mm/memcg: iteration skip memcgs not yet fully initialized
[deliverable/linux.git] / mm / memblock.c
1 /*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22
23 #include <asm-generic/sections.h>
24 #include <linux/io.h>
25
26 #include "internal.h"
27
28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30
31 struct memblock memblock __initdata_memblock = {
32 .memory.regions = memblock_memory_init_regions,
33 .memory.cnt = 1, /* empty dummy entry */
34 .memory.max = INIT_MEMBLOCK_REGIONS,
35
36 .reserved.regions = memblock_reserved_init_regions,
37 .reserved.cnt = 1, /* empty dummy entry */
38 .reserved.max = INIT_MEMBLOCK_REGIONS,
39
40 .bottom_up = false,
41 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
42 };
43
44 int memblock_debug __initdata_memblock;
45 #ifdef CONFIG_MOVABLE_NODE
46 bool movable_node_enabled __initdata_memblock = false;
47 #endif
48 static int memblock_can_resize __initdata_memblock;
49 static int memblock_memory_in_slab __initdata_memblock = 0;
50 static int memblock_reserved_in_slab __initdata_memblock = 0;
51
52 /* inline so we don't get a warning when pr_debug is compiled out */
53 static __init_memblock const char *
54 memblock_type_name(struct memblock_type *type)
55 {
56 if (type == &memblock.memory)
57 return "memory";
58 else if (type == &memblock.reserved)
59 return "reserved";
60 else
61 return "unknown";
62 }
63
64 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
65 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
66 {
67 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
68 }
69
70 /*
71 * Address comparison utilities
72 */
73 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
74 phys_addr_t base2, phys_addr_t size2)
75 {
76 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
77 }
78
79 static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
80 phys_addr_t base, phys_addr_t size)
81 {
82 unsigned long i;
83
84 for (i = 0; i < type->cnt; i++) {
85 phys_addr_t rgnbase = type->regions[i].base;
86 phys_addr_t rgnsize = type->regions[i].size;
87 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
88 break;
89 }
90
91 return (i < type->cnt) ? i : -1;
92 }
93
94 /*
95 * __memblock_find_range_bottom_up - find free area utility in bottom-up
96 * @start: start of candidate range
97 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
98 * @size: size of free area to find
99 * @align: alignment of free area to find
100 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
101 *
102 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
103 *
104 * RETURNS:
105 * Found address on success, 0 on failure.
106 */
107 static phys_addr_t __init_memblock
108 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
109 phys_addr_t size, phys_addr_t align, int nid)
110 {
111 phys_addr_t this_start, this_end, cand;
112 u64 i;
113
114 for_each_free_mem_range(i, nid, &this_start, &this_end, NULL) {
115 this_start = clamp(this_start, start, end);
116 this_end = clamp(this_end, start, end);
117
118 cand = round_up(this_start, align);
119 if (cand < this_end && this_end - cand >= size)
120 return cand;
121 }
122
123 return 0;
124 }
125
126 /**
127 * __memblock_find_range_top_down - find free area utility, in top-down
128 * @start: start of candidate range
129 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
130 * @size: size of free area to find
131 * @align: alignment of free area to find
132 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
133 *
134 * Utility called from memblock_find_in_range_node(), find free area top-down.
135 *
136 * RETURNS:
137 * Found address on success, 0 on failure.
138 */
139 static phys_addr_t __init_memblock
140 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
141 phys_addr_t size, phys_addr_t align, int nid)
142 {
143 phys_addr_t this_start, this_end, cand;
144 u64 i;
145
146 for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
147 this_start = clamp(this_start, start, end);
148 this_end = clamp(this_end, start, end);
149
150 if (this_end < size)
151 continue;
152
153 cand = round_down(this_end - size, align);
154 if (cand >= this_start)
155 return cand;
156 }
157
158 return 0;
159 }
160
161 /**
162 * memblock_find_in_range_node - find free area in given range and node
163 * @size: size of free area to find
164 * @align: alignment of free area to find
165 * @start: start of candidate range
166 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
167 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
168 *
169 * Find @size free area aligned to @align in the specified range and node.
170 *
171 * When allocation direction is bottom-up, the @start should be greater
172 * than the end of the kernel image. Otherwise, it will be trimmed. The
173 * reason is that we want the bottom-up allocation just near the kernel
174 * image so it is highly likely that the allocated memory and the kernel
175 * will reside in the same node.
176 *
177 * If bottom-up allocation failed, will try to allocate memory top-down.
178 *
179 * RETURNS:
180 * Found address on success, 0 on failure.
181 */
182 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
183 phys_addr_t align, phys_addr_t start,
184 phys_addr_t end, int nid)
185 {
186 int ret;
187 phys_addr_t kernel_end;
188
189 /* pump up @end */
190 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
191 end = memblock.current_limit;
192
193 /* avoid allocating the first page */
194 start = max_t(phys_addr_t, start, PAGE_SIZE);
195 end = max(start, end);
196 kernel_end = __pa_symbol(_end);
197
198 /*
199 * try bottom-up allocation only when bottom-up mode
200 * is set and @end is above the kernel image.
201 */
202 if (memblock_bottom_up() && end > kernel_end) {
203 phys_addr_t bottom_up_start;
204
205 /* make sure we will allocate above the kernel */
206 bottom_up_start = max(start, kernel_end);
207
208 /* ok, try bottom-up allocation first */
209 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
210 size, align, nid);
211 if (ret)
212 return ret;
213
214 /*
215 * we always limit bottom-up allocation above the kernel,
216 * but top-down allocation doesn't have the limit, so
217 * retrying top-down allocation may succeed when bottom-up
218 * allocation failed.
