iio: accel: kxcjk-1013: Fix kxcjk10013_set_range
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include "internal.h"
60 #include <net/sock.h>
61 #include <net/ip.h>
62 #include <net/tcp_memcontrol.h>
63 #include "slab.h"
64
65 #include <asm/uaccess.h>
66
67 #include <trace/events/vmscan.h>
68
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
71
72 #define MEM_CGROUP_RECLAIM_RETRIES 5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
74
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly;
78
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata = 1;
82 #else
83 static int really_do_swap_account __initdata;
84 #endif
85
86 #else
87 #define do_swap_account 0
88 #endif
89
90
91 static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
94 "rss_huge",
95 "mapped_file",
96 "writeback",
97 "swap",
98 };
99
100 enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
105 MEM_CGROUP_EVENTS_NSTATS,
106 };
107
108 static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113 };
114
115 static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121 };
122
123 /*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129 enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
131 MEM_CGROUP_TARGET_SOFTLIMIT,
132 MEM_CGROUP_TARGET_NUMAINFO,
133 MEM_CGROUP_NTARGETS,
134 };
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET 1024
138
139 struct mem_cgroup_stat_cpu {
140 long count[MEM_CGROUP_STAT_NSTATS];
141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 unsigned long nr_page_events;
143 unsigned long targets[MEM_CGROUP_NTARGETS];
144 };
145
146 struct mem_cgroup_reclaim_iter {
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
151 struct mem_cgroup *last_visited;
152 int last_dead_count;
153
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156 };
157
158 /*
159 * per-zone information in memory controller.
160 */
161 struct mem_cgroup_per_zone {
162 struct lruvec lruvec;
163 unsigned long lru_size[NR_LRU_LISTS];
164
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
172 /* use container_of */
173 };
174
175 struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177 };
178
179 /*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184 struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187 };
188
189 struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191 };
192
193 struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195 };
196
197 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
199 struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202 };
203
204 /* For threshold */
205 struct mem_cgroup_threshold_ary {
206 /* An array index points to threshold just below or equal to usage. */
207 int current_threshold;
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212 };
213
214 struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223 };
224
225 /* for OOM */
226 struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229 };
230
231 /*
232 * cgroup_event represents events which userspace want to receive.
233 */
234 struct mem_cgroup_event {
235 /*
236 * memcg which the event belongs to.
237 */
238 struct mem_cgroup *memcg;
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
252 int (*register_event)(struct mem_cgroup *memcg,
253 struct eventfd_ctx *eventfd, const char *args);
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
259 void (*unregister_event)(struct mem_cgroup *memcg,
260 struct eventfd_ctx *eventfd);
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269 };
270
271 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273
274 /*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
284 */
285 struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
291
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
295 /* css_online() has been completed */
296 int initialized;
297
298 /*
299 * the counter to account for mem+swap usage.
300 */
301 struct res_counter memsw;
302
303 /*
304 * the counter to account for kernel memory usage.
305 */
306 struct res_counter kmem;
307 /*
308 * Should the accounting and control be hierarchical, per subtree?
309 */
310 bool use_hierarchy;
311 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
312
313 bool oom_lock;
314 atomic_t under_oom;
315 atomic_t oom_wakeups;
316
317 int swappiness;
318 /* OOM-Killer disable */
319 int oom_kill_disable;
320
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
325 struct mem_cgroup_thresholds thresholds;
326
327 /* thresholds for mem+swap usage. RCU-protected */
328 struct mem_cgroup_thresholds memsw_thresholds;
329
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
332
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
337 unsigned long move_charge_at_immigrate;
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
344 /*
345 * percpu counter.
346 */
347 struct mem_cgroup_stat_cpu __percpu *stat;
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
354
355 atomic_t dead_count;
356 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357 struct cg_proto tcp_mem;
358 #endif
359 #if defined(CONFIG_MEMCG_KMEM)
360 /* analogous to slab_common's slab_caches list, but per-memcg;
361 * protected by memcg_slab_mutex */
362 struct list_head memcg_slab_caches;
363 /* Index in the kmem_cache->memcg_params->memcg_caches array */
364 int kmemcg_id;
365 #endif
366
367 int last_scanned_node;
368 #if MAX_NUMNODES > 1
369 nodemask_t scan_nodes;
370 atomic_t numainfo_events;
371 atomic_t numainfo_updating;
372 #endif
373
374 /* List of events which userspace want to receive */
375 struct list_head event_list;
376 spinlock_t event_list_lock;
377
378 struct mem_cgroup_per_node *nodeinfo[0];
379 /* WARNING: nodeinfo must be the last member here */
380 };
381
382 /* internal only representation about the status of kmem accounting. */
383 enum {
384 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
385 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
386 };
387
388 #ifdef CONFIG_MEMCG_KMEM
389 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
390 {
391 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
392 }
393
394 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
395 {
396 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
397 }
398
399 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
400 {
401 /*
402 * Our caller must use css_get() first, because memcg_uncharge_kmem()
403 * will call css_put() if it sees the memcg is dead.
404 */
405 smp_wmb();
406 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
407 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
408 }
409
410 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
411 {
412 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
413 &memcg->kmem_account_flags);
414 }
415 #endif
416
417 /* Stuffs for move charges at task migration. */
418 /*
419 * Types of charges to be moved. "move_charge_at_immitgrate" and
420 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
421 */
422 enum move_type {
423 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
424 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
425 NR_MOVE_TYPE,
426 };
427
428 /* "mc" and its members are protected by cgroup_mutex */
429 static struct move_charge_struct {
430 spinlock_t lock; /* for from, to */
431 struct mem_cgroup *from;
432 struct mem_cgroup *to;
433 unsigned long immigrate_flags;
434 unsigned long precharge;
435 unsigned long moved_charge;
436 unsigned long moved_swap;
437 struct task_struct *moving_task; /* a task moving charges */
438 wait_queue_head_t waitq; /* a waitq for other context */
439 } mc = {
440 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
441 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
442 };
443
444 static bool move_anon(void)
445 {
446 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
447 }
448
449 static bool move_file(void)
450 {
451 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
452 }
453
454 /*
455 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
456 * limit reclaim to prevent infinite loops, if they ever occur.
457 */
458 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
459 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
460
461 enum charge_type {
462 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
463 MEM_CGROUP_CHARGE_TYPE_ANON,
464 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
465 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
466 NR_CHARGE_TYPE,
467 };
468
469 /* for encoding cft->private value on file */
470 enum res_type {
471 _MEM,
472 _MEMSWAP,
473 _OOM_TYPE,
474 _KMEM,
475 };
476
477 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
478 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
479 #define MEMFILE_ATTR(val) ((val) & 0xffff)
480 /* Used for OOM nofiier */
481 #define OOM_CONTROL (0)
482
483 /*
484 * The memcg_create_mutex will be held whenever a new cgroup is created.
485 * As a consequence, any change that needs to protect against new child cgroups
486 * appearing has to hold it as well.
487 */
488 static DEFINE_MUTEX(memcg_create_mutex);
489
490 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
491 {
492 return s ? container_of(s, struct mem_cgroup, css) : NULL;
493 }
494
495 /* Some nice accessors for the vmpressure. */
496 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
497 {
498 if (!memcg)
499 memcg = root_mem_cgroup;
500 return &memcg->vmpressure;
501 }
502
503 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
504 {
505 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
506 }
507
508 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
509 {
510 return (memcg == root_mem_cgroup);
511 }
512
513 /*
514 * We restrict the id in the range of [1, 65535], so it can fit into
515 * an unsigned short.
516 */
517 #define MEM_CGROUP_ID_MAX USHRT_MAX
518
519 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
520 {
521 return memcg->css.id;
522 }
523
524 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
525 {
526 struct cgroup_subsys_state *css;
527
528 css = css_from_id(id, &memory_cgrp_subsys);
529 return mem_cgroup_from_css(css);
530 }
531
532 /* Writing them here to avoid exposing memcg's inner layout */
533 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
534
535 void sock_update_memcg(struct sock *sk)
536 {
537 if (mem_cgroup_sockets_enabled) {
538 struct mem_cgroup *memcg;
539 struct cg_proto *cg_proto;
540
541 BUG_ON(!sk->sk_prot->proto_cgroup);
542
543 /* Socket cloning can throw us here with sk_cgrp already
544 * filled. It won't however, necessarily happen from
545 * process context. So the test for root memcg given
546 * the current task's memcg won't help us in this case.
547 *
548 * Respecting the original socket's memcg is a better
549 * decision in this case.
550 */
551 if (sk->sk_cgrp) {
552 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
553 css_get(&sk->sk_cgrp->memcg->css);
554 return;
555 }
556
557 rcu_read_lock();
558 memcg = mem_cgroup_from_task(current);
559 cg_proto = sk->sk_prot->proto_cgroup(memcg);
560 if (!mem_cgroup_is_root(memcg) &&
561 memcg_proto_active(cg_proto) &&
562 css_tryget_online(&memcg->css)) {
563 sk->sk_cgrp = cg_proto;
564 }
565 rcu_read_unlock();
566 }
567 }
568 EXPORT_SYMBOL(sock_update_memcg);
569
570 void sock_release_memcg(struct sock *sk)
571 {
572 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
573 struct mem_cgroup *memcg;
574 WARN_ON(!sk->sk_cgrp->memcg);
575 memcg = sk->sk_cgrp->memcg;
576 css_put(&sk->sk_cgrp->memcg->css);
577 }
578 }
579
580 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
581 {
582 if (!memcg || mem_cgroup_is_root(memcg))
583 return NULL;
584
585 return &memcg->tcp_mem;
586 }
587 EXPORT_SYMBOL(tcp_proto_cgroup);
588
589 static void disarm_sock_keys(struct mem_cgroup *memcg)
590 {
591 if (!memcg_proto_activated(&memcg->tcp_mem))
592 return;
593 static_key_slow_dec(&memcg_socket_limit_enabled);
594 }
595 #else
596 static void disarm_sock_keys(struct mem_cgroup *memcg)
597 {
598 }
599 #endif
600
601 #ifdef CONFIG_MEMCG_KMEM
602 /*
603 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
604 * The main reason for not using cgroup id for this:
605 * this works better in sparse environments, where we have a lot of memcgs,
606 * but only a few kmem-limited. Or also, if we have, for instance, 200
607 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
608 * 200 entry array for that.
609 *
610 * The current size of the caches array is stored in
611 * memcg_limited_groups_array_size. It will double each time we have to
612 * increase it.
613 */
614 static DEFINE_IDA(kmem_limited_groups);
615 int memcg_limited_groups_array_size;
616
617 /*
618 * MIN_SIZE is different than 1, because we would like to avoid going through
619 * the alloc/free process all the time. In a small machine, 4 kmem-limited
620 * cgroups is a reasonable guess. In the future, it could be a parameter or
621 * tunable, but that is strictly not necessary.
622 *
623 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
624 * this constant directly from cgroup, but it is understandable that this is
625 * better kept as an internal representation in cgroup.c. In any case, the
626 * cgrp_id space is not getting any smaller, and we don't have to necessarily
627 * increase ours as well if it increases.
628 */
629 #define MEMCG_CACHES_MIN_SIZE 4
630 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
631
632 /*
633 * A lot of the calls to the cache allocation functions are expected to be
634 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
635 * conditional to this static branch, we'll have to allow modules that does
636 * kmem_cache_alloc and the such to see this symbol as well
637 */
638 struct static_key memcg_kmem_enabled_key;
639 EXPORT_SYMBOL(memcg_kmem_enabled_key);
640
641 static void memcg_free_cache_id(int id);
642
643 static void disarm_kmem_keys(struct mem_cgroup *memcg)
644 {
645 if (memcg_kmem_is_active(memcg)) {
646 static_key_slow_dec(&memcg_kmem_enabled_key);
647 memcg_free_cache_id(memcg->kmemcg_id);
648 }
649 /*
650 * This check can't live in kmem destruction function,
651 * since the charges will outlive the cgroup
652 */
653 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
654 }
655 #else
656 static void disarm_kmem_keys(struct mem_cgroup *memcg)
657 {
658 }
659 #endif /* CONFIG_MEMCG_KMEM */
660
661 static void disarm_static_keys(struct mem_cgroup *memcg)
662 {
663 disarm_sock_keys(memcg);
664 disarm_kmem_keys(memcg);
665 }
666
667 static void drain_all_stock_async(struct mem_cgroup *memcg);
668
669 static struct mem_cgroup_per_zone *
670 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
671 {
672 int nid = zone_to_nid(zone);
673 int zid = zone_idx(zone);
674
675 return &memcg->nodeinfo[nid]->zoneinfo[zid];
676 }
677
678 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
679 {
680 return &memcg->css;
681 }
682
683 static struct mem_cgroup_per_zone *
684 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
685 {
686 int nid = page_to_nid(page);
687 int zid = page_zonenum(page);
688
689 return &memcg->nodeinfo[nid]->zoneinfo[zid];
690 }
691
692 static struct mem_cgroup_tree_per_zone *
693 soft_limit_tree_node_zone(int nid, int zid)
694 {
695 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
696 }
697
698 static struct mem_cgroup_tree_per_zone *
699 soft_limit_tree_from_page(struct page *page)
700 {
701 int nid = page_to_nid(page);
702 int zid = page_zonenum(page);
703
704 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
705 }
706
707 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
708 struct mem_cgroup_tree_per_zone *mctz,
709 unsigned long long new_usage_in_excess)
710 {
711 struct rb_node **p = &mctz->rb_root.rb_node;
712 struct rb_node *parent = NULL;
713 struct mem_cgroup_per_zone *mz_node;
714
715 if (mz->on_tree)
716 return;
717
718 mz->usage_in_excess = new_usage_in_excess;
719 if (!mz->usage_in_excess)
720 return;
721 while (*p) {
722 parent = *p;
723 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
724 tree_node);
725 if (mz->usage_in_excess < mz_node->usage_in_excess)
726 p = &(*p)->rb_left;
727 /*
728 * We can't avoid mem cgroups that are over their soft
729 * limit by the same amount
730 */
731 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
732 p = &(*p)->rb_right;
733 }
734 rb_link_node(&mz->tree_node, parent, p);
735 rb_insert_color(&mz->tree_node, &mctz->rb_root);
736 mz->on_tree = true;
737 }
738
739 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
740 struct mem_cgroup_tree_per_zone *mctz)
741 {
742 if (!mz->on_tree)
743 return;
744 rb_erase(&mz->tree_node, &mctz->rb_root);
745 mz->on_tree = false;
746 }
747
748 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
749 struct mem_cgroup_tree_per_zone *mctz)
750 {
751 unsigned long flags;
752
753 spin_lock_irqsave(&mctz->lock, flags);
754 __mem_cgroup_remove_exceeded(mz, mctz);
755 spin_unlock_irqrestore(&mctz->lock, flags);
756 }
757
758
759 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
760 {
761 unsigned long long excess;
762 struct mem_cgroup_per_zone *mz;
763 struct mem_cgroup_tree_per_zone *mctz;
764
765 mctz = soft_limit_tree_from_page(page);
766 /*
767 * Necessary to update all ancestors when hierarchy is used.
768 * because their event counter is not touched.
769 */
770 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
771 mz = mem_cgroup_page_zoneinfo(memcg, page);
772 excess = res_counter_soft_limit_excess(&memcg->res);
773 /*
774 * We have to update the tree if mz is on RB-tree or
775 * mem is over its softlimit.
776 */
777 if (excess || mz->on_tree) {
778 unsigned long flags;
779
780 spin_lock_irqsave(&mctz->lock, flags);
781 /* if on-tree, remove it */
782 if (mz->on_tree)
783 __mem_cgroup_remove_exceeded(mz, mctz);
784 /*
785 * Insert again. mz->usage_in_excess will be updated.
786 * If excess is 0, no tree ops.
787 */
788 __mem_cgroup_insert_exceeded(mz, mctz, excess);
789 spin_unlock_irqrestore(&mctz->lock, flags);
790 }
791 }
792 }
793
794 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
795 {
796 struct mem_cgroup_tree_per_zone *mctz;
797 struct mem_cgroup_per_zone *mz;
798 int nid, zid;
799
800 for_each_node(nid) {
801 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
802 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
803 mctz = soft_limit_tree_node_zone(nid, zid);
804 mem_cgroup_remove_exceeded(mz, mctz);
805 }
806 }
807 }
808
809 static struct mem_cgroup_per_zone *
810 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
811 {
812 struct rb_node *rightmost = NULL;
813 struct mem_cgroup_per_zone *mz;
814
815 retry:
816 mz = NULL;
817 rightmost = rb_last(&mctz->rb_root);
818 if (!rightmost)
819 goto done; /* Nothing to reclaim from */
820
821 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
822 /*
823 * Remove the node now but someone else can add it back,
824 * we will to add it back at the end of reclaim to its correct
825 * position in the tree.
826 */
827 __mem_cgroup_remove_exceeded(mz, mctz);
828 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
829 !css_tryget_online(&mz->memcg->css))
830 goto retry;
831 done:
832 return mz;
833 }
834
835 static struct mem_cgroup_per_zone *
836 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
837 {
838 struct mem_cgroup_per_zone *mz;
839
840 spin_lock_irq(&mctz->lock);
841 mz = __mem_cgroup_largest_soft_limit_node(mctz);
842 spin_unlock_irq(&mctz->lock);
843 return mz;
844 }
845
846 /*
847 * Implementation Note: reading percpu statistics for memcg.
848 *
849 * Both of vmstat[] and percpu_counter has threshold and do periodic
850 * synchronization to implement "quick" read. There are trade-off between
851 * reading cost and precision of value. Then, we may have a chance to implement
852 * a periodic synchronizion of counter in memcg's counter.
853 *
854 * But this _read() function is used for user interface now. The user accounts
855 * memory usage by memory cgroup and he _always_ requires exact value because
856 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
857 * have to visit all online cpus and make sum. So, for now, unnecessary
858 * synchronization is not implemented. (just implemented for cpu hotplug)
859 *
860 * If there are kernel internal actions which can make use of some not-exact
861 * value, and reading all cpu value can be performance bottleneck in some
862 * common workload, threashold and synchonization as vmstat[] should be
863 * implemented.
864 */
865 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
866 enum mem_cgroup_stat_index idx)
867 {
868 long val = 0;
869 int cpu;
870
871 get_online_cpus();
872 for_each_online_cpu(cpu)
873 val += per_cpu(memcg->stat->count[idx], cpu);
874 #ifdef CONFIG_HOTPLUG_CPU
875 spin_lock(&memcg->pcp_counter_lock);
876 val += memcg->nocpu_base.count[idx];
877 spin_unlock(&memcg->pcp_counter_lock);
878 #endif
879 put_online_cpus();
880 return val;
881 }
882
883 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
884 enum mem_cgroup_events_index idx)
885 {
886 unsigned long val = 0;
887 int cpu;
888
889 get_online_cpus();
890 for_each_online_cpu(cpu)
891 val += per_cpu(memcg->stat->events[idx], cpu);
892 #ifdef CONFIG_HOTPLUG_CPU
893 spin_lock(&memcg->pcp_counter_lock);
894 val += memcg->nocpu_base.events[idx];
895 spin_unlock(&memcg->pcp_counter_lock);
896 #endif
897 put_online_cpus();
898 return val;
899 }
900
901 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
902 struct page *page,
903 int nr_pages)
904 {
905 /*
906 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
907 * counted as CACHE even if it's on ANON LRU.
908 */
909 if (PageAnon(page))
910 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
911 nr_pages);
912 else
913 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
914 nr_pages);
915
916 if (PageTransHuge(page))
917 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
918 nr_pages);
919
920 /* pagein of a big page is an event. So, ignore page size */
921 if (nr_pages > 0)
922 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
923 else {
924 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
925 nr_pages = -nr_pages; /* for event */
926 }
927
928 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
929 }
930
931 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
932 {
933 struct mem_cgroup_per_zone *mz;
934
935 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
936 return mz->lru_size[lru];
937 }
938
939 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
940 int nid,
941 unsigned int lru_mask)
942 {
943 unsigned long nr = 0;
944 int zid;
945
946 VM_BUG_ON((unsigned)nid >= nr_node_ids);
947
948 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
949 struct mem_cgroup_per_zone *mz;
950 enum lru_list lru;
951
952 for_each_lru(lru) {
953 if (!(BIT(lru) & lru_mask))
954 continue;
955 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
956 nr += mz->lru_size[lru];
957 }
958 }
959 return nr;
960 }
961
962 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
963 unsigned int lru_mask)
964 {
965 unsigned long nr = 0;
966 int nid;
967
968 for_each_node_state(nid, N_MEMORY)
969 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
970 return nr;
971 }
972
973 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
974 enum mem_cgroup_events_target target)
975 {
976 unsigned long val, next;
977
978 val = __this_cpu_read(memcg->stat->nr_page_events);
979 next = __this_cpu_read(memcg->stat->targets[target]);
980 /* from time_after() in jiffies.h */
981 if ((long)next - (long)val < 0) {
982 switch (target) {
983 case MEM_CGROUP_TARGET_THRESH:
984 next = val + THRESHOLDS_EVENTS_TARGET;
985 break;
986 case MEM_CGROUP_TARGET_SOFTLIMIT:
987 next = val + SOFTLIMIT_EVENTS_TARGET;
988 break;
989 case MEM_CGROUP_TARGET_NUMAINFO:
990 next = val + NUMAINFO_EVENTS_TARGET;
991 break;
992 default:
993 break;
994 }
995 __this_cpu_write(memcg->stat->targets[target], next);
996 return true;
997 }
998 return false;
999 }
1000
1001 /*
1002 * Check events in order.
1003 *
1004 */
1005 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1006 {
1007 /* threshold event is triggered in finer grain than soft limit */
1008 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1009 MEM_CGROUP_TARGET_THRESH))) {
1010 bool do_softlimit;
1011 bool do_numainfo __maybe_unused;
1012
1013 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1014 MEM_CGROUP_TARGET_SOFTLIMIT);
1015 #if MAX_NUMNODES > 1
1016 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1017 MEM_CGROUP_TARGET_NUMAINFO);
1018 #endif
1019 mem_cgroup_threshold(memcg);
1020 if (unlikely(do_softlimit))
1021 mem_cgroup_update_tree(memcg, page);
1022 #if MAX_NUMNODES > 1
1023 if (unlikely(do_numainfo))
1024 atomic_inc(&memcg->numainfo_events);
1025 #endif
1026 }
1027 }
1028
1029 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1030 {
1031 /*
1032 * mm_update_next_owner() may clear mm->owner to NULL
1033 * if it races with swapoff, page migration, etc.
1034 * So this can be called with p == NULL.
1035 */
1036 if (unlikely(!p))
1037 return NULL;
1038
1039 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1040 }
1041
1042 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1043 {
1044 struct mem_cgroup *memcg = NULL;
1045
1046 rcu_read_lock();
1047 do {
1048 /*
1049 * Page cache insertions can happen withou an
1050 * actual mm context, e.g. during disk probing
1051 * on boot, loopback IO, acct() writes etc.
1052 */
1053 if (unlikely(!mm))
1054 memcg = root_mem_cgroup;
1055 else {
1056 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1057 if (unlikely(!memcg))
1058 memcg = root_mem_cgroup;
1059 }
1060 } while (!css_tryget_online(&memcg->css));
1061 rcu_read_unlock();
1062 return memcg;
1063 }
1064
1065 /*
1066 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1067 * ref. count) or NULL if the whole root's subtree has been visited.
1068 *
1069 * helper function to be used by mem_cgroup_iter
1070 */
1071 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1072 struct mem_cgroup *last_visited)
1073 {
1074 struct cgroup_subsys_state *prev_css, *next_css;
1075
1076 prev_css = last_visited ? &last_visited->css : NULL;
1077 skip_node:
1078 next_css = css_next_descendant_pre(prev_css, &root->css);
1079
1080 /*
1081 * Even if we found a group we have to make sure it is
1082 * alive. css && !memcg means that the groups should be
1083 * skipped and we should continue the tree walk.
