spi: pxa2xx: Constify ACPI device ids
[deliverable/linux.git] / mm / memblock.c
1 /*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22
23 #include <asm-generic/sections.h>
24 #include <linux/io.h>
25
26 #include "internal.h"
27
28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
32 #endif
33
34 struct memblock memblock __initdata_memblock = {
35 .memory.regions = memblock_memory_init_regions,
36 .memory.cnt = 1, /* empty dummy entry */
37 .memory.max = INIT_MEMBLOCK_REGIONS,
38
39 .reserved.regions = memblock_reserved_init_regions,
40 .reserved.cnt = 1, /* empty dummy entry */
41 .reserved.max = INIT_MEMBLOCK_REGIONS,
42
43 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
44 .physmem.regions = memblock_physmem_init_regions,
45 .physmem.cnt = 1, /* empty dummy entry */
46 .physmem.max = INIT_PHYSMEM_REGIONS,
47 #endif
48
49 .bottom_up = false,
50 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
51 };
52
53 int memblock_debug __initdata_memblock;
54 #ifdef CONFIG_MOVABLE_NODE
55 bool movable_node_enabled __initdata_memblock = false;
56 #endif
57 static int memblock_can_resize __initdata_memblock;
58 static int memblock_memory_in_slab __initdata_memblock = 0;
59 static int memblock_reserved_in_slab __initdata_memblock = 0;
60
61 /* inline so we don't get a warning when pr_debug is compiled out */
62 static __init_memblock const char *
63 memblock_type_name(struct memblock_type *type)
64 {
65 if (type == &memblock.memory)
66 return "memory";
67 else if (type == &memblock.reserved)
68 return "reserved";
69 else
70 return "unknown";
71 }
72
73 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
74 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
75 {
76 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
77 }
78
79 /*
80 * Address comparison utilities
81 */
82 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
83 phys_addr_t base2, phys_addr_t size2)
84 {
85 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
86 }
87
88 static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
89 phys_addr_t base, phys_addr_t size)
90 {
91 unsigned long i;
92
93 for (i = 0; i < type->cnt; i++) {
94 phys_addr_t rgnbase = type->regions[i].base;
95 phys_addr_t rgnsize = type->regions[i].size;
96 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
97 break;
98 }
99
100 return (i < type->cnt) ? i : -1;
101 }
102
103 /*
104 * __memblock_find_range_bottom_up - find free area utility in bottom-up
105 * @start: start of candidate range
106 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
107 * @size: size of free area to find
108 * @align: alignment of free area to find
109 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
110 *
111 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
112 *
113 * RETURNS:
114 * Found address on success, 0 on failure.
115 */
116 static phys_addr_t __init_memblock
117 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
118 phys_addr_t size, phys_addr_t align, int nid)
119 {
120 phys_addr_t this_start, this_end, cand;
121 u64 i;
122
123 for_each_free_mem_range(i, nid, &this_start, &this_end, NULL) {
124 this_start = clamp(this_start, start, end);
125 this_end = clamp(this_end, start, end);
126
127 cand = round_up(this_start, align);
128 if (cand < this_end && this_end - cand >= size)
129 return cand;
130 }
131
132 return 0;
133 }
134
135 /**
136 * __memblock_find_range_top_down - find free area utility, in top-down
137 * @start: start of candidate range
138 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
139 * @size: size of free area to find
140 * @align: alignment of free area to find
141 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
142 *
143 * Utility called from memblock_find_in_range_node(), find free area top-down.
144 *
145 * RETURNS:
146 * Found address on success, 0 on failure.
147 */
148 static phys_addr_t __init_memblock
149 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
150 phys_addr_t size, phys_addr_t align, int nid)
151 {
152 phys_addr_t this_start, this_end, cand;
153 u64 i;
154
155 for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
156 this_start = clamp(this_start, start, end);
157 this_end = clamp(this_end, start, end);
158
159 if (this_end < size)
160 continue;
161
162 cand = round_down(this_end - size, align);
163 if (cand >= this_start)
164 return cand;
165 }
166
167 return 0;
168 }
169
170 /**
171 * memblock_find_in_range_node - find free area in given range and node
172 * @size: size of free area to find
173 * @align: alignment of free area to find
174 * @start: start of candidate range
175 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
176 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
177 *
178 * Find @size free area aligned to @align in the specified range and node.
179 *
180 * When allocation direction is bottom-up, the @start should be greater
181 * than the end of the kernel image. Otherwise, it will be trimmed. The
182 * reason is that we want the bottom-up allocation just near the kernel
183 * image so it is highly likely that the allocated memory and the kernel
184 * will reside in the same node.
185 *
186 * If bottom-up allocation failed, will try to allocate memory top-down.
187 *
188 * RETURNS:
189 * Found address on success, 0 on failure.
190 */
191 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
192 phys_addr_t align, phys_addr_t start,
193 phys_addr_t end, int nid)
194 {
195 phys_addr_t kernel_end, ret;
196
197 /* pump up @end */
198 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
199 end = memblock.current_limit;
200
201 /* avoid allocating the first page */
202 start = max_t(phys_addr_t, start, PAGE_SIZE);
203 end = max(start, end);
204 kernel_end = __pa_symbol(_end);
205
206 /*
207 * try bottom-up allocation only when bottom-up mode
208 * is set and @end is above the kernel image.
209 */
210 if (memblock_bottom_up() && end > kernel_end) {
211 phys_addr_t bottom_up_start;
212
213 /* make sure we will allocate above the kernel */
214 bottom_up_start = max(start, kernel_end);
215
216 /* ok, try bottom-up allocation first */
217 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
218 size, align, nid);
219 if (ret)
220 return ret;
221
222 /*
223 * we always limit bottom-up allocation above the kernel,
224 * but top-down allocation doesn't have the limit, so
225 * retrying top-down allocation may succeed when bottom-up
226 * allocation failed.
