rapidio: fix kerneldoc warnings after DMA support was added
[deliverable/linux.git] / mm / memblock.c
1 /*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22
23 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
24 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
25
26 struct memblock memblock __initdata_memblock = {
27 .memory.regions = memblock_memory_init_regions,
28 .memory.cnt = 1, /* empty dummy entry */
29 .memory.max = INIT_MEMBLOCK_REGIONS,
30
31 .reserved.regions = memblock_reserved_init_regions,
32 .reserved.cnt = 1, /* empty dummy entry */
33 .reserved.max = INIT_MEMBLOCK_REGIONS,
34
35 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
36 };
37
38 int memblock_debug __initdata_memblock;
39 static int memblock_can_resize __initdata_memblock;
40 static int memblock_memory_in_slab __initdata_memblock = 0;
41 static int memblock_reserved_in_slab __initdata_memblock = 0;
42
43 /* inline so we don't get a warning when pr_debug is compiled out */
44 static inline const char *memblock_type_name(struct memblock_type *type)
45 {
46 if (type == &memblock.memory)
47 return "memory";
48 else if (type == &memblock.reserved)
49 return "reserved";
50 else
51 return "unknown";
52 }
53
54 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
55 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
56 {
57 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
58 }
59
60 /*
61 * Address comparison utilities
62 */
63 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
64 phys_addr_t base2, phys_addr_t size2)
65 {
66 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
67 }
68
69 static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
70 phys_addr_t base, phys_addr_t size)
71 {
72 unsigned long i;
73
74 for (i = 0; i < type->cnt; i++) {
75 phys_addr_t rgnbase = type->regions[i].base;
76 phys_addr_t rgnsize = type->regions[i].size;
77 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
78 break;
79 }
80
81 return (i < type->cnt) ? i : -1;
82 }
83
84 /**
85 * memblock_find_in_range_node - find free area in given range and node
86 * @start: start of candidate range
87 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
88 * @size: size of free area to find
89 * @align: alignment of free area to find
90 * @nid: nid of the free area to find, %MAX_NUMNODES for any node
91 *
92 * Find @size free area aligned to @align in the specified range and node.
93 *
94 * RETURNS:
95 * Found address on success, %0 on failure.
96 */
97 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
98 phys_addr_t end, phys_addr_t size,
99 phys_addr_t align, int nid)
100 {
101 phys_addr_t this_start, this_end, cand;
102 u64 i;
103
104 /* pump up @end */
105 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
106 end = memblock.current_limit;
107
108 /* avoid allocating the first page */
109 start = max_t(phys_addr_t, start, PAGE_SIZE);
110 end = max(start, end);
111
112 for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
113 this_start = clamp(this_start, start, end);
114 this_end = clamp(this_end, start, end);
115
116 if (this_end < size)
117 continue;
118
119 cand = round_down(this_end - size, align);
120 if (cand >= this_start)
121 return cand;
122 }
123 return 0;
124 }
125
126 /**
127 * memblock_find_in_range - find free area in given range
128 * @start: start of candidate range
129 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
130 * @size: size of free area to find
131 * @align: alignment of free area to find
132 *
133 * Find @size free area aligned to @align in the specified range.
134 *
135 * RETURNS:
136 * Found address on success, %0 on failure.
137 */
138 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
139 phys_addr_t end, phys_addr_t size,
140 phys_addr_t align)
141 {
142 return memblock_find_in_range_node(start, end, size, align,
143 MAX_NUMNODES);
144 }
145
146 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
147 {
148 type->total_size -= type->regions[r].size;
149 memmove(&type->regions[r], &type->regions[r + 1],
150 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
151 type->cnt--;
152
153 /* Special case for empty arrays */
154 if (type->cnt == 0) {
155 WARN_ON(type->total_size != 0);
156 type->cnt = 1;
157 type->regions[0].base = 0;
158 type->regions[0].size = 0;
159 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
160 }
161 }
162
163 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
164 phys_addr_t *addr)
165 {
166 if (memblock.reserved.regions == memblock_reserved_init_regions)
167 return 0;
168
169 *addr = __pa(memblock.reserved.regions);
170
171 return PAGE_ALIGN(sizeof(struct memblock_region) *
172 memblock.reserved.max);
173 }
174
175 /**
176 * memblock_double_array - double the size of the memblock regions array
177 * @type: memblock type of the regions array being doubled
178 * @new_area_start: starting address of memory range to avoid overlap with
179 * @new_area_size: size of memory range to avoid overlap with
180 *
181 * Double the size of the @type regions array. If memblock is being used to
182 * allocate memory for a new reserved regions array and there is a previously
183 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
184 * waiting to be reserved, ensure the memory used by the new array does
185 * not overlap.