1084 * last_visited css is safe to use because it is
1085 * protected by css_get and the tree walk is rcu safe.
1086 *
1087 * We do not take a reference on the root of the tree walk
1088 * because we might race with the root removal when it would
1089 * be the only node in the iterated hierarchy and mem_cgroup_iter
1090 * would end up in an endless loop because it expects that at
1091 * least one valid node will be returned. Root cannot disappear
1092 * because caller of the iterator should hold it already so
1093 * skipping css reference should be safe.
1094 */
1095 if (next_css) {
1096 struct mem_cgroup *memcg = mem_cgroup_from_css(next_css);
1097
1098 if (next_css == &root->css)
1099 return memcg;
1100
1101 if (css_tryget_online(next_css)) {
1102 /*
1103 * Make sure the memcg is initialized:
1104 * mem_cgroup_css_online() orders the the
1105 * initialization against setting the flag.
1106 */
1107 if (smp_load_acquire(&memcg->initialized))
1108 return memcg;
1109 css_put(next_css);
1110 }
1111
1112 prev_css = next_css;
1113 goto skip_node;
1114 }
1115
1116 return NULL;
1117 }
1118
1119 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1120 {
1121 /*
1122 * When a group in the hierarchy below root is destroyed, the
1123 * hierarchy iterator can no longer be trusted since it might
1124 * have pointed to the destroyed group. Invalidate it.
1125 */
1126 atomic_inc(&root->dead_count);
1127 }
1128
1129 static struct mem_cgroup *
1130 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1131 struct mem_cgroup *root,
1132 int *sequence)
1133 {
1134 struct mem_cgroup *position = NULL;
1135 /*
1136 * A cgroup destruction happens in two stages: offlining and
1137 * release. They are separated by a RCU grace period.
1138 *
1139 * If the iterator is valid, we may still race with an
1140 * offlining. The RCU lock ensures the object won't be
1141 * released, tryget will fail if we lost the race.
1142 */
1143 *sequence = atomic_read(&root->dead_count);
1144 if (iter->last_dead_count == *sequence) {
1145 smp_rmb();
1146 position = iter->last_visited;
1147
1148 /*
1149 * We cannot take a reference to root because we might race
1150 * with root removal and returning NULL would end up in
1151 * an endless loop on the iterator user level when root
1152 * would be returned all the time.
1153 */
1154 if (position && position != root &&
1155 !css_tryget_online(&position->css))
1156 position = NULL;
1157 }
1158 return position;
1159 }
1160
1161 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1162 struct mem_cgroup *last_visited,
1163 struct mem_cgroup *new_position,
1164 struct mem_cgroup *root,
1165 int sequence)
1166 {
1167 /* root reference counting symmetric to mem_cgroup_iter_load */
1168 if (last_visited && last_visited != root)
1169 css_put(&last_visited->css);
1170 /*
1171 * We store the sequence count from the time @last_visited was
1172 * loaded successfully instead of rereading it here so that we
1173 * don't lose destruction events in between. We could have
1174 * raced with the destruction of @new_position after all.
1175 */
1176 iter->last_visited = new_position;
1177 smp_wmb();
1178 iter->last_dead_count = sequence;
1179 }
1180
1181 /**
1182 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1183 * @root: hierarchy root
1184 * @prev: previously returned memcg, NULL on first invocation
1185 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1186 *
1187 * Returns references to children of the hierarchy below @root, or
1188 * @root itself, or %NULL after a full round-trip.
1189 *
1190 * Caller must pass the return value in @prev on subsequent
1191 * invocations for reference counting, or use mem_cgroup_iter_break()
1192 * to cancel a hierarchy walk before the round-trip is complete.
1193 *
1194 * Reclaimers can specify a zone and a priority level in @reclaim to
1195 * divide up the memcgs in the hierarchy among all concurrent
1196 * reclaimers operating on the same zone and priority.
1197 */
1198 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1199 struct mem_cgroup *prev,
1200 struct mem_cgroup_reclaim_cookie *reclaim)
1201 {
1202 struct mem_cgroup *memcg = NULL;
1203 struct mem_cgroup *last_visited = NULL;
1204
1205 if (mem_cgroup_disabled())
1206 return NULL;
1207
1208 if (!root)
1209 root = root_mem_cgroup;
1210
1211 if (prev && !reclaim)
1212 last_visited = prev;
1213
1214 if (!root->use_hierarchy && root != root_mem_cgroup) {
1215 if (prev)
1216 goto out_css_put;
1217 return root;
1218 }
1219
1220 rcu_read_lock();
1221 while (!memcg) {
1222 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1223 int uninitialized_var(seq);
1224
1225 if (reclaim) {
1226 struct mem_cgroup_per_zone *mz;
1227
1228 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1229 iter = &mz->reclaim_iter[reclaim->priority];
1230 if (prev && reclaim->generation != iter->generation) {
1231 iter->last_visited = NULL;
1232 goto out_unlock;
1233 }
1234
1235 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1236 }
1237
1238 memcg = __mem_cgroup_iter_next(root, last_visited);
1239
1240 if (reclaim) {
1241 mem_cgroup_iter_update(iter, last_visited, memcg, root,
1242 seq);
1243
1244 if (!memcg)
1245 iter->generation++;
1246 else if (!prev && memcg)
1247 reclaim->generation = iter->generation;
1248 }
1249
1250 if (prev && !memcg)
1251 goto out_unlock;
1252 }
1253 out_unlock:
1254 rcu_read_unlock();
1255 out_css_put:
1256 if (prev && prev != root)
1257 css_put(&prev->css);
1258
1259 return memcg;
1260 }
1261
1262 /**
1263 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1264 * @root: hierarchy root
1265 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1266 */
1267 void mem_cgroup_iter_break(struct mem_cgroup *root,
1268 struct mem_cgroup *prev)
1269 {
1270 if (!root)
1271 root = root_mem_cgroup;
1272 if (prev && prev != root)
1273 css_put(&prev->css);
1274 }
1275
1276 /*
1277 * Iteration constructs for visiting all cgroups (under a tree). If
1278 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1279 * be used for reference counting.
1280 */
1281 #define for_each_mem_cgroup_tree(iter, root) \
1282 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1283 iter != NULL; \
1284 iter = mem_cgroup_iter(root, iter, NULL))
1285
1286 #define for_each_mem_cgroup(iter) \
1287 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1288 iter != NULL; \
1289 iter = mem_cgroup_iter(NULL, iter, NULL))
1290
1291 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1292 {
1293 struct mem_cgroup *memcg;
1294
1295 rcu_read_lock();
1296 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1297 if (unlikely(!memcg))
1298 goto out;
1299
1300 switch (idx) {
1301 case PGFAULT:
1302 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1303 break;
1304 case PGMAJFAULT:
1305 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1306 break;
1307 default:
1308 BUG();
1309 }
1310 out:
1311 rcu_read_unlock();
1312 }
1313 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1314
1315 /**
1316 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1317 * @zone: zone of the wanted lruvec
1318 * @memcg: memcg of the wanted lruvec
1319 *
1320 * Returns the lru list vector holding pages for the given @zone and
1321 * @mem. This can be the global zone lruvec, if the memory controller
1322 * is disabled.
1323 */
1324 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1325 struct mem_cgroup *memcg)
1326 {
1327 struct mem_cgroup_per_zone *mz;
1328 struct lruvec *lruvec;
1329
1330 if (mem_cgroup_disabled()) {
1331 lruvec = &zone->lruvec;
1332 goto out;
1333 }
1334
1335 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1336 lruvec = &mz->lruvec;
1337 out:
1338 /*
1339 * Since a node can be onlined after the mem_cgroup was created,
1340 * we have to be prepared to initialize lruvec->zone here;
1341 * and if offlined then reonlined, we need to reinitialize it.
1342 */
1343 if (unlikely(lruvec->zone != zone))
1344 lruvec->zone = zone;
1345 return lruvec;
1346 }
1347
1348 /**
1349 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1350 * @page: the page
1351 * @zone: zone of the page
1352 */
1353 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1354 {
1355 struct mem_cgroup_per_zone *mz;
1356 struct mem_cgroup *memcg;
1357 struct page_cgroup *pc;
1358 struct lruvec *lruvec;
1359
1360 if (mem_cgroup_disabled()) {
1361 lruvec = &zone->lruvec;
1362 goto out;
1363 }
1364
1365 pc = lookup_page_cgroup(page);
1366 memcg = pc->mem_cgroup;
1367
1368 /*
1369 * Surreptitiously switch any uncharged offlist page to root:
1370 * an uncharged page off lru does nothing to secure
1371 * its former mem_cgroup from sudden removal.
1372 *
1373 * Our caller holds lru_lock, and PageCgroupUsed is updated
1374 * under page_cgroup lock: between them, they make all uses
1375 * of pc->mem_cgroup safe.
1376 */
1377 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1378 pc->mem_cgroup = memcg = root_mem_cgroup;
1379
1380 mz = mem_cgroup_page_zoneinfo(memcg, page);
1381 lruvec = &mz->lruvec;
1382 out:
1383 /*
1384 * Since a node can be onlined after the mem_cgroup was created,
1385 * we have to be prepared to initialize lruvec->zone here;
1386 * and if offlined then reonlined, we need to reinitialize it.
1387 */
1388 if (unlikely(lruvec->zone != zone))
1389 lruvec->zone = zone;
1390 return lruvec;
1391 }
1392
1393 /**
1394 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1395 * @lruvec: mem_cgroup per zone lru vector
1396 * @lru: index of lru list the page is sitting on
1397 * @nr_pages: positive when adding or negative when removing
1398 *
1399 * This function must be called when a page is added to or removed from an
1400 * lru list.
1401 */
1402 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1403 int nr_pages)
1404 {
1405 struct mem_cgroup_per_zone *mz;
1406 unsigned long *lru_size;
1407
1408 if (mem_cgroup_disabled())
1409 return;
1410
1411 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1412 lru_size = mz->lru_size + lru;
1413 *lru_size += nr_pages;
1414 VM_BUG_ON((long)(*lru_size) < 0);
1415 }
1416
1417 /*
1418 * Checks whether given mem is same or in the root_mem_cgroup's
1419 * hierarchy subtree
1420 */
1421 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1422 struct mem_cgroup *memcg)
1423 {
1424 if (root_memcg == memcg)
1425 return true;
1426 if (!root_memcg->use_hierarchy || !memcg)
1427 return false;
1428 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1429 }
1430
1431 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1432 struct mem_cgroup *memcg)
1433 {
1434 bool ret;
1435
1436 rcu_read_lock();
1437 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1438 rcu_read_unlock();
1439 return ret;
1440 }
1441
1442 bool task_in_mem_cgroup(struct task_struct *task,
1443 const struct mem_cgroup *memcg)
1444 {
1445 struct mem_cgroup *curr = NULL;
1446 struct task_struct *p;
1447 bool ret;
1448
1449 p = find_lock_task_mm(task);
1450 if (p) {
1451 curr = get_mem_cgroup_from_mm(p->mm);
1452 task_unlock(p);
1453 } else {
1454 /*
1455 * All threads may have already detached their mm's, but the oom
1456 * killer still needs to detect if they have already been oom
1457 * killed to prevent needlessly killing additional tasks.
1458 */
1459 rcu_read_lock();
1460 curr = mem_cgroup_from_task(task);
1461 if (curr)
1462 css_get(&curr->css);
1463 rcu_read_unlock();
1464 }
1465 /*
1466 * We should check use_hierarchy of "memcg" not "curr". Because checking
1467 * use_hierarchy of "curr" here make this function true if hierarchy is
1468 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1469 * hierarchy(even if use_hierarchy is disabled in "memcg").
1470 */
1471 ret = mem_cgroup_same_or_subtree(memcg, curr);
1472 css_put(&curr->css);
1473 return ret;
1474 }
1475
1476 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1477 {
1478 unsigned long inactive_ratio;
1479 unsigned long inactive;
1480 unsigned long active;
1481 unsigned long gb;
1482
1483 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1484 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1485
1486 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1487 if (gb)
1488 inactive_ratio = int_sqrt(10 * gb);
1489 else
1490 inactive_ratio = 1;
1491
1492 return inactive * inactive_ratio < active;
1493 }
1494
1495 #define mem_cgroup_from_res_counter(counter, member) \
1496 container_of(counter, struct mem_cgroup, member)
1497
1498 /**
1499 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1500 * @memcg: the memory cgroup
1501 *
1502 * Returns the maximum amount of memory @mem can be charged with, in
1503 * pages.
1504 */
1505 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1506 {
1507 unsigned long long margin;
1508
1509 margin = res_counter_margin(&memcg->res);
1510 if (do_swap_account)
1511 margin = min(margin, res_counter_margin(&memcg->memsw));
1512 return margin >> PAGE_SHIFT;
1513 }
1514
1515 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1516 {
1517 /* root ? */
1518 if (mem_cgroup_disabled() || !memcg->css.parent)
1519 return vm_swappiness;
1520
1521 return memcg->swappiness;
1522 }
1523
1524 /*
1525 * memcg->moving_account is used for checking possibility that some thread is
1526 * calling move_account(). When a thread on CPU-A starts moving pages under
1527 * a memcg, other threads should check memcg->moving_account under
1528 * rcu_read_lock(), like this:
1529 *
1530 * CPU-A CPU-B
1531 * rcu_read_lock()
1532 * memcg->moving_account+1 if (memcg->mocing_account)
1533 * take heavy locks.
1534 * synchronize_rcu() update something.
1535 * rcu_read_unlock()
1536 * start move here.
1537 */
1538
1539 /* for quick checking without looking up memcg */
1540 atomic_t memcg_moving __read_mostly;
1541
1542 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1543 {
1544 atomic_inc(&memcg_moving);
1545 atomic_inc(&memcg->moving_account);
1546 synchronize_rcu();
1547 }
1548
1549 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1550 {
1551 /*
1552 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1553 * We check NULL in callee rather than caller.
1554 */
1555 if (memcg) {
1556 atomic_dec(&memcg_moving);
1557 atomic_dec(&memcg->moving_account);
1558 }
1559 }
1560
1561 /*
1562 * A routine for checking "mem" is under move_account() or not.
1563 *
1564 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1565 * moving cgroups. This is for waiting at high-memory pressure
1566 * caused by "move".
1567 */
1568 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1569 {
1570 struct mem_cgroup *from;
1571 struct mem_cgroup *to;
1572 bool ret = false;
1573 /*
1574 * Unlike task_move routines, we access mc.to, mc.from not under
1575 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1576 */
1577 spin_lock(&mc.lock);
1578 from = mc.from;
1579 to = mc.to;
1580 if (!from)
1581 goto unlock;
1582
1583 ret = mem_cgroup_same_or_subtree(memcg, from)
1584 || mem_cgroup_same_or_subtree(memcg, to);
1585 unlock:
1586 spin_unlock(&mc.lock);
1587 return ret;
1588 }
1589
1590 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1591 {
1592 if (mc.moving_task && current != mc.moving_task) {
1593 if (mem_cgroup_under_move(memcg)) {
1594 DEFINE_WAIT(wait);
1595 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1596 /* moving charge context might have finished. */
1597 if (mc.moving_task)
1598 schedule();
1599 finish_wait(&mc.waitq, &wait);
1600 return true;
1601 }
1602 }
1603 return false;
1604 }
1605
1606 /*
1607 * Take this lock when
1608 * - a code tries to modify page's memcg while it's USED.
1609 * - a code tries to modify page state accounting in a memcg.
1610 */
1611 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1612 unsigned long *flags)
1613 {
1614 spin_lock_irqsave(&memcg->move_lock, *flags);
1615 }
1616
1617 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1618 unsigned long *flags)
1619 {
1620 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1621 }
1622
1623 #define K(x) ((x) << (PAGE_SHIFT-10))
1624 /**
1625 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1626 * @memcg: The memory cgroup that went over limit
1627 * @p: Task that is going to be killed
1628 *
1629 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1630 * enabled
1631 */
1632 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1633 {
1634 /* oom_info_lock ensures that parallel ooms do not interleave */
1635 static DEFINE_MUTEX(oom_info_lock);
1636 struct mem_cgroup *iter;
1637 unsigned int i;
1638
1639 if (!p)
1640 return;
1641
1642 mutex_lock(&oom_info_lock);
1643 rcu_read_lock();
1644
1645 pr_info("Task in ");
1646 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1647 pr_info(" killed as a result of limit of ");
1648 pr_cont_cgroup_path(memcg->css.cgroup);
1649 pr_info("\n");
1650
1651 rcu_read_unlock();
1652
1653 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1654 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1655 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1656 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1657 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1658 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1659 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1660 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1661 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1662 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1663 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1664 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1665
1666 for_each_mem_cgroup_tree(iter, memcg) {
1667 pr_info("Memory cgroup stats for ");
1668 pr_cont_cgroup_path(iter->css.cgroup);
1669 pr_cont(":");
1670
1671 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1672 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1673 continue;
1674 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1675 K(mem_cgroup_read_stat(iter, i)));
1676 }
1677
1678 for (i = 0; i < NR_LRU_LISTS; i++)
1679 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1680 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1681
1682 pr_cont("\n");
1683 }
1684 mutex_unlock(&oom_info_lock);
1685 }
1686
1687 /*
1688 * This function returns the number of memcg under hierarchy tree. Returns
1689 * 1(self count) if no children.
1690 */
1691 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1692 {
1693 int num = 0;
1694 struct mem_cgroup *iter;
1695
1696 for_each_mem_cgroup_tree(iter, memcg)
1697 num++;
1698 return num;
1699 }
1700
1701 /*
1702 * Return the memory (and swap, if configured) limit for a memcg.
1703 */
1704 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1705 {
1706 u64 limit;
1707
1708 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1709
1710 /*
1711 * Do not consider swap space if we cannot swap due to swappiness
1712 */
1713 if (mem_cgroup_swappiness(memcg)) {
1714 u64 memsw;
1715
1716 limit += total_swap_pages << PAGE_SHIFT;
1717 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1718
1719 /*
1720 * If memsw is finite and limits the amount of swap space
1721 * available to this memcg, return that limit.
1722 */
1723 limit = min(limit, memsw);
1724 }
1725
1726 return limit;
1727 }
1728
1729 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1730 int order)
1731 {
1732 struct mem_cgroup *iter;
1733 unsigned long chosen_points = 0;
1734 unsigned long totalpages;
1735 unsigned int points = 0;
1736 struct task_struct *chosen = NULL;
1737
1738 /*
1739 * If current has a pending SIGKILL or is exiting, then automatically
1740 * select it. The goal is to allow it to allocate so that it may
1741 * quickly exit and free its memory.
1742 */
1743 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1744 set_thread_flag(TIF_MEMDIE);
1745 return;
1746 }
1747
1748 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1749 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1750 for_each_mem_cgroup_tree(iter, memcg) {
1751 struct css_task_iter it;
1752 struct task_struct *task;
1753
1754 css_task_iter_start(&iter->css, &it);
1755 while ((task = css_task_iter_next(&it))) {
1756 switch (oom_scan_process_thread(task, totalpages, NULL,
1757 false)) {
1758 case OOM_SCAN_SELECT:
1759 if (chosen)
1760 put_task_struct(chosen);
1761 chosen = task;
1762 chosen_points = ULONG_MAX;
1763 get_task_struct(chosen);
1764 /* fall through */
1765 case OOM_SCAN_CONTINUE:
1766 continue;
1767 case OOM_SCAN_ABORT:
1768 css_task_iter_end(&it);
1769 mem_cgroup_iter_break(memcg, iter);
1770 if (chosen)
1771 put_task_struct(chosen);
1772 return;
1773 case OOM_SCAN_OK:
1774 break;
1775 };
1776 points = oom_badness(task, memcg, NULL, totalpages);
1777 if (!points || points < chosen_points)
1778 continue;
1779 /* Prefer thread group leaders for display purposes */
1780 if (points == chosen_points &&
1781 thread_group_leader(chosen))
1782 continue;
1783
1784 if (chosen)
1785 put_task_struct(chosen);
1786 chosen = task;
1787 chosen_points = points;
1788 get_task_struct(chosen);
1789 }
1790 css_task_iter_end(&it);
1791 }
1792
1793 if (!chosen)
1794 return;
1795 points = chosen_points * 1000 / totalpages;
1796 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1797 NULL, "Memory cgroup out of memory");
1798 }
1799
1800 /**
1801 * test_mem_cgroup_node_reclaimable
1802 * @memcg: the target memcg
1803 * @nid: the node ID to be checked.
1804 * @noswap : specify true here if the user wants flle only information.
1805 *
1806 * This function returns whether the specified memcg contains any
1807 * reclaimable pages on a node. Returns true if there are any reclaimable
1808 * pages in the node.
1809 */
1810 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1811 int nid, bool noswap)
1812 {
1813 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1814 return true;
1815 if (noswap || !total_swap_pages)
1816 return false;
1817 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1818 return true;
1819 return false;
1820
1821 }
1822 #if MAX_NUMNODES > 1
1823
1824 /*
1825 * Always updating the nodemask is not very good - even if we have an empty
1826 * list or the wrong list here, we can start from some node and traverse all
1827 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1828 *
1829 */
1830 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1831 {
1832 int nid;
1833 /*
1834 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1835 * pagein/pageout changes since the last update.
1836 */
1837 if (!atomic_read(&memcg->numainfo_events))
1838 return;
1839 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1840 return;
1841
1842 /* make a nodemask where this memcg uses memory from */
1843 memcg->scan_nodes = node_states[N_MEMORY];
1844
1845 for_each_node_mask(nid, node_states[N_MEMORY]) {
1846
1847 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1848 node_clear(nid, memcg->scan_nodes);
1849 }
1850
1851 atomic_set(&memcg->numainfo_events, 0);
1852 atomic_set(&memcg->numainfo_updating, 0);
1853 }
1854
1855 /*
1856 * Selecting a node where we start reclaim from. Because what we need is just
1857 * reducing usage counter, start from anywhere is O,K. Considering
1858 * memory reclaim from current node, there are pros. and cons.
1859 *
1860 * Freeing memory from current node means freeing memory from a node which
1861 * we'll use or we've used. So, it may make LRU bad. And if several threads
1862 * hit limits, it will see a contention on a node. But freeing from remote
1863 * node means more costs for memory reclaim because of memory latency.
1864 *
1865 * Now, we use round-robin. Better algorithm is welcomed.
1866 */
1867 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1868 {
1869 int node;
1870
1871 mem_cgroup_may_update_nodemask(memcg);
1872 node = memcg->last_scanned_node;
1873
1874 node = next_node(node, memcg->scan_nodes);
1875 if (node == MAX_NUMNODES)
1876 node = first_node(memcg->scan_nodes);
1877 /*
1878 * We call this when we hit limit, not when pages are added to LRU.
1879 * No LRU may hold pages because all pages are UNEVICTABLE or
1880 * memcg is too small and all pages are not on LRU. In that case,
1881 * we use curret node.
1882 */
1883 if (unlikely(node == MAX_NUMNODES))
1884 node = numa_node_id();
1885
1886 memcg->last_scanned_node = node;
1887 return node;
1888 }
1889
1890 /*
1891 * Check all nodes whether it contains reclaimable pages or not.
1892 * For quick scan, we make use of scan_nodes. This will allow us to skip
1893 * unused nodes. But scan_nodes is lazily updated and may not cotain
1894 * enough new information. We need to do double check.
1895 */
1896 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1897 {
1898 int nid;
1899
1900 /*
1901 * quick check...making use of scan_node.
1902 * We can skip unused nodes.
1903 */
1904 if (!nodes_empty(memcg->scan_nodes)) {
1905 for (nid = first_node(memcg->scan_nodes);
1906 nid < MAX_NUMNODES;
1907 nid = next_node(nid, memcg->scan_nodes)) {
1908
1909 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1910 return true;
1911 }
1912 }
1913 /*
1914 * Check rest of nodes.
