Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80 #define MEM_CGROUP_RECLAIM_RETRIES 5
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account 0
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "rss_huge",
105 "mapped_file",
106 "dirty",
107 "writeback",
108 "swap",
109 };
110
111 static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116 };
117
118 static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124 };
125
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
129
130 /*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135 struct mem_cgroup_tree_per_node {
136 struct rb_root rb_root;
137 spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree {
141 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
142 };
143
144 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
145
146 /* for OOM */
147 struct mem_cgroup_eventfd_list {
148 struct list_head list;
149 struct eventfd_ctx *eventfd;
150 };
151
152 /*
153 * cgroup_event represents events which userspace want to receive.
154 */
155 struct mem_cgroup_event {
156 /*
157 * memcg which the event belongs to.
158 */
159 struct mem_cgroup *memcg;
160 /*
161 * eventfd to signal userspace about the event.
162 */
163 struct eventfd_ctx *eventfd;
164 /*
165 * Each of these stored in a list by the cgroup.
166 */
167 struct list_head list;
168 /*
169 * register_event() callback will be used to add new userspace
170 * waiter for changes related to this event. Use eventfd_signal()
171 * on eventfd to send notification to userspace.
172 */
173 int (*register_event)(struct mem_cgroup *memcg,
174 struct eventfd_ctx *eventfd, const char *args);
175 /*
176 * unregister_event() callback will be called when userspace closes
177 * the eventfd or on cgroup removing. This callback must be set,
178 * if you want provide notification functionality.
179 */
180 void (*unregister_event)(struct mem_cgroup *memcg,
181 struct eventfd_ctx *eventfd);
182 /*
183 * All fields below needed to unregister event when
184 * userspace closes eventfd.
185 */
186 poll_table pt;
187 wait_queue_head_t *wqh;
188 wait_queue_t wait;
189 struct work_struct remove;
190 };
191
192 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
194
195 /* Stuffs for move charges at task migration. */
196 /*
197 * Types of charges to be moved.
198 */
199 #define MOVE_ANON 0x1U
200 #define MOVE_FILE 0x2U
201 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
202
203 /* "mc" and its members are protected by cgroup_mutex */
204 static struct move_charge_struct {
205 spinlock_t lock; /* for from, to */
206 struct mm_struct *mm;
207 struct mem_cgroup *from;
208 struct mem_cgroup *to;
209 unsigned long flags;
210 unsigned long precharge;
211 unsigned long moved_charge;
212 unsigned long moved_swap;
213 struct task_struct *moving_task; /* a task moving charges */
214 wait_queue_head_t waitq; /* a waitq for other context */
215 } mc = {
216 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
217 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
218 };
219
220 /*
221 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
222 * limit reclaim to prevent infinite loops, if they ever occur.
223 */
224 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
225 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
226
227 enum charge_type {
228 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
229 MEM_CGROUP_CHARGE_TYPE_ANON,
230 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
231 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
232 NR_CHARGE_TYPE,
233 };
234
235 /* for encoding cft->private value on file */
236 enum res_type {
237 _MEM,
238 _MEMSWAP,
239 _OOM_TYPE,
240 _KMEM,
241 _TCP,
242 };
243
244 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
245 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
246 #define MEMFILE_ATTR(val) ((val) & 0xffff)
247 /* Used for OOM nofiier */
248 #define OOM_CONTROL (0)
249
250 /* Some nice accessors for the vmpressure. */
251 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252 {
253 if (!memcg)
254 memcg = root_mem_cgroup;
255 return &memcg->vmpressure;
256 }
257
258 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259 {
260 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261 }
262
263 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
264 {
265 return (memcg == root_mem_cgroup);
266 }
267
268 #ifndef CONFIG_SLOB
269 /*
270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
271 * The main reason for not using cgroup id for this:
272 * this works better in sparse environments, where we have a lot of memcgs,
273 * but only a few kmem-limited. Or also, if we have, for instance, 200
274 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
275 * 200 entry array for that.
276 *
277 * The current size of the caches array is stored in memcg_nr_cache_ids. It
278 * will double each time we have to increase it.
279 */
280 static DEFINE_IDA(memcg_cache_ida);
281 int memcg_nr_cache_ids;
282
283 /* Protects memcg_nr_cache_ids */
284 static DECLARE_RWSEM(memcg_cache_ids_sem);
285
286 void memcg_get_cache_ids(void)
287 {
288 down_read(&memcg_cache_ids_sem);
289 }
290
291 void memcg_put_cache_ids(void)
292 {
293 up_read(&memcg_cache_ids_sem);
294 }
295
296 /*
297 * MIN_SIZE is different than 1, because we would like to avoid going through
298 * the alloc/free process all the time. In a small machine, 4 kmem-limited
299 * cgroups is a reasonable guess. In the future, it could be a parameter or
300 * tunable, but that is strictly not necessary.
301 *
302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
303 * this constant directly from cgroup, but it is understandable that this is
304 * better kept as an internal representation in cgroup.c. In any case, the
305 * cgrp_id space is not getting any smaller, and we don't have to necessarily
306 * increase ours as well if it increases.
307 */
308 #define MEMCG_CACHES_MIN_SIZE 4
309 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
310
311 /*
312 * A lot of the calls to the cache allocation functions are expected to be
313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314 * conditional to this static branch, we'll have to allow modules that does
315 * kmem_cache_alloc and the such to see this symbol as well
316 */
317 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
318 EXPORT_SYMBOL(memcg_kmem_enabled_key);
319
320 #endif /* !CONFIG_SLOB */
321
322 /**
323 * mem_cgroup_css_from_page - css of the memcg associated with a page
324 * @page: page of interest
325 *
326 * If memcg is bound to the default hierarchy, css of the memcg associated
327 * with @page is returned. The returned css remains associated with @page
328 * until it is released.
329 *
330 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
331 * is returned.
332 */
333 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
334 {
335 struct mem_cgroup *memcg;
336
337 memcg = page->mem_cgroup;
338
339 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
340 memcg = root_mem_cgroup;
341
342 return &memcg->css;
343 }
344
345 /**
346 * page_cgroup_ino - return inode number of the memcg a page is charged to
347 * @page: the page
348 *
349 * Look up the closest online ancestor of the memory cgroup @page is charged to
350 * and return its inode number or 0 if @page is not charged to any cgroup. It
351 * is safe to call this function without holding a reference to @page.
352 *
353 * Note, this function is inherently racy, because there is nothing to prevent
354 * the cgroup inode from getting torn down and potentially reallocated a moment
355 * after page_cgroup_ino() returns, so it only should be used by callers that
356 * do not care (such as procfs interfaces).
357 */
358 ino_t page_cgroup_ino(struct page *page)
359 {
360 struct mem_cgroup *memcg;
361 unsigned long ino = 0;
362
363 rcu_read_lock();
364 memcg = READ_ONCE(page->mem_cgroup);
365 while (memcg && !(memcg->css.flags & CSS_ONLINE))
366 memcg = parent_mem_cgroup(memcg);
367 if (memcg)
368 ino = cgroup_ino(memcg->css.cgroup);
369 rcu_read_unlock();
370 return ino;
371 }
372
373 static struct mem_cgroup_per_node *
374 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
375 {
376 int nid = page_to_nid(page);
377
378 return memcg->nodeinfo[nid];
379 }
380
381 static struct mem_cgroup_tree_per_node *
382 soft_limit_tree_node(int nid)
383 {
384 return soft_limit_tree.rb_tree_per_node[nid];
385 }
386
387 static struct mem_cgroup_tree_per_node *
388 soft_limit_tree_from_page(struct page *page)
389 {
390 int nid = page_to_nid(page);
391
392 return soft_limit_tree.rb_tree_per_node[nid];
393 }
394
395 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
396 struct mem_cgroup_tree_per_node *mctz,
397 unsigned long new_usage_in_excess)
398 {
399 struct rb_node **p = &mctz->rb_root.rb_node;
400 struct rb_node *parent = NULL;
401 struct mem_cgroup_per_node *mz_node;
402
403 if (mz->on_tree)
404 return;
405
406 mz->usage_in_excess = new_usage_in_excess;
407 if (!mz->usage_in_excess)
408 return;
409 while (*p) {
410 parent = *p;
411 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
412 tree_node);
413 if (mz->usage_in_excess < mz_node->usage_in_excess)
414 p = &(*p)->rb_left;
415 /*
416 * We can't avoid mem cgroups that are over their soft
417 * limit by the same amount
418 */
419 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
420 p = &(*p)->rb_right;
421 }
422 rb_link_node(&mz->tree_node, parent, p);
423 rb_insert_color(&mz->tree_node, &mctz->rb_root);
424 mz->on_tree = true;
425 }
426
427 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
428 struct mem_cgroup_tree_per_node *mctz)
429 {
430 if (!mz->on_tree)
431 return;
432 rb_erase(&mz->tree_node, &mctz->rb_root);
433 mz->on_tree = false;
434 }
435
436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 struct mem_cgroup_tree_per_node *mctz)
438 {
439 unsigned long flags;
440
441 spin_lock_irqsave(&mctz->lock, flags);
442 __mem_cgroup_remove_exceeded(mz, mctz);
443 spin_unlock_irqrestore(&mctz->lock, flags);
444 }
445
446 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447 {
448 unsigned long nr_pages = page_counter_read(&memcg->memory);
449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 unsigned long excess = 0;
451
452 if (nr_pages > soft_limit)
453 excess = nr_pages - soft_limit;
454
455 return excess;
456 }
457
458 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459 {
460 unsigned long excess;
461 struct mem_cgroup_per_node *mz;
462 struct mem_cgroup_tree_per_node *mctz;
463
464 mctz = soft_limit_tree_from_page(page);
465 /*
466 * Necessary to update all ancestors when hierarchy is used.
467 * because their event counter is not touched.
468 */
469 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
470 mz = mem_cgroup_page_nodeinfo(memcg, page);
471 excess = soft_limit_excess(memcg);
472 /*
473 * We have to update the tree if mz is on RB-tree or
474 * mem is over its softlimit.
475 */
476 if (excess || mz->on_tree) {
477 unsigned long flags;
478
479 spin_lock_irqsave(&mctz->lock, flags);
480 /* if on-tree, remove it */
481 if (mz->on_tree)
482 __mem_cgroup_remove_exceeded(mz, mctz);
483 /*
484 * Insert again. mz->usage_in_excess will be updated.
485 * If excess is 0, no tree ops.
486 */
487 __mem_cgroup_insert_exceeded(mz, mctz, excess);
488 spin_unlock_irqrestore(&mctz->lock, flags);
489 }
490 }
491 }
492
493 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
494 {
495 struct mem_cgroup_tree_per_node *mctz;
496 struct mem_cgroup_per_node *mz;
497 int nid;
498
499 for_each_node(nid) {
500 mz = mem_cgroup_nodeinfo(memcg, nid);
501 mctz = soft_limit_tree_node(nid);
502 mem_cgroup_remove_exceeded(mz, mctz);
503 }
504 }
505
506 static struct mem_cgroup_per_node *
507 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
508 {
509 struct rb_node *rightmost = NULL;
510 struct mem_cgroup_per_node *mz;
511
512 retry:
513 mz = NULL;
514 rightmost = rb_last(&mctz->rb_root);
515 if (!rightmost)
516 goto done; /* Nothing to reclaim from */
517
518 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
519 /*
520 * Remove the node now but someone else can add it back,
521 * we will to add it back at the end of reclaim to its correct
522 * position in the tree.
523 */
524 __mem_cgroup_remove_exceeded(mz, mctz);
525 if (!soft_limit_excess(mz->memcg) ||
526 !css_tryget_online(&mz->memcg->css))
527 goto retry;
528 done:
529 return mz;
530 }
531
532 static struct mem_cgroup_per_node *
533 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
534 {
535 struct mem_cgroup_per_node *mz;
536
537 spin_lock_irq(&mctz->lock);
538 mz = __mem_cgroup_largest_soft_limit_node(mctz);
539 spin_unlock_irq(&mctz->lock);
540 return mz;
541 }
542
543 /*
544 * Return page count for single (non recursive) @memcg.
