mmc: sdhci: clean up command error handling
[deliverable/linux.git] / mm / memblock.c
1 /*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22
23 #include <asm-generic/sections.h>
24 #include <linux/io.h>
25
26 #include "internal.h"
27
28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
32 #endif
33
34 struct memblock memblock __initdata_memblock = {
35 .memory.regions = memblock_memory_init_regions,
36 .memory.cnt = 1, /* empty dummy entry */
37 .memory.max = INIT_MEMBLOCK_REGIONS,
38
39 .reserved.regions = memblock_reserved_init_regions,
40 .reserved.cnt = 1, /* empty dummy entry */
41 .reserved.max = INIT_MEMBLOCK_REGIONS,
42
43 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
44 .physmem.regions = memblock_physmem_init_regions,
45 .physmem.cnt = 1, /* empty dummy entry */
46 .physmem.max = INIT_PHYSMEM_REGIONS,
47 #endif
48
49 .bottom_up = false,
50 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
51 };
52
53 int memblock_debug __initdata_memblock;
54 #ifdef CONFIG_MOVABLE_NODE
55 bool movable_node_enabled __initdata_memblock = false;
56 #endif
57 static bool system_has_some_mirror __initdata_memblock = false;
58 static int memblock_can_resize __initdata_memblock;
59 static int memblock_memory_in_slab __initdata_memblock = 0;
60 static int memblock_reserved_in_slab __initdata_memblock = 0;
61
62 ulong __init_memblock choose_memblock_flags(void)
63 {
64 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
65 }
66
67 /* inline so we don't get a warning when pr_debug is compiled out */
68 static __init_memblock const char *
69 memblock_type_name(struct memblock_type *type)
70 {
71 if (type == &memblock.memory)
72 return "memory";
73 else if (type == &memblock.reserved)
74 return "reserved";
75 else
76 return "unknown";
77 }
78
79 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
80 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
81 {
82 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
83 }
84
85 /*
86 * Address comparison utilities
87 */
88 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
89 phys_addr_t base2, phys_addr_t size2)
90 {
91 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
92 }
93
94 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
95 phys_addr_t base, phys_addr_t size)
96 {
97 unsigned long i;
98
99 for (i = 0; i < type->cnt; i++)
100 if (memblock_addrs_overlap(base, size, type->regions[i].base,
101 type->regions[i].size))
102 break;
103 return i < type->cnt;
104 }
105
106 /*
107 * __memblock_find_range_bottom_up - find free area utility in bottom-up
108 * @start: start of candidate range
109 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
110 * @size: size of free area to find
111 * @align: alignment of free area to find
112 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
113 * @flags: pick from blocks based on memory attributes
114 *
115 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
116 *
117 * RETURNS:
118 * Found address on success, 0 on failure.
119 */
120 static phys_addr_t __init_memblock
121 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
122 phys_addr_t size, phys_addr_t align, int nid,
123 ulong flags)
124 {
125 phys_addr_t this_start, this_end, cand;
126 u64 i;
127
128 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
129 this_start = clamp(this_start, start, end);
130 this_end = clamp(this_end, start, end);
131
132 cand = round_up(this_start, align);
133 if (cand < this_end && this_end - cand >= size)
134 return cand;
135 }
136
137 return 0;
138 }
139
140 /**
141 * __memblock_find_range_top_down - find free area utility, in top-down
142 * @start: start of candidate range
143 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
144 * @size: size of free area to find
145 * @align: alignment of free area to find
146 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
147 * @flags: pick from blocks based on memory attributes
148 *
149 * Utility called from memblock_find_in_range_node(), find free area top-down.
150 *
151 * RETURNS:
152 * Found address on success, 0 on failure.
153 */
154 static phys_addr_t __init_memblock
155 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
156 phys_addr_t size, phys_addr_t align, int nid,
157 ulong flags)
158 {
159 phys_addr_t this_start, this_end, cand;
160 u64 i;
161
162 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
163 NULL) {
164 this_start = clamp(this_start, start, end);
165 this_end = clamp(this_end, start, end);
166
167 if (this_end < size)
168 continue;
169
170 cand = round_down(this_end - size, align);
171 if (cand >= this_start)
172 return cand;
173 }
174
175 return 0;
176 }
177
178 /**
179 * memblock_find_in_range_node - find free area in given range and node
180 * @size: size of free area to find
181 * @align: alignment of free area to find
182 * @start: start of candidate range
183 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
184 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
185 * @flags: pick from blocks based on memory attributes
186 *
187 * Find @size free area aligned to @align in the specified range and node.
188 *
189 * When allocation direction is bottom-up, the @start should be greater
190 * than the end of the kernel image. Otherwise, it will be trimmed. The
191 * reason is that we want the bottom-up allocation just near the kernel
192 * image so it is highly likely that the allocated memory and the kernel
193 * will reside in the same node.
194 *
195 * If bottom-up allocation failed, will try to allocate memory top-down.
196 *
197 * RETURNS:
198 * Found address on success, 0 on failure.
199 */
200 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
201 phys_addr_t align, phys_addr_t start,
202 phys_addr_t end, int nid, ulong flags)
203 {
204 phys_addr_t kernel_end, ret;
205
206 /* pump up @end */
207 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
208 end = memblock.current_limit;
209
210 /* avoid allocating the first page */
211 start = max_t(phys_addr_t, start, PAGE_SIZE);
212 end = max(start, end);
213 kernel_end = __pa_symbol(_end);
214
215 /*
216 * try bottom-up allocation only when bottom-up mode
217 * is set and @end is above the kernel image.
218 */
219 if (memblock_bottom_up() && end > kernel_end) {
220 phys_addr_t bottom_up_start;
221
222 /* make sure we will allocate above the kernel */
223 bottom_up_start = max(start, kernel_end);
224
225 /* ok, try bottom-up allocation first */
226 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
227 size, align, nid, flags);
228 if (ret)
229 return ret;
230
231 /*
232 * we always limit bottom-up allocation above the kernel,
233 * but top-down allocation doesn't have the limit, so
234 * retrying top-down allocation may succeed when bottom-up
235 * allocation failed.
236 *
237 * bottom-up allocation is expected to be fail very rarely,
238 * so we use WARN_ONCE() here to see the stack trace if
239 * fail happens.