1915 */
1916 for_each_node_state(nid, N_MEMORY) {
1917 if (node_isset(nid, memcg->scan_nodes))
1918 continue;
1919 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1920 return true;
1921 }
1922 return false;
1923 }
1924
1925 #else
1926 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1927 {
1928 return 0;
1929 }
1930
1931 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1932 {
1933 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1934 }
1935 #endif
1936
1937 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1938 struct zone *zone,
1939 gfp_t gfp_mask,
1940 unsigned long *total_scanned)
1941 {
1942 struct mem_cgroup *victim = NULL;
1943 int total = 0;
1944 int loop = 0;
1945 unsigned long excess;
1946 unsigned long nr_scanned;
1947 struct mem_cgroup_reclaim_cookie reclaim = {
1948 .zone = zone,
1949 .priority = 0,
1950 };
1951
1952 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1953
1954 while (1) {
1955 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1956 if (!victim) {
1957 loop++;
1958 if (loop >= 2) {
1959 /*
1960 * If we have not been able to reclaim
1961 * anything, it might because there are
1962 * no reclaimable pages under this hierarchy
1963 */
1964 if (!total)
1965 break;
1966 /*
1967 * We want to do more targeted reclaim.
1968 * excess >> 2 is not to excessive so as to
1969 * reclaim too much, nor too less that we keep
1970 * coming back to reclaim from this cgroup
1971 */
1972 if (total >= (excess >> 2) ||
1973 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1974 break;
1975 }
1976 continue;
1977 }
1978 if (!mem_cgroup_reclaimable(victim, false))
1979 continue;
1980 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1981 zone, &nr_scanned);
1982 *total_scanned += nr_scanned;
1983 if (!res_counter_soft_limit_excess(&root_memcg->res))
1984 break;
1985 }
1986 mem_cgroup_iter_break(root_memcg, victim);
1987 return total;
1988 }
1989
1990 #ifdef CONFIG_LOCKDEP
1991 static struct lockdep_map memcg_oom_lock_dep_map = {
1992 .name = "memcg_oom_lock",
1993 };
1994 #endif
1995
1996 static DEFINE_SPINLOCK(memcg_oom_lock);
1997
1998 /*
1999 * Check OOM-Killer is already running under our hierarchy.
2000 * If someone is running, return false.
2001 */
2002 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2003 {
2004 struct mem_cgroup *iter, *failed = NULL;
2005
2006 spin_lock(&memcg_oom_lock);
2007
2008 for_each_mem_cgroup_tree(iter, memcg) {
2009 if (iter->oom_lock) {
2010 /*
2011 * this subtree of our hierarchy is already locked
2012 * so we cannot give a lock.
2013 */
2014 failed = iter;
2015 mem_cgroup_iter_break(memcg, iter);
2016 break;
2017 } else
2018 iter->oom_lock = true;
2019 }
2020
2021 if (failed) {
2022 /*
2023 * OK, we failed to lock the whole subtree so we have
2024 * to clean up what we set up to the failing subtree
2025 */
2026 for_each_mem_cgroup_tree(iter, memcg) {
2027 if (iter == failed) {
2028 mem_cgroup_iter_break(memcg, iter);
2029 break;
2030 }
2031 iter->oom_lock = false;
2032 }
2033 } else
2034 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2035
2036 spin_unlock(&memcg_oom_lock);
2037
2038 return !failed;
2039 }
2040
2041 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2042 {
2043 struct mem_cgroup *iter;
2044
2045 spin_lock(&memcg_oom_lock);
2046 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2047 for_each_mem_cgroup_tree(iter, memcg)
2048 iter->oom_lock = false;
2049 spin_unlock(&memcg_oom_lock);
2050 }
2051
2052 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2053 {
2054 struct mem_cgroup *iter;
2055
2056 for_each_mem_cgroup_tree(iter, memcg)
2057 atomic_inc(&iter->under_oom);
2058 }
2059
2060 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2061 {
2062 struct mem_cgroup *iter;
2063
2064 /*
2065 * When a new child is created while the hierarchy is under oom,
2066 * mem_cgroup_oom_lock() may not be called. We have to use
2067 * atomic_add_unless() here.
2068 */
2069 for_each_mem_cgroup_tree(iter, memcg)
2070 atomic_add_unless(&iter->under_oom, -1, 0);
2071 }
2072
2073 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2074
2075 struct oom_wait_info {
2076 struct mem_cgroup *memcg;
2077 wait_queue_t wait;
2078 };
2079
2080 static int memcg_oom_wake_function(wait_queue_t *wait,
2081 unsigned mode, int sync, void *arg)
2082 {
2083 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2084 struct mem_cgroup *oom_wait_memcg;
2085 struct oom_wait_info *oom_wait_info;
2086
2087 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2088 oom_wait_memcg = oom_wait_info->memcg;
2089
2090 /*
2091 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2092 * Then we can use css_is_ancestor without taking care of RCU.
2093 */
2094 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2095 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2096 return 0;
2097 return autoremove_wake_function(wait, mode, sync, arg);
2098 }
2099
2100 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2101 {
2102 atomic_inc(&memcg->oom_wakeups);
2103 /* for filtering, pass "memcg" as argument. */
2104 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2105 }
2106
2107 static void memcg_oom_recover(struct mem_cgroup *memcg)
2108 {
2109 if (memcg && atomic_read(&memcg->under_oom))
2110 memcg_wakeup_oom(memcg);
2111 }
2112
2113 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2114 {
2115 if (!current->memcg_oom.may_oom)
2116 return;
2117 /*
2118 * We are in the middle of the charge context here, so we
2119 * don't want to block when potentially sitting on a callstack
2120 * that holds all kinds of filesystem and mm locks.
2121 *
2122 * Also, the caller may handle a failed allocation gracefully
2123 * (like optional page cache readahead) and so an OOM killer
2124 * invocation might not even be necessary.
2125 *
2126 * That's why we don't do anything here except remember the
2127 * OOM context and then deal with it at the end of the page
2128 * fault when the stack is unwound, the locks are released,
2129 * and when we know whether the fault was overall successful.
2130 */
2131 css_get(&memcg->css);
2132 current->memcg_oom.memcg = memcg;
2133 current->memcg_oom.gfp_mask = mask;
2134 current->memcg_oom.order = order;
2135 }
2136
2137 /**
2138 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2139 * @handle: actually kill/wait or just clean up the OOM state
2140 *
2141 * This has to be called at the end of a page fault if the memcg OOM
2142 * handler was enabled.
2143 *
2144 * Memcg supports userspace OOM handling where failed allocations must
2145 * sleep on a waitqueue until the userspace task resolves the
2146 * situation. Sleeping directly in the charge context with all kinds
2147 * of locks held is not a good idea, instead we remember an OOM state
2148 * in the task and mem_cgroup_oom_synchronize() has to be called at
2149 * the end of the page fault to complete the OOM handling.
2150 *
2151 * Returns %true if an ongoing memcg OOM situation was detected and
2152 * completed, %false otherwise.
2153 */
2154 bool mem_cgroup_oom_synchronize(bool handle)
2155 {
2156 struct mem_cgroup *memcg = current->memcg_oom.memcg;
2157 struct oom_wait_info owait;
2158 bool locked;
2159
2160 /* OOM is global, do not handle */
2161 if (!memcg)
2162 return false;
2163
2164 if (!handle)
2165 goto cleanup;
2166
2167 owait.memcg = memcg;
2168 owait.wait.flags = 0;
2169 owait.wait.func = memcg_oom_wake_function;
2170 owait.wait.private = current;
2171 INIT_LIST_HEAD(&owait.wait.task_list);
2172
2173 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2174 mem_cgroup_mark_under_oom(memcg);
2175
2176 locked = mem_cgroup_oom_trylock(memcg);
2177
2178 if (locked)
2179 mem_cgroup_oom_notify(memcg);
2180
2181 if (locked && !memcg->oom_kill_disable) {
2182 mem_cgroup_unmark_under_oom(memcg);
2183 finish_wait(&memcg_oom_waitq, &owait.wait);
2184 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2185 current->memcg_oom.order);
2186 } else {
2187 schedule();
2188 mem_cgroup_unmark_under_oom(memcg);
2189 finish_wait(&memcg_oom_waitq, &owait.wait);
2190 }
2191
2192 if (locked) {
2193 mem_cgroup_oom_unlock(memcg);
2194 /*
2195 * There is no guarantee that an OOM-lock contender
2196 * sees the wakeups triggered by the OOM kill
2197 * uncharges. Wake any sleepers explicitely.
2198 */
2199 memcg_oom_recover(memcg);
2200 }
2201 cleanup:
2202 current->memcg_oom.memcg = NULL;
2203 css_put(&memcg->css);
2204 return true;
2205 }
2206
2207 /*
2208 * Used to update mapped file or writeback or other statistics.
2209 *
2210 * Notes: Race condition
2211 *
2212 * Charging occurs during page instantiation, while the page is
2213 * unmapped and locked in page migration, or while the page table is
2214 * locked in THP migration. No race is possible.
2215 *
2216 * Uncharge happens to pages with zero references, no race possible.
2217 *
2218 * Charge moving between groups is protected by checking mm->moving
2219 * account and taking the move_lock in the slowpath.
2220 */
2221
2222 void __mem_cgroup_begin_update_page_stat(struct page *page,
2223 bool *locked, unsigned long *flags)
2224 {
2225 struct mem_cgroup *memcg;
2226 struct page_cgroup *pc;
2227
2228 pc = lookup_page_cgroup(page);
2229 again:
2230 memcg = pc->mem_cgroup;
2231 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2232 return;
2233 /*
2234 * If this memory cgroup is not under account moving, we don't
2235 * need to take move_lock_mem_cgroup(). Because we already hold
2236 * rcu_read_lock(), any calls to move_account will be delayed until
2237 * rcu_read_unlock().
2238 */
2239 VM_BUG_ON(!rcu_read_lock_held());
2240 if (atomic_read(&memcg->moving_account) <= 0)
2241 return;
2242
2243 move_lock_mem_cgroup(memcg, flags);
2244 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2245 move_unlock_mem_cgroup(memcg, flags);
2246 goto again;
2247 }
2248 *locked = true;
2249 }
2250
2251 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2252 {
2253 struct page_cgroup *pc = lookup_page_cgroup(page);
2254
2255 /*
2256 * It's guaranteed that pc->mem_cgroup never changes while
2257 * lock is held because a routine modifies pc->mem_cgroup
2258 * should take move_lock_mem_cgroup().
2259 */
2260 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2261 }
2262
2263 void mem_cgroup_update_page_stat(struct page *page,
2264 enum mem_cgroup_stat_index idx, int val)
2265 {
2266 struct mem_cgroup *memcg;
2267 struct page_cgroup *pc = lookup_page_cgroup(page);
2268 unsigned long uninitialized_var(flags);
2269
2270 if (mem_cgroup_disabled())
2271 return;
2272
2273 VM_BUG_ON(!rcu_read_lock_held());
2274 memcg = pc->mem_cgroup;
2275 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2276 return;
2277
2278 this_cpu_add(memcg->stat->count[idx], val);
2279 }
2280
2281 /*
2282 * size of first charge trial. "32" comes from vmscan.c's magic value.
2283 * TODO: maybe necessary to use big numbers in big irons.
2284 */
2285 #define CHARGE_BATCH 32U
2286 struct memcg_stock_pcp {
2287 struct mem_cgroup *cached; /* this never be root cgroup */
2288 unsigned int nr_pages;
2289 struct work_struct work;
2290 unsigned long flags;
2291 #define FLUSHING_CACHED_CHARGE 0
2292 };
2293 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2294 static DEFINE_MUTEX(percpu_charge_mutex);
2295
2296 /**
2297 * consume_stock: Try to consume stocked charge on this cpu.
2298 * @memcg: memcg to consume from.
2299 * @nr_pages: how many pages to charge.
2300 *
2301 * The charges will only happen if @memcg matches the current cpu's memcg
2302 * stock, and at least @nr_pages are available in that stock. Failure to
2303 * service an allocation will refill the stock.
2304 *
2305 * returns true if successful, false otherwise.
2306 */
2307 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2308 {
2309 struct memcg_stock_pcp *stock;
2310 bool ret = true;
2311
2312 if (nr_pages > CHARGE_BATCH)
2313 return false;
2314
2315 stock = &get_cpu_var(memcg_stock);
2316 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2317 stock->nr_pages -= nr_pages;
2318 else /* need to call res_counter_charge */
2319 ret = false;
2320 put_cpu_var(memcg_stock);
2321 return ret;
2322 }
2323
2324 /*
2325 * Returns stocks cached in percpu to res_counter and reset cached information.
2326 */
2327 static void drain_stock(struct memcg_stock_pcp *stock)
2328 {
2329 struct mem_cgroup *old = stock->cached;
2330
2331 if (stock->nr_pages) {
2332 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2333
2334 res_counter_uncharge(&old->res, bytes);
2335 if (do_swap_account)
2336 res_counter_uncharge(&old->memsw, bytes);
2337 stock->nr_pages = 0;
2338 }
2339 stock->cached = NULL;
2340 }
2341
2342 /*
2343 * This must be called under preempt disabled or must be called by
2344 * a thread which is pinned to local cpu.
2345 */
2346 static void drain_local_stock(struct work_struct *dummy)
2347 {
2348 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2349 drain_stock(stock);
2350 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2351 }
2352
2353 static void __init memcg_stock_init(void)
2354 {
2355 int cpu;
2356
2357 for_each_possible_cpu(cpu) {
2358 struct memcg_stock_pcp *stock =
2359 &per_cpu(memcg_stock, cpu);
2360 INIT_WORK(&stock->work, drain_local_stock);
2361 }
2362 }
2363
2364 /*
2365 * Cache charges(val) which is from res_counter, to local per_cpu area.
2366 * This will be consumed by consume_stock() function, later.
2367 */
2368 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2369 {
2370 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2371
2372 if (stock->cached != memcg) { /* reset if necessary */
2373 drain_stock(stock);
2374 stock->cached = memcg;
2375 }
2376 stock->nr_pages += nr_pages;
2377 put_cpu_var(memcg_stock);
2378 }
2379
2380 /*
2381 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2382 * of the hierarchy under it. sync flag says whether we should block
2383 * until the work is done.
2384 */
2385 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2386 {
2387 int cpu, curcpu;
2388
2389 /* Notify other cpus that system-wide "drain" is running */
2390 get_online_cpus();
2391 curcpu = get_cpu();
2392 for_each_online_cpu(cpu) {
2393 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2394 struct mem_cgroup *memcg;
2395
2396 memcg = stock->cached;
2397 if (!memcg || !stock->nr_pages)
2398 continue;
2399 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2400 continue;
2401 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2402 if (cpu == curcpu)
2403 drain_local_stock(&stock->work);
2404 else
2405 schedule_work_on(cpu, &stock->work);
2406 }
2407 }
2408 put_cpu();
2409
2410 if (!sync)
2411 goto out;
2412
2413 for_each_online_cpu(cpu) {
2414 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2415 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2416 flush_work(&stock->work);
2417 }
2418 out:
2419 put_online_cpus();
2420 }
2421
2422 /*
2423 * Tries to drain stocked charges in other cpus. This function is asynchronous
2424 * and just put a work per cpu for draining localy on each cpu. Caller can
2425 * expects some charges will be back to res_counter later but cannot wait for
2426 * it.
2427 */
2428 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2429 {
2430 /*
2431 * If someone calls draining, avoid adding more kworker runs.
2432 */
2433 if (!mutex_trylock(&percpu_charge_mutex))
2434 return;
2435 drain_all_stock(root_memcg, false);
2436 mutex_unlock(&percpu_charge_mutex);
2437 }
2438
2439 /* This is a synchronous drain interface. */
2440 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2441 {
2442 /* called when force_empty is called */
2443 mutex_lock(&percpu_charge_mutex);
2444 drain_all_stock(root_memcg, true);
2445 mutex_unlock(&percpu_charge_mutex);
2446 }
2447
2448 /*
2449 * This function drains percpu counter value from DEAD cpu and
2450 * move it to local cpu. Note that this function can be preempted.
2451 */
2452 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2453 {
2454 int i;
2455
2456 spin_lock(&memcg->pcp_counter_lock);
2457 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2458 long x = per_cpu(memcg->stat->count[i], cpu);
2459
2460 per_cpu(memcg->stat->count[i], cpu) = 0;
2461 memcg->nocpu_base.count[i] += x;
2462 }
2463 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2464 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2465
2466 per_cpu(memcg->stat->events[i], cpu) = 0;
2467 memcg->nocpu_base.events[i] += x;
2468 }
2469 spin_unlock(&memcg->pcp_counter_lock);
2470 }
2471
2472 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2473 unsigned long action,
2474 void *hcpu)
2475 {
2476 int cpu = (unsigned long)hcpu;
2477 struct memcg_stock_pcp *stock;
2478 struct mem_cgroup *iter;
2479
2480 if (action == CPU_ONLINE)
2481 return NOTIFY_OK;
2482
2483 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2484 return NOTIFY_OK;
2485
2486 for_each_mem_cgroup(iter)
2487 mem_cgroup_drain_pcp_counter(iter, cpu);
2488
2489 stock = &per_cpu(memcg_stock, cpu);
2490 drain_stock(stock);
2491 return NOTIFY_OK;
2492 }
2493
2494 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2495 unsigned int nr_pages)
2496 {
2497 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2498 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2499 struct mem_cgroup *mem_over_limit;
2500 struct res_counter *fail_res;
2501 unsigned long nr_reclaimed;
2502 unsigned long long size;
2503 bool may_swap = true;
2504 bool drained = false;
2505 int ret = 0;
2506
2507 if (mem_cgroup_is_root(memcg))
2508 goto done;
2509 retry:
2510 if (consume_stock(memcg, nr_pages))
2511 goto done;
2512
2513 size = batch * PAGE_SIZE;
2514 if (!do_swap_account ||
2515 !res_counter_charge(&memcg->memsw, size, &fail_res)) {
2516 if (!res_counter_charge(&memcg->res, size, &fail_res))
2517 goto done_restock;
2518 if (do_swap_account)
2519 res_counter_uncharge(&memcg->memsw, size);
2520 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2521 } else {
2522 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2523 may_swap = false;
2524 }
2525
2526 if (batch > nr_pages) {
2527 batch = nr_pages;
2528 goto retry;
2529 }
2530
2531 /*
2532 * Unlike in global OOM situations, memcg is not in a physical
2533 * memory shortage. Allow dying and OOM-killed tasks to
2534 * bypass the last charges so that they can exit quickly and
2535 * free their memory.
2536 */
2537 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2538 fatal_signal_pending(current) ||
2539 current->flags & PF_EXITING))
2540 goto bypass;
2541
2542 if (unlikely(task_in_memcg_oom(current)))
2543 goto nomem;
2544
2545 if (!(gfp_mask & __GFP_WAIT))
2546 goto nomem;
2547
2548 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2549 gfp_mask, may_swap);
2550
2551 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2552 goto retry;
2553
2554 if (!drained) {
2555 drain_all_stock_async(mem_over_limit);
2556 drained = true;
2557 goto retry;
2558 }
2559
2560 if (gfp_mask & __GFP_NORETRY)
2561 goto nomem;
2562 /*
2563 * Even though the limit is exceeded at this point, reclaim
2564 * may have been able to free some pages. Retry the charge
2565 * before killing the task.
2566 *
2567 * Only for regular pages, though: huge pages are rather
2568 * unlikely to succeed so close to the limit, and we fall back
2569 * to regular pages anyway in case of failure.
2570 */
2571 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2572 goto retry;
2573 /*
2574 * At task move, charge accounts can be doubly counted. So, it's
2575 * better to wait until the end of task_move if something is going on.
2576 */
2577 if (mem_cgroup_wait_acct_move(mem_over_limit))
2578 goto retry;
2579
2580 if (nr_retries--)
2581 goto retry;
2582
2583 if (gfp_mask & __GFP_NOFAIL)
2584 goto bypass;
2585
2586 if (fatal_signal_pending(current))
2587 goto bypass;
2588
2589 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2590 nomem:
2591 if (!(gfp_mask & __GFP_NOFAIL))
2592 return -ENOMEM;
2593 bypass:
2594 return -EINTR;
2595
2596 done_restock:
2597 if (batch > nr_pages)
2598 refill_stock(memcg, batch - nr_pages);
2599 done:
2600 return ret;
2601 }
2602
2603 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2604 {
2605 unsigned long bytes = nr_pages * PAGE_SIZE;
2606
2607 if (mem_cgroup_is_root(memcg))
2608 return;
2609
2610 res_counter_uncharge(&memcg->res, bytes);
2611 if (do_swap_account)
2612 res_counter_uncharge(&memcg->memsw, bytes);
2613 }
2614
2615 /*
2616 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2617 * This is useful when moving usage to parent cgroup.
2618 */
2619 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2620 unsigned int nr_pages)
2621 {
2622 unsigned long bytes = nr_pages * PAGE_SIZE;
2623
2624 if (mem_cgroup_is_root(memcg))
2625 return;
2626
2627 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2628 if (do_swap_account)
2629 res_counter_uncharge_until(&memcg->memsw,
2630 memcg->memsw.parent, bytes);
2631 }
2632
2633 /*
2634 * A helper function to get mem_cgroup from ID. must be called under
2635 * rcu_read_lock(). The caller is responsible for calling
2636 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2637 * refcnt from swap can be called against removed memcg.)
2638 */
2639 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2640 {
2641 /* ID 0 is unused ID */
2642 if (!id)
2643 return NULL;
2644 return mem_cgroup_from_id(id);
2645 }
2646
2647 /*
2648 * try_get_mem_cgroup_from_page - look up page's memcg association
2649 * @page: the page
2650 *
2651 * Look up, get a css reference, and return the memcg that owns @page.
2652 *
2653 * The page must be locked to prevent racing with swap-in and page
2654 * cache charges. If coming from an unlocked page table, the caller
2655 * must ensure the page is on the LRU or this can race with charging.
2656 */
2657 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2658 {
2659 struct mem_cgroup *memcg = NULL;
2660 struct page_cgroup *pc;
2661 unsigned short id;
2662 swp_entry_t ent;
2663
2664 VM_BUG_ON_PAGE(!PageLocked(page), page);
2665
2666 pc = lookup_page_cgroup(page);
2667 if (PageCgroupUsed(pc)) {
2668 memcg = pc->mem_cgroup;
2669 if (memcg && !css_tryget_online(&memcg->css))
2670 memcg = NULL;
2671 } else if (PageSwapCache(page)) {
2672 ent.val = page_private(page);
2673 id = lookup_swap_cgroup_id(ent);
2674 rcu_read_lock();
2675 memcg = mem_cgroup_lookup(id);
2676 if (memcg && !css_tryget_online(&memcg->css))
2677 memcg = NULL;
2678 rcu_read_unlock();
2679 }
2680 return memcg;
2681 }
2682
2683 static void lock_page_lru(struct page *page, int *isolated)
2684 {
2685 struct zone *zone = page_zone(page);
2686
2687 spin_lock_irq(&zone->lru_lock);
2688 if (PageLRU(page)) {
2689 struct lruvec *lruvec;
2690
2691 lruvec = mem_cgroup_page_lruvec(page, zone);
2692 ClearPageLRU(page);
2693 del_page_from_lru_list(page, lruvec, page_lru(page));
2694 *isolated = 1;
2695 } else
2696 *isolated = 0;
2697 }
2698
2699 static void unlock_page_lru(struct page *page, int isolated)
2700 {
2701 struct zone *zone = page_zone(page);
2702
2703 if (isolated) {
2704 struct lruvec *lruvec;
2705
2706 lruvec = mem_cgroup_page_lruvec(page, zone);
2707 VM_BUG_ON_PAGE(PageLRU(page), page);
2708 SetPageLRU(page);
2709 add_page_to_lru_list(page, lruvec, page_lru(page));
2710 }
2711 spin_unlock_irq(&zone->lru_lock);
2712 }
2713
2714 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2715 bool lrucare)
2716 {
2717 struct page_cgroup *pc = lookup_page_cgroup(page);
2718 int isolated;
2719
2720 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2721 /*
2722 * we don't need page_cgroup_lock about tail pages, becase they are not
2723 * accessed by any other context at this point.