219 *
220 * bottom-up allocation is expected to be fail very rarely,
221 * so we use WARN_ONCE() here to see the stack trace if
222 * fail happens.
223 */
224 WARN_ONCE(1, "memblock: bottom-up allocation failed, "
225 "memory hotunplug may be affected\n");
226 }
227
228 return __memblock_find_range_top_down(start, end, size, align, nid);
229 }
230
231 /**
232 * memblock_find_in_range - find free area in given range
233 * @start: start of candidate range
234 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
235 * @size: size of free area to find
236 * @align: alignment of free area to find
237 *
238 * Find @size free area aligned to @align in the specified range.
239 *
240 * RETURNS:
241 * Found address on success, 0 on failure.
242 */
243 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
244 phys_addr_t end, phys_addr_t size,
245 phys_addr_t align)
246 {
247 return memblock_find_in_range_node(size, align, start, end,
248 NUMA_NO_NODE);
249 }
250
251 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
252 {
253 type->total_size -= type->regions[r].size;
254 memmove(&type->regions[r], &type->regions[r + 1],
255 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
256 type->cnt--;
257
258 /* Special case for empty arrays */
259 if (type->cnt == 0) {
260 WARN_ON(type->total_size != 0);
261 type->cnt = 1;
262 type->regions[0].base = 0;
263 type->regions[0].size = 0;
264 type->regions[0].flags = 0;
265 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
266 }
267 }
268
269 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
270
271 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
272 phys_addr_t *addr)
273 {
274 if (memblock.reserved.regions == memblock_reserved_init_regions)
275 return 0;
276
277 *addr = __pa(memblock.reserved.regions);
278
279 return PAGE_ALIGN(sizeof(struct memblock_region) *
280 memblock.reserved.max);
281 }
282
283 phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
284 phys_addr_t *addr)
285 {
286 if (memblock.memory.regions == memblock_memory_init_regions)
287 return 0;
288
289 *addr = __pa(memblock.memory.regions);
290
291 return PAGE_ALIGN(sizeof(struct memblock_region) *
292 memblock.memory.max);
293 }
294
295 #endif
296
297 /**
298 * memblock_double_array - double the size of the memblock regions array
299 * @type: memblock type of the regions array being doubled
300 * @new_area_start: starting address of memory range to avoid overlap with
301 * @new_area_size: size of memory range to avoid overlap with
302 *
303 * Double the size of the @type regions array. If memblock is being used to
304 * allocate memory for a new reserved regions array and there is a previously
305 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
306 * waiting to be reserved, ensure the memory used by the new array does
307 * not overlap.
308 *
309 * RETURNS:
310 * 0 on success, -1 on failure.
311 */
312 static int __init_memblock memblock_double_array(struct memblock_type *type,
313 phys_addr_t new_area_start,
314 phys_addr_t new_area_size)
315 {
316 struct memblock_region *new_array, *old_array;
317 phys_addr_t old_alloc_size, new_alloc_size;
318 phys_addr_t old_size, new_size, addr;
319 int use_slab = slab_is_available();
320 int *in_slab;
321
322 /* We don't allow resizing until we know about the reserved regions
323 * of memory that aren't suitable for allocation
324 */
325 if (!memblock_can_resize)
326 return -1;
327
328 /* Calculate new doubled size */
329 old_size = type->max * sizeof(struct memblock_region);
330 new_size = old_size << 1;
331 /*
332 * We need to allocated new one align to PAGE_SIZE,
333 * so we can free them completely later.
334 */
335 old_alloc_size = PAGE_ALIGN(old_size);
336 new_alloc_size = PAGE_ALIGN(new_size);
337
338 /* Retrieve the slab flag */
339 if (type == &memblock.memory)
340 in_slab = &memblock_memory_in_slab;
341 else
342 in_slab = &memblock_reserved_in_slab;
343
344 /* Try to find some space for it.
345 *
346 * WARNING: We assume that either slab_is_available() and we use it or
347 * we use MEMBLOCK for allocations. That means that this is unsafe to
348 * use when bootmem is currently active (unless bootmem itself is
349 * implemented on top of MEMBLOCK which isn't the case yet)
350 *
351 * This should however not be an issue for now, as we currently only
352 * call into MEMBLOCK while it's still active, or much later when slab
353 * is active for memory hotplug operations
354 */
355 if (use_slab) {
356 new_array = kmalloc(new_size, GFP_KERNEL);
357 addr = new_array ? __pa(new_array) : 0;
358 } else {
359 /* only exclude range when trying to double reserved.regions */
360 if (type != &memblock.reserved)
361 new_area_start = new_area_size = 0;
362
363 addr = memblock_find_in_range(new_area_start + new_area_size,
364 memblock.current_limit,
365 new_alloc_size, PAGE_SIZE);
366 if (!addr && new_area_size)
367 addr = memblock_find_in_range(0,
368 min(new_area_start, memblock.current_limit),
369 new_alloc_size, PAGE_SIZE);
370
371 new_array = addr ? __va(addr) : NULL;
372 }
373 if (!addr) {
374 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
375 memblock_type_name(type), type->max, type->max * 2);
376 return -1;
377 }
378
379 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
380 memblock_type_name(type), type->max * 2, (u64)addr,
381 (u64)addr + new_size - 1);
382
383 /*
384 * Found space, we now need to move the array over before we add the
385 * reserved region since it may be our reserved array itself that is
386 * full.