240 */
241 WARN_ONCE(1, "memblock: bottom-up allocation failed, "
242 "memory hotunplug may be affected\n");
243 }
244
245 return __memblock_find_range_top_down(start, end, size, align, nid,
246 flags);
247 }
248
249 /**
250 * memblock_find_in_range - find free area in given range
251 * @start: start of candidate range
252 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
253 * @size: size of free area to find
254 * @align: alignment of free area to find
255 *
256 * Find @size free area aligned to @align in the specified range.
257 *
258 * RETURNS:
259 * Found address on success, 0 on failure.
260 */
261 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
262 phys_addr_t end, phys_addr_t size,
263 phys_addr_t align)
264 {
265 phys_addr_t ret;
266 ulong flags = choose_memblock_flags();
267
268 again:
269 ret = memblock_find_in_range_node(size, align, start, end,
270 NUMA_NO_NODE, flags);
271
272 if (!ret && (flags & MEMBLOCK_MIRROR)) {
273 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
274 &size);
275 flags &= ~MEMBLOCK_MIRROR;
276 goto again;
277 }
278
279 return ret;
280 }
281
282 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
283 {
284 type->total_size -= type->regions[r].size;
285 memmove(&type->regions[r], &type->regions[r + 1],
286 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
287 type->cnt--;
288
289 /* Special case for empty arrays */
290 if (type->cnt == 0) {
291 WARN_ON(type->total_size != 0);
292 type->cnt = 1;
293 type->regions[0].base = 0;
294 type->regions[0].size = 0;
295 type->regions[0].flags = 0;
296 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
297 }
298 }
299
300 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
301
302 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
303 phys_addr_t *addr)
304 {
305 if (memblock.reserved.regions == memblock_reserved_init_regions)
306 return 0;
307
308 *addr = __pa(memblock.reserved.regions);
309
310 return PAGE_ALIGN(sizeof(struct memblock_region) *
311 memblock.reserved.max);
312 }
313
314 phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
315 phys_addr_t *addr)
316 {
317 if (memblock.memory.regions == memblock_memory_init_regions)
318 return 0;
319
320 *addr = __pa(memblock.memory.regions);
321
322 return PAGE_ALIGN(sizeof(struct memblock_region) *
323 memblock.memory.max);
324 }
325
326 #endif
327
328 /**
329 * memblock_double_array - double the size of the memblock regions array
330 * @type: memblock type of the regions array being doubled
331 * @new_area_start: starting address of memory range to avoid overlap with
332 * @new_area_size: size of memory range to avoid overlap with
333 *
334 * Double the size of the @type regions array. If memblock is being used to
335 * allocate memory for a new reserved regions array and there is a previously
336 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
337 * waiting to be reserved, ensure the memory used by the new array does
338 * not overlap.
339 *
340 * RETURNS:
341 * 0 on success, -1 on failure.
342 */
343 static int __init_memblock memblock_double_array(struct memblock_type *type,
344 phys_addr_t new_area_start,
345 phys_addr_t new_area_size)
346 {
347 struct memblock_region *new_array, *old_array;
348 phys_addr_t old_alloc_size, new_alloc_size;
349 phys_addr_t old_size, new_size, addr;
350 int use_slab = slab_is_available();
351 int *in_slab;
352
353 /* We don't allow resizing until we know about the reserved regions
354 * of memory that aren't suitable for allocation
355 */
356 if (!memblock_can_resize)
357 return -1;
358
359 /* Calculate new doubled size */
360 old_size = type->max * sizeof(struct memblock_region);
361 new_size = old_size << 1;
362 /*
363 * We need to allocated new one align to PAGE_SIZE,
364 * so we can free them completely later.
365 */
366 old_alloc_size = PAGE_ALIGN(old_size);
367 new_alloc_size = PAGE_ALIGN(new_size);
368
369 /* Retrieve the slab flag */
370 if (type == &memblock.memory)
371 in_slab = &memblock_memory_in_slab;
372 else
373 in_slab = &memblock_reserved_in_slab;
374
375 /* Try to find some space for it.
376 *
377 * WARNING: We assume that either slab_is_available() and we use it or
378 * we use MEMBLOCK for allocations. That means that this is unsafe to
379 * use when bootmem is currently active (unless bootmem itself is
380 * implemented on top of MEMBLOCK which isn't the case yet)
381 *
382 * This should however not be an issue for now, as we currently only
383 * call into MEMBLOCK while it's still active, or much later when slab
384 * is active for memory hotplug operations
385 */
386 if (use_slab) {
387 new_array = kmalloc(new_size, GFP_KERNEL);
388 addr = new_array ? __pa(new_array) : 0;
389 } else {
390 /* only exclude range when trying to double reserved.regions */
391 if (type != &memblock.reserved)
392 new_area_start = new_area_size = 0;
393
394 addr = memblock_find_in_range(new_area_start + new_area_size,
395 memblock.current_limit,
396 new_alloc_size, PAGE_SIZE);
397 if (!addr && new_area_size)
398 addr = memblock_find_in_range(0,
399 min(new_area_start, memblock.current_limit),
400 new_alloc_size, PAGE_SIZE);
401
402 new_array = addr ? __va(addr) : NULL;
403 }
404 if (!addr) {
405 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
406 memblock_type_name(type), type->max, type->max * 2);
407 return -1;
408 }
409
410 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
411 memblock_type_name(type), type->max * 2, (u64)addr,
412 (u64)addr + new_size - 1);
413
414 /*
415 * Found space, we now need to move the array over before we add the
416 * reserved region since it may be our reserved array itself that is
417 * full.
418 */
419 memcpy(new_array, type->regions, old_size);
420 memset(new_array + type->max, 0, old_size);
421 old_array = type->regions;
422 type->regions = new_array;
423 type->max <<= 1;
424
425 /* Free old array. We needn't free it if the array is the static one */
426 if (*in_slab)
427 kfree(old_array);
428 else if (old_array != memblock_memory_init_regions &&
429 old_array != memblock_reserved_init_regions)
430 memblock_free(__pa(old_array), old_alloc_size);
431
432 /*
433 * Reserve the new array if that comes from the memblock. Otherwise, we
434 * needn't do it
435 */
436 if (!use_slab)
437 BUG_ON(memblock_reserve(addr, new_alloc_size));
438
439 /* Update slab flag */
440 *in_slab = use_slab;
441
442 return 0;
443 }
444
445 /**
446 * memblock_merge_regions - merge neighboring compatible regions
447 * @type: memblock type to scan
448 *
449 * Scan @type and merge neighboring compatible regions.