186 *
187 * RETURNS:
188 * 0 on success, -1 on failure.
189 */
190 static int __init_memblock memblock_double_array(struct memblock_type *type,
191 phys_addr_t new_area_start,
192 phys_addr_t new_area_size)
193 {
194 struct memblock_region *new_array, *old_array;
195 phys_addr_t old_alloc_size, new_alloc_size;
196 phys_addr_t old_size, new_size, addr;
197 int use_slab = slab_is_available();
198 int *in_slab;
199
200 /* We don't allow resizing until we know about the reserved regions
201 * of memory that aren't suitable for allocation
202 */
203 if (!memblock_can_resize)
204 return -1;
205
206 /* Calculate new doubled size */
207 old_size = type->max * sizeof(struct memblock_region);
208 new_size = old_size << 1;
209 /*
210 * We need to allocated new one align to PAGE_SIZE,
211 * so we can free them completely later.
212 */
213 old_alloc_size = PAGE_ALIGN(old_size);
214 new_alloc_size = PAGE_ALIGN(new_size);
215
216 /* Retrieve the slab flag */
217 if (type == &memblock.memory)
218 in_slab = &memblock_memory_in_slab;
219 else
220 in_slab = &memblock_reserved_in_slab;
221
222 /* Try to find some space for it.
223 *
224 * WARNING: We assume that either slab_is_available() and we use it or
225 * we use MEMBLOCK for allocations. That means that this is unsafe to
226 * use when bootmem is currently active (unless bootmem itself is
227 * implemented on top of MEMBLOCK which isn't the case yet)
228 *
229 * This should however not be an issue for now, as we currently only
230 * call into MEMBLOCK while it's still active, or much later when slab
231 * is active for memory hotplug operations
232 */
233 if (use_slab) {
234 new_array = kmalloc(new_size, GFP_KERNEL);
235 addr = new_array ? __pa(new_array) : 0;
236 } else {
237 /* only exclude range when trying to double reserved.regions */
238 if (type != &memblock.reserved)
239 new_area_start = new_area_size = 0;
240
241 addr = memblock_find_in_range(new_area_start + new_area_size,
242 memblock.current_limit,
243 new_alloc_size, PAGE_SIZE);
244 if (!addr && new_area_size)
245 addr = memblock_find_in_range(0,
246 min(new_area_start, memblock.current_limit),
247 new_alloc_size, PAGE_SIZE);
248
249 new_array = addr ? __va(addr) : NULL;
250 }
251 if (!addr) {
252 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
253 memblock_type_name(type), type->max, type->max * 2);
254 return -1;
255 }
256
257 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
258 memblock_type_name(type), type->max * 2, (u64)addr,
259 (u64)addr + new_size - 1);
260
261 /*
262 * Found space, we now need to move the array over before we add the
263 * reserved region since it may be our reserved array itself that is
264 * full.
265 */
266 memcpy(new_array, type->regions, old_size);
267 memset(new_array + type->max, 0, old_size);
268 old_array = type->regions;
269 type->regions = new_array;
270 type->max <<= 1;
271
272 /* Free old array. We needn't free it if the array is the static one */
273 if (*in_slab)
274 kfree(old_array);
275 else if (old_array != memblock_memory_init_regions &&
276 old_array != memblock_reserved_init_regions)
277 memblock_free(__pa(old_array), old_alloc_size);
278
279 /*
280 * Reserve the new array if that comes from the memblock. Otherwise, we
281 * needn't do it
282 */
283 if (!use_slab)
284 BUG_ON(memblock_reserve(addr, new_alloc_size));
285
286 /* Update slab flag */
287 *in_slab = use_slab;
288
289 return 0;
290 }
291
292 /**
293 * memblock_merge_regions - merge neighboring compatible regions
294 * @type: memblock type to scan
295 *
296 * Scan @type and merge neighboring compatible regions.