2724 */
2725
2726 /*
2727 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2728 * may already be on some other mem_cgroup's LRU. Take care of it.
2729 */
2730 if (lrucare)
2731 lock_page_lru(page, &isolated);
2732
2733 /*
2734 * Nobody should be changing or seriously looking at
2735 * pc->mem_cgroup and pc->flags at this point:
2736 *
2737 * - the page is uncharged
2738 *
2739 * - the page is off-LRU
2740 *
2741 * - an anonymous fault has exclusive page access, except for
2742 * a locked page table
2743 *
2744 * - a page cache insertion, a swapin fault, or a migration
2745 * have the page locked
2746 */
2747 pc->mem_cgroup = memcg;
2748 pc->flags = PCG_USED | PCG_MEM | (do_swap_account ? PCG_MEMSW : 0);
2749
2750 if (lrucare)
2751 unlock_page_lru(page, isolated);
2752 }
2753
2754 static DEFINE_MUTEX(set_limit_mutex);
2755
2756 #ifdef CONFIG_MEMCG_KMEM
2757 /*
2758 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2759 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2760 */
2761 static DEFINE_MUTEX(memcg_slab_mutex);
2762
2763 static DEFINE_MUTEX(activate_kmem_mutex);
2764
2765 /*
2766 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2767 * in the memcg_cache_params struct.
2768 */
2769 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2770 {
2771 struct kmem_cache *cachep;
2772
2773 VM_BUG_ON(p->is_root_cache);
2774 cachep = p->root_cache;
2775 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2776 }
2777
2778 #ifdef CONFIG_SLABINFO
2779 static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2780 {
2781 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2782 struct memcg_cache_params *params;
2783
2784 if (!memcg_kmem_is_active(memcg))
2785 return -EIO;
2786
2787 print_slabinfo_header(m);
2788
2789 mutex_lock(&memcg_slab_mutex);
2790 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2791 cache_show(memcg_params_to_cache(params), m);
2792 mutex_unlock(&memcg_slab_mutex);
2793
2794 return 0;
2795 }
2796 #endif
2797
2798 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2799 {
2800 struct res_counter *fail_res;
2801 int ret = 0;
2802
2803 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2804 if (ret)
2805 return ret;
2806
2807 ret = try_charge(memcg, gfp, size >> PAGE_SHIFT);
2808 if (ret == -EINTR) {
2809 /*
2810 * try_charge() chose to bypass to root due to OOM kill or
2811 * fatal signal. Since our only options are to either fail
2812 * the allocation or charge it to this cgroup, do it as a
2813 * temporary condition. But we can't fail. From a kmem/slab
2814 * perspective, the cache has already been selected, by
2815 * mem_cgroup_kmem_get_cache(), so it is too late to change
2816 * our minds.
2817 *
2818 * This condition will only trigger if the task entered
2819 * memcg_charge_kmem in a sane state, but was OOM-killed
2820 * during try_charge() above. Tasks that were already dying
2821 * when the allocation triggers should have been already
2822 * directed to the root cgroup in memcontrol.h
2823 */
2824 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2825 if (do_swap_account)
2826 res_counter_charge_nofail(&memcg->memsw, size,
2827 &fail_res);
2828 ret = 0;
2829 } else if (ret)
2830 res_counter_uncharge(&memcg->kmem, size);
2831
2832 return ret;
2833 }
2834
2835 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2836 {
2837 res_counter_uncharge(&memcg->res, size);
2838 if (do_swap_account)
2839 res_counter_uncharge(&memcg->memsw, size);
2840
2841 /* Not down to 0 */
2842 if (res_counter_uncharge(&memcg->kmem, size))
2843 return;
2844
2845 /*
2846 * Releases a reference taken in kmem_cgroup_css_offline in case
2847 * this last uncharge is racing with the offlining code or it is
2848 * outliving the memcg existence.
2849 *
2850 * The memory barrier imposed by test&clear is paired with the
2851 * explicit one in memcg_kmem_mark_dead().
2852 */
2853 if (memcg_kmem_test_and_clear_dead(memcg))
2854 css_put(&memcg->css);
2855 }
2856
2857 /*
2858 * helper for acessing a memcg's index. It will be used as an index in the
2859 * child cache array in kmem_cache, and also to derive its name. This function
2860 * will return -1 when this is not a kmem-limited memcg.
2861 */
2862 int memcg_cache_id(struct mem_cgroup *memcg)
2863 {
2864 return memcg ? memcg->kmemcg_id : -1;
2865 }
2866
2867 static int memcg_alloc_cache_id(void)
2868 {
2869 int id, size;
2870 int err;
2871
2872 id = ida_simple_get(&kmem_limited_groups,
2873 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2874 if (id < 0)
2875 return id;
2876
2877 if (id < memcg_limited_groups_array_size)
2878 return id;
2879
2880 /*
2881 * There's no space for the new id in memcg_caches arrays,
2882 * so we have to grow them.
2883 */
2884
2885 size = 2 * (id + 1);
2886 if (size < MEMCG_CACHES_MIN_SIZE)
2887 size = MEMCG_CACHES_MIN_SIZE;
2888 else if (size > MEMCG_CACHES_MAX_SIZE)
2889 size = MEMCG_CACHES_MAX_SIZE;
2890
2891 mutex_lock(&memcg_slab_mutex);
2892 err = memcg_update_all_caches(size);
2893 mutex_unlock(&memcg_slab_mutex);
2894
2895 if (err) {
2896 ida_simple_remove(&kmem_limited_groups, id);
2897 return err;
2898 }
2899 return id;
2900 }
2901
2902 static void memcg_free_cache_id(int id)
2903 {
2904 ida_simple_remove(&kmem_limited_groups, id);
2905 }
2906
2907 /*
2908 * We should update the current array size iff all caches updates succeed. This
2909 * can only be done from the slab side. The slab mutex needs to be held when
2910 * calling this.
2911 */
2912 void memcg_update_array_size(int num)
2913 {
2914 memcg_limited_groups_array_size = num;
2915 }
2916
2917 static void memcg_register_cache(struct mem_cgroup *memcg,
2918 struct kmem_cache *root_cache)
2919 {
2920 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
2921 memcg_slab_mutex */
2922 struct kmem_cache *cachep;
2923 int id;
2924
2925 lockdep_assert_held(&memcg_slab_mutex);
2926
2927 id = memcg_cache_id(memcg);
2928
2929 /*
2930 * Since per-memcg caches are created asynchronously on first
2931 * allocation (see memcg_kmem_get_cache()), several threads can try to
2932 * create the same cache, but only one of them may succeed.
2933 */
2934 if (cache_from_memcg_idx(root_cache, id))
2935 return;
2936
2937 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
2938 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2939 /*
2940 * If we could not create a memcg cache, do not complain, because
2941 * that's not critical at all as we can always proceed with the root
2942 * cache.
2943 */
2944 if (!cachep)
2945 return;
2946
2947 css_get(&memcg->css);
2948 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2949
2950 /*
2951 * Since readers won't lock (see cache_from_memcg_idx()), we need a
2952 * barrier here to ensure nobody will see the kmem_cache partially
2953 * initialized.
2954 */
2955 smp_wmb();
2956
2957 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
2958 root_cache->memcg_params->memcg_caches[id] = cachep;
2959 }
2960
2961 static void memcg_unregister_cache(struct kmem_cache *cachep)
2962 {
2963 struct kmem_cache *root_cache;
2964 struct mem_cgroup *memcg;
2965 int id;
2966
2967 lockdep_assert_held(&memcg_slab_mutex);
2968
2969 BUG_ON(is_root_cache(cachep));
2970
2971 root_cache = cachep->memcg_params->root_cache;
2972 memcg = cachep->memcg_params->memcg;
2973 id = memcg_cache_id(memcg);
2974
2975 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
2976 root_cache->memcg_params->memcg_caches[id] = NULL;
2977
2978 list_del(&cachep->memcg_params->list);
2979
2980 kmem_cache_destroy(cachep);
2981
2982 /* drop the reference taken in memcg_register_cache */
2983 css_put(&memcg->css);
2984 }
2985
2986 /*
2987 * During the creation a new cache, we need to disable our accounting mechanism
2988 * altogether. This is true even if we are not creating, but rather just
2989 * enqueing new caches to be created.
2990 *
2991 * This is because that process will trigger allocations; some visible, like
2992 * explicit kmallocs to auxiliary data structures, name strings and internal
2993 * cache structures; some well concealed, like INIT_WORK() that can allocate
2994 * objects during debug.
2995 *
2996 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
2997 * to it. This may not be a bounded recursion: since the first cache creation
2998 * failed to complete (waiting on the allocation), we'll just try to create the
2999 * cache again, failing at the same point.
3000 *
3001 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3002 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3003 * inside the following two functions.
3004 */
3005 static inline void memcg_stop_kmem_account(void)
3006 {
3007 VM_BUG_ON(!current->mm);
3008 current->memcg_kmem_skip_account++;
3009 }
3010
3011 static inline void memcg_resume_kmem_account(void)
3012 {
3013 VM_BUG_ON(!current->mm);
3014 current->memcg_kmem_skip_account--;
3015 }
3016
3017 int __memcg_cleanup_cache_params(struct kmem_cache *s)
3018 {
3019 struct kmem_cache *c;
3020 int i, failed = 0;
3021
3022 mutex_lock(&memcg_slab_mutex);
3023 for_each_memcg_cache_index(i) {
3024 c = cache_from_memcg_idx(s, i);
3025 if (!c)
3026 continue;
3027
3028 memcg_unregister_cache(c);
3029
3030 if (cache_from_memcg_idx(s, i))
3031 failed++;
3032 }
3033 mutex_unlock(&memcg_slab_mutex);
3034 return failed;
3035 }
3036
3037 static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
3038 {
3039 struct kmem_cache *cachep;
3040 struct memcg_cache_params *params, *tmp;
3041
3042 if (!memcg_kmem_is_active(memcg))
3043 return;
3044
3045 mutex_lock(&memcg_slab_mutex);
3046 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
3047 cachep = memcg_params_to_cache(params);
3048 kmem_cache_shrink(cachep);
3049 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3050 memcg_unregister_cache(cachep);
3051 }
3052 mutex_unlock(&memcg_slab_mutex);
3053 }
3054
3055 struct memcg_register_cache_work {
3056 struct mem_cgroup *memcg;
3057 struct kmem_cache *cachep;
3058 struct work_struct work;
3059 };
3060
3061 static void memcg_register_cache_func(struct work_struct *w)
3062 {
3063 struct memcg_register_cache_work *cw =
3064 container_of(w, struct memcg_register_cache_work, work);
3065 struct mem_cgroup *memcg = cw->memcg;
3066 struct kmem_cache *cachep = cw->cachep;
3067
3068 mutex_lock(&memcg_slab_mutex);
3069 memcg_register_cache(memcg, cachep);
3070 mutex_unlock(&memcg_slab_mutex);
3071
3072 css_put(&memcg->css);
3073 kfree(cw);
3074 }
3075
3076 /*
3077 * Enqueue the creation of a per-memcg kmem_cache.
3078 */
3079 static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
3080 struct kmem_cache *cachep)
3081 {
3082 struct memcg_register_cache_work *cw;
3083
3084 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
3085 if (cw == NULL) {
3086 css_put(&memcg->css);
3087 return;
3088 }
3089
3090 cw->memcg = memcg;
3091 cw->cachep = cachep;
3092
3093 INIT_WORK(&cw->work, memcg_register_cache_func);
3094 schedule_work(&cw->work);
3095 }
3096
3097 static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
3098 struct kmem_cache *cachep)
3099 {
3100 /*
3101 * We need to stop accounting when we kmalloc, because if the
3102 * corresponding kmalloc cache is not yet created, the first allocation
3103 * in __memcg_schedule_register_cache will recurse.
3104 *
3105 * However, it is better to enclose the whole function. Depending on
3106 * the debugging options enabled, INIT_WORK(), for instance, can
3107 * trigger an allocation. This too, will make us recurse. Because at
3108 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3109 * the safest choice is to do it like this, wrapping the whole function.
3110 */
3111 memcg_stop_kmem_account();
3112 __memcg_schedule_register_cache(memcg, cachep);
3113 memcg_resume_kmem_account();
3114 }
3115
3116 int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
3117 {
3118 int res;
3119
3120 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp,
3121 PAGE_SIZE << order);
3122 if (!res)
3123 atomic_add(1 << order, &cachep->memcg_params->nr_pages);
3124 return res;
3125 }
3126
3127 void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
3128 {
3129 memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order);
3130 atomic_sub(1 << order, &cachep->memcg_params->nr_pages);
3131 }
3132
3133 /*
3134 * Return the kmem_cache we're supposed to use for a slab allocation.
3135 * We try to use the current memcg's version of the cache.
3136 *
3137 * If the cache does not exist yet, if we are the first user of it,
3138 * we either create it immediately, if possible, or create it asynchronously
3139 * in a workqueue.
3140 * In the latter case, we will let the current allocation go through with
3141 * the original cache.
3142 *
3143 * Can't be called in interrupt context or from kernel threads.
3144 * This function needs to be called with rcu_read_lock() held.
3145 */
3146 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3147 gfp_t gfp)
3148 {
3149 struct mem_cgroup *memcg;
3150 struct kmem_cache *memcg_cachep;
3151
3152 VM_BUG_ON(!cachep->memcg_params);
3153 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3154
3155 if (!current->mm || current->memcg_kmem_skip_account)
3156 return cachep;
3157
3158 rcu_read_lock();
3159 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3160
3161 if (!memcg_kmem_is_active(memcg))
3162 goto out;
3163
3164 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3165 if (likely(memcg_cachep)) {
3166 cachep = memcg_cachep;
3167 goto out;
3168 }
3169
3170 /* The corresponding put will be done in the workqueue. */
3171 if (!css_tryget_online(&memcg->css))
3172 goto out;
3173 rcu_read_unlock();
3174
3175 /*
3176 * If we are in a safe context (can wait, and not in interrupt
3177 * context), we could be be predictable and return right away.
3178 * This would guarantee that the allocation being performed
3179 * already belongs in the new cache.
3180 *
3181 * However, there are some clashes that can arrive from locking.
3182 * For instance, because we acquire the slab_mutex while doing
3183 * memcg_create_kmem_cache, this means no further allocation
3184 * could happen with the slab_mutex held. So it's better to
3185 * defer everything.
3186 */
3187 memcg_schedule_register_cache(memcg, cachep);
3188 return cachep;
3189 out:
3190 rcu_read_unlock();
3191 return cachep;
3192 }
3193
3194 /*
3195 * We need to verify if the allocation against current->mm->owner's memcg is
3196 * possible for the given order. But the page is not allocated yet, so we'll
3197 * need a further commit step to do the final arrangements.
3198 *
3199 * It is possible for the task to switch cgroups in this mean time, so at
3200 * commit time, we can't rely on task conversion any longer. We'll then use
3201 * the handle argument to return to the caller which cgroup we should commit
3202 * against. We could also return the memcg directly and avoid the pointer
3203 * passing, but a boolean return value gives better semantics considering
3204 * the compiled-out case as well.
3205 *
3206 * Returning true means the allocation is possible.
3207 */
3208 bool
3209 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3210 {
3211 struct mem_cgroup *memcg;
3212 int ret;
3213
3214 *_memcg = NULL;
3215
3216 /*
3217 * Disabling accounting is only relevant for some specific memcg
3218 * internal allocations. Therefore we would initially not have such
3219 * check here, since direct calls to the page allocator that are
3220 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3221 * outside memcg core. We are mostly concerned with cache allocations,
3222 * and by having this test at memcg_kmem_get_cache, we are already able
3223 * to relay the allocation to the root cache and bypass the memcg cache
3224 * altogether.
3225 *
3226 * There is one exception, though: the SLUB allocator does not create
3227 * large order caches, but rather service large kmallocs directly from
3228 * the page allocator. Therefore, the following sequence when backed by
3229 * the SLUB allocator:
3230 *
3231 * memcg_stop_kmem_account();
3232 * kmalloc(<large_number>)
3233 * memcg_resume_kmem_account();
3234 *
3235 * would effectively ignore the fact that we should skip accounting,
3236 * since it will drive us directly to this function without passing
3237 * through the cache selector memcg_kmem_get_cache. Such large
3238 * allocations are extremely rare but can happen, for instance, for the
3239 * cache arrays. We bring this test here.
3240 */
3241 if (!current->mm || current->memcg_kmem_skip_account)
3242 return true;
3243
3244 memcg = get_mem_cgroup_from_mm(current->mm);
3245
3246 if (!memcg_kmem_is_active(memcg)) {
3247 css_put(&memcg->css);
3248 return true;
3249 }
3250
3251 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3252 if (!ret)
3253 *_memcg = memcg;
3254
3255 css_put(&memcg->css);
3256 return (ret == 0);
3257 }
3258
3259 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3260 int order)
3261 {
3262 struct page_cgroup *pc;
3263
3264 VM_BUG_ON(mem_cgroup_is_root(memcg));
3265
3266 /* The page allocation failed. Revert */
3267 if (!page) {
3268 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3269 return;
3270 }
3271 /*
3272 * The page is freshly allocated and not visible to any
3273 * outside callers yet. Set up pc non-atomically.
3274 */
3275 pc = lookup_page_cgroup(page);
3276 pc->mem_cgroup = memcg;
3277 pc->flags = PCG_USED;
3278 }
3279
3280 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3281 {
3282 struct mem_cgroup *memcg = NULL;
3283 struct page_cgroup *pc;
3284
3285
3286 pc = lookup_page_cgroup(page);
3287 if (!PageCgroupUsed(pc))
3288 return;
3289
3290 memcg = pc->mem_cgroup;
3291 pc->flags = 0;
3292
3293 /*
3294 * We trust that only if there is a memcg associated with the page, it
3295 * is a valid allocation
3296 */
3297 if (!memcg)
3298 return;
3299
3300 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3301 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3302 }
3303 #else
3304 static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
3305 {
3306 }
3307 #endif /* CONFIG_MEMCG_KMEM */
3308
3309 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3310
3311 /*
3312 * Because tail pages are not marked as "used", set it. We're under
3313 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3314 * charge/uncharge will be never happen and move_account() is done under
3315 * compound_lock(), so we don't have to take care of races.
3316 */
3317 void mem_cgroup_split_huge_fixup(struct page *head)
3318 {
3319 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3320 struct page_cgroup *pc;
3321 struct mem_cgroup *memcg;
3322 int i;
3323
3324 if (mem_cgroup_disabled())
3325 return;
3326
3327 memcg = head_pc->mem_cgroup;
3328 for (i = 1; i < HPAGE_PMD_NR; i++) {
3329 pc = head_pc + i;
3330 pc->mem_cgroup = memcg;
3331 pc->flags = head_pc->flags;
3332 }
3333 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3334 HPAGE_PMD_NR);
3335 }
3336 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3337
3338 /**
3339 * mem_cgroup_move_account - move account of the page
3340 * @page: the page
3341 * @nr_pages: number of regular pages (>1 for huge pages)
3342 * @pc: page_cgroup of the page.
3343 * @from: mem_cgroup which the page is moved from.
3344 * @to: mem_cgroup which the page is moved to. @from != @to.
3345 *
3346 * The caller must confirm following.
3347 * - page is not on LRU (isolate_page() is useful.)
3348 * - compound_lock is held when nr_pages > 1
3349 *
3350 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3351 * from old cgroup.
3352 */
3353 static int mem_cgroup_move_account(struct page *page,
3354 unsigned int nr_pages,
3355 struct page_cgroup *pc,
3356 struct mem_cgroup *from,
3357 struct mem_cgroup *to)
3358 {
3359 unsigned long flags;
3360 int ret;
3361
3362 VM_BUG_ON(from == to);
3363 VM_BUG_ON_PAGE(PageLRU(page), page);
3364 /*
3365 * The page is isolated from LRU. So, collapse function
3366 * will not handle this page. But page splitting can happen.
3367 * Do this check under compound_page_lock(). The caller should
3368 * hold it.
3369 */
3370 ret = -EBUSY;
3371 if (nr_pages > 1 && !PageTransHuge(page))
3372 goto out;
3373
3374 /*
3375 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
3376 * of its source page while we change it: page migration takes
3377 * both pages off the LRU, but page cache replacement doesn't.
3378 */
3379 if (!trylock_page(page))
3380 goto out;
3381
3382 ret = -EINVAL;
3383 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3384 goto out_unlock;
3385
3386 move_lock_mem_cgroup(from, &flags);
3387
3388 if (!PageAnon(page) && page_mapped(page)) {
3389 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3390 nr_pages);
3391 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3392 nr_pages);
3393 }
3394
3395 if (PageWriteback(page)) {
3396 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3397 nr_pages);
3398 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3399 nr_pages);
3400 }
3401
3402 /*
3403 * It is safe to change pc->mem_cgroup here because the page
3404 * is referenced, charged, and isolated - we can't race with
3405 * uncharging, charging, migration, or LRU putback.
3406 */
3407
3408 /* caller should have done css_get */
3409 pc->mem_cgroup = to;
3410 move_unlock_mem_cgroup(from, &flags);
3411 ret = 0;
3412
3413 local_irq_disable();
3414 mem_cgroup_charge_statistics(to, page, nr_pages);
3415 memcg_check_events(to, page);
3416 mem_cgroup_charge_statistics(from, page, -nr_pages);
3417 memcg_check_events(from, page);
3418 local_irq_enable();
3419 out_unlock:
3420 unlock_page(page);
3421 out:
3422 return ret;
3423 }
3424
3425 /**
3426 * mem_cgroup_move_parent - moves page to the parent group
3427 * @page: the page to move
3428 * @pc: page_cgroup of the page
3429 * @child: page's cgroup
3430 *
3431 * move charges to its parent or the root cgroup if the group has no
3432 * parent (aka use_hierarchy==0).
3433 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3434 * mem_cgroup_move_account fails) the failure is always temporary and
3435 * it signals a race with a page removal/uncharge or migration. In the
3436 * first case the page is on the way out and it will vanish from the LRU
3437 * on the next attempt and the call should be retried later.
3438 * Isolation from the LRU fails only if page has been isolated from
3439 * the LRU since we looked at it and that usually means either global
3440 * reclaim or migration going on. The page will either get back to the
3441 * LRU or vanish.
3442 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3443 * (!PageCgroupUsed) or moved to a different group. The page will
3444 * disappear in the next attempt.
3445 */
3446 static int mem_cgroup_move_parent(struct page *page,
3447 struct page_cgroup *pc,
3448 struct mem_cgroup *child)
3449 {
3450 struct mem_cgroup *parent;
3451 unsigned int nr_pages;
3452 unsigned long uninitialized_var(flags);
3453 int ret;
3454
3455 VM_BUG_ON(mem_cgroup_is_root(child));
3456
3457 ret = -EBUSY;
3458 if (!get_page_unless_zero(page))
3459 goto out;
3460 if (isolate_lru_page(page))
3461 goto put;
3462
3463 nr_pages = hpage_nr_pages(page);
3464
3465 parent = parent_mem_cgroup(child);
3466 /*
3467 * If no parent, move charges to root cgroup.