450 */
451 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
452 {
453 int i = 0;
454
455 /* cnt never goes below 1 */
456 while (i < type->cnt - 1) {
457 struct memblock_region *this = &type->regions[i];
458 struct memblock_region *next = &type->regions[i + 1];
459
460 if (this->base + this->size != next->base ||
461 memblock_get_region_node(this) !=
462 memblock_get_region_node(next) ||
463 this->flags != next->flags) {
464 BUG_ON(this->base + this->size > next->base);
465 i++;
466 continue;
467 }
468
469 this->size += next->size;
470 /* move forward from next + 1, index of which is i + 2 */
471 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
472 type->cnt--;
473 }
474 }
475
476 /**
477 * memblock_insert_region - insert new memblock region
478 * @type: memblock type to insert into
479 * @idx: index for the insertion point
480 * @base: base address of the new region
481 * @size: size of the new region
482 * @nid: node id of the new region
483 * @flags: flags of the new region
484 *
485 * Insert new memblock region [@base,@base+@size) into @type at @idx.
486 * @type must already have extra room to accomodate the new region.
487 */
488 static void __init_memblock memblock_insert_region(struct memblock_type *type,
489 int idx, phys_addr_t base,
490 phys_addr_t size,
491 int nid, unsigned long flags)
492 {
493 struct memblock_region *rgn = &type->regions[idx];
494
495 BUG_ON(type->cnt >= type->max);
496 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
497 rgn->base = base;
498 rgn->size = size;
499 rgn->flags = flags;
500 memblock_set_region_node(rgn, nid);
501 type->cnt++;
502 type->total_size += size;
503 }
504
505 /**
506 * memblock_add_range - add new memblock region
507 * @type: memblock type to add new region into
508 * @base: base address of the new region
509 * @size: size of the new region
510 * @nid: nid of the new region
511 * @flags: flags of the new region
512 *
513 * Add new memblock region [@base,@base+@size) into @type. The new region
514 * is allowed to overlap with existing ones - overlaps don't affect already
515 * existing regions. @type is guaranteed to be minimal (all neighbouring
516 * compatible regions are merged) after the addition.
517 *
518 * RETURNS:
519 * 0 on success, -errno on failure.
520 */
521 int __init_memblock memblock_add_range(struct memblock_type *type,
522 phys_addr_t base, phys_addr_t size,
523 int nid, unsigned long flags)
524 {
525 bool insert = false;
526 phys_addr_t obase = base;
527 phys_addr_t end = base + memblock_cap_size(base, &size);
528 int idx, nr_new;
529 struct memblock_region *rgn;
530
531 if (!size)
532 return 0;
533
534 /* special case for empty array */
535 if (type->regions[0].size == 0) {
536 WARN_ON(type->cnt != 1 || type->total_size);
537 type->regions[0].base = base;
538 type->regions[0].size = size;
539 type->regions[0].flags = flags;
540 memblock_set_region_node(&type->regions[0], nid);
541 type->total_size = size;
542 return 0;
543 }
544 repeat:
545 /*
546 * The following is executed twice. Once with %false @insert and
547 * then with %true. The first counts the number of regions needed
548 * to accomodate the new area. The second actually inserts them.
549 */
550 base = obase;
551 nr_new = 0;
552
553 for_each_memblock_type(type, rgn) {
554 phys_addr_t rbase = rgn->base;
555 phys_addr_t rend = rbase + rgn->size;
556
557 if (rbase >= end)
558 break;
559 if (rend <= base)
560 continue;
561 /*
562 * @rgn overlaps. If it separates the lower part of new
563 * area, insert that portion.
564 */
565 if (rbase > base) {
566 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
567 WARN_ON(nid != memblock_get_region_node(rgn));
568 #endif
569 WARN_ON(flags != rgn->flags);
570 nr_new++;
571 if (insert)
572 memblock_insert_region(type, idx++, base,
573 rbase - base, nid,
574 flags);
575 }
576 /* area below @rend is dealt with, forget about it */
577 base = min(rend, end);
578 }
579
580 /* insert the remaining portion */
581 if (base < end) {
582 nr_new++;
583 if (insert)
584 memblock_insert_region(type, idx, base, end - base,
585 nid, flags);
586 }
587
588 /*
589 * If this was the first round, resize array and repeat for actual
590 * insertions; otherwise, merge and return.
591 */
592 if (!insert) {
593 while (type->cnt + nr_new > type->max)
594 if (memblock_double_array(type, obase, size) < 0)
595 return -ENOMEM;
596 insert = true;
597 goto repeat;
598 } else {
599 memblock_merge_regions(type);
600 return 0;
601 }
602 }
603
604 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
605 int nid)
606 {
607 return memblock_add_range(&memblock.memory, base, size, nid, 0);
608 }
609
610 static int __init_memblock memblock_add_region(phys_addr_t base,
611 phys_addr_t size,
612 int nid,
613 unsigned long flags)
614 {
615 struct memblock_type *type = &memblock.memory;
616
617 memblock_dbg("memblock_add: [%#016llx-%#016llx] flags %#02lx %pF\n",
618 (unsigned long long)base,
619 (unsigned long long)base + size - 1,
620 flags, (void *)_RET_IP_);
621
622 return memblock_add_range(type, base, size, nid, flags);
623 }
624
625 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
626 {
627 return memblock_add_region(base, size, MAX_NUMNODES, 0);
628 }
629
630 /**
631 * memblock_isolate_range - isolate given range into disjoint memblocks
632 * @type: memblock type to isolate range for
633 * @base: base of range to isolate
634 * @size: size of range to isolate
635 * @start_rgn: out parameter for the start of isolated region
636 * @end_rgn: out parameter for the end of isolated region
637 *
638 * Walk @type and ensure that regions don't cross the boundaries defined by
639 * [@base,@base+@size). Crossing regions are split at the boundaries,
640 * which may create at most two more regions. The index of the first
641 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
642 *
643 * RETURNS:
644 * 0 on success, -errno on failure.
