2958 }
2959 #endif
2960
2961 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2962 unsigned long address, unsigned int flags)
2963 {
2964 pte_t *ptep, entry;
2965 spinlock_t *ptl;
2966 int ret;
2967 u32 hash;
2968 pgoff_t idx;
2969 struct page *page = NULL;
2970 struct page *pagecache_page = NULL;
2971 struct hstate *h = hstate_vma(vma);
2972 struct address_space *mapping;
2973
2974 address &= huge_page_mask(h);
2975
2976 ptep = huge_pte_offset(mm, address);
2977 if (ptep) {
2978 entry = huge_ptep_get(ptep);
2979 if (unlikely(is_hugetlb_entry_migration(entry))) {
2980 migration_entry_wait_huge(vma, mm, ptep);
2981 return 0;
2982 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2983 return VM_FAULT_HWPOISON_LARGE |
2984 VM_FAULT_SET_HINDEX(hstate_index(h));
2985 }
2986
2987 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2988 if (!ptep)
2989 return VM_FAULT_OOM;
2990
2991 mapping = vma->vm_file->f_mapping;
2992 idx = vma_hugecache_offset(h, vma, address);
2993
2994 /*
2995 * Serialize hugepage allocation and instantiation, so that we don't
2996 * get spurious allocation failures if two CPUs race to instantiate
2997 * the same page in the page cache.
2998 */
2999 hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3000 mutex_lock(&htlb_fault_mutex_table[hash]);
3001
3002 entry = huge_ptep_get(ptep);
3003 if (huge_pte_none(entry)) {
3004 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3005 goto out_mutex;
3006 }
3007
3008 ret = 0;
3009
3010 /*
3011 * If we are going to COW the mapping later, we examine the pending
3012 * reservations for this page now. This will ensure that any
3013 * allocations necessary to record that reservation occur outside the
3014 * spinlock. For private mappings, we also lookup the pagecache
3015 * page now as it is used to determine if a reservation has been
3016 * consumed.
3017 */
3018 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3019 if (vma_needs_reservation(h, vma, address) < 0) {
3020 ret = VM_FAULT_OOM;
3021 goto out_mutex;
3022 }
3023
3024 if (!(vma->vm_flags & VM_MAYSHARE))
3025 pagecache_page = hugetlbfs_pagecache_page(h,
3026 vma, address);
3027 }
3028
3029 /*
3030 * hugetlb_cow() requires page locks of pte_page(entry) and
3031 * pagecache_page, so here we need take the former one
3032 * when page != pagecache_page or !pagecache_page.
3033 * Note that locking order is always pagecache_page -> page,
3034 * so no worry about deadlock.
3035 */
3036 page = pte_page(entry);
3037 get_page(page);
3038 if (page != pagecache_page)
3039 lock_page(page);
3040
3041 ptl = huge_pte_lockptr(h, mm, ptep);
3042 spin_lock(ptl);
3043 /* Check for a racing update before calling hugetlb_cow */
3044 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3045 goto out_ptl;
3046
3047
3048 if (flags & FAULT_FLAG_WRITE) {
3049 if (!huge_pte_write(entry)) {
3050 ret = hugetlb_cow(mm, vma, address, ptep, entry,
3051 pagecache_page, ptl);
3052 goto out_ptl;
3053 }
3054 entry = huge_pte_mkdirty(entry);
3055 }
3056 entry = pte_mkyoung(entry);
3057 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3058 flags & FAULT_FLAG_WRITE))
3059 update_mmu_cache(vma, address, ptep);
3060
3061 out_ptl:
3062 spin_unlock(ptl);
3063
3064 if (pagecache_page) {
3065 unlock_page(pagecache_page);
3066 put_page(pagecache_page);
3067 }
3068 if (page != pagecache_page)
3069 unlock_page(page);
3070 put_page(page);
3071
3072 out_mutex:
3073 mutex_unlock(&htlb_fault_mutex_table[hash]);
3074 return ret;
3075 }
3076
3077 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3078 struct page **pages, struct vm_area_struct **vmas,
3079 unsigned long *position, unsigned long *nr_pages,
3080 long i, unsigned int flags)
3081 {
3082 unsigned long pfn_offset;
3083 unsigned long vaddr = *position;
3084 unsigned long remainder = *nr_pages;
3085 struct hstate *h = hstate_vma(vma);
3086
3087 while (vaddr < vma->vm_end && remainder) {
3088 pte_t *pte;
3089 spinlock_t *ptl = NULL;
3090 int absent;
3091 struct page *page;
3092
3093 /*
3094 * Some archs (sparc64, sh*) have multiple pte_ts to
3095 * each hugepage. We have to make sure we get the
3096 * first, for the page indexing below to work.
