mm: memcontrol: report kernel stack usage in cgroup2 memory.stat
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80 #define MEM_CGROUP_RECLAIM_RETRIES 5
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account 0
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "rss_huge",
105 "mapped_file",
106 "dirty",
107 "writeback",
108 "swap",
109 };
110
111 static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116 };
117
118 static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124 };
125
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
129
130 /*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135 struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142 };
143
144 struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146 };
147
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
150 /* for OOM */
151 struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154 };
155
156 /*
157 * cgroup_event represents events which userspace want to receive.
158 */
159 struct mem_cgroup_event {
160 /*
161 * memcg which the event belongs to.
162 */
163 struct mem_cgroup *memcg;
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
177 int (*register_event)(struct mem_cgroup *memcg,
178 struct eventfd_ctx *eventfd, const char *args);
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
184 void (*unregister_event)(struct mem_cgroup *memcg,
185 struct eventfd_ctx *eventfd);
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194 };
195
196 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198
199 /* Stuffs for move charges at task migration. */
200 /*
201 * Types of charges to be moved.
202 */
203 #define MOVE_ANON 0x1U
204 #define MOVE_FILE 0x2U
205 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
206
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct {
209 spinlock_t lock; /* for from, to */
210 struct mem_cgroup *from;
211 struct mem_cgroup *to;
212 unsigned long flags;
213 unsigned long precharge;
214 unsigned long moved_charge;
215 unsigned long moved_swap;
216 struct task_struct *moving_task; /* a task moving charges */
217 wait_queue_head_t waitq; /* a waitq for other context */
218 } mc = {
219 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
220 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
221 };
222
223 /*
224 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
225 * limit reclaim to prevent infinite loops, if they ever occur.
226 */
227 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
228 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
229
230 enum charge_type {
231 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
232 MEM_CGROUP_CHARGE_TYPE_ANON,
233 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
234 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
235 NR_CHARGE_TYPE,
236 };
237
238 /* for encoding cft->private value on file */
239 enum res_type {
240 _MEM,
241 _MEMSWAP,
242 _OOM_TYPE,
243 _KMEM,
244 _TCP,
245 };
246
247 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
248 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
249 #define MEMFILE_ATTR(val) ((val) & 0xffff)
250 /* Used for OOM nofiier */
251 #define OOM_CONTROL (0)
252
253 /* Some nice accessors for the vmpressure. */
254 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
255 {
256 if (!memcg)
257 memcg = root_mem_cgroup;
258 return &memcg->vmpressure;
259 }
260
261 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
262 {
263 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
264 }
265
266 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
267 {
268 return (memcg == root_mem_cgroup);
269 }
270
271 #ifndef CONFIG_SLOB
272 /*
273 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
274 * The main reason for not using cgroup id for this:
275 * this works better in sparse environments, where we have a lot of memcgs,
276 * but only a few kmem-limited. Or also, if we have, for instance, 200
277 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
278 * 200 entry array for that.
279 *
280 * The current size of the caches array is stored in memcg_nr_cache_ids. It
281 * will double each time we have to increase it.
282 */
283 static DEFINE_IDA(memcg_cache_ida);
284 int memcg_nr_cache_ids;
285
286 /* Protects memcg_nr_cache_ids */
287 static DECLARE_RWSEM(memcg_cache_ids_sem);
288
289 void memcg_get_cache_ids(void)
290 {
291 down_read(&memcg_cache_ids_sem);
292 }
293
294 void memcg_put_cache_ids(void)
295 {
296 up_read(&memcg_cache_ids_sem);
297 }
298
299 /*
300 * MIN_SIZE is different than 1, because we would like to avoid going through
301 * the alloc/free process all the time. In a small machine, 4 kmem-limited
302 * cgroups is a reasonable guess. In the future, it could be a parameter or
303 * tunable, but that is strictly not necessary.
304 *
305 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
306 * this constant directly from cgroup, but it is understandable that this is
307 * better kept as an internal representation in cgroup.c. In any case, the
308 * cgrp_id space is not getting any smaller, and we don't have to necessarily
309 * increase ours as well if it increases.
310 */
311 #define MEMCG_CACHES_MIN_SIZE 4
312 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
313
314 /*
315 * A lot of the calls to the cache allocation functions are expected to be
316 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
317 * conditional to this static branch, we'll have to allow modules that does
318 * kmem_cache_alloc and the such to see this symbol as well
319 */
320 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
321 EXPORT_SYMBOL(memcg_kmem_enabled_key);
322
323 #endif /* !CONFIG_SLOB */
324
325 static struct mem_cgroup_per_zone *
326 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
327 {
328 int nid = zone_to_nid(zone);
329 int zid = zone_idx(zone);
330
331 return &memcg->nodeinfo[nid]->zoneinfo[zid];
332 }
333
334 /**
335 * mem_cgroup_css_from_page - css of the memcg associated with a page
336 * @page: page of interest
337 *
338 * If memcg is bound to the default hierarchy, css of the memcg associated
339 * with @page is returned. The returned css remains associated with @page
340 * until it is released.
341 *
342 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
343 * is returned.
344 */
345 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
346 {
347 struct mem_cgroup *memcg;
348
349 memcg = page->mem_cgroup;
350
351 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
352 memcg = root_mem_cgroup;
353
354 return &memcg->css;
355 }
356
357 /**
358 * page_cgroup_ino - return inode number of the memcg a page is charged to
359 * @page: the page
360 *
361 * Look up the closest online ancestor of the memory cgroup @page is charged to
362 * and return its inode number or 0 if @page is not charged to any cgroup. It
363 * is safe to call this function without holding a reference to @page.
364 *
365 * Note, this function is inherently racy, because there is nothing to prevent
366 * the cgroup inode from getting torn down and potentially reallocated a moment
367 * after page_cgroup_ino() returns, so it only should be used by callers that
368 * do not care (such as procfs interfaces).
369 */
370 ino_t page_cgroup_ino(struct page *page)
371 {
372 struct mem_cgroup *memcg;
373 unsigned long ino = 0;
374
375 rcu_read_lock();
376 memcg = READ_ONCE(page->mem_cgroup);
377 while (memcg && !(memcg->css.flags & CSS_ONLINE))
378 memcg = parent_mem_cgroup(memcg);
379 if (memcg)
380 ino = cgroup_ino(memcg->css.cgroup);
381 rcu_read_unlock();
382 return ino;
383 }
384
385 static struct mem_cgroup_per_zone *
386 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
387 {
388 int nid = page_to_nid(page);
389 int zid = page_zonenum(page);
390
391 return &memcg->nodeinfo[nid]->zoneinfo[zid];
392 }
393
394 static struct mem_cgroup_tree_per_zone *
395 soft_limit_tree_node_zone(int nid, int zid)
396 {
397 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
398 }
399
400 static struct mem_cgroup_tree_per_zone *
401 soft_limit_tree_from_page(struct page *page)
402 {
403 int nid = page_to_nid(page);
404 int zid = page_zonenum(page);
405
406 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
407 }
408
409 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
410 struct mem_cgroup_tree_per_zone *mctz,
411 unsigned long new_usage_in_excess)
412 {
413 struct rb_node **p = &mctz->rb_root.rb_node;
414 struct rb_node *parent = NULL;
415 struct mem_cgroup_per_zone *mz_node;
416
417 if (mz->on_tree)
418 return;
419
420 mz->usage_in_excess = new_usage_in_excess;
421 if (!mz->usage_in_excess)
422 return;
423 while (*p) {
424 parent = *p;
425 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
426 tree_node);
427 if (mz->usage_in_excess < mz_node->usage_in_excess)
428 p = &(*p)->rb_left;
429 /*
430 * We can't avoid mem cgroups that are over their soft
431 * limit by the same amount
432 */
433 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
434 p = &(*p)->rb_right;
435 }
436 rb_link_node(&mz->tree_node, parent, p);
437 rb_insert_color(&mz->tree_node, &mctz->rb_root);
438 mz->on_tree = true;
439 }
440
441 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
442 struct mem_cgroup_tree_per_zone *mctz)
443 {
444 if (!mz->on_tree)
445 return;
446 rb_erase(&mz->tree_node, &mctz->rb_root);
447 mz->on_tree = false;
448 }
449
450 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
451 struct mem_cgroup_tree_per_zone *mctz)
452 {
453 unsigned long flags;
454
455 spin_lock_irqsave(&mctz->lock, flags);
456 __mem_cgroup_remove_exceeded(mz, mctz);
457 spin_unlock_irqrestore(&mctz->lock, flags);
458 }
459
460 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
461 {
462 unsigned long nr_pages = page_counter_read(&memcg->memory);
463 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
464 unsigned long excess = 0;
465
466 if (nr_pages > soft_limit)
467 excess = nr_pages - soft_limit;
468
469 return excess;
470 }
471
472 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
473 {
474 unsigned long excess;
475 struct mem_cgroup_per_zone *mz;
476 struct mem_cgroup_tree_per_zone *mctz;
477
478 mctz = soft_limit_tree_from_page(page);
479 /*
480 * Necessary to update all ancestors when hierarchy is used.
481 * because their event counter is not touched.
482 */
483 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
484 mz = mem_cgroup_page_zoneinfo(memcg, page);
485 excess = soft_limit_excess(memcg);
486 /*
487 * We have to update the tree if mz is on RB-tree or
488 * mem is over its softlimit.
489 */
490 if (excess || mz->on_tree) {
491 unsigned long flags;
492
493 spin_lock_irqsave(&mctz->lock, flags);
494 /* if on-tree, remove it */
495 if (mz->on_tree)
496 __mem_cgroup_remove_exceeded(mz, mctz);
497 /*
498 * Insert again. mz->usage_in_excess will be updated.
499 * If excess is 0, no tree ops.
500 */
501 __mem_cgroup_insert_exceeded(mz, mctz, excess);
502 spin_unlock_irqrestore(&mctz->lock, flags);
503 }
504 }
505 }
506
507 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
508 {
509 struct mem_cgroup_tree_per_zone *mctz;
510 struct mem_cgroup_per_zone *mz;
511 int nid, zid;
512
513 for_each_node(nid) {
514 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
515 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
516 mctz = soft_limit_tree_node_zone(nid, zid);
517 mem_cgroup_remove_exceeded(mz, mctz);
518 }
519 }
520 }
521
522 static struct mem_cgroup_per_zone *
523 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
524 {
525 struct rb_node *rightmost = NULL;
526 struct mem_cgroup_per_zone *mz;
527
528 retry:
529 mz = NULL;
530 rightmost = rb_last(&mctz->rb_root);
531 if (!rightmost)
532 goto done; /* Nothing to reclaim from */
533
534 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
535 /*
536 * Remove the node now but someone else can add it back,
537 * we will to add it back at the end of reclaim to its correct
538 * position in the tree.
539 */
540 __mem_cgroup_remove_exceeded(mz, mctz);
541 if (!soft_limit_excess(mz->memcg) ||
542 !css_tryget_online(&mz->memcg->css))
543 goto retry;
544 done:
545 return mz;
546 }
547
548 static struct mem_cgroup_per_zone *
549 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
550 {
551 struct mem_cgroup_per_zone *mz;
552
553 spin_lock_irq(&mctz->lock);
554 mz = __mem_cgroup_largest_soft_limit_node(mctz);
555 spin_unlock_irq(&mctz->lock);
556 return mz;
557 }
558
559 /*
560 * Return page count for single (non recursive) @memcg.
561 *
562 * Implementation Note: reading percpu statistics for memcg.
563 *
564 * Both of vmstat[] and percpu_counter has threshold and do periodic
565 * synchronization to implement "quick" read. There are trade-off between
566 * reading cost and precision of value. Then, we may have a chance to implement
567 * a periodic synchronization of counter in memcg's counter.
568 *
569 * But this _read() function is used for user interface now. The user accounts
570 * memory usage by memory cgroup and he _always_ requires exact value because
571 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
572 * have to visit all online cpus and make sum. So, for now, unnecessary
573 * synchronization is not implemented. (just implemented for cpu hotplug)
574 *
575 * If there are kernel internal actions which can make use of some not-exact
576 * value, and reading all cpu value can be performance bottleneck in some
577 * common workload, threshold and synchronization as vmstat[] should be
578 * implemented.
579 */
580 static unsigned long
581 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
582 {
583 long val = 0;
584 int cpu;
585
586 /* Per-cpu values can be negative, use a signed accumulator */
587 for_each_possible_cpu(cpu)
588 val += per_cpu(memcg->stat->count[idx], cpu);
589 /*
590 * Summing races with updates, so val may be negative. Avoid exposing
591 * transient negative values.
592 */
593 if (val < 0)
594 val = 0;
595 return val;
596 }
597
598 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
599 enum mem_cgroup_events_index idx)
600 {
601 unsigned long val = 0;
602 int cpu;
603
604 for_each_possible_cpu(cpu)
605 val += per_cpu(memcg->stat->events[idx], cpu);
606 return val;
607 }
608
609 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
610 struct page *page,
611 bool compound, int nr_pages)
612 {
613 /*
614 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
615 * counted as CACHE even if it's on ANON LRU.
616 */
617 if (PageAnon(page))
618 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
619 nr_pages);
620 else
621 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
622 nr_pages);
623
624 if (compound) {
625 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
626 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
627 nr_pages);
628 }
629
630 /* pagein of a big page is an event. So, ignore page size */
631 if (nr_pages > 0)
632 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
633 else {
634 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
635 nr_pages = -nr_pages; /* for event */
636 }
637
638 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
639 }
640
641 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
642 int nid,
643 unsigned int lru_mask)
644 {
645 unsigned long nr = 0;
646 int zid;
647
648 VM_BUG_ON((unsigned)nid >= nr_node_ids);
649
650 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651 struct mem_cgroup_per_zone *mz;
652 enum lru_list lru;
653
654 for_each_lru(lru) {
655 if (!(BIT(lru) & lru_mask))
656 continue;
657 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658 nr += mz->lru_size[lru];
659 }
660 }
661 return nr;
662 }
663
664 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665 unsigned int lru_mask)
666 {
667 unsigned long nr = 0;
668 int nid;
669
670 for_each_node_state(nid, N_MEMORY)
671 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672 return nr;
673 }
674
675 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676 enum mem_cgroup_events_target target)
677 {
678 unsigned long val, next;
679
680 val = __this_cpu_read(memcg->stat->nr_page_events);
681 next = __this_cpu_read(memcg->stat->targets[target]);
682 /* from time_after() in jiffies.h */
683 if ((long)next - (long)val < 0) {
684 switch (target) {
685 case MEM_CGROUP_TARGET_THRESH:
686 next = val + THRESHOLDS_EVENTS_TARGET;
687 break;
688 case MEM_CGROUP_TARGET_SOFTLIMIT:
689 next = val + SOFTLIMIT_EVENTS_TARGET;
690 break;
691 case MEM_CGROUP_TARGET_NUMAINFO:
692 next = val + NUMAINFO_EVENTS_TARGET;
693 break;
694 default:
695 break;
696 }
697 __this_cpu_write(memcg->stat->targets[target], next);
698 return true;
699 }
700 return false;
701 }
702
703 /*
704 * Check events in order.
705 *
706 */
707 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
708 {
709 /* threshold event is triggered in finer grain than soft limit */
710 if (unlikely(mem_cgroup_event_ratelimit(memcg,
711 MEM_CGROUP_TARGET_THRESH))) {
712 bool do_softlimit;
713 bool do_numainfo __maybe_unused;
714
715 do_softlimit = mem_cgroup_event_ratelimit(memcg,
716 MEM_CGROUP_TARGET_SOFTLIMIT);
717 #if MAX_NUMNODES > 1
718 do_numainfo = mem_cgroup_event_ratelimit(memcg,
719 MEM_CGROUP_TARGET_NUMAINFO);
720 #endif
721 mem_cgroup_threshold(memcg);
722 if (unlikely(do_softlimit))
723 mem_cgroup_update_tree(memcg, page);
724 #if MAX_NUMNODES > 1
725 if (unlikely(do_numainfo))
726 atomic_inc(&memcg->numainfo_events);
727 #endif
728 }
729 }
730
731 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
732 {
733 /*
734 * mm_update_next_owner() may clear mm->owner to NULL
735 * if it races with swapoff, page migration, etc.
736 * So this can be called with p == NULL.
737 */
738 if (unlikely(!p))
739 return NULL;
740
741 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
742 }
743 EXPORT_SYMBOL(mem_cgroup_from_task);
744
745 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
746 {
747 struct mem_cgroup *memcg = NULL;
748
749 rcu_read_lock();
750 do {
751 /*
752 * Page cache insertions can happen withou an
753 * actual mm context, e.g. during disk probing
754 * on boot, loopback IO, acct() writes etc.
755 */
756 if (unlikely(!mm))
757 memcg = root_mem_cgroup;
758 else {
759 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760 if (unlikely(!memcg))
761 memcg = root_mem_cgroup;
762 }
763 } while (!css_tryget_online(&memcg->css));
764 rcu_read_unlock();
765 return memcg;
766 }
767
768 /**
769 * mem_cgroup_iter - iterate over memory cgroup hierarchy
770 * @root: hierarchy root
771 * @prev: previously returned memcg, NULL on first invocation
772 * @reclaim: cookie for shared reclaim walks, NULL for full walks
773 *
774 * Returns references to children of the hierarchy below @root, or
775 * @root itself, or %NULL after a full round-trip.
776 *
777 * Caller must pass the return value in @prev on subsequent
778 * invocations for reference counting, or use mem_cgroup_iter_break()
779 * to cancel a hierarchy walk before the round-trip is complete.
780 *
781 * Reclaimers can specify a zone and a priority level in @reclaim to
782 * divide up the memcgs in the hierarchy among all concurrent
783 * reclaimers operating on the same zone and priority.
784 */
785 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786 struct mem_cgroup *prev,
787 struct mem_cgroup_reclaim_cookie *reclaim)
788 {
789 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790 struct cgroup_subsys_state *css = NULL;
791 struct mem_cgroup *memcg = NULL;
792 struct mem_cgroup *pos = NULL;
793
794 if (mem_cgroup_disabled())
795 return NULL;
796
797 if (!root)
798 root = root_mem_cgroup;
799
800 if (prev && !reclaim)
801 pos = prev;
802
803 if (!root->use_hierarchy && root != root_mem_cgroup) {
804 if (prev)
805 goto out;
806 return root;
807 }
808
809 rcu_read_lock();
810
811 if (reclaim) {
812 struct mem_cgroup_per_zone *mz;
813
814 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815 iter = &mz->iter[reclaim->priority];
816
817 if (prev && reclaim->generation != iter->generation)
818 goto out_unlock;
819
820 while (1) {
821 pos = READ_ONCE(iter->position);
822 if (!pos || css_tryget(&pos->css))
823 break;
824 /*
825 * css reference reached zero, so iter->position will
826 * be cleared by ->css_released. However, we should not
827 * rely on this happening soon, because ->css_released
828 * is called from a work queue, and by busy-waiting we
829 * might block it. So we clear iter->position right
830 * away.
831 */
832 (void)cmpxchg(&iter->position, pos, NULL);
833 }
834 }
835
836 if (pos)
837 css = &pos->css;
838
839 for (;;) {
840 css = css_next_descendant_pre(css, &root->css);
841 if (!css) {
842 /*
843 * Reclaimers share the hierarchy walk, and a
844 * new one might jump in right at the end of
845 * the hierarchy - make sure they see at least
846 * one group and restart from the beginning.
847 */
848 if (!prev)
849 continue;
850 break;
851 }
852
853 /*
854 * Verify the css and acquire a reference. The root
855 * is provided by the caller, so we know it's alive
856 * and kicking, and don't take an extra reference.
857 */
858 memcg = mem_cgroup_from_css(css);
859
860 if (css == &root->css)
861 break;
862
863 if (css_tryget(css))
864 break;
865
866 memcg = NULL;
867 }
868
869 if (reclaim) {
870 /*
871 * The position could have already been updated by a competing
872 * thread, so check that the value hasn't changed since we read
873 * it to avoid reclaiming from the same cgroup twice.
874 */
875 (void)cmpxchg(&iter->position, pos, memcg);
876
877 if (pos)
878 css_put(&pos->css);
879
880 if (!memcg)
881 iter->generation++;
882 else if (!prev)
883 reclaim->generation = iter->generation;
884 }
885
886 out_unlock:
887 rcu_read_unlock();
888 out:
889 if (prev && prev != root)
890 css_put(&prev->css);
891
892 return memcg;
893 }
894
895 /**
896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897 * @root: hierarchy root
898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899 */
900 void mem_cgroup_iter_break(struct mem_cgroup *root,
901 struct mem_cgroup *prev)
902 {
903 if (!root)
904 root = root_mem_cgroup;
905 if (prev && prev != root)
906 css_put(&prev->css);
907 }
908
909 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910 {
911 struct mem_cgroup *memcg = dead_memcg;
912 struct mem_cgroup_reclaim_iter *iter;
913 struct mem_cgroup_per_zone *mz;
914 int nid, zid;
915 int i;
916
917 while ((memcg = parent_mem_cgroup(memcg))) {
918 for_each_node(nid) {
919 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921 for (i = 0; i <= DEF_PRIORITY; i++) {
922 iter = &mz->iter[i];
923 cmpxchg(&iter->position,
924 dead_memcg, NULL);
925 }
926 }
927 }
928 }
929 }
930
931 /*
932 * Iteration constructs for visiting all cgroups (under a tree). If
933 * loops are exited prematurely (break), mem_cgroup_iter_break() must
934 * be used for reference counting.