645 */
646 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
647 phys_addr_t base, phys_addr_t size,
648 int *start_rgn, int *end_rgn)
649 {
650 phys_addr_t end = base + memblock_cap_size(base, &size);
651 int idx;
652 struct memblock_region *rgn;
653
654 *start_rgn = *end_rgn = 0;
655
656 if (!size)
657 return 0;
658
659 /* we'll create at most two more regions */
660 while (type->cnt + 2 > type->max)
661 if (memblock_double_array(type, base, size) < 0)
662 return -ENOMEM;
663
664 for_each_memblock_type(type, rgn) {
665 phys_addr_t rbase = rgn->base;
666 phys_addr_t rend = rbase + rgn->size;
667
668 if (rbase >= end)
669 break;
670 if (rend <= base)
671 continue;
672
673 if (rbase < base) {
674 /*
675 * @rgn intersects from below. Split and continue
676 * to process the next region - the new top half.
677 */
678 rgn->base = base;
679 rgn->size -= base - rbase;
680 type->total_size -= base - rbase;
681 memblock_insert_region(type, idx, rbase, base - rbase,
682 memblock_get_region_node(rgn),
683 rgn->flags);
684 } else if (rend > end) {
685 /*
686 * @rgn intersects from above. Split and redo the
687 * current region - the new bottom half.
688 */
689 rgn->base = end;
690 rgn->size -= end - rbase;
691 type->total_size -= end - rbase;
692 memblock_insert_region(type, idx--, rbase, end - rbase,
693 memblock_get_region_node(rgn),
694 rgn->flags);
695 } else {
696 /* @rgn is fully contained, record it */
697 if (!*end_rgn)
698 *start_rgn = idx;
699 *end_rgn = idx + 1;
700 }
701 }
702
703 return 0;
704 }
705
706 static int __init_memblock memblock_remove_range(struct memblock_type *type,
707 phys_addr_t base, phys_addr_t size)
708 {
709 int start_rgn, end_rgn;
710 int i, ret;
711
712 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
713 if (ret)
714 return ret;
715
716 for (i = end_rgn - 1; i >= start_rgn; i--)
717 memblock_remove_region(type, i);
718 return 0;
719 }
720
721 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
722 {
723 return memblock_remove_range(&memblock.memory, base, size);
724 }
725
726
727 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
728 {
729 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
730 (unsigned long long)base,
731 (unsigned long long)base + size - 1,
732 (void *)_RET_IP_);
733
734 kmemleak_free_part(__va(base), size);
735 return memblock_remove_range(&memblock.reserved, base, size);
736 }
737
738 static int __init_memblock memblock_reserve_region(phys_addr_t base,
739 phys_addr_t size,
740 int nid,
741 unsigned long flags)
742 {
743 struct memblock_type *type = &memblock.reserved;
744
745 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
746 (unsigned long long)base,
747 (unsigned long long)base + size - 1,
748 flags, (void *)_RET_IP_);
749
750 return memblock_add_range(type, base, size, nid, flags);
751 }
752
753 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
754 {
755 return memblock_reserve_region(base, size, MAX_NUMNODES, 0);
756 }
757
758 /**
759 *
760 * This function isolates region [@base, @base + @size), and sets/clears flag
761 *
762 * Return 0 on success, -errno on failure.
763 */
764 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
765 phys_addr_t size, int set, int flag)
766 {
767 struct memblock_type *type = &memblock.memory;
768 int i, ret, start_rgn, end_rgn;
769
770 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
771 if (ret)
772 return ret;
773
774 for (i = start_rgn; i < end_rgn; i++)
775 if (set)
776 memblock_set_region_flags(&type->regions[i], flag);
777 else
778 memblock_clear_region_flags(&type->regions[i], flag);
779
780 memblock_merge_regions(type);
781 return 0;
782 }
783
784 /**
785 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
786 * @base: the base phys addr of the region
787 * @size: the size of the region
788 *
789 * Return 0 on success, -errno on failure.
790 */
791 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
792 {
793 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
794 }
795
796 /**
797 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
798 * @base: the base phys addr of the region
799 * @size: the size of the region
800 *
801 * Return 0 on success, -errno on failure.
802 */
803 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
804 {
805 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
806 }
807
808 /**
809 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
810 * @base: the base phys addr of the region
811 * @size: the size of the region
812 *
813 * Return 0 on success, -errno on failure.
814 */
815 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
816 {
817 system_has_some_mirror = true;
818
819 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
820 }
821
822 /**
823 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
824 * @base: the base phys addr of the region
825 * @size: the size of the region
826 *
827 * Return 0 on success, -errno on failure.
828 */
829 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
830 {
831 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
832 }
833
834 /**
835 * __next_reserved_mem_region - next function for for_each_reserved_region()
836 * @idx: pointer to u64 loop variable
837 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
838 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
839 *
840 * Iterate over all reserved memory regions.
841 */
842 void __init_memblock __next_reserved_mem_region(u64 *idx,
843 phys_addr_t *out_start,
844 phys_addr_t *out_end)
845 {
846 struct memblock_type *type = &memblock.reserved;
847
848 if (*idx >= 0 && *idx < type->cnt) {
849 struct memblock_region *r = &type->regions[*idx];
850 phys_addr_t base = r->base;
851 phys_addr_t size = r->size;
852
853 if (out_start)
854 *out_start = base;
855 if (out_end)
856 *out_end = base + size - 1;
857
858 *idx += 1;
859 return;
860 }
861
862 /* signal end of iteration */
863 *idx = ULLONG_MAX;
864 }
865
866 /**
867 * __next__mem_range - next function for for_each_free_mem_range() etc.
868 * @idx: pointer to u64 loop variable
869 * @nid: node selector, %NUMA_NO_NODE for all nodes
870 * @flags: pick from blocks based on memory attributes
871 * @type_a: pointer to memblock_type from where the range is taken
872 * @type_b: pointer to memblock_type which excludes memory from being taken
873 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
874 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
875 * @out_nid: ptr to int for nid of the range, can be %NULL
876 *
877 * Find the first area from *@idx which matches @nid, fill the out
878 * parameters, and update *@idx for the next iteration. The lower 32bit of
879 * *@idx contains index into type_a and the upper 32bit indexes the
880 * areas before each region in type_b. For example, if type_b regions
881 * look like the following,
882 *
883 * 0:[0-16), 1:[32-48), 2:[128-130)
884 *
885 * The upper 32bit indexes the following regions.