3097 *
3098 * Note that page table lock is not held when pte is null.
3099 */
3100 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3101 if (pte)
3102 ptl = huge_pte_lock(h, mm, pte);
3103 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3104
3105 /*
3106 * When coredumping, it suits get_dump_page if we just return
3107 * an error where there's an empty slot with no huge pagecache
3108 * to back it. This way, we avoid allocating a hugepage, and
3109 * the sparse dumpfile avoids allocating disk blocks, but its
3110 * huge holes still show up with zeroes where they need to be.
3111 */
3112 if (absent && (flags & FOLL_DUMP) &&
3113 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3114 if (pte)
3115 spin_unlock(ptl);
3116 remainder = 0;
3117 break;
3118 }
3119
3120 /*
3121 * We need call hugetlb_fault for both hugepages under migration
3122 * (in which case hugetlb_fault waits for the migration,) and
3123 * hwpoisoned hugepages (in which case we need to prevent the
3124 * caller from accessing to them.) In order to do this, we use
3125 * here is_swap_pte instead of is_hugetlb_entry_migration and
3126 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3127 * both cases, and because we can't follow correct pages
3128 * directly from any kind of swap entries.
3129 */
3130 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3131 ((flags & FOLL_WRITE) &&
3132 !huge_pte_write(huge_ptep_get(pte)))) {
3133 int ret;
3134
3135 if (pte)
3136 spin_unlock(ptl);
3137 ret = hugetlb_fault(mm, vma, vaddr,
3138 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3139 if (!(ret & VM_FAULT_ERROR))
3140 continue;
3141
3142 remainder = 0;
3143 break;
3144 }
3145
3146 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3147 page = pte_page(huge_ptep_get(pte));
3148 same_page:
3149 if (pages) {
3150 pages[i] = mem_map_offset(page, pfn_offset);
3151 get_page_foll(pages[i]);
3152 }
3153
3154 if (vmas)
3155 vmas[i] = vma;
3156
3157 vaddr += PAGE_SIZE;
3158 ++pfn_offset;
3159 --remainder;
3160 ++i;
3161 if (vaddr < vma->vm_end && remainder &&
3162 pfn_offset < pages_per_huge_page(h)) {
3163 /*
3164 * We use pfn_offset to avoid touching the pageframes
3165 * of this compound page.
3166 */
3167 goto same_page;
3168 }
3169 spin_unlock(ptl);
3170 }
3171 *nr_pages = remainder;
3172 *position = vaddr;
3173
3174 return i ? i : -EFAULT;
3175 }
3176
3177 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3178 unsigned long address, unsigned long end, pgprot_t newprot)
3179 {
3180 struct mm_struct *mm = vma->vm_mm;
3181 unsigned long start = address;
3182 pte_t *ptep;
3183 pte_t pte;
3184 struct hstate *h = hstate_vma(vma);
3185 unsigned long pages = 0;
3186
3187 BUG_ON(address >= end);
3188 flush_cache_range(vma, address, end);
3189
3190 mmu_notifier_invalidate_range_start(mm, start, end);
3191 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3192 for (; address < end; address += huge_page_size(h)) {
3193 spinlock_t *ptl;
3194 ptep = huge_pte_offset(mm, address);
3195 if (!ptep)
3196 continue;
3197 ptl = huge_pte_lock(h, mm, ptep);
3198 if (huge_pmd_unshare(mm, &address, ptep)) {
3199 pages++;
3200 spin_unlock(ptl);
3201 continue;
3202 }
3203 if (!huge_pte_none(huge_ptep_get(ptep))) {
3204 pte = huge_ptep_get_and_clear(mm, address, ptep);
3205 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3206 pte = arch_make_huge_pte(pte, vma, NULL, 0);
3207 set_huge_pte_at(mm, address, ptep, pte);
3208 pages++;
3209 }
3210 spin_unlock(ptl);
3211 }
3212 /*
3213 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3214 * may have cleared our pud entry and done put_page on the page table:
3215 * once we release i_mmap_mutex, another task can do the final put_page
3216 * and that page table be reused and filled with junk.