935 */
936 #define for_each_mem_cgroup_tree(iter, root) \
937 for (iter = mem_cgroup_iter(root, NULL, NULL); \
938 iter != NULL; \
939 iter = mem_cgroup_iter(root, iter, NULL))
940
941 #define for_each_mem_cgroup(iter) \
942 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
943 iter != NULL; \
944 iter = mem_cgroup_iter(NULL, iter, NULL))
945
946 /**
947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948 * @zone: zone of the wanted lruvec
949 * @memcg: memcg of the wanted lruvec
950 *
951 * Returns the lru list vector holding pages for the given @zone and
952 * @mem. This can be the global zone lruvec, if the memory controller
953 * is disabled.
954 */
955 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956 struct mem_cgroup *memcg)
957 {
958 struct mem_cgroup_per_zone *mz;
959 struct lruvec *lruvec;
960
961 if (mem_cgroup_disabled()) {
962 lruvec = &zone->lruvec;
963 goto out;
964 }
965
966 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967 lruvec = &mz->lruvec;
968 out:
969 /*
970 * Since a node can be onlined after the mem_cgroup was created,
971 * we have to be prepared to initialize lruvec->zone here;
972 * and if offlined then reonlined, we need to reinitialize it.
973 */
974 if (unlikely(lruvec->zone != zone))
975 lruvec->zone = zone;
976 return lruvec;
977 }
978
979 /**
980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981 * @page: the page
982 * @zone: zone of the page
983 *
984 * This function is only safe when following the LRU page isolation
985 * and putback protocol: the LRU lock must be held, and the page must
986 * either be PageLRU() or the caller must have isolated/allocated it.
987 */
988 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
989 {
990 struct mem_cgroup_per_zone *mz;
991 struct mem_cgroup *memcg;
992 struct lruvec *lruvec;
993
994 if (mem_cgroup_disabled()) {
995 lruvec = &zone->lruvec;
996 goto out;
997 }
998
999 memcg = page->mem_cgroup;
1000 /*
1001 * Swapcache readahead pages are added to the LRU - and
1002 * possibly migrated - before they are charged.
1003 */
1004 if (!memcg)
1005 memcg = root_mem_cgroup;
1006
1007 mz = mem_cgroup_page_zoneinfo(memcg, page);
1008 lruvec = &mz->lruvec;
1009 out:
1010 /*
1011 * Since a node can be onlined after the mem_cgroup was created,
1012 * we have to be prepared to initialize lruvec->zone here;
1013 * and if offlined then reonlined, we need to reinitialize it.
1014 */
1015 if (unlikely(lruvec->zone != zone))
1016 lruvec->zone = zone;
1017 return lruvec;
1018 }
1019
1020 /**
1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022 * @lruvec: mem_cgroup per zone lru vector
1023 * @lru: index of lru list the page is sitting on
1024 * @nr_pages: positive when adding or negative when removing
1025 *
1026 * This function must be called when a page is added to or removed from an
1027 * lru list.
1028 */
1029 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1030 int nr_pages)
1031 {
1032 struct mem_cgroup_per_zone *mz;
1033 unsigned long *lru_size;
1034
1035 if (mem_cgroup_disabled())
1036 return;
1037
1038 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1039 lru_size = mz->lru_size + lru;
1040 *lru_size += nr_pages;
1041 VM_BUG_ON((long)(*lru_size) < 0);
1042 }
1043
1044 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1045 {
1046 struct mem_cgroup *task_memcg;
1047 struct task_struct *p;
1048 bool ret;
1049
1050 p = find_lock_task_mm(task);
1051 if (p) {
1052 task_memcg = get_mem_cgroup_from_mm(p->mm);
1053 task_unlock(p);
1054 } else {
1055 /*
1056 * All threads may have already detached their mm's, but the oom
1057 * killer still needs to detect if they have already been oom
1058 * killed to prevent needlessly killing additional tasks.
1059 */
1060 rcu_read_lock();
1061 task_memcg = mem_cgroup_from_task(task);
1062 css_get(&task_memcg->css);
1063 rcu_read_unlock();
1064 }
1065 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1066 css_put(&task_memcg->css);
1067 return ret;
1068 }
1069
1070 /**
1071 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1072 * @memcg: the memory cgroup
1073 *
1074 * Returns the maximum amount of memory @mem can be charged with, in
1075 * pages.
1076 */
1077 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1078 {
1079 unsigned long margin = 0;
1080 unsigned long count;
1081 unsigned long limit;
1082
1083 count = page_counter_read(&memcg->memory);
1084 limit = READ_ONCE(memcg->memory.limit);
1085 if (count < limit)
1086 margin = limit - count;
1087
1088 if (do_memsw_account()) {
1089 count = page_counter_read(&memcg->memsw);
1090 limit = READ_ONCE(memcg->memsw.limit);
1091 if (count <= limit)
1092 margin = min(margin, limit - count);
1093 }
1094
1095 return margin;
1096 }
1097
1098 /*
1099 * A routine for checking "mem" is under move_account() or not.
1100 *
1101 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1102 * moving cgroups. This is for waiting at high-memory pressure
1103 * caused by "move".
1104 */
1105 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1106 {
1107 struct mem_cgroup *from;
1108 struct mem_cgroup *to;
1109 bool ret = false;
1110 /*
1111 * Unlike task_move routines, we access mc.to, mc.from not under
1112 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1113 */
1114 spin_lock(&mc.lock);
1115 from = mc.from;
1116 to = mc.to;
1117 if (!from)
1118 goto unlock;
1119
1120 ret = mem_cgroup_is_descendant(from, memcg) ||
1121 mem_cgroup_is_descendant(to, memcg);
1122 unlock:
1123 spin_unlock(&mc.lock);
1124 return ret;
1125 }
1126
1127 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1128 {
1129 if (mc.moving_task && current != mc.moving_task) {
1130 if (mem_cgroup_under_move(memcg)) {
1131 DEFINE_WAIT(wait);
1132 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1133 /* moving charge context might have finished. */
1134 if (mc.moving_task)
1135 schedule();
1136 finish_wait(&mc.waitq, &wait);
1137 return true;
1138 }
1139 }
1140 return false;
1141 }
1142
1143 #define K(x) ((x) << (PAGE_SHIFT-10))
1144 /**
1145 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1146 * @memcg: The memory cgroup that went over limit
1147 * @p: Task that is going to be killed
1148 *
1149 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1150 * enabled
1151 */
1152 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1153 {
1154 /* oom_info_lock ensures that parallel ooms do not interleave */
1155 static DEFINE_MUTEX(oom_info_lock);
1156 struct mem_cgroup *iter;
1157 unsigned int i;
1158
1159 mutex_lock(&oom_info_lock);
1160 rcu_read_lock();
1161
1162 if (p) {
1163 pr_info("Task in ");
1164 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1165 pr_cont(" killed as a result of limit of ");
1166 } else {
1167 pr_info("Memory limit reached of cgroup ");
1168 }
1169
1170 pr_cont_cgroup_path(memcg->css.cgroup);
1171 pr_cont("\n");
1172
1173 rcu_read_unlock();
1174
1175 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1176 K((u64)page_counter_read(&memcg->memory)),
1177 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1178 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1179 K((u64)page_counter_read(&memcg->memsw)),
1180 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1181 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1182 K((u64)page_counter_read(&memcg->kmem)),
1183 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1184
1185 for_each_mem_cgroup_tree(iter, memcg) {
1186 pr_info("Memory cgroup stats for ");
1187 pr_cont_cgroup_path(iter->css.cgroup);
1188 pr_cont(":");
1189
1190 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1191 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1192 continue;
1193 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1194 K(mem_cgroup_read_stat(iter, i)));
1195 }
1196
1197 for (i = 0; i < NR_LRU_LISTS; i++)
1198 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1199 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1200
1201 pr_cont("\n");
1202 }
1203 mutex_unlock(&oom_info_lock);
1204 }
1205
1206 /*
1207 * This function returns the number of memcg under hierarchy tree. Returns
1208 * 1(self count) if no children.
1209 */
1210 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1211 {
1212 int num = 0;
1213 struct mem_cgroup *iter;
1214
1215 for_each_mem_cgroup_tree(iter, memcg)
1216 num++;
1217 return num;
1218 }
1219
1220 /*
1221 * Return the memory (and swap, if configured) limit for a memcg.
1222 */
1223 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1224 {
1225 unsigned long limit;
1226
1227 limit = memcg->memory.limit;
1228 if (mem_cgroup_swappiness(memcg)) {
1229 unsigned long memsw_limit;
1230 unsigned long swap_limit;
1231
1232 memsw_limit = memcg->memsw.limit;
1233 swap_limit = memcg->swap.limit;
1234 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1235 limit = min(limit + swap_limit, memsw_limit);
1236 }
1237 return limit;
1238 }
1239
1240 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1241 int order)
1242 {
1243 struct oom_control oc = {
1244 .zonelist = NULL,
1245 .nodemask = NULL,
1246 .gfp_mask = gfp_mask,
1247 .order = order,
1248 };
1249 struct mem_cgroup *iter;
1250 unsigned long chosen_points = 0;
1251 unsigned long totalpages;
1252 unsigned int points = 0;
1253 struct task_struct *chosen = NULL;
1254
1255 mutex_lock(&oom_lock);
1256
1257 /*
1258 * If current has a pending SIGKILL or is exiting, then automatically
1259 * select it. The goal is to allow it to allocate so that it may
1260 * quickly exit and free its memory.
1261 */
1262 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1263 mark_oom_victim(current);
1264 goto unlock;
1265 }
1266
1267 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1268 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1269 for_each_mem_cgroup_tree(iter, memcg) {
1270 struct css_task_iter it;
1271 struct task_struct *task;
1272
1273 css_task_iter_start(&iter->css, &it);
1274 while ((task = css_task_iter_next(&it))) {
1275 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1276 case OOM_SCAN_SELECT:
1277 if (chosen)
1278 put_task_struct(chosen);
1279 chosen = task;
1280 chosen_points = ULONG_MAX;
1281 get_task_struct(chosen);
1282 /* fall through */
1283 case OOM_SCAN_CONTINUE:
1284 continue;
1285 case OOM_SCAN_ABORT:
1286 css_task_iter_end(&it);
1287 mem_cgroup_iter_break(memcg, iter);
1288 if (chosen)
1289 put_task_struct(chosen);
1290 goto unlock;
1291 case OOM_SCAN_OK:
1292 break;
1293 };
1294 points = oom_badness(task, memcg, NULL, totalpages);
1295 if (!points || points < chosen_points)
1296 continue;
1297 /* Prefer thread group leaders for display purposes */
1298 if (points == chosen_points &&
1299 thread_group_leader(chosen))
1300 continue;
1301
1302 if (chosen)
1303 put_task_struct(chosen);
1304 chosen = task;
1305 chosen_points = points;
1306 get_task_struct(chosen);
1307 }
1308 css_task_iter_end(&it);
1309 }
1310
1311 if (chosen) {
1312 points = chosen_points * 1000 / totalpages;
1313 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1314 "Memory cgroup out of memory");
1315 }
1316 unlock:
1317 mutex_unlock(&oom_lock);
1318 }
1319
1320 #if MAX_NUMNODES > 1
1321
1322 /**
1323 * test_mem_cgroup_node_reclaimable
1324 * @memcg: the target memcg
1325 * @nid: the node ID to be checked.
1326 * @noswap : specify true here if the user wants flle only information.
1327 *
1328 * This function returns whether the specified memcg contains any
1329 * reclaimable pages on a node. Returns true if there are any reclaimable
1330 * pages in the node.
1331 */
1332 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1333 int nid, bool noswap)
1334 {
1335 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1336 return true;
1337 if (noswap || !total_swap_pages)
1338 return false;
1339 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1340 return true;
1341 return false;
1342
1343 }
1344
1345 /*
1346 * Always updating the nodemask is not very good - even if we have an empty
1347 * list or the wrong list here, we can start from some node and traverse all
1348 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1349 *
1350 */
1351 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1352 {
1353 int nid;
1354 /*
1355 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1356 * pagein/pageout changes since the last update.
1357 */
1358 if (!atomic_read(&memcg->numainfo_events))
1359 return;
1360 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1361 return;
1362
1363 /* make a nodemask where this memcg uses memory from */
1364 memcg->scan_nodes = node_states[N_MEMORY];
1365
1366 for_each_node_mask(nid, node_states[N_MEMORY]) {
1367
1368 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1369 node_clear(nid, memcg->scan_nodes);
1370 }
1371
1372 atomic_set(&memcg->numainfo_events, 0);
1373 atomic_set(&memcg->numainfo_updating, 0);
1374 }
1375
1376 /*
1377 * Selecting a node where we start reclaim from. Because what we need is just
1378 * reducing usage counter, start from anywhere is O,K. Considering
1379 * memory reclaim from current node, there are pros. and cons.
1380 *
1381 * Freeing memory from current node means freeing memory from a node which
1382 * we'll use or we've used. So, it may make LRU bad. And if several threads
1383 * hit limits, it will see a contention on a node. But freeing from remote
1384 * node means more costs for memory reclaim because of memory latency.
1385 *
1386 * Now, we use round-robin. Better algorithm is welcomed.
1387 */
1388 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1389 {
1390 int node;
1391
1392 mem_cgroup_may_update_nodemask(memcg);
1393 node = memcg->last_scanned_node;
1394
1395 node = next_node(node, memcg->scan_nodes);
1396 if (node == MAX_NUMNODES)
1397 node = first_node(memcg->scan_nodes);
1398 /*
1399 * We call this when we hit limit, not when pages are added to LRU.
1400 * No LRU may hold pages because all pages are UNEVICTABLE or
1401 * memcg is too small and all pages are not on LRU. In that case,
1402 * we use curret node.
1403 */
1404 if (unlikely(node == MAX_NUMNODES))
1405 node = numa_node_id();
1406
1407 memcg->last_scanned_node = node;
1408 return node;
1409 }
1410 #else
1411 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1412 {
1413 return 0;
1414 }
1415 #endif
1416
1417 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1418 struct zone *zone,
1419 gfp_t gfp_mask,
1420 unsigned long *total_scanned)
1421 {
1422 struct mem_cgroup *victim = NULL;
1423 int total = 0;
1424 int loop = 0;
1425 unsigned long excess;
1426 unsigned long nr_scanned;
1427 struct mem_cgroup_reclaim_cookie reclaim = {
1428 .zone = zone,
1429 .priority = 0,
1430 };
1431
1432 excess = soft_limit_excess(root_memcg);
1433
1434 while (1) {
1435 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1436 if (!victim) {
1437 loop++;
1438 if (loop >= 2) {
1439 /*
1440 * If we have not been able to reclaim
1441 * anything, it might because there are
1442 * no reclaimable pages under this hierarchy
1443 */
1444 if (!total)
1445 break;
1446 /*
1447 * We want to do more targeted reclaim.
1448 * excess >> 2 is not to excessive so as to
1449 * reclaim too much, nor too less that we keep
1450 * coming back to reclaim from this cgroup
1451 */
1452 if (total >= (excess >> 2) ||
1453 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1454 break;
1455 }
1456 continue;
1457 }
1458 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1459 zone, &nr_scanned);
1460 *total_scanned += nr_scanned;
1461 if (!soft_limit_excess(root_memcg))
1462 break;
1463 }
1464 mem_cgroup_iter_break(root_memcg, victim);
1465 return total;
1466 }
1467
1468 #ifdef CONFIG_LOCKDEP
1469 static struct lockdep_map memcg_oom_lock_dep_map = {
1470 .name = "memcg_oom_lock",
1471 };
1472 #endif
1473
1474 static DEFINE_SPINLOCK(memcg_oom_lock);
1475
1476 /*
1477 * Check OOM-Killer is already running under our hierarchy.
1478 * If someone is running, return false.
1479 */
1480 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1481 {
1482 struct mem_cgroup *iter, *failed = NULL;
1483
1484 spin_lock(&memcg_oom_lock);
1485
1486 for_each_mem_cgroup_tree(iter, memcg) {
1487 if (iter->oom_lock) {
1488 /*
1489 * this subtree of our hierarchy is already locked
1490 * so we cannot give a lock.
1491 */
1492 failed = iter;
1493 mem_cgroup_iter_break(memcg, iter);
1494 break;
1495 } else
1496 iter->oom_lock = true;
1497 }
1498
1499 if (failed) {
1500 /*
1501 * OK, we failed to lock the whole subtree so we have
1502 * to clean up what we set up to the failing subtree
1503 */
1504 for_each_mem_cgroup_tree(iter, memcg) {
1505 if (iter == failed) {
1506 mem_cgroup_iter_break(memcg, iter);
1507 break;
1508 }
1509 iter->oom_lock = false;
1510 }
1511 } else
1512 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1513
1514 spin_unlock(&memcg_oom_lock);
1515
1516 return !failed;
1517 }
1518
1519 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1520 {
1521 struct mem_cgroup *iter;
1522
1523 spin_lock(&memcg_oom_lock);
1524 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1525 for_each_mem_cgroup_tree(iter, memcg)
1526 iter->oom_lock = false;
1527 spin_unlock(&memcg_oom_lock);
1528 }
1529
1530 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1531 {
1532 struct mem_cgroup *iter;
1533
1534 spin_lock(&memcg_oom_lock);
1535 for_each_mem_cgroup_tree(iter, memcg)
1536 iter->under_oom++;
1537 spin_unlock(&memcg_oom_lock);
1538 }
1539
1540 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1541 {
1542 struct mem_cgroup *iter;
1543
1544 /*
1545 * When a new child is created while the hierarchy is under oom,
1546 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1547 */
1548 spin_lock(&memcg_oom_lock);
1549 for_each_mem_cgroup_tree(iter, memcg)
1550 if (iter->under_oom > 0)
1551 iter->under_oom--;
1552 spin_unlock(&memcg_oom_lock);
1553 }
1554
1555 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1556
1557 struct oom_wait_info {
1558 struct mem_cgroup *memcg;
1559 wait_queue_t wait;
1560 };
1561
1562 static int memcg_oom_wake_function(wait_queue_t *wait,
1563 unsigned mode, int sync, void *arg)
1564 {
1565 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1566 struct mem_cgroup *oom_wait_memcg;
1567 struct oom_wait_info *oom_wait_info;
1568
1569 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1570 oom_wait_memcg = oom_wait_info->memcg;
1571
1572 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1573 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1574 return 0;
1575 return autoremove_wake_function(wait, mode, sync, arg);
1576 }
1577
1578 static void memcg_oom_recover(struct mem_cgroup *memcg)
1579 {
1580 /*
1581 * For the following lockless ->under_oom test, the only required
1582 * guarantee is that it must see the state asserted by an OOM when
1583 * this function is called as a result of userland actions
1584 * triggered by the notification of the OOM. This is trivially
1585 * achieved by invoking mem_cgroup_mark_under_oom() before
1586 * triggering notification.
1587 */
1588 if (memcg && memcg->under_oom)
1589 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1590 }
1591
1592 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1593 {
1594 if (!current->memcg_may_oom)
1595 return;
1596 /*
1597 * We are in the middle of the charge context here, so we
1598 * don't want to block when potentially sitting on a callstack
1599 * that holds all kinds of filesystem and mm locks.
1600 *
1601 * Also, the caller may handle a failed allocation gracefully
1602 * (like optional page cache readahead) and so an OOM killer
1603 * invocation might not even be necessary.
1604 *
1605 * That's why we don't do anything here except remember the
1606 * OOM context and then deal with it at the end of the page
1607 * fault when the stack is unwound, the locks are released,
1608 * and when we know whether the fault was overall successful.
1609 */
1610 css_get(&memcg->css);
1611 current->memcg_in_oom = memcg;
1612 current->memcg_oom_gfp_mask = mask;
1613 current->memcg_oom_order = order;
1614 }
1615
1616 /**
1617 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1618 * @handle: actually kill/wait or just clean up the OOM state
1619 *
1620 * This has to be called at the end of a page fault if the memcg OOM
1621 * handler was enabled.
1622 *
1623 * Memcg supports userspace OOM handling where failed allocations must
1624 * sleep on a waitqueue until the userspace task resolves the
1625 * situation. Sleeping directly in the charge context with all kinds
1626 * of locks held is not a good idea, instead we remember an OOM state
1627 * in the task and mem_cgroup_oom_synchronize() has to be called at
1628 * the end of the page fault to complete the OOM handling.
1629 *
1630 * Returns %true if an ongoing memcg OOM situation was detected and
1631 * completed, %false otherwise.