387 */
388 memcpy(new_array, type->regions, old_size);
389 memset(new_array + type->max, 0, old_size);
390 old_array = type->regions;
391 type->regions = new_array;
392 type->max <<= 1;
393
394 /* Free old array. We needn't free it if the array is the static one */
395 if (*in_slab)
396 kfree(old_array);
397 else if (old_array != memblock_memory_init_regions &&
398 old_array != memblock_reserved_init_regions)
399 memblock_free(__pa(old_array), old_alloc_size);
400
401 /*
402 * Reserve the new array if that comes from the memblock. Otherwise, we
403 * needn't do it
404 */
405 if (!use_slab)
406 BUG_ON(memblock_reserve(addr, new_alloc_size));
407
408 /* Update slab flag */
409 *in_slab = use_slab;
410
411 return 0;
412 }
413
414 /**
415 * memblock_merge_regions - merge neighboring compatible regions
416 * @type: memblock type to scan
417 *
418 * Scan @type and merge neighboring compatible regions.
419 */
420 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
421 {
422 int i = 0;
423
424 /* cnt never goes below 1 */
425 while (i < type->cnt - 1) {
426 struct memblock_region *this = &type->regions[i];
427 struct memblock_region *next = &type->regions[i + 1];
428
429 if (this->base + this->size != next->base ||
430 memblock_get_region_node(this) !=
431 memblock_get_region_node(next) ||
432 this->flags != next->flags) {
433 BUG_ON(this->base + this->size > next->base);
434 i++;
435 continue;
436 }
437
438 this->size += next->size;
439 /* move forward from next + 1, index of which is i + 2 */
440 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
441 type->cnt--;
442 }
443 }
444
445 /**
446 * memblock_insert_region - insert new memblock region
447 * @type: memblock type to insert into
448 * @idx: index for the insertion point
449 * @base: base address of the new region
450 * @size: size of the new region
451 * @nid: node id of the new region
452 * @flags: flags of the new region
453 *
454 * Insert new memblock region [@base,@base+@size) into @type at @idx.
455 * @type must already have extra room to accomodate the new region.
456 */
457 static void __init_memblock memblock_insert_region(struct memblock_type *type,
458 int idx, phys_addr_t base,
459 phys_addr_t size,
460 int nid, unsigned long flags)
461 {
462 struct memblock_region *rgn = &type->regions[idx];
463
464 BUG_ON(type->cnt >= type->max);
465 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
466 rgn->base = base;
467 rgn->size = size;
468 rgn->flags = flags;
469 memblock_set_region_node(rgn, nid);
470 type->cnt++;
471 type->total_size += size;
472 }
473
474 /**
475 * memblock_add_region - add new memblock region
476 * @type: memblock type to add new region into
477 * @base: base address of the new region
478 * @size: size of the new region
479 * @nid: nid of the new region
480 * @flags: flags of the new region
481 *
482 * Add new memblock region [@base,@base+@size) into @type. The new region
483 * is allowed to overlap with existing ones - overlaps don't affect already
484 * existing regions. @type is guaranteed to be minimal (all neighbouring
485 * compatible regions are merged) after the addition.
486 *
487 * RETURNS:
488 * 0 on success, -errno on failure.
489 */
490 static int __init_memblock memblock_add_region(struct memblock_type *type,
491 phys_addr_t base, phys_addr_t size,
492 int nid, unsigned long flags)
493 {
494 bool insert = false;
495 phys_addr_t obase = base;
496 phys_addr_t end = base + memblock_cap_size(base, &size);
497 int i, nr_new;
498
499 if (!size)
500 return 0;
501
502 /* special case for empty array */
503 if (type->regions[0].size == 0) {
504 WARN_ON(type->cnt != 1 || type->total_size);
505 type->regions[0].base = base;
506 type->regions[0].size = size;
507 type->regions[0].flags = flags;
508 memblock_set_region_node(&type->regions[0], nid);
509 type->total_size = size;
510 return 0;
511 }
512 repeat:
513 /*
514 * The following is executed twice. Once with %false @insert and
515 * then with %true. The first counts the number of regions needed
516 * to accomodate the new area. The second actually inserts them.
517 */
518 base = obase;
519 nr_new = 0;
520
521 for (i = 0; i < type->cnt; i++) {
522 struct memblock_region *rgn = &type->regions[i];
523 phys_addr_t rbase = rgn->base;
524 phys_addr_t rend = rbase + rgn->size;
525
526 if (rbase >= end)
527 break;
528 if (rend <= base)
529 continue;
530 /*
531 * @rgn overlaps. If it separates the lower part of new
532 * area, insert that portion.
533 */
534 if (rbase > base) {
535 nr_new++;
536 if (insert)
537 memblock_insert_region(type, i++, base,
538 rbase - base, nid,
539 flags);
540 }
541 /* area below @rend is dealt with, forget about it */
542 base = min(rend, end);
543 }
544
545 /* insert the remaining portion */
546 if (base < end) {
547 nr_new++;
548 if (insert)
549 memblock_insert_region(type, i, base, end - base,
550 nid, flags);
551 }
552
553 /*
554 * If this was the first round, resize array and repeat for actual
555 * insertions; otherwise, merge and return.