3468 */
3469 if (!parent)
3470 parent = root_mem_cgroup;
3471
3472 if (nr_pages > 1) {
3473 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3474 flags = compound_lock_irqsave(page);
3475 }
3476
3477 ret = mem_cgroup_move_account(page, nr_pages,
3478 pc, child, parent);
3479 if (!ret)
3480 __mem_cgroup_cancel_local_charge(child, nr_pages);
3481
3482 if (nr_pages > 1)
3483 compound_unlock_irqrestore(page, flags);
3484 putback_lru_page(page);
3485 put:
3486 put_page(page);
3487 out:
3488 return ret;
3489 }
3490
3491 #ifdef CONFIG_MEMCG_SWAP
3492 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3493 bool charge)
3494 {
3495 int val = (charge) ? 1 : -1;
3496 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
3497 }
3498
3499 /**
3500 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3501 * @entry: swap entry to be moved
3502 * @from: mem_cgroup which the entry is moved from
3503 * @to: mem_cgroup which the entry is moved to
3504 *
3505 * It succeeds only when the swap_cgroup's record for this entry is the same
3506 * as the mem_cgroup's id of @from.
3507 *
3508 * Returns 0 on success, -EINVAL on failure.
3509 *
3510 * The caller must have charged to @to, IOW, called res_counter_charge() about
3511 * both res and memsw, and called css_get().
3512 */
3513 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3514 struct mem_cgroup *from, struct mem_cgroup *to)
3515 {
3516 unsigned short old_id, new_id;
3517
3518 old_id = mem_cgroup_id(from);
3519 new_id = mem_cgroup_id(to);
3520
3521 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3522 mem_cgroup_swap_statistics(from, false);
3523 mem_cgroup_swap_statistics(to, true);
3524 /*
3525 * This function is only called from task migration context now.
3526 * It postpones res_counter and refcount handling till the end
3527 * of task migration(mem_cgroup_clear_mc()) for performance
3528 * improvement. But we cannot postpone css_get(to) because if
3529 * the process that has been moved to @to does swap-in, the
3530 * refcount of @to might be decreased to 0.
3531 *
3532 * We are in attach() phase, so the cgroup is guaranteed to be
3533 * alive, so we can just call css_get().
3534 */
3535 css_get(&to->css);
3536 return 0;
3537 }
3538 return -EINVAL;
3539 }
3540 #else
3541 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3542 struct mem_cgroup *from, struct mem_cgroup *to)
3543 {
3544 return -EINVAL;
3545 }
3546 #endif
3547
3548 #ifdef CONFIG_DEBUG_VM
3549 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3550 {
3551 struct page_cgroup *pc;
3552
3553 pc = lookup_page_cgroup(page);
3554 /*
3555 * Can be NULL while feeding pages into the page allocator for
3556 * the first time, i.e. during boot or memory hotplug;
3557 * or when mem_cgroup_disabled().
3558 */
3559 if (likely(pc) && PageCgroupUsed(pc))
3560 return pc;
3561 return NULL;
3562 }
3563
3564 bool mem_cgroup_bad_page_check(struct page *page)
3565 {
3566 if (mem_cgroup_disabled())
3567 return false;
3568
3569 return lookup_page_cgroup_used(page) != NULL;
3570 }
3571
3572 void mem_cgroup_print_bad_page(struct page *page)
3573 {
3574 struct page_cgroup *pc;
3575
3576 pc = lookup_page_cgroup_used(page);
3577 if (pc) {
3578 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3579 pc, pc->flags, pc->mem_cgroup);
3580 }
3581 }
3582 #endif
3583
3584 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3585 unsigned long long val)
3586 {
3587 int retry_count;
3588 int ret = 0;
3589 int children = mem_cgroup_count_children(memcg);
3590 u64 curusage, oldusage;
3591 int enlarge;
3592
3593 /*
3594 * For keeping hierarchical_reclaim simple, how long we should retry
3595 * is depends on callers. We set our retry-count to be function
3596 * of # of children which we should visit in this loop.
3597 */
3598 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3599
3600 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3601
3602 enlarge = 0;
3603 while (retry_count) {
3604 if (signal_pending(current)) {
3605 ret = -EINTR;
3606 break;
3607 }
3608 /*
3609 * Rather than hide all in some function, I do this in
3610 * open coded manner. You see what this really does.
3611 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3612 */
3613 mutex_lock(&set_limit_mutex);
3614 if (res_counter_read_u64(&memcg->memsw, RES_LIMIT) < val) {
3615 ret = -EINVAL;
3616 mutex_unlock(&set_limit_mutex);
3617 break;
3618 }
3619
3620 if (res_counter_read_u64(&memcg->res, RES_LIMIT) < val)
3621 enlarge = 1;
3622
3623 ret = res_counter_set_limit(&memcg->res, val);
3624 mutex_unlock(&set_limit_mutex);
3625
3626 if (!ret)
3627 break;
3628
3629 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
3630
3631 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3632 /* Usage is reduced ? */
3633 if (curusage >= oldusage)
3634 retry_count--;
3635 else
3636 oldusage = curusage;
3637 }
3638 if (!ret && enlarge)
3639 memcg_oom_recover(memcg);
3640
3641 return ret;
3642 }
3643
3644 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3645 unsigned long long val)
3646 {
3647 int retry_count;
3648 u64 oldusage, curusage;
3649 int children = mem_cgroup_count_children(memcg);
3650 int ret = -EBUSY;
3651 int enlarge = 0;
3652
3653 /* see mem_cgroup_resize_res_limit */
3654 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3655 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3656 while (retry_count) {
3657 if (signal_pending(current)) {
3658 ret = -EINTR;
3659 break;
3660 }
3661 /*
3662 * Rather than hide all in some function, I do this in
3663 * open coded manner. You see what this really does.
3664 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3665 */
3666 mutex_lock(&set_limit_mutex);
3667 if (res_counter_read_u64(&memcg->res, RES_LIMIT) > val) {
3668 ret = -EINVAL;
3669 mutex_unlock(&set_limit_mutex);
3670 break;
3671 }
3672 if (res_counter_read_u64(&memcg->memsw, RES_LIMIT) < val)
3673 enlarge = 1;
3674 ret = res_counter_set_limit(&memcg->memsw, val);
3675 mutex_unlock(&set_limit_mutex);
3676
3677 if (!ret)
3678 break;
3679
3680 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3681
3682 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3683 /* Usage is reduced ? */
3684 if (curusage >= oldusage)
3685 retry_count--;
3686 else
3687 oldusage = curusage;
3688 }
3689 if (!ret && enlarge)
3690 memcg_oom_recover(memcg);
3691 return ret;
3692 }
3693
3694 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3695 gfp_t gfp_mask,
3696 unsigned long *total_scanned)
3697 {
3698 unsigned long nr_reclaimed = 0;
3699 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3700 unsigned long reclaimed;
3701 int loop = 0;
3702 struct mem_cgroup_tree_per_zone *mctz;
3703 unsigned long long excess;
3704 unsigned long nr_scanned;
3705
3706 if (order > 0)
3707 return 0;
3708
3709 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3710 /*
3711 * This loop can run a while, specially if mem_cgroup's continuously
3712 * keep exceeding their soft limit and putting the system under
3713 * pressure
3714 */
3715 do {
3716 if (next_mz)
3717 mz = next_mz;
3718 else
3719 mz = mem_cgroup_largest_soft_limit_node(mctz);
3720 if (!mz)
3721 break;
3722
3723 nr_scanned = 0;
3724 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3725 gfp_mask, &nr_scanned);
3726 nr_reclaimed += reclaimed;
3727 *total_scanned += nr_scanned;
3728 spin_lock_irq(&mctz->lock);
3729
3730 /*
3731 * If we failed to reclaim anything from this memory cgroup
3732 * it is time to move on to the next cgroup
3733 */
3734 next_mz = NULL;
3735 if (!reclaimed) {
3736 do {
3737 /*
3738 * Loop until we find yet another one.
3739 *
3740 * By the time we get the soft_limit lock
3741 * again, someone might have aded the
3742 * group back on the RB tree. Iterate to
3743 * make sure we get a different mem.
3744 * mem_cgroup_largest_soft_limit_node returns
3745 * NULL if no other cgroup is present on
3746 * the tree
3747 */
3748 next_mz =
3749 __mem_cgroup_largest_soft_limit_node(mctz);
3750 if (next_mz == mz)
3751 css_put(&next_mz->memcg->css);
3752 else /* next_mz == NULL or other memcg */
3753 break;
3754 } while (1);
3755 }
3756 __mem_cgroup_remove_exceeded(mz, mctz);
3757 excess = res_counter_soft_limit_excess(&mz->memcg->res);
3758 /*
3759 * One school of thought says that we should not add
3760 * back the node to the tree if reclaim returns 0.
3761 * But our reclaim could return 0, simply because due
3762 * to priority we are exposing a smaller subset of
3763 * memory to reclaim from. Consider this as a longer
3764 * term TODO.
3765 */
3766 /* If excess == 0, no tree ops */
3767 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3768 spin_unlock_irq(&mctz->lock);
3769 css_put(&mz->memcg->css);
3770 loop++;
3771 /*
3772 * Could not reclaim anything and there are no more
3773 * mem cgroups to try or we seem to be looping without
3774 * reclaiming anything.
3775 */
3776 if (!nr_reclaimed &&
3777 (next_mz == NULL ||
3778 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3779 break;
3780 } while (!nr_reclaimed);
3781 if (next_mz)
3782 css_put(&next_mz->memcg->css);
3783 return nr_reclaimed;
3784 }
3785
3786 /**
3787 * mem_cgroup_force_empty_list - clears LRU of a group
3788 * @memcg: group to clear
3789 * @node: NUMA node
3790 * @zid: zone id
3791 * @lru: lru to to clear
3792 *
3793 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
3794 * reclaim the pages page themselves - pages are moved to the parent (or root)
3795 * group.
3796 */
3797 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3798 int node, int zid, enum lru_list lru)
3799 {
3800 struct lruvec *lruvec;
3801 unsigned long flags;
3802 struct list_head *list;
3803 struct page *busy;
3804 struct zone *zone;
3805
3806 zone = &NODE_DATA(node)->node_zones[zid];
3807 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
3808 list = &lruvec->lists[lru];
3809
3810 busy = NULL;
3811 do {
3812 struct page_cgroup *pc;
3813 struct page *page;
3814
3815 spin_lock_irqsave(&zone->lru_lock, flags);
3816 if (list_empty(list)) {
3817 spin_unlock_irqrestore(&zone->lru_lock, flags);
3818 break;
3819 }
3820 page = list_entry(list->prev, struct page, lru);
3821 if (busy == page) {
3822 list_move(&page->lru, list);
3823 busy = NULL;
3824 spin_unlock_irqrestore(&zone->lru_lock, flags);
3825 continue;
3826 }
3827 spin_unlock_irqrestore(&zone->lru_lock, flags);
3828
3829 pc = lookup_page_cgroup(page);
3830
3831 if (mem_cgroup_move_parent(page, pc, memcg)) {
3832 /* found lock contention or "pc" is obsolete. */
3833 busy = page;
3834 } else
3835 busy = NULL;
3836 cond_resched();
3837 } while (!list_empty(list));
3838 }
3839
3840 /*
3841 * make mem_cgroup's charge to be 0 if there is no task by moving
3842 * all the charges and pages to the parent.
3843 * This enables deleting this mem_cgroup.
3844 *
3845 * Caller is responsible for holding css reference on the memcg.
3846 */
3847 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
3848 {
3849 int node, zid;
3850 u64 usage;
3851
3852 do {
3853 /* This is for making all *used* pages to be on LRU. */
3854 lru_add_drain_all();
3855 drain_all_stock_sync(memcg);
3856 mem_cgroup_start_move(memcg);
3857 for_each_node_state(node, N_MEMORY) {
3858 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3859 enum lru_list lru;
3860 for_each_lru(lru) {
3861 mem_cgroup_force_empty_list(memcg,
3862 node, zid, lru);
3863 }
3864 }
3865 }
3866 mem_cgroup_end_move(memcg);
3867 memcg_oom_recover(memcg);
3868 cond_resched();
3869
3870 /*
3871 * Kernel memory may not necessarily be trackable to a specific
3872 * process. So they are not migrated, and therefore we can't
3873 * expect their value to drop to 0 here.
3874 * Having res filled up with kmem only is enough.
3875 *
3876 * This is a safety check because mem_cgroup_force_empty_list
3877 * could have raced with mem_cgroup_replace_page_cache callers
3878 * so the lru seemed empty but the page could have been added
3879 * right after the check. RES_USAGE should be safe as we always
3880 * charge before adding to the LRU.
3881 */
3882 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
3883 res_counter_read_u64(&memcg->kmem, RES_USAGE);
3884 } while (usage > 0);
3885 }
3886
3887 /*
3888 * Test whether @memcg has children, dead or alive. Note that this
3889 * function doesn't care whether @memcg has use_hierarchy enabled and
3890 * returns %true if there are child csses according to the cgroup
3891 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3892 */
3893 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3894 {
3895 bool ret;
3896
3897 /*
3898 * The lock does not prevent addition or deletion of children, but
3899 * it prevents a new child from being initialized based on this
3900 * parent in css_online(), so it's enough to decide whether
3901 * hierarchically inherited attributes can still be changed or not.
3902 */
3903 lockdep_assert_held(&memcg_create_mutex);
3904
3905 rcu_read_lock();
3906 ret = css_next_child(NULL, &memcg->css);
3907 rcu_read_unlock();
3908 return ret;
3909 }
3910
3911 /*
3912 * Reclaims as many pages from the given memcg as possible and moves
3913 * the rest to the parent.
3914 *
3915 * Caller is responsible for holding css reference for memcg.
3916 */
3917 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3918 {
3919 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3920
3921 /* we call try-to-free pages for make this cgroup empty */
3922 lru_add_drain_all();
3923 /* try to free all pages in this cgroup */
3924 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3925 int progress;
3926
3927 if (signal_pending(current))
3928 return -EINTR;
3929
3930 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3931 GFP_KERNEL, true);
3932 if (!progress) {
3933 nr_retries--;
3934 /* maybe some writeback is necessary */
3935 congestion_wait(BLK_RW_ASYNC, HZ/10);
3936 }
3937
3938 }
3939
3940 return 0;
3941 }
3942
3943 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3944 char *buf, size_t nbytes,
3945 loff_t off)
3946 {
3947 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3948
3949 if (mem_cgroup_is_root(memcg))
3950 return -EINVAL;
3951 return mem_cgroup_force_empty(memcg) ?: nbytes;
3952 }
3953
3954 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3955 struct cftype *cft)
3956 {
3957 return mem_cgroup_from_css(css)->use_hierarchy;
3958 }
3959
3960 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3961 struct cftype *cft, u64 val)
3962 {
3963 int retval = 0;
3964 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3965 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3966
3967 mutex_lock(&memcg_create_mutex);
3968
3969 if (memcg->use_hierarchy == val)
3970 goto out;
3971
3972 /*
3973 * If parent's use_hierarchy is set, we can't make any modifications
3974 * in the child subtrees. If it is unset, then the change can
3975 * occur, provided the current cgroup has no children.
3976 *
3977 * For the root cgroup, parent_mem is NULL, we allow value to be
3978 * set if there are no children.
3979 */
3980 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3981 (val == 1 || val == 0)) {
3982 if (!memcg_has_children(memcg))
3983 memcg->use_hierarchy = val;
3984 else
3985 retval = -EBUSY;
3986 } else
3987 retval = -EINVAL;
3988
3989 out:
3990 mutex_unlock(&memcg_create_mutex);
3991
3992 return retval;
3993 }
3994
3995 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3996 enum mem_cgroup_stat_index idx)
3997 {
3998 struct mem_cgroup *iter;
3999 long val = 0;
4000
4001 /* Per-cpu values can be negative, use a signed accumulator */
4002 for_each_mem_cgroup_tree(iter, memcg)
4003 val += mem_cgroup_read_stat(iter, idx);
4004
4005 if (val < 0) /* race ? */
4006 val = 0;
4007 return val;
4008 }
4009
4010 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4011 {
4012 u64 val;
4013
4014 if (!mem_cgroup_is_root(memcg)) {
4015 if (!swap)
4016 return res_counter_read_u64(&memcg->res, RES_USAGE);
4017 else
4018 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4019 }
4020
4021 /*
4022 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4023 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4024 */
4025 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4026 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4027
4028 if (swap)
4029 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4030
4031 return val << PAGE_SHIFT;
4032 }
4033
4034
4035 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
4036 struct cftype *cft)
4037 {
4038 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4039 enum res_type type = MEMFILE_TYPE(cft->private);
4040 int name = MEMFILE_ATTR(cft->private);
4041
4042 switch (type) {
4043 case _MEM:
4044 if (name == RES_USAGE)
4045 return mem_cgroup_usage(memcg, false);
4046 return res_counter_read_u64(&memcg->res, name);
4047 case _MEMSWAP:
4048 if (name == RES_USAGE)
4049 return mem_cgroup_usage(memcg, true);
4050 return res_counter_read_u64(&memcg->memsw, name);
4051 case _KMEM:
4052 return res_counter_read_u64(&memcg->kmem, name);
4053 break;
4054 default:
4055 BUG();
4056 }
4057 }
4058
4059 #ifdef CONFIG_MEMCG_KMEM
4060 /* should be called with activate_kmem_mutex held */
4061 static int __memcg_activate_kmem(struct mem_cgroup *memcg,
4062 unsigned long long limit)
4063 {
4064 int err = 0;
4065 int memcg_id;
4066
4067 if (memcg_kmem_is_active(memcg))
4068 return 0;
4069
4070 /*
4071 * We are going to allocate memory for data shared by all memory
4072 * cgroups so let's stop accounting here.
4073 */
4074 memcg_stop_kmem_account();
4075
4076 /*
4077 * For simplicity, we won't allow this to be disabled. It also can't
4078 * be changed if the cgroup has children already, or if tasks had
4079 * already joined.
4080 *
4081 * If tasks join before we set the limit, a person looking at
4082 * kmem.usage_in_bytes will have no way to determine when it took
4083 * place, which makes the value quite meaningless.
4084 *
4085 * After it first became limited, changes in the value of the limit are
4086 * of course permitted.
4087 */
4088 mutex_lock(&memcg_create_mutex);
4089 if (cgroup_has_tasks(memcg->css.cgroup) ||
4090 (memcg->use_hierarchy && memcg_has_children(memcg)))
4091 err = -EBUSY;
4092 mutex_unlock(&memcg_create_mutex);
4093 if (err)
4094 goto out;
4095
4096 memcg_id = memcg_alloc_cache_id();
4097 if (memcg_id < 0) {
4098 err = memcg_id;
4099 goto out;
4100 }
4101
4102 memcg->kmemcg_id = memcg_id;
4103 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
4104
4105 /*
4106 * We couldn't have accounted to this cgroup, because it hasn't got the
4107 * active bit set yet, so this should succeed.
4108 */
4109 err = res_counter_set_limit(&memcg->kmem, limit);
4110 VM_BUG_ON(err);
4111
4112 static_key_slow_inc(&memcg_kmem_enabled_key);
4113 /*
4114 * Setting the active bit after enabling static branching will
4115 * guarantee no one starts accounting before all call sites are
4116 * patched.
4117 */
4118 memcg_kmem_set_active(memcg);
4119 out:
4120 memcg_resume_kmem_account();
4121 return err;
4122 }
4123
4124 static int memcg_activate_kmem(struct mem_cgroup *memcg,
4125 unsigned long long limit)
4126 {
4127 int ret;
4128
4129 mutex_lock(&activate_kmem_mutex);
4130 ret = __memcg_activate_kmem(memcg, limit);
4131 mutex_unlock(&activate_kmem_mutex);
4132 return ret;
4133 }
4134
4135 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4136 unsigned long long val)
4137 {
4138 int ret;
4139
4140 if (!memcg_kmem_is_active(memcg))
4141 ret = memcg_activate_kmem(memcg, val);
4142 else
4143 ret = res_counter_set_limit(&memcg->kmem, val);
4144 return ret;
4145 }
4146
4147 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4148 {
4149 int ret = 0;
4150 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4151
4152 if (!parent)
4153 return 0;
4154
4155 mutex_lock(&activate_kmem_mutex);
4156 /*
4157 * If the parent cgroup is not kmem-active now, it cannot be activated
4158 * after this point, because it has at least one child already.
4159 */
4160 if (memcg_kmem_is_active(parent))
4161 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
4162 mutex_unlock(&activate_kmem_mutex);
4163 return ret;
4164 }
4165 #else
4166 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4167 unsigned long long val)
4168 {
4169 return -EINVAL;
4170 }
4171 #endif /* CONFIG_MEMCG_KMEM */
4172
4173 /*
4174 * The user of this function is...
4175 * RES_LIMIT.
4176 */
4177 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
4178 char *buf, size_t nbytes, loff_t off)
4179 {
4180 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4181 enum res_type type;
4182 int name;
4183 unsigned long long val;
4184 int ret;
4185
4186 buf = strstrip(buf);
4187 type = MEMFILE_TYPE(of_cft(of)->private);
4188 name = MEMFILE_ATTR(of_cft(of)->private);
4189
4190 switch (name) {
4191 case RES_LIMIT:
4192 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4193 ret = -EINVAL;
4194 break;
4195 }
4196 /* This function does all necessary parse...reuse it */
4197 ret = res_counter_memparse_write_strategy(buf, &val);
4198 if (ret)
4199 break;
4200 if (type == _MEM)
4201 ret = mem_cgroup_resize_limit(memcg, val);
4202 else if (type == _MEMSWAP)
4203 ret = mem_cgroup_resize_memsw_limit(memcg, val);
4204 else if (type == _KMEM)
4205 ret = memcg_update_kmem_limit(memcg, val);
4206 else
4207 return -EINVAL;
4208 break;
4209 case RES_SOFT_LIMIT:
4210 ret = res_counter_memparse_write_strategy(buf, &val);
4211 if (ret)
4212 break;
4213 /*
4214 * For memsw, soft limits are hard to implement in terms
4215 * of semantics, for now, we support soft limits for
4216 * control without swap
4217 */
4218 if (type == _MEM)
4219 ret = res_counter_set_soft_limit(&memcg->res, val);
4220 else
4221 ret = -EINVAL;
4222 break;
4223 default:
4224 ret = -EINVAL; /* should be BUG() ? */
4225 break;
4226 }
4227 return ret ?: nbytes;
4228 }
4229
4230 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4231 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4232 {
4233 unsigned long long min_limit, min_memsw_limit, tmp;
4234
4235 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4236 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4237 if (!memcg->use_hierarchy)
4238 goto out;
4239
4240 while (memcg->css.parent) {
4241 memcg = mem_cgroup_from_css(memcg->css.parent);
4242 if (!memcg->use_hierarchy)
4243 break;
4244 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4245 min_limit = min(min_limit, tmp);
4246 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4247 min_memsw_limit = min(min_memsw_limit, tmp);
4248 }
4249 out:
4250 *mem_limit = min_limit;
4251 *memsw_limit = min_memsw_limit;
4252 }
4253
4254 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
4255 size_t nbytes, loff_t off)
4256 {
4257 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4258 int name;
4259 enum res_type type;
4260
4261 type = MEMFILE_TYPE(of_cft(of)->private);
4262 name = MEMFILE_ATTR(of_cft(of)->private);
4263
4264 switch (name) {
4265 case RES_MAX_USAGE:
4266 if (type == _MEM)
4267 res_counter_reset_max(&memcg->res);
4268 else if (type == _MEMSWAP)
4269 res_counter_reset_max(&memcg->memsw);
4270 else if (type == _KMEM)
4271 res_counter_reset_max(&memcg->kmem);
4272 else
4273 return -EINVAL;
4274 break;
4275 case RES_FAILCNT:
4276 if (type == _MEM)
4277 res_counter_reset_failcnt(&memcg->res);
4278 else if (type == _MEMSWAP)
4279 res_counter_reset_failcnt(&memcg->memsw);
4280 else if (type == _KMEM)
4281 res_counter_reset_failcnt(&memcg->kmem);
4282 else
4283 return -EINVAL;
4284 break;
4285 }
4286
4287 return nbytes;
4288 }
4289
4290 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
4291 struct cftype *cft)
4292 {
4293 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
4294 }
4295
4296 #ifdef CONFIG_MMU
4297 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4298 struct cftype *cft, u64 val)
4299 {
4300 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4301
4302 if (val >= (1 << NR_MOVE_TYPE))
4303 return -EINVAL;
4304
4305 /*
4306 * No kind of locking is needed in here, because ->can_attach() will
4307 * check this value once in the beginning of the process, and then carry
4308 * on with stale data. This means that changes to this value will only
4309 * affect task migrations starting after the change.