886 *
887 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
888 *
889 * As both region arrays are sorted, the function advances the two indices
890 * in lockstep and returns each intersection.
891 */
892 void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
893 struct memblock_type *type_a,
894 struct memblock_type *type_b,
895 phys_addr_t *out_start,
896 phys_addr_t *out_end, int *out_nid)
897 {
898 int idx_a = *idx & 0xffffffff;
899 int idx_b = *idx >> 32;
900
901 if (WARN_ONCE(nid == MAX_NUMNODES,
902 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
903 nid = NUMA_NO_NODE;
904
905 for (; idx_a < type_a->cnt; idx_a++) {
906 struct memblock_region *m = &type_a->regions[idx_a];
907
908 phys_addr_t m_start = m->base;
909 phys_addr_t m_end = m->base + m->size;
910 int m_nid = memblock_get_region_node(m);
911
912 /* only memory regions are associated with nodes, check it */
913 if (nid != NUMA_NO_NODE && nid != m_nid)
914 continue;
915
916 /* skip hotpluggable memory regions if needed */
917 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
918 continue;
919
920 /* if we want mirror memory skip non-mirror memory regions */
921 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
922 continue;
923
924 /* skip nomap memory unless we were asked for it explicitly */
925 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
926 continue;
927
928 if (!type_b) {
929 if (out_start)
930 *out_start = m_start;
931 if (out_end)
932 *out_end = m_end;
933 if (out_nid)
934 *out_nid = m_nid;
935 idx_a++;
936 *idx = (u32)idx_a | (u64)idx_b << 32;
937 return;
938 }
939
940 /* scan areas before each reservation */
941 for (; idx_b < type_b->cnt + 1; idx_b++) {
942 struct memblock_region *r;
943 phys_addr_t r_start;
944 phys_addr_t r_end;
945
946 r = &type_b->regions[idx_b];
947 r_start = idx_b ? r[-1].base + r[-1].size : 0;
948 r_end = idx_b < type_b->cnt ?
949 r->base : ULLONG_MAX;
950
951 /*
952 * if idx_b advanced past idx_a,
953 * break out to advance idx_a
954 */
955 if (r_start >= m_end)
956 break;
957 /* if the two regions intersect, we're done */
958 if (m_start < r_end) {
959 if (out_start)
960 *out_start =
961 max(m_start, r_start);
962 if (out_end)
963 *out_end = min(m_end, r_end);
964 if (out_nid)
965 *out_nid = m_nid;
966 /*
967 * The region which ends first is
968 * advanced for the next iteration.
969 */
970 if (m_end <= r_end)
971 idx_a++;
972 else
973 idx_b++;
974 *idx = (u32)idx_a | (u64)idx_b << 32;
975 return;
976 }
977 }
978 }
979
980 /* signal end of iteration */
981 *idx = ULLONG_MAX;
982 }
983
984 /**
985 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
986 *
987 * Finds the next range from type_a which is not marked as unsuitable
988 * in type_b.
989 *
990 * @idx: pointer to u64 loop variable
991 * @nid: node selector, %NUMA_NO_NODE for all nodes
992 * @flags: pick from blocks based on memory attributes
993 * @type_a: pointer to memblock_type from where the range is taken
994 * @type_b: pointer to memblock_type which excludes memory from being taken
995 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
996 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
997 * @out_nid: ptr to int for nid of the range, can be %NULL
998 *
999 * Reverse of __next_mem_range().
1000 */
1001 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
1002 struct memblock_type *type_a,
1003 struct memblock_type *type_b,
1004 phys_addr_t *out_start,
1005 phys_addr_t *out_end, int *out_nid)
1006 {
1007 int idx_a = *idx & 0xffffffff;
1008 int idx_b = *idx >> 32;
1009
1010 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1011 nid = NUMA_NO_NODE;
1012
1013 if (*idx == (u64)ULLONG_MAX) {
1014 idx_a = type_a->cnt - 1;
1015 idx_b = type_b->cnt;
1016 }
1017
1018 for (; idx_a >= 0; idx_a--) {
1019 struct memblock_region *m = &type_a->regions[idx_a];
1020
1021 phys_addr_t m_start = m->base;
1022 phys_addr_t m_end = m->base + m->size;
1023 int m_nid = memblock_get_region_node(m);
1024
1025 /* only memory regions are associated with nodes, check it */
1026 if (nid != NUMA_NO_NODE && nid != m_nid)
1027 continue;
1028
1029 /* skip hotpluggable memory regions if needed */
1030 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1031 continue;
1032
1033 /* if we want mirror memory skip non-mirror memory regions */
1034 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1035 continue;
1036
1037 /* skip nomap memory unless we were asked for it explicitly */
1038 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1039 continue;
1040
1041 if (!type_b) {
1042 if (out_start)
1043 *out_start = m_start;
1044 if (out_end)
1045 *out_end = m_end;
1046 if (out_nid)
1047 *out_nid = m_nid;
1048 idx_a++;
1049 *idx = (u32)idx_a | (u64)idx_b << 32;
1050 return;
1051 }
1052
1053 /* scan areas before each reservation */
1054 for (; idx_b >= 0; idx_b--) {
1055 struct memblock_region *r;
1056 phys_addr_t r_start;
1057 phys_addr_t r_end;
1058
1059 r = &type_b->regions[idx_b];
1060 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1061 r_end = idx_b < type_b->cnt ?
1062 r->base : ULLONG_MAX;
1063 /*
1064 * if idx_b advanced past idx_a,
1065 * break out to advance idx_a
1066 */
1067
1068 if (r_end <= m_start)
1069 break;
1070 /* if the two regions intersect, we're done */
1071 if (m_end > r_start) {
1072 if (out_start)
1073 *out_start = max(m_start, r_start);
1074 if (out_end)
1075 *out_end = min(m_end, r_end);
1076 if (out_nid)
1077 *out_nid = m_nid;
1078 if (m_start >= r_start)
1079 idx_a--;
1080 else
1081 idx_b--;
1082 *idx = (u32)idx_a | (u64)idx_b << 32;
1083 return;
1084 }
1085 }
1086 }
1087 /* signal end of iteration */
1088 *idx = ULLONG_MAX;
1089 }
1090
1091 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1092 /*
1093 * Common iterator interface used to define for_each_mem_range().