227 *
228 * bottom-up allocation is expected to be fail very rarely,
229 * so we use WARN_ONCE() here to see the stack trace if
230 * fail happens.
231 */
232 WARN_ONCE(1, "memblock: bottom-up allocation failed, "
233 "memory hotunplug may be affected\n");
234 }
235
236 return __memblock_find_range_top_down(start, end, size, align, nid);
237 }
238
239 /**
240 * memblock_find_in_range - find free area in given range
241 * @start: start of candidate range
242 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
243 * @size: size of free area to find
244 * @align: alignment of free area to find
245 *
246 * Find @size free area aligned to @align in the specified range.
247 *
248 * RETURNS:
249 * Found address on success, 0 on failure.
250 */
251 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
252 phys_addr_t end, phys_addr_t size,
253 phys_addr_t align)
254 {
255 return memblock_find_in_range_node(size, align, start, end,
256 NUMA_NO_NODE);
257 }
258
259 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
260 {
261 type->total_size -= type->regions[r].size;
262 memmove(&type->regions[r], &type->regions[r + 1],
263 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
264 type->cnt--;
265
266 /* Special case for empty arrays */
267 if (type->cnt == 0) {
268 WARN_ON(type->total_size != 0);
269 type->cnt = 1;
270 type->regions[0].base = 0;
271 type->regions[0].size = 0;
272 type->regions[0].flags = 0;
273 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
274 }
275 }
276
277 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
278
279 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
280 phys_addr_t *addr)
281 {
282 if (memblock.reserved.regions == memblock_reserved_init_regions)
283 return 0;
284
285 *addr = __pa(memblock.reserved.regions);
286
287 return PAGE_ALIGN(sizeof(struct memblock_region) *
288 memblock.reserved.max);
289 }
290
291 phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
292 phys_addr_t *addr)
293 {
294 if (memblock.memory.regions == memblock_memory_init_regions)
295 return 0;
296
297 *addr = __pa(memblock.memory.regions);
298
299 return PAGE_ALIGN(sizeof(struct memblock_region) *
300 memblock.memory.max);
301 }
302
303 #endif
304
305 /**
306 * memblock_double_array - double the size of the memblock regions array
307 * @type: memblock type of the regions array being doubled
308 * @new_area_start: starting address of memory range to avoid overlap with
309 * @new_area_size: size of memory range to avoid overlap with
310 *
311 * Double the size of the @type regions array. If memblock is being used to
312 * allocate memory for a new reserved regions array and there is a previously
313 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
314 * waiting to be reserved, ensure the memory used by the new array does
315 * not overlap.
316 *
317 * RETURNS:
318 * 0 on success, -1 on failure.
319 */
320 static int __init_memblock memblock_double_array(struct memblock_type *type,
321 phys_addr_t new_area_start,
322 phys_addr_t new_area_size)
323 {
324 struct memblock_region *new_array, *old_array;
325 phys_addr_t old_alloc_size, new_alloc_size;
326 phys_addr_t old_size, new_size, addr;
327 int use_slab = slab_is_available();
328 int *in_slab;
329
330 /* We don't allow resizing until we know about the reserved regions
331 * of memory that aren't suitable for allocation
332 */
333 if (!memblock_can_resize)
334 return -1;
335
336 /* Calculate new doubled size */
337 old_size = type->max * sizeof(struct memblock_region);
338 new_size = old_size << 1;
339 /*
340 * We need to allocated new one align to PAGE_SIZE,
341 * so we can free them completely later.
342 */
343 old_alloc_size = PAGE_ALIGN(old_size);
344 new_alloc_size = PAGE_ALIGN(new_size);
345
346 /* Retrieve the slab flag */
347 if (type == &memblock.memory)
348 in_slab = &memblock_memory_in_slab;
349 else
350 in_slab = &memblock_reserved_in_slab;
351
352 /* Try to find some space for it.
353 *
354 * WARNING: We assume that either slab_is_available() and we use it or
355 * we use MEMBLOCK for allocations. That means that this is unsafe to
356 * use when bootmem is currently active (unless bootmem itself is
357 * implemented on top of MEMBLOCK which isn't the case yet)
358 *
359 * This should however not be an issue for now, as we currently only
360 * call into MEMBLOCK while it's still active, or much later when slab
361 * is active for memory hotplug operations
362 */
363 if (use_slab) {
364 new_array = kmalloc(new_size, GFP_KERNEL);
365 addr = new_array ? __pa(new_array) : 0;
366 } else {
367 /* only exclude range when trying to double reserved.regions */
368 if (type != &memblock.reserved)
369 new_area_start = new_area_size = 0;
370
371 addr = memblock_find_in_range(new_area_start + new_area_size,
372 memblock.current_limit,
373 new_alloc_size, PAGE_SIZE);
374 if (!addr && new_area_size)
375 addr = memblock_find_in_range(0,
376 min(new_area_start, memblock.current_limit),
377 new_alloc_size, PAGE_SIZE);
378
379 new_array = addr ? __va(addr) : NULL;
380 }
381 if (!addr) {
382 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
383 memblock_type_name(type), type->max, type->max * 2);
384 return -1;
385 }
386
387 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
388 memblock_type_name(type), type->max * 2, (u64)addr,
389 (u64)addr + new_size - 1);
390
391 /*
392 * Found space, we now need to move the array over before we add the
393 * reserved region since it may be our reserved array itself that is
394 * full.