1632 */
1633 bool mem_cgroup_oom_synchronize(bool handle)
1634 {
1635 struct mem_cgroup *memcg = current->memcg_in_oom;
1636 struct oom_wait_info owait;
1637 bool locked;
1638
1639 /* OOM is global, do not handle */
1640 if (!memcg)
1641 return false;
1642
1643 if (!handle || oom_killer_disabled)
1644 goto cleanup;
1645
1646 owait.memcg = memcg;
1647 owait.wait.flags = 0;
1648 owait.wait.func = memcg_oom_wake_function;
1649 owait.wait.private = current;
1650 INIT_LIST_HEAD(&owait.wait.task_list);
1651
1652 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1653 mem_cgroup_mark_under_oom(memcg);
1654
1655 locked = mem_cgroup_oom_trylock(memcg);
1656
1657 if (locked)
1658 mem_cgroup_oom_notify(memcg);
1659
1660 if (locked && !memcg->oom_kill_disable) {
1661 mem_cgroup_unmark_under_oom(memcg);
1662 finish_wait(&memcg_oom_waitq, &owait.wait);
1663 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1664 current->memcg_oom_order);
1665 } else {
1666 schedule();
1667 mem_cgroup_unmark_under_oom(memcg);
1668 finish_wait(&memcg_oom_waitq, &owait.wait);
1669 }
1670
1671 if (locked) {
1672 mem_cgroup_oom_unlock(memcg);
1673 /*
1674 * There is no guarantee that an OOM-lock contender
1675 * sees the wakeups triggered by the OOM kill
1676 * uncharges. Wake any sleepers explicitely.
1677 */
1678 memcg_oom_recover(memcg);
1679 }
1680 cleanup:
1681 current->memcg_in_oom = NULL;
1682 css_put(&memcg->css);
1683 return true;
1684 }
1685
1686 /**
1687 * lock_page_memcg - lock a page->mem_cgroup binding
1688 * @page: the page
1689 *
1690 * This function protects unlocked LRU pages from being moved to
1691 * another cgroup and stabilizes their page->mem_cgroup binding.
1692 */
1693 void lock_page_memcg(struct page *page)
1694 {
1695 struct mem_cgroup *memcg;
1696 unsigned long flags;
1697
1698 /*
1699 * The RCU lock is held throughout the transaction. The fast
1700 * path can get away without acquiring the memcg->move_lock
1701 * because page moving starts with an RCU grace period.
1702 */
1703 rcu_read_lock();
1704
1705 if (mem_cgroup_disabled())
1706 return;
1707 again:
1708 memcg = page->mem_cgroup;
1709 if (unlikely(!memcg))
1710 return;
1711
1712 if (atomic_read(&memcg->moving_account) <= 0)
1713 return;
1714
1715 spin_lock_irqsave(&memcg->move_lock, flags);
1716 if (memcg != page->mem_cgroup) {
1717 spin_unlock_irqrestore(&memcg->move_lock, flags);
1718 goto again;
1719 }
1720
1721 /*
1722 * When charge migration first begins, we can have locked and
1723 * unlocked page stat updates happening concurrently. Track
1724 * the task who has the lock for unlock_page_memcg().
1725 */
1726 memcg->move_lock_task = current;
1727 memcg->move_lock_flags = flags;
1728
1729 return;
1730 }
1731 EXPORT_SYMBOL(lock_page_memcg);
1732
1733 /**
1734 * unlock_page_memcg - unlock a page->mem_cgroup binding
1735 * @page: the page
1736 */
1737 void unlock_page_memcg(struct page *page)
1738 {
1739 struct mem_cgroup *memcg = page->mem_cgroup;
1740
1741 if (memcg && memcg->move_lock_task == current) {
1742 unsigned long flags = memcg->move_lock_flags;
1743
1744 memcg->move_lock_task = NULL;
1745 memcg->move_lock_flags = 0;
1746
1747 spin_unlock_irqrestore(&memcg->move_lock, flags);
1748 }
1749
1750 rcu_read_unlock();
1751 }
1752 EXPORT_SYMBOL(unlock_page_memcg);
1753
1754 /*
1755 * size of first charge trial. "32" comes from vmscan.c's magic value.
1756 * TODO: maybe necessary to use big numbers in big irons.
1757 */
1758 #define CHARGE_BATCH 32U
1759 struct memcg_stock_pcp {
1760 struct mem_cgroup *cached; /* this never be root cgroup */
1761 unsigned int nr_pages;
1762 struct work_struct work;
1763 unsigned long flags;
1764 #define FLUSHING_CACHED_CHARGE 0
1765 };
1766 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1767 static DEFINE_MUTEX(percpu_charge_mutex);
1768
1769 /**
1770 * consume_stock: Try to consume stocked charge on this cpu.
1771 * @memcg: memcg to consume from.
1772 * @nr_pages: how many pages to charge.
1773 *
1774 * The charges will only happen if @memcg matches the current cpu's memcg
1775 * stock, and at least @nr_pages are available in that stock. Failure to
1776 * service an allocation will refill the stock.
1777 *
1778 * returns true if successful, false otherwise.
1779 */
1780 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1781 {
1782 struct memcg_stock_pcp *stock;
1783 bool ret = false;
1784
1785 if (nr_pages > CHARGE_BATCH)
1786 return ret;
1787
1788 stock = &get_cpu_var(memcg_stock);
1789 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1790 stock->nr_pages -= nr_pages;
1791 ret = true;
1792 }
1793 put_cpu_var(memcg_stock);
1794 return ret;
1795 }
1796
1797 /*
1798 * Returns stocks cached in percpu and reset cached information.
1799 */
1800 static void drain_stock(struct memcg_stock_pcp *stock)
1801 {
1802 struct mem_cgroup *old = stock->cached;
1803
1804 if (stock->nr_pages) {
1805 page_counter_uncharge(&old->memory, stock->nr_pages);
1806 if (do_memsw_account())
1807 page_counter_uncharge(&old->memsw, stock->nr_pages);
1808 css_put_many(&old->css, stock->nr_pages);
1809 stock->nr_pages = 0;
1810 }
1811 stock->cached = NULL;
1812 }
1813
1814 /*
1815 * This must be called under preempt disabled or must be called by
1816 * a thread which is pinned to local cpu.
1817 */
1818 static void drain_local_stock(struct work_struct *dummy)
1819 {
1820 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1821 drain_stock(stock);
1822 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1823 }
1824
1825 /*
1826 * Cache charges(val) to local per_cpu area.
1827 * This will be consumed by consume_stock() function, later.
1828 */
1829 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1830 {
1831 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1832
1833 if (stock->cached != memcg) { /* reset if necessary */
1834 drain_stock(stock);
1835 stock->cached = memcg;
1836 }
1837 stock->nr_pages += nr_pages;
1838 put_cpu_var(memcg_stock);
1839 }
1840
1841 /*
1842 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1843 * of the hierarchy under it.
1844 */
1845 static void drain_all_stock(struct mem_cgroup *root_memcg)
1846 {
1847 int cpu, curcpu;
1848
1849 /* If someone's already draining, avoid adding running more workers. */
1850 if (!mutex_trylock(&percpu_charge_mutex))
1851 return;
1852 /* Notify other cpus that system-wide "drain" is running */
1853 get_online_cpus();
1854 curcpu = get_cpu();
1855 for_each_online_cpu(cpu) {
1856 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1857 struct mem_cgroup *memcg;
1858
1859 memcg = stock->cached;
1860 if (!memcg || !stock->nr_pages)
1861 continue;
1862 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1863 continue;
1864 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1865 if (cpu == curcpu)
1866 drain_local_stock(&stock->work);
1867 else
1868 schedule_work_on(cpu, &stock->work);
1869 }
1870 }
1871 put_cpu();
1872 put_online_cpus();
1873 mutex_unlock(&percpu_charge_mutex);
1874 }
1875
1876 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1877 unsigned long action,
1878 void *hcpu)
1879 {
1880 int cpu = (unsigned long)hcpu;
1881 struct memcg_stock_pcp *stock;
1882
1883 if (action == CPU_ONLINE)
1884 return NOTIFY_OK;
1885
1886 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1887 return NOTIFY_OK;
1888
1889 stock = &per_cpu(memcg_stock, cpu);
1890 drain_stock(stock);
1891 return NOTIFY_OK;
1892 }
1893
1894 static void reclaim_high(struct mem_cgroup *memcg,
1895 unsigned int nr_pages,
1896 gfp_t gfp_mask)
1897 {
1898 do {
1899 if (page_counter_read(&memcg->memory) <= memcg->high)
1900 continue;
1901 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1902 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1903 } while ((memcg = parent_mem_cgroup(memcg)));
1904 }
1905
1906 static void high_work_func(struct work_struct *work)
1907 {
1908 struct mem_cgroup *memcg;
1909
1910 memcg = container_of(work, struct mem_cgroup, high_work);
1911 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1912 }
1913
1914 /*
1915 * Scheduled by try_charge() to be executed from the userland return path
1916 * and reclaims memory over the high limit.
1917 */
1918 void mem_cgroup_handle_over_high(void)
1919 {
1920 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1921 struct mem_cgroup *memcg;
1922
1923 if (likely(!nr_pages))
1924 return;
1925
1926 memcg = get_mem_cgroup_from_mm(current->mm);
1927 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1928 css_put(&memcg->css);
1929 current->memcg_nr_pages_over_high = 0;
1930 }
1931
1932 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1933 unsigned int nr_pages)
1934 {
1935 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1936 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1937 struct mem_cgroup *mem_over_limit;
1938 struct page_counter *counter;
1939 unsigned long nr_reclaimed;
1940 bool may_swap = true;
1941 bool drained = false;
1942
1943 if (mem_cgroup_is_root(memcg))
1944 return 0;
1945 retry:
1946 if (consume_stock(memcg, nr_pages))
1947 return 0;
1948
1949 if (!do_memsw_account() ||
1950 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1951 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1952 goto done_restock;
1953 if (do_memsw_account())
1954 page_counter_uncharge(&memcg->memsw, batch);
1955 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1956 } else {
1957 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1958 may_swap = false;
1959 }
1960
1961 if (batch > nr_pages) {
1962 batch = nr_pages;
1963 goto retry;
1964 }
1965
1966 /*
1967 * Unlike in global OOM situations, memcg is not in a physical
1968 * memory shortage. Allow dying and OOM-killed tasks to
1969 * bypass the last charges so that they can exit quickly and
1970 * free their memory.
1971 */
1972 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1973 fatal_signal_pending(current) ||
1974 current->flags & PF_EXITING))
1975 goto force;
1976
1977 if (unlikely(task_in_memcg_oom(current)))
1978 goto nomem;
1979
1980 if (!gfpflags_allow_blocking(gfp_mask))
1981 goto nomem;
1982
1983 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1984
1985 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1986 gfp_mask, may_swap);
1987
1988 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1989 goto retry;
1990
1991 if (!drained) {
1992 drain_all_stock(mem_over_limit);
1993 drained = true;
1994 goto retry;
1995 }
1996
1997 if (gfp_mask & __GFP_NORETRY)
1998 goto nomem;
1999 /*
2000 * Even though the limit is exceeded at this point, reclaim
2001 * may have been able to free some pages. Retry the charge
2002 * before killing the task.
2003 *
2004 * Only for regular pages, though: huge pages are rather
2005 * unlikely to succeed so close to the limit, and we fall back
2006 * to regular pages anyway in case of failure.
2007 */
2008 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2009 goto retry;
2010 /*
2011 * At task move, charge accounts can be doubly counted. So, it's
2012 * better to wait until the end of task_move if something is going on.
2013 */
2014 if (mem_cgroup_wait_acct_move(mem_over_limit))
2015 goto retry;
2016
2017 if (nr_retries--)
2018 goto retry;
2019
2020 if (gfp_mask & __GFP_NOFAIL)
2021 goto force;
2022
2023 if (fatal_signal_pending(current))
2024 goto force;
2025
2026 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2027
2028 mem_cgroup_oom(mem_over_limit, gfp_mask,
2029 get_order(nr_pages * PAGE_SIZE));
2030 nomem:
2031 if (!(gfp_mask & __GFP_NOFAIL))
2032 return -ENOMEM;
2033 force:
2034 /*
2035 * The allocation either can't fail or will lead to more memory
2036 * being freed very soon. Allow memory usage go over the limit
2037 * temporarily by force charging it.
2038 */
2039 page_counter_charge(&memcg->memory, nr_pages);
2040 if (do_memsw_account())
2041 page_counter_charge(&memcg->memsw, nr_pages);
2042 css_get_many(&memcg->css, nr_pages);
2043
2044 return 0;
2045
2046 done_restock:
2047 css_get_many(&memcg->css, batch);
2048 if (batch > nr_pages)
2049 refill_stock(memcg, batch - nr_pages);
2050
2051 /*
2052 * If the hierarchy is above the normal consumption range, schedule
2053 * reclaim on returning to userland. We can perform reclaim here
2054 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2055 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2056 * not recorded as it most likely matches current's and won't
2057 * change in the meantime. As high limit is checked again before
2058 * reclaim, the cost of mismatch is negligible.
2059 */
2060 do {
2061 if (page_counter_read(&memcg->memory) > memcg->high) {
2062 /* Don't bother a random interrupted task */
2063 if (in_interrupt()) {
2064 schedule_work(&memcg->high_work);
2065 break;
2066 }
2067 current->memcg_nr_pages_over_high += batch;
2068 set_notify_resume(current);
2069 break;
2070 }
2071 } while ((memcg = parent_mem_cgroup(memcg)));
2072
2073 return 0;
2074 }
2075
2076 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2077 {
2078 if (mem_cgroup_is_root(memcg))
2079 return;
2080
2081 page_counter_uncharge(&memcg->memory, nr_pages);
2082 if (do_memsw_account())
2083 page_counter_uncharge(&memcg->memsw, nr_pages);
2084
2085 css_put_many(&memcg->css, nr_pages);
2086 }
2087
2088 static void lock_page_lru(struct page *page, int *isolated)
2089 {
2090 struct zone *zone = page_zone(page);
2091
2092 spin_lock_irq(&zone->lru_lock);
2093 if (PageLRU(page)) {
2094 struct lruvec *lruvec;
2095
2096 lruvec = mem_cgroup_page_lruvec(page, zone);
2097 ClearPageLRU(page);
2098 del_page_from_lru_list(page, lruvec, page_lru(page));
2099 *isolated = 1;
2100 } else
2101 *isolated = 0;
2102 }
2103
2104 static void unlock_page_lru(struct page *page, int isolated)
2105 {
2106 struct zone *zone = page_zone(page);
2107
2108 if (isolated) {
2109 struct lruvec *lruvec;
2110
2111 lruvec = mem_cgroup_page_lruvec(page, zone);
2112 VM_BUG_ON_PAGE(PageLRU(page), page);
2113 SetPageLRU(page);
2114 add_page_to_lru_list(page, lruvec, page_lru(page));
2115 }
2116 spin_unlock_irq(&zone->lru_lock);
2117 }
2118
2119 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2120 bool lrucare)
2121 {
2122 int isolated;
2123
2124 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2125
2126 /*
2127 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2128 * may already be on some other mem_cgroup's LRU. Take care of it.
2129 */
2130 if (lrucare)
2131 lock_page_lru(page, &isolated);
2132
2133 /*
2134 * Nobody should be changing or seriously looking at
2135 * page->mem_cgroup at this point:
2136 *
2137 * - the page is uncharged
2138 *
2139 * - the page is off-LRU
2140 *
2141 * - an anonymous fault has exclusive page access, except for
2142 * a locked page table
2143 *
2144 * - a page cache insertion, a swapin fault, or a migration
2145 * have the page locked
2146 */
2147 page->mem_cgroup = memcg;
2148
2149 if (lrucare)
2150 unlock_page_lru(page, isolated);
2151 }
2152
2153 #ifndef CONFIG_SLOB
2154 static int memcg_alloc_cache_id(void)
2155 {
2156 int id, size;
2157 int err;
2158
2159 id = ida_simple_get(&memcg_cache_ida,
2160 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2161 if (id < 0)
2162 return id;
2163
2164 if (id < memcg_nr_cache_ids)
2165 return id;
2166
2167 /*
2168 * There's no space for the new id in memcg_caches arrays,
2169 * so we have to grow them.
2170 */
2171 down_write(&memcg_cache_ids_sem);
2172
2173 size = 2 * (id + 1);
2174 if (size < MEMCG_CACHES_MIN_SIZE)
2175 size = MEMCG_CACHES_MIN_SIZE;
2176 else if (size > MEMCG_CACHES_MAX_SIZE)
2177 size = MEMCG_CACHES_MAX_SIZE;
2178
2179 err = memcg_update_all_caches(size);
2180 if (!err)
2181 err = memcg_update_all_list_lrus(size);
2182 if (!err)
2183 memcg_nr_cache_ids = size;
2184
2185 up_write(&memcg_cache_ids_sem);
2186
2187 if (err) {
2188 ida_simple_remove(&memcg_cache_ida, id);
2189 return err;
2190 }
2191 return id;
2192 }
2193
2194 static void memcg_free_cache_id(int id)
2195 {
2196 ida_simple_remove(&memcg_cache_ida, id);
2197 }
2198
2199 struct memcg_kmem_cache_create_work {
2200 struct mem_cgroup *memcg;
2201 struct kmem_cache *cachep;
2202 struct work_struct work;
2203 };
2204
2205 static void memcg_kmem_cache_create_func(struct work_struct *w)
2206 {
2207 struct memcg_kmem_cache_create_work *cw =
2208 container_of(w, struct memcg_kmem_cache_create_work, work);
2209 struct mem_cgroup *memcg = cw->memcg;
2210 struct kmem_cache *cachep = cw->cachep;
2211
2212 memcg_create_kmem_cache(memcg, cachep);
2213
2214 css_put(&memcg->css);
2215 kfree(cw);
2216 }
2217
2218 /*
2219 * Enqueue the creation of a per-memcg kmem_cache.
2220 */
2221 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2222 struct kmem_cache *cachep)
2223 {
2224 struct memcg_kmem_cache_create_work *cw;
2225
2226 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2227 if (!cw)
2228 return;
2229
2230 css_get(&memcg->css);
2231
2232 cw->memcg = memcg;
2233 cw->cachep = cachep;
2234 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2235
2236 schedule_work(&cw->work);
2237 }
2238
2239 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2240 struct kmem_cache *cachep)
2241 {
2242 /*
2243 * We need to stop accounting when we kmalloc, because if the
2244 * corresponding kmalloc cache is not yet created, the first allocation
2245 * in __memcg_schedule_kmem_cache_create will recurse.
2246 *
2247 * However, it is better to enclose the whole function. Depending on
2248 * the debugging options enabled, INIT_WORK(), for instance, can
2249 * trigger an allocation. This too, will make us recurse. Because at
2250 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2251 * the safest choice is to do it like this, wrapping the whole function.
2252 */
2253 current->memcg_kmem_skip_account = 1;
2254 __memcg_schedule_kmem_cache_create(memcg, cachep);
2255 current->memcg_kmem_skip_account = 0;
2256 }
2257
2258 /*
2259 * Return the kmem_cache we're supposed to use for a slab allocation.
2260 * We try to use the current memcg's version of the cache.
2261 *
2262 * If the cache does not exist yet, if we are the first user of it,
2263 * we either create it immediately, if possible, or create it asynchronously
2264 * in a workqueue.
2265 * In the latter case, we will let the current allocation go through with
2266 * the original cache.
2267 *
2268 * Can't be called in interrupt context or from kernel threads.
2269 * This function needs to be called with rcu_read_lock() held.
2270 */
2271 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2272 {
2273 struct mem_cgroup *memcg;
2274 struct kmem_cache *memcg_cachep;
2275 int kmemcg_id;
2276
2277 VM_BUG_ON(!is_root_cache(cachep));
2278
2279 if (cachep->flags & SLAB_ACCOUNT)
2280 gfp |= __GFP_ACCOUNT;
2281
2282 if (!(gfp & __GFP_ACCOUNT))
2283 return cachep;
2284
2285 if (current->memcg_kmem_skip_account)
2286 return cachep;
2287
2288 memcg = get_mem_cgroup_from_mm(current->mm);
2289 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2290 if (kmemcg_id < 0)
2291 goto out;
2292
2293 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2294 if (likely(memcg_cachep))
2295 return memcg_cachep;
2296
2297 /*
2298 * If we are in a safe context (can wait, and not in interrupt
2299 * context), we could be be predictable and return right away.
2300 * This would guarantee that the allocation being performed
2301 * already belongs in the new cache.
2302 *
2303 * However, there are some clashes that can arrive from locking.
2304 * For instance, because we acquire the slab_mutex while doing
2305 * memcg_create_kmem_cache, this means no further allocation
2306 * could happen with the slab_mutex held. So it's better to
2307 * defer everything.