545 *
546 * Implementation Note: reading percpu statistics for memcg.
547 *
548 * Both of vmstat[] and percpu_counter has threshold and do periodic
549 * synchronization to implement "quick" read. There are trade-off between
550 * reading cost and precision of value. Then, we may have a chance to implement
551 * a periodic synchronization of counter in memcg's counter.
552 *
553 * But this _read() function is used for user interface now. The user accounts
554 * memory usage by memory cgroup and he _always_ requires exact value because
555 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
556 * have to visit all online cpus and make sum. So, for now, unnecessary
557 * synchronization is not implemented. (just implemented for cpu hotplug)
558 *
559 * If there are kernel internal actions which can make use of some not-exact
560 * value, and reading all cpu value can be performance bottleneck in some
561 * common workload, threshold and synchronization as vmstat[] should be
562 * implemented.
563 */
564 static unsigned long
565 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
566 {
567 long val = 0;
568 int cpu;
569
570 /* Per-cpu values can be negative, use a signed accumulator */
571 for_each_possible_cpu(cpu)
572 val += per_cpu(memcg->stat->count[idx], cpu);
573 /*
574 * Summing races with updates, so val may be negative. Avoid exposing
575 * transient negative values.
576 */
577 if (val < 0)
578 val = 0;
579 return val;
580 }
581
582 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
583 enum mem_cgroup_events_index idx)
584 {
585 unsigned long val = 0;
586 int cpu;
587
588 for_each_possible_cpu(cpu)
589 val += per_cpu(memcg->stat->events[idx], cpu);
590 return val;
591 }
592
593 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
594 struct page *page,
595 bool compound, int nr_pages)
596 {
597 /*
598 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
599 * counted as CACHE even if it's on ANON LRU.
600 */
601 if (PageAnon(page))
602 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
603 nr_pages);
604 else
605 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
606 nr_pages);
607
608 if (compound) {
609 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
610 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
611 nr_pages);
612 }
613
614 /* pagein of a big page is an event. So, ignore page size */
615 if (nr_pages > 0)
616 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
617 else {
618 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
619 nr_pages = -nr_pages; /* for event */
620 }
621
622 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
623 }
624
625 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
626 int nid, unsigned int lru_mask)
627 {
628 unsigned long nr = 0;
629 struct mem_cgroup_per_node *mz;
630 enum lru_list lru;
631
632 VM_BUG_ON((unsigned)nid >= nr_node_ids);
633
634 for_each_lru(lru) {
635 if (!(BIT(lru) & lru_mask))
636 continue;
637 mz = mem_cgroup_nodeinfo(memcg, nid);
638 nr += mz->lru_size[lru];
639 }
640 return nr;
641 }
642
643 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
644 unsigned int lru_mask)
645 {
646 unsigned long nr = 0;
647 int nid;
648
649 for_each_node_state(nid, N_MEMORY)
650 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
651 return nr;
652 }
653
654 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
655 enum mem_cgroup_events_target target)
656 {
657 unsigned long val, next;
658
659 val = __this_cpu_read(memcg->stat->nr_page_events);
660 next = __this_cpu_read(memcg->stat->targets[target]);
661 /* from time_after() in jiffies.h */
662 if ((long)next - (long)val < 0) {
663 switch (target) {
664 case MEM_CGROUP_TARGET_THRESH:
665 next = val + THRESHOLDS_EVENTS_TARGET;
666 break;
667 case MEM_CGROUP_TARGET_SOFTLIMIT:
668 next = val + SOFTLIMIT_EVENTS_TARGET;
669 break;
670 case MEM_CGROUP_TARGET_NUMAINFO:
671 next = val + NUMAINFO_EVENTS_TARGET;
672 break;
673 default:
674 break;
675 }
676 __this_cpu_write(memcg->stat->targets[target], next);
677 return true;
678 }
679 return false;
680 }
681
682 /*
683 * Check events in order.
684 *
685 */
686 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
687 {
688 /* threshold event is triggered in finer grain than soft limit */
689 if (unlikely(mem_cgroup_event_ratelimit(memcg,
690 MEM_CGROUP_TARGET_THRESH))) {
691 bool do_softlimit;
692 bool do_numainfo __maybe_unused;
693
694 do_softlimit = mem_cgroup_event_ratelimit(memcg,
695 MEM_CGROUP_TARGET_SOFTLIMIT);
696 #if MAX_NUMNODES > 1
697 do_numainfo = mem_cgroup_event_ratelimit(memcg,
698 MEM_CGROUP_TARGET_NUMAINFO);
699 #endif
700 mem_cgroup_threshold(memcg);
701 if (unlikely(do_softlimit))
702 mem_cgroup_update_tree(memcg, page);
703 #if MAX_NUMNODES > 1
704 if (unlikely(do_numainfo))
705 atomic_inc(&memcg->numainfo_events);
706 #endif
707 }
708 }
709
710 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
711 {
712 /*
713 * mm_update_next_owner() may clear mm->owner to NULL
714 * if it races with swapoff, page migration, etc.
715 * So this can be called with p == NULL.
716 */
717 if (unlikely(!p))
718 return NULL;
719
720 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
721 }
722 EXPORT_SYMBOL(mem_cgroup_from_task);
723
724 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
725 {
726 struct mem_cgroup *memcg = NULL;
727
728 rcu_read_lock();
729 do {
730 /*
731 * Page cache insertions can happen withou an
732 * actual mm context, e.g. during disk probing
733 * on boot, loopback IO, acct() writes etc.
734 */
735 if (unlikely(!mm))
736 memcg = root_mem_cgroup;
737 else {
738 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
739 if (unlikely(!memcg))
740 memcg = root_mem_cgroup;
741 }
742 } while (!css_tryget_online(&memcg->css));
743 rcu_read_unlock();
744 return memcg;
745 }
746
747 /**
748 * mem_cgroup_iter - iterate over memory cgroup hierarchy
749 * @root: hierarchy root
750 * @prev: previously returned memcg, NULL on first invocation
751 * @reclaim: cookie for shared reclaim walks, NULL for full walks
752 *
753 * Returns references to children of the hierarchy below @root, or
754 * @root itself, or %NULL after a full round-trip.
755 *
756 * Caller must pass the return value in @prev on subsequent
757 * invocations for reference counting, or use mem_cgroup_iter_break()
758 * to cancel a hierarchy walk before the round-trip is complete.
759 *
760 * Reclaimers can specify a zone and a priority level in @reclaim to
761 * divide up the memcgs in the hierarchy among all concurrent
762 * reclaimers operating on the same zone and priority.
763 */
764 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
765 struct mem_cgroup *prev,
766 struct mem_cgroup_reclaim_cookie *reclaim)
767 {
768 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
769 struct cgroup_subsys_state *css = NULL;
770 struct mem_cgroup *memcg = NULL;
771 struct mem_cgroup *pos = NULL;
772
773 if (mem_cgroup_disabled())
774 return NULL;
775
776 if (!root)
777 root = root_mem_cgroup;
778
779 if (prev && !reclaim)
780 pos = prev;
781
782 if (!root->use_hierarchy && root != root_mem_cgroup) {
783 if (prev)
784 goto out;
785 return root;
786 }
787
788 rcu_read_lock();
789
790 if (reclaim) {
791 struct mem_cgroup_per_node *mz;
792
793 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
794 iter = &mz->iter[reclaim->priority];
795
796 if (prev && reclaim->generation != iter->generation)
797 goto out_unlock;
798
799 while (1) {
800 pos = READ_ONCE(iter->position);
801 if (!pos || css_tryget(&pos->css))
802 break;
803 /*
804 * css reference reached zero, so iter->position will
805 * be cleared by ->css_released. However, we should not
806 * rely on this happening soon, because ->css_released
807 * is called from a work queue, and by busy-waiting we
808 * might block it. So we clear iter->position right
809 * away.
810 */
811 (void)cmpxchg(&iter->position, pos, NULL);
812 }
813 }
814
815 if (pos)
816 css = &pos->css;
817
818 for (;;) {
819 css = css_next_descendant_pre(css, &root->css);
820 if (!css) {
821 /*
822 * Reclaimers share the hierarchy walk, and a
823 * new one might jump in right at the end of
824 * the hierarchy - make sure they see at least
825 * one group and restart from the beginning.
826 */
827 if (!prev)
828 continue;
829 break;
830 }
831
832 /*
833 * Verify the css and acquire a reference. The root
834 * is provided by the caller, so we know it's alive
835 * and kicking, and don't take an extra reference.
836 */
837 memcg = mem_cgroup_from_css(css);
838
839 if (css == &root->css)
840 break;
841
842 if (css_tryget(css))
843 break;
844
845 memcg = NULL;
846 }
847
848 if (reclaim) {
849 /*
850 * The position could have already been updated by a competing
851 * thread, so check that the value hasn't changed since we read
852 * it to avoid reclaiming from the same cgroup twice.
853 */
854 (void)cmpxchg(&iter->position, pos, memcg);
855
856 if (pos)
857 css_put(&pos->css);
858
859 if (!memcg)
860 iter->generation++;
861 else if (!prev)
862 reclaim->generation = iter->generation;
863 }
864
865 out_unlock:
866 rcu_read_unlock();
867 out:
868 if (prev && prev != root)
869 css_put(&prev->css);
870
871 return memcg;
872 }
873
874 /**
875 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
876 * @root: hierarchy root
877 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
878 */
879 void mem_cgroup_iter_break(struct mem_cgroup *root,
880 struct mem_cgroup *prev)
881 {
882 if (!root)
883 root = root_mem_cgroup;
884 if (prev && prev != root)
885 css_put(&prev->css);
886 }
887
888 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
889 {
890 struct mem_cgroup *memcg = dead_memcg;
891 struct mem_cgroup_reclaim_iter *iter;
892 struct mem_cgroup_per_node *mz;
893 int nid;
894 int i;
895
896 while ((memcg = parent_mem_cgroup(memcg))) {
897 for_each_node(nid) {
898 mz = mem_cgroup_nodeinfo(memcg, nid);
899 for (i = 0; i <= DEF_PRIORITY; i++) {
900 iter = &mz->iter[i];
901 cmpxchg(&iter->position,
902 dead_memcg, NULL);
903 }
904 }
905 }
906 }
907
908 /*
909 * Iteration constructs for visiting all cgroups (under a tree). If
910 * loops are exited prematurely (break), mem_cgroup_iter_break() must
911 * be used for reference counting.
912 */
913 #define for_each_mem_cgroup_tree(iter, root) \
914 for (iter = mem_cgroup_iter(root, NULL, NULL); \
915 iter != NULL; \
916 iter = mem_cgroup_iter(root, iter, NULL))
917
918 #define for_each_mem_cgroup(iter) \
919 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
920 iter != NULL; \
921 iter = mem_cgroup_iter(NULL, iter, NULL))
922
923 /**
924 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925 * @page: the page
926 * @zone: zone of the page
927 *
928 * This function is only safe when following the LRU page isolation
929 * and putback protocol: the LRU lock must be held, and the page must
930 * either be PageLRU() or the caller must have isolated/allocated it.
931 */
932 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
933 {
934 struct mem_cgroup_per_node *mz;
935 struct mem_cgroup *memcg;
936 struct lruvec *lruvec;
937
938 if (mem_cgroup_disabled()) {
939 lruvec = &pgdat->lruvec;
940 goto out;
941 }
942
943 memcg = page->mem_cgroup;
944 /*
945 * Swapcache readahead pages are added to the LRU - and
946 * possibly migrated - before they are charged.