395 */
396 memcpy(new_array, type->regions, old_size);
397 memset(new_array + type->max, 0, old_size);
398 old_array = type->regions;
399 type->regions = new_array;
400 type->max <<= 1;
401
402 /* Free old array. We needn't free it if the array is the static one */
403 if (*in_slab)
404 kfree(old_array);
405 else if (old_array != memblock_memory_init_regions &&
406 old_array != memblock_reserved_init_regions)
407 memblock_free(__pa(old_array), old_alloc_size);
408
409 /*
410 * Reserve the new array if that comes from the memblock. Otherwise, we
411 * needn't do it
412 */
413 if (!use_slab)
414 BUG_ON(memblock_reserve(addr, new_alloc_size));
415
416 /* Update slab flag */
417 *in_slab = use_slab;
418
419 return 0;
420 }
421
422 /**
423 * memblock_merge_regions - merge neighboring compatible regions
424 * @type: memblock type to scan
425 *
426 * Scan @type and merge neighboring compatible regions.
427 */
428 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
429 {
430 int i = 0;
431
432 /* cnt never goes below 1 */
433 while (i < type->cnt - 1) {
434 struct memblock_region *this = &type->regions[i];
435 struct memblock_region *next = &type->regions[i + 1];
436
437 if (this->base + this->size != next->base ||
438 memblock_get_region_node(this) !=
439 memblock_get_region_node(next) ||
440 this->flags != next->flags) {
441 BUG_ON(this->base + this->size > next->base);
442 i++;
443 continue;
444 }
445
446 this->size += next->size;
447 /* move forward from next + 1, index of which is i + 2 */
448 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
449 type->cnt--;
450 }
451 }
452
453 /**
454 * memblock_insert_region - insert new memblock region
455 * @type: memblock type to insert into
456 * @idx: index for the insertion point
457 * @base: base address of the new region
458 * @size: size of the new region
459 * @nid: node id of the new region
460 * @flags: flags of the new region
461 *
462 * Insert new memblock region [@base,@base+@size) into @type at @idx.
463 * @type must already have extra room to accomodate the new region.
464 */
465 static void __init_memblock memblock_insert_region(struct memblock_type *type,
466 int idx, phys_addr_t base,
467 phys_addr_t size,
468 int nid, unsigned long flags)
469 {
470 struct memblock_region *rgn = &type->regions[idx];
471
472 BUG_ON(type->cnt >= type->max);
473 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
474 rgn->base = base;
475 rgn->size = size;
476 rgn->flags = flags;
477 memblock_set_region_node(rgn, nid);
478 type->cnt++;
479 type->total_size += size;
480 }
481
482 /**
483 * memblock_add_range - add new memblock region
484 * @type: memblock type to add new region into
485 * @base: base address of the new region
486 * @size: size of the new region
487 * @nid: nid of the new region
488 * @flags: flags of the new region
489 *
490 * Add new memblock region [@base,@base+@size) into @type. The new region
491 * is allowed to overlap with existing ones - overlaps don't affect already
492 * existing regions. @type is guaranteed to be minimal (all neighbouring
493 * compatible regions are merged) after the addition.
494 *
495 * RETURNS:
496 * 0 on success, -errno on failure.
497 */
498 int __init_memblock memblock_add_range(struct memblock_type *type,
499 phys_addr_t base, phys_addr_t size,
500 int nid, unsigned long flags)
501 {
502 bool insert = false;
503 phys_addr_t obase = base;
504 phys_addr_t end = base + memblock_cap_size(base, &size);
505 int i, nr_new;
506
507 if (!size)
508 return 0;
509
510 /* special case for empty array */
511 if (type->regions[0].size == 0) {
512 WARN_ON(type->cnt != 1 || type->total_size);
513 type->regions[0].base = base;
514 type->regions[0].size = size;
515 type->regions[0].flags = flags;
516 memblock_set_region_node(&type->regions[0], nid);
517 type->total_size = size;
518 return 0;
519 }
520 repeat:
521 /*
522 * The following is executed twice. Once with %false @insert and
523 * then with %true. The first counts the number of regions needed
524 * to accomodate the new area. The second actually inserts them.
525 */
526 base = obase;
527 nr_new = 0;
528
529 for (i = 0; i < type->cnt; i++) {
530 struct memblock_region *rgn = &type->regions[i];
531 phys_addr_t rbase = rgn->base;
532 phys_addr_t rend = rbase + rgn->size;
533
534 if (rbase >= end)
535 break;
536 if (rend <= base)
537 continue;
538 /*
539 * @rgn overlaps. If it separates the lower part of new
540 * area, insert that portion.
541 */
542 if (rbase > base) {
543 nr_new++;
544 if (insert)
545 memblock_insert_region(type, i++, base,
546 rbase - base, nid,
547 flags);
548 }
549 /* area below @rend is dealt with, forget about it */
550 base = min(rend, end);
551 }
552
553 /* insert the remaining portion */
554 if (base < end) {
555 nr_new++;
556 if (insert)
557 memblock_insert_region(type, i, base, end - base,
558 nid, flags);
559 }
560
561 /*
562 * If this was the first round, resize array and repeat for actual
563 * insertions; otherwise, merge and return.
564 */
565 if (!insert) {
566 while (type->cnt + nr_new > type->max)
567 if (memblock_double_array(type, obase, size) < 0)
568 return -ENOMEM;
569 insert = true;
570 goto repeat;
571 } else {
572 memblock_merge_regions(type);
573 return 0;
574 }
575 }
576
577 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
578 int nid)
579 {
580 return memblock_add_range(&memblock.memory, base, size, nid, 0);
581 }
582
583 static int __init_memblock memblock_add_region(phys_addr_t base,
584 phys_addr_t size,
585 int nid,
586 unsigned long flags)
587 {
588 struct memblock_type *_rgn = &memblock.memory;
589
590 memblock_dbg("memblock_add: [%#016llx-%#016llx] flags %#02lx %pF\n",
591 (unsigned long long)base,
592 (unsigned long long)base + size - 1,
593 flags, (void *)_RET_IP_);
594
595 return memblock_add_range(_rgn, base, size, nid, flags);
596 }
597
598 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
599 {
600 return memblock_add_region(base, size, MAX_NUMNODES, 0);
601 }
602
603 /**
604 * memblock_isolate_range - isolate given range into disjoint memblocks
605 * @type: memblock type to isolate range for
606 * @base: base of range to isolate
607 * @size: size of range to isolate
608 * @start_rgn: out parameter for the start of isolated region
609 * @end_rgn: out parameter for the end of isolated region
610 *
611 * Walk @type and ensure that regions don't cross the boundaries defined by
612 * [@base,@base+@size). Crossing regions are split at the boundaries,
613 * which may create at most two more regions. The index of the first
614 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
615 *
616 * RETURNS:
617 * 0 on success, -errno on failure.