2308 */
2309 memcg_schedule_kmem_cache_create(memcg, cachep);
2310 out:
2311 css_put(&memcg->css);
2312 return cachep;
2313 }
2314
2315 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2316 {
2317 if (!is_root_cache(cachep))
2318 css_put(&cachep->memcg_params.memcg->css);
2319 }
2320
2321 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2322 struct mem_cgroup *memcg)
2323 {
2324 unsigned int nr_pages = 1 << order;
2325 struct page_counter *counter;
2326 int ret;
2327
2328 ret = try_charge(memcg, gfp, nr_pages);
2329 if (ret)
2330 return ret;
2331
2332 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2333 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2334 cancel_charge(memcg, nr_pages);
2335 return -ENOMEM;
2336 }
2337
2338 page->mem_cgroup = memcg;
2339
2340 return 0;
2341 }
2342
2343 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2344 {
2345 struct mem_cgroup *memcg;
2346 int ret = 0;
2347
2348 memcg = get_mem_cgroup_from_mm(current->mm);
2349 if (memcg_kmem_online(memcg))
2350 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2351 css_put(&memcg->css);
2352 return ret;
2353 }
2354
2355 void __memcg_kmem_uncharge(struct page *page, int order)
2356 {
2357 struct mem_cgroup *memcg = page->mem_cgroup;
2358 unsigned int nr_pages = 1 << order;
2359
2360 if (!memcg)
2361 return;
2362
2363 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2364
2365 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2366 page_counter_uncharge(&memcg->kmem, nr_pages);
2367
2368 page_counter_uncharge(&memcg->memory, nr_pages);
2369 if (do_memsw_account())
2370 page_counter_uncharge(&memcg->memsw, nr_pages);
2371
2372 page->mem_cgroup = NULL;
2373 css_put_many(&memcg->css, nr_pages);
2374 }
2375 #endif /* !CONFIG_SLOB */
2376
2377 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2378
2379 /*
2380 * Because tail pages are not marked as "used", set it. We're under
2381 * zone->lru_lock and migration entries setup in all page mappings.
2382 */
2383 void mem_cgroup_split_huge_fixup(struct page *head)
2384 {
2385 int i;
2386
2387 if (mem_cgroup_disabled())
2388 return;
2389
2390 for (i = 1; i < HPAGE_PMD_NR; i++)
2391 head[i].mem_cgroup = head->mem_cgroup;
2392
2393 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2394 HPAGE_PMD_NR);
2395 }
2396 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2397
2398 #ifdef CONFIG_MEMCG_SWAP
2399 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2400 bool charge)
2401 {
2402 int val = (charge) ? 1 : -1;
2403 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2404 }
2405
2406 /**
2407 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2408 * @entry: swap entry to be moved
2409 * @from: mem_cgroup which the entry is moved from
2410 * @to: mem_cgroup which the entry is moved to
2411 *
2412 * It succeeds only when the swap_cgroup's record for this entry is the same
2413 * as the mem_cgroup's id of @from.
2414 *
2415 * Returns 0 on success, -EINVAL on failure.
2416 *
2417 * The caller must have charged to @to, IOW, called page_counter_charge() about
2418 * both res and memsw, and called css_get().
2419 */
2420 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2421 struct mem_cgroup *from, struct mem_cgroup *to)
2422 {
2423 unsigned short old_id, new_id;
2424
2425 old_id = mem_cgroup_id(from);
2426 new_id = mem_cgroup_id(to);
2427
2428 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2429 mem_cgroup_swap_statistics(from, false);
2430 mem_cgroup_swap_statistics(to, true);
2431 return 0;
2432 }
2433 return -EINVAL;
2434 }
2435 #else
2436 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2437 struct mem_cgroup *from, struct mem_cgroup *to)
2438 {
2439 return -EINVAL;
2440 }
2441 #endif
2442
2443 static DEFINE_MUTEX(memcg_limit_mutex);
2444
2445 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2446 unsigned long limit)
2447 {
2448 unsigned long curusage;
2449 unsigned long oldusage;
2450 bool enlarge = false;
2451 int retry_count;
2452 int ret;
2453
2454 /*
2455 * For keeping hierarchical_reclaim simple, how long we should retry
2456 * is depends on callers. We set our retry-count to be function
2457 * of # of children which we should visit in this loop.
2458 */
2459 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2460 mem_cgroup_count_children(memcg);
2461
2462 oldusage = page_counter_read(&memcg->memory);
2463
2464 do {
2465 if (signal_pending(current)) {
2466 ret = -EINTR;
2467 break;
2468 }
2469
2470 mutex_lock(&memcg_limit_mutex);
2471 if (limit > memcg->memsw.limit) {
2472 mutex_unlock(&memcg_limit_mutex);
2473 ret = -EINVAL;
2474 break;
2475 }
2476 if (limit > memcg->memory.limit)
2477 enlarge = true;
2478 ret = page_counter_limit(&memcg->memory, limit);
2479 mutex_unlock(&memcg_limit_mutex);
2480
2481 if (!ret)
2482 break;
2483
2484 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2485
2486 curusage = page_counter_read(&memcg->memory);
2487 /* Usage is reduced ? */
2488 if (curusage >= oldusage)
2489 retry_count--;
2490 else
2491 oldusage = curusage;
2492 } while (retry_count);
2493
2494 if (!ret && enlarge)
2495 memcg_oom_recover(memcg);
2496
2497 return ret;
2498 }
2499
2500 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2501 unsigned long limit)
2502 {
2503 unsigned long curusage;
2504 unsigned long oldusage;
2505 bool enlarge = false;
2506 int retry_count;
2507 int ret;
2508
2509 /* see mem_cgroup_resize_res_limit */
2510 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2511 mem_cgroup_count_children(memcg);
2512
2513 oldusage = page_counter_read(&memcg->memsw);
2514
2515 do {
2516 if (signal_pending(current)) {
2517 ret = -EINTR;
2518 break;
2519 }
2520
2521 mutex_lock(&memcg_limit_mutex);
2522 if (limit < memcg->memory.limit) {
2523 mutex_unlock(&memcg_limit_mutex);
2524 ret = -EINVAL;
2525 break;
2526 }
2527 if (limit > memcg->memsw.limit)
2528 enlarge = true;
2529 ret = page_counter_limit(&memcg->memsw, limit);
2530 mutex_unlock(&memcg_limit_mutex);
2531
2532 if (!ret)
2533 break;
2534
2535 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2536
2537 curusage = page_counter_read(&memcg->memsw);
2538 /* Usage is reduced ? */
2539 if (curusage >= oldusage)
2540 retry_count--;
2541 else
2542 oldusage = curusage;
2543 } while (retry_count);
2544
2545 if (!ret && enlarge)
2546 memcg_oom_recover(memcg);
2547
2548 return ret;
2549 }
2550
2551 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2552 gfp_t gfp_mask,
2553 unsigned long *total_scanned)
2554 {
2555 unsigned long nr_reclaimed = 0;
2556 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2557 unsigned long reclaimed;
2558 int loop = 0;
2559 struct mem_cgroup_tree_per_zone *mctz;
2560 unsigned long excess;
2561 unsigned long nr_scanned;
2562
2563 if (order > 0)
2564 return 0;
2565
2566 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2567 /*
2568 * This loop can run a while, specially if mem_cgroup's continuously
2569 * keep exceeding their soft limit and putting the system under
2570 * pressure
2571 */
2572 do {
2573 if (next_mz)
2574 mz = next_mz;
2575 else
2576 mz = mem_cgroup_largest_soft_limit_node(mctz);
2577 if (!mz)
2578 break;
2579
2580 nr_scanned = 0;
2581 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2582 gfp_mask, &nr_scanned);
2583 nr_reclaimed += reclaimed;
2584 *total_scanned += nr_scanned;
2585 spin_lock_irq(&mctz->lock);
2586 __mem_cgroup_remove_exceeded(mz, mctz);
2587
2588 /*
2589 * If we failed to reclaim anything from this memory cgroup
2590 * it is time to move on to the next cgroup
2591 */
2592 next_mz = NULL;
2593 if (!reclaimed)
2594 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2595
2596 excess = soft_limit_excess(mz->memcg);
2597 /*
2598 * One school of thought says that we should not add
2599 * back the node to the tree if reclaim returns 0.
2600 * But our reclaim could return 0, simply because due
2601 * to priority we are exposing a smaller subset of
2602 * memory to reclaim from. Consider this as a longer
2603 * term TODO.
2604 */
2605 /* If excess == 0, no tree ops */
2606 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2607 spin_unlock_irq(&mctz->lock);
2608 css_put(&mz->memcg->css);
2609 loop++;
2610 /*
2611 * Could not reclaim anything and there are no more
2612 * mem cgroups to try or we seem to be looping without
2613 * reclaiming anything.
2614 */
2615 if (!nr_reclaimed &&
2616 (next_mz == NULL ||
2617 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2618 break;
2619 } while (!nr_reclaimed);
2620 if (next_mz)
2621 css_put(&next_mz->memcg->css);
2622 return nr_reclaimed;
2623 }
2624
2625 /*
2626 * Test whether @memcg has children, dead or alive. Note that this
2627 * function doesn't care whether @memcg has use_hierarchy enabled and
2628 * returns %true if there are child csses according to the cgroup
2629 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2630 */
2631 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2632 {
2633 bool ret;
2634
2635 rcu_read_lock();
2636 ret = css_next_child(NULL, &memcg->css);
2637 rcu_read_unlock();
2638 return ret;
2639 }
2640
2641 /*
2642 * Reclaims as many pages from the given memcg as possible and moves
2643 * the rest to the parent.
2644 *
2645 * Caller is responsible for holding css reference for memcg.
2646 */
2647 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2648 {
2649 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2650
2651 /* we call try-to-free pages for make this cgroup empty */
2652 lru_add_drain_all();
2653 /* try to free all pages in this cgroup */
2654 while (nr_retries && page_counter_read(&memcg->memory)) {
2655 int progress;
2656
2657 if (signal_pending(current))
2658 return -EINTR;
2659
2660 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2661 GFP_KERNEL, true);
2662 if (!progress) {
2663 nr_retries--;
2664 /* maybe some writeback is necessary */
2665 congestion_wait(BLK_RW_ASYNC, HZ/10);
2666 }
2667
2668 }
2669
2670 return 0;
2671 }
2672
2673 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2674 char *buf, size_t nbytes,
2675 loff_t off)
2676 {
2677 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2678
2679 if (mem_cgroup_is_root(memcg))
2680 return -EINVAL;
2681 return mem_cgroup_force_empty(memcg) ?: nbytes;
2682 }
2683
2684 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2685 struct cftype *cft)
2686 {
2687 return mem_cgroup_from_css(css)->use_hierarchy;
2688 }
2689
2690 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2691 struct cftype *cft, u64 val)
2692 {
2693 int retval = 0;
2694 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2695 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2696
2697 if (memcg->use_hierarchy == val)
2698 return 0;
2699
2700 /*
2701 * If parent's use_hierarchy is set, we can't make any modifications
2702 * in the child subtrees. If it is unset, then the change can
2703 * occur, provided the current cgroup has no children.
2704 *
2705 * For the root cgroup, parent_mem is NULL, we allow value to be
2706 * set if there are no children.
2707 */
2708 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2709 (val == 1 || val == 0)) {
2710 if (!memcg_has_children(memcg))
2711 memcg->use_hierarchy = val;
2712 else
2713 retval = -EBUSY;
2714 } else
2715 retval = -EINVAL;
2716
2717 return retval;
2718 }
2719
2720 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2721 {
2722 struct mem_cgroup *iter;
2723 int i;
2724
2725 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2726
2727 for_each_mem_cgroup_tree(iter, memcg) {
2728 for (i = 0; i < MEMCG_NR_STAT; i++)
2729 stat[i] += mem_cgroup_read_stat(iter, i);
2730 }
2731 }
2732
2733 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2734 {
2735 struct mem_cgroup *iter;
2736 int i;
2737
2738 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2739
2740 for_each_mem_cgroup_tree(iter, memcg) {
2741 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2742 events[i] += mem_cgroup_read_events(iter, i);
2743 }
2744 }
2745
2746 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2747 {
2748 unsigned long val = 0;
2749
2750 if (mem_cgroup_is_root(memcg)) {
2751 struct mem_cgroup *iter;
2752
2753 for_each_mem_cgroup_tree(iter, memcg) {
2754 val += mem_cgroup_read_stat(iter,
2755 MEM_CGROUP_STAT_CACHE);
2756 val += mem_cgroup_read_stat(iter,
2757 MEM_CGROUP_STAT_RSS);
2758 if (swap)
2759 val += mem_cgroup_read_stat(iter,
2760 MEM_CGROUP_STAT_SWAP);
2761 }
2762 } else {
2763 if (!swap)
2764 val = page_counter_read(&memcg->memory);
2765 else
2766 val = page_counter_read(&memcg->memsw);
2767 }
2768 return val;
2769 }
2770
2771 enum {
2772 RES_USAGE,
2773 RES_LIMIT,
2774 RES_MAX_USAGE,
2775 RES_FAILCNT,
2776 RES_SOFT_LIMIT,
2777 };
2778
2779 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2780 struct cftype *cft)
2781 {
2782 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2783 struct page_counter *counter;
2784
2785 switch (MEMFILE_TYPE(cft->private)) {
2786 case _MEM:
2787 counter = &memcg->memory;
2788 break;
2789 case _MEMSWAP:
2790 counter = &memcg->memsw;
2791 break;
2792 case _KMEM:
2793 counter = &memcg->kmem;
2794 break;
2795 case _TCP:
2796 counter = &memcg->tcpmem;
2797 break;
2798 default:
2799 BUG();
2800 }
2801
2802 switch (MEMFILE_ATTR(cft->private)) {
2803 case RES_USAGE:
2804 if (counter == &memcg->memory)
2805 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2806 if (counter == &memcg->memsw)
2807 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2808 return (u64)page_counter_read(counter) * PAGE_SIZE;
2809 case RES_LIMIT:
2810 return (u64)counter->limit * PAGE_SIZE;
2811 case RES_MAX_USAGE:
2812 return (u64)counter->watermark * PAGE_SIZE;
2813 case RES_FAILCNT:
2814 return counter->failcnt;
2815 case RES_SOFT_LIMIT:
2816 return (u64)memcg->soft_limit * PAGE_SIZE;
2817 default:
2818 BUG();
2819 }
2820 }
2821
2822 #ifndef CONFIG_SLOB
2823 static int memcg_online_kmem(struct mem_cgroup *memcg)
2824 {
2825 int memcg_id;
2826
2827 BUG_ON(memcg->kmemcg_id >= 0);
2828 BUG_ON(memcg->kmem_state);
2829
2830 memcg_id = memcg_alloc_cache_id();
2831 if (memcg_id < 0)
2832 return memcg_id;
2833
2834 static_branch_inc(&memcg_kmem_enabled_key);
2835 /*
2836 * A memory cgroup is considered kmem-online as soon as it gets
2837 * kmemcg_id. Setting the id after enabling static branching will
2838 * guarantee no one starts accounting before all call sites are
2839 * patched.
2840 */
2841 memcg->kmemcg_id = memcg_id;
2842 memcg->kmem_state = KMEM_ONLINE;
2843
2844 return 0;
2845 }
2846
2847 static int memcg_propagate_kmem(struct mem_cgroup *parent,
2848 struct mem_cgroup *memcg)
2849 {
2850 int ret = 0;
2851
2852 mutex_lock(&memcg_limit_mutex);
2853 /*
2854 * If the parent cgroup is not kmem-online now, it cannot be
2855 * onlined after this point, because it has at least one child
2856 * already.
2857 */
2858 if (memcg_kmem_online(parent) ||
2859 (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nokmem))
2860 ret = memcg_online_kmem(memcg);
2861 mutex_unlock(&memcg_limit_mutex);
2862 return ret;
2863 }
2864
2865 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2866 {
2867 struct cgroup_subsys_state *css;
2868 struct mem_cgroup *parent, *child;
2869 int kmemcg_id;
2870
2871 if (memcg->kmem_state != KMEM_ONLINE)
2872 return;
2873 /*
2874 * Clear the online state before clearing memcg_caches array
2875 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2876 * guarantees that no cache will be created for this cgroup
2877 * after we are done (see memcg_create_kmem_cache()).
2878 */
2879 memcg->kmem_state = KMEM_ALLOCATED;
2880
2881 memcg_deactivate_kmem_caches(memcg);
2882
2883 kmemcg_id = memcg->kmemcg_id;
2884 BUG_ON(kmemcg_id < 0);
2885
2886 parent = parent_mem_cgroup(memcg);
2887 if (!parent)
2888 parent = root_mem_cgroup;
2889
2890 /*
2891 * Change kmemcg_id of this cgroup and all its descendants to the
2892 * parent's id, and then move all entries from this cgroup's list_lrus
2893 * to ones of the parent. After we have finished, all list_lrus
2894 * corresponding to this cgroup are guaranteed to remain empty. The
2895 * ordering is imposed by list_lru_node->lock taken by
2896 * memcg_drain_all_list_lrus().
2897 */
2898 css_for_each_descendant_pre(css, &memcg->css) {
2899 child = mem_cgroup_from_css(css);
2900 BUG_ON(child->kmemcg_id != kmemcg_id);
2901 child->kmemcg_id = parent->kmemcg_id;
2902 if (!memcg->use_hierarchy)
2903 break;
2904 }
2905 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2906
2907 memcg_free_cache_id(kmemcg_id);
2908 }
2909
2910 static void memcg_free_kmem(struct mem_cgroup *memcg)
2911 {
2912 /* css_alloc() failed, offlining didn't happen */
2913 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2914 memcg_offline_kmem(memcg);
2915
2916 if (memcg->kmem_state == KMEM_ALLOCATED) {
2917 memcg_destroy_kmem_caches(memcg);
2918 static_branch_dec(&memcg_kmem_enabled_key);
2919 WARN_ON(page_counter_read(&memcg->kmem));
2920 }
2921 }
2922 #else
2923 static int memcg_propagate_kmem(struct mem_cgroup *parent, struct mem_cgroup *memcg)
2924 {
2925 return 0;
2926 }
2927 static int memcg_online_kmem(struct mem_cgroup *memcg)
2928 {
2929 return 0;
2930 }
2931 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2932 {
2933 }
2934 static void memcg_free_kmem(struct mem_cgroup *memcg)
2935 {
2936 }
2937 #endif /* !CONFIG_SLOB */
2938
2939 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2940 unsigned long limit)
2941 {
2942 int ret = 0;
2943
2944 mutex_lock(&memcg_limit_mutex);
2945 /* Top-level cgroup doesn't propagate from root */
2946 if (!memcg_kmem_online(memcg)) {
2947 if (cgroup_is_populated(memcg->css.cgroup) ||
2948 (memcg->use_hierarchy && memcg_has_children(memcg)))
2949 ret = -EBUSY;
2950 if (ret)
2951 goto out;
2952 ret = memcg_online_kmem(memcg);
2953 if (ret)
2954 goto out;
2955 }
2956 ret = page_counter_limit(&memcg->kmem, limit);
2957 out:
2958 mutex_unlock(&memcg_limit_mutex);
2959 return ret;
2960 }
2961
2962 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2963 {
2964 int ret;
2965
2966 mutex_lock(&memcg_limit_mutex);
2967
2968 ret = page_counter_limit(&memcg->tcpmem, limit);
2969 if (ret)
2970 goto out;
2971
2972 if (!memcg->tcpmem_active) {
2973 /*
2974 * The active flag needs to be written after the static_key
2975 * update. This is what guarantees that the socket activation
2976 * function is the last one to run. See sock_update_memcg() for
2977 * details, and note that we don't mark any socket as belonging
2978 * to this memcg until that flag is up.
2979 *
2980 * We need to do this, because static_keys will span multiple
2981 * sites, but we can't control their order. If we mark a socket
2982 * as accounted, but the accounting functions are not patched in
2983 * yet, we'll lose accounting.
2984 *
2985 * We never race with the readers in sock_update_memcg(),
2986 * because when this value change, the code to process it is not
2987 * patched in yet.
2988 */
2989 static_branch_inc(&memcg_sockets_enabled_key);
2990 memcg->tcpmem_active = true;
2991 }
2992 out:
2993 mutex_unlock(&memcg_limit_mutex);
2994 return ret;
2995 }
2996
2997 /*
2998 * The user of this function is...
2999 * RES_LIMIT.
3000 */
3001 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3002 char *buf, size_t nbytes, loff_t off)
3003 {
3004 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3005 unsigned long nr_pages;
3006 int ret;
3007
3008 buf = strstrip(buf);
3009 ret = page_counter_memparse(buf, "-1", &nr_pages);
3010 if (ret)
3011 return ret;
3012
3013 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3014 case RES_LIMIT:
3015 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3016 ret = -EINVAL;
3017 break;
3018 }
3019 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3020 case _MEM:
3021 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3022 break;
3023 case _MEMSWAP:
3024 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3025 break;
3026 case _KMEM:
3027 ret = memcg_update_kmem_limit(memcg, nr_pages);
3028 break;
3029 case _TCP:
3030 ret = memcg_update_tcp_limit(memcg, nr_pages);
3031 break;
3032 }
3033 break;
3034 case RES_SOFT_LIMIT:
3035 memcg->soft_limit = nr_pages;
3036 ret = 0;
3037 break;
3038 }
3039 return ret ?: nbytes;
3040 }
3041
3042 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3043 size_t nbytes, loff_t off)
3044 {
3045 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3046 struct page_counter *counter;
3047
3048 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3049 case _MEM:
3050 counter = &memcg->memory;
3051 break;
3052 case _MEMSWAP:
3053 counter = &memcg->memsw;
3054 break;
3055 case _KMEM:
3056 counter = &memcg->kmem;
3057 break;
3058 case _TCP:
3059 counter = &memcg->tcpmem;
3060 break;
3061 default:
3062 BUG();
3063 }
3064
3065 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3066 case RES_MAX_USAGE:
3067 page_counter_reset_watermark(counter);
3068 break;
3069 case RES_FAILCNT:
3070 counter->failcnt = 0;
3071 break;
3072 default:
3073 BUG();
3074 }
3075
3076 return nbytes;
3077 }
3078
3079 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3080 struct cftype *cft)
3081 {
3082 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3083 }
3084
3085 #ifdef CONFIG_MMU
3086 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3087 struct cftype *cft, u64 val)
3088 {
3089 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3090
3091 if (val & ~MOVE_MASK)
3092 return -EINVAL;
3093
3094 /*
3095 * No kind of locking is needed in here, because ->can_attach() will
3096 * check this value once in the beginning of the process, and then carry
3097 * on with stale data. This means that changes to this value will only
3098 * affect task migrations starting after the change.