4310 */
4311 memcg->move_charge_at_immigrate = val;
4312 return 0;
4313 }
4314 #else
4315 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4316 struct cftype *cft, u64 val)
4317 {
4318 return -ENOSYS;
4319 }
4320 #endif
4321
4322 #ifdef CONFIG_NUMA
4323 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4324 {
4325 struct numa_stat {
4326 const char *name;
4327 unsigned int lru_mask;
4328 };
4329
4330 static const struct numa_stat stats[] = {
4331 { "total", LRU_ALL },
4332 { "file", LRU_ALL_FILE },
4333 { "anon", LRU_ALL_ANON },
4334 { "unevictable", BIT(LRU_UNEVICTABLE) },
4335 };
4336 const struct numa_stat *stat;
4337 int nid;
4338 unsigned long nr;
4339 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4340
4341 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4342 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
4343 seq_printf(m, "%s=%lu", stat->name, nr);
4344 for_each_node_state(nid, N_MEMORY) {
4345 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4346 stat->lru_mask);
4347 seq_printf(m, " N%d=%lu", nid, nr);
4348 }
4349 seq_putc(m, '\n');
4350 }
4351
4352 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4353 struct mem_cgroup *iter;
4354
4355 nr = 0;
4356 for_each_mem_cgroup_tree(iter, memcg)
4357 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
4358 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
4359 for_each_node_state(nid, N_MEMORY) {
4360 nr = 0;
4361 for_each_mem_cgroup_tree(iter, memcg)
4362 nr += mem_cgroup_node_nr_lru_pages(
4363 iter, nid, stat->lru_mask);
4364 seq_printf(m, " N%d=%lu", nid, nr);
4365 }
4366 seq_putc(m, '\n');
4367 }
4368
4369 return 0;
4370 }
4371 #endif /* CONFIG_NUMA */
4372
4373 static inline void mem_cgroup_lru_names_not_uptodate(void)
4374 {
4375 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4376 }
4377
4378 static int memcg_stat_show(struct seq_file *m, void *v)
4379 {
4380 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4381 struct mem_cgroup *mi;
4382 unsigned int i;
4383
4384 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4385 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4386 continue;
4387 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4388 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4389 }
4390
4391 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4392 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4393 mem_cgroup_read_events(memcg, i));
4394
4395 for (i = 0; i < NR_LRU_LISTS; i++)
4396 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4397 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4398
4399 /* Hierarchical information */
4400 {
4401 unsigned long long limit, memsw_limit;
4402 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4403 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4404 if (do_swap_account)
4405 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4406 memsw_limit);
4407 }
4408
4409 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4410 long long val = 0;
4411
4412 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4413 continue;
4414 for_each_mem_cgroup_tree(mi, memcg)
4415 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4416 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4417 }
4418
4419 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4420 unsigned long long val = 0;
4421
4422 for_each_mem_cgroup_tree(mi, memcg)
4423 val += mem_cgroup_read_events(mi, i);
4424 seq_printf(m, "total_%s %llu\n",
4425 mem_cgroup_events_names[i], val);
4426 }
4427
4428 for (i = 0; i < NR_LRU_LISTS; i++) {
4429 unsigned long long val = 0;
4430
4431 for_each_mem_cgroup_tree(mi, memcg)
4432 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4433 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4434 }
4435
4436 #ifdef CONFIG_DEBUG_VM
4437 {
4438 int nid, zid;
4439 struct mem_cgroup_per_zone *mz;
4440 struct zone_reclaim_stat *rstat;
4441 unsigned long recent_rotated[2] = {0, 0};
4442 unsigned long recent_scanned[2] = {0, 0};
4443
4444 for_each_online_node(nid)
4445 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4446 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
4447 rstat = &mz->lruvec.reclaim_stat;
4448
4449 recent_rotated[0] += rstat->recent_rotated[0];
4450 recent_rotated[1] += rstat->recent_rotated[1];
4451 recent_scanned[0] += rstat->recent_scanned[0];
4452 recent_scanned[1] += rstat->recent_scanned[1];
4453 }
4454 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4455 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4456 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4457 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4458 }
4459 #endif
4460
4461 return 0;
4462 }
4463
4464 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4465 struct cftype *cft)
4466 {
4467 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4468
4469 return mem_cgroup_swappiness(memcg);
4470 }
4471
4472 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4473 struct cftype *cft, u64 val)
4474 {
4475 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4476
4477 if (val > 100)
4478 return -EINVAL;
4479
4480 if (css->parent)
4481 memcg->swappiness = val;
4482 else
4483 vm_swappiness = val;
4484
4485 return 0;
4486 }
4487
4488 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4489 {
4490 struct mem_cgroup_threshold_ary *t;
4491 u64 usage;
4492 int i;
4493
4494 rcu_read_lock();
4495 if (!swap)
4496 t = rcu_dereference(memcg->thresholds.primary);
4497 else
4498 t = rcu_dereference(memcg->memsw_thresholds.primary);
4499
4500 if (!t)
4501 goto unlock;
4502
4503 usage = mem_cgroup_usage(memcg, swap);
4504
4505 /*
4506 * current_threshold points to threshold just below or equal to usage.
4507 * If it's not true, a threshold was crossed after last
4508 * call of __mem_cgroup_threshold().
4509 */
4510 i = t->current_threshold;
4511
4512 /*
4513 * Iterate backward over array of thresholds starting from
4514 * current_threshold and check if a threshold is crossed.
4515 * If none of thresholds below usage is crossed, we read
4516 * only one element of the array here.
4517 */
4518 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4519 eventfd_signal(t->entries[i].eventfd, 1);
4520
4521 /* i = current_threshold + 1 */
4522 i++;
4523
4524 /*
4525 * Iterate forward over array of thresholds starting from
4526 * current_threshold+1 and check if a threshold is crossed.
4527 * If none of thresholds above usage is crossed, we read
4528 * only one element of the array here.
4529 */
4530 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4531 eventfd_signal(t->entries[i].eventfd, 1);
4532
4533 /* Update current_threshold */
4534 t->current_threshold = i - 1;
4535 unlock:
4536 rcu_read_unlock();
4537 }
4538
4539 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4540 {
4541 while (memcg) {
4542 __mem_cgroup_threshold(memcg, false);
4543 if (do_swap_account)
4544 __mem_cgroup_threshold(memcg, true);
4545
4546 memcg = parent_mem_cgroup(memcg);
4547 }
4548 }
4549
4550 static int compare_thresholds(const void *a, const void *b)
4551 {
4552 const struct mem_cgroup_threshold *_a = a;
4553 const struct mem_cgroup_threshold *_b = b;
4554
4555 if (_a->threshold > _b->threshold)
4556 return 1;
4557
4558 if (_a->threshold < _b->threshold)
4559 return -1;
4560
4561 return 0;
4562 }
4563
4564 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4565 {
4566 struct mem_cgroup_eventfd_list *ev;
4567
4568 spin_lock(&memcg_oom_lock);
4569
4570 list_for_each_entry(ev, &memcg->oom_notify, list)
4571 eventfd_signal(ev->eventfd, 1);
4572
4573 spin_unlock(&memcg_oom_lock);
4574 return 0;
4575 }
4576
4577 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4578 {
4579 struct mem_cgroup *iter;
4580
4581 for_each_mem_cgroup_tree(iter, memcg)
4582 mem_cgroup_oom_notify_cb(iter);
4583 }
4584
4585 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4586 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4587 {
4588 struct mem_cgroup_thresholds *thresholds;
4589 struct mem_cgroup_threshold_ary *new;
4590 u64 threshold, usage;
4591 int i, size, ret;
4592
4593 ret = res_counter_memparse_write_strategy(args, &threshold);
4594 if (ret)
4595 return ret;
4596
4597 mutex_lock(&memcg->thresholds_lock);
4598
4599 if (type == _MEM) {
4600 thresholds = &memcg->thresholds;
4601 usage = mem_cgroup_usage(memcg, false);
4602 } else if (type == _MEMSWAP) {
4603 thresholds = &memcg->memsw_thresholds;
4604 usage = mem_cgroup_usage(memcg, true);
4605 } else
4606 BUG();
4607
4608 /* Check if a threshold crossed before adding a new one */
4609 if (thresholds->primary)
4610 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4611
4612 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4613
4614 /* Allocate memory for new array of thresholds */
4615 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4616 GFP_KERNEL);
4617 if (!new) {
4618 ret = -ENOMEM;
4619 goto unlock;
4620 }
4621 new->size = size;
4622
4623 /* Copy thresholds (if any) to new array */
4624 if (thresholds->primary) {
4625 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4626 sizeof(struct mem_cgroup_threshold));
4627 }
4628
4629 /* Add new threshold */
4630 new->entries[size - 1].eventfd = eventfd;
4631 new->entries[size - 1].threshold = threshold;
4632
4633 /* Sort thresholds. Registering of new threshold isn't time-critical */
4634 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4635 compare_thresholds, NULL);
4636
4637 /* Find current threshold */
4638 new->current_threshold = -1;
4639 for (i = 0; i < size; i++) {
4640 if (new->entries[i].threshold <= usage) {
4641 /*
4642 * new->current_threshold will not be used until
4643 * rcu_assign_pointer(), so it's safe to increment
4644 * it here.
4645 */
4646 ++new->current_threshold;
4647 } else
4648 break;
4649 }
4650
4651 /* Free old spare buffer and save old primary buffer as spare */
4652 kfree(thresholds->spare);
4653 thresholds->spare = thresholds->primary;
4654
4655 rcu_assign_pointer(thresholds->primary, new);
4656
4657 /* To be sure that nobody uses thresholds */
4658 synchronize_rcu();
4659
4660 unlock:
4661 mutex_unlock(&memcg->thresholds_lock);
4662
4663 return ret;
4664 }
4665
4666 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4667 struct eventfd_ctx *eventfd, const char *args)
4668 {
4669 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4670 }
4671
4672 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4673 struct eventfd_ctx *eventfd, const char *args)
4674 {
4675 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4676 }
4677
4678 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4679 struct eventfd_ctx *eventfd, enum res_type type)
4680 {
4681 struct mem_cgroup_thresholds *thresholds;
4682 struct mem_cgroup_threshold_ary *new;
4683 u64 usage;
4684 int i, j, size;
4685
4686 mutex_lock(&memcg->thresholds_lock);
4687
4688 if (type == _MEM) {
4689 thresholds = &memcg->thresholds;
4690 usage = mem_cgroup_usage(memcg, false);
4691 } else if (type == _MEMSWAP) {
4692 thresholds = &memcg->memsw_thresholds;
4693 usage = mem_cgroup_usage(memcg, true);
4694 } else
4695 BUG();
4696
4697 if (!thresholds->primary)
4698 goto unlock;
4699
4700 /* Check if a threshold crossed before removing */
4701 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4702
4703 /* Calculate new number of threshold */
4704 size = 0;
4705 for (i = 0; i < thresholds->primary->size; i++) {
4706 if (thresholds->primary->entries[i].eventfd != eventfd)
4707 size++;
4708 }
4709
4710 new = thresholds->spare;
4711
4712 /* Set thresholds array to NULL if we don't have thresholds */
4713 if (!size) {
4714 kfree(new);
4715 new = NULL;
4716 goto swap_buffers;
4717 }
4718
4719 new->size = size;
4720
4721 /* Copy thresholds and find current threshold */
4722 new->current_threshold = -1;
4723 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4724 if (thresholds->primary->entries[i].eventfd == eventfd)
4725 continue;
4726
4727 new->entries[j] = thresholds->primary->entries[i];
4728 if (new->entries[j].threshold <= usage) {
4729 /*
4730 * new->current_threshold will not be used
4731 * until rcu_assign_pointer(), so it's safe to increment
4732 * it here.
4733 */
4734 ++new->current_threshold;
4735 }
4736 j++;
4737 }
4738
4739 swap_buffers:
4740 /* Swap primary and spare array */
4741 thresholds->spare = thresholds->primary;
4742 /* If all events are unregistered, free the spare array */
4743 if (!new) {
4744 kfree(thresholds->spare);
4745 thresholds->spare = NULL;
4746 }
4747
4748 rcu_assign_pointer(thresholds->primary, new);
4749
4750 /* To be sure that nobody uses thresholds */
4751 synchronize_rcu();
4752 unlock:
4753 mutex_unlock(&memcg->thresholds_lock);
4754 }
4755
4756 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4757 struct eventfd_ctx *eventfd)
4758 {
4759 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4760 }
4761
4762 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4763 struct eventfd_ctx *eventfd)
4764 {
4765 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4766 }
4767
4768 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4769 struct eventfd_ctx *eventfd, const char *args)
4770 {
4771 struct mem_cgroup_eventfd_list *event;
4772
4773 event = kmalloc(sizeof(*event), GFP_KERNEL);
4774 if (!event)
4775 return -ENOMEM;
4776
4777 spin_lock(&memcg_oom_lock);
4778
4779 event->eventfd = eventfd;
4780 list_add(&event->list, &memcg->oom_notify);
4781
4782 /* already in OOM ? */
4783 if (atomic_read(&memcg->under_oom))
4784 eventfd_signal(eventfd, 1);
4785 spin_unlock(&memcg_oom_lock);
4786
4787 return 0;
4788 }
4789
4790 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4791 struct eventfd_ctx *eventfd)
4792 {
4793 struct mem_cgroup_eventfd_list *ev, *tmp;
4794
4795 spin_lock(&memcg_oom_lock);
4796
4797 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4798 if (ev->eventfd == eventfd) {
4799 list_del(&ev->list);
4800 kfree(ev);
4801 }
4802 }
4803
4804 spin_unlock(&memcg_oom_lock);
4805 }
4806
4807 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4808 {
4809 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4810
4811 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4812 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4813 return 0;
4814 }
4815
4816 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4817 struct cftype *cft, u64 val)
4818 {
4819 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4820
4821 /* cannot set to root cgroup and only 0 and 1 are allowed */
4822 if (!css->parent || !((val == 0) || (val == 1)))
4823 return -EINVAL;
4824
4825 memcg->oom_kill_disable = val;
4826 if (!val)
4827 memcg_oom_recover(memcg);
4828
4829 return 0;
4830 }
4831
4832 #ifdef CONFIG_MEMCG_KMEM
4833 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4834 {
4835 int ret;
4836
4837 memcg->kmemcg_id = -1;
4838 ret = memcg_propagate_kmem(memcg);
4839 if (ret)
4840 return ret;
4841
4842 return mem_cgroup_sockets_init(memcg, ss);
4843 }
4844
4845 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4846 {
4847 mem_cgroup_sockets_destroy(memcg);
4848 }
4849
4850 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
4851 {
4852 if (!memcg_kmem_is_active(memcg))
4853 return;
4854
4855 /*
4856 * kmem charges can outlive the cgroup. In the case of slab
4857 * pages, for instance, a page contain objects from various
4858 * processes. As we prevent from taking a reference for every
4859 * such allocation we have to be careful when doing uncharge
4860 * (see memcg_uncharge_kmem) and here during offlining.
4861 *
4862 * The idea is that that only the _last_ uncharge which sees
4863 * the dead memcg will drop the last reference. An additional
4864 * reference is taken here before the group is marked dead
4865 * which is then paired with css_put during uncharge resp. here.
4866 *
4867 * Although this might sound strange as this path is called from
4868 * css_offline() when the referencemight have dropped down to 0 and
4869 * shouldn't be incremented anymore (css_tryget_online() would
4870 * fail) we do not have other options because of the kmem
4871 * allocations lifetime.
4872 */
4873 css_get(&memcg->css);
4874
4875 memcg_kmem_mark_dead(memcg);
4876
4877 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
4878 return;
4879
4880 if (memcg_kmem_test_and_clear_dead(memcg))
4881 css_put(&memcg->css);
4882 }
4883 #else
4884 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4885 {
4886 return 0;
4887 }
4888
4889 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4890 {
4891 }
4892
4893 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
4894 {
4895 }
4896 #endif
4897
4898 /*
4899 * DO NOT USE IN NEW FILES.
4900 *
4901 * "cgroup.event_control" implementation.
4902 *
4903 * This is way over-engineered. It tries to support fully configurable
4904 * events for each user. Such level of flexibility is completely
4905 * unnecessary especially in the light of the planned unified hierarchy.
4906 *
4907 * Please deprecate this and replace with something simpler if at all
4908 * possible.
4909 */
4910
4911 /*
4912 * Unregister event and free resources.
4913 *
4914 * Gets called from workqueue.
4915 */
4916 static void memcg_event_remove(struct work_struct *work)
4917 {
4918 struct mem_cgroup_event *event =
4919 container_of(work, struct mem_cgroup_event, remove);
4920 struct mem_cgroup *memcg = event->memcg;
4921
4922 remove_wait_queue(event->wqh, &event->wait);
4923
4924 event->unregister_event(memcg, event->eventfd);
4925
4926 /* Notify userspace the event is going away. */
4927 eventfd_signal(event->eventfd, 1);
4928
4929 eventfd_ctx_put(event->eventfd);
4930 kfree(event);
4931 css_put(&memcg->css);
4932 }
4933
4934 /*
4935 * Gets called on POLLHUP on eventfd when user closes it.
4936 *
4937 * Called with wqh->lock held and interrupts disabled.
4938 */
4939 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4940 int sync, void *key)
4941 {
4942 struct mem_cgroup_event *event =
4943 container_of(wait, struct mem_cgroup_event, wait);
4944 struct mem_cgroup *memcg = event->memcg;
4945 unsigned long flags = (unsigned long)key;
4946
4947 if (flags & POLLHUP) {
4948 /*
4949 * If the event has been detached at cgroup removal, we
4950 * can simply return knowing the other side will cleanup
4951 * for us.
4952 *
4953 * We can't race against event freeing since the other
4954 * side will require wqh->lock via remove_wait_queue(),
4955 * which we hold.
4956 */
4957 spin_lock(&memcg->event_list_lock);
4958 if (!list_empty(&event->list)) {
4959 list_del_init(&event->list);
4960 /*
4961 * We are in atomic context, but cgroup_event_remove()
4962 * may sleep, so we have to call it in workqueue.
4963 */
4964 schedule_work(&event->remove);
4965 }
4966 spin_unlock(&memcg->event_list_lock);
4967 }
4968
4969 return 0;
4970 }
4971
4972 static void memcg_event_ptable_queue_proc(struct file *file,
4973 wait_queue_head_t *wqh, poll_table *pt)
4974 {
4975 struct mem_cgroup_event *event =
4976 container_of(pt, struct mem_cgroup_event, pt);
4977
4978 event->wqh = wqh;
4979 add_wait_queue(wqh, &event->wait);
4980 }
4981
4982 /*
4983 * DO NOT USE IN NEW FILES.
4984 *
4985 * Parse input and register new cgroup event handler.
4986 *
4987 * Input must be in format '<event_fd> <control_fd> <args>'.
4988 * Interpretation of args is defined by control file implementation.
4989 */
4990 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4991 char *buf, size_t nbytes, loff_t off)
4992 {
4993 struct cgroup_subsys_state *css = of_css(of);
4994 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4995 struct mem_cgroup_event *event;
4996 struct cgroup_subsys_state *cfile_css;
4997 unsigned int efd, cfd;
4998 struct fd efile;
4999 struct fd cfile;
5000 const char *name;
5001 char *endp;
5002 int ret;
5003
5004 buf = strstrip(buf);
5005
5006 efd = simple_strtoul(buf, &endp, 10);
5007 if (*endp != ' ')
5008 return -EINVAL;
5009 buf = endp + 1;
5010
5011 cfd = simple_strtoul(buf, &endp, 10);
5012 if ((*endp != ' ') && (*endp != '\0'))
5013 return -EINVAL;
5014 buf = endp + 1;
5015
5016 event = kzalloc(sizeof(*event), GFP_KERNEL);
5017 if (!event)
5018 return -ENOMEM;
5019
5020 event->memcg = memcg;
5021 INIT_LIST_HEAD(&event->list);
5022 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5023 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5024 INIT_WORK(&event->remove, memcg_event_remove);
5025
5026 efile = fdget(efd);
5027 if (!efile.file) {
5028 ret = -EBADF;
5029 goto out_kfree;
5030 }
5031
5032 event->eventfd = eventfd_ctx_fileget(efile.file);
5033 if (IS_ERR(event->eventfd)) {
5034 ret = PTR_ERR(event->eventfd);
5035 goto out_put_efile;
5036 }
5037
5038 cfile = fdget(cfd);
5039 if (!cfile.file) {
5040 ret = -EBADF;
5041 goto out_put_eventfd;
5042 }
5043
5044 /* the process need read permission on control file */
5045 /* AV: shouldn't we check that it's been opened for read instead? */
5046 ret = inode_permission(file_inode(cfile.file), MAY_READ);
5047 if (ret < 0)
5048 goto out_put_cfile;
5049
5050 /*
5051 * Determine the event callbacks and set them in @event. This used
5052 * to be done via struct cftype but cgroup core no longer knows
5053 * about these events. The following is crude but the whole thing
5054 * is for compatibility anyway.
5055 *
5056 * DO NOT ADD NEW FILES.
5057 */
5058 name = cfile.file->f_dentry->d_name.name;
5059
5060 if (!strcmp(name, "memory.usage_in_bytes")) {
5061 event->register_event = mem_cgroup_usage_register_event;
5062 event->unregister_event = mem_cgroup_usage_unregister_event;
5063 } else if (!strcmp(name, "memory.oom_control")) {
5064 event->register_event = mem_cgroup_oom_register_event;
5065 event->unregister_event = mem_cgroup_oom_unregister_event;
5066 } else if (!strcmp(name, "memory.pressure_level")) {
5067 event->register_event = vmpressure_register_event;
5068 event->unregister_event = vmpressure_unregister_event;
5069 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
5070 event->register_event = memsw_cgroup_usage_register_event;
5071 event->unregister_event = memsw_cgroup_usage_unregister_event;
5072 } else {
5073 ret = -EINVAL;
5074 goto out_put_cfile;
5075 }
5076
5077 /*
5078 * Verify @cfile should belong to @css. Also, remaining events are
5079 * automatically removed on cgroup destruction but the removal is
5080 * asynchronous, so take an extra ref on @css.