618 */
619 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
620 phys_addr_t base, phys_addr_t size,
621 int *start_rgn, int *end_rgn)
622 {
623 phys_addr_t end = base + memblock_cap_size(base, &size);
624 int i;
625
626 *start_rgn = *end_rgn = 0;
627
628 if (!size)
629 return 0;
630
631 /* we'll create at most two more regions */
632 while (type->cnt + 2 > type->max)
633 if (memblock_double_array(type, base, size) < 0)
634 return -ENOMEM;
635
636 for (i = 0; i < type->cnt; i++) {
637 struct memblock_region *rgn = &type->regions[i];
638 phys_addr_t rbase = rgn->base;
639 phys_addr_t rend = rbase + rgn->size;
640
641 if (rbase >= end)
642 break;
643 if (rend <= base)
644 continue;
645
646 if (rbase < base) {
647 /*
648 * @rgn intersects from below. Split and continue
649 * to process the next region - the new top half.
650 */
651 rgn->base = base;
652 rgn->size -= base - rbase;
653 type->total_size -= base - rbase;
654 memblock_insert_region(type, i, rbase, base - rbase,
655 memblock_get_region_node(rgn),
656 rgn->flags);
657 } else if (rend > end) {
658 /*
659 * @rgn intersects from above. Split and redo the
660 * current region - the new bottom half.
661 */
662 rgn->base = end;
663 rgn->size -= end - rbase;
664 type->total_size -= end - rbase;
665 memblock_insert_region(type, i--, rbase, end - rbase,
666 memblock_get_region_node(rgn),
667 rgn->flags);
668 } else {
669 /* @rgn is fully contained, record it */
670 if (!*end_rgn)
671 *start_rgn = i;
672 *end_rgn = i + 1;
673 }
674 }
675
676 return 0;
677 }
678
679 int __init_memblock memblock_remove_range(struct memblock_type *type,
680 phys_addr_t base, phys_addr_t size)
681 {
682 int start_rgn, end_rgn;
683 int i, ret;
684
685 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
686 if (ret)
687 return ret;
688
689 for (i = end_rgn - 1; i >= start_rgn; i--)
690 memblock_remove_region(type, i);
691 return 0;
692 }
693
694 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
695 {
696 return memblock_remove_range(&memblock.memory, base, size);
697 }
698
699
700 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
701 {
702 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
703 (unsigned long long)base,
704 (unsigned long long)base + size - 1,
705 (void *)_RET_IP_);
706
707 kmemleak_free_part(__va(base), size);
708 return memblock_remove_range(&memblock.reserved, base, size);
709 }
710
711 static int __init_memblock memblock_reserve_region(phys_addr_t base,
712 phys_addr_t size,
713 int nid,
714 unsigned long flags)
715 {
716 struct memblock_type *type = &memblock.reserved;
717
718 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
719 (unsigned long long)base,
720 (unsigned long long)base + size - 1,
721 flags, (void *)_RET_IP_);
722
723 return memblock_add_range(type, base, size, nid, flags);
724 }
725
726 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
727 {
728 return memblock_reserve_region(base, size, MAX_NUMNODES, 0);
729 }
730
731 /**
732 *
733 * This function isolates region [@base, @base + @size), and sets/clears flag
734 *
735 * Return 0 on succees, -errno on failure.
736 */
737 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
738 phys_addr_t size, int set, int flag)
739 {
740 struct memblock_type *type = &memblock.memory;
741 int i, ret, start_rgn, end_rgn;
742
743 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
744 if (ret)
745 return ret;
746
747 for (i = start_rgn; i < end_rgn; i++)
748 if (set)
749 memblock_set_region_flags(&type->regions[i], flag);
750 else
751 memblock_clear_region_flags(&type->regions[i], flag);
752
753 memblock_merge_regions(type);
754 return 0;
755 }
756
757 /**
758 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
759 * @base: the base phys addr of the region
760 * @size: the size of the region
761 *
762 * Return 0 on succees, -errno on failure.
763 */
764 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
765 {
766 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
767 }
768
769 /**
770 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
771 * @base: the base phys addr of the region
772 * @size: the size of the region
773 *
774 * Return 0 on succees, -errno on failure.
775 */
776 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
777 {
778 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
779 }
780
781 /**
782 * __next__mem_range - next function for for_each_free_mem_range() etc.
783 * @idx: pointer to u64 loop variable
784 * @nid: node selector, %NUMA_NO_NODE for all nodes
785 * @type_a: pointer to memblock_type from where the range is taken
786 * @type_b: pointer to memblock_type which excludes memory from being taken
787 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
788 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
789 * @out_nid: ptr to int for nid of the range, can be %NULL
790 *
791 * Find the first area from *@idx which matches @nid, fill the out
792 * parameters, and update *@idx for the next iteration. The lower 32bit of
793 * *@idx contains index into type_a and the upper 32bit indexes the
794 * areas before each region in type_b. For example, if type_b regions
795 * look like the following,
796 *
797 * 0:[0-16), 1:[32-48), 2:[128-130)
798 *
799 * The upper 32bit indexes the following regions.
800 *
801 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
802 *
803 * As both region arrays are sorted, the function advances the two indices
804 * in lockstep and returns each intersection.