3099 */
3100 memcg->move_charge_at_immigrate = val;
3101 return 0;
3102 }
3103 #else
3104 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3105 struct cftype *cft, u64 val)
3106 {
3107 return -ENOSYS;
3108 }
3109 #endif
3110
3111 #ifdef CONFIG_NUMA
3112 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3113 {
3114 struct numa_stat {
3115 const char *name;
3116 unsigned int lru_mask;
3117 };
3118
3119 static const struct numa_stat stats[] = {
3120 { "total", LRU_ALL },
3121 { "file", LRU_ALL_FILE },
3122 { "anon", LRU_ALL_ANON },
3123 { "unevictable", BIT(LRU_UNEVICTABLE) },
3124 };
3125 const struct numa_stat *stat;
3126 int nid;
3127 unsigned long nr;
3128 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3129
3130 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3131 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3132 seq_printf(m, "%s=%lu", stat->name, nr);
3133 for_each_node_state(nid, N_MEMORY) {
3134 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3135 stat->lru_mask);
3136 seq_printf(m, " N%d=%lu", nid, nr);
3137 }
3138 seq_putc(m, '\n');
3139 }
3140
3141 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3142 struct mem_cgroup *iter;
3143
3144 nr = 0;
3145 for_each_mem_cgroup_tree(iter, memcg)
3146 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3147 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3148 for_each_node_state(nid, N_MEMORY) {
3149 nr = 0;
3150 for_each_mem_cgroup_tree(iter, memcg)
3151 nr += mem_cgroup_node_nr_lru_pages(
3152 iter, nid, stat->lru_mask);
3153 seq_printf(m, " N%d=%lu", nid, nr);
3154 }
3155 seq_putc(m, '\n');
3156 }
3157
3158 return 0;
3159 }
3160 #endif /* CONFIG_NUMA */
3161
3162 static int memcg_stat_show(struct seq_file *m, void *v)
3163 {
3164 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3165 unsigned long memory, memsw;
3166 struct mem_cgroup *mi;
3167 unsigned int i;
3168
3169 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3170 MEM_CGROUP_STAT_NSTATS);
3171 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3172 MEM_CGROUP_EVENTS_NSTATS);
3173 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3174
3175 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3176 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3177 continue;
3178 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3179 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3180 }
3181
3182 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3183 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3184 mem_cgroup_read_events(memcg, i));
3185
3186 for (i = 0; i < NR_LRU_LISTS; i++)
3187 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3188 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3189
3190 /* Hierarchical information */
3191 memory = memsw = PAGE_COUNTER_MAX;
3192 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3193 memory = min(memory, mi->memory.limit);
3194 memsw = min(memsw, mi->memsw.limit);
3195 }
3196 seq_printf(m, "hierarchical_memory_limit %llu\n",
3197 (u64)memory * PAGE_SIZE);
3198 if (do_memsw_account())
3199 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3200 (u64)memsw * PAGE_SIZE);
3201
3202 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3203 unsigned long long val = 0;
3204
3205 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3206 continue;
3207 for_each_mem_cgroup_tree(mi, memcg)
3208 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3209 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3210 }
3211
3212 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3213 unsigned long long val = 0;
3214
3215 for_each_mem_cgroup_tree(mi, memcg)
3216 val += mem_cgroup_read_events(mi, i);
3217 seq_printf(m, "total_%s %llu\n",
3218 mem_cgroup_events_names[i], val);
3219 }
3220
3221 for (i = 0; i < NR_LRU_LISTS; i++) {
3222 unsigned long long val = 0;
3223
3224 for_each_mem_cgroup_tree(mi, memcg)
3225 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3226 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3227 }
3228
3229 #ifdef CONFIG_DEBUG_VM
3230 {
3231 int nid, zid;
3232 struct mem_cgroup_per_zone *mz;
3233 struct zone_reclaim_stat *rstat;
3234 unsigned long recent_rotated[2] = {0, 0};
3235 unsigned long recent_scanned[2] = {0, 0};
3236
3237 for_each_online_node(nid)
3238 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3239 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3240 rstat = &mz->lruvec.reclaim_stat;
3241
3242 recent_rotated[0] += rstat->recent_rotated[0];
3243 recent_rotated[1] += rstat->recent_rotated[1];
3244 recent_scanned[0] += rstat->recent_scanned[0];
3245 recent_scanned[1] += rstat->recent_scanned[1];
3246 }
3247 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3248 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3249 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3250 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3251 }
3252 #endif
3253
3254 return 0;
3255 }
3256
3257 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3258 struct cftype *cft)
3259 {
3260 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3261
3262 return mem_cgroup_swappiness(memcg);
3263 }
3264
3265 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3266 struct cftype *cft, u64 val)
3267 {
3268 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3269
3270 if (val > 100)
3271 return -EINVAL;
3272
3273 if (css->parent)
3274 memcg->swappiness = val;
3275 else
3276 vm_swappiness = val;
3277
3278 return 0;
3279 }
3280
3281 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3282 {
3283 struct mem_cgroup_threshold_ary *t;
3284 unsigned long usage;
3285 int i;
3286
3287 rcu_read_lock();
3288 if (!swap)
3289 t = rcu_dereference(memcg->thresholds.primary);
3290 else
3291 t = rcu_dereference(memcg->memsw_thresholds.primary);
3292
3293 if (!t)
3294 goto unlock;
3295
3296 usage = mem_cgroup_usage(memcg, swap);
3297
3298 /*
3299 * current_threshold points to threshold just below or equal to usage.
3300 * If it's not true, a threshold was crossed after last
3301 * call of __mem_cgroup_threshold().
3302 */
3303 i = t->current_threshold;
3304
3305 /*
3306 * Iterate backward over array of thresholds starting from
3307 * current_threshold and check if a threshold is crossed.
3308 * If none of thresholds below usage is crossed, we read
3309 * only one element of the array here.
3310 */
3311 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3312 eventfd_signal(t->entries[i].eventfd, 1);
3313
3314 /* i = current_threshold + 1 */
3315 i++;
3316
3317 /*
3318 * Iterate forward over array of thresholds starting from
3319 * current_threshold+1 and check if a threshold is crossed.
3320 * If none of thresholds above usage is crossed, we read
3321 * only one element of the array here.
3322 */
3323 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3324 eventfd_signal(t->entries[i].eventfd, 1);
3325
3326 /* Update current_threshold */
3327 t->current_threshold = i - 1;
3328 unlock:
3329 rcu_read_unlock();
3330 }
3331
3332 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3333 {
3334 while (memcg) {
3335 __mem_cgroup_threshold(memcg, false);
3336 if (do_memsw_account())
3337 __mem_cgroup_threshold(memcg, true);
3338
3339 memcg = parent_mem_cgroup(memcg);
3340 }
3341 }
3342
3343 static int compare_thresholds(const void *a, const void *b)
3344 {
3345 const struct mem_cgroup_threshold *_a = a;
3346 const struct mem_cgroup_threshold *_b = b;
3347
3348 if (_a->threshold > _b->threshold)
3349 return 1;
3350
3351 if (_a->threshold < _b->threshold)
3352 return -1;
3353
3354 return 0;
3355 }
3356
3357 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3358 {
3359 struct mem_cgroup_eventfd_list *ev;
3360
3361 spin_lock(&memcg_oom_lock);
3362
3363 list_for_each_entry(ev, &memcg->oom_notify, list)
3364 eventfd_signal(ev->eventfd, 1);
3365
3366 spin_unlock(&memcg_oom_lock);
3367 return 0;
3368 }
3369
3370 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3371 {
3372 struct mem_cgroup *iter;
3373
3374 for_each_mem_cgroup_tree(iter, memcg)
3375 mem_cgroup_oom_notify_cb(iter);
3376 }
3377
3378 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3379 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3380 {
3381 struct mem_cgroup_thresholds *thresholds;
3382 struct mem_cgroup_threshold_ary *new;
3383 unsigned long threshold;
3384 unsigned long usage;
3385 int i, size, ret;
3386
3387 ret = page_counter_memparse(args, "-1", &threshold);
3388 if (ret)
3389 return ret;
3390
3391 mutex_lock(&memcg->thresholds_lock);
3392
3393 if (type == _MEM) {
3394 thresholds = &memcg->thresholds;
3395 usage = mem_cgroup_usage(memcg, false);
3396 } else if (type == _MEMSWAP) {
3397 thresholds = &memcg->memsw_thresholds;
3398 usage = mem_cgroup_usage(memcg, true);
3399 } else
3400 BUG();
3401
3402 /* Check if a threshold crossed before adding a new one */
3403 if (thresholds->primary)
3404 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3405
3406 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3407
3408 /* Allocate memory for new array of thresholds */
3409 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3410 GFP_KERNEL);
3411 if (!new) {
3412 ret = -ENOMEM;
3413 goto unlock;
3414 }
3415 new->size = size;
3416
3417 /* Copy thresholds (if any) to new array */
3418 if (thresholds->primary) {
3419 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3420 sizeof(struct mem_cgroup_threshold));
3421 }
3422
3423 /* Add new threshold */
3424 new->entries[size - 1].eventfd = eventfd;
3425 new->entries[size - 1].threshold = threshold;
3426
3427 /* Sort thresholds. Registering of new threshold isn't time-critical */
3428 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3429 compare_thresholds, NULL);
3430
3431 /* Find current threshold */
3432 new->current_threshold = -1;
3433 for (i = 0; i < size; i++) {
3434 if (new->entries[i].threshold <= usage) {
3435 /*
3436 * new->current_threshold will not be used until
3437 * rcu_assign_pointer(), so it's safe to increment
3438 * it here.
3439 */
3440 ++new->current_threshold;
3441 } else
3442 break;
3443 }
3444
3445 /* Free old spare buffer and save old primary buffer as spare */
3446 kfree(thresholds->spare);
3447 thresholds->spare = thresholds->primary;
3448
3449 rcu_assign_pointer(thresholds->primary, new);
3450
3451 /* To be sure that nobody uses thresholds */
3452 synchronize_rcu();
3453
3454 unlock:
3455 mutex_unlock(&memcg->thresholds_lock);
3456
3457 return ret;
3458 }
3459
3460 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3461 struct eventfd_ctx *eventfd, const char *args)
3462 {
3463 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3464 }
3465
3466 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3467 struct eventfd_ctx *eventfd, const char *args)
3468 {
3469 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3470 }
3471
3472 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3473 struct eventfd_ctx *eventfd, enum res_type type)
3474 {
3475 struct mem_cgroup_thresholds *thresholds;
3476 struct mem_cgroup_threshold_ary *new;
3477 unsigned long usage;
3478 int i, j, size;
3479
3480 mutex_lock(&memcg->thresholds_lock);
3481
3482 if (type == _MEM) {
3483 thresholds = &memcg->thresholds;
3484 usage = mem_cgroup_usage(memcg, false);
3485 } else if (type == _MEMSWAP) {
3486 thresholds = &memcg->memsw_thresholds;
3487 usage = mem_cgroup_usage(memcg, true);
3488 } else
3489 BUG();
3490
3491 if (!thresholds->primary)
3492 goto unlock;
3493
3494 /* Check if a threshold crossed before removing */
3495 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3496
3497 /* Calculate new number of threshold */
3498 size = 0;
3499 for (i = 0; i < thresholds->primary->size; i++) {
3500 if (thresholds->primary->entries[i].eventfd != eventfd)
3501 size++;
3502 }
3503
3504 new = thresholds->spare;
3505
3506 /* Set thresholds array to NULL if we don't have thresholds */
3507 if (!size) {
3508 kfree(new);
3509 new = NULL;
3510 goto swap_buffers;
3511 }
3512
3513 new->size = size;
3514
3515 /* Copy thresholds and find current threshold */
3516 new->current_threshold = -1;
3517 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3518 if (thresholds->primary->entries[i].eventfd == eventfd)
3519 continue;
3520
3521 new->entries[j] = thresholds->primary->entries[i];
3522 if (new->entries[j].threshold <= usage) {
3523 /*
3524 * new->current_threshold will not be used
3525 * until rcu_assign_pointer(), so it's safe to increment
3526 * it here.
3527 */
3528 ++new->current_threshold;
3529 }
3530 j++;
3531 }
3532
3533 swap_buffers:
3534 /* Swap primary and spare array */
3535 thresholds->spare = thresholds->primary;
3536
3537 rcu_assign_pointer(thresholds->primary, new);
3538
3539 /* To be sure that nobody uses thresholds */
3540 synchronize_rcu();
3541
3542 /* If all events are unregistered, free the spare array */
3543 if (!new) {
3544 kfree(thresholds->spare);
3545 thresholds->spare = NULL;
3546 }
3547 unlock:
3548 mutex_unlock(&memcg->thresholds_lock);
3549 }
3550
3551 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3552 struct eventfd_ctx *eventfd)
3553 {
3554 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3555 }
3556
3557 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3558 struct eventfd_ctx *eventfd)
3559 {
3560 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3561 }
3562
3563 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3564 struct eventfd_ctx *eventfd, const char *args)
3565 {
3566 struct mem_cgroup_eventfd_list *event;
3567
3568 event = kmalloc(sizeof(*event), GFP_KERNEL);
3569 if (!event)
3570 return -ENOMEM;
3571
3572 spin_lock(&memcg_oom_lock);
3573
3574 event->eventfd = eventfd;
3575 list_add(&event->list, &memcg->oom_notify);
3576
3577 /* already in OOM ? */
3578 if (memcg->under_oom)
3579 eventfd_signal(eventfd, 1);
3580 spin_unlock(&memcg_oom_lock);
3581
3582 return 0;
3583 }
3584
3585 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3586 struct eventfd_ctx *eventfd)
3587 {
3588 struct mem_cgroup_eventfd_list *ev, *tmp;
3589
3590 spin_lock(&memcg_oom_lock);
3591
3592 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3593 if (ev->eventfd == eventfd) {
3594 list_del(&ev->list);
3595 kfree(ev);
3596 }
3597 }
3598
3599 spin_unlock(&memcg_oom_lock);
3600 }
3601
3602 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3603 {
3604 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3605
3606 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3607 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3608 return 0;
3609 }
3610
3611 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3612 struct cftype *cft, u64 val)
3613 {
3614 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3615
3616 /* cannot set to root cgroup and only 0 and 1 are allowed */
3617 if (!css->parent || !((val == 0) || (val == 1)))
3618 return -EINVAL;
3619
3620 memcg->oom_kill_disable = val;
3621 if (!val)
3622 memcg_oom_recover(memcg);
3623
3624 return 0;
3625 }
3626
3627 #ifdef CONFIG_CGROUP_WRITEBACK
3628
3629 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3630 {
3631 return &memcg->cgwb_list;
3632 }
3633
3634 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3635 {
3636 return wb_domain_init(&memcg->cgwb_domain, gfp);
3637 }
3638
3639 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3640 {
3641 wb_domain_exit(&memcg->cgwb_domain);
3642 }
3643
3644 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3645 {
3646 wb_domain_size_changed(&memcg->cgwb_domain);
3647 }
3648
3649 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3650 {
3651 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3652
3653 if (!memcg->css.parent)
3654 return NULL;
3655
3656 return &memcg->cgwb_domain;
3657 }
3658
3659 /**
3660 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3661 * @wb: bdi_writeback in question
3662 * @pfilepages: out parameter for number of file pages
3663 * @pheadroom: out parameter for number of allocatable pages according to memcg
3664 * @pdirty: out parameter for number of dirty pages
3665 * @pwriteback: out parameter for number of pages under writeback
3666 *
3667 * Determine the numbers of file, headroom, dirty, and writeback pages in
3668 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3669 * is a bit more involved.
3670 *
3671 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3672 * headroom is calculated as the lowest headroom of itself and the
3673 * ancestors. Note that this doesn't consider the actual amount of
3674 * available memory in the system. The caller should further cap
3675 * *@pheadroom accordingly.
3676 */
3677 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3678 unsigned long *pheadroom, unsigned long *pdirty,
3679 unsigned long *pwriteback)
3680 {
3681 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3682 struct mem_cgroup *parent;
3683
3684 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3685
3686 /* this should eventually include NR_UNSTABLE_NFS */
3687 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3688 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3689 (1 << LRU_ACTIVE_FILE));
3690 *pheadroom = PAGE_COUNTER_MAX;
3691
3692 while ((parent = parent_mem_cgroup(memcg))) {
3693 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3694 unsigned long used = page_counter_read(&memcg->memory);
3695
3696 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3697 memcg = parent;
3698 }
3699 }
3700
3701 #else /* CONFIG_CGROUP_WRITEBACK */
3702
3703 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3704 {
3705 return 0;
3706 }
3707
3708 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3709 {
3710 }
3711
3712 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3713 {
3714 }
3715
3716 #endif /* CONFIG_CGROUP_WRITEBACK */
3717
3718 /*
3719 * DO NOT USE IN NEW FILES.
3720 *
3721 * "cgroup.event_control" implementation.
3722 *
3723 * This is way over-engineered. It tries to support fully configurable
3724 * events for each user. Such level of flexibility is completely
3725 * unnecessary especially in the light of the planned unified hierarchy.
3726 *
3727 * Please deprecate this and replace with something simpler if at all
3728 * possible.
3729 */
3730
3731 /*
3732 * Unregister event and free resources.
3733 *
3734 * Gets called from workqueue.
3735 */
3736 static void memcg_event_remove(struct work_struct *work)
3737 {
3738 struct mem_cgroup_event *event =
3739 container_of(work, struct mem_cgroup_event, remove);
3740 struct mem_cgroup *memcg = event->memcg;
3741
3742 remove_wait_queue(event->wqh, &event->wait);
3743
3744 event->unregister_event(memcg, event->eventfd);
3745
3746 /* Notify userspace the event is going away. */
3747 eventfd_signal(event->eventfd, 1);
3748
3749 eventfd_ctx_put(event->eventfd);
3750 kfree(event);
3751 css_put(&memcg->css);
3752 }
3753
3754 /*
3755 * Gets called on POLLHUP on eventfd when user closes it.
3756 *
3757 * Called with wqh->lock held and interrupts disabled.
3758 */
3759 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3760 int sync, void *key)
3761 {
3762 struct mem_cgroup_event *event =
3763 container_of(wait, struct mem_cgroup_event, wait);
3764 struct mem_cgroup *memcg = event->memcg;
3765 unsigned long flags = (unsigned long)key;
3766
3767 if (flags & POLLHUP) {
3768 /*
3769 * If the event has been detached at cgroup removal, we
3770 * can simply return knowing the other side will cleanup
3771 * for us.
3772 *
3773 * We can't race against event freeing since the other
3774 * side will require wqh->lock via remove_wait_queue(),
3775 * which we hold.
3776 */
3777 spin_lock(&memcg->event_list_lock);
3778 if (!list_empty(&event->list)) {
3779 list_del_init(&event->list);
3780 /*
3781 * We are in atomic context, but cgroup_event_remove()
3782 * may sleep, so we have to call it in workqueue.
3783 */
3784 schedule_work(&event->remove);
3785 }
3786 spin_unlock(&memcg->event_list_lock);
3787 }
3788
3789 return 0;
3790 }
3791
3792 static void memcg_event_ptable_queue_proc(struct file *file,
3793 wait_queue_head_t *wqh, poll_table *pt)
3794 {
3795 struct mem_cgroup_event *event =
3796 container_of(pt, struct mem_cgroup_event, pt);
3797
3798 event->wqh = wqh;
3799 add_wait_queue(wqh, &event->wait);
3800 }
3801
3802 /*
3803 * DO NOT USE IN NEW FILES.
3804 *
3805 * Parse input and register new cgroup event handler.
3806 *
3807 * Input must be in format '<event_fd> <control_fd> <args>'.
3808 * Interpretation of args is defined by control file implementation.