947 */
948 if (!memcg)
949 memcg = root_mem_cgroup;
950
951 mz = mem_cgroup_page_nodeinfo(memcg, page);
952 lruvec = &mz->lruvec;
953 out:
954 /*
955 * Since a node can be onlined after the mem_cgroup was created,
956 * we have to be prepared to initialize lruvec->zone here;
957 * and if offlined then reonlined, we need to reinitialize it.
958 */
959 if (unlikely(lruvec->pgdat != pgdat))
960 lruvec->pgdat = pgdat;
961 return lruvec;
962 }
963
964 /**
965 * mem_cgroup_update_lru_size - account for adding or removing an lru page
966 * @lruvec: mem_cgroup per zone lru vector
967 * @lru: index of lru list the page is sitting on
968 * @nr_pages: positive when adding or negative when removing
969 *
970 * This function must be called under lru_lock, just before a page is added
971 * to or just after a page is removed from an lru list (that ordering being
972 * so as to allow it to check that lru_size 0 is consistent with list_empty).
973 */
974 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
975 int nr_pages)
976 {
977 struct mem_cgroup_per_node *mz;
978 unsigned long *lru_size;
979 long size;
980 bool empty;
981
982 if (mem_cgroup_disabled())
983 return;
984
985 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
986 lru_size = mz->lru_size + lru;
987 empty = list_empty(lruvec->lists + lru);
988
989 if (nr_pages < 0)
990 *lru_size += nr_pages;
991
992 size = *lru_size;
993 if (WARN_ONCE(size < 0 || empty != !size,
994 "%s(%p, %d, %d): lru_size %ld but %sempty\n",
995 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
996 VM_BUG_ON(1);
997 *lru_size = 0;
998 }
999
1000 if (nr_pages > 0)
1001 *lru_size += nr_pages;
1002 }
1003
1004 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1005 {
1006 struct mem_cgroup *task_memcg;
1007 struct task_struct *p;
1008 bool ret;
1009
1010 p = find_lock_task_mm(task);
1011 if (p) {
1012 task_memcg = get_mem_cgroup_from_mm(p->mm);
1013 task_unlock(p);
1014 } else {
1015 /*
1016 * All threads may have already detached their mm's, but the oom
1017 * killer still needs to detect if they have already been oom
1018 * killed to prevent needlessly killing additional tasks.
1019 */
1020 rcu_read_lock();
1021 task_memcg = mem_cgroup_from_task(task);
1022 css_get(&task_memcg->css);
1023 rcu_read_unlock();
1024 }
1025 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1026 css_put(&task_memcg->css);
1027 return ret;
1028 }
1029
1030 /**
1031 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1032 * @memcg: the memory cgroup
1033 *
1034 * Returns the maximum amount of memory @mem can be charged with, in
1035 * pages.
1036 */
1037 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1038 {
1039 unsigned long margin = 0;
1040 unsigned long count;
1041 unsigned long limit;
1042
1043 count = page_counter_read(&memcg->memory);
1044 limit = READ_ONCE(memcg->memory.limit);
1045 if (count < limit)
1046 margin = limit - count;
1047
1048 if (do_memsw_account()) {
1049 count = page_counter_read(&memcg->memsw);
1050 limit = READ_ONCE(memcg->memsw.limit);
1051 if (count <= limit)
1052 margin = min(margin, limit - count);
1053 else
1054 margin = 0;
1055 }
1056
1057 return margin;
1058 }
1059
1060 /*
1061 * A routine for checking "mem" is under move_account() or not.
1062 *
1063 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1064 * moving cgroups. This is for waiting at high-memory pressure
1065 * caused by "move".
1066 */
1067 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1068 {
1069 struct mem_cgroup *from;
1070 struct mem_cgroup *to;
1071 bool ret = false;
1072 /*
1073 * Unlike task_move routines, we access mc.to, mc.from not under
1074 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1075 */
1076 spin_lock(&mc.lock);
1077 from = mc.from;
1078 to = mc.to;
1079 if (!from)
1080 goto unlock;
1081
1082 ret = mem_cgroup_is_descendant(from, memcg) ||
1083 mem_cgroup_is_descendant(to, memcg);
1084 unlock:
1085 spin_unlock(&mc.lock);
1086 return ret;
1087 }
1088
1089 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1090 {
1091 if (mc.moving_task && current != mc.moving_task) {
1092 if (mem_cgroup_under_move(memcg)) {
1093 DEFINE_WAIT(wait);
1094 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1095 /* moving charge context might have finished. */
1096 if (mc.moving_task)
1097 schedule();
1098 finish_wait(&mc.waitq, &wait);
1099 return true;
1100 }
1101 }
1102 return false;
1103 }
1104
1105 #define K(x) ((x) << (PAGE_SHIFT-10))
1106 /**
1107 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1108 * @memcg: The memory cgroup that went over limit
1109 * @p: Task that is going to be killed
1110 *
1111 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1112 * enabled
1113 */
1114 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1115 {
1116 struct mem_cgroup *iter;
1117 unsigned int i;
1118
1119 rcu_read_lock();
1120
1121 if (p) {
1122 pr_info("Task in ");
1123 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1124 pr_cont(" killed as a result of limit of ");
1125 } else {
1126 pr_info("Memory limit reached of cgroup ");
1127 }
1128
1129 pr_cont_cgroup_path(memcg->css.cgroup);
1130 pr_cont("\n");
1131
1132 rcu_read_unlock();
1133
1134 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1135 K((u64)page_counter_read(&memcg->memory)),
1136 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1137 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1138 K((u64)page_counter_read(&memcg->memsw)),
1139 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1140 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1141 K((u64)page_counter_read(&memcg->kmem)),
1142 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1143
1144 for_each_mem_cgroup_tree(iter, memcg) {
1145 pr_info("Memory cgroup stats for ");
1146 pr_cont_cgroup_path(iter->css.cgroup);
1147 pr_cont(":");
1148
1149 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1150 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1151 continue;
1152 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1153 K(mem_cgroup_read_stat(iter, i)));
1154 }
1155
1156 for (i = 0; i < NR_LRU_LISTS; i++)
1157 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1158 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1159
1160 pr_cont("\n");
1161 }
1162 }
1163
1164 /*
1165 * This function returns the number of memcg under hierarchy tree. Returns
1166 * 1(self count) if no children.
1167 */
1168 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1169 {
1170 int num = 0;
1171 struct mem_cgroup *iter;
1172
1173 for_each_mem_cgroup_tree(iter, memcg)
1174 num++;
1175 return num;
1176 }
1177
1178 /*
1179 * Return the memory (and swap, if configured) limit for a memcg.
1180 */
1181 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1182 {
1183 unsigned long limit;
1184
1185 limit = memcg->memory.limit;
1186 if (mem_cgroup_swappiness(memcg)) {
1187 unsigned long memsw_limit;
1188 unsigned long swap_limit;
1189
1190 memsw_limit = memcg->memsw.limit;
1191 swap_limit = memcg->swap.limit;
1192 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1193 limit = min(limit + swap_limit, memsw_limit);
1194 }
1195 return limit;
1196 }
1197
1198 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1199 int order)
1200 {
1201 struct oom_control oc = {
1202 .zonelist = NULL,
1203 .nodemask = NULL,
1204 .memcg = memcg,
1205 .gfp_mask = gfp_mask,
1206 .order = order,
1207 };
1208 struct mem_cgroup *iter;
1209 unsigned long chosen_points = 0;
1210 unsigned long totalpages;
1211 unsigned int points = 0;
1212 struct task_struct *chosen = NULL;
1213
1214 mutex_lock(&oom_lock);
1215
1216 /*
1217 * If current has a pending SIGKILL or is exiting, then automatically
1218 * select it. The goal is to allow it to allocate so that it may
1219 * quickly exit and free its memory.
1220 */
1221 if (task_will_free_mem(current)) {
1222 mark_oom_victim(current);
1223 wake_oom_reaper(current);
1224 goto unlock;
1225 }
1226
1227 check_panic_on_oom(&oc, CONSTRAINT_MEMCG);
1228 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1229 for_each_mem_cgroup_tree(iter, memcg) {
1230 struct css_task_iter it;
1231 struct task_struct *task;
1232
1233 css_task_iter_start(&iter->css, &it);
1234 while ((task = css_task_iter_next(&it))) {
1235 switch (oom_scan_process_thread(&oc, task)) {
1236 case OOM_SCAN_SELECT:
1237 if (chosen)
1238 put_task_struct(chosen);
1239 chosen = task;
1240 chosen_points = ULONG_MAX;
1241 get_task_struct(chosen);
1242 /* fall through */
1243 case OOM_SCAN_CONTINUE:
1244 continue;
1245 case OOM_SCAN_ABORT:
1246 css_task_iter_end(&it);
1247 mem_cgroup_iter_break(memcg, iter);
1248 if (chosen)
1249 put_task_struct(chosen);
1250 /* Set a dummy value to return "true". */
1251 chosen = (void *) 1;
1252 goto unlock;
1253 case OOM_SCAN_OK:
1254 break;
1255 };
1256 points = oom_badness(task, memcg, NULL, totalpages);
1257 if (!points || points < chosen_points)
1258 continue;
1259 /* Prefer thread group leaders for display purposes */
1260 if (points == chosen_points &&
1261 thread_group_leader(chosen))
1262 continue;
1263
1264 if (chosen)
1265 put_task_struct(chosen);
1266 chosen = task;
1267 chosen_points = points;
1268 get_task_struct(chosen);
1269 }
1270 css_task_iter_end(&it);
1271 }
1272
1273 if (chosen) {
1274 points = chosen_points * 1000 / totalpages;
1275 oom_kill_process(&oc, chosen, points, totalpages,
1276 "Memory cgroup out of memory");
1277 }
1278 unlock:
1279 mutex_unlock(&oom_lock);
1280 return chosen;
1281 }
1282
1283 #if MAX_NUMNODES > 1
1284
1285 /**
1286 * test_mem_cgroup_node_reclaimable
1287 * @memcg: the target memcg
1288 * @nid: the node ID to be checked.
1289 * @noswap : specify true here if the user wants flle only information.
1290 *
1291 * This function returns whether the specified memcg contains any
1292 * reclaimable pages on a node. Returns true if there are any reclaimable
1293 * pages in the node.
1294 */
1295 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1296 int nid, bool noswap)
1297 {
1298 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1299 return true;
1300 if (noswap || !total_swap_pages)
1301 return false;
1302 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1303 return true;
1304 return false;
1305
1306 }
1307
1308 /*
1309 * Always updating the nodemask is not very good - even if we have an empty
1310 * list or the wrong list here, we can start from some node and traverse all
1311 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1312 *
1313 */
1314 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1315 {
1316 int nid;
1317 /*
1318 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1319 * pagein/pageout changes since the last update.
1320 */
1321 if (!atomic_read(&memcg->numainfo_events))
1322 return;
1323 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1324 return;
1325
1326 /* make a nodemask where this memcg uses memory from */
1327 memcg->scan_nodes = node_states[N_MEMORY];
1328
1329 for_each_node_mask(nid, node_states[N_MEMORY]) {
1330
1331 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1332 node_clear(nid, memcg->scan_nodes);
1333 }
1334
1335 atomic_set(&memcg->numainfo_events, 0);
1336 atomic_set(&memcg->numainfo_updating, 0);
1337 }
1338
1339 /*
1340 * Selecting a node where we start reclaim from. Because what we need is just
1341 * reducing usage counter, start from anywhere is O,K. Considering
1342 * memory reclaim from current node, there are pros. and cons.
1343 *
1344 * Freeing memory from current node means freeing memory from a node which
1345 * we'll use or we've used. So, it may make LRU bad. And if several threads
1346 * hit limits, it will see a contention on a node. But freeing from remote
1347 * node means more costs for memory reclaim because of memory latency.