5081 */
5082 cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
5083 &memory_cgrp_subsys);
5084 ret = -EINVAL;
5085 if (IS_ERR(cfile_css))
5086 goto out_put_cfile;
5087 if (cfile_css != css) {
5088 css_put(cfile_css);
5089 goto out_put_cfile;
5090 }
5091
5092 ret = event->register_event(memcg, event->eventfd, buf);
5093 if (ret)
5094 goto out_put_css;
5095
5096 efile.file->f_op->poll(efile.file, &event->pt);
5097
5098 spin_lock(&memcg->event_list_lock);
5099 list_add(&event->list, &memcg->event_list);
5100 spin_unlock(&memcg->event_list_lock);
5101
5102 fdput(cfile);
5103 fdput(efile);
5104
5105 return nbytes;
5106
5107 out_put_css:
5108 css_put(css);
5109 out_put_cfile:
5110 fdput(cfile);
5111 out_put_eventfd:
5112 eventfd_ctx_put(event->eventfd);
5113 out_put_efile:
5114 fdput(efile);
5115 out_kfree:
5116 kfree(event);
5117
5118 return ret;
5119 }
5120
5121 static struct cftype mem_cgroup_files[] = {
5122 {
5123 .name = "usage_in_bytes",
5124 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5125 .read_u64 = mem_cgroup_read_u64,
5126 },
5127 {
5128 .name = "max_usage_in_bytes",
5129 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5130 .write = mem_cgroup_reset,
5131 .read_u64 = mem_cgroup_read_u64,
5132 },
5133 {
5134 .name = "limit_in_bytes",
5135 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5136 .write = mem_cgroup_write,
5137 .read_u64 = mem_cgroup_read_u64,
5138 },
5139 {
5140 .name = "soft_limit_in_bytes",
5141 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5142 .write = mem_cgroup_write,
5143 .read_u64 = mem_cgroup_read_u64,
5144 },
5145 {
5146 .name = "failcnt",
5147 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5148 .write = mem_cgroup_reset,
5149 .read_u64 = mem_cgroup_read_u64,
5150 },
5151 {
5152 .name = "stat",
5153 .seq_show = memcg_stat_show,
5154 },
5155 {
5156 .name = "force_empty",
5157 .write = mem_cgroup_force_empty_write,
5158 },
5159 {
5160 .name = "use_hierarchy",
5161 .write_u64 = mem_cgroup_hierarchy_write,
5162 .read_u64 = mem_cgroup_hierarchy_read,
5163 },
5164 {
5165 .name = "cgroup.event_control", /* XXX: for compat */
5166 .write = memcg_write_event_control,
5167 .flags = CFTYPE_NO_PREFIX,
5168 .mode = S_IWUGO,
5169 },
5170 {
5171 .name = "swappiness",
5172 .read_u64 = mem_cgroup_swappiness_read,
5173 .write_u64 = mem_cgroup_swappiness_write,
5174 },
5175 {
5176 .name = "move_charge_at_immigrate",
5177 .read_u64 = mem_cgroup_move_charge_read,
5178 .write_u64 = mem_cgroup_move_charge_write,
5179 },
5180 {
5181 .name = "oom_control",
5182 .seq_show = mem_cgroup_oom_control_read,
5183 .write_u64 = mem_cgroup_oom_control_write,
5184 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5185 },
5186 {
5187 .name = "pressure_level",
5188 },
5189 #ifdef CONFIG_NUMA
5190 {
5191 .name = "numa_stat",
5192 .seq_show = memcg_numa_stat_show,
5193 },
5194 #endif
5195 #ifdef CONFIG_MEMCG_KMEM
5196 {
5197 .name = "kmem.limit_in_bytes",
5198 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5199 .write = mem_cgroup_write,
5200 .read_u64 = mem_cgroup_read_u64,
5201 },
5202 {
5203 .name = "kmem.usage_in_bytes",
5204 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5205 .read_u64 = mem_cgroup_read_u64,
5206 },
5207 {
5208 .name = "kmem.failcnt",
5209 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5210 .write = mem_cgroup_reset,
5211 .read_u64 = mem_cgroup_read_u64,
5212 },
5213 {
5214 .name = "kmem.max_usage_in_bytes",
5215 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5216 .write = mem_cgroup_reset,
5217 .read_u64 = mem_cgroup_read_u64,
5218 },
5219 #ifdef CONFIG_SLABINFO
5220 {
5221 .name = "kmem.slabinfo",
5222 .seq_show = mem_cgroup_slabinfo_read,
5223 },
5224 #endif
5225 #endif
5226 { }, /* terminate */
5227 };
5228
5229 #ifdef CONFIG_MEMCG_SWAP
5230 static struct cftype memsw_cgroup_files[] = {
5231 {
5232 .name = "memsw.usage_in_bytes",
5233 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5234 .read_u64 = mem_cgroup_read_u64,
5235 },
5236 {
5237 .name = "memsw.max_usage_in_bytes",
5238 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5239 .write = mem_cgroup_reset,
5240 .read_u64 = mem_cgroup_read_u64,
5241 },
5242 {
5243 .name = "memsw.limit_in_bytes",
5244 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5245 .write = mem_cgroup_write,
5246 .read_u64 = mem_cgroup_read_u64,
5247 },
5248 {
5249 .name = "memsw.failcnt",
5250 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5251 .write = mem_cgroup_reset,
5252 .read_u64 = mem_cgroup_read_u64,
5253 },
5254 { }, /* terminate */
5255 };
5256 #endif
5257 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5258 {
5259 struct mem_cgroup_per_node *pn;
5260 struct mem_cgroup_per_zone *mz;
5261 int zone, tmp = node;
5262 /*
5263 * This routine is called against possible nodes.
5264 * But it's BUG to call kmalloc() against offline node.
5265 *
5266 * TODO: this routine can waste much memory for nodes which will
5267 * never be onlined. It's better to use memory hotplug callback
5268 * function.
5269 */
5270 if (!node_state(node, N_NORMAL_MEMORY))
5271 tmp = -1;
5272 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5273 if (!pn)
5274 return 1;
5275
5276 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5277 mz = &pn->zoneinfo[zone];
5278 lruvec_init(&mz->lruvec);
5279 mz->usage_in_excess = 0;
5280 mz->on_tree = false;
5281 mz->memcg = memcg;
5282 }
5283 memcg->nodeinfo[node] = pn;
5284 return 0;
5285 }
5286
5287 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5288 {
5289 kfree(memcg->nodeinfo[node]);
5290 }
5291
5292 static struct mem_cgroup *mem_cgroup_alloc(void)
5293 {
5294 struct mem_cgroup *memcg;
5295 size_t size;
5296
5297 size = sizeof(struct mem_cgroup);
5298 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5299
5300 memcg = kzalloc(size, GFP_KERNEL);
5301 if (!memcg)
5302 return NULL;
5303
5304 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5305 if (!memcg->stat)
5306 goto out_free;
5307 spin_lock_init(&memcg->pcp_counter_lock);
5308 return memcg;
5309
5310 out_free:
5311 kfree(memcg);
5312 return NULL;
5313 }
5314
5315 /*
5316 * At destroying mem_cgroup, references from swap_cgroup can remain.
5317 * (scanning all at force_empty is too costly...)
5318 *
5319 * Instead of clearing all references at force_empty, we remember
5320 * the number of reference from swap_cgroup and free mem_cgroup when
5321 * it goes down to 0.
5322 *
5323 * Removal of cgroup itself succeeds regardless of refs from swap.
5324 */
5325
5326 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5327 {
5328 int node;
5329
5330 mem_cgroup_remove_from_trees(memcg);
5331
5332 for_each_node(node)
5333 free_mem_cgroup_per_zone_info(memcg, node);
5334
5335 free_percpu(memcg->stat);
5336
5337 /*
5338 * We need to make sure that (at least for now), the jump label
5339 * destruction code runs outside of the cgroup lock. This is because
5340 * get_online_cpus(), which is called from the static_branch update,
5341 * can't be called inside the cgroup_lock. cpusets are the ones
5342 * enforcing this dependency, so if they ever change, we might as well.
5343 *
5344 * schedule_work() will guarantee this happens. Be careful if you need
5345 * to move this code around, and make sure it is outside
5346 * the cgroup_lock.
5347 */
5348 disarm_static_keys(memcg);
5349 kfree(memcg);
5350 }
5351
5352 /*
5353 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5354 */
5355 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5356 {
5357 if (!memcg->res.parent)
5358 return NULL;
5359 return mem_cgroup_from_res_counter(memcg->res.parent, res);
5360 }
5361 EXPORT_SYMBOL(parent_mem_cgroup);
5362
5363 static void __init mem_cgroup_soft_limit_tree_init(void)
5364 {
5365 struct mem_cgroup_tree_per_node *rtpn;
5366 struct mem_cgroup_tree_per_zone *rtpz;
5367 int tmp, node, zone;
5368
5369 for_each_node(node) {
5370 tmp = node;
5371 if (!node_state(node, N_NORMAL_MEMORY))
5372 tmp = -1;
5373 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
5374 BUG_ON(!rtpn);
5375
5376 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5377
5378 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5379 rtpz = &rtpn->rb_tree_per_zone[zone];
5380 rtpz->rb_root = RB_ROOT;
5381 spin_lock_init(&rtpz->lock);
5382 }
5383 }
5384 }
5385
5386 static struct cgroup_subsys_state * __ref
5387 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5388 {
5389 struct mem_cgroup *memcg;
5390 long error = -ENOMEM;
5391 int node;
5392
5393 memcg = mem_cgroup_alloc();
5394 if (!memcg)
5395 return ERR_PTR(error);
5396
5397 for_each_node(node)
5398 if (alloc_mem_cgroup_per_zone_info(memcg, node))
5399 goto free_out;
5400
5401 /* root ? */
5402 if (parent_css == NULL) {
5403 root_mem_cgroup = memcg;
5404 res_counter_init(&memcg->res, NULL);
5405 res_counter_init(&memcg->memsw, NULL);
5406 res_counter_init(&memcg->kmem, NULL);
5407 }
5408
5409 memcg->last_scanned_node = MAX_NUMNODES;
5410 INIT_LIST_HEAD(&memcg->oom_notify);
5411 memcg->move_charge_at_immigrate = 0;
5412 mutex_init(&memcg->thresholds_lock);
5413 spin_lock_init(&memcg->move_lock);
5414 vmpressure_init(&memcg->vmpressure);
5415 INIT_LIST_HEAD(&memcg->event_list);
5416 spin_lock_init(&memcg->event_list_lock);
5417
5418 return &memcg->css;
5419
5420 free_out:
5421 __mem_cgroup_free(memcg);
5422 return ERR_PTR(error);
5423 }
5424
5425 static int
5426 mem_cgroup_css_online(struct cgroup_subsys_state *css)
5427 {
5428 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5429 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
5430 int ret;
5431
5432 if (css->id > MEM_CGROUP_ID_MAX)
5433 return -ENOSPC;
5434
5435 if (!parent)
5436 return 0;
5437
5438 mutex_lock(&memcg_create_mutex);
5439
5440 memcg->use_hierarchy = parent->use_hierarchy;
5441 memcg->oom_kill_disable = parent->oom_kill_disable;
5442 memcg->swappiness = mem_cgroup_swappiness(parent);
5443
5444 if (parent->use_hierarchy) {
5445 res_counter_init(&memcg->res, &parent->res);
5446 res_counter_init(&memcg->memsw, &parent->memsw);
5447 res_counter_init(&memcg->kmem, &parent->kmem);
5448
5449 /*
5450 * No need to take a reference to the parent because cgroup
5451 * core guarantees its existence.
5452 */
5453 } else {
5454 res_counter_init(&memcg->res, NULL);
5455 res_counter_init(&memcg->memsw, NULL);
5456 res_counter_init(&memcg->kmem, NULL);
5457 /*
5458 * Deeper hierachy with use_hierarchy == false doesn't make
5459 * much sense so let cgroup subsystem know about this
5460 * unfortunate state in our controller.
5461 */
5462 if (parent != root_mem_cgroup)
5463 memory_cgrp_subsys.broken_hierarchy = true;
5464 }
5465 mutex_unlock(&memcg_create_mutex);
5466
5467 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
5468 if (ret)
5469 return ret;
5470
5471 /*
5472 * Make sure the memcg is initialized: mem_cgroup_iter()
5473 * orders reading memcg->initialized against its callers
5474 * reading the memcg members.
5475 */
5476 smp_store_release(&memcg->initialized, 1);
5477
5478 return 0;
5479 }
5480
5481 /*
5482 * Announce all parents that a group from their hierarchy is gone.
5483 */
5484 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
5485 {
5486 struct mem_cgroup *parent = memcg;
5487
5488 while ((parent = parent_mem_cgroup(parent)))
5489 mem_cgroup_iter_invalidate(parent);
5490
5491 /*
5492 * if the root memcg is not hierarchical we have to check it
5493 * explicitely.
5494 */
5495 if (!root_mem_cgroup->use_hierarchy)
5496 mem_cgroup_iter_invalidate(root_mem_cgroup);
5497 }
5498
5499 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5500 {
5501 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5502 struct mem_cgroup_event *event, *tmp;
5503 struct cgroup_subsys_state *iter;
5504
5505 /*
5506 * Unregister events and notify userspace.
5507 * Notify userspace about cgroup removing only after rmdir of cgroup
5508 * directory to avoid race between userspace and kernelspace.
5509 */
5510 spin_lock(&memcg->event_list_lock);
5511 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5512 list_del_init(&event->list);
5513 schedule_work(&event->remove);
5514 }
5515 spin_unlock(&memcg->event_list_lock);
5516
5517 kmem_cgroup_css_offline(memcg);
5518
5519 mem_cgroup_invalidate_reclaim_iterators(memcg);
5520
5521 /*
5522 * This requires that offlining is serialized. Right now that is
5523 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
5524 */
5525 css_for_each_descendant_post(iter, css)
5526 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
5527
5528 memcg_unregister_all_caches(memcg);
5529 vmpressure_cleanup(&memcg->vmpressure);
5530 }
5531
5532 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5533 {
5534 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5535 /*
5536 * XXX: css_offline() would be where we should reparent all
5537 * memory to prepare the cgroup for destruction. However,
5538 * memcg does not do css_tryget_online() and res_counter charging
5539 * under the same RCU lock region, which means that charging
5540 * could race with offlining. Offlining only happens to
5541 * cgroups with no tasks in them but charges can show up
5542 * without any tasks from the swapin path when the target
5543 * memcg is looked up from the swapout record and not from the
5544 * current task as it usually is. A race like this can leak
5545 * charges and put pages with stale cgroup pointers into
5546 * circulation:
5547 *
5548 * #0 #1
5549 * lookup_swap_cgroup_id()
5550 * rcu_read_lock()
5551 * mem_cgroup_lookup()
5552 * css_tryget_online()
5553 * rcu_read_unlock()
5554 * disable css_tryget_online()
5555 * call_rcu()
5556 * offline_css()
5557 * reparent_charges()
5558 * res_counter_charge()
5559 * css_put()
5560 * css_free()
5561 * pc->mem_cgroup = dead memcg
5562 * add page to lru
5563 *
5564 * The bulk of the charges are still moved in offline_css() to
5565 * avoid pinning a lot of pages in case a long-term reference
5566 * like a swapout record is deferring the css_free() to long
5567 * after offlining. But this makes sure we catch any charges
5568 * made after offlining:
5569 */
5570 mem_cgroup_reparent_charges(memcg);
5571
5572 memcg_destroy_kmem(memcg);
5573 __mem_cgroup_free(memcg);
5574 }
5575
5576 /**
5577 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5578 * @css: the target css
5579 *
5580 * Reset the states of the mem_cgroup associated with @css. This is
5581 * invoked when the userland requests disabling on the default hierarchy
5582 * but the memcg is pinned through dependency. The memcg should stop
5583 * applying policies and should revert to the vanilla state as it may be
5584 * made visible again.
5585 *
5586 * The current implementation only resets the essential configurations.
5587 * This needs to be expanded to cover all the visible parts.
5588 */
5589 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5590 {
5591 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5592
5593 mem_cgroup_resize_limit(memcg, ULLONG_MAX);
5594 mem_cgroup_resize_memsw_limit(memcg, ULLONG_MAX);
5595 memcg_update_kmem_limit(memcg, ULLONG_MAX);
5596 res_counter_set_soft_limit(&memcg->res, ULLONG_MAX);
5597 }
5598
5599 #ifdef CONFIG_MMU
5600 /* Handlers for move charge at task migration. */
5601 static int mem_cgroup_do_precharge(unsigned long count)
5602 {
5603 int ret;
5604
5605 /* Try a single bulk charge without reclaim first */
5606 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
5607 if (!ret) {
5608 mc.precharge += count;
5609 return ret;
5610 }
5611 if (ret == -EINTR) {
5612 cancel_charge(root_mem_cgroup, count);
5613 return ret;
5614 }
5615
5616 /* Try charges one by one with reclaim */
5617 while (count--) {
5618 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
5619 /*
5620 * In case of failure, any residual charges against
5621 * mc.to will be dropped by mem_cgroup_clear_mc()
5622 * later on. However, cancel any charges that are
5623 * bypassed to root right away or they'll be lost.
5624 */
5625 if (ret == -EINTR)
5626 cancel_charge(root_mem_cgroup, 1);
5627 if (ret)
5628 return ret;
5629 mc.precharge++;
5630 cond_resched();
5631 }
5632 return 0;
5633 }
5634
5635 /**
5636 * get_mctgt_type - get target type of moving charge
5637 * @vma: the vma the pte to be checked belongs
5638 * @addr: the address corresponding to the pte to be checked
5639 * @ptent: the pte to be checked
5640 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5641 *
5642 * Returns
5643 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5644 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5645 * move charge. if @target is not NULL, the page is stored in target->page
5646 * with extra refcnt got(Callers should handle it).
5647 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5648 * target for charge migration. if @target is not NULL, the entry is stored
5649 * in target->ent.
5650 *
5651 * Called with pte lock held.
5652 */
5653 union mc_target {
5654 struct page *page;
5655 swp_entry_t ent;
5656 };
5657
5658 enum mc_target_type {
5659 MC_TARGET_NONE = 0,
5660 MC_TARGET_PAGE,
5661 MC_TARGET_SWAP,
5662 };
5663
5664 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5665 unsigned long addr, pte_t ptent)
5666 {
5667 struct page *page = vm_normal_page(vma, addr, ptent);
5668
5669 if (!page || !page_mapped(page))
5670 return NULL;
5671 if (PageAnon(page)) {
5672 /* we don't move shared anon */
5673 if (!move_anon())
5674 return NULL;
5675 } else if (!move_file())
5676 /* we ignore mapcount for file pages */
5677 return NULL;
5678 if (!get_page_unless_zero(page))
5679 return NULL;
5680
5681 return page;
5682 }
5683
5684 #ifdef CONFIG_SWAP
5685 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5686 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5687 {
5688 struct page *page = NULL;
5689 swp_entry_t ent = pte_to_swp_entry(ptent);
5690
5691 if (!move_anon() || non_swap_entry(ent))
5692 return NULL;
5693 /*
5694 * Because lookup_swap_cache() updates some statistics counter,
5695 * we call find_get_page() with swapper_space directly.
5696 */
5697 page = find_get_page(swap_address_space(ent), ent.val);
5698 if (do_swap_account)
5699 entry->val = ent.val;
5700
5701 return page;
5702 }
5703 #else
5704 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5705 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5706 {
5707 return NULL;
5708 }
5709 #endif
5710
5711 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5712 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5713 {
5714 struct page *page = NULL;
5715 struct address_space *mapping;
5716 pgoff_t pgoff;
5717
5718 if (!vma->vm_file) /* anonymous vma */
5719 return NULL;
5720 if (!move_file())
5721 return NULL;
5722
5723 mapping = vma->vm_file->f_mapping;
5724 if (pte_none(ptent))
5725 pgoff = linear_page_index(vma, addr);
5726 else /* pte_file(ptent) is true */
5727 pgoff = pte_to_pgoff(ptent);
5728
5729 /* page is moved even if it's not RSS of this task(page-faulted). */
5730 #ifdef CONFIG_SWAP
5731 /* shmem/tmpfs may report page out on swap: account for that too. */
5732 if (shmem_mapping(mapping)) {
5733 page = find_get_entry(mapping, pgoff);
5734 if (radix_tree_exceptional_entry(page)) {
5735 swp_entry_t swp = radix_to_swp_entry(page);
5736 if (do_swap_account)
5737 *entry = swp;
5738 page = find_get_page(swap_address_space(swp), swp.val);
5739 }
5740 } else
5741 page = find_get_page(mapping, pgoff);
5742 #else
5743 page = find_get_page(mapping, pgoff);
5744 #endif
5745 return page;
5746 }
5747
5748 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5749 unsigned long addr, pte_t ptent, union mc_target *target)
5750 {
5751 struct page *page = NULL;
5752 struct page_cgroup *pc;
5753 enum mc_target_type ret = MC_TARGET_NONE;
5754 swp_entry_t ent = { .val = 0 };
5755
5756 if (pte_present(ptent))
5757 page = mc_handle_present_pte(vma, addr, ptent);
5758 else if (is_swap_pte(ptent))
5759 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5760 else if (pte_none(ptent) || pte_file(ptent))
5761 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5762
5763 if (!page && !ent.val)
5764 return ret;
5765 if (page) {
5766 pc = lookup_page_cgroup(page);
5767 /*
5768 * Do only loose check w/o serialization.
5769 * mem_cgroup_move_account() checks the pc is valid or
5770 * not under LRU exclusion.
5771 */
5772 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5773 ret = MC_TARGET_PAGE;
5774 if (target)
5775 target->page = page;
5776 }
5777 if (!ret || !target)
5778 put_page(page);
5779 }
5780 /* There is a swap entry and a page doesn't exist or isn't charged */
5781 if (ent.val && !ret &&
5782 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5783 ret = MC_TARGET_SWAP;
5784 if (target)
5785 target->ent = ent;
5786 }
5787 return ret;
5788 }
5789
5790 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5791 /*
5792 * We don't consider swapping or file mapped pages because THP does not
5793 * support them for now.
5794 * Caller should make sure that pmd_trans_huge(pmd) is true.
5795 */
5796 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5797 unsigned long addr, pmd_t pmd, union mc_target *target)
5798 {
5799 struct page *page = NULL;
5800 struct page_cgroup *pc;
5801 enum mc_target_type ret = MC_TARGET_NONE;
5802
5803 page = pmd_page(pmd);
5804 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5805 if (!move_anon())
5806 return ret;
5807 pc = lookup_page_cgroup(page);
5808 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5809 ret = MC_TARGET_PAGE;
5810 if (target) {
5811 get_page(page);
5812 target->page = page;
5813 }
5814 }
5815 return ret;
5816 }
5817 #else
5818 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5819 unsigned long addr, pmd_t pmd, union mc_target *target)
5820 {
5821 return MC_TARGET_NONE;
5822 }
5823 #endif
5824
5825 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5826 unsigned long addr, unsigned long end,
5827 struct mm_walk *walk)
5828 {
5829 struct vm_area_struct *vma = walk->private;
5830 pte_t *pte;
5831 spinlock_t *ptl;
5832
5833 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5834 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5835 mc.precharge += HPAGE_PMD_NR;
5836 spin_unlock(ptl);
5837 return 0;
5838 }
5839
5840 if (pmd_trans_unstable(pmd))
5841 return 0;
5842 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5843 for (; addr != end; pte++, addr += PAGE_SIZE)
5844 if (get_mctgt_type(vma, addr, *pte, NULL))
5845 mc.precharge++; /* increment precharge temporarily */
5846 pte_unmap_unlock(pte - 1, ptl);
5847 cond_resched();
5848
5849 return 0;
5850 }
5851
5852 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5853 {
5854 unsigned long precharge;
5855 struct vm_area_struct *vma;
5856
5857 down_read(&mm->mmap_sem);
5858 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5859 struct mm_walk mem_cgroup_count_precharge_walk = {
5860 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5861 .mm = mm,
5862 .private = vma,
5863 };
5864 if (is_vm_hugetlb_page(vma))
5865 continue;
5866 walk_page_range(vma->vm_start, vma->vm_end,
5867 &mem_cgroup_count_precharge_walk);
5868 }
5869 up_read(&mm->mmap_sem);
5870
5871 precharge = mc.precharge;
5872 mc.precharge = 0;
5873
5874 return precharge;
5875 }
5876
5877 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5878 {
5879 unsigned long precharge = mem_cgroup_count_precharge(mm);
5880
5881 VM_BUG_ON(mc.moving_task);
5882 mc.moving_task = current;
5883 return mem_cgroup_do_precharge(precharge);
5884 }
5885
5886 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5887 static void __mem_cgroup_clear_mc(void)
5888 {
5889 struct mem_cgroup *from = mc.from;
5890 struct mem_cgroup *to = mc.to;
5891 int i;
5892
5893 /* we must uncharge all the leftover precharges from mc.to */
5894 if (mc.precharge) {
5895 cancel_charge(mc.to, mc.precharge);
5896 mc.precharge = 0;
5897 }
5898 /*
5899 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5900 * we must uncharge here.