556 */
557 if (!insert) {
558 while (type->cnt + nr_new > type->max)
559 if (memblock_double_array(type, obase, size) < 0)
560 return -ENOMEM;
561 insert = true;
562 goto repeat;
563 } else {
564 memblock_merge_regions(type);
565 return 0;
566 }
567 }
568
569 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
570 int nid)
571 {
572 return memblock_add_region(&memblock.memory, base, size, nid, 0);
573 }
574
575 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
576 {
577 return memblock_add_region(&memblock.memory, base, size,
578 MAX_NUMNODES, 0);
579 }
580
581 /**
582 * memblock_isolate_range - isolate given range into disjoint memblocks
583 * @type: memblock type to isolate range for
584 * @base: base of range to isolate
585 * @size: size of range to isolate
586 * @start_rgn: out parameter for the start of isolated region
587 * @end_rgn: out parameter for the end of isolated region
588 *
589 * Walk @type and ensure that regions don't cross the boundaries defined by
590 * [@base,@base+@size). Crossing regions are split at the boundaries,
591 * which may create at most two more regions. The index of the first
592 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
593 *
594 * RETURNS:
595 * 0 on success, -errno on failure.
596 */
597 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
598 phys_addr_t base, phys_addr_t size,
599 int *start_rgn, int *end_rgn)
600 {
601 phys_addr_t end = base + memblock_cap_size(base, &size);
602 int i;
603
604 *start_rgn = *end_rgn = 0;
605
606 if (!size)
607 return 0;
608
609 /* we'll create at most two more regions */
610 while (type->cnt + 2 > type->max)
611 if (memblock_double_array(type, base, size) < 0)
612 return -ENOMEM;
613
614 for (i = 0; i < type->cnt; i++) {
615 struct memblock_region *rgn = &type->regions[i];
616 phys_addr_t rbase = rgn->base;
617 phys_addr_t rend = rbase + rgn->size;
618
619 if (rbase >= end)
620 break;
621 if (rend <= base)
622 continue;
623
624 if (rbase < base) {
625 /*
626 * @rgn intersects from below. Split and continue
627 * to process the next region - the new top half.
628 */
629 rgn->base = base;
630 rgn->size -= base - rbase;
631 type->total_size -= base - rbase;
632 memblock_insert_region(type, i, rbase, base - rbase,
633 memblock_get_region_node(rgn),
634 rgn->flags);
635 } else if (rend > end) {
636 /*
637 * @rgn intersects from above. Split and redo the
638 * current region - the new bottom half.
639 */
640 rgn->base = end;
641 rgn->size -= end - rbase;
642 type->total_size -= end - rbase;
643 memblock_insert_region(type, i--, rbase, end - rbase,
644 memblock_get_region_node(rgn),
645 rgn->flags);
646 } else {
647 /* @rgn is fully contained, record it */
648 if (!*end_rgn)
649 *start_rgn = i;
650 *end_rgn = i + 1;
651 }
652 }
653
654 return 0;
655 }
656
657 static int __init_memblock __memblock_remove(struct memblock_type *type,
658 phys_addr_t base, phys_addr_t size)
659 {
660 int start_rgn, end_rgn;
661 int i, ret;
662
663 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
664 if (ret)
665 return ret;
666
667 for (i = end_rgn - 1; i >= start_rgn; i--)
668 memblock_remove_region(type, i);
669 return 0;
670 }
671
672 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
673 {
674 return __memblock_remove(&memblock.memory, base, size);
675 }
676
677 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
678 {
679 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
680 (unsigned long long)base,
681 (unsigned long long)base + size - 1,
682 (void *)_RET_IP_);
683
684 return __memblock_remove(&memblock.reserved, base, size);
685 }
686
687 static int __init_memblock memblock_reserve_region(phys_addr_t base,
688 phys_addr_t size,
689 int nid,
690 unsigned long flags)
691 {
692 struct memblock_type *_rgn = &memblock.reserved;
693
694 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
695 (unsigned long long)base,
696 (unsigned long long)base + size - 1,
697 flags, (void *)_RET_IP_);
698
699 return memblock_add_region(_rgn, base, size, nid, flags);
700 }
701
702 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
703 {
704 return memblock_reserve_region(base, size, MAX_NUMNODES, 0);
705 }
706
707 /**
708 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
709 * @base: the base phys addr of the region
710 * @size: the size of the region
711 *
712 * This function isolates region [@base, @base + @size), and mark it with flag
713 * MEMBLOCK_HOTPLUG.
714 *
715 * Return 0 on succees, -errno on failure.
716 */
717 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
718 {
719 struct memblock_type *type = &memblock.memory;
720 int i, ret, start_rgn, end_rgn;
721
722 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
723 if (ret)
724 return ret;
725
726 for (i = start_rgn; i < end_rgn; i++)
727 memblock_set_region_flags(&type->regions[i], MEMBLOCK_HOTPLUG);
728
729 memblock_merge_regions(type);
730 return 0;
731 }
732
733 /**
734 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
735 * @base: the base phys addr of the region
736 * @size: the size of the region
737 *
738 * This function isolates region [@base, @base + @size), and clear flag
739 * MEMBLOCK_HOTPLUG for the isolated regions.
740 *
741 * Return 0 on succees, -errno on failure.