1348 *
1349 * Now, we use round-robin. Better algorithm is welcomed.
1350 */
1351 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1352 {
1353 int node;
1354
1355 mem_cgroup_may_update_nodemask(memcg);
1356 node = memcg->last_scanned_node;
1357
1358 node = next_node_in(node, memcg->scan_nodes);
1359 /*
1360 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1361 * last time it really checked all the LRUs due to rate limiting.
1362 * Fallback to the current node in that case for simplicity.
1363 */
1364 if (unlikely(node == MAX_NUMNODES))
1365 node = numa_node_id();
1366
1367 memcg->last_scanned_node = node;
1368 return node;
1369 }
1370 #else
1371 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1372 {
1373 return 0;
1374 }
1375 #endif
1376
1377 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1378 pg_data_t *pgdat,
1379 gfp_t gfp_mask,
1380 unsigned long *total_scanned)
1381 {
1382 struct mem_cgroup *victim = NULL;
1383 int total = 0;
1384 int loop = 0;
1385 unsigned long excess;
1386 unsigned long nr_scanned;
1387 struct mem_cgroup_reclaim_cookie reclaim = {
1388 .pgdat = pgdat,
1389 .priority = 0,
1390 };
1391
1392 excess = soft_limit_excess(root_memcg);
1393
1394 while (1) {
1395 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1396 if (!victim) {
1397 loop++;
1398 if (loop >= 2) {
1399 /*
1400 * If we have not been able to reclaim
1401 * anything, it might because there are
1402 * no reclaimable pages under this hierarchy
1403 */
1404 if (!total)
1405 break;
1406 /*
1407 * We want to do more targeted reclaim.
1408 * excess >> 2 is not to excessive so as to
1409 * reclaim too much, nor too less that we keep
1410 * coming back to reclaim from this cgroup
1411 */
1412 if (total >= (excess >> 2) ||
1413 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1414 break;
1415 }
1416 continue;
1417 }
1418 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1419 pgdat, &nr_scanned);
1420 *total_scanned += nr_scanned;
1421 if (!soft_limit_excess(root_memcg))
1422 break;
1423 }
1424 mem_cgroup_iter_break(root_memcg, victim);
1425 return total;
1426 }
1427
1428 #ifdef CONFIG_LOCKDEP
1429 static struct lockdep_map memcg_oom_lock_dep_map = {
1430 .name = "memcg_oom_lock",
1431 };
1432 #endif
1433
1434 static DEFINE_SPINLOCK(memcg_oom_lock);
1435
1436 /*
1437 * Check OOM-Killer is already running under our hierarchy.
1438 * If someone is running, return false.
1439 */
1440 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1441 {
1442 struct mem_cgroup *iter, *failed = NULL;
1443
1444 spin_lock(&memcg_oom_lock);
1445
1446 for_each_mem_cgroup_tree(iter, memcg) {
1447 if (iter->oom_lock) {
1448 /*
1449 * this subtree of our hierarchy is already locked
1450 * so we cannot give a lock.
1451 */
1452 failed = iter;
1453 mem_cgroup_iter_break(memcg, iter);
1454 break;
1455 } else
1456 iter->oom_lock = true;
1457 }
1458
1459 if (failed) {
1460 /*
1461 * OK, we failed to lock the whole subtree so we have
1462 * to clean up what we set up to the failing subtree
1463 */
1464 for_each_mem_cgroup_tree(iter, memcg) {
1465 if (iter == failed) {
1466 mem_cgroup_iter_break(memcg, iter);
1467 break;
1468 }
1469 iter->oom_lock = false;
1470 }
1471 } else
1472 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1473
1474 spin_unlock(&memcg_oom_lock);
1475
1476 return !failed;
1477 }
1478
1479 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1480 {
1481 struct mem_cgroup *iter;
1482
1483 spin_lock(&memcg_oom_lock);
1484 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1485 for_each_mem_cgroup_tree(iter, memcg)
1486 iter->oom_lock = false;
1487 spin_unlock(&memcg_oom_lock);
1488 }
1489
1490 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1491 {
1492 struct mem_cgroup *iter;
1493
1494 spin_lock(&memcg_oom_lock);
1495 for_each_mem_cgroup_tree(iter, memcg)
1496 iter->under_oom++;
1497 spin_unlock(&memcg_oom_lock);
1498 }
1499
1500 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1501 {
1502 struct mem_cgroup *iter;
1503
1504 /*
1505 * When a new child is created while the hierarchy is under oom,
1506 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1507 */
1508 spin_lock(&memcg_oom_lock);
1509 for_each_mem_cgroup_tree(iter, memcg)
1510 if (iter->under_oom > 0)
1511 iter->under_oom--;
1512 spin_unlock(&memcg_oom_lock);
1513 }
1514
1515 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1516
1517 struct oom_wait_info {
1518 struct mem_cgroup *memcg;
1519 wait_queue_t wait;
1520 };
1521
1522 static int memcg_oom_wake_function(wait_queue_t *wait,
1523 unsigned mode, int sync, void *arg)
1524 {
1525 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1526 struct mem_cgroup *oom_wait_memcg;
1527 struct oom_wait_info *oom_wait_info;
1528
1529 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1530 oom_wait_memcg = oom_wait_info->memcg;
1531
1532 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1533 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1534 return 0;
1535 return autoremove_wake_function(wait, mode, sync, arg);
1536 }
1537
1538 static void memcg_oom_recover(struct mem_cgroup *memcg)
1539 {
1540 /*
1541 * For the following lockless ->under_oom test, the only required
1542 * guarantee is that it must see the state asserted by an OOM when
1543 * this function is called as a result of userland actions
1544 * triggered by the notification of the OOM. This is trivially
1545 * achieved by invoking mem_cgroup_mark_under_oom() before
1546 * triggering notification.
1547 */
1548 if (memcg && memcg->under_oom)
1549 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1550 }
1551
1552 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1553 {
1554 if (!current->memcg_may_oom)
1555 return;
1556 /*
1557 * We are in the middle of the charge context here, so we
1558 * don't want to block when potentially sitting on a callstack
1559 * that holds all kinds of filesystem and mm locks.
1560 *
1561 * Also, the caller may handle a failed allocation gracefully
1562 * (like optional page cache readahead) and so an OOM killer
1563 * invocation might not even be necessary.
1564 *
1565 * That's why we don't do anything here except remember the
1566 * OOM context and then deal with it at the end of the page
1567 * fault when the stack is unwound, the locks are released,
1568 * and when we know whether the fault was overall successful.
1569 */
1570 css_get(&memcg->css);
1571 current->memcg_in_oom = memcg;
1572 current->memcg_oom_gfp_mask = mask;
1573 current->memcg_oom_order = order;
1574 }
1575
1576 /**
1577 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1578 * @handle: actually kill/wait or just clean up the OOM state
1579 *
1580 * This has to be called at the end of a page fault if the memcg OOM
1581 * handler was enabled.
1582 *
1583 * Memcg supports userspace OOM handling where failed allocations must
1584 * sleep on a waitqueue until the userspace task resolves the
1585 * situation. Sleeping directly in the charge context with all kinds
1586 * of locks held is not a good idea, instead we remember an OOM state
1587 * in the task and mem_cgroup_oom_synchronize() has to be called at
1588 * the end of the page fault to complete the OOM handling.
1589 *
1590 * Returns %true if an ongoing memcg OOM situation was detected and
1591 * completed, %false otherwise.
1592 */
1593 bool mem_cgroup_oom_synchronize(bool handle)
1594 {
1595 struct mem_cgroup *memcg = current->memcg_in_oom;
1596 struct oom_wait_info owait;
1597 bool locked;
1598
1599 /* OOM is global, do not handle */
1600 if (!memcg)
1601 return false;
1602
1603 if (!handle || oom_killer_disabled)
1604 goto cleanup;
1605
1606 owait.memcg = memcg;
1607 owait.wait.flags = 0;
1608 owait.wait.func = memcg_oom_wake_function;
1609 owait.wait.private = current;
1610 INIT_LIST_HEAD(&owait.wait.task_list);
1611
1612 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1613 mem_cgroup_mark_under_oom(memcg);
1614
1615 locked = mem_cgroup_oom_trylock(memcg);
1616
1617 if (locked)
1618 mem_cgroup_oom_notify(memcg);
1619
1620 if (locked && !memcg->oom_kill_disable) {
1621 mem_cgroup_unmark_under_oom(memcg);
1622 finish_wait(&memcg_oom_waitq, &owait.wait);
1623 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1624 current->memcg_oom_order);
1625 } else {
1626 schedule();
1627 mem_cgroup_unmark_under_oom(memcg);
1628 finish_wait(&memcg_oom_waitq, &owait.wait);
1629 }
1630
1631 if (locked) {
1632 mem_cgroup_oom_unlock(memcg);
1633 /*
1634 * There is no guarantee that an OOM-lock contender
1635 * sees the wakeups triggered by the OOM kill
1636 * uncharges. Wake any sleepers explicitely.
1637 */
1638 memcg_oom_recover(memcg);
1639 }
1640 cleanup:
1641 current->memcg_in_oom = NULL;
1642 css_put(&memcg->css);
1643 return true;
1644 }
1645
1646 /**
1647 * lock_page_memcg - lock a page->mem_cgroup binding
1648 * @page: the page
1649 *
1650 * This function protects unlocked LRU pages from being moved to
1651 * another cgroup and stabilizes their page->mem_cgroup binding.
1652 */
1653 void lock_page_memcg(struct page *page)
1654 {
1655 struct mem_cgroup *memcg;
1656 unsigned long flags;
1657
1658 /*
1659 * The RCU lock is held throughout the transaction. The fast
1660 * path can get away without acquiring the memcg->move_lock
1661 * because page moving starts with an RCU grace period.
1662 */
1663 rcu_read_lock();
1664
1665 if (mem_cgroup_disabled())
1666 return;
1667 again:
1668 memcg = page->mem_cgroup;
1669 if (unlikely(!memcg))
1670 return;
1671
1672 if (atomic_read(&memcg->moving_account) <= 0)
1673 return;
1674
1675 spin_lock_irqsave(&memcg->move_lock, flags);
1676 if (memcg != page->mem_cgroup) {
1677 spin_unlock_irqrestore(&memcg->move_lock, flags);
1678 goto again;
1679 }
1680
1681 /*
1682 * When charge migration first begins, we can have locked and
1683 * unlocked page stat updates happening concurrently. Track
1684 * the task who has the lock for unlock_page_memcg().
1685 */
1686 memcg->move_lock_task = current;
1687 memcg->move_lock_flags = flags;
1688
1689 return;
1690 }
1691 EXPORT_SYMBOL(lock_page_memcg);
1692
1693 /**
1694 * unlock_page_memcg - unlock a page->mem_cgroup binding
1695 * @page: the page
1696 */
1697 void unlock_page_memcg(struct page *page)
1698 {
1699 struct mem_cgroup *memcg = page->mem_cgroup;
1700
1701 if (memcg && memcg->move_lock_task == current) {
1702 unsigned long flags = memcg->move_lock_flags;
1703
1704 memcg->move_lock_task = NULL;
1705 memcg->move_lock_flags = 0;
1706
1707 spin_unlock_irqrestore(&memcg->move_lock, flags);
1708 }
1709
1710 rcu_read_unlock();
1711 }
1712 EXPORT_SYMBOL(unlock_page_memcg);
1713
1714 /*
1715 * size of first charge trial. "32" comes from vmscan.c's magic value.
1716 * TODO: maybe necessary to use big numbers in big irons.
1717 */
1718 #define CHARGE_BATCH 32U
1719 struct memcg_stock_pcp {
1720 struct mem_cgroup *cached; /* this never be root cgroup */
1721 unsigned int nr_pages;
1722 struct work_struct work;
1723 unsigned long flags;
1724 #define FLUSHING_CACHED_CHARGE 0
1725 };
1726 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1727 static DEFINE_MUTEX(percpu_charge_mutex);
1728
1729 /**
1730 * consume_stock: Try to consume stocked charge on this cpu.