5901 */
5902 if (mc.moved_charge) {
5903 cancel_charge(mc.from, mc.moved_charge);
5904 mc.moved_charge = 0;
5905 }
5906 /* we must fixup refcnts and charges */
5907 if (mc.moved_swap) {
5908 /* uncharge swap account from the old cgroup */
5909 if (!mem_cgroup_is_root(mc.from))
5910 res_counter_uncharge(&mc.from->memsw,
5911 PAGE_SIZE * mc.moved_swap);
5912
5913 for (i = 0; i < mc.moved_swap; i++)
5914 css_put(&mc.from->css);
5915
5916 /*
5917 * we charged both to->res and to->memsw, so we should
5918 * uncharge to->res.
5919 */
5920 if (!mem_cgroup_is_root(mc.to))
5921 res_counter_uncharge(&mc.to->res,
5922 PAGE_SIZE * mc.moved_swap);
5923 /* we've already done css_get(mc.to) */
5924 mc.moved_swap = 0;
5925 }
5926 memcg_oom_recover(from);
5927 memcg_oom_recover(to);
5928 wake_up_all(&mc.waitq);
5929 }
5930
5931 static void mem_cgroup_clear_mc(void)
5932 {
5933 struct mem_cgroup *from = mc.from;
5934
5935 /*
5936 * we must clear moving_task before waking up waiters at the end of
5937 * task migration.
5938 */
5939 mc.moving_task = NULL;
5940 __mem_cgroup_clear_mc();
5941 spin_lock(&mc.lock);
5942 mc.from = NULL;
5943 mc.to = NULL;
5944 spin_unlock(&mc.lock);
5945 mem_cgroup_end_move(from);
5946 }
5947
5948 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5949 struct cgroup_taskset *tset)
5950 {
5951 struct task_struct *p = cgroup_taskset_first(tset);
5952 int ret = 0;
5953 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5954 unsigned long move_charge_at_immigrate;
5955
5956 /*
5957 * We are now commited to this value whatever it is. Changes in this
5958 * tunable will only affect upcoming migrations, not the current one.
5959 * So we need to save it, and keep it going.
5960 */
5961 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
5962 if (move_charge_at_immigrate) {
5963 struct mm_struct *mm;
5964 struct mem_cgroup *from = mem_cgroup_from_task(p);
5965
5966 VM_BUG_ON(from == memcg);
5967
5968 mm = get_task_mm(p);
5969 if (!mm)
5970 return 0;
5971 /* We move charges only when we move a owner of the mm */
5972 if (mm->owner == p) {
5973 VM_BUG_ON(mc.from);
5974 VM_BUG_ON(mc.to);
5975 VM_BUG_ON(mc.precharge);
5976 VM_BUG_ON(mc.moved_charge);
5977 VM_BUG_ON(mc.moved_swap);
5978 mem_cgroup_start_move(from);
5979 spin_lock(&mc.lock);
5980 mc.from = from;
5981 mc.to = memcg;
5982 mc.immigrate_flags = move_charge_at_immigrate;
5983 spin_unlock(&mc.lock);
5984 /* We set mc.moving_task later */
5985
5986 ret = mem_cgroup_precharge_mc(mm);
5987 if (ret)
5988 mem_cgroup_clear_mc();
5989 }
5990 mmput(mm);
5991 }
5992 return ret;
5993 }
5994
5995 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5996 struct cgroup_taskset *tset)
5997 {
5998 mem_cgroup_clear_mc();
5999 }
6000
6001 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6002 unsigned long addr, unsigned long end,
6003 struct mm_walk *walk)
6004 {
6005 int ret = 0;
6006 struct vm_area_struct *vma = walk->private;
6007 pte_t *pte;
6008 spinlock_t *ptl;
6009 enum mc_target_type target_type;
6010 union mc_target target;
6011 struct page *page;
6012 struct page_cgroup *pc;
6013
6014 /*
6015 * We don't take compound_lock() here but no race with splitting thp
6016 * happens because:
6017 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6018 * under splitting, which means there's no concurrent thp split,
6019 * - if another thread runs into split_huge_page() just after we
6020 * entered this if-block, the thread must wait for page table lock
6021 * to be unlocked in __split_huge_page_splitting(), where the main
6022 * part of thp split is not executed yet.
6023 */
6024 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6025 if (mc.precharge < HPAGE_PMD_NR) {
6026 spin_unlock(ptl);
6027 return 0;
6028 }
6029 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6030 if (target_type == MC_TARGET_PAGE) {
6031 page = target.page;
6032 if (!isolate_lru_page(page)) {
6033 pc = lookup_page_cgroup(page);
6034 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6035 pc, mc.from, mc.to)) {
6036 mc.precharge -= HPAGE_PMD_NR;
6037 mc.moved_charge += HPAGE_PMD_NR;
6038 }
6039 putback_lru_page(page);
6040 }
6041 put_page(page);
6042 }
6043 spin_unlock(ptl);
6044 return 0;
6045 }
6046
6047 if (pmd_trans_unstable(pmd))
6048 return 0;
6049 retry:
6050 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6051 for (; addr != end; addr += PAGE_SIZE) {
6052 pte_t ptent = *(pte++);
6053 swp_entry_t ent;
6054
6055 if (!mc.precharge)
6056 break;
6057
6058 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6059 case MC_TARGET_PAGE:
6060 page = target.page;
6061 if (isolate_lru_page(page))
6062 goto put;
6063 pc = lookup_page_cgroup(page);
6064 if (!mem_cgroup_move_account(page, 1, pc,
6065 mc.from, mc.to)) {
6066 mc.precharge--;
6067 /* we uncharge from mc.from later. */
6068 mc.moved_charge++;
6069 }
6070 putback_lru_page(page);
6071 put: /* get_mctgt_type() gets the page */
6072 put_page(page);
6073 break;
6074 case MC_TARGET_SWAP:
6075 ent = target.ent;
6076 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6077 mc.precharge--;
6078 /* we fixup refcnts and charges later. */
6079 mc.moved_swap++;
6080 }
6081 break;
6082 default:
6083 break;
6084 }
6085 }
6086 pte_unmap_unlock(pte - 1, ptl);
6087 cond_resched();
6088
6089 if (addr != end) {
6090 /*
6091 * We have consumed all precharges we got in can_attach().
6092 * We try charge one by one, but don't do any additional
6093 * charges to mc.to if we have failed in charge once in attach()
6094 * phase.
6095 */
6096 ret = mem_cgroup_do_precharge(1);
6097 if (!ret)
6098 goto retry;
6099 }
6100
6101 return ret;
6102 }
6103
6104 static void mem_cgroup_move_charge(struct mm_struct *mm)
6105 {
6106 struct vm_area_struct *vma;
6107
6108 lru_add_drain_all();
6109 retry:
6110 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6111 /*
6112 * Someone who are holding the mmap_sem might be waiting in
6113 * waitq. So we cancel all extra charges, wake up all waiters,
6114 * and retry. Because we cancel precharges, we might not be able
6115 * to move enough charges, but moving charge is a best-effort
6116 * feature anyway, so it wouldn't be a big problem.
6117 */
6118 __mem_cgroup_clear_mc();
6119 cond_resched();
6120 goto retry;
6121 }
6122 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6123 int ret;
6124 struct mm_walk mem_cgroup_move_charge_walk = {
6125 .pmd_entry = mem_cgroup_move_charge_pte_range,
6126 .mm = mm,
6127 .private = vma,
6128 };
6129 if (is_vm_hugetlb_page(vma))
6130 continue;
6131 ret = walk_page_range(vma->vm_start, vma->vm_end,
6132 &mem_cgroup_move_charge_walk);
6133 if (ret)
6134 /*
6135 * means we have consumed all precharges and failed in
6136 * doing additional charge. Just abandon here.
6137 */
6138 break;
6139 }
6140 up_read(&mm->mmap_sem);
6141 }
6142
6143 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6144 struct cgroup_taskset *tset)
6145 {
6146 struct task_struct *p = cgroup_taskset_first(tset);
6147 struct mm_struct *mm = get_task_mm(p);
6148
6149 if (mm) {
6150 if (mc.to)
6151 mem_cgroup_move_charge(mm);
6152 mmput(mm);
6153 }
6154 if (mc.to)
6155 mem_cgroup_clear_mc();
6156 }
6157 #else /* !CONFIG_MMU */
6158 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6159 struct cgroup_taskset *tset)
6160 {
6161 return 0;
6162 }
6163 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6164 struct cgroup_taskset *tset)
6165 {
6166 }
6167 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6168 struct cgroup_taskset *tset)
6169 {
6170 }
6171 #endif
6172
6173 /*
6174 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6175 * to verify whether we're attached to the default hierarchy on each mount
6176 * attempt.
6177 */
6178 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6179 {
6180 /*
6181 * use_hierarchy is forced on the default hierarchy. cgroup core
6182 * guarantees that @root doesn't have any children, so turning it
6183 * on for the root memcg is enough.
6184 */
6185 if (cgroup_on_dfl(root_css->cgroup))
6186 mem_cgroup_from_css(root_css)->use_hierarchy = true;
6187 }
6188
6189 struct cgroup_subsys memory_cgrp_subsys = {
6190 .css_alloc = mem_cgroup_css_alloc,
6191 .css_online = mem_cgroup_css_online,
6192 .css_offline = mem_cgroup_css_offline,
6193 .css_free = mem_cgroup_css_free,
6194 .css_reset = mem_cgroup_css_reset,
6195 .can_attach = mem_cgroup_can_attach,
6196 .cancel_attach = mem_cgroup_cancel_attach,
6197 .attach = mem_cgroup_move_task,
6198 .bind = mem_cgroup_bind,
6199 .legacy_cftypes = mem_cgroup_files,
6200 .early_init = 0,
6201 };
6202
6203 #ifdef CONFIG_MEMCG_SWAP
6204 static int __init enable_swap_account(char *s)
6205 {
6206 if (!strcmp(s, "1"))
6207 really_do_swap_account = 1;
6208 else if (!strcmp(s, "0"))
6209 really_do_swap_account = 0;
6210 return 1;
6211 }
6212 __setup("swapaccount=", enable_swap_account);
6213
6214 static void __init memsw_file_init(void)
6215 {
6216 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6217 memsw_cgroup_files));
6218 }
6219
6220 static void __init enable_swap_cgroup(void)
6221 {
6222 if (!mem_cgroup_disabled() && really_do_swap_account) {
6223 do_swap_account = 1;
6224 memsw_file_init();
6225 }
6226 }
6227
6228 #else
6229 static void __init enable_swap_cgroup(void)
6230 {
6231 }
6232 #endif
6233
6234 #ifdef CONFIG_MEMCG_SWAP
6235 /**
6236 * mem_cgroup_swapout - transfer a memsw charge to swap
6237 * @page: page whose memsw charge to transfer
6238 * @entry: swap entry to move the charge to
6239 *
6240 * Transfer the memsw charge of @page to @entry.
6241 */
6242 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6243 {
6244 struct page_cgroup *pc;
6245 unsigned short oldid;
6246
6247 VM_BUG_ON_PAGE(PageLRU(page), page);
6248 VM_BUG_ON_PAGE(page_count(page), page);
6249
6250 if (!do_swap_account)
6251 return;
6252
6253 pc = lookup_page_cgroup(page);
6254
6255 /* Readahead page, never charged */
6256 if (!PageCgroupUsed(pc))
6257 return;
6258
6259 VM_BUG_ON_PAGE(!(pc->flags & PCG_MEMSW), page);
6260
6261 oldid = swap_cgroup_record(entry, mem_cgroup_id(pc->mem_cgroup));
6262 VM_BUG_ON_PAGE(oldid, page);
6263
6264 pc->flags &= ~PCG_MEMSW;
6265 css_get(&pc->mem_cgroup->css);
6266 mem_cgroup_swap_statistics(pc->mem_cgroup, true);
6267 }
6268
6269 /**
6270 * mem_cgroup_uncharge_swap - uncharge a swap entry
6271 * @entry: swap entry to uncharge
6272 *
6273 * Drop the memsw charge associated with @entry.
6274 */
6275 void mem_cgroup_uncharge_swap(swp_entry_t entry)
6276 {
6277 struct mem_cgroup *memcg;
6278 unsigned short id;
6279
6280 if (!do_swap_account)
6281 return;
6282
6283 id = swap_cgroup_record(entry, 0);
6284 rcu_read_lock();
6285 memcg = mem_cgroup_lookup(id);
6286 if (memcg) {
6287 if (!mem_cgroup_is_root(memcg))
6288 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
6289 mem_cgroup_swap_statistics(memcg, false);
6290 css_put(&memcg->css);
6291 }
6292 rcu_read_unlock();
6293 }
6294 #endif
6295
6296 /**
6297 * mem_cgroup_try_charge - try charging a page
6298 * @page: page to charge
6299 * @mm: mm context of the victim
6300 * @gfp_mask: reclaim mode
6301 * @memcgp: charged memcg return
6302 *
6303 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6304 * pages according to @gfp_mask if necessary.
6305 *
6306 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6307 * Otherwise, an error code is returned.
6308 *
6309 * After page->mapping has been set up, the caller must finalize the
6310 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6311 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6312 */
6313 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6314 gfp_t gfp_mask, struct mem_cgroup **memcgp)
6315 {
6316 struct mem_cgroup *memcg = NULL;
6317 unsigned int nr_pages = 1;
6318 int ret = 0;
6319
6320 if (mem_cgroup_disabled())
6321 goto out;
6322
6323 if (PageSwapCache(page)) {
6324 struct page_cgroup *pc = lookup_page_cgroup(page);
6325 /*
6326 * Every swap fault against a single page tries to charge the
6327 * page, bail as early as possible. shmem_unuse() encounters
6328 * already charged pages, too. The USED bit is protected by
6329 * the page lock, which serializes swap cache removal, which
6330 * in turn serializes uncharging.
6331 */
6332 if (PageCgroupUsed(pc))
6333 goto out;
6334 }
6335
6336 if (PageTransHuge(page)) {
6337 nr_pages <<= compound_order(page);
6338 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6339 }
6340
6341 if (do_swap_account && PageSwapCache(page))
6342 memcg = try_get_mem_cgroup_from_page(page);
6343 if (!memcg)
6344 memcg = get_mem_cgroup_from_mm(mm);
6345
6346 ret = try_charge(memcg, gfp_mask, nr_pages);
6347
6348 css_put(&memcg->css);
6349
6350 if (ret == -EINTR) {
6351 memcg = root_mem_cgroup;
6352 ret = 0;
6353 }
6354 out:
6355 *memcgp = memcg;
6356 return ret;
6357 }
6358
6359 /**
6360 * mem_cgroup_commit_charge - commit a page charge
6361 * @page: page to charge
6362 * @memcg: memcg to charge the page to
6363 * @lrucare: page might be on LRU already
6364 *
6365 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6366 * after page->mapping has been set up. This must happen atomically
6367 * as part of the page instantiation, i.e. under the page table lock
6368 * for anonymous pages, under the page lock for page and swap cache.
6369 *
6370 * In addition, the page must not be on the LRU during the commit, to
6371 * prevent racing with task migration. If it might be, use @lrucare.
6372 *
6373 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6374 */
6375 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6376 bool lrucare)
6377 {
6378 unsigned int nr_pages = 1;
6379
6380 VM_BUG_ON_PAGE(!page->mapping, page);
6381 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6382
6383 if (mem_cgroup_disabled())
6384 return;
6385 /*
6386 * Swap faults will attempt to charge the same page multiple
6387 * times. But reuse_swap_page() might have removed the page
6388 * from swapcache already, so we can't check PageSwapCache().
6389 */
6390 if (!memcg)
6391 return;
6392
6393 commit_charge(page, memcg, lrucare);
6394
6395 if (PageTransHuge(page)) {
6396 nr_pages <<= compound_order(page);
6397 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6398 }
6399
6400 local_irq_disable();
6401 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6402 memcg_check_events(memcg, page);
6403 local_irq_enable();
6404
6405 if (do_swap_account && PageSwapCache(page)) {
6406 swp_entry_t entry = { .val = page_private(page) };
6407 /*
6408 * The swap entry might not get freed for a long time,
6409 * let's not wait for it. The page already received a
6410 * memory+swap charge, drop the swap entry duplicate.
6411 */
6412 mem_cgroup_uncharge_swap(entry);
6413 }
6414 }
6415
6416 /**
6417 * mem_cgroup_cancel_charge - cancel a page charge
6418 * @page: page to charge
6419 * @memcg: memcg to charge the page to
6420 *
6421 * Cancel a charge transaction started by mem_cgroup_try_charge().
6422 */
6423 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
6424 {
6425 unsigned int nr_pages = 1;
6426
6427 if (mem_cgroup_disabled())
6428 return;
6429 /*
6430 * Swap faults will attempt to charge the same page multiple
6431 * times. But reuse_swap_page() might have removed the page
6432 * from swapcache already, so we can't check PageSwapCache().
6433 */
6434 if (!memcg)
6435 return;
6436
6437 if (PageTransHuge(page)) {
6438 nr_pages <<= compound_order(page);
6439 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6440 }
6441
6442 cancel_charge(memcg, nr_pages);
6443 }
6444
6445 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
6446 unsigned long nr_mem, unsigned long nr_memsw,
6447 unsigned long nr_anon, unsigned long nr_file,
6448 unsigned long nr_huge, struct page *dummy_page)
6449 {
6450 unsigned long flags;
6451
6452 if (!mem_cgroup_is_root(memcg)) {
6453 if (nr_mem)
6454 res_counter_uncharge(&memcg->res,
6455 nr_mem * PAGE_SIZE);
6456 if (nr_memsw)
6457 res_counter_uncharge(&memcg->memsw,
6458 nr_memsw * PAGE_SIZE);
6459 memcg_oom_recover(memcg);
6460 }
6461
6462 local_irq_save(flags);
6463 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
6464 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
6465 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
6466 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
6467 __this_cpu_add(memcg->stat->nr_page_events, nr_anon + nr_file);
6468 memcg_check_events(memcg, dummy_page);
6469 local_irq_restore(flags);
6470 }
6471
6472 static void uncharge_list(struct list_head *page_list)
6473 {
6474 struct mem_cgroup *memcg = NULL;
6475 unsigned long nr_memsw = 0;
6476 unsigned long nr_anon = 0;
6477 unsigned long nr_file = 0;
6478 unsigned long nr_huge = 0;
6479 unsigned long pgpgout = 0;
6480 unsigned long nr_mem = 0;
6481 struct list_head *next;
6482 struct page *page;
6483
6484 next = page_list->next;
6485 do {
6486 unsigned int nr_pages = 1;
6487 struct page_cgroup *pc;
6488
6489 page = list_entry(next, struct page, lru);
6490 next = page->lru.next;
6491
6492 VM_BUG_ON_PAGE(PageLRU(page), page);
6493 VM_BUG_ON_PAGE(page_count(page), page);
6494
6495 pc = lookup_page_cgroup(page);
6496 if (!PageCgroupUsed(pc))
6497 continue;
6498
6499 /*
6500 * Nobody should be changing or seriously looking at
6501 * pc->mem_cgroup and pc->flags at this point, we have
6502 * fully exclusive access to the page.
6503 */
6504
6505 if (memcg != pc->mem_cgroup) {
6506 if (memcg) {
6507 uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6508 nr_anon, nr_file, nr_huge, page);
6509 pgpgout = nr_mem = nr_memsw = 0;
6510 nr_anon = nr_file = nr_huge = 0;
6511 }
6512 memcg = pc->mem_cgroup;
6513 }
6514
6515 if (PageTransHuge(page)) {
6516 nr_pages <<= compound_order(page);
6517 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6518 nr_huge += nr_pages;
6519 }
6520
6521 if (PageAnon(page))
6522 nr_anon += nr_pages;
6523 else
6524 nr_file += nr_pages;
6525
6526 if (pc->flags & PCG_MEM)
6527 nr_mem += nr_pages;
6528 if (pc->flags & PCG_MEMSW)
6529 nr_memsw += nr_pages;
6530 pc->flags = 0;
6531
6532 pgpgout++;
6533 } while (next != page_list);
6534
6535 if (memcg)
6536 uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6537 nr_anon, nr_file, nr_huge, page);
6538 }
6539
6540 /**
6541 * mem_cgroup_uncharge - uncharge a page
6542 * @page: page to uncharge
6543 *
6544 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6545 * mem_cgroup_commit_charge().
6546 */
6547 void mem_cgroup_uncharge(struct page *page)
6548 {
6549 struct page_cgroup *pc;
6550
6551 if (mem_cgroup_disabled())
6552 return;
6553
6554 /* Don't touch page->lru of any random page, pre-check: */
6555 pc = lookup_page_cgroup(page);
6556 if (!PageCgroupUsed(pc))
6557 return;
6558
6559 INIT_LIST_HEAD(&page->lru);
6560 uncharge_list(&page->lru);
6561 }
6562
6563 /**
6564 * mem_cgroup_uncharge_list - uncharge a list of page
6565 * @page_list: list of pages to uncharge
6566 *
6567 * Uncharge a list of pages previously charged with
6568 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6569 */
6570 void mem_cgroup_uncharge_list(struct list_head *page_list)
6571 {
6572 if (mem_cgroup_disabled())
6573 return;
6574
6575 if (!list_empty(page_list))
6576 uncharge_list(page_list);
6577 }
6578
6579 /**
6580 * mem_cgroup_migrate - migrate a charge to another page
6581 * @oldpage: currently charged page
6582 * @newpage: page to transfer the charge to
6583 * @lrucare: both pages might be on the LRU already
6584 *
6585 * Migrate the charge from @oldpage to @newpage.
6586 *
6587 * Both pages must be locked, @newpage->mapping must be set up.
6588 */
6589 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
6590 bool lrucare)
6591 {
6592 struct page_cgroup *pc;
6593 int isolated;
6594
6595 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6596 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6597 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
6598 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
6599 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6600 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6601 newpage);
6602
6603 if (mem_cgroup_disabled())
6604 return;
6605
6606 /* Page cache replacement: new page already charged? */
6607 pc = lookup_page_cgroup(newpage);
6608 if (PageCgroupUsed(pc))
6609 return;
6610
6611 /* Re-entrant migration: old page already uncharged? */
6612 pc = lookup_page_cgroup(oldpage);
6613 if (!PageCgroupUsed(pc))
6614 return;
6615
6616 VM_BUG_ON_PAGE(!(pc->flags & PCG_MEM), oldpage);
6617 VM_BUG_ON_PAGE(do_swap_account && !(pc->flags & PCG_MEMSW), oldpage);
6618
6619 if (lrucare)
6620 lock_page_lru(oldpage, &isolated);
6621
6622 pc->flags = 0;
6623
6624 if (lrucare)
6625 unlock_page_lru(oldpage, isolated);
6626
6627 commit_charge(newpage, pc->mem_cgroup, lrucare);
6628 }
6629
6630 /*
6631 * subsys_initcall() for memory controller.
6632 *
6633 * Some parts like hotcpu_notifier() have to be initialized from this context
6634 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6635 * everything that doesn't depend on a specific mem_cgroup structure should
6636 * be initialized from here.
6637 */
6638 static int __init mem_cgroup_init(void)
6639 {
6640 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6641 enable_swap_cgroup();
6642 mem_cgroup_soft_limit_tree_init();
6643 memcg_stock_init();
6644 return 0;
6645 }
6646 subsys_initcall(mem_cgroup_init);
This page took 0.245368 seconds and 5 git commands to generate.