297 */
298 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
299 {
300 int i = 0;
301
302 /* cnt never goes below 1 */
303 while (i < type->cnt - 1) {
304 struct memblock_region *this = &type->regions[i];
305 struct memblock_region *next = &type->regions[i + 1];
306
307 if (this->base + this->size != next->base ||
308 memblock_get_region_node(this) !=
309 memblock_get_region_node(next)) {
310 BUG_ON(this->base + this->size > next->base);
311 i++;
312 continue;
313 }
314
315 this->size += next->size;
316 memmove(next, next + 1, (type->cnt - (i + 1)) * sizeof(*next));
317 type->cnt--;
318 }
319 }
320
321 /**
322 * memblock_insert_region - insert new memblock region
323 * @type: memblock type to insert into
324 * @idx: index for the insertion point
325 * @base: base address of the new region
326 * @size: size of the new region
327 *
328 * Insert new memblock region [@base,@base+@size) into @type at @idx.
329 * @type must already have extra room to accomodate the new region.
330 */
331 static void __init_memblock memblock_insert_region(struct memblock_type *type,
332 int idx, phys_addr_t base,
333 phys_addr_t size, int nid)
334 {
335 struct memblock_region *rgn = &type->regions[idx];
336
337 BUG_ON(type->cnt >= type->max);
338 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
339 rgn->base = base;
340 rgn->size = size;
341 memblock_set_region_node(rgn, nid);
342 type->cnt++;
343 type->total_size += size;
344 }
345
346 /**
347 * memblock_add_region - add new memblock region
348 * @type: memblock type to add new region into
349 * @base: base address of the new region
350 * @size: size of the new region
351 * @nid: nid of the new region
352 *
353 * Add new memblock region [@base,@base+@size) into @type. The new region
354 * is allowed to overlap with existing ones - overlaps don't affect already
355 * existing regions. @type is guaranteed to be minimal (all neighbouring
356 * compatible regions are merged) after the addition.
357 *
358 * RETURNS:
359 * 0 on success, -errno on failure.
360 */
361 static int __init_memblock memblock_add_region(struct memblock_type *type,
362 phys_addr_t base, phys_addr_t size, int nid)
363 {
364 bool insert = false;
365 phys_addr_t obase = base;
366 phys_addr_t end = base + memblock_cap_size(base, &size);
367 int i, nr_new;
368
369 if (!size)
370 return 0;
371
372 /* special case for empty array */
373 if (type->regions[0].size == 0) {
374 WARN_ON(type->cnt != 1 || type->total_size);
375 type->regions[0].base = base;
376 type->regions[0].size = size;
377 memblock_set_region_node(&type->regions[0], nid);
378 type->total_size = size;
379 return 0;
380 }
381 repeat:
382 /*
383 * The following is executed twice. Once with %false @insert and
384 * then with %true. The first counts the number of regions needed
385 * to accomodate the new area. The second actually inserts them.
386 */
387 base = obase;
388 nr_new = 0;
389
390 for (i = 0; i < type->cnt; i++) {
391 struct memblock_region *rgn = &type->regions[i];
392 phys_addr_t rbase = rgn->base;
393 phys_addr_t rend = rbase + rgn->size;
394
395 if (rbase >= end)
396 break;
397 if (rend <= base)
398 continue;
399 /*
400 * @rgn overlaps. If it separates the lower part of new
401 * area, insert that portion.
402 */
403 if (rbase > base) {
404 nr_new++;
405 if (insert)
406 memblock_insert_region(type, i++, base,
407 rbase - base, nid);
408 }
409 /* area below @rend is dealt with, forget about it */
410 base = min(rend, end);
411 }
412
413 /* insert the remaining portion */
414 if (base < end) {
415 nr_new++;
416 if (insert)
417 memblock_insert_region(type, i, base, end - base, nid);
418 }
419
420 /*
421 * If this was the first round, resize array and repeat for actual
422 * insertions; otherwise, merge and return.