1731 * @memcg: memcg to consume from.
1732 * @nr_pages: how many pages to charge.
1733 *
1734 * The charges will only happen if @memcg matches the current cpu's memcg
1735 * stock, and at least @nr_pages are available in that stock. Failure to
1736 * service an allocation will refill the stock.
1737 *
1738 * returns true if successful, false otherwise.
1739 */
1740 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1741 {
1742 struct memcg_stock_pcp *stock;
1743 unsigned long flags;
1744 bool ret = false;
1745
1746 if (nr_pages > CHARGE_BATCH)
1747 return ret;
1748
1749 local_irq_save(flags);
1750
1751 stock = this_cpu_ptr(&memcg_stock);
1752 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1753 stock->nr_pages -= nr_pages;
1754 ret = true;
1755 }
1756
1757 local_irq_restore(flags);
1758
1759 return ret;
1760 }
1761
1762 /*
1763 * Returns stocks cached in percpu and reset cached information.
1764 */
1765 static void drain_stock(struct memcg_stock_pcp *stock)
1766 {
1767 struct mem_cgroup *old = stock->cached;
1768
1769 if (stock->nr_pages) {
1770 page_counter_uncharge(&old->memory, stock->nr_pages);
1771 if (do_memsw_account())
1772 page_counter_uncharge(&old->memsw, stock->nr_pages);
1773 css_put_many(&old->css, stock->nr_pages);
1774 stock->nr_pages = 0;
1775 }
1776 stock->cached = NULL;
1777 }
1778
1779 static void drain_local_stock(struct work_struct *dummy)
1780 {
1781 struct memcg_stock_pcp *stock;
1782 unsigned long flags;
1783
1784 local_irq_save(flags);
1785
1786 stock = this_cpu_ptr(&memcg_stock);
1787 drain_stock(stock);
1788 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1789
1790 local_irq_restore(flags);
1791 }
1792
1793 /*
1794 * Cache charges(val) to local per_cpu area.
1795 * This will be consumed by consume_stock() function, later.
1796 */
1797 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1798 {
1799 struct memcg_stock_pcp *stock;
1800 unsigned long flags;
1801
1802 local_irq_save(flags);
1803
1804 stock = this_cpu_ptr(&memcg_stock);
1805 if (stock->cached != memcg) { /* reset if necessary */
1806 drain_stock(stock);
1807 stock->cached = memcg;
1808 }
1809 stock->nr_pages += nr_pages;
1810
1811 local_irq_restore(flags);
1812 }
1813
1814 /*
1815 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1816 * of the hierarchy under it.
1817 */
1818 static void drain_all_stock(struct mem_cgroup *root_memcg)
1819 {
1820 int cpu, curcpu;
1821
1822 /* If someone's already draining, avoid adding running more workers. */
1823 if (!mutex_trylock(&percpu_charge_mutex))
1824 return;
1825 /* Notify other cpus that system-wide "drain" is running */
1826 get_online_cpus();
1827 curcpu = get_cpu();
1828 for_each_online_cpu(cpu) {
1829 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1830 struct mem_cgroup *memcg;
1831
1832 memcg = stock->cached;
1833 if (!memcg || !stock->nr_pages)
1834 continue;
1835 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1836 continue;
1837 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1838 if (cpu == curcpu)
1839 drain_local_stock(&stock->work);
1840 else
1841 schedule_work_on(cpu, &stock->work);
1842 }
1843 }
1844 put_cpu();
1845 put_online_cpus();
1846 mutex_unlock(&percpu_charge_mutex);
1847 }
1848
1849 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1850 unsigned long action,
1851 void *hcpu)
1852 {
1853 int cpu = (unsigned long)hcpu;
1854 struct memcg_stock_pcp *stock;
1855
1856 if (action == CPU_ONLINE)
1857 return NOTIFY_OK;
1858
1859 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1860 return NOTIFY_OK;
1861
1862 stock = &per_cpu(memcg_stock, cpu);
1863 drain_stock(stock);
1864 return NOTIFY_OK;
1865 }
1866
1867 static void reclaim_high(struct mem_cgroup *memcg,
1868 unsigned int nr_pages,
1869 gfp_t gfp_mask)
1870 {
1871 do {
1872 if (page_counter_read(&memcg->memory) <= memcg->high)
1873 continue;
1874 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1875 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1876 } while ((memcg = parent_mem_cgroup(memcg)));
1877 }
1878
1879 static void high_work_func(struct work_struct *work)
1880 {
1881 struct mem_cgroup *memcg;
1882
1883 memcg = container_of(work, struct mem_cgroup, high_work);
1884 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1885 }
1886
1887 /*
1888 * Scheduled by try_charge() to be executed from the userland return path
1889 * and reclaims memory over the high limit.
1890 */
1891 void mem_cgroup_handle_over_high(void)
1892 {
1893 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1894 struct mem_cgroup *memcg;
1895
1896 if (likely(!nr_pages))
1897 return;
1898
1899 memcg = get_mem_cgroup_from_mm(current->mm);
1900 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1901 css_put(&memcg->css);
1902 current->memcg_nr_pages_over_high = 0;
1903 }
1904
1905 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1906 unsigned int nr_pages)
1907 {
1908 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1909 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1910 struct mem_cgroup *mem_over_limit;
1911 struct page_counter *counter;
1912 unsigned long nr_reclaimed;
1913 bool may_swap = true;
1914 bool drained = false;
1915
1916 if (mem_cgroup_is_root(memcg))
1917 return 0;
1918 retry:
1919 if (consume_stock(memcg, nr_pages))
1920 return 0;
1921
1922 if (!do_memsw_account() ||
1923 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1924 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1925 goto done_restock;
1926 if (do_memsw_account())
1927 page_counter_uncharge(&memcg->memsw, batch);
1928 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1929 } else {
1930 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1931 may_swap = false;
1932 }
1933
1934 if (batch > nr_pages) {
1935 batch = nr_pages;
1936 goto retry;
1937 }
1938
1939 /*
1940 * Unlike in global OOM situations, memcg is not in a physical
1941 * memory shortage. Allow dying and OOM-killed tasks to
1942 * bypass the last charges so that they can exit quickly and
1943 * free their memory.
1944 */
1945 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1946 fatal_signal_pending(current) ||
1947 current->flags & PF_EXITING))
1948 goto force;
1949
1950 if (unlikely(task_in_memcg_oom(current)))
1951 goto nomem;
1952
1953 if (!gfpflags_allow_blocking(gfp_mask))
1954 goto nomem;
1955
1956 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1957
1958 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1959 gfp_mask, may_swap);
1960
1961 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1962 goto retry;
1963
1964 if (!drained) {
1965 drain_all_stock(mem_over_limit);
1966 drained = true;
1967 goto retry;
1968 }
1969
1970 if (gfp_mask & __GFP_NORETRY)
1971 goto nomem;
1972 /*
1973 * Even though the limit is exceeded at this point, reclaim
1974 * may have been able to free some pages. Retry the charge
1975 * before killing the task.
1976 *
1977 * Only for regular pages, though: huge pages are rather
1978 * unlikely to succeed so close to the limit, and we fall back
1979 * to regular pages anyway in case of failure.
1980 */
1981 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1982 goto retry;
1983 /*
1984 * At task move, charge accounts can be doubly counted. So, it's
1985 * better to wait until the end of task_move if something is going on.
1986 */
1987 if (mem_cgroup_wait_acct_move(mem_over_limit))
1988 goto retry;
1989
1990 if (nr_retries--)
1991 goto retry;
1992
1993 if (gfp_mask & __GFP_NOFAIL)
1994 goto force;
1995
1996 if (fatal_signal_pending(current))
1997 goto force;
1998
1999 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2000
2001 mem_cgroup_oom(mem_over_limit, gfp_mask,
2002 get_order(nr_pages * PAGE_SIZE));
2003 nomem:
2004 if (!(gfp_mask & __GFP_NOFAIL))
2005 return -ENOMEM;
2006 force:
2007 /*
2008 * The allocation either can't fail or will lead to more memory
2009 * being freed very soon. Allow memory usage go over the limit
2010 * temporarily by force charging it.
2011 */
2012 page_counter_charge(&memcg->memory, nr_pages);
2013 if (do_memsw_account())
2014 page_counter_charge(&memcg->memsw, nr_pages);
2015 css_get_many(&memcg->css, nr_pages);
2016
2017 return 0;
2018
2019 done_restock:
2020 css_get_many(&memcg->css, batch);
2021 if (batch > nr_pages)
2022 refill_stock(memcg, batch - nr_pages);
2023
2024 /*
2025 * If the hierarchy is above the normal consumption range, schedule
2026 * reclaim on returning to userland. We can perform reclaim here
2027 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2028 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2029 * not recorded as it most likely matches current's and won't
2030 * change in the meantime. As high limit is checked again before
2031 * reclaim, the cost of mismatch is negligible.
2032 */
2033 do {
2034 if (page_counter_read(&memcg->memory) > memcg->high) {
2035 /* Don't bother a random interrupted task */
2036 if (in_interrupt()) {
2037 schedule_work(&memcg->high_work);
2038 break;
2039 }
2040 current->memcg_nr_pages_over_high += batch;
2041 set_notify_resume(current);
2042 break;
2043 }
2044 } while ((memcg = parent_mem_cgroup(memcg)));
2045
2046 return 0;
2047 }
2048
2049 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2050 {
2051 if (mem_cgroup_is_root(memcg))
2052 return;
2053
2054 page_counter_uncharge(&memcg->memory, nr_pages);
2055 if (do_memsw_account())
2056 page_counter_uncharge(&memcg->memsw, nr_pages);
2057
2058 css_put_many(&memcg->css, nr_pages);
2059 }
2060
2061 static void lock_page_lru(struct page *page, int *isolated)
2062 {
2063 struct zone *zone = page_zone(page);
2064
2065 spin_lock_irq(zone_lru_lock(zone));
2066 if (PageLRU(page)) {
2067 struct lruvec *lruvec;
2068
2069 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2070 ClearPageLRU(page);
2071 del_page_from_lru_list(page, lruvec, page_lru(page));
2072 *isolated = 1;
2073 } else
2074 *isolated = 0;
2075 }
2076
2077 static void unlock_page_lru(struct page *page, int isolated)
2078 {
2079 struct zone *zone = page_zone(page);
2080
2081 if (isolated) {
2082 struct lruvec *lruvec;
2083
2084 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2085 VM_BUG_ON_PAGE(PageLRU(page), page);
2086 SetPageLRU(page);
2087 add_page_to_lru_list(page, lruvec, page_lru(page));
2088 }
2089 spin_unlock_irq(zone_lru_lock(zone));
2090 }
2091
2092 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2093 bool lrucare)
2094 {
2095 int isolated;
2096
2097 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2098
2099 /*
2100 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2101 * may already be on some other mem_cgroup's LRU. Take care of it.
2102 */
2103 if (lrucare)
2104 lock_page_lru(page, &isolated);
2105
2106 /*
2107 * Nobody should be changing or seriously looking at
2108 * page->mem_cgroup at this point:
2109 *
2110 * - the page is uncharged
2111 *
2112 * - the page is off-LRU
2113 *
2114 * - an anonymous fault has exclusive page access, except for
2115 * a locked page table
2116 *
2117 * - a page cache insertion, a swapin fault, or a migration
2118 * have the page locked
2119 */
2120 page->mem_cgroup = memcg;
2121
2122 if (lrucare)
2123 unlock_page_lru(page, isolated);
2124 }
2125
2126 #ifndef CONFIG_SLOB
2127 static int memcg_alloc_cache_id(void)
2128 {
2129 int id, size;
2130 int err;
2131
2132 id = ida_simple_get(&memcg_cache_ida,
2133 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2134 if (id < 0)
2135 return id;
2136
2137 if (id < memcg_nr_cache_ids)
2138 return id;
2139
2140 /*
2141 * There's no space for the new id in memcg_caches arrays,
2142 * so we have to grow them.