805 */
806 void __init_memblock __next_mem_range(u64 *idx, int nid,
807 struct memblock_type *type_a,
808 struct memblock_type *type_b,
809 phys_addr_t *out_start,
810 phys_addr_t *out_end, int *out_nid)
811 {
812 int idx_a = *idx & 0xffffffff;
813 int idx_b = *idx >> 32;
814
815 if (WARN_ONCE(nid == MAX_NUMNODES,
816 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
817 nid = NUMA_NO_NODE;
818
819 for (; idx_a < type_a->cnt; idx_a++) {
820 struct memblock_region *m = &type_a->regions[idx_a];
821
822 phys_addr_t m_start = m->base;
823 phys_addr_t m_end = m->base + m->size;
824 int m_nid = memblock_get_region_node(m);
825
826 /* only memory regions are associated with nodes, check it */
827 if (nid != NUMA_NO_NODE && nid != m_nid)
828 continue;
829
830 /* skip hotpluggable memory regions if needed */
831 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
832 continue;
833
834 if (!type_b) {
835 if (out_start)
836 *out_start = m_start;
837 if (out_end)
838 *out_end = m_end;
839 if (out_nid)
840 *out_nid = m_nid;
841 idx_a++;
842 *idx = (u32)idx_a | (u64)idx_b << 32;
843 return;
844 }
845
846 /* scan areas before each reservation */
847 for (; idx_b < type_b->cnt + 1; idx_b++) {
848 struct memblock_region *r;
849 phys_addr_t r_start;
850 phys_addr_t r_end;
851
852 r = &type_b->regions[idx_b];
853 r_start = idx_b ? r[-1].base + r[-1].size : 0;
854 r_end = idx_b < type_b->cnt ?
855 r->base : ULLONG_MAX;
856
857 /*
858 * if idx_b advanced past idx_a,
859 * break out to advance idx_a
860 */
861 if (r_start >= m_end)
862 break;
863 /* if the two regions intersect, we're done */
864 if (m_start < r_end) {
865 if (out_start)
866 *out_start =
867 max(m_start, r_start);
868 if (out_end)
869 *out_end = min(m_end, r_end);
870 if (out_nid)
871 *out_nid = m_nid;
872 /*
873 * The region which ends first is
874 * advanced for the next iteration.
875 */
876 if (m_end <= r_end)
877 idx_a++;
878 else
879 idx_b++;
880 *idx = (u32)idx_a | (u64)idx_b << 32;
881 return;
882 }
883 }
884 }
885
886 /* signal end of iteration */
887 *idx = ULLONG_MAX;
888 }
889
890 /**
891 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
892 *
893 * Finds the next range from type_a which is not marked as unsuitable
894 * in type_b.
895 *
896 * @idx: pointer to u64 loop variable
897 * @nid: nid: node selector, %NUMA_NO_NODE for all nodes
898 * @type_a: pointer to memblock_type from where the range is taken
899 * @type_b: pointer to memblock_type which excludes memory from being taken
900 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
901 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
902 * @out_nid: ptr to int for nid of the range, can be %NULL
903 *
904 * Reverse of __next_mem_range().
905 */
906 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
907 struct memblock_type *type_a,
908 struct memblock_type *type_b,
909 phys_addr_t *out_start,
910 phys_addr_t *out_end, int *out_nid)
911 {
912 int idx_a = *idx & 0xffffffff;
913 int idx_b = *idx >> 32;
914
915 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
916 nid = NUMA_NO_NODE;
917
918 if (*idx == (u64)ULLONG_MAX) {
919 idx_a = type_a->cnt - 1;
920 idx_b = type_b->cnt;
921 }
922
923 for (; idx_a >= 0; idx_a--) {
924 struct memblock_region *m = &type_a->regions[idx_a];
925
926 phys_addr_t m_start = m->base;
927 phys_addr_t m_end = m->base + m->size;
928 int m_nid = memblock_get_region_node(m);
929
930 /* only memory regions are associated with nodes, check it */
931 if (nid != NUMA_NO_NODE && nid != m_nid)
932 continue;
933
934 /* skip hotpluggable memory regions if needed */
935 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
936 continue;
937
938 if (!type_b) {
939 if (out_start)
940 *out_start = m_start;
941 if (out_end)
942 *out_end = m_end;
943 if (out_nid)
944 *out_nid = m_nid;
945 idx_a++;
946 *idx = (u32)idx_a | (u64)idx_b << 32;
947 return;
948 }
949
950 /* scan areas before each reservation */
951 for (; idx_b >= 0; idx_b--) {
952 struct memblock_region *r;
953 phys_addr_t r_start;
954 phys_addr_t r_end;
955
956 r = &type_b->regions[idx_b];
957 r_start = idx_b ? r[-1].base + r[-1].size : 0;
958 r_end = idx_b < type_b->cnt ?
959 r->base : ULLONG_MAX;
960 /*
961 * if idx_b advanced past idx_a,
962 * break out to advance idx_a
963 */
964
965 if (r_end <= m_start)
966 break;
967 /* if the two regions intersect, we're done */
968 if (m_end > r_start) {
969 if (out_start)
970 *out_start = max(m_start, r_start);
971 if (out_end)
972 *out_end = min(m_end, r_end);
973 if (out_nid)
974 *out_nid = m_nid;
975 if (m_start >= r_start)
976 idx_a--;
977 else
978 idx_b--;
979 *idx = (u32)idx_a | (u64)idx_b << 32;
980 return;
981 }
982 }
983 }
984 /* signal end of iteration */
985 *idx = ULLONG_MAX;
986 }
987
988 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
989 /*
990 * Common iterator interface used to define for_each_mem_range().