3217 */
3218 flush_tlb_range(vma, start, end);
3219 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3220 mmu_notifier_invalidate_range_end(mm, start, end);
3221
3222 return pages << h->order;
3223 }
3224
3225 int hugetlb_reserve_pages(struct inode *inode,
3226 long from, long to,
3227 struct vm_area_struct *vma,
3228 vm_flags_t vm_flags)
3229 {
3230 long ret, chg;
3231 struct hstate *h = hstate_inode(inode);
3232 struct hugepage_subpool *spool = subpool_inode(inode);
3233 struct resv_map *resv_map;
3234
3235 /*
3236 * Only apply hugepage reservation if asked. At fault time, an
3237 * attempt will be made for VM_NORESERVE to allocate a page
3238 * without using reserves
3239 */
3240 if (vm_flags & VM_NORESERVE)
3241 return 0;
3242
3243 /*
3244 * Shared mappings base their reservation on the number of pages that
3245 * are already allocated on behalf of the file. Private mappings need
3246 * to reserve the full area even if read-only as mprotect() may be
3247 * called to make the mapping read-write. Assume !vma is a shm mapping
3248 */
3249 if (!vma || vma->vm_flags & VM_MAYSHARE) {
3250 resv_map = inode_resv_map(inode);
3251
3252 chg = region_chg(resv_map, from, to);
3253
3254 } else {
3255 resv_map = resv_map_alloc();
3256 if (!resv_map)
3257 return -ENOMEM;
3258
3259 chg = to - from;
3260
3261 set_vma_resv_map(vma, resv_map);
3262 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3263 }
3264
3265 if (chg < 0) {
3266 ret = chg;
3267 goto out_err;
3268 }
3269
3270 /* There must be enough pages in the subpool for the mapping */
3271 if (hugepage_subpool_get_pages(spool, chg)) {
3272 ret = -ENOSPC;
3273 goto out_err;
3274 }
3275
3276 /*
3277 * Check enough hugepages are available for the reservation.
3278 * Hand the pages back to the subpool if there are not
3279 */
3280 ret = hugetlb_acct_memory(h, chg);
3281 if (ret < 0) {
3282 hugepage_subpool_put_pages(spool, chg);
3283 goto out_err;
3284 }
3285
3286 /*
3287 * Account for the reservations made. Shared mappings record regions
3288 * that have reservations as they are shared by multiple VMAs.
3289 * When the last VMA disappears, the region map says how much
3290 * the reservation was and the page cache tells how much of
3291 * the reservation was consumed. Private mappings are per-VMA and
3292 * only the consumed reservations are tracked. When the VMA
3293 * disappears, the original reservation is the VMA size and the
3294 * consumed reservations are stored in the map. Hence, nothing
3295 * else has to be done for private mappings here
3296 */
3297 if (!vma || vma->vm_flags & VM_MAYSHARE)
3298 region_add(resv_map, from, to);
3299 return 0;
3300 out_err:
3301 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3302 kref_put(&resv_map->refs, resv_map_release);
3303 return ret;
3304 }
3305
3306 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3307 {
3308 struct hstate *h = hstate_inode(inode);
3309 struct resv_map *resv_map = inode_resv_map(inode);
3310 long chg = 0;
3311 struct hugepage_subpool *spool = subpool_inode(inode);
3312
3313 if (resv_map)
3314 chg = region_truncate(resv_map, offset);
3315 spin_lock(&inode->i_lock);
3316 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3317 spin_unlock(&inode->i_lock);
3318
3319 hugepage_subpool_put_pages(spool, (chg - freed));
3320 hugetlb_acct_memory(h, -(chg - freed));
3321 }
3322
3323 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3324 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3325 struct vm_area_struct *vma,
3326 unsigned long addr, pgoff_t idx)
3327 {
3328 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3329 svma->vm_start;
3330 unsigned long sbase = saddr & PUD_MASK;
3331 unsigned long s_end = sbase + PUD_SIZE;
3332
3333 /* Allow segments to share if only one is marked locked */
3334 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3335 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3336
3337 /*
3338 * match the virtual addresses, permission and the alignment of the
3339 * page table page.