1094 */
1095 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1096 unsigned long *out_start_pfn,
1097 unsigned long *out_end_pfn, int *out_nid)
1098 {
1099 struct memblock_type *type = &memblock.memory;
1100 struct memblock_region *r;
1101
1102 while (++*idx < type->cnt) {
1103 r = &type->regions[*idx];
1104
1105 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1106 continue;
1107 if (nid == MAX_NUMNODES || nid == r->nid)
1108 break;
1109 }
1110 if (*idx >= type->cnt) {
1111 *idx = -1;
1112 return;
1113 }
1114
1115 if (out_start_pfn)
1116 *out_start_pfn = PFN_UP(r->base);
1117 if (out_end_pfn)
1118 *out_end_pfn = PFN_DOWN(r->base + r->size);
1119 if (out_nid)
1120 *out_nid = r->nid;
1121 }
1122
1123 /**
1124 * memblock_set_node - set node ID on memblock regions
1125 * @base: base of area to set node ID for
1126 * @size: size of area to set node ID for
1127 * @type: memblock type to set node ID for
1128 * @nid: node ID to set
1129 *
1130 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1131 * Regions which cross the area boundaries are split as necessary.
1132 *
1133 * RETURNS:
1134 * 0 on success, -errno on failure.
1135 */
1136 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1137 struct memblock_type *type, int nid)
1138 {
1139 int start_rgn, end_rgn;
1140 int i, ret;
1141
1142 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1143 if (ret)
1144 return ret;
1145
1146 for (i = start_rgn; i < end_rgn; i++)
1147 memblock_set_region_node(&type->regions[i], nid);
1148
1149 memblock_merge_regions(type);
1150 return 0;
1151 }
1152 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1153
1154 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1155 phys_addr_t align, phys_addr_t start,
1156 phys_addr_t end, int nid, ulong flags)
1157 {
1158 phys_addr_t found;
1159
1160 if (!align)
1161 align = SMP_CACHE_BYTES;
1162
1163 found = memblock_find_in_range_node(size, align, start, end, nid,
1164 flags);
1165 if (found && !memblock_reserve(found, size)) {
1166 /*
1167 * The min_count is set to 0 so that memblock allocations are
1168 * never reported as leaks.
1169 */
1170 kmemleak_alloc(__va(found), size, 0, 0);
1171 return found;
1172 }
1173 return 0;
1174 }
1175
1176 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1177 phys_addr_t start, phys_addr_t end,
1178 ulong flags)
1179 {
1180 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1181 flags);
1182 }
1183
1184 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1185 phys_addr_t align, phys_addr_t max_addr,
1186 int nid, ulong flags)
1187 {
1188 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1189 }
1190
1191 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1192 {
1193 ulong flags = choose_memblock_flags();
1194 phys_addr_t ret;
1195
1196 again:
1197 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1198 nid, flags);
1199
1200 if (!ret && (flags & MEMBLOCK_MIRROR)) {
1201 flags &= ~MEMBLOCK_MIRROR;
1202 goto again;
1203 }
1204 return ret;
1205 }
1206
1207 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1208 {
1209 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1210 MEMBLOCK_NONE);
1211 }
1212
1213 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1214 {
1215 phys_addr_t alloc;
1216
1217 alloc = __memblock_alloc_base(size, align, max_addr);
1218
1219 if (alloc == 0)
1220 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1221 (unsigned long long) size, (unsigned long long) max_addr);
1222
1223 return alloc;
1224 }
1225
1226 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1227 {
1228 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1229 }
1230
1231 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1232 {
1233 phys_addr_t res = memblock_alloc_nid(size, align, nid);
1234
1235 if (res)
1236 return res;
1237 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1238 }
1239
1240 /**
1241 * memblock_virt_alloc_internal - allocate boot memory block
1242 * @size: size of memory block to be allocated in bytes
1243 * @align: alignment of the region and block's size
1244 * @min_addr: the lower bound of the memory region to allocate (phys address)
1245 * @max_addr: the upper bound of the memory region to allocate (phys address)
1246 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1247 *
1248 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1249 * will fall back to memory below @min_addr. Also, allocation may fall back
1250 * to any node in the system if the specified node can not
1251 * hold the requested memory.
1252 *
1253 * The allocation is performed from memory region limited by
1254 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1255 *
1256 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1257 *
1258 * The phys address of allocated boot memory block is converted to virtual and
1259 * allocated memory is reset to 0.
1260 *
1261 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1262 * allocated boot memory block, so that it is never reported as leaks.
1263 *
1264 * RETURNS:
1265 * Virtual address of allocated memory block on success, NULL on failure.
1266 */
1267 static void * __init memblock_virt_alloc_internal(
1268 phys_addr_t size, phys_addr_t align,
1269 phys_addr_t min_addr, phys_addr_t max_addr,
1270 int nid)
1271 {
1272 phys_addr_t alloc;
1273 void *ptr;
1274 ulong flags = choose_memblock_flags();
1275
1276 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1277 nid = NUMA_NO_NODE;
1278
1279 /*
1280 * Detect any accidental use of these APIs after slab is ready, as at
1281 * this moment memblock may be deinitialized already and its
1282 * internal data may be destroyed (after execution of free_all_bootmem)
1283 */
1284 if (WARN_ON_ONCE(slab_is_available()))
1285 return kzalloc_node(size, GFP_NOWAIT, nid);
1286
1287 if (!align)
1288 align = SMP_CACHE_BYTES;
1289
1290 if (max_addr > memblock.current_limit)
1291 max_addr = memblock.current_limit;
1292
1293 again:
1294 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1295 nid, flags);
1296 if (alloc)
1297 goto done;
1298
1299 if (nid != NUMA_NO_NODE) {
1300 alloc = memblock_find_in_range_node(size, align, min_addr,
1301 max_addr, NUMA_NO_NODE,
1302 flags);
1303 if (alloc)
1304 goto done;
1305 }
1306
1307 if (min_addr) {
1308 min_addr = 0;
1309 goto again;
1310 }
1311
1312 if (flags & MEMBLOCK_MIRROR) {
1313 flags &= ~MEMBLOCK_MIRROR;
1314 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1315 &size);
1316 goto again;
1317 }
1318
1319 return NULL;
1320 done:
1321 memblock_reserve(alloc, size);
1322 ptr = phys_to_virt(alloc);
1323 memset(ptr, 0, size);
1324
1325 /*
1326 * The min_count is set to 0 so that bootmem allocated blocks
1327 * are never reported as leaks. This is because many of these blocks
1328 * are only referred via the physical address which is not
1329 * looked up by kmemleak.