423 */
424 if (!insert) {
425 while (type->cnt + nr_new > type->max)
426 if (memblock_double_array(type, obase, size) < 0)
427 return -ENOMEM;
428 insert = true;
429 goto repeat;
430 } else {
431 memblock_merge_regions(type);
432 return 0;
433 }
434 }
435
436 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
437 int nid)
438 {
439 return memblock_add_region(&memblock.memory, base, size, nid);
440 }
441
442 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
443 {
444 return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES);
445 }
446
447 /**
448 * memblock_isolate_range - isolate given range into disjoint memblocks
449 * @type: memblock type to isolate range for
450 * @base: base of range to isolate
451 * @size: size of range to isolate
452 * @start_rgn: out parameter for the start of isolated region
453 * @end_rgn: out parameter for the end of isolated region
454 *
455 * Walk @type and ensure that regions don't cross the boundaries defined by
456 * [@base,@base+@size). Crossing regions are split at the boundaries,
457 * which may create at most two more regions. The index of the first
458 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
459 *
460 * RETURNS:
461 * 0 on success, -errno on failure.
462 */
463 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
464 phys_addr_t base, phys_addr_t size,
465 int *start_rgn, int *end_rgn)
466 {
467 phys_addr_t end = base + memblock_cap_size(base, &size);
468 int i;
469
470 *start_rgn = *end_rgn = 0;
471
472 if (!size)
473 return 0;
474
475 /* we'll create at most two more regions */
476 while (type->cnt + 2 > type->max)
477 if (memblock_double_array(type, base, size) < 0)
478 return -ENOMEM;
479
480 for (i = 0; i < type->cnt; i++) {
481 struct memblock_region *rgn = &type->regions[i];
482 phys_addr_t rbase = rgn->base;
483 phys_addr_t rend = rbase + rgn->size;
484
485 if (rbase >= end)
486 break;
487 if (rend <= base)
488 continue;
489
490 if (rbase < base) {
491 /*
492 * @rgn intersects from below. Split and continue
493 * to process the next region - the new top half.
494 */
495 rgn->base = base;
496 rgn->size -= base - rbase;
497 type->total_size -= base - rbase;
498 memblock_insert_region(type, i, rbase, base - rbase,
499 memblock_get_region_node(rgn));
500 } else if (rend > end) {
501 /*
502 * @rgn intersects from above. Split and redo the
503 * current region - the new bottom half.
504 */
505 rgn->base = end;
506 rgn->size -= end - rbase;
507 type->total_size -= end - rbase;
508 memblock_insert_region(type, i--, rbase, end - rbase,
509 memblock_get_region_node(rgn));
510 } else {
511 /* @rgn is fully contained, record it */
512 if (!*end_rgn)
513 *start_rgn = i;
514 *end_rgn = i + 1;
515 }
516 }
517
518 return 0;
519 }
520
521 static int __init_memblock __memblock_remove(struct memblock_type *type,
522 phys_addr_t base, phys_addr_t size)
523 {
524 int start_rgn, end_rgn;
525 int i, ret;
526
527 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
528 if (ret)
529 return ret;
530
531 for (i = end_rgn - 1; i >= start_rgn; i--)
532 memblock_remove_region(type, i);
533 return 0;
534 }
535
536 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
537 {
538 return __memblock_remove(&memblock.memory, base, size);
539 }
540
541 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
542 {
543 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
544 (unsigned long long)base,
545 (unsigned long long)base + size,
546 (void *)_RET_IP_);
547
548 return __memblock_remove(&memblock.reserved, base, size);
549 }
550
551 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
552 {
553 struct memblock_type *_rgn = &memblock.reserved;
554
555 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
556 (unsigned long long)base,
557 (unsigned long long)base + size,
558 (void *)_RET_IP_);
559
560 return memblock_add_region(_rgn, base, size, MAX_NUMNODES);
561 }
562
563 /**
564 * __next_free_mem_range - next function for for_each_free_mem_range()
565 * @idx: pointer to u64 loop variable
566 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
567 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
568 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
569 * @out_nid: ptr to int for nid of the range, can be %NULL
570 *
571 * Find the first free area from *@idx which matches @nid, fill the out
572 * parameters, and update *@idx for the next iteration. The lower 32bit of
573 * *@idx contains index into memory region and the upper 32bit indexes the
574 * areas before each reserved region. For example, if reserved regions
575 * look like the following,
576 *
577 * 0:[0-16), 1:[32-48), 2:[128-130)
578 *
579 * The upper 32bit indexes the following regions.