3340 */
3341 if (pmd_index(addr) != pmd_index(saddr) ||
3342 vm_flags != svm_flags ||
3343 sbase < svma->vm_start || svma->vm_end < s_end)
3344 return 0;
3345
3346 return saddr;
3347 }
3348
3349 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3350 {
3351 unsigned long base = addr & PUD_MASK;
3352 unsigned long end = base + PUD_SIZE;
3353
3354 /*
3355 * check on proper vm_flags and page table alignment
3356 */
3357 if (vma->vm_flags & VM_MAYSHARE &&
3358 vma->vm_start <= base && end <= vma->vm_end)
3359 return 1;
3360 return 0;
3361 }
3362
3363 /*
3364 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3365 * and returns the corresponding pte. While this is not necessary for the
3366 * !shared pmd case because we can allocate the pmd later as well, it makes the
3367 * code much cleaner. pmd allocation is essential for the shared case because
3368 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3369 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3370 * bad pmd for sharing.
3371 */
3372 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3373 {
3374 struct vm_area_struct *vma = find_vma(mm, addr);
3375 struct address_space *mapping = vma->vm_file->f_mapping;
3376 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3377 vma->vm_pgoff;
3378 struct vm_area_struct *svma;
3379 unsigned long saddr;
3380 pte_t *spte = NULL;
3381 pte_t *pte;
3382 spinlock_t *ptl;
3383
3384 if (!vma_shareable(vma, addr))
3385 return (pte_t *)pmd_alloc(mm, pud, addr);
3386
3387 mutex_lock(&mapping->i_mmap_mutex);
3388 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3389 if (svma == vma)
3390 continue;
3391
3392 saddr = page_table_shareable(svma, vma, addr, idx);
3393 if (saddr) {
3394 spte = huge_pte_offset(svma->vm_mm, saddr);
3395 if (spte) {
3396 get_page(virt_to_page(spte));
3397 break;
3398 }
3399 }
3400 }
3401
3402 if (!spte)
3403 goto out;
3404
3405 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3406 spin_lock(ptl);
3407 if (pud_none(*pud))
3408 pud_populate(mm, pud,
3409 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3410 else
3411 put_page(virt_to_page(spte));
3412 spin_unlock(ptl);
3413 out:
3414 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3415 mutex_unlock(&mapping->i_mmap_mutex);
3416 return pte;
3417 }
3418
3419 /*
3420 * unmap huge page backed by shared pte.
3421 *
3422 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3423 * indicated by page_count > 1, unmap is achieved by clearing pud and
3424 * decrementing the ref count. If count == 1, the pte page is not shared.
3425 *
3426 * called with page table lock held.
3427 *
3428 * returns: 1 successfully unmapped a shared pte page
3429 * 0 the underlying pte page is not shared, or it is the last user
3430 */
3431 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3432 {
3433 pgd_t *pgd = pgd_offset(mm, *addr);
3434 pud_t *pud = pud_offset(pgd, *addr);
3435
3436 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3437 if (page_count(virt_to_page(ptep)) == 1)
3438 return 0;
3439
3440 pud_clear(pud);
3441 put_page(virt_to_page(ptep));
3442 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3443 return 1;
3444 }
3445 #define want_pmd_share() (1)
3446 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3447 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3448 {
3449 return NULL;
3450 }
3451 #define want_pmd_share() (0)
3452 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3453
3454 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3455 pte_t *huge_pte_alloc(struct mm_struct *mm,
3456 unsigned long addr, unsigned long sz)
3457 {
3458 pgd_t *pgd;
3459 pud_t *pud;
3460 pte_t *pte = NULL;
3461
3462 pgd = pgd_offset(mm, addr);
3463 pud = pud_alloc(mm, pgd, addr);
3464 if (pud) {
3465 if (sz == PUD_SIZE) {
3466 pte = (pte_t *)pud;
3467 } else {
3468 BUG_ON(sz != PMD_SIZE);
3469 if (want_pmd_share() && pud_none(*pud))
3470 pte = huge_pmd_share(mm, addr, pud);
3471 else
3472 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3473 }
3474 }