1330 */
1331 kmemleak_alloc(ptr, size, 0, 0);
1332
1333 return ptr;
1334 }
1335
1336 /**
1337 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1338 * @size: size of memory block to be allocated in bytes
1339 * @align: alignment of the region and block's size
1340 * @min_addr: the lower bound of the memory region from where the allocation
1341 * is preferred (phys address)
1342 * @max_addr: the upper bound of the memory region from where the allocation
1343 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1344 * allocate only from memory limited by memblock.current_limit value
1345 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1346 *
1347 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1348 * additional debug information (including caller info), if enabled.
1349 *
1350 * RETURNS:
1351 * Virtual address of allocated memory block on success, NULL on failure.
1352 */
1353 void * __init memblock_virt_alloc_try_nid_nopanic(
1354 phys_addr_t size, phys_addr_t align,
1355 phys_addr_t min_addr, phys_addr_t max_addr,
1356 int nid)
1357 {
1358 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1359 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1360 (u64)max_addr, (void *)_RET_IP_);
1361 return memblock_virt_alloc_internal(size, align, min_addr,
1362 max_addr, nid);
1363 }
1364
1365 /**
1366 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1367 * @size: size of memory block to be allocated in bytes
1368 * @align: alignment of the region and block's size
1369 * @min_addr: the lower bound of the memory region from where the allocation
1370 * is preferred (phys address)
1371 * @max_addr: the upper bound of the memory region from where the allocation
1372 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1373 * allocate only from memory limited by memblock.current_limit value
1374 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1375 *
1376 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1377 * which provides debug information (including caller info), if enabled,
1378 * and panics if the request can not be satisfied.
1379 *
1380 * RETURNS:
1381 * Virtual address of allocated memory block on success, NULL on failure.
1382 */
1383 void * __init memblock_virt_alloc_try_nid(
1384 phys_addr_t size, phys_addr_t align,
1385 phys_addr_t min_addr, phys_addr_t max_addr,
1386 int nid)
1387 {
1388 void *ptr;
1389
1390 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1391 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1392 (u64)max_addr, (void *)_RET_IP_);
1393 ptr = memblock_virt_alloc_internal(size, align,
1394 min_addr, max_addr, nid);
1395 if (ptr)
1396 return ptr;
1397
1398 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1399 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1400 (u64)max_addr);
1401 return NULL;
1402 }
1403
1404 /**
1405 * __memblock_free_early - free boot memory block
1406 * @base: phys starting address of the boot memory block
1407 * @size: size of the boot memory block in bytes
1408 *
1409 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1410 * The freeing memory will not be released to the buddy allocator.
1411 */
1412 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1413 {
1414 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1415 __func__, (u64)base, (u64)base + size - 1,
1416 (void *)_RET_IP_);
1417 kmemleak_free_part(__va(base), size);
1418 memblock_remove_range(&memblock.reserved, base, size);
1419 }
1420
1421 /*
1422 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1423 * @addr: phys starting address of the boot memory block
1424 * @size: size of the boot memory block in bytes
1425 *
1426 * This is only useful when the bootmem allocator has already been torn
1427 * down, but we are still initializing the system. Pages are released directly
1428 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1429 */
1430 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1431 {
1432 u64 cursor, end;
1433
1434 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1435 __func__, (u64)base, (u64)base + size - 1,
1436 (void *)_RET_IP_);
1437 kmemleak_free_part(__va(base), size);
1438 cursor = PFN_UP(base);
1439 end = PFN_DOWN(base + size);
1440
1441 for (; cursor < end; cursor++) {
1442 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1443 totalram_pages++;
1444 }
1445 }
1446
1447 /*
1448 * Remaining API functions
1449 */
1450
1451 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1452 {
1453 return memblock.memory.total_size;
1454 }
1455
1456 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1457 {
1458 unsigned long pages = 0;
1459 struct memblock_region *r;
1460 unsigned long start_pfn, end_pfn;
1461
1462 for_each_memblock(memory, r) {
1463 start_pfn = memblock_region_memory_base_pfn(r);
1464 end_pfn = memblock_region_memory_end_pfn(r);
1465 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1466 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1467 pages += end_pfn - start_pfn;
1468 }
1469
1470 return PFN_PHYS(pages);
1471 }
1472
1473 /* lowest address */
1474 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1475 {
1476 return memblock.memory.regions[0].base;
1477 }
1478
1479 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1480 {
1481 int idx = memblock.memory.cnt - 1;
1482
1483 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1484 }
1485
1486 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1487 {
1488 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1489 struct memblock_region *r;
1490
1491 if (!limit)
1492 return;
1493
1494 /* find out max address */
1495 for_each_memblock(memory, r) {
1496 if (limit <= r->size) {
1497 max_addr = r->base + limit;
1498 break;
1499 }
1500 limit -= r->size;
1501 }
1502
1503 /* truncate both memory and reserved regions */
1504 memblock_remove_range(&memblock.memory, max_addr,
1505 (phys_addr_t)ULLONG_MAX);
1506 memblock_remove_range(&memblock.reserved, max_addr,
1507 (phys_addr_t)ULLONG_MAX);
1508 }
1509
1510 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1511 {
1512 unsigned int left = 0, right = type->cnt;
1513
1514 do {
1515 unsigned int mid = (right + left) / 2;
1516
1517 if (addr < type->regions[mid].base)
1518 right = mid;
1519 else if (addr >= (type->regions[mid].base +
1520 type->regions[mid].size))
1521 left = mid + 1;
1522 else
1523 return mid;
1524 } while (left < right);
1525 return -1;
1526 }
1527
1528 bool __init memblock_is_reserved(phys_addr_t addr)
1529 {
1530 return memblock_search(&memblock.reserved, addr) != -1;
1531 }
1532
1533 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1534 {
1535 return memblock_search(&memblock.memory, addr) != -1;
1536 }
1537
1538 int __init_memblock memblock_is_map_memory(phys_addr_t addr)
1539 {
1540 int i = memblock_search(&memblock.memory, addr);
1541
1542 if (i == -1)
1543 return false;
1544 return !memblock_is_nomap(&memblock.memory.regions[i]);
1545 }
1546
1547 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1548 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1549 unsigned long *start_pfn, unsigned long *end_pfn)
1550 {
1551 struct memblock_type *type = &memblock.memory;
1552 int mid = memblock_search(type, PFN_PHYS(pfn));
1553
1554 if (mid == -1)
1555 return -1;
1556
1557 *start_pfn = PFN_DOWN(type->regions[mid].base);
1558 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1559
1560 return type->regions[mid].nid;
1561 }
1562 #endif
1563
1564 /**
1565 * memblock_is_region_memory - check if a region is a subset of memory
1566 * @base: base of region to check
1567 * @size: size of region to check
1568 *
1569 * Check if the region [@base, @base+@size) is a subset of a memory block.