580 *
581 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
582 *
583 * As both region arrays are sorted, the function advances the two indices
584 * in lockstep and returns each intersection.
585 */
586 void __init_memblock __next_free_mem_range(u64 *idx, int nid,
587 phys_addr_t *out_start,
588 phys_addr_t *out_end, int *out_nid)
589 {
590 struct memblock_type *mem = &memblock.memory;
591 struct memblock_type *rsv = &memblock.reserved;
592 int mi = *idx & 0xffffffff;
593 int ri = *idx >> 32;
594
595 for ( ; mi < mem->cnt; mi++) {
596 struct memblock_region *m = &mem->regions[mi];
597 phys_addr_t m_start = m->base;
598 phys_addr_t m_end = m->base + m->size;
599
600 /* only memory regions are associated with nodes, check it */
601 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
602 continue;
603
604 /* scan areas before each reservation for intersection */
605 for ( ; ri < rsv->cnt + 1; ri++) {
606 struct memblock_region *r = &rsv->regions[ri];
607 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
608 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
609
610 /* if ri advanced past mi, break out to advance mi */
611 if (r_start >= m_end)
612 break;
613 /* if the two regions intersect, we're done */
614 if (m_start < r_end) {
615 if (out_start)
616 *out_start = max(m_start, r_start);
617 if (out_end)
618 *out_end = min(m_end, r_end);
619 if (out_nid)
620 *out_nid = memblock_get_region_node(m);
621 /*
622 * The region which ends first is advanced
623 * for the next iteration.
624 */
625 if (m_end <= r_end)
626 mi++;
627 else
628 ri++;
629 *idx = (u32)mi | (u64)ri << 32;
630 return;
631 }
632 }
633 }
634
635 /* signal end of iteration */
636 *idx = ULLONG_MAX;
637 }
638
639 /**
640 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
641 * @idx: pointer to u64 loop variable
642 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
643 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
644 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
645 * @out_nid: ptr to int for nid of the range, can be %NULL
646 *
647 * Reverse of __next_free_mem_range().
648 */
649 void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
650 phys_addr_t *out_start,
651 phys_addr_t *out_end, int *out_nid)
652 {
653 struct memblock_type *mem = &memblock.memory;
654 struct memblock_type *rsv = &memblock.reserved;
655 int mi = *idx & 0xffffffff;
656 int ri = *idx >> 32;
657
658 if (*idx == (u64)ULLONG_MAX) {
659 mi = mem->cnt - 1;
660 ri = rsv->cnt;
661 }
662
663 for ( ; mi >= 0; mi--) {
664 struct memblock_region *m = &mem->regions[mi];
665 phys_addr_t m_start = m->base;
666 phys_addr_t m_end = m->base + m->size;
667
668 /* only memory regions are associated with nodes, check it */
669 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
670 continue;
671
672 /* scan areas before each reservation for intersection */
673 for ( ; ri >= 0; ri--) {
674 struct memblock_region *r = &rsv->regions[ri];
675 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
676 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
677
678 /* if ri advanced past mi, break out to advance mi */
679 if (r_end <= m_start)
680 break;
681 /* if the two regions intersect, we're done */
682 if (m_end > r_start) {
683 if (out_start)
684 *out_start = max(m_start, r_start);
685 if (out_end)
686 *out_end = min(m_end, r_end);
687 if (out_nid)
688 *out_nid = memblock_get_region_node(m);
689
690 if (m_start >= r_start)
691 mi--;
692 else
693 ri--;
694 *idx = (u32)mi | (u64)ri << 32;
695 return;
696 }
697 }
698 }
699
700 *idx = ULLONG_MAX;
701 }
702
703 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
704 /*
705 * Common iterator interface used to define for_each_mem_range().