3475 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3476
3477 return pte;
3478 }
3479
3480 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3481 {
3482 pgd_t *pgd;
3483 pud_t *pud;
3484 pmd_t *pmd = NULL;
3485
3486 pgd = pgd_offset(mm, addr);
3487 if (pgd_present(*pgd)) {
3488 pud = pud_offset(pgd, addr);
3489 if (pud_present(*pud)) {
3490 if (pud_huge(*pud))
3491 return (pte_t *)pud;
3492 pmd = pmd_offset(pud, addr);
3493 }
3494 }
3495 return (pte_t *) pmd;
3496 }
3497
3498 struct page *
3499 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3500 pmd_t *pmd, int write)
3501 {
3502 struct page *page;
3503
3504 page = pte_page(*(pte_t *)pmd);
3505 if (page)
3506 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3507 return page;
3508 }
3509
3510 struct page *
3511 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3512 pud_t *pud, int write)
3513 {
3514 struct page *page;
3515
3516 page = pte_page(*(pte_t *)pud);
3517 if (page)
3518 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3519 return page;
3520 }
3521
3522 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3523
3524 /* Can be overriden by architectures */
3525 struct page * __weak
3526 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3527 pud_t *pud, int write)
3528 {
3529 BUG();
3530 return NULL;
3531 }
3532
3533 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3534
3535 #ifdef CONFIG_MEMORY_FAILURE
3536
3537 /* Should be called in hugetlb_lock */
3538 static int is_hugepage_on_freelist(struct page *hpage)
3539 {
3540 struct page *page;
3541 struct page *tmp;
3542 struct hstate *h = page_hstate(hpage);
3543 int nid = page_to_nid(hpage);
3544
3545 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3546 if (page == hpage)
3547 return 1;
3548 return 0;
3549 }
3550
3551 /*
3552 * This function is called from memory failure code.
3553 * Assume the caller holds page lock of the head page.
3554 */
3555 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3556 {
3557 struct hstate *h = page_hstate(hpage);
3558 int nid = page_to_nid(hpage);
3559 int ret = -EBUSY;
3560
3561 spin_lock(&hugetlb_lock);
3562 if (is_hugepage_on_freelist(hpage)) {
3563 /*
3564 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3565 * but dangling hpage->lru can trigger list-debug warnings
3566 * (this happens when we call unpoison_memory() on it),
3567 * so let it point to itself with list_del_init().
3568 */
3569 list_del_init(&hpage->lru);
3570 set_page_refcounted(hpage);
3571 h->free_huge_pages--;
3572 h->free_huge_pages_node[nid]--;
3573 ret = 0;
3574 }
3575 spin_unlock(&hugetlb_lock);
3576 return ret;
3577 }
3578 #endif
3579
3580 bool isolate_huge_page(struct page *page, struct list_head *list)
3581 {
3582 VM_BUG_ON_PAGE(!PageHead(page), page);
3583 if (!get_page_unless_zero(page))
3584 return false;
3585 spin_lock(&hugetlb_lock);
3586 list_move_tail(&page->lru, list);
3587 spin_unlock(&hugetlb_lock);
3588 return true;
3589 }
3590
3591 void putback_active_hugepage(struct page *page)
3592 {
3593 VM_BUG_ON_PAGE(!PageHead(page), page);
3594 spin_lock(&hugetlb_lock);
3595 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3596 spin_unlock(&hugetlb_lock);
3597 put_page(page);
3598 }
3599
3600 bool is_hugepage_active(struct page *page)
3601 {
3602 VM_BUG_ON_PAGE(!PageHuge(page), page);
3603 /*
3604 * This function can be called for a tail page because the caller,
3605 * scan_movable_pages, scans through a given pfn-range which typically
3606 * covers one memory block. In systems using gigantic hugepage (1GB
3607 * for x86_64,) a hugepage is larger than a memory block, and we don't
3608 * support migrating such large hugepages for now, so return false
3609 * when called for tail pages.
3610 */
3611 if (PageTail(page))
3612 return false;
3613 /*
3614 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3615 * so we should return false for them.
3616 */
3617 if (unlikely(PageHWPoison(page)))
3618 return false;
3619 return page_count(page) > 0;
3620 }
This page took 0.102334 seconds and 5 git commands to generate.