2143 */
2144 down_write(&memcg_cache_ids_sem);
2145
2146 size = 2 * (id + 1);
2147 if (size < MEMCG_CACHES_MIN_SIZE)
2148 size = MEMCG_CACHES_MIN_SIZE;
2149 else if (size > MEMCG_CACHES_MAX_SIZE)
2150 size = MEMCG_CACHES_MAX_SIZE;
2151
2152 err = memcg_update_all_caches(size);
2153 if (!err)
2154 err = memcg_update_all_list_lrus(size);
2155 if (!err)
2156 memcg_nr_cache_ids = size;
2157
2158 up_write(&memcg_cache_ids_sem);
2159
2160 if (err) {
2161 ida_simple_remove(&memcg_cache_ida, id);
2162 return err;
2163 }
2164 return id;
2165 }
2166
2167 static void memcg_free_cache_id(int id)
2168 {
2169 ida_simple_remove(&memcg_cache_ida, id);
2170 }
2171
2172 struct memcg_kmem_cache_create_work {
2173 struct mem_cgroup *memcg;
2174 struct kmem_cache *cachep;
2175 struct work_struct work;
2176 };
2177
2178 static void memcg_kmem_cache_create_func(struct work_struct *w)
2179 {
2180 struct memcg_kmem_cache_create_work *cw =
2181 container_of(w, struct memcg_kmem_cache_create_work, work);
2182 struct mem_cgroup *memcg = cw->memcg;
2183 struct kmem_cache *cachep = cw->cachep;
2184
2185 memcg_create_kmem_cache(memcg, cachep);
2186
2187 css_put(&memcg->css);
2188 kfree(cw);
2189 }
2190
2191 /*
2192 * Enqueue the creation of a per-memcg kmem_cache.
2193 */
2194 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2195 struct kmem_cache *cachep)
2196 {
2197 struct memcg_kmem_cache_create_work *cw;
2198
2199 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2200 if (!cw)
2201 return;
2202
2203 css_get(&memcg->css);
2204
2205 cw->memcg = memcg;
2206 cw->cachep = cachep;
2207 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2208
2209 schedule_work(&cw->work);
2210 }
2211
2212 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2213 struct kmem_cache *cachep)
2214 {
2215 /*
2216 * We need to stop accounting when we kmalloc, because if the
2217 * corresponding kmalloc cache is not yet created, the first allocation
2218 * in __memcg_schedule_kmem_cache_create will recurse.
2219 *
2220 * However, it is better to enclose the whole function. Depending on
2221 * the debugging options enabled, INIT_WORK(), for instance, can
2222 * trigger an allocation. This too, will make us recurse. Because at
2223 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2224 * the safest choice is to do it like this, wrapping the whole function.
2225 */
2226 current->memcg_kmem_skip_account = 1;
2227 __memcg_schedule_kmem_cache_create(memcg, cachep);
2228 current->memcg_kmem_skip_account = 0;
2229 }
2230
2231 static inline bool memcg_kmem_bypass(void)
2232 {
2233 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2234 return true;
2235 return false;
2236 }
2237
2238 /**
2239 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2240 * @cachep: the original global kmem cache
2241 *
2242 * Return the kmem_cache we're supposed to use for a slab allocation.
2243 * We try to use the current memcg's version of the cache.
2244 *
2245 * If the cache does not exist yet, if we are the first user of it, we
2246 * create it asynchronously in a workqueue and let the current allocation
2247 * go through with the original cache.
2248 *
2249 * This function takes a reference to the cache it returns to assure it
2250 * won't get destroyed while we are working with it. Once the caller is
2251 * done with it, memcg_kmem_put_cache() must be called to release the
2252 * reference.
2253 */
2254 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2255 {
2256 struct mem_cgroup *memcg;
2257 struct kmem_cache *memcg_cachep;
2258 int kmemcg_id;
2259
2260 VM_BUG_ON(!is_root_cache(cachep));
2261
2262 if (memcg_kmem_bypass())
2263 return cachep;
2264
2265 if (current->memcg_kmem_skip_account)
2266 return cachep;
2267
2268 memcg = get_mem_cgroup_from_mm(current->mm);
2269 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2270 if (kmemcg_id < 0)
2271 goto out;
2272
2273 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2274 if (likely(memcg_cachep))
2275 return memcg_cachep;
2276
2277 /*
2278 * If we are in a safe context (can wait, and not in interrupt
2279 * context), we could be be predictable and return right away.
2280 * This would guarantee that the allocation being performed
2281 * already belongs in the new cache.
2282 *
2283 * However, there are some clashes that can arrive from locking.
2284 * For instance, because we acquire the slab_mutex while doing
2285 * memcg_create_kmem_cache, this means no further allocation
2286 * could happen with the slab_mutex held. So it's better to
2287 * defer everything.
2288 */
2289 memcg_schedule_kmem_cache_create(memcg, cachep);
2290 out:
2291 css_put(&memcg->css);
2292 return cachep;
2293 }
2294
2295 /**
2296 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2297 * @cachep: the cache returned by memcg_kmem_get_cache
2298 */
2299 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2300 {
2301 if (!is_root_cache(cachep))
2302 css_put(&cachep->memcg_params.memcg->css);
2303 }
2304
2305 /**
2306 * memcg_kmem_charge: charge a kmem page
2307 * @page: page to charge
2308 * @gfp: reclaim mode
2309 * @order: allocation order
2310 * @memcg: memory cgroup to charge
2311 *
2312 * Returns 0 on success, an error code on failure.
2313 */
2314 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2315 struct mem_cgroup *memcg)
2316 {
2317 unsigned int nr_pages = 1 << order;
2318 struct page_counter *counter;
2319 int ret;
2320
2321 ret = try_charge(memcg, gfp, nr_pages);
2322 if (ret)
2323 return ret;
2324
2325 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2326 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2327 cancel_charge(memcg, nr_pages);
2328 return -ENOMEM;
2329 }
2330
2331 page->mem_cgroup = memcg;
2332
2333 return 0;
2334 }
2335
2336 /**
2337 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2338 * @page: page to charge
2339 * @gfp: reclaim mode
2340 * @order: allocation order
2341 *
2342 * Returns 0 on success, an error code on failure.
2343 */
2344 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2345 {
2346 struct mem_cgroup *memcg;
2347 int ret = 0;
2348
2349 if (memcg_kmem_bypass())
2350 return 0;
2351
2352 memcg = get_mem_cgroup_from_mm(current->mm);
2353 if (!mem_cgroup_is_root(memcg)) {
2354 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2355 if (!ret)
2356 __SetPageKmemcg(page);
2357 }
2358 css_put(&memcg->css);
2359 return ret;
2360 }
2361 /**
2362 * memcg_kmem_uncharge: uncharge a kmem page
2363 * @page: page to uncharge
2364 * @order: allocation order
2365 */
2366 void memcg_kmem_uncharge(struct page *page, int order)
2367 {
2368 struct mem_cgroup *memcg = page->mem_cgroup;
2369 unsigned int nr_pages = 1 << order;
2370
2371 if (!memcg)
2372 return;
2373
2374 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2375
2376 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2377 page_counter_uncharge(&memcg->kmem, nr_pages);
2378
2379 page_counter_uncharge(&memcg->memory, nr_pages);
2380 if (do_memsw_account())
2381 page_counter_uncharge(&memcg->memsw, nr_pages);
2382
2383 page->mem_cgroup = NULL;
2384
2385 /* slab pages do not have PageKmemcg flag set */
2386 if (PageKmemcg(page))
2387 __ClearPageKmemcg(page);
2388
2389 css_put_many(&memcg->css, nr_pages);
2390 }
2391 #endif /* !CONFIG_SLOB */
2392
2393 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2394
2395 /*
2396 * Because tail pages are not marked as "used", set it. We're under
2397 * zone_lru_lock and migration entries setup in all page mappings.
2398 */
2399 void mem_cgroup_split_huge_fixup(struct page *head)
2400 {
2401 int i;
2402
2403 if (mem_cgroup_disabled())
2404 return;
2405
2406 for (i = 1; i < HPAGE_PMD_NR; i++)
2407 head[i].mem_cgroup = head->mem_cgroup;
2408
2409 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2410 HPAGE_PMD_NR);
2411 }
2412 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2413
2414 #ifdef CONFIG_MEMCG_SWAP
2415 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2416 bool charge)
2417 {
2418 int val = (charge) ? 1 : -1;
2419 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2420 }
2421
2422 /**
2423 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2424 * @entry: swap entry to be moved
2425 * @from: mem_cgroup which the entry is moved from
2426 * @to: mem_cgroup which the entry is moved to
2427 *
2428 * It succeeds only when the swap_cgroup's record for this entry is the same
2429 * as the mem_cgroup's id of @from.
2430 *
2431 * Returns 0 on success, -EINVAL on failure.
2432 *
2433 * The caller must have charged to @to, IOW, called page_counter_charge() about
2434 * both res and memsw, and called css_get().
2435 */
2436 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2437 struct mem_cgroup *from, struct mem_cgroup *to)
2438 {
2439 unsigned short old_id, new_id;
2440
2441 old_id = mem_cgroup_id(from);
2442 new_id = mem_cgroup_id(to);
2443
2444 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2445 mem_cgroup_swap_statistics(from, false);
2446 mem_cgroup_swap_statistics(to, true);
2447 return 0;
2448 }
2449 return -EINVAL;
2450 }
2451 #else
2452 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2453 struct mem_cgroup *from, struct mem_cgroup *to)
2454 {
2455 return -EINVAL;
2456 }
2457 #endif
2458
2459 static DEFINE_MUTEX(memcg_limit_mutex);
2460
2461 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2462 unsigned long limit)
2463 {
2464 unsigned long curusage;
2465 unsigned long oldusage;
2466 bool enlarge = false;
2467 int retry_count;
2468 int ret;
2469
2470 /*
2471 * For keeping hierarchical_reclaim simple, how long we should retry
2472 * is depends on callers. We set our retry-count to be function
2473 * of # of children which we should visit in this loop.