3809 */
3810 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3811 char *buf, size_t nbytes, loff_t off)
3812 {
3813 struct cgroup_subsys_state *css = of_css(of);
3814 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3815 struct mem_cgroup_event *event;
3816 struct cgroup_subsys_state *cfile_css;
3817 unsigned int efd, cfd;
3818 struct fd efile;
3819 struct fd cfile;
3820 const char *name;
3821 char *endp;
3822 int ret;
3823
3824 buf = strstrip(buf);
3825
3826 efd = simple_strtoul(buf, &endp, 10);
3827 if (*endp != ' ')
3828 return -EINVAL;
3829 buf = endp + 1;
3830
3831 cfd = simple_strtoul(buf, &endp, 10);
3832 if ((*endp != ' ') && (*endp != '\0'))
3833 return -EINVAL;
3834 buf = endp + 1;
3835
3836 event = kzalloc(sizeof(*event), GFP_KERNEL);
3837 if (!event)
3838 return -ENOMEM;
3839
3840 event->memcg = memcg;
3841 INIT_LIST_HEAD(&event->list);
3842 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3843 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3844 INIT_WORK(&event->remove, memcg_event_remove);
3845
3846 efile = fdget(efd);
3847 if (!efile.file) {
3848 ret = -EBADF;
3849 goto out_kfree;
3850 }
3851
3852 event->eventfd = eventfd_ctx_fileget(efile.file);
3853 if (IS_ERR(event->eventfd)) {
3854 ret = PTR_ERR(event->eventfd);
3855 goto out_put_efile;
3856 }
3857
3858 cfile = fdget(cfd);
3859 if (!cfile.file) {
3860 ret = -EBADF;
3861 goto out_put_eventfd;
3862 }
3863
3864 /* the process need read permission on control file */
3865 /* AV: shouldn't we check that it's been opened for read instead? */
3866 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3867 if (ret < 0)
3868 goto out_put_cfile;
3869
3870 /*
3871 * Determine the event callbacks and set them in @event. This used
3872 * to be done via struct cftype but cgroup core no longer knows
3873 * about these events. The following is crude but the whole thing
3874 * is for compatibility anyway.
3875 *
3876 * DO NOT ADD NEW FILES.
3877 */
3878 name = cfile.file->f_path.dentry->d_name.name;
3879
3880 if (!strcmp(name, "memory.usage_in_bytes")) {
3881 event->register_event = mem_cgroup_usage_register_event;
3882 event->unregister_event = mem_cgroup_usage_unregister_event;
3883 } else if (!strcmp(name, "memory.oom_control")) {
3884 event->register_event = mem_cgroup_oom_register_event;
3885 event->unregister_event = mem_cgroup_oom_unregister_event;
3886 } else if (!strcmp(name, "memory.pressure_level")) {
3887 event->register_event = vmpressure_register_event;
3888 event->unregister_event = vmpressure_unregister_event;
3889 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3890 event->register_event = memsw_cgroup_usage_register_event;
3891 event->unregister_event = memsw_cgroup_usage_unregister_event;
3892 } else {
3893 ret = -EINVAL;
3894 goto out_put_cfile;
3895 }
3896
3897 /*
3898 * Verify @cfile should belong to @css. Also, remaining events are
3899 * automatically removed on cgroup destruction but the removal is
3900 * asynchronous, so take an extra ref on @css.
3901 */
3902 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3903 &memory_cgrp_subsys);
3904 ret = -EINVAL;
3905 if (IS_ERR(cfile_css))
3906 goto out_put_cfile;
3907 if (cfile_css != css) {
3908 css_put(cfile_css);
3909 goto out_put_cfile;
3910 }
3911
3912 ret = event->register_event(memcg, event->eventfd, buf);
3913 if (ret)
3914 goto out_put_css;
3915
3916 efile.file->f_op->poll(efile.file, &event->pt);
3917
3918 spin_lock(&memcg->event_list_lock);
3919 list_add(&event->list, &memcg->event_list);
3920 spin_unlock(&memcg->event_list_lock);
3921
3922 fdput(cfile);
3923 fdput(efile);
3924
3925 return nbytes;
3926
3927 out_put_css:
3928 css_put(css);
3929 out_put_cfile:
3930 fdput(cfile);
3931 out_put_eventfd:
3932 eventfd_ctx_put(event->eventfd);
3933 out_put_efile:
3934 fdput(efile);
3935 out_kfree:
3936 kfree(event);
3937
3938 return ret;
3939 }
3940
3941 static struct cftype mem_cgroup_legacy_files[] = {
3942 {
3943 .name = "usage_in_bytes",
3944 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3945 .read_u64 = mem_cgroup_read_u64,
3946 },
3947 {
3948 .name = "max_usage_in_bytes",
3949 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3950 .write = mem_cgroup_reset,
3951 .read_u64 = mem_cgroup_read_u64,
3952 },
3953 {
3954 .name = "limit_in_bytes",
3955 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3956 .write = mem_cgroup_write,
3957 .read_u64 = mem_cgroup_read_u64,
3958 },
3959 {
3960 .name = "soft_limit_in_bytes",
3961 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3962 .write = mem_cgroup_write,
3963 .read_u64 = mem_cgroup_read_u64,
3964 },
3965 {
3966 .name = "failcnt",
3967 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3968 .write = mem_cgroup_reset,
3969 .read_u64 = mem_cgroup_read_u64,
3970 },
3971 {
3972 .name = "stat",
3973 .seq_show = memcg_stat_show,
3974 },
3975 {
3976 .name = "force_empty",
3977 .write = mem_cgroup_force_empty_write,
3978 },
3979 {
3980 .name = "use_hierarchy",
3981 .write_u64 = mem_cgroup_hierarchy_write,
3982 .read_u64 = mem_cgroup_hierarchy_read,
3983 },
3984 {
3985 .name = "cgroup.event_control", /* XXX: for compat */
3986 .write = memcg_write_event_control,
3987 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3988 },
3989 {
3990 .name = "swappiness",
3991 .read_u64 = mem_cgroup_swappiness_read,
3992 .write_u64 = mem_cgroup_swappiness_write,
3993 },
3994 {
3995 .name = "move_charge_at_immigrate",
3996 .read_u64 = mem_cgroup_move_charge_read,
3997 .write_u64 = mem_cgroup_move_charge_write,
3998 },
3999 {
4000 .name = "oom_control",
4001 .seq_show = mem_cgroup_oom_control_read,
4002 .write_u64 = mem_cgroup_oom_control_write,
4003 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4004 },
4005 {
4006 .name = "pressure_level",
4007 },
4008 #ifdef CONFIG_NUMA
4009 {
4010 .name = "numa_stat",
4011 .seq_show = memcg_numa_stat_show,
4012 },
4013 #endif
4014 {
4015 .name = "kmem.limit_in_bytes",
4016 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4017 .write = mem_cgroup_write,
4018 .read_u64 = mem_cgroup_read_u64,
4019 },
4020 {
4021 .name = "kmem.usage_in_bytes",
4022 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4023 .read_u64 = mem_cgroup_read_u64,
4024 },
4025 {
4026 .name = "kmem.failcnt",
4027 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4028 .write = mem_cgroup_reset,
4029 .read_u64 = mem_cgroup_read_u64,
4030 },
4031 {
4032 .name = "kmem.max_usage_in_bytes",
4033 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4034 .write = mem_cgroup_reset,
4035 .read_u64 = mem_cgroup_read_u64,
4036 },
4037 #ifdef CONFIG_SLABINFO
4038 {
4039 .name = "kmem.slabinfo",
4040 .seq_start = slab_start,
4041 .seq_next = slab_next,
4042 .seq_stop = slab_stop,
4043 .seq_show = memcg_slab_show,
4044 },
4045 #endif
4046 {
4047 .name = "kmem.tcp.limit_in_bytes",
4048 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4049 .write = mem_cgroup_write,
4050 .read_u64 = mem_cgroup_read_u64,
4051 },
4052 {
4053 .name = "kmem.tcp.usage_in_bytes",
4054 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4055 .read_u64 = mem_cgroup_read_u64,
4056 },
4057 {
4058 .name = "kmem.tcp.failcnt",
4059 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4060 .write = mem_cgroup_reset,
4061 .read_u64 = mem_cgroup_read_u64,
4062 },
4063 {
4064 .name = "kmem.tcp.max_usage_in_bytes",
4065 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4066 .write = mem_cgroup_reset,
4067 .read_u64 = mem_cgroup_read_u64,
4068 },
4069 { }, /* terminate */
4070 };
4071
4072 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4073 {
4074 struct mem_cgroup_per_node *pn;
4075 struct mem_cgroup_per_zone *mz;
4076 int zone, tmp = node;
4077 /*
4078 * This routine is called against possible nodes.
4079 * But it's BUG to call kmalloc() against offline node.
4080 *
4081 * TODO: this routine can waste much memory for nodes which will
4082 * never be onlined. It's better to use memory hotplug callback
4083 * function.
4084 */
4085 if (!node_state(node, N_NORMAL_MEMORY))
4086 tmp = -1;
4087 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4088 if (!pn)
4089 return 1;
4090
4091 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4092 mz = &pn->zoneinfo[zone];
4093 lruvec_init(&mz->lruvec);
4094 mz->usage_in_excess = 0;
4095 mz->on_tree = false;
4096 mz->memcg = memcg;
4097 }
4098 memcg->nodeinfo[node] = pn;
4099 return 0;
4100 }
4101
4102 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4103 {
4104 kfree(memcg->nodeinfo[node]);
4105 }
4106
4107 static void mem_cgroup_free(struct mem_cgroup *memcg)
4108 {
4109 int node;
4110
4111 memcg_wb_domain_exit(memcg);
4112 for_each_node(node)
4113 free_mem_cgroup_per_zone_info(memcg, node);
4114 free_percpu(memcg->stat);
4115 kfree(memcg);
4116 }
4117
4118 static struct mem_cgroup *mem_cgroup_alloc(void)
4119 {
4120 struct mem_cgroup *memcg;
4121 size_t size;
4122 int node;
4123
4124 size = sizeof(struct mem_cgroup);
4125 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4126
4127 memcg = kzalloc(size, GFP_KERNEL);
4128 if (!memcg)
4129 return NULL;
4130
4131 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4132 if (!memcg->stat)
4133 goto fail;
4134
4135 for_each_node(node)
4136 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4137 goto fail;
4138
4139 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4140 goto fail;
4141
4142 INIT_WORK(&memcg->high_work, high_work_func);
4143 memcg->last_scanned_node = MAX_NUMNODES;
4144 INIT_LIST_HEAD(&memcg->oom_notify);
4145 mutex_init(&memcg->thresholds_lock);
4146 spin_lock_init(&memcg->move_lock);
4147 vmpressure_init(&memcg->vmpressure);
4148 INIT_LIST_HEAD(&memcg->event_list);
4149 spin_lock_init(&memcg->event_list_lock);
4150 memcg->socket_pressure = jiffies;
4151 #ifndef CONFIG_SLOB
4152 memcg->kmemcg_id = -1;
4153 #endif
4154 #ifdef CONFIG_CGROUP_WRITEBACK
4155 INIT_LIST_HEAD(&memcg->cgwb_list);
4156 #endif
4157 return memcg;
4158 fail:
4159 mem_cgroup_free(memcg);
4160 return NULL;
4161 }
4162
4163 static struct cgroup_subsys_state * __ref
4164 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4165 {
4166 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4167 struct mem_cgroup *memcg;
4168 long error = -ENOMEM;
4169
4170 memcg = mem_cgroup_alloc();
4171 if (!memcg)
4172 return ERR_PTR(error);
4173
4174 memcg->high = PAGE_COUNTER_MAX;
4175 memcg->soft_limit = PAGE_COUNTER_MAX;
4176 if (parent) {
4177 memcg->swappiness = mem_cgroup_swappiness(parent);
4178 memcg->oom_kill_disable = parent->oom_kill_disable;
4179 }
4180 if (parent && parent->use_hierarchy) {
4181 memcg->use_hierarchy = true;
4182 page_counter_init(&memcg->memory, &parent->memory);
4183 page_counter_init(&memcg->swap, &parent->swap);
4184 page_counter_init(&memcg->memsw, &parent->memsw);
4185 page_counter_init(&memcg->kmem, &parent->kmem);
4186 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4187 } else {
4188 page_counter_init(&memcg->memory, NULL);
4189 page_counter_init(&memcg->swap, NULL);
4190 page_counter_init(&memcg->memsw, NULL);
4191 page_counter_init(&memcg->kmem, NULL);
4192 page_counter_init(&memcg->tcpmem, NULL);
4193 /*
4194 * Deeper hierachy with use_hierarchy == false doesn't make
4195 * much sense so let cgroup subsystem know about this
4196 * unfortunate state in our controller.
4197 */
4198 if (parent != root_mem_cgroup)
4199 memory_cgrp_subsys.broken_hierarchy = true;
4200 }
4201
4202 /* The following stuff does not apply to the root */
4203 if (!parent) {
4204 root_mem_cgroup = memcg;
4205 return &memcg->css;
4206 }
4207
4208 error = memcg_propagate_kmem(parent, memcg);
4209 if (error)
4210 goto fail;
4211
4212 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4213 static_branch_inc(&memcg_sockets_enabled_key);
4214
4215 return &memcg->css;
4216 fail:
4217 mem_cgroup_free(memcg);
4218 return NULL;
4219 }
4220
4221 static int
4222 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4223 {
4224 if (css->id > MEM_CGROUP_ID_MAX)
4225 return -ENOSPC;
4226
4227 return 0;
4228 }
4229
4230 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4231 {
4232 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4233 struct mem_cgroup_event *event, *tmp;
4234
4235 /*
4236 * Unregister events and notify userspace.
4237 * Notify userspace about cgroup removing only after rmdir of cgroup
4238 * directory to avoid race between userspace and kernelspace.
4239 */
4240 spin_lock(&memcg->event_list_lock);
4241 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4242 list_del_init(&event->list);
4243 schedule_work(&event->remove);
4244 }
4245 spin_unlock(&memcg->event_list_lock);
4246
4247 memcg_offline_kmem(memcg);
4248 wb_memcg_offline(memcg);
4249 }
4250
4251 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4252 {
4253 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4254
4255 invalidate_reclaim_iterators(memcg);
4256 }
4257
4258 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4259 {
4260 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4261
4262 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4263 static_branch_dec(&memcg_sockets_enabled_key);
4264
4265 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4266 static_branch_dec(&memcg_sockets_enabled_key);
4267
4268 vmpressure_cleanup(&memcg->vmpressure);
4269 cancel_work_sync(&memcg->high_work);
4270 mem_cgroup_remove_from_trees(memcg);
4271 memcg_free_kmem(memcg);
4272 mem_cgroup_free(memcg);
4273 }
4274
4275 /**
4276 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4277 * @css: the target css
4278 *
4279 * Reset the states of the mem_cgroup associated with @css. This is
4280 * invoked when the userland requests disabling on the default hierarchy
4281 * but the memcg is pinned through dependency. The memcg should stop
4282 * applying policies and should revert to the vanilla state as it may be
4283 * made visible again.
4284 *
4285 * The current implementation only resets the essential configurations.
4286 * This needs to be expanded to cover all the visible parts.
4287 */
4288 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4289 {
4290 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4291
4292 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4293 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4294 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4295 memcg->low = 0;
4296 memcg->high = PAGE_COUNTER_MAX;
4297 memcg->soft_limit = PAGE_COUNTER_MAX;
4298 memcg_wb_domain_size_changed(memcg);
4299 }
4300
4301 #ifdef CONFIG_MMU
4302 /* Handlers for move charge at task migration. */
4303 static int mem_cgroup_do_precharge(unsigned long count)
4304 {
4305 int ret;
4306
4307 /* Try a single bulk charge without reclaim first, kswapd may wake */
4308 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4309 if (!ret) {
4310 mc.precharge += count;
4311 return ret;
4312 }
4313
4314 /* Try charges one by one with reclaim */
4315 while (count--) {
4316 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4317 if (ret)
4318 return ret;
4319 mc.precharge++;
4320 cond_resched();
4321 }
4322 return 0;
4323 }
4324
4325 /**
4326 * get_mctgt_type - get target type of moving charge
4327 * @vma: the vma the pte to be checked belongs
4328 * @addr: the address corresponding to the pte to be checked
4329 * @ptent: the pte to be checked
4330 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4331 *
4332 * Returns
4333 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4334 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4335 * move charge. if @target is not NULL, the page is stored in target->page
4336 * with extra refcnt got(Callers should handle it).
4337 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4338 * target for charge migration. if @target is not NULL, the entry is stored
4339 * in target->ent.
4340 *
4341 * Called with pte lock held.
4342 */
4343 union mc_target {
4344 struct page *page;
4345 swp_entry_t ent;
4346 };
4347
4348 enum mc_target_type {
4349 MC_TARGET_NONE = 0,
4350 MC_TARGET_PAGE,
4351 MC_TARGET_SWAP,
4352 };
4353
4354 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4355 unsigned long addr, pte_t ptent)
4356 {
4357 struct page *page = vm_normal_page(vma, addr, ptent);
4358
4359 if (!page || !page_mapped(page))
4360 return NULL;
4361 if (PageAnon(page)) {
4362 if (!(mc.flags & MOVE_ANON))
4363 return NULL;
4364 } else {
4365 if (!(mc.flags & MOVE_FILE))
4366 return NULL;
4367 }
4368 if (!get_page_unless_zero(page))
4369 return NULL;
4370
4371 return page;
4372 }
4373
4374 #ifdef CONFIG_SWAP
4375 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4376 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4377 {
4378 struct page *page = NULL;
4379 swp_entry_t ent = pte_to_swp_entry(ptent);
4380
4381 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4382 return NULL;
4383 /*
4384 * Because lookup_swap_cache() updates some statistics counter,
4385 * we call find_get_page() with swapper_space directly.
4386 */
4387 page = find_get_page(swap_address_space(ent), ent.val);
4388 if (do_memsw_account())
4389 entry->val = ent.val;
4390
4391 return page;
4392 }
4393 #else
4394 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4395 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4396 {
4397 return NULL;
4398 }
4399 #endif
4400
4401 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4402 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4403 {
4404 struct page *page = NULL;
4405 struct address_space *mapping;
4406 pgoff_t pgoff;
4407
4408 if (!vma->vm_file) /* anonymous vma */
4409 return NULL;
4410 if (!(mc.flags & MOVE_FILE))
4411 return NULL;
4412
4413 mapping = vma->vm_file->f_mapping;
4414 pgoff = linear_page_index(vma, addr);
4415
4416 /* page is moved even if it's not RSS of this task(page-faulted). */
4417 #ifdef CONFIG_SWAP
4418 /* shmem/tmpfs may report page out on swap: account for that too. */
4419 if (shmem_mapping(mapping)) {
4420 page = find_get_entry(mapping, pgoff);
4421 if (radix_tree_exceptional_entry(page)) {
4422 swp_entry_t swp = radix_to_swp_entry(page);
4423 if (do_memsw_account())
4424 *entry = swp;
4425 page = find_get_page(swap_address_space(swp), swp.val);
4426 }
4427 } else
4428 page = find_get_page(mapping, pgoff);
4429 #else
4430 page = find_get_page(mapping, pgoff);
4431 #endif
4432 return page;
4433 }
4434
4435 /**
4436 * mem_cgroup_move_account - move account of the page
4437 * @page: the page
4438 * @nr_pages: number of regular pages (>1 for huge pages)
4439 * @from: mem_cgroup which the page is moved from.
4440 * @to: mem_cgroup which the page is moved to. @from != @to.
4441 *
4442 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4443 *
4444 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4445 * from old cgroup.
4446 */
4447 static int mem_cgroup_move_account(struct page *page,
4448 bool compound,
4449 struct mem_cgroup *from,
4450 struct mem_cgroup *to)
4451 {
4452 unsigned long flags;
4453 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4454 int ret;
4455 bool anon;
4456
4457 VM_BUG_ON(from == to);
4458 VM_BUG_ON_PAGE(PageLRU(page), page);
4459 VM_BUG_ON(compound && !PageTransHuge(page));
4460
4461 /*
4462 * Prevent mem_cgroup_migrate() from looking at
4463 * page->mem_cgroup of its source page while we change it.
4464 */
4465 ret = -EBUSY;
4466 if (!trylock_page(page))
4467 goto out;
4468
4469 ret = -EINVAL;
4470 if (page->mem_cgroup != from)
4471 goto out_unlock;
4472
4473 anon = PageAnon(page);
4474
4475 spin_lock_irqsave(&from->move_lock, flags);
4476
4477 if (!anon && page_mapped(page)) {
4478 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4479 nr_pages);
4480 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4481 nr_pages);
4482 }
4483
4484 /*
4485 * move_lock grabbed above and caller set from->moving_account, so
4486 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4487 * So mapping should be stable for dirty pages.
4488 */
4489 if (!anon && PageDirty(page)) {
4490 struct address_space *mapping = page_mapping(page);
4491
4492 if (mapping_cap_account_dirty(mapping)) {
4493 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4494 nr_pages);
4495 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4496 nr_pages);
4497 }
4498 }
4499
4500 if (PageWriteback(page)) {
4501 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4502 nr_pages);
4503 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4504 nr_pages);
4505 }
4506
4507 /*
4508 * It is safe to change page->mem_cgroup here because the page
4509 * is referenced, charged, and isolated - we can't race with
4510 * uncharging, charging, migration, or LRU putback.