742 */
743 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
744 {
745 struct memblock_type *type = &memblock.memory;
746 int i, ret, start_rgn, end_rgn;
747
748 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
749 if (ret)
750 return ret;
751
752 for (i = start_rgn; i < end_rgn; i++)
753 memblock_clear_region_flags(&type->regions[i],
754 MEMBLOCK_HOTPLUG);
755
756 memblock_merge_regions(type);
757 return 0;
758 }
759
760 /**
761 * __next_free_mem_range - next function for for_each_free_mem_range()
762 * @idx: pointer to u64 loop variable
763 * @nid: node selector, %NUMA_NO_NODE for all nodes
764 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
765 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
766 * @out_nid: ptr to int for nid of the range, can be %NULL
767 *
768 * Find the first free area from *@idx which matches @nid, fill the out
769 * parameters, and update *@idx for the next iteration. The lower 32bit of
770 * *@idx contains index into memory region and the upper 32bit indexes the
771 * areas before each reserved region. For example, if reserved regions
772 * look like the following,
773 *
774 * 0:[0-16), 1:[32-48), 2:[128-130)
775 *
776 * The upper 32bit indexes the following regions.
777 *
778 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
779 *
780 * As both region arrays are sorted, the function advances the two indices
781 * in lockstep and returns each intersection.
782 */
783 void __init_memblock __next_free_mem_range(u64 *idx, int nid,
784 phys_addr_t *out_start,
785 phys_addr_t *out_end, int *out_nid)
786 {
787 struct memblock_type *mem = &memblock.memory;
788 struct memblock_type *rsv = &memblock.reserved;
789 int mi = *idx & 0xffffffff;
790 int ri = *idx >> 32;
791
792 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
793 nid = NUMA_NO_NODE;
794
795 for ( ; mi < mem->cnt; mi++) {
796 struct memblock_region *m = &mem->regions[mi];
797 phys_addr_t m_start = m->base;
798 phys_addr_t m_end = m->base + m->size;
799
800 /* only memory regions are associated with nodes, check it */
801 if (nid != NUMA_NO_NODE && nid != memblock_get_region_node(m))
802 continue;
803
804 /* scan areas before each reservation for intersection */
805 for ( ; ri < rsv->cnt + 1; ri++) {
806 struct memblock_region *r = &rsv->regions[ri];
807 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
808 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
809
810 /* if ri advanced past mi, break out to advance mi */
811 if (r_start >= m_end)
812 break;
813 /* if the two regions intersect, we're done */
814 if (m_start < r_end) {
815 if (out_start)
816 *out_start = max(m_start, r_start);
817 if (out_end)
818 *out_end = min(m_end, r_end);
819 if (out_nid)
820 *out_nid = memblock_get_region_node(m);
821 /*
822 * The region which ends first is advanced
823 * for the next iteration.
824 */
825 if (m_end <= r_end)
826 mi++;
827 else
828 ri++;
829 *idx = (u32)mi | (u64)ri << 32;
830 return;
831 }
832 }
833 }
834
835 /* signal end of iteration */
836 *idx = ULLONG_MAX;
837 }
838
839 /**
840 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
841 * @idx: pointer to u64 loop variable
842 * @nid: nid: node selector, %NUMA_NO_NODE for all nodes
843 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
844 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
845 * @out_nid: ptr to int for nid of the range, can be %NULL
846 *
847 * Reverse of __next_free_mem_range().
848 *
849 * Linux kernel cannot migrate pages used by itself. Memory hotplug users won't
850 * be able to hot-remove hotpluggable memory used by the kernel. So this
851 * function skip hotpluggable regions if needed when allocating memory for the
852 * kernel.
853 */
854 void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
855 phys_addr_t *out_start,
856 phys_addr_t *out_end, int *out_nid)
857 {
858 struct memblock_type *mem = &memblock.memory;
859 struct memblock_type *rsv = &memblock.reserved;
860 int mi = *idx & 0xffffffff;
861 int ri = *idx >> 32;
862
863 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
864 nid = NUMA_NO_NODE;
865
866 if (*idx == (u64)ULLONG_MAX) {
867 mi = mem->cnt - 1;
868 ri = rsv->cnt;
869 }
870
871 for ( ; mi >= 0; mi--) {
872 struct memblock_region *m = &mem->regions[mi];
873 phys_addr_t m_start = m->base;
874 phys_addr_t m_end = m->base + m->size;
875
876 /* only memory regions are associated with nodes, check it */
877 if (nid != NUMA_NO_NODE && nid != memblock_get_region_node(m))
878 continue;
879
880 /* skip hotpluggable memory regions if needed */
881 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
882 continue;
883
884 /* scan areas before each reservation for intersection */
885 for ( ; ri >= 0; ri--) {
886 struct memblock_region *r = &rsv->regions[ri];
887 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
888 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
889
890 /* if ri advanced past mi, break out to advance mi */
891 if (r_end <= m_start)
892 break;
893 /* if the two regions intersect, we're done */
894 if (m_end > r_start) {
895 if (out_start)
896 *out_start = max(m_start, r_start);
897 if (out_end)
898 *out_end = min(m_end, r_end);
899 if (out_nid)
900 *out_nid = memblock_get_region_node(m);
901
902 if (m_start >= r_start)
903 mi--;
904 else
905 ri--;
906 *idx = (u32)mi | (u64)ri << 32;
907 return;
908 }
909 }
910 }
911
912 *idx = ULLONG_MAX;
913 }
914
915 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
916 /*
917 * Common iterator interface used to define for_each_mem_range().