991 */
992 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
993 unsigned long *out_start_pfn,
994 unsigned long *out_end_pfn, int *out_nid)
995 {
996 struct memblock_type *type = &memblock.memory;
997 struct memblock_region *r;
998
999 while (++*idx < type->cnt) {
1000 r = &type->regions[*idx];
1001
1002 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1003 continue;
1004 if (nid == MAX_NUMNODES || nid == r->nid)
1005 break;
1006 }
1007 if (*idx >= type->cnt) {
1008 *idx = -1;
1009 return;
1010 }
1011
1012 if (out_start_pfn)
1013 *out_start_pfn = PFN_UP(r->base);
1014 if (out_end_pfn)
1015 *out_end_pfn = PFN_DOWN(r->base + r->size);
1016 if (out_nid)
1017 *out_nid = r->nid;
1018 }
1019
1020 /**
1021 * memblock_set_node - set node ID on memblock regions
1022 * @base: base of area to set node ID for
1023 * @size: size of area to set node ID for
1024 * @type: memblock type to set node ID for
1025 * @nid: node ID to set
1026 *
1027 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1028 * Regions which cross the area boundaries are split as necessary.
1029 *
1030 * RETURNS:
1031 * 0 on success, -errno on failure.
1032 */
1033 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1034 struct memblock_type *type, int nid)
1035 {
1036 int start_rgn, end_rgn;
1037 int i, ret;
1038
1039 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1040 if (ret)
1041 return ret;
1042
1043 for (i = start_rgn; i < end_rgn; i++)
1044 memblock_set_region_node(&type->regions[i], nid);
1045
1046 memblock_merge_regions(type);
1047 return 0;
1048 }
1049 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1050
1051 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1052 phys_addr_t align, phys_addr_t start,
1053 phys_addr_t end, int nid)
1054 {
1055 phys_addr_t found;
1056
1057 if (!align)
1058 align = SMP_CACHE_BYTES;
1059
1060 found = memblock_find_in_range_node(size, align, start, end, nid);
1061 if (found && !memblock_reserve(found, size)) {
1062 /*
1063 * The min_count is set to 0 so that memblock allocations are
1064 * never reported as leaks.
1065 */
1066 kmemleak_alloc(__va(found), size, 0, 0);
1067 return found;
1068 }
1069 return 0;
1070 }
1071
1072 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1073 phys_addr_t start, phys_addr_t end)
1074 {
1075 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE);
1076 }
1077
1078 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1079 phys_addr_t align, phys_addr_t max_addr,
1080 int nid)
1081 {
1082 return memblock_alloc_range_nid(size, align, 0, max_addr, nid);
1083 }
1084
1085 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1086 {
1087 return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
1088 }
1089
1090 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1091 {
1092 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE);
1093 }
1094
1095 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1096 {
1097 phys_addr_t alloc;
1098
1099 alloc = __memblock_alloc_base(size, align, max_addr);
1100
1101 if (alloc == 0)
1102 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1103 (unsigned long long) size, (unsigned long long) max_addr);
1104
1105 return alloc;
1106 }
1107
1108 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1109 {
1110 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1111 }
1112
1113 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1114 {
1115 phys_addr_t res = memblock_alloc_nid(size, align, nid);
1116
1117 if (res)
1118 return res;
1119 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1120 }
1121
1122 /**
1123 * memblock_virt_alloc_internal - allocate boot memory block
1124 * @size: size of memory block to be allocated in bytes
1125 * @align: alignment of the region and block's size
1126 * @min_addr: the lower bound of the memory region to allocate (phys address)
1127 * @max_addr: the upper bound of the memory region to allocate (phys address)
1128 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1129 *
1130 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1131 * will fall back to memory below @min_addr. Also, allocation may fall back
1132 * to any node in the system if the specified node can not
1133 * hold the requested memory.
1134 *
1135 * The allocation is performed from memory region limited by
1136 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1137 *
1138 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1139 *
1140 * The phys address of allocated boot memory block is converted to virtual and
1141 * allocated memory is reset to 0.
1142 *
1143 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1144 * allocated boot memory block, so that it is never reported as leaks.
1145 *
1146 * RETURNS:
1147 * Virtual address of allocated memory block on success, NULL on failure.
1148 */
1149 static void * __init memblock_virt_alloc_internal(
1150 phys_addr_t size, phys_addr_t align,
1151 phys_addr_t min_addr, phys_addr_t max_addr,
1152 int nid)
1153 {
1154 phys_addr_t alloc;
1155 void *ptr;
1156
1157 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1158 nid = NUMA_NO_NODE;
1159
1160 /*
1161 * Detect any accidental use of these APIs after slab is ready, as at
1162 * this moment memblock may be deinitialized already and its
1163 * internal data may be destroyed (after execution of free_all_bootmem)
1164 */
1165 if (WARN_ON_ONCE(slab_is_available()))
1166 return kzalloc_node(size, GFP_NOWAIT, nid);
1167
1168 if (!align)
1169 align = SMP_CACHE_BYTES;
1170
1171 if (max_addr > memblock.current_limit)
1172 max_addr = memblock.current_limit;
1173
1174 again:
1175 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1176 nid);
1177 if (alloc)
1178 goto done;
1179
1180 if (nid != NUMA_NO_NODE) {
1181 alloc = memblock_find_in_range_node(size, align, min_addr,
1182 max_addr, NUMA_NO_NODE);
1183 if (alloc)
1184 goto done;
1185 }
1186
1187 if (min_addr) {
1188 min_addr = 0;
1189 goto again;
1190 } else {
1191 goto error;
1192 }
1193
1194 done:
1195 memblock_reserve(alloc, size);
1196 ptr = phys_to_virt(alloc);
1197 memset(ptr, 0, size);
1198
1199 /*
1200 * The min_count is set to 0 so that bootmem allocated blocks
1201 * are never reported as leaks. This is because many of these blocks
1202 * are only referred via the physical address which is not
1203 * looked up by kmemleak.