4511 */
4512
4513 /* caller should have done css_get */
4514 page->mem_cgroup = to;
4515 spin_unlock_irqrestore(&from->move_lock, flags);
4516
4517 ret = 0;
4518
4519 local_irq_disable();
4520 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4521 memcg_check_events(to, page);
4522 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4523 memcg_check_events(from, page);
4524 local_irq_enable();
4525 out_unlock:
4526 unlock_page(page);
4527 out:
4528 return ret;
4529 }
4530
4531 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4532 unsigned long addr, pte_t ptent, union mc_target *target)
4533 {
4534 struct page *page = NULL;
4535 enum mc_target_type ret = MC_TARGET_NONE;
4536 swp_entry_t ent = { .val = 0 };
4537
4538 if (pte_present(ptent))
4539 page = mc_handle_present_pte(vma, addr, ptent);
4540 else if (is_swap_pte(ptent))
4541 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4542 else if (pte_none(ptent))
4543 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4544
4545 if (!page && !ent.val)
4546 return ret;
4547 if (page) {
4548 /*
4549 * Do only loose check w/o serialization.
4550 * mem_cgroup_move_account() checks the page is valid or
4551 * not under LRU exclusion.
4552 */
4553 if (page->mem_cgroup == mc.from) {
4554 ret = MC_TARGET_PAGE;
4555 if (target)
4556 target->page = page;
4557 }
4558 if (!ret || !target)
4559 put_page(page);
4560 }
4561 /* There is a swap entry and a page doesn't exist or isn't charged */
4562 if (ent.val && !ret &&
4563 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4564 ret = MC_TARGET_SWAP;
4565 if (target)
4566 target->ent = ent;
4567 }
4568 return ret;
4569 }
4570
4571 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4572 /*
4573 * We don't consider swapping or file mapped pages because THP does not
4574 * support them for now.
4575 * Caller should make sure that pmd_trans_huge(pmd) is true.
4576 */
4577 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4578 unsigned long addr, pmd_t pmd, union mc_target *target)
4579 {
4580 struct page *page = NULL;
4581 enum mc_target_type ret = MC_TARGET_NONE;
4582
4583 page = pmd_page(pmd);
4584 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4585 if (!(mc.flags & MOVE_ANON))
4586 return ret;
4587 if (page->mem_cgroup == mc.from) {
4588 ret = MC_TARGET_PAGE;
4589 if (target) {
4590 get_page(page);
4591 target->page = page;
4592 }
4593 }
4594 return ret;
4595 }
4596 #else
4597 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4598 unsigned long addr, pmd_t pmd, union mc_target *target)
4599 {
4600 return MC_TARGET_NONE;
4601 }
4602 #endif
4603
4604 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4605 unsigned long addr, unsigned long end,
4606 struct mm_walk *walk)
4607 {
4608 struct vm_area_struct *vma = walk->vma;
4609 pte_t *pte;
4610 spinlock_t *ptl;
4611
4612 ptl = pmd_trans_huge_lock(pmd, vma);
4613 if (ptl) {
4614 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4615 mc.precharge += HPAGE_PMD_NR;
4616 spin_unlock(ptl);
4617 return 0;
4618 }
4619
4620 if (pmd_trans_unstable(pmd))
4621 return 0;
4622 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4623 for (; addr != end; pte++, addr += PAGE_SIZE)
4624 if (get_mctgt_type(vma, addr, *pte, NULL))
4625 mc.precharge++; /* increment precharge temporarily */
4626 pte_unmap_unlock(pte - 1, ptl);
4627 cond_resched();
4628
4629 return 0;
4630 }
4631
4632 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4633 {
4634 unsigned long precharge;
4635
4636 struct mm_walk mem_cgroup_count_precharge_walk = {
4637 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4638 .mm = mm,
4639 };
4640 down_read(&mm->mmap_sem);
4641 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4642 up_read(&mm->mmap_sem);
4643
4644 precharge = mc.precharge;
4645 mc.precharge = 0;
4646
4647 return precharge;
4648 }
4649
4650 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4651 {
4652 unsigned long precharge = mem_cgroup_count_precharge(mm);
4653
4654 VM_BUG_ON(mc.moving_task);
4655 mc.moving_task = current;
4656 return mem_cgroup_do_precharge(precharge);
4657 }
4658
4659 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4660 static void __mem_cgroup_clear_mc(void)
4661 {
4662 struct mem_cgroup *from = mc.from;
4663 struct mem_cgroup *to = mc.to;
4664
4665 /* we must uncharge all the leftover precharges from mc.to */
4666 if (mc.precharge) {
4667 cancel_charge(mc.to, mc.precharge);
4668 mc.precharge = 0;
4669 }
4670 /*
4671 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4672 * we must uncharge here.
4673 */
4674 if (mc.moved_charge) {
4675 cancel_charge(mc.from, mc.moved_charge);
4676 mc.moved_charge = 0;
4677 }
4678 /* we must fixup refcnts and charges */
4679 if (mc.moved_swap) {
4680 /* uncharge swap account from the old cgroup */
4681 if (!mem_cgroup_is_root(mc.from))
4682 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4683
4684 /*
4685 * we charged both to->memory and to->memsw, so we
4686 * should uncharge to->memory.
4687 */
4688 if (!mem_cgroup_is_root(mc.to))
4689 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4690
4691 css_put_many(&mc.from->css, mc.moved_swap);
4692
4693 /* we've already done css_get(mc.to) */
4694 mc.moved_swap = 0;
4695 }
4696 memcg_oom_recover(from);
4697 memcg_oom_recover(to);
4698 wake_up_all(&mc.waitq);
4699 }
4700
4701 static void mem_cgroup_clear_mc(void)
4702 {
4703 /*
4704 * we must clear moving_task before waking up waiters at the end of
4705 * task migration.
4706 */
4707 mc.moving_task = NULL;
4708 __mem_cgroup_clear_mc();
4709 spin_lock(&mc.lock);
4710 mc.from = NULL;
4711 mc.to = NULL;
4712 spin_unlock(&mc.lock);
4713 }
4714
4715 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4716 {
4717 struct cgroup_subsys_state *css;
4718 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4719 struct mem_cgroup *from;
4720 struct task_struct *leader, *p;
4721 struct mm_struct *mm;
4722 unsigned long move_flags;
4723 int ret = 0;
4724
4725 /* charge immigration isn't supported on the default hierarchy */
4726 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4727 return 0;
4728
4729 /*
4730 * Multi-process migrations only happen on the default hierarchy
4731 * where charge immigration is not used. Perform charge
4732 * immigration if @tset contains a leader and whine if there are
4733 * multiple.
4734 */
4735 p = NULL;
4736 cgroup_taskset_for_each_leader(leader, css, tset) {
4737 WARN_ON_ONCE(p);
4738 p = leader;
4739 memcg = mem_cgroup_from_css(css);
4740 }
4741 if (!p)
4742 return 0;
4743
4744 /*
4745 * We are now commited to this value whatever it is. Changes in this
4746 * tunable will only affect upcoming migrations, not the current one.
4747 * So we need to save it, and keep it going.
4748 */
4749 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4750 if (!move_flags)
4751 return 0;
4752
4753 from = mem_cgroup_from_task(p);
4754
4755 VM_BUG_ON(from == memcg);
4756
4757 mm = get_task_mm(p);
4758 if (!mm)
4759 return 0;
4760 /* We move charges only when we move a owner of the mm */
4761 if (mm->owner == p) {
4762 VM_BUG_ON(mc.from);
4763 VM_BUG_ON(mc.to);
4764 VM_BUG_ON(mc.precharge);
4765 VM_BUG_ON(mc.moved_charge);
4766 VM_BUG_ON(mc.moved_swap);
4767
4768 spin_lock(&mc.lock);
4769 mc.from = from;
4770 mc.to = memcg;
4771 mc.flags = move_flags;
4772 spin_unlock(&mc.lock);
4773 /* We set mc.moving_task later */
4774
4775 ret = mem_cgroup_precharge_mc(mm);
4776 if (ret)
4777 mem_cgroup_clear_mc();
4778 }
4779 mmput(mm);
4780 return ret;
4781 }
4782
4783 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4784 {
4785 if (mc.to)
4786 mem_cgroup_clear_mc();
4787 }
4788
4789 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4790 unsigned long addr, unsigned long end,
4791 struct mm_walk *walk)
4792 {
4793 int ret = 0;
4794 struct vm_area_struct *vma = walk->vma;
4795 pte_t *pte;
4796 spinlock_t *ptl;
4797 enum mc_target_type target_type;
4798 union mc_target target;
4799 struct page *page;
4800
4801 ptl = pmd_trans_huge_lock(pmd, vma);
4802 if (ptl) {
4803 if (mc.precharge < HPAGE_PMD_NR) {
4804 spin_unlock(ptl);
4805 return 0;
4806 }
4807 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4808 if (target_type == MC_TARGET_PAGE) {
4809 page = target.page;
4810 if (!isolate_lru_page(page)) {
4811 if (!mem_cgroup_move_account(page, true,
4812 mc.from, mc.to)) {
4813 mc.precharge -= HPAGE_PMD_NR;
4814 mc.moved_charge += HPAGE_PMD_NR;
4815 }
4816 putback_lru_page(page);
4817 }
4818 put_page(page);
4819 }
4820 spin_unlock(ptl);
4821 return 0;
4822 }
4823
4824 if (pmd_trans_unstable(pmd))
4825 return 0;
4826 retry:
4827 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4828 for (; addr != end; addr += PAGE_SIZE) {
4829 pte_t ptent = *(pte++);
4830 swp_entry_t ent;
4831
4832 if (!mc.precharge)
4833 break;
4834
4835 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4836 case MC_TARGET_PAGE:
4837 page = target.page;
4838 /*
4839 * We can have a part of the split pmd here. Moving it
4840 * can be done but it would be too convoluted so simply
4841 * ignore such a partial THP and keep it in original
4842 * memcg. There should be somebody mapping the head.
4843 */
4844 if (PageTransCompound(page))
4845 goto put;
4846 if (isolate_lru_page(page))
4847 goto put;
4848 if (!mem_cgroup_move_account(page, false,
4849 mc.from, mc.to)) {
4850 mc.precharge--;
4851 /* we uncharge from mc.from later. */
4852 mc.moved_charge++;
4853 }
4854 putback_lru_page(page);
4855 put: /* get_mctgt_type() gets the page */
4856 put_page(page);
4857 break;
4858 case MC_TARGET_SWAP:
4859 ent = target.ent;
4860 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4861 mc.precharge--;
4862 /* we fixup refcnts and charges later. */
4863 mc.moved_swap++;
4864 }
4865 break;
4866 default:
4867 break;
4868 }
4869 }
4870 pte_unmap_unlock(pte - 1, ptl);
4871 cond_resched();
4872
4873 if (addr != end) {
4874 /*
4875 * We have consumed all precharges we got in can_attach().
4876 * We try charge one by one, but don't do any additional
4877 * charges to mc.to if we have failed in charge once in attach()
4878 * phase.
4879 */
4880 ret = mem_cgroup_do_precharge(1);
4881 if (!ret)
4882 goto retry;
4883 }
4884
4885 return ret;
4886 }
4887
4888 static void mem_cgroup_move_charge(struct mm_struct *mm)
4889 {
4890 struct mm_walk mem_cgroup_move_charge_walk = {
4891 .pmd_entry = mem_cgroup_move_charge_pte_range,
4892 .mm = mm,
4893 };
4894
4895 lru_add_drain_all();
4896 /*
4897 * Signal lock_page_memcg() to take the memcg's move_lock
4898 * while we're moving its pages to another memcg. Then wait
4899 * for already started RCU-only updates to finish.
4900 */
4901 atomic_inc(&mc.from->moving_account);
4902 synchronize_rcu();
4903 retry:
4904 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4905 /*
4906 * Someone who are holding the mmap_sem might be waiting in
4907 * waitq. So we cancel all extra charges, wake up all waiters,
4908 * and retry. Because we cancel precharges, we might not be able
4909 * to move enough charges, but moving charge is a best-effort
4910 * feature anyway, so it wouldn't be a big problem.
4911 */
4912 __mem_cgroup_clear_mc();
4913 cond_resched();
4914 goto retry;
4915 }
4916 /*
4917 * When we have consumed all precharges and failed in doing
4918 * additional charge, the page walk just aborts.
4919 */
4920 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4921 up_read(&mm->mmap_sem);
4922 atomic_dec(&mc.from->moving_account);
4923 }
4924
4925 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4926 {
4927 struct cgroup_subsys_state *css;
4928 struct task_struct *p = cgroup_taskset_first(tset, &css);
4929 struct mm_struct *mm = get_task_mm(p);
4930
4931 if (mm) {
4932 if (mc.to)
4933 mem_cgroup_move_charge(mm);
4934 mmput(mm);
4935 }
4936 if (mc.to)
4937 mem_cgroup_clear_mc();
4938 }
4939 #else /* !CONFIG_MMU */
4940 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4941 {
4942 return 0;
4943 }
4944 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4945 {
4946 }
4947 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4948 {
4949 }
4950 #endif
4951
4952 /*
4953 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4954 * to verify whether we're attached to the default hierarchy on each mount
4955 * attempt.
4956 */
4957 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4958 {
4959 /*
4960 * use_hierarchy is forced on the default hierarchy. cgroup core
4961 * guarantees that @root doesn't have any children, so turning it
4962 * on for the root memcg is enough.
4963 */
4964 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4965 root_mem_cgroup->use_hierarchy = true;
4966 else
4967 root_mem_cgroup->use_hierarchy = false;
4968 }
4969
4970 static u64 memory_current_read(struct cgroup_subsys_state *css,
4971 struct cftype *cft)
4972 {
4973 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4974
4975 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4976 }
4977
4978 static int memory_low_show(struct seq_file *m, void *v)
4979 {
4980 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4981 unsigned long low = READ_ONCE(memcg->low);
4982
4983 if (low == PAGE_COUNTER_MAX)
4984 seq_puts(m, "max\n");
4985 else
4986 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4987
4988 return 0;
4989 }
4990
4991 static ssize_t memory_low_write(struct kernfs_open_file *of,
4992 char *buf, size_t nbytes, loff_t off)
4993 {
4994 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4995 unsigned long low;
4996 int err;
4997
4998 buf = strstrip(buf);
4999 err = page_counter_memparse(buf, "max", &low);
5000 if (err)
5001 return err;
5002
5003 memcg->low = low;
5004
5005 return nbytes;
5006 }
5007
5008 static int memory_high_show(struct seq_file *m, void *v)
5009 {
5010 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5011 unsigned long high = READ_ONCE(memcg->high);
5012
5013 if (high == PAGE_COUNTER_MAX)
5014 seq_puts(m, "max\n");
5015 else
5016 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5017
5018 return 0;
5019 }
5020
5021 static ssize_t memory_high_write(struct kernfs_open_file *of,
5022 char *buf, size_t nbytes, loff_t off)
5023 {
5024 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5025 unsigned long high;
5026 int err;
5027
5028 buf = strstrip(buf);
5029 err = page_counter_memparse(buf, "max", &high);
5030 if (err)
5031 return err;
5032
5033 memcg->high = high;
5034
5035 memcg_wb_domain_size_changed(memcg);
5036 return nbytes;
5037 }
5038
5039 static int memory_max_show(struct seq_file *m, void *v)
5040 {
5041 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5042 unsigned long max = READ_ONCE(memcg->memory.limit);
5043
5044 if (max == PAGE_COUNTER_MAX)
5045 seq_puts(m, "max\n");
5046 else
5047 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5048
5049 return 0;
5050 }
5051
5052 static ssize_t memory_max_write(struct kernfs_open_file *of,
5053 char *buf, size_t nbytes, loff_t off)
5054 {
5055 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5056 unsigned long max;
5057 int err;
5058
5059 buf = strstrip(buf);
5060 err = page_counter_memparse(buf, "max", &max);
5061 if (err)
5062 return err;
5063
5064 err = mem_cgroup_resize_limit(memcg, max);
5065 if (err)
5066 return err;
5067
5068 memcg_wb_domain_size_changed(memcg);
5069 return nbytes;
5070 }
5071
5072 static int memory_events_show(struct seq_file *m, void *v)
5073 {
5074 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5075
5076 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5077 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5078 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5079 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5080
5081 return 0;
5082 }
5083
5084 static int memory_stat_show(struct seq_file *m, void *v)
5085 {
5086 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5087 unsigned long stat[MEMCG_NR_STAT];
5088 unsigned long events[MEMCG_NR_EVENTS];
5089 int i;
5090
5091 /*
5092 * Provide statistics on the state of the memory subsystem as
5093 * well as cumulative event counters that show past behavior.
5094 *
5095 * This list is ordered following a combination of these gradients:
5096 * 1) generic big picture -> specifics and details
5097 * 2) reflecting userspace activity -> reflecting kernel heuristics
5098 *
5099 * Current memory state:
5100 */
5101
5102 tree_stat(memcg, stat);
5103 tree_events(memcg, events);
5104
5105 seq_printf(m, "anon %llu\n",
5106 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5107 seq_printf(m, "file %llu\n",
5108 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5109 seq_printf(m, "kernel_stack %llu\n",
5110 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5111 seq_printf(m, "slab %llu\n",
5112 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5113 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5114 seq_printf(m, "sock %llu\n",
5115 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5116
5117 seq_printf(m, "file_mapped %llu\n",
5118 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5119 seq_printf(m, "file_dirty %llu\n",
5120 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5121 seq_printf(m, "file_writeback %llu\n",
5122 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5123
5124 for (i = 0; i < NR_LRU_LISTS; i++) {
5125 struct mem_cgroup *mi;
5126 unsigned long val = 0;
5127
5128 for_each_mem_cgroup_tree(mi, memcg)
5129 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5130 seq_printf(m, "%s %llu\n",
5131 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5132 }
5133
5134 seq_printf(m, "slab_reclaimable %llu\n",
5135 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5136 seq_printf(m, "slab_unreclaimable %llu\n",
5137 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5138
5139 /* Accumulated memory events */
5140
5141 seq_printf(m, "pgfault %lu\n",
5142 events[MEM_CGROUP_EVENTS_PGFAULT]);
5143 seq_printf(m, "pgmajfault %lu\n",
5144 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5145
5146 return 0;
5147 }
5148
5149 static struct cftype memory_files[] = {
5150 {
5151 .name = "current",
5152 .flags = CFTYPE_NOT_ON_ROOT,
5153 .read_u64 = memory_current_read,
5154 },
5155 {
5156 .name = "low",
5157 .flags = CFTYPE_NOT_ON_ROOT,
5158 .seq_show = memory_low_show,
5159 .write = memory_low_write,
5160 },
5161 {
5162 .name = "high",
5163 .flags = CFTYPE_NOT_ON_ROOT,
5164 .seq_show = memory_high_show,
5165 .write = memory_high_write,
5166 },
5167 {
5168 .name = "max",
5169 .flags = CFTYPE_NOT_ON_ROOT,
5170 .seq_show = memory_max_show,
5171 .write = memory_max_write,
5172 },
5173 {
5174 .name = "events",
5175 .flags = CFTYPE_NOT_ON_ROOT,
5176 .file_offset = offsetof(struct mem_cgroup, events_file),
5177 .seq_show = memory_events_show,
5178 },
5179 {
5180 .name = "stat",
5181 .flags = CFTYPE_NOT_ON_ROOT,
5182 .seq_show = memory_stat_show,
5183 },
5184 { } /* terminate */
5185 };
5186
5187 struct cgroup_subsys memory_cgrp_subsys = {
5188 .css_alloc = mem_cgroup_css_alloc,
5189 .css_online = mem_cgroup_css_online,
5190 .css_offline = mem_cgroup_css_offline,
5191 .css_released = mem_cgroup_css_released,
5192 .css_free = mem_cgroup_css_free,
5193 .css_reset = mem_cgroup_css_reset,
5194 .can_attach = mem_cgroup_can_attach,
5195 .cancel_attach = mem_cgroup_cancel_attach,
5196 .attach = mem_cgroup_move_task,
5197 .bind = mem_cgroup_bind,
5198 .dfl_cftypes = memory_files,
5199 .legacy_cftypes = mem_cgroup_legacy_files,
5200 .early_init = 0,
5201 };
5202
5203 /**
5204 * mem_cgroup_low - check if memory consumption is below the normal range
5205 * @root: the highest ancestor to consider
5206 * @memcg: the memory cgroup to check
5207 *
5208 * Returns %true if memory consumption of @memcg, and that of all
5209 * configurable ancestors up to @root, is below the normal range.
5210 */
5211 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5212 {
5213 if (mem_cgroup_disabled())
5214 return false;
5215
5216 /*
5217 * The toplevel group doesn't have a configurable range, so
5218 * it's never low when looked at directly, and it is not
5219 * considered an ancestor when assessing the hierarchy.