2474 */
2475 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2476 mem_cgroup_count_children(memcg);
2477
2478 oldusage = page_counter_read(&memcg->memory);
2479
2480 do {
2481 if (signal_pending(current)) {
2482 ret = -EINTR;
2483 break;
2484 }
2485
2486 mutex_lock(&memcg_limit_mutex);
2487 if (limit > memcg->memsw.limit) {
2488 mutex_unlock(&memcg_limit_mutex);
2489 ret = -EINVAL;
2490 break;
2491 }
2492 if (limit > memcg->memory.limit)
2493 enlarge = true;
2494 ret = page_counter_limit(&memcg->memory, limit);
2495 mutex_unlock(&memcg_limit_mutex);
2496
2497 if (!ret)
2498 break;
2499
2500 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2501
2502 curusage = page_counter_read(&memcg->memory);
2503 /* Usage is reduced ? */
2504 if (curusage >= oldusage)
2505 retry_count--;
2506 else
2507 oldusage = curusage;
2508 } while (retry_count);
2509
2510 if (!ret && enlarge)
2511 memcg_oom_recover(memcg);
2512
2513 return ret;
2514 }
2515
2516 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2517 unsigned long limit)
2518 {
2519 unsigned long curusage;
2520 unsigned long oldusage;
2521 bool enlarge = false;
2522 int retry_count;
2523 int ret;
2524
2525 /* see mem_cgroup_resize_res_limit */
2526 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2527 mem_cgroup_count_children(memcg);
2528
2529 oldusage = page_counter_read(&memcg->memsw);
2530
2531 do {
2532 if (signal_pending(current)) {
2533 ret = -EINTR;
2534 break;
2535 }
2536
2537 mutex_lock(&memcg_limit_mutex);
2538 if (limit < memcg->memory.limit) {
2539 mutex_unlock(&memcg_limit_mutex);
2540 ret = -EINVAL;
2541 break;
2542 }
2543 if (limit > memcg->memsw.limit)
2544 enlarge = true;
2545 ret = page_counter_limit(&memcg->memsw, limit);
2546 mutex_unlock(&memcg_limit_mutex);
2547
2548 if (!ret)
2549 break;
2550
2551 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2552
2553 curusage = page_counter_read(&memcg->memsw);
2554 /* Usage is reduced ? */
2555 if (curusage >= oldusage)
2556 retry_count--;
2557 else
2558 oldusage = curusage;
2559 } while (retry_count);
2560
2561 if (!ret && enlarge)
2562 memcg_oom_recover(memcg);
2563
2564 return ret;
2565 }
2566
2567 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2568 gfp_t gfp_mask,
2569 unsigned long *total_scanned)
2570 {
2571 unsigned long nr_reclaimed = 0;
2572 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2573 unsigned long reclaimed;
2574 int loop = 0;
2575 struct mem_cgroup_tree_per_node *mctz;
2576 unsigned long excess;
2577 unsigned long nr_scanned;
2578
2579 if (order > 0)
2580 return 0;
2581
2582 mctz = soft_limit_tree_node(pgdat->node_id);
2583
2584 /*
2585 * Do not even bother to check the largest node if the root
2586 * is empty. Do it lockless to prevent lock bouncing. Races
2587 * are acceptable as soft limit is best effort anyway.
2588 */
2589 if (RB_EMPTY_ROOT(&mctz->rb_root))
2590 return 0;
2591
2592 /*
2593 * This loop can run a while, specially if mem_cgroup's continuously
2594 * keep exceeding their soft limit and putting the system under
2595 * pressure
2596 */
2597 do {
2598 if (next_mz)
2599 mz = next_mz;
2600 else
2601 mz = mem_cgroup_largest_soft_limit_node(mctz);
2602 if (!mz)
2603 break;
2604
2605 nr_scanned = 0;
2606 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2607 gfp_mask, &nr_scanned);
2608 nr_reclaimed += reclaimed;
2609 *total_scanned += nr_scanned;
2610 spin_lock_irq(&mctz->lock);
2611 __mem_cgroup_remove_exceeded(mz, mctz);
2612
2613 /*
2614 * If we failed to reclaim anything from this memory cgroup
2615 * it is time to move on to the next cgroup
2616 */
2617 next_mz = NULL;
2618 if (!reclaimed)
2619 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2620
2621 excess = soft_limit_excess(mz->memcg);
2622 /*
2623 * One school of thought says that we should not add
2624 * back the node to the tree if reclaim returns 0.
2625 * But our reclaim could return 0, simply because due
2626 * to priority we are exposing a smaller subset of
2627 * memory to reclaim from. Consider this as a longer
2628 * term TODO.
2629 */
2630 /* If excess == 0, no tree ops */
2631 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2632 spin_unlock_irq(&mctz->lock);
2633 css_put(&mz->memcg->css);
2634 loop++;
2635 /*
2636 * Could not reclaim anything and there are no more
2637 * mem cgroups to try or we seem to be looping without
2638 * reclaiming anything.
2639 */
2640 if (!nr_reclaimed &&
2641 (next_mz == NULL ||
2642 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2643 break;
2644 } while (!nr_reclaimed);
2645 if (next_mz)
2646 css_put(&next_mz->memcg->css);
2647 return nr_reclaimed;
2648 }
2649
2650 /*
2651 * Test whether @memcg has children, dead or alive. Note that this
2652 * function doesn't care whether @memcg has use_hierarchy enabled and
2653 * returns %true if there are child csses according to the cgroup
2654 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2655 */
2656 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2657 {
2658 bool ret;
2659
2660 rcu_read_lock();
2661 ret = css_next_child(NULL, &memcg->css);
2662 rcu_read_unlock();
2663 return ret;
2664 }
2665
2666 /*
2667 * Reclaims as many pages from the given memcg as possible.
2668 *
2669 * Caller is responsible for holding css reference for memcg.
2670 */
2671 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2672 {
2673 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2674
2675 /* we call try-to-free pages for make this cgroup empty */
2676 lru_add_drain_all();
2677 /* try to free all pages in this cgroup */
2678 while (nr_retries && page_counter_read(&memcg->memory)) {
2679 int progress;
2680
2681 if (signal_pending(current))
2682 return -EINTR;
2683
2684 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2685 GFP_KERNEL, true);
2686 if (!progress) {
2687 nr_retries--;
2688 /* maybe some writeback is necessary */
2689 congestion_wait(BLK_RW_ASYNC, HZ/10);
2690 }
2691
2692 }
2693
2694 return 0;
2695 }
2696
2697 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2698 char *buf, size_t nbytes,
2699 loff_t off)
2700 {
2701 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2702
2703 if (mem_cgroup_is_root(memcg))
2704 return -EINVAL;
2705 return mem_cgroup_force_empty(memcg) ?: nbytes;
2706 }
2707
2708 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2709 struct cftype *cft)
2710 {
2711 return mem_cgroup_from_css(css)->use_hierarchy;
2712 }
2713
2714 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2715 struct cftype *cft, u64 val)
2716 {
2717 int retval = 0;
2718 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2719 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2720
2721 if (memcg->use_hierarchy == val)
2722 return 0;
2723
2724 /*
2725 * If parent's use_hierarchy is set, we can't make any modifications
2726 * in the child subtrees. If it is unset, then the change can
2727 * occur, provided the current cgroup has no children.
2728 *
2729 * For the root cgroup, parent_mem is NULL, we allow value to be
2730 * set if there are no children.
2731 */
2732 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2733 (val == 1 || val == 0)) {
2734 if (!memcg_has_children(memcg))
2735 memcg->use_hierarchy = val;
2736 else
2737 retval = -EBUSY;
2738 } else
2739 retval = -EINVAL;
2740
2741 return retval;
2742 }
2743
2744 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2745 {
2746 struct mem_cgroup *iter;
2747 int i;
2748
2749 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2750
2751 for_each_mem_cgroup_tree(iter, memcg) {
2752 for (i = 0; i < MEMCG_NR_STAT; i++)
2753 stat[i] += mem_cgroup_read_stat(iter, i);
2754 }
2755 }
2756
2757 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2758 {
2759 struct mem_cgroup *iter;
2760 int i;
2761
2762 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2763
2764 for_each_mem_cgroup_tree(iter, memcg) {
2765 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2766 events[i] += mem_cgroup_read_events(iter, i);
2767 }
2768 }
2769
2770 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2771 {
2772 unsigned long val = 0;
2773
2774 if (mem_cgroup_is_root(memcg)) {
2775 struct mem_cgroup *iter;
2776
2777 for_each_mem_cgroup_tree(iter, memcg) {
2778 val += mem_cgroup_read_stat(iter,
2779 MEM_CGROUP_STAT_CACHE);
2780 val += mem_cgroup_read_stat(iter,
2781 MEM_CGROUP_STAT_RSS);
2782 if (swap)
2783 val += mem_cgroup_read_stat(iter,
2784 MEM_CGROUP_STAT_SWAP);
2785 }
2786 } else {
2787 if (!swap)
2788 val = page_counter_read(&memcg->memory);
2789 else
2790 val = page_counter_read(&memcg->memsw);
2791 }
2792 return val;
2793 }
2794
2795 enum {
2796 RES_USAGE,
2797 RES_LIMIT,
2798 RES_MAX_USAGE,
2799 RES_FAILCNT,
2800 RES_SOFT_LIMIT,
2801 };
2802
2803 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2804 struct cftype *cft)
2805 {
2806 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2807 struct page_counter *counter;
2808
2809 switch (MEMFILE_TYPE(cft->private)) {
2810 case _MEM:
2811 counter = &memcg->memory;
2812 break;
2813 case _MEMSWAP:
2814 counter = &memcg->memsw;
2815 break;
2816 case _KMEM:
2817 counter = &memcg->kmem;
2818 break;
2819 case _TCP:
2820 counter = &memcg->tcpmem;
2821 break;
2822 default:
2823 BUG();
2824 }
2825
2826 switch (MEMFILE_ATTR(cft->private)) {
2827 case RES_USAGE:
2828 if (counter == &memcg->memory)
2829 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2830 if (counter == &memcg->memsw)
2831 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2832 return (u64)page_counter_read(counter) * PAGE_SIZE;
2833 case RES_LIMIT:
2834 return (u64)counter->limit * PAGE_SIZE;
2835 case RES_MAX_USAGE:
2836 return (u64)counter->watermark * PAGE_SIZE;
2837 case RES_FAILCNT:
2838 return counter->failcnt;
2839 case RES_SOFT_LIMIT:
2840 return (u64)memcg->soft_limit * PAGE_SIZE;
2841 default:
2842 BUG();
2843 }
2844 }
2845
2846 #ifndef CONFIG_SLOB
2847 static int memcg_online_kmem(struct mem_cgroup *memcg)
2848 {
2849 int memcg_id;
2850
2851 if (cgroup_memory_nokmem)
2852 return 0;
2853
2854 BUG_ON(memcg->kmemcg_id >= 0);
2855 BUG_ON(memcg->kmem_state);
2856
2857 memcg_id = memcg_alloc_cache_id();
2858 if (memcg_id < 0)
2859 return memcg_id;
2860
2861 static_branch_inc(&memcg_kmem_enabled_key);
2862 /*
2863 * A memory cgroup is considered kmem-online as soon as it gets
2864 * kmemcg_id. Setting the id after enabling static branching will
2865 * guarantee no one starts accounting before all call sites are
2866 * patched.
2867 */
2868 memcg->kmemcg_id = memcg_id;
2869 memcg->kmem_state = KMEM_ONLINE;
2870
2871 return 0;
2872 }
2873
2874 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2875 {
2876 struct cgroup_subsys_state *css;
2877 struct mem_cgroup *parent, *child;
2878 int kmemcg_id;
2879
2880 if (memcg->kmem_state != KMEM_ONLINE)
2881 return;
2882 /*
2883 * Clear the online state before clearing memcg_caches array
2884 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2885 * guarantees that no cache will be created for this cgroup
2886 * after we are done (see memcg_create_kmem_cache()).
2887 */
2888 memcg->kmem_state = KMEM_ALLOCATED;
2889
2890 memcg_deactivate_kmem_caches(memcg);
2891
2892 kmemcg_id = memcg->kmemcg_id;
2893 BUG_ON(kmemcg_id < 0);
2894
2895 parent = parent_mem_cgroup(memcg);
2896 if (!parent)
2897 parent = root_mem_cgroup;
2898
2899 /*
2900 * Change kmemcg_id of this cgroup and all its descendants to the
2901 * parent's id, and then move all entries from this cgroup's list_lrus
2902 * to ones of the parent. After we have finished, all list_lrus
2903 * corresponding to this cgroup are guaranteed to remain empty. The
2904 * ordering is imposed by list_lru_node->lock taken by
2905 * memcg_drain_all_list_lrus().