1204 */
1205 kmemleak_alloc(ptr, size, 0, 0);
1206
1207 return ptr;
1208
1209 error:
1210 return NULL;
1211 }
1212
1213 /**
1214 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1215 * @size: size of memory block to be allocated in bytes
1216 * @align: alignment of the region and block's size
1217 * @min_addr: the lower bound of the memory region from where the allocation
1218 * is preferred (phys address)
1219 * @max_addr: the upper bound of the memory region from where the allocation
1220 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1221 * allocate only from memory limited by memblock.current_limit value
1222 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1223 *
1224 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1225 * additional debug information (including caller info), if enabled.
1226 *
1227 * RETURNS:
1228 * Virtual address of allocated memory block on success, NULL on failure.
1229 */
1230 void * __init memblock_virt_alloc_try_nid_nopanic(
1231 phys_addr_t size, phys_addr_t align,
1232 phys_addr_t min_addr, phys_addr_t max_addr,
1233 int nid)
1234 {
1235 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1236 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1237 (u64)max_addr, (void *)_RET_IP_);
1238 return memblock_virt_alloc_internal(size, align, min_addr,
1239 max_addr, nid);
1240 }
1241
1242 /**
1243 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1244 * @size: size of memory block to be allocated in bytes
1245 * @align: alignment of the region and block's size
1246 * @min_addr: the lower bound of the memory region from where the allocation
1247 * is preferred (phys address)
1248 * @max_addr: the upper bound of the memory region from where the allocation
1249 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1250 * allocate only from memory limited by memblock.current_limit value
1251 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1252 *
1253 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1254 * which provides debug information (including caller info), if enabled,
1255 * and panics if the request can not be satisfied.
1256 *
1257 * RETURNS:
1258 * Virtual address of allocated memory block on success, NULL on failure.
1259 */
1260 void * __init memblock_virt_alloc_try_nid(
1261 phys_addr_t size, phys_addr_t align,
1262 phys_addr_t min_addr, phys_addr_t max_addr,
1263 int nid)
1264 {
1265 void *ptr;
1266
1267 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1268 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1269 (u64)max_addr, (void *)_RET_IP_);
1270 ptr = memblock_virt_alloc_internal(size, align,
1271 min_addr, max_addr, nid);
1272 if (ptr)
1273 return ptr;
1274
1275 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1276 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1277 (u64)max_addr);
1278 return NULL;
1279 }
1280
1281 /**
1282 * __memblock_free_early - free boot memory block
1283 * @base: phys starting address of the boot memory block
1284 * @size: size of the boot memory block in bytes
1285 *
1286 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1287 * The freeing memory will not be released to the buddy allocator.
1288 */
1289 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1290 {
1291 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1292 __func__, (u64)base, (u64)base + size - 1,
1293 (void *)_RET_IP_);
1294 kmemleak_free_part(__va(base), size);
1295 memblock_remove_range(&memblock.reserved, base, size);
1296 }
1297
1298 /*
1299 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1300 * @addr: phys starting address of the boot memory block
1301 * @size: size of the boot memory block in bytes
1302 *
1303 * This is only useful when the bootmem allocator has already been torn
1304 * down, but we are still initializing the system. Pages are released directly
1305 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1306 */
1307 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1308 {
1309 u64 cursor, end;
1310
1311 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1312 __func__, (u64)base, (u64)base + size - 1,
1313 (void *)_RET_IP_);
1314 kmemleak_free_part(__va(base), size);
1315 cursor = PFN_UP(base);
1316 end = PFN_DOWN(base + size);
1317
1318 for (; cursor < end; cursor++) {
1319 __free_pages_bootmem(pfn_to_page(cursor), 0);
1320 totalram_pages++;
1321 }
1322 }
1323
1324 /*
1325 * Remaining API functions
1326 */
1327
1328 phys_addr_t __init memblock_phys_mem_size(void)
1329 {
1330 return memblock.memory.total_size;
1331 }
1332
1333 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1334 {
1335 unsigned long pages = 0;
1336 struct memblock_region *r;
1337 unsigned long start_pfn, end_pfn;
1338
1339 for_each_memblock(memory, r) {
1340 start_pfn = memblock_region_memory_base_pfn(r);
1341 end_pfn = memblock_region_memory_end_pfn(r);
1342 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1343 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1344 pages += end_pfn - start_pfn;
1345 }
1346
1347 return PFN_PHYS(pages);
1348 }
1349
1350 /* lowest address */
1351 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1352 {
1353 return memblock.memory.regions[0].base;
1354 }
1355
1356 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1357 {
1358 int idx = memblock.memory.cnt - 1;
1359
1360 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1361 }
1362
1363 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1364 {
1365 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1366 struct memblock_region *r;
1367
1368 if (!limit)
1369 return;
1370
1371 /* find out max address */
1372 for_each_memblock(memory, r) {
1373 if (limit <= r->size) {
1374 max_addr = r->base + limit;
1375 break;
1376 }
1377 limit -= r->size;
1378 }
1379
1380 /* truncate both memory and reserved regions */
1381 memblock_remove_range(&memblock.memory, max_addr,
1382 (phys_addr_t)ULLONG_MAX);
1383 memblock_remove_range(&memblock.reserved, max_addr,
1384 (phys_addr_t)ULLONG_MAX);
1385 }
1386
1387 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1388 {
1389 unsigned int left = 0, right = type->cnt;
1390
1391 do {
1392 unsigned int mid = (right + left) / 2;
1393
1394 if (addr < type->regions[mid].base)
1395 right = mid;
1396 else if (addr >= (type->regions[mid].base +
1397 type->regions[mid].size))
1398 left = mid + 1;
1399 else
1400 return mid;
1401 } while (left < right);
1402 return -1;
1403 }
1404
1405 int __init memblock_is_reserved(phys_addr_t addr)
1406 {
1407 return memblock_search(&memblock.reserved, addr) != -1;
1408 }
1409
1410 int __init_memblock memblock_is_memory(phys_addr_t addr)
1411 {
1412 return memblock_search(&memblock.memory, addr) != -1;
1413 }
1414
1415 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1416 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1417 unsigned long *start_pfn, unsigned long *end_pfn)
1418 {
1419 struct memblock_type *type = &memblock.memory;
1420 int mid = memblock_search(type, PFN_PHYS(pfn));
1421
1422 if (mid == -1)
1423 return -1;
1424
1425 *start_pfn = PFN_DOWN(type->regions[mid].base);
1426 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1427
1428 return type->regions[mid].nid;
1429 }
1430 #endif
1431
1432 /**
1433 * memblock_is_region_memory - check if a region is a subset of memory
1434 * @base: base of region to check
1435 * @size: size of region to check
1436 *
1437 * Check if the region [@base, @base+@size) is a subset of a memory block.