918 */
919 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
920 unsigned long *out_start_pfn,
921 unsigned long *out_end_pfn, int *out_nid)
922 {
923 struct memblock_type *type = &memblock.memory;
924 struct memblock_region *r;
925
926 while (++*idx < type->cnt) {
927 r = &type->regions[*idx];
928
929 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
930 continue;
931 if (nid == MAX_NUMNODES || nid == r->nid)
932 break;
933 }
934 if (*idx >= type->cnt) {
935 *idx = -1;
936 return;
937 }
938
939 if (out_start_pfn)
940 *out_start_pfn = PFN_UP(r->base);
941 if (out_end_pfn)
942 *out_end_pfn = PFN_DOWN(r->base + r->size);
943 if (out_nid)
944 *out_nid = r->nid;
945 }
946
947 /**
948 * memblock_set_node - set node ID on memblock regions
949 * @base: base of area to set node ID for
950 * @size: size of area to set node ID for
951 * @type: memblock type to set node ID for
952 * @nid: node ID to set
953 *
954 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
955 * Regions which cross the area boundaries are split as necessary.
956 *
957 * RETURNS:
958 * 0 on success, -errno on failure.
959 */
960 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
961 struct memblock_type *type, int nid)
962 {
963 int start_rgn, end_rgn;
964 int i, ret;
965
966 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
967 if (ret)
968 return ret;
969
970 for (i = start_rgn; i < end_rgn; i++)
971 memblock_set_region_node(&type->regions[i], nid);
972
973 memblock_merge_regions(type);
974 return 0;
975 }
976 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
977
978 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
979 phys_addr_t align, phys_addr_t max_addr,
980 int nid)
981 {
982 phys_addr_t found;
983
984 if (!align)
985 align = SMP_CACHE_BYTES;
986
987 /* align @size to avoid excessive fragmentation on reserved array */
988 size = round_up(size, align);
989
990 found = memblock_find_in_range_node(size, align, 0, max_addr, nid);
991 if (found && !memblock_reserve(found, size))
992 return found;
993
994 return 0;
995 }
996
997 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
998 {
999 return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
1000 }
1001
1002 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1003 {
1004 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE);
1005 }
1006
1007 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1008 {
1009 phys_addr_t alloc;
1010
1011 alloc = __memblock_alloc_base(size, align, max_addr);
1012
1013 if (alloc == 0)
1014 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1015 (unsigned long long) size, (unsigned long long) max_addr);
1016
1017 return alloc;
1018 }
1019
1020 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1021 {
1022 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1023 }
1024
1025 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1026 {
1027 phys_addr_t res = memblock_alloc_nid(size, align, nid);
1028
1029 if (res)
1030 return res;
1031 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1032 }
1033
1034 /**
1035 * memblock_virt_alloc_internal - allocate boot memory block
1036 * @size: size of memory block to be allocated in bytes
1037 * @align: alignment of the region and block's size
1038 * @min_addr: the lower bound of the memory region to allocate (phys address)
1039 * @max_addr: the upper bound of the memory region to allocate (phys address)
1040 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1041 *
1042 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1043 * will fall back to memory below @min_addr. Also, allocation may fall back
1044 * to any node in the system if the specified node can not
1045 * hold the requested memory.
1046 *
1047 * The allocation is performed from memory region limited by
1048 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1049 *
1050 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1051 *
1052 * The phys address of allocated boot memory block is converted to virtual and
1053 * allocated memory is reset to 0.
1054 *
1055 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1056 * allocated boot memory block, so that it is never reported as leaks.
1057 *
1058 * RETURNS:
1059 * Virtual address of allocated memory block on success, NULL on failure.
1060 */
1061 static void * __init memblock_virt_alloc_internal(
1062 phys_addr_t size, phys_addr_t align,
1063 phys_addr_t min_addr, phys_addr_t max_addr,
1064 int nid)
1065 {
1066 phys_addr_t alloc;
1067 void *ptr;
1068
1069 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1070 nid = NUMA_NO_NODE;
1071
1072 /*
1073 * Detect any accidental use of these APIs after slab is ready, as at
1074 * this moment memblock may be deinitialized already and its
1075 * internal data may be destroyed (after execution of free_all_bootmem)
1076 */
1077 if (WARN_ON_ONCE(slab_is_available()))
1078 return kzalloc_node(size, GFP_NOWAIT, nid);
1079
1080 if (!align)
1081 align = SMP_CACHE_BYTES;
1082
1083 /* align @size to avoid excessive fragmentation on reserved array */
1084 size = round_up(size, align);
1085
1086 again:
1087 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1088 nid);
1089 if (alloc)
1090 goto done;
1091
1092 if (nid != NUMA_NO_NODE) {
1093 alloc = memblock_find_in_range_node(size, align, min_addr,
1094 max_addr, NUMA_NO_NODE);
1095 if (alloc)
1096 goto done;
1097 }
1098
1099 if (min_addr) {
1100 min_addr = 0;
1101 goto again;
1102 } else {
1103 goto error;
1104 }
1105
1106 done:
1107 memblock_reserve(alloc, size);
1108 ptr = phys_to_virt(alloc);
1109 memset(ptr, 0, size);
1110
1111 /*
1112 * The min_count is set to 0 so that bootmem allocated blocks
1113 * are never reported as leaks. This is because many of these blocks
1114 * are only referred via the physical address which is not
1115 * looked up by kmemleak.
1116 */
1117 kmemleak_alloc(ptr, size, 0, 0);
1118
1119 return ptr;
1120
1121 error:
1122 return NULL;
1123 }
1124
1125 /**
1126 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1127 * @size: size of memory block to be allocated in bytes
1128 * @align: alignment of the region and block's size
1129 * @min_addr: the lower bound of the memory region from where the allocation
1130 * is preferred (phys address)
1131 * @max_addr: the upper bound of the memory region from where the allocation
1132 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1133 * allocate only from memory limited by memblock.current_limit value
1134 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1135 *
1136 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1137 * additional debug information (including caller info), if enabled.