5220 */
5221
5222 if (memcg == root_mem_cgroup)
5223 return false;
5224
5225 if (page_counter_read(&memcg->memory) >= memcg->low)
5226 return false;
5227
5228 while (memcg != root) {
5229 memcg = parent_mem_cgroup(memcg);
5230
5231 if (memcg == root_mem_cgroup)
5232 break;
5233
5234 if (page_counter_read(&memcg->memory) >= memcg->low)
5235 return false;
5236 }
5237 return true;
5238 }
5239
5240 /**
5241 * mem_cgroup_try_charge - try charging a page
5242 * @page: page to charge
5243 * @mm: mm context of the victim
5244 * @gfp_mask: reclaim mode
5245 * @memcgp: charged memcg return
5246 *
5247 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5248 * pages according to @gfp_mask if necessary.
5249 *
5250 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5251 * Otherwise, an error code is returned.
5252 *
5253 * After page->mapping has been set up, the caller must finalize the
5254 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5255 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5256 */
5257 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5258 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5259 bool compound)
5260 {
5261 struct mem_cgroup *memcg = NULL;
5262 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5263 int ret = 0;
5264
5265 if (mem_cgroup_disabled())
5266 goto out;
5267
5268 if (PageSwapCache(page)) {
5269 /*
5270 * Every swap fault against a single page tries to charge the
5271 * page, bail as early as possible. shmem_unuse() encounters
5272 * already charged pages, too. The USED bit is protected by
5273 * the page lock, which serializes swap cache removal, which
5274 * in turn serializes uncharging.
5275 */
5276 VM_BUG_ON_PAGE(!PageLocked(page), page);
5277 if (page->mem_cgroup)
5278 goto out;
5279
5280 if (do_swap_account) {
5281 swp_entry_t ent = { .val = page_private(page), };
5282 unsigned short id = lookup_swap_cgroup_id(ent);
5283
5284 rcu_read_lock();
5285 memcg = mem_cgroup_from_id(id);
5286 if (memcg && !css_tryget_online(&memcg->css))
5287 memcg = NULL;
5288 rcu_read_unlock();
5289 }
5290 }
5291
5292 if (!memcg)
5293 memcg = get_mem_cgroup_from_mm(mm);
5294
5295 ret = try_charge(memcg, gfp_mask, nr_pages);
5296
5297 css_put(&memcg->css);
5298 out:
5299 *memcgp = memcg;
5300 return ret;
5301 }
5302
5303 /**
5304 * mem_cgroup_commit_charge - commit a page charge
5305 * @page: page to charge
5306 * @memcg: memcg to charge the page to
5307 * @lrucare: page might be on LRU already
5308 *
5309 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5310 * after page->mapping has been set up. This must happen atomically
5311 * as part of the page instantiation, i.e. under the page table lock
5312 * for anonymous pages, under the page lock for page and swap cache.
5313 *
5314 * In addition, the page must not be on the LRU during the commit, to
5315 * prevent racing with task migration. If it might be, use @lrucare.
5316 *
5317 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5318 */
5319 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5320 bool lrucare, bool compound)
5321 {
5322 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5323
5324 VM_BUG_ON_PAGE(!page->mapping, page);
5325 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5326
5327 if (mem_cgroup_disabled())
5328 return;
5329 /*
5330 * Swap faults will attempt to charge the same page multiple
5331 * times. But reuse_swap_page() might have removed the page
5332 * from swapcache already, so we can't check PageSwapCache().
5333 */
5334 if (!memcg)
5335 return;
5336
5337 commit_charge(page, memcg, lrucare);
5338
5339 local_irq_disable();
5340 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5341 memcg_check_events(memcg, page);
5342 local_irq_enable();
5343
5344 if (do_memsw_account() && PageSwapCache(page)) {
5345 swp_entry_t entry = { .val = page_private(page) };
5346 /*
5347 * The swap entry might not get freed for a long time,
5348 * let's not wait for it. The page already received a
5349 * memory+swap charge, drop the swap entry duplicate.
5350 */
5351 mem_cgroup_uncharge_swap(entry);
5352 }
5353 }
5354
5355 /**
5356 * mem_cgroup_cancel_charge - cancel a page charge
5357 * @page: page to charge
5358 * @memcg: memcg to charge the page to
5359 *
5360 * Cancel a charge transaction started by mem_cgroup_try_charge().
5361 */
5362 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5363 bool compound)
5364 {
5365 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5366
5367 if (mem_cgroup_disabled())
5368 return;
5369 /*
5370 * Swap faults will attempt to charge the same page multiple
5371 * times. But reuse_swap_page() might have removed the page
5372 * from swapcache already, so we can't check PageSwapCache().
5373 */
5374 if (!memcg)
5375 return;
5376
5377 cancel_charge(memcg, nr_pages);
5378 }
5379
5380 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5381 unsigned long nr_anon, unsigned long nr_file,
5382 unsigned long nr_huge, struct page *dummy_page)
5383 {
5384 unsigned long nr_pages = nr_anon + nr_file;
5385 unsigned long flags;
5386
5387 if (!mem_cgroup_is_root(memcg)) {
5388 page_counter_uncharge(&memcg->memory, nr_pages);
5389 if (do_memsw_account())
5390 page_counter_uncharge(&memcg->memsw, nr_pages);
5391 memcg_oom_recover(memcg);
5392 }
5393
5394 local_irq_save(flags);
5395 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5396 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5397 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5398 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5399 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5400 memcg_check_events(memcg, dummy_page);
5401 local_irq_restore(flags);
5402
5403 if (!mem_cgroup_is_root(memcg))
5404 css_put_many(&memcg->css, nr_pages);
5405 }
5406
5407 static void uncharge_list(struct list_head *page_list)
5408 {
5409 struct mem_cgroup *memcg = NULL;
5410 unsigned long nr_anon = 0;
5411 unsigned long nr_file = 0;
5412 unsigned long nr_huge = 0;
5413 unsigned long pgpgout = 0;
5414 struct list_head *next;
5415 struct page *page;
5416
5417 next = page_list->next;
5418 do {
5419 unsigned int nr_pages = 1;
5420
5421 page = list_entry(next, struct page, lru);
5422 next = page->lru.next;
5423
5424 VM_BUG_ON_PAGE(PageLRU(page), page);
5425 VM_BUG_ON_PAGE(page_count(page), page);
5426
5427 if (!page->mem_cgroup)
5428 continue;
5429
5430 /*
5431 * Nobody should be changing or seriously looking at
5432 * page->mem_cgroup at this point, we have fully
5433 * exclusive access to the page.
5434 */
5435
5436 if (memcg != page->mem_cgroup) {
5437 if (memcg) {
5438 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5439 nr_huge, page);
5440 pgpgout = nr_anon = nr_file = nr_huge = 0;
5441 }
5442 memcg = page->mem_cgroup;
5443 }
5444
5445 if (PageTransHuge(page)) {
5446 nr_pages <<= compound_order(page);
5447 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5448 nr_huge += nr_pages;
5449 }
5450
5451 if (PageAnon(page))
5452 nr_anon += nr_pages;
5453 else
5454 nr_file += nr_pages;
5455
5456 page->mem_cgroup = NULL;
5457
5458 pgpgout++;
5459 } while (next != page_list);
5460
5461 if (memcg)
5462 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5463 nr_huge, page);
5464 }
5465
5466 /**
5467 * mem_cgroup_uncharge - uncharge a page
5468 * @page: page to uncharge
5469 *
5470 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5471 * mem_cgroup_commit_charge().
5472 */
5473 void mem_cgroup_uncharge(struct page *page)
5474 {
5475 if (mem_cgroup_disabled())
5476 return;
5477
5478 /* Don't touch page->lru of any random page, pre-check: */
5479 if (!page->mem_cgroup)
5480 return;
5481
5482 INIT_LIST_HEAD(&page->lru);
5483 uncharge_list(&page->lru);
5484 }
5485
5486 /**
5487 * mem_cgroup_uncharge_list - uncharge a list of page
5488 * @page_list: list of pages to uncharge
5489 *
5490 * Uncharge a list of pages previously charged with
5491 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5492 */
5493 void mem_cgroup_uncharge_list(struct list_head *page_list)
5494 {
5495 if (mem_cgroup_disabled())
5496 return;
5497
5498 if (!list_empty(page_list))
5499 uncharge_list(page_list);
5500 }
5501
5502 /**
5503 * mem_cgroup_migrate - charge a page's replacement
5504 * @oldpage: currently circulating page
5505 * @newpage: replacement page
5506 *
5507 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5508 * be uncharged upon free.
5509 *
5510 * Both pages must be locked, @newpage->mapping must be set up.
5511 */
5512 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5513 {
5514 struct mem_cgroup *memcg;
5515 unsigned int nr_pages;
5516 bool compound;
5517
5518 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5519 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5520 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5521 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5522 newpage);
5523
5524 if (mem_cgroup_disabled())
5525 return;
5526
5527 /* Page cache replacement: new page already charged? */
5528 if (newpage->mem_cgroup)
5529 return;
5530
5531 /* Swapcache readahead pages can get replaced before being charged */
5532 memcg = oldpage->mem_cgroup;
5533 if (!memcg)
5534 return;
5535
5536 /* Force-charge the new page. The old one will be freed soon */
5537 compound = PageTransHuge(newpage);
5538 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5539
5540 page_counter_charge(&memcg->memory, nr_pages);
5541 if (do_memsw_account())
5542 page_counter_charge(&memcg->memsw, nr_pages);
5543 css_get_many(&memcg->css, nr_pages);
5544
5545 commit_charge(newpage, memcg, false);
5546
5547 local_irq_disable();
5548 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5549 memcg_check_events(memcg, newpage);
5550 local_irq_enable();
5551 }
5552
5553 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5554 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5555
5556 void sock_update_memcg(struct sock *sk)
5557 {
5558 struct mem_cgroup *memcg;
5559
5560 /* Socket cloning can throw us here with sk_cgrp already
5561 * filled. It won't however, necessarily happen from
5562 * process context. So the test for root memcg given
5563 * the current task's memcg won't help us in this case.
5564 *
5565 * Respecting the original socket's memcg is a better
5566 * decision in this case.
5567 */
5568 if (sk->sk_memcg) {
5569 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5570 css_get(&sk->sk_memcg->css);
5571 return;
5572 }
5573
5574 rcu_read_lock();
5575 memcg = mem_cgroup_from_task(current);
5576 if (memcg == root_mem_cgroup)
5577 goto out;
5578 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5579 goto out;
5580 if (css_tryget_online(&memcg->css))
5581 sk->sk_memcg = memcg;
5582 out:
5583 rcu_read_unlock();
5584 }
5585 EXPORT_SYMBOL(sock_update_memcg);
5586
5587 void sock_release_memcg(struct sock *sk)
5588 {
5589 WARN_ON(!sk->sk_memcg);
5590 css_put(&sk->sk_memcg->css);
5591 }
5592
5593 /**
5594 * mem_cgroup_charge_skmem - charge socket memory
5595 * @memcg: memcg to charge
5596 * @nr_pages: number of pages to charge
5597 *
5598 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5599 * @memcg's configured limit, %false if the charge had to be forced.
5600 */
5601 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5602 {
5603 gfp_t gfp_mask = GFP_KERNEL;
5604
5605 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5606 struct page_counter *fail;
5607
5608 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5609 memcg->tcpmem_pressure = 0;
5610 return true;
5611 }
5612 page_counter_charge(&memcg->tcpmem, nr_pages);
5613 memcg->tcpmem_pressure = 1;
5614 return false;
5615 }
5616
5617 /* Don't block in the packet receive path */
5618 if (in_softirq())
5619 gfp_mask = GFP_NOWAIT;
5620
5621 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5622
5623 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5624 return true;
5625
5626 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5627 return false;
5628 }
5629
5630 /**
5631 * mem_cgroup_uncharge_skmem - uncharge socket memory
5632 * @memcg - memcg to uncharge
5633 * @nr_pages - number of pages to uncharge
5634 */
5635 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5636 {
5637 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5638 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5639 return;
5640 }
5641
5642 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5643
5644 page_counter_uncharge(&memcg->memory, nr_pages);
5645 css_put_many(&memcg->css, nr_pages);
5646 }
5647
5648 static int __init cgroup_memory(char *s)
5649 {
5650 char *token;
5651
5652 while ((token = strsep(&s, ",")) != NULL) {
5653 if (!*token)
5654 continue;
5655 if (!strcmp(token, "nosocket"))
5656 cgroup_memory_nosocket = true;
5657 if (!strcmp(token, "nokmem"))
5658 cgroup_memory_nokmem = true;
5659 }
5660 return 0;
5661 }
5662 __setup("cgroup.memory=", cgroup_memory);
5663
5664 /*
5665 * subsys_initcall() for memory controller.
5666 *
5667 * Some parts like hotcpu_notifier() have to be initialized from this context
5668 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5669 * everything that doesn't depend on a specific mem_cgroup structure should
5670 * be initialized from here.
5671 */
5672 static int __init mem_cgroup_init(void)
5673 {
5674 int cpu, node;
5675
5676 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5677
5678 for_each_possible_cpu(cpu)
5679 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5680 drain_local_stock);
5681
5682 for_each_node(node) {
5683 struct mem_cgroup_tree_per_node *rtpn;
5684 int zone;
5685
5686 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5687 node_online(node) ? node : NUMA_NO_NODE);
5688
5689 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5690 struct mem_cgroup_tree_per_zone *rtpz;
5691
5692 rtpz = &rtpn->rb_tree_per_zone[zone];
5693 rtpz->rb_root = RB_ROOT;
5694 spin_lock_init(&rtpz->lock);
5695 }
5696 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5697 }
5698
5699 return 0;
5700 }
5701 subsys_initcall(mem_cgroup_init);
5702
5703 #ifdef CONFIG_MEMCG_SWAP
5704 /**
5705 * mem_cgroup_swapout - transfer a memsw charge to swap
5706 * @page: page whose memsw charge to transfer
5707 * @entry: swap entry to move the charge to
5708 *
5709 * Transfer the memsw charge of @page to @entry.
5710 */
5711 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5712 {
5713 struct mem_cgroup *memcg;
5714 unsigned short oldid;
5715
5716 VM_BUG_ON_PAGE(PageLRU(page), page);
5717 VM_BUG_ON_PAGE(page_count(page), page);
5718
5719 if (!do_memsw_account())
5720 return;
5721
5722 memcg = page->mem_cgroup;
5723
5724 /* Readahead page, never charged */
5725 if (!memcg)
5726 return;
5727
5728 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5729 VM_BUG_ON_PAGE(oldid, page);
5730 mem_cgroup_swap_statistics(memcg, true);
5731
5732 page->mem_cgroup = NULL;
5733
5734 if (!mem_cgroup_is_root(memcg))
5735 page_counter_uncharge(&memcg->memory, 1);
5736
5737 /*
5738 * Interrupts should be disabled here because the caller holds the
5739 * mapping->tree_lock lock which is taken with interrupts-off. It is
5740 * important here to have the interrupts disabled because it is the
5741 * only synchronisation we have for udpating the per-CPU variables.
5742 */
5743 VM_BUG_ON(!irqs_disabled());
5744 mem_cgroup_charge_statistics(memcg, page, false, -1);
5745 memcg_check_events(memcg, page);
5746 }
5747
5748 /*
5749 * mem_cgroup_try_charge_swap - try charging a swap entry
5750 * @page: page being added to swap
5751 * @entry: swap entry to charge
5752 *
5753 * Try to charge @entry to the memcg that @page belongs to.
5754 *
5755 * Returns 0 on success, -ENOMEM on failure.
5756 */
5757 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5758 {
5759 struct mem_cgroup *memcg;
5760 struct page_counter *counter;
5761 unsigned short oldid;
5762
5763 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5764 return 0;
5765
5766 memcg = page->mem_cgroup;
5767
5768 /* Readahead page, never charged */
5769 if (!memcg)
5770 return 0;
5771
5772 if (!mem_cgroup_is_root(memcg) &&
5773 !page_counter_try_charge(&memcg->swap, 1, &counter))
5774 return -ENOMEM;
5775
5776 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5777 VM_BUG_ON_PAGE(oldid, page);
5778 mem_cgroup_swap_statistics(memcg, true);
5779
5780 css_get(&memcg->css);
5781 return 0;
5782 }
5783
5784 /**
5785 * mem_cgroup_uncharge_swap - uncharge a swap entry
5786 * @entry: swap entry to uncharge
5787 *
5788 * Drop the swap charge associated with @entry.
5789 */
5790 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5791 {
5792 struct mem_cgroup *memcg;
5793 unsigned short id;
5794
5795 if (!do_swap_account)
5796 return;
5797
5798 id = swap_cgroup_record(entry, 0);
5799 rcu_read_lock();
5800 memcg = mem_cgroup_from_id(id);
5801 if (memcg) {
5802 if (!mem_cgroup_is_root(memcg)) {
5803 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5804 page_counter_uncharge(&memcg->swap, 1);
5805 else
5806 page_counter_uncharge(&memcg->memsw, 1);
5807 }
5808 mem_cgroup_swap_statistics(memcg, false);
5809 css_put(&memcg->css);
5810 }
5811 rcu_read_unlock();
5812 }
5813
5814 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5815 {
5816 long nr_swap_pages = get_nr_swap_pages();
5817
5818 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5819 return nr_swap_pages;
5820 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5821 nr_swap_pages = min_t(long, nr_swap_pages,
5822 READ_ONCE(memcg->swap.limit) -
5823 page_counter_read(&memcg->swap));
5824 return nr_swap_pages;
5825 }
5826
5827 bool mem_cgroup_swap_full(struct page *page)
5828 {
5829 struct mem_cgroup *memcg;
5830
5831 VM_BUG_ON_PAGE(!PageLocked(page), page);
5832
5833 if (vm_swap_full())
5834 return true;
5835 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5836 return false;
5837
5838 memcg = page->mem_cgroup;
5839 if (!memcg)
5840 return false;
5841
5842 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5843 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5844 return true;
5845
5846 return false;
5847 }
5848
5849 /* for remember boot option*/
5850 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5851 static int really_do_swap_account __initdata = 1;
5852 #else
5853 static int really_do_swap_account __initdata;
5854 #endif
5855
5856 static int __init enable_swap_account(char *s)
5857 {
5858 if (!strcmp(s, "1"))
5859 really_do_swap_account = 1;
5860 else if (!strcmp(s, "0"))
5861 really_do_swap_account = 0;
5862 return 1;
5863 }
5864 __setup("swapaccount=", enable_swap_account);
5865
5866 static u64 swap_current_read(struct cgroup_subsys_state *css,
5867 struct cftype *cft)
5868 {
5869 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5870
5871 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5872 }
5873
5874 static int swap_max_show(struct seq_file *m, void *v)
5875 {
5876 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5877 unsigned long max = READ_ONCE(memcg->swap.limit);
5878
5879 if (max == PAGE_COUNTER_MAX)
5880 seq_puts(m, "max\n");
5881 else
5882 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5883
5884 return 0;
5885 }
5886
5887 static ssize_t swap_max_write(struct kernfs_open_file *of,
5888 char *buf, size_t nbytes, loff_t off)
5889 {
5890 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5891 unsigned long max;
5892 int err;
5893
5894 buf = strstrip(buf);
5895 err = page_counter_memparse(buf, "max", &max);
5896 if (err)
5897 return err;
5898
5899 mutex_lock(&memcg_limit_mutex);
5900 err = page_counter_limit(&memcg->swap, max);
5901 mutex_unlock(&memcg_limit_mutex);
5902 if (err)
5903 return err;
5904
5905 return nbytes;
5906 }
5907
5908 static struct cftype swap_files[] = {
5909 {
5910 .name = "swap.current",
5911 .flags = CFTYPE_NOT_ON_ROOT,
5912 .read_u64 = swap_current_read,
5913 },
5914 {
5915 .name = "swap.max",
5916 .flags = CFTYPE_NOT_ON_ROOT,
5917 .seq_show = swap_max_show,
5918 .write = swap_max_write,
5919 },
5920 { } /* terminate */
5921 };
5922
5923 static struct cftype memsw_cgroup_files[] = {
5924 {
5925 .name = "memsw.usage_in_bytes",
5926 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5927 .read_u64 = mem_cgroup_read_u64,
5928 },
5929 {
5930 .name = "memsw.max_usage_in_bytes",
5931 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5932 .write = mem_cgroup_reset,
5933 .read_u64 = mem_cgroup_read_u64,
5934 },
5935 {
5936 .name = "memsw.limit_in_bytes",
5937 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5938 .write = mem_cgroup_write,
5939 .read_u64 = mem_cgroup_read_u64,
5940 },
5941 {
5942 .name = "memsw.failcnt",
5943 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5944 .write = mem_cgroup_reset,
5945 .read_u64 = mem_cgroup_read_u64,
5946 },
5947 { }, /* terminate */
5948 };
5949
5950 static int __init mem_cgroup_swap_init(void)
5951 {
5952 if (!mem_cgroup_disabled() && really_do_swap_account) {
5953 do_swap_account = 1;
5954 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5955 swap_files));
5956 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5957 memsw_cgroup_files));
5958 }
5959 return 0;
5960 }
5961 subsys_initcall(mem_cgroup_swap_init);
5962
5963 #endif /* CONFIG_MEMCG_SWAP */
This page took 0.171588 seconds and 5 git commands to generate.