1438 *
1439 * RETURNS:
1440 * 0 if false, non-zero if true
1441 */
1442 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1443 {
1444 int idx = memblock_search(&memblock.memory, base);
1445 phys_addr_t end = base + memblock_cap_size(base, &size);
1446
1447 if (idx == -1)
1448 return 0;
1449 return memblock.memory.regions[idx].base <= base &&
1450 (memblock.memory.regions[idx].base +
1451 memblock.memory.regions[idx].size) >= end;
1452 }
1453
1454 /**
1455 * memblock_is_region_reserved - check if a region intersects reserved memory
1456 * @base: base of region to check
1457 * @size: size of region to check
1458 *
1459 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1460 *
1461 * RETURNS:
1462 * 0 if false, non-zero if true
1463 */
1464 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1465 {
1466 memblock_cap_size(base, &size);
1467 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
1468 }
1469
1470 void __init_memblock memblock_trim_memory(phys_addr_t align)
1471 {
1472 phys_addr_t start, end, orig_start, orig_end;
1473 struct memblock_region *r;
1474
1475 for_each_memblock(memory, r) {
1476 orig_start = r->base;
1477 orig_end = r->base + r->size;
1478 start = round_up(orig_start, align);
1479 end = round_down(orig_end, align);
1480
1481 if (start == orig_start && end == orig_end)
1482 continue;
1483
1484 if (start < end) {
1485 r->base = start;
1486 r->size = end - start;
1487 } else {
1488 memblock_remove_region(&memblock.memory,
1489 r - memblock.memory.regions);
1490 r--;
1491 }
1492 }
1493 }
1494
1495 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1496 {
1497 memblock.current_limit = limit;
1498 }
1499
1500 phys_addr_t __init_memblock memblock_get_current_limit(void)
1501 {
1502 return memblock.current_limit;
1503 }
1504
1505 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1506 {
1507 unsigned long long base, size;
1508 unsigned long flags;
1509 int i;
1510
1511 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
1512
1513 for (i = 0; i < type->cnt; i++) {
1514 struct memblock_region *rgn = &type->regions[i];
1515 char nid_buf[32] = "";
1516
1517 base = rgn->base;
1518 size = rgn->size;
1519 flags = rgn->flags;
1520 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1521 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1522 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1523 memblock_get_region_node(rgn));
1524 #endif
1525 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1526 name, i, base, base + size - 1, size, nid_buf, flags);
1527 }
1528 }
1529
1530 void __init_memblock __memblock_dump_all(void)
1531 {
1532 pr_info("MEMBLOCK configuration:\n");
1533 pr_info(" memory size = %#llx reserved size = %#llx\n",
1534 (unsigned long long)memblock.memory.total_size,
1535 (unsigned long long)memblock.reserved.total_size);
1536
1537 memblock_dump(&memblock.memory, "memory");
1538 memblock_dump(&memblock.reserved, "reserved");
1539 }
1540
1541 void __init memblock_allow_resize(void)
1542 {
1543 memblock_can_resize = 1;
1544 }
1545
1546 static int __init early_memblock(char *p)
1547 {
1548 if (p && strstr(p, "debug"))
1549 memblock_debug = 1;
1550 return 0;
1551 }
1552 early_param("memblock", early_memblock);
1553
1554 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1555
1556 static int memblock_debug_show(struct seq_file *m, void *private)
1557 {
1558 struct memblock_type *type = m->private;
1559 struct memblock_region *reg;
1560 int i;
1561
1562 for (i = 0; i < type->cnt; i++) {
1563 reg = &type->regions[i];
1564 seq_printf(m, "%4d: ", i);
1565 if (sizeof(phys_addr_t) == 4)
1566 seq_printf(m, "0x%08lx..0x%08lx\n",
1567 (unsigned long)reg->base,
1568 (unsigned long)(reg->base + reg->size - 1));
1569 else
1570 seq_printf(m, "0x%016llx..0x%016llx\n",
1571 (unsigned long long)reg->base,
1572 (unsigned long long)(reg->base + reg->size - 1));
1573
1574 }
1575 return 0;
1576 }
1577
1578 static int memblock_debug_open(struct inode *inode, struct file *file)
1579 {
1580 return single_open(file, memblock_debug_show, inode->i_private);
1581 }
1582
1583 static const struct file_operations memblock_debug_fops = {
1584 .open = memblock_debug_open,
1585 .read = seq_read,
1586 .llseek = seq_lseek,
1587 .release = single_release,
1588 };
1589
1590 static int __init memblock_init_debugfs(void)
1591 {
1592 struct dentry *root = debugfs_create_dir("memblock", NULL);
1593 if (!root)
1594 return -ENXIO;
1595 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1596 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1597 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1598 debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1599 #endif
1600
1601 return 0;
1602 }
1603 __initcall(memblock_init_debugfs);
1604
1605 #endif /* CONFIG_DEBUG_FS */
This page took 0.062627 seconds and 5 git commands to generate.