1138 *
1139 * RETURNS:
1140 * Virtual address of allocated memory block on success, NULL on failure.
1141 */
1142 void * __init memblock_virt_alloc_try_nid_nopanic(
1143 phys_addr_t size, phys_addr_t align,
1144 phys_addr_t min_addr, phys_addr_t max_addr,
1145 int nid)
1146 {
1147 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1148 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1149 (u64)max_addr, (void *)_RET_IP_);
1150 return memblock_virt_alloc_internal(size, align, min_addr,
1151 max_addr, nid);
1152 }
1153
1154 /**
1155 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1156 * @size: size of memory block to be allocated in bytes
1157 * @align: alignment of the region and block's size
1158 * @min_addr: the lower bound of the memory region from where the allocation
1159 * is preferred (phys address)
1160 * @max_addr: the upper bound of the memory region from where the allocation
1161 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1162 * allocate only from memory limited by memblock.current_limit value
1163 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1164 *
1165 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1166 * which provides debug information (including caller info), if enabled,
1167 * and panics if the request can not be satisfied.
1168 *
1169 * RETURNS:
1170 * Virtual address of allocated memory block on success, NULL on failure.
1171 */
1172 void * __init memblock_virt_alloc_try_nid(
1173 phys_addr_t size, phys_addr_t align,
1174 phys_addr_t min_addr, phys_addr_t max_addr,
1175 int nid)
1176 {
1177 void *ptr;
1178
1179 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1180 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1181 (u64)max_addr, (void *)_RET_IP_);
1182 ptr = memblock_virt_alloc_internal(size, align,
1183 min_addr, max_addr, nid);
1184 if (ptr)
1185 return ptr;
1186
1187 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1188 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1189 (u64)max_addr);
1190 return NULL;
1191 }
1192
1193 /**
1194 * __memblock_free_early - free boot memory block
1195 * @base: phys starting address of the boot memory block
1196 * @size: size of the boot memory block in bytes
1197 *
1198 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1199 * The freeing memory will not be released to the buddy allocator.
1200 */
1201 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1202 {
1203 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1204 __func__, (u64)base, (u64)base + size - 1,
1205 (void *)_RET_IP_);
1206 kmemleak_free_part(__va(base), size);
1207 __memblock_remove(&memblock.reserved, base, size);
1208 }
1209
1210 /*
1211 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1212 * @addr: phys starting address of the boot memory block
1213 * @size: size of the boot memory block in bytes
1214 *
1215 * This is only useful when the bootmem allocator has already been torn
1216 * down, but we are still initializing the system. Pages are released directly
1217 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1218 */
1219 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1220 {
1221 u64 cursor, end;
1222
1223 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1224 __func__, (u64)base, (u64)base + size - 1,
1225 (void *)_RET_IP_);
1226 kmemleak_free_part(__va(base), size);
1227 cursor = PFN_UP(base);
1228 end = PFN_DOWN(base + size);
1229
1230 for (; cursor < end; cursor++) {
1231 __free_pages_bootmem(pfn_to_page(cursor), 0);
1232 totalram_pages++;
1233 }
1234 }
1235
1236 /*
1237 * Remaining API functions
1238 */
1239
1240 phys_addr_t __init memblock_phys_mem_size(void)
1241 {
1242 return memblock.memory.total_size;
1243 }
1244
1245 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1246 {
1247 unsigned long pages = 0;
1248 struct memblock_region *r;
1249 unsigned long start_pfn, end_pfn;
1250
1251 for_each_memblock(memory, r) {
1252 start_pfn = memblock_region_memory_base_pfn(r);
1253 end_pfn = memblock_region_memory_end_pfn(r);
1254 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1255 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1256 pages += end_pfn - start_pfn;
1257 }
1258
1259 return (phys_addr_t)pages << PAGE_SHIFT;
1260 }
1261
1262 /* lowest address */
1263 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1264 {
1265 return memblock.memory.regions[0].base;
1266 }
1267
1268 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1269 {
1270 int idx = memblock.memory.cnt - 1;
1271
1272 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1273 }
1274
1275 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1276 {
1277 unsigned long i;
1278 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1279
1280 if (!limit)
1281 return;
1282
1283 /* find out max address */
1284 for (i = 0; i < memblock.memory.cnt; i++) {
1285 struct memblock_region *r = &memblock.memory.regions[i];
1286
1287 if (limit <= r->size) {
1288 max_addr = r->base + limit;
1289 break;
1290 }
1291 limit -= r->size;
1292 }
1293
1294 /* truncate both memory and reserved regions */
1295 __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
1296 __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
1297 }
1298
1299 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1300 {
1301 unsigned int left = 0, right = type->cnt;
1302
1303 do {
1304 unsigned int mid = (right + left) / 2;
1305
1306 if (addr < type->regions[mid].base)
1307 right = mid;
1308 else if (addr >= (type->regions[mid].base +
1309 type->regions[mid].size))
1310 left = mid + 1;
1311 else
1312 return mid;
1313 } while (left < right);
1314 return -1;
1315 }
1316
1317 int __init memblock_is_reserved(phys_addr_t addr)
1318 {
1319 return memblock_search(&memblock.reserved, addr) != -1;
1320 }
1321
1322 int __init_memblock memblock_is_memory(phys_addr_t addr)
1323 {
1324 return memblock_search(&memblock.memory, addr) != -1;
1325 }
1326
1327 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1328 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1329 unsigned long *start_pfn, unsigned long *end_pfn)
1330 {
1331 struct memblock_type *type = &memblock.memory;
1332 int mid = memblock_search(type, (phys_addr_t)pfn << PAGE_SHIFT);
1333
1334 if (mid == -1)
1335 return -1;
1336
1337 *start_pfn = type->regions[mid].base >> PAGE_SHIFT;
1338 *end_pfn = (type->regions[mid].base + type->regions[mid].size)
1339 >> PAGE_SHIFT;
1340
1341 return type->regions[mid].nid;
1342 }
1343 #endif
1344
1345 /**
1346 * memblock_is_region_memory - check if a region is a subset of memory
1347 * @base: base of region to check
1348 * @size: size of region to check
1349 *
1350 * Check if the region [@base, @base+@size) is a subset of a memory block.