706 */
707 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
708 unsigned long *out_start_pfn,
709 unsigned long *out_end_pfn, int *out_nid)
710 {
711 struct memblock_type *type = &memblock.memory;
712 struct memblock_region *r;
713
714 while (++*idx < type->cnt) {
715 r = &type->regions[*idx];
716
717 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
718 continue;
719 if (nid == MAX_NUMNODES || nid == r->nid)
720 break;
721 }
722 if (*idx >= type->cnt) {
723 *idx = -1;
724 return;
725 }
726
727 if (out_start_pfn)
728 *out_start_pfn = PFN_UP(r->base);
729 if (out_end_pfn)
730 *out_end_pfn = PFN_DOWN(r->base + r->size);
731 if (out_nid)
732 *out_nid = r->nid;
733 }
734
735 /**
736 * memblock_set_node - set node ID on memblock regions
737 * @base: base of area to set node ID for
738 * @size: size of area to set node ID for
739 * @nid: node ID to set
740 *
741 * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
742 * Regions which cross the area boundaries are split as necessary.
743 *
744 * RETURNS:
745 * 0 on success, -errno on failure.
746 */
747 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
748 int nid)
749 {
750 struct memblock_type *type = &memblock.memory;
751 int start_rgn, end_rgn;
752 int i, ret;
753
754 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
755 if (ret)
756 return ret;
757
758 for (i = start_rgn; i < end_rgn; i++)
759 type->regions[i].nid = nid;
760
761 memblock_merge_regions(type);
762 return 0;
763 }
764 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
765
766 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
767 phys_addr_t align, phys_addr_t max_addr,
768 int nid)
769 {
770 phys_addr_t found;
771
772 /* align @size to avoid excessive fragmentation on reserved array */
773 size = round_up(size, align);
774
775 found = memblock_find_in_range_node(0, max_addr, size, align, nid);
776 if (found && !memblock_reserve(found, size))
777 return found;
778
779 return 0;
780 }
781
782 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
783 {
784 return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
785 }
786
787 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
788 {
789 return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES);
790 }
791
792 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
793 {
794 phys_addr_t alloc;
795
796 alloc = __memblock_alloc_base(size, align, max_addr);
797
798 if (alloc == 0)
799 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
800 (unsigned long long) size, (unsigned long long) max_addr);
801
802 return alloc;
803 }
804
805 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
806 {
807 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
808 }
809
810 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
811 {
812 phys_addr_t res = memblock_alloc_nid(size, align, nid);
813
814 if (res)
815 return res;
816 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
817 }
818
819
820 /*
821 * Remaining API functions
822 */
823
824 phys_addr_t __init memblock_phys_mem_size(void)
825 {
826 return memblock.memory.total_size;
827 }
828
829 /* lowest address */
830 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
831 {
832 return memblock.memory.regions[0].base;
833 }
834
835 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
836 {
837 int idx = memblock.memory.cnt - 1;
838
839 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
840 }
841
842 void __init memblock_enforce_memory_limit(phys_addr_t limit)
843 {
844 unsigned long i;
845 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
846
847 if (!limit)
848 return;
849
850 /* find out max address */
851 for (i = 0; i < memblock.memory.cnt; i++) {
852 struct memblock_region *r = &memblock.memory.regions[i];
853
854 if (limit <= r->size) {
855 max_addr = r->base + limit;
856 break;
857 }
858 limit -= r->size;
859 }
860
861 /* truncate both memory and reserved regions */
862 __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
863 __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
864 }
865
866 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
867 {
868 unsigned int left = 0, right = type->cnt;
869
870 do {
871 unsigned int mid = (right + left) / 2;
872
873 if (addr < type->regions[mid].base)
874 right = mid;
875 else if (addr >= (type->regions[mid].base +
876 type->regions[mid].size))
877 left = mid + 1;
878 else
879 return mid;
880 } while (left < right);
881 return -1;
882 }
883
884 int __init memblock_is_reserved(phys_addr_t addr)
885 {
886 return memblock_search(&memblock.reserved, addr) != -1;
887 }
888
889 int __init_memblock memblock_is_memory(phys_addr_t addr)
890 {
891 return memblock_search(&memblock.memory, addr) != -1;
892 }
893
894 /**
895 * memblock_is_region_memory - check if a region is a subset of memory
896 * @base: base of region to check
897 * @size: size of region to check
898 *
899 * Check if the region [@base, @base+@size) is a subset of a memory block.