1570 *
1571 * RETURNS:
1572 * 0 if false, non-zero if true
1573 */
1574 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1575 {
1576 int idx = memblock_search(&memblock.memory, base);
1577 phys_addr_t end = base + memblock_cap_size(base, &size);
1578
1579 if (idx == -1)
1580 return 0;
1581 return memblock.memory.regions[idx].base <= base &&
1582 (memblock.memory.regions[idx].base +
1583 memblock.memory.regions[idx].size) >= end;
1584 }
1585
1586 /**
1587 * memblock_is_region_reserved - check if a region intersects reserved memory
1588 * @base: base of region to check
1589 * @size: size of region to check
1590 *
1591 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1592 *
1593 * RETURNS:
1594 * True if they intersect, false if not.
1595 */
1596 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1597 {
1598 memblock_cap_size(base, &size);
1599 return memblock_overlaps_region(&memblock.reserved, base, size);
1600 }
1601
1602 void __init_memblock memblock_trim_memory(phys_addr_t align)
1603 {
1604 phys_addr_t start, end, orig_start, orig_end;
1605 struct memblock_region *r;
1606
1607 for_each_memblock(memory, r) {
1608 orig_start = r->base;
1609 orig_end = r->base + r->size;
1610 start = round_up(orig_start, align);
1611 end = round_down(orig_end, align);
1612
1613 if (start == orig_start && end == orig_end)
1614 continue;
1615
1616 if (start < end) {
1617 r->base = start;
1618 r->size = end - start;
1619 } else {
1620 memblock_remove_region(&memblock.memory,
1621 r - memblock.memory.regions);
1622 r--;
1623 }
1624 }
1625 }
1626
1627 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1628 {
1629 memblock.current_limit = limit;
1630 }
1631
1632 phys_addr_t __init_memblock memblock_get_current_limit(void)
1633 {
1634 return memblock.current_limit;
1635 }
1636
1637 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1638 {
1639 unsigned long long base, size;
1640 unsigned long flags;
1641 int idx;
1642 struct memblock_region *rgn;
1643
1644 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
1645
1646 for_each_memblock_type(type, rgn) {
1647 char nid_buf[32] = "";
1648
1649 base = rgn->base;
1650 size = rgn->size;
1651 flags = rgn->flags;
1652 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1653 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1654 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1655 memblock_get_region_node(rgn));
1656 #endif
1657 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1658 name, idx, base, base + size - 1, size, nid_buf, flags);
1659 }
1660 }
1661
1662 void __init_memblock __memblock_dump_all(void)
1663 {
1664 pr_info("MEMBLOCK configuration:\n");
1665 pr_info(" memory size = %#llx reserved size = %#llx\n",
1666 (unsigned long long)memblock.memory.total_size,
1667 (unsigned long long)memblock.reserved.total_size);
1668
1669 memblock_dump(&memblock.memory, "memory");
1670 memblock_dump(&memblock.reserved, "reserved");
1671 }
1672
1673 void __init memblock_allow_resize(void)
1674 {
1675 memblock_can_resize = 1;
1676 }
1677
1678 static int __init early_memblock(char *p)
1679 {
1680 if (p && strstr(p, "debug"))
1681 memblock_debug = 1;
1682 return 0;
1683 }
1684 early_param("memblock", early_memblock);
1685
1686 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1687
1688 static int memblock_debug_show(struct seq_file *m, void *private)
1689 {
1690 struct memblock_type *type = m->private;
1691 struct memblock_region *reg;
1692 int i;
1693
1694 for (i = 0; i < type->cnt; i++) {
1695 reg = &type->regions[i];
1696 seq_printf(m, "%4d: ", i);
1697 if (sizeof(phys_addr_t) == 4)
1698 seq_printf(m, "0x%08lx..0x%08lx\n",
1699 (unsigned long)reg->base,
1700 (unsigned long)(reg->base + reg->size - 1));
1701 else
1702 seq_printf(m, "0x%016llx..0x%016llx\n",
1703 (unsigned long long)reg->base,
1704 (unsigned long long)(reg->base + reg->size - 1));
1705
1706 }
1707 return 0;
1708 }
1709
1710 static int memblock_debug_open(struct inode *inode, struct file *file)
1711 {
1712 return single_open(file, memblock_debug_show, inode->i_private);
1713 }
1714
1715 static const struct file_operations memblock_debug_fops = {
1716 .open = memblock_debug_open,
1717 .read = seq_read,
1718 .llseek = seq_lseek,
1719 .release = single_release,
1720 };
1721
1722 static int __init memblock_init_debugfs(void)
1723 {
1724 struct dentry *root = debugfs_create_dir("memblock", NULL);
1725 if (!root)
1726 return -ENXIO;
1727 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1728 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1729 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1730 debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1731 #endif
1732
1733 return 0;
1734 }
1735 __initcall(memblock_init_debugfs);
1736
1737 #endif /* CONFIG_DEBUG_FS */
This page took 0.093627 seconds and 5 git commands to generate.