1351 *
1352 * RETURNS:
1353 * 0 if false, non-zero if true
1354 */
1355 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1356 {
1357 int idx = memblock_search(&memblock.memory, base);
1358 phys_addr_t end = base + memblock_cap_size(base, &size);
1359
1360 if (idx == -1)
1361 return 0;
1362 return memblock.memory.regions[idx].base <= base &&
1363 (memblock.memory.regions[idx].base +
1364 memblock.memory.regions[idx].size) >= end;
1365 }
1366
1367 /**
1368 * memblock_is_region_reserved - check if a region intersects reserved memory
1369 * @base: base of region to check
1370 * @size: size of region to check
1371 *
1372 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1373 *
1374 * RETURNS:
1375 * 0 if false, non-zero if true
1376 */
1377 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1378 {
1379 memblock_cap_size(base, &size);
1380 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
1381 }
1382
1383 void __init_memblock memblock_trim_memory(phys_addr_t align)
1384 {
1385 int i;
1386 phys_addr_t start, end, orig_start, orig_end;
1387 struct memblock_type *mem = &memblock.memory;
1388
1389 for (i = 0; i < mem->cnt; i++) {
1390 orig_start = mem->regions[i].base;
1391 orig_end = mem->regions[i].base + mem->regions[i].size;
1392 start = round_up(orig_start, align);
1393 end = round_down(orig_end, align);
1394
1395 if (start == orig_start && end == orig_end)
1396 continue;
1397
1398 if (start < end) {
1399 mem->regions[i].base = start;
1400 mem->regions[i].size = end - start;
1401 } else {
1402 memblock_remove_region(mem, i);
1403 i--;
1404 }
1405 }
1406 }
1407
1408 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1409 {
1410 memblock.current_limit = limit;
1411 }
1412
1413 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1414 {
1415 unsigned long long base, size;
1416 unsigned long flags;
1417 int i;
1418
1419 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
1420
1421 for (i = 0; i < type->cnt; i++) {
1422 struct memblock_region *rgn = &type->regions[i];
1423 char nid_buf[32] = "";
1424
1425 base = rgn->base;
1426 size = rgn->size;
1427 flags = rgn->flags;
1428 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1429 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1430 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1431 memblock_get_region_node(rgn));
1432 #endif
1433 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1434 name, i, base, base + size - 1, size, nid_buf, flags);
1435 }
1436 }
1437
1438 void __init_memblock __memblock_dump_all(void)
1439 {
1440 pr_info("MEMBLOCK configuration:\n");
1441 pr_info(" memory size = %#llx reserved size = %#llx\n",
1442 (unsigned long long)memblock.memory.total_size,
1443 (unsigned long long)memblock.reserved.total_size);
1444
1445 memblock_dump(&memblock.memory, "memory");
1446 memblock_dump(&memblock.reserved, "reserved");
1447 }
1448
1449 void __init memblock_allow_resize(void)
1450 {
1451 memblock_can_resize = 1;
1452 }
1453
1454 static int __init early_memblock(char *p)
1455 {
1456 if (p && strstr(p, "debug"))
1457 memblock_debug = 1;
1458 return 0;
1459 }
1460 early_param("memblock", early_memblock);
1461
1462 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1463
1464 static int memblock_debug_show(struct seq_file *m, void *private)
1465 {
1466 struct memblock_type *type = m->private;
1467 struct memblock_region *reg;
1468 int i;
1469
1470 for (i = 0; i < type->cnt; i++) {
1471 reg = &type->regions[i];
1472 seq_printf(m, "%4d: ", i);
1473 if (sizeof(phys_addr_t) == 4)
1474 seq_printf(m, "0x%08lx..0x%08lx\n",
1475 (unsigned long)reg->base,
1476 (unsigned long)(reg->base + reg->size - 1));
1477 else
1478 seq_printf(m, "0x%016llx..0x%016llx\n",
1479 (unsigned long long)reg->base,
1480 (unsigned long long)(reg->base + reg->size - 1));
1481
1482 }
1483 return 0;
1484 }
1485
1486 static int memblock_debug_open(struct inode *inode, struct file *file)
1487 {
1488 return single_open(file, memblock_debug_show, inode->i_private);
1489 }
1490
1491 static const struct file_operations memblock_debug_fops = {
1492 .open = memblock_debug_open,
1493 .read = seq_read,
1494 .llseek = seq_lseek,
1495 .release = single_release,
1496 };
1497
1498 static int __init memblock_init_debugfs(void)
1499 {
1500 struct dentry *root = debugfs_create_dir("memblock", NULL);
1501 if (!root)
1502 return -ENXIO;
1503 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1504 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1505
1506 return 0;
1507 }
1508 __initcall(memblock_init_debugfs);
1509
1510 #endif /* CONFIG_DEBUG_FS */
This page took 0.060474 seconds and 5 git commands to generate.