900 *
901 * RETURNS:
902 * 0 if false, non-zero if true
903 */
904 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
905 {
906 int idx = memblock_search(&memblock.memory, base);
907 phys_addr_t end = base + memblock_cap_size(base, &size);
908
909 if (idx == -1)
910 return 0;
911 return memblock.memory.regions[idx].base <= base &&
912 (memblock.memory.regions[idx].base +
913 memblock.memory.regions[idx].size) >= end;
914 }
915
916 /**
917 * memblock_is_region_reserved - check if a region intersects reserved memory
918 * @base: base of region to check
919 * @size: size of region to check
920 *
921 * Check if the region [@base, @base+@size) intersects a reserved memory block.
922 *
923 * RETURNS:
924 * 0 if false, non-zero if true
925 */
926 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
927 {
928 memblock_cap_size(base, &size);
929 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
930 }
931
932
933 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
934 {
935 memblock.current_limit = limit;
936 }
937
938 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
939 {
940 unsigned long long base, size;
941 int i;
942
943 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
944
945 for (i = 0; i < type->cnt; i++) {
946 struct memblock_region *rgn = &type->regions[i];
947 char nid_buf[32] = "";
948
949 base = rgn->base;
950 size = rgn->size;
951 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
952 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
953 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
954 memblock_get_region_node(rgn));
955 #endif
956 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
957 name, i, base, base + size - 1, size, nid_buf);
958 }
959 }
960
961 void __init_memblock __memblock_dump_all(void)
962 {
963 pr_info("MEMBLOCK configuration:\n");
964 pr_info(" memory size = %#llx reserved size = %#llx\n",
965 (unsigned long long)memblock.memory.total_size,
966 (unsigned long long)memblock.reserved.total_size);
967
968 memblock_dump(&memblock.memory, "memory");
969 memblock_dump(&memblock.reserved, "reserved");
970 }
971
972 void __init memblock_allow_resize(void)
973 {
974 memblock_can_resize = 1;
975 }
976
977 static int __init early_memblock(char *p)
978 {
979 if (p && strstr(p, "debug"))
980 memblock_debug = 1;
981 return 0;
982 }
983 early_param("memblock", early_memblock);
984
985 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
986
987 static int memblock_debug_show(struct seq_file *m, void *private)
988 {
989 struct memblock_type *type = m->private;
990 struct memblock_region *reg;
991 int i;
992
993 for (i = 0; i < type->cnt; i++) {
994 reg = &type->regions[i];
995 seq_printf(m, "%4d: ", i);
996 if (sizeof(phys_addr_t) == 4)
997 seq_printf(m, "0x%08lx..0x%08lx\n",
998 (unsigned long)reg->base,
999 (unsigned long)(reg->base + reg->size - 1));
1000 else
1001 seq_printf(m, "0x%016llx..0x%016llx\n",
1002 (unsigned long long)reg->base,
1003 (unsigned long long)(reg->base + reg->size - 1));
1004
1005 }
1006 return 0;
1007 }
1008
1009 static int memblock_debug_open(struct inode *inode, struct file *file)
1010 {
1011 return single_open(file, memblock_debug_show, inode->i_private);
1012 }
1013
1014 static const struct file_operations memblock_debug_fops = {
1015 .open = memblock_debug_open,
1016 .read = seq_read,
1017 .llseek = seq_lseek,
1018 .release = single_release,
1019 };
1020
1021 static int __init memblock_init_debugfs(void)
1022 {
1023 struct dentry *root = debugfs_create_dir("memblock", NULL);
1024 if (!root)
1025 return -ENXIO;
1026 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1027 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1028
1029 return 0;
1030 }
1031 __initcall(memblock_init_debugfs);
1032
1033 #endif /* CONFIG_DEBUG_FS */
This page took 0.052789 seconds and 5 git commands to generate.