2906 */
2907 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2908 css_for_each_descendant_pre(css, &memcg->css) {
2909 child = mem_cgroup_from_css(css);
2910 BUG_ON(child->kmemcg_id != kmemcg_id);
2911 child->kmemcg_id = parent->kmemcg_id;
2912 if (!memcg->use_hierarchy)
2913 break;
2914 }
2915 rcu_read_unlock();
2916
2917 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2918
2919 memcg_free_cache_id(kmemcg_id);
2920 }
2921
2922 static void memcg_free_kmem(struct mem_cgroup *memcg)
2923 {
2924 /* css_alloc() failed, offlining didn't happen */
2925 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2926 memcg_offline_kmem(memcg);
2927
2928 if (memcg->kmem_state == KMEM_ALLOCATED) {
2929 memcg_destroy_kmem_caches(memcg);
2930 static_branch_dec(&memcg_kmem_enabled_key);
2931 WARN_ON(page_counter_read(&memcg->kmem));
2932 }
2933 }
2934 #else
2935 static int memcg_online_kmem(struct mem_cgroup *memcg)
2936 {
2937 return 0;
2938 }
2939 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2940 {
2941 }
2942 static void memcg_free_kmem(struct mem_cgroup *memcg)
2943 {
2944 }
2945 #endif /* !CONFIG_SLOB */
2946
2947 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2948 unsigned long limit)
2949 {
2950 int ret;
2951
2952 mutex_lock(&memcg_limit_mutex);
2953 ret = page_counter_limit(&memcg->kmem, limit);
2954 mutex_unlock(&memcg_limit_mutex);
2955 return ret;
2956 }
2957
2958 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2959 {
2960 int ret;
2961
2962 mutex_lock(&memcg_limit_mutex);
2963
2964 ret = page_counter_limit(&memcg->tcpmem, limit);
2965 if (ret)
2966 goto out;
2967
2968 if (!memcg->tcpmem_active) {
2969 /*
2970 * The active flag needs to be written after the static_key
2971 * update. This is what guarantees that the socket activation
2972 * function is the last one to run. See sock_update_memcg() for
2973 * details, and note that we don't mark any socket as belonging
2974 * to this memcg until that flag is up.
2975 *
2976 * We need to do this, because static_keys will span multiple
2977 * sites, but we can't control their order. If we mark a socket
2978 * as accounted, but the accounting functions are not patched in
2979 * yet, we'll lose accounting.
2980 *
2981 * We never race with the readers in sock_update_memcg(),
2982 * because when this value change, the code to process it is not
2983 * patched in yet.
2984 */
2985 static_branch_inc(&memcg_sockets_enabled_key);
2986 memcg->tcpmem_active = true;
2987 }
2988 out:
2989 mutex_unlock(&memcg_limit_mutex);
2990 return ret;
2991 }
2992
2993 /*
2994 * The user of this function is...
2995 * RES_LIMIT.
2996 */
2997 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2998 char *buf, size_t nbytes, loff_t off)
2999 {
3000 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3001 unsigned long nr_pages;
3002 int ret;
3003
3004 buf = strstrip(buf);
3005 ret = page_counter_memparse(buf, "-1", &nr_pages);
3006 if (ret)
3007 return ret;
3008
3009 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3010 case RES_LIMIT:
3011 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3012 ret = -EINVAL;
3013 break;
3014 }
3015 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3016 case _MEM:
3017 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3018 break;
3019 case _MEMSWAP:
3020 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3021 break;
3022 case _KMEM:
3023 ret = memcg_update_kmem_limit(memcg, nr_pages);
3024 break;
3025 case _TCP:
3026 ret = memcg_update_tcp_limit(memcg, nr_pages);
3027 break;
3028 }
3029 break;
3030 case RES_SOFT_LIMIT:
3031 memcg->soft_limit = nr_pages;
3032 ret = 0;
3033 break;
3034 }
3035 return ret ?: nbytes;
3036 }
3037
3038 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3039 size_t nbytes, loff_t off)
3040 {
3041 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3042 struct page_counter *counter;
3043
3044 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3045 case _MEM:
3046 counter = &memcg->memory;
3047 break;
3048 case _MEMSWAP:
3049 counter = &memcg->memsw;
3050 break;
3051 case _KMEM:
3052 counter = &memcg->kmem;
3053 break;
3054 case _TCP:
3055 counter = &memcg->tcpmem;
3056 break;
3057 default:
3058 BUG();
3059 }
3060
3061 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3062 case RES_MAX_USAGE:
3063 page_counter_reset_watermark(counter);
3064 break;
3065 case RES_FAILCNT:
3066 counter->failcnt = 0;
3067 break;
3068 default:
3069 BUG();
3070 }
3071
3072 return nbytes;
3073 }
3074
3075 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3076 struct cftype *cft)
3077 {
3078 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3079 }
3080
3081 #ifdef CONFIG_MMU
3082 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3083 struct cftype *cft, u64 val)
3084 {
3085 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3086
3087 if (val & ~MOVE_MASK)
3088 return -EINVAL;
3089
3090 /*
3091 * No kind of locking is needed in here, because ->can_attach() will
3092 * check this value once in the beginning of the process, and then carry
3093 * on with stale data. This means that changes to this value will only
3094 * affect task migrations starting after the change.
3095 */
3096 memcg->move_charge_at_immigrate = val;
3097 return 0;
3098 }
3099 #else
3100 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3101 struct cftype *cft, u64 val)
3102 {
3103 return -ENOSYS;
3104 }
3105 #endif
3106
3107 #ifdef CONFIG_NUMA
3108 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3109 {
3110 struct numa_stat {
3111 const char *name;
3112 unsigned int lru_mask;
3113 };
3114
3115 static const struct numa_stat stats[] = {
3116 { "total", LRU_ALL },
3117 { "file", LRU_ALL_FILE },
3118 { "anon", LRU_ALL_ANON },
3119 { "unevictable", BIT(LRU_UNEVICTABLE) },
3120 };
3121 const struct numa_stat *stat;
3122 int nid;
3123 unsigned long nr;
3124 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3125
3126 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3127 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3128 seq_printf(m, "%s=%lu", stat->name, nr);
3129 for_each_node_state(nid, N_MEMORY) {
3130 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3131 stat->lru_mask);
3132 seq_printf(m, " N%d=%lu", nid, nr);
3133 }
3134 seq_putc(m, '\n');
3135 }
3136
3137 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3138 struct mem_cgroup *iter;
3139
3140 nr = 0;
3141 for_each_mem_cgroup_tree(iter, memcg)
3142 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3143 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3144 for_each_node_state(nid, N_MEMORY) {
3145 nr = 0;
3146 for_each_mem_cgroup_tree(iter, memcg)
3147 nr += mem_cgroup_node_nr_lru_pages(
3148 iter, nid, stat->lru_mask);
3149 seq_printf(m, " N%d=%lu", nid, nr);
3150 }
3151 seq_putc(m, '\n');
3152 }
3153
3154 return 0;
3155 }
3156 #endif /* CONFIG_NUMA */
3157
3158 static int memcg_stat_show(struct seq_file *m, void *v)
3159 {
3160 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3161 unsigned long memory, memsw;
3162 struct mem_cgroup *mi;
3163 unsigned int i;
3164
3165 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3166 MEM_CGROUP_STAT_NSTATS);
3167 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3168 MEM_CGROUP_EVENTS_NSTATS);
3169 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3170
3171 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3172 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3173 continue;
3174 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3175 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3176 }
3177
3178 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3179 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3180 mem_cgroup_read_events(memcg, i));
3181
3182 for (i = 0; i < NR_LRU_LISTS; i++)
3183 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3184 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3185
3186 /* Hierarchical information */
3187 memory = memsw = PAGE_COUNTER_MAX;
3188 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3189 memory = min(memory, mi->memory.limit);
3190 memsw = min(memsw, mi->memsw.limit);
3191 }
3192 seq_printf(m, "hierarchical_memory_limit %llu\n",
3193 (u64)memory * PAGE_SIZE);
3194 if (do_memsw_account())
3195 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3196 (u64)memsw * PAGE_SIZE);
3197
3198 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3199 unsigned long long val = 0;
3200
3201 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3202 continue;
3203 for_each_mem_cgroup_tree(mi, memcg)
3204 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3205 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3206 }
3207
3208 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3209 unsigned long long val = 0;
3210
3211 for_each_mem_cgroup_tree(mi, memcg)
3212 val += mem_cgroup_read_events(mi, i);
3213 seq_printf(m, "total_%s %llu\n",
3214 mem_cgroup_events_names[i], val);
3215 }
3216
3217 for (i = 0; i < NR_LRU_LISTS; i++) {
3218 unsigned long long val = 0;
3219
3220 for_each_mem_cgroup_tree(mi, memcg)
3221 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3222 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3223 }
3224
3225 #ifdef CONFIG_DEBUG_VM
3226 {
3227 pg_data_t *pgdat;
3228 struct mem_cgroup_per_node *mz;
3229 struct zone_reclaim_stat *rstat;
3230 unsigned long recent_rotated[2] = {0, 0};
3231 unsigned long recent_scanned[2] = {0, 0};
3232
3233 for_each_online_pgdat(pgdat) {
3234 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3235 rstat = &mz->lruvec.reclaim_stat;
3236
3237 recent_rotated[0] += rstat->recent_rotated[0];
3238 recent_rotated[1] += rstat->recent_rotated[1];
3239 recent_scanned[0] += rstat->recent_scanned[0];
3240 recent_scanned[1] += rstat->recent_scanned[1];
3241 }
3242 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3243 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3244 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3245 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3246 }
3247 #endif
3248
3249 return 0;
3250 }
3251
3252 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3253 struct cftype *cft)
3254 {
3255 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3256
3257 return mem_cgroup_swappiness(memcg);
3258 }
3259
3260 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3261 struct cftype *cft, u64 val)
3262 {
3263 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3264
3265 if (val > 100)
3266 return -EINVAL;
3267
3268 if (css->parent)
3269 memcg->swappiness = val;
3270 else
3271 vm_swappiness = val;
3272
3273 return 0;
3274 }
3275
3276 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3277 {
3278 struct mem_cgroup_threshold_ary *t;
3279 unsigned long usage;
3280 int i;
3281
3282 rcu_read_lock();
3283 if (!swap)
3284 t = rcu_dereference(memcg->thresholds.primary);
3285 else
3286 t = rcu_dereference(memcg->memsw_thresholds.primary);
3287
3288 if (!t)
3289 goto unlock;
3290
3291 usage = mem_cgroup_usage(memcg, swap);
3292
3293 /*
3294 * current_threshold points to threshold just below or equal to usage.
3295 * If it's not true, a threshold was crossed after last
3296 * call of __mem_cgroup_threshold().
3297 */
3298 i = t->current_threshold;
3299
3300 /*
3301 * Iterate backward over array of thresholds starting from
3302 * current_threshold and check if a threshold is crossed.
3303 * If none of thresholds below usage is crossed, we read
3304 * only one element of the array here.
3305 */
3306 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3307 eventfd_signal(t->entries[i].eventfd, 1);
3308
3309 /* i = current_threshold + 1 */
3310 i++;
3311
3312 /*
3313 * Iterate forward over array of thresholds starting from
3314 * current_threshold+1 and check if a threshold is crossed.
3315 * If none of thresholds above usage is crossed, we read
3316 * only one element of the array here.
3317 */
3318 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3319 eventfd_signal(t->entries[i].eventfd, 1);
3320
3321 /* Update current_threshold */
3322 t->current_threshold = i - 1;
3323 unlock:
3324 rcu_read_unlock();
3325 }
3326
3327 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3328 {
3329 while (memcg) {
3330 __mem_cgroup_threshold(memcg, false);
3331 if (do_memsw_account())
3332 __mem_cgroup_threshold(memcg, true);
3333
3334 memcg = parent_mem_cgroup(memcg);
3335 }
3336 }
3337
3338 static int compare_thresholds(const void *a, const void *b)
3339 {
3340 const struct mem_cgroup_threshold *_a = a;
3341 const struct mem_cgroup_threshold *_b = b;
3342
3343 if (_a->threshold > _b->threshold)
3344 return 1;
3345
3346 if (_a->threshold < _b->threshold)
3347 return -1;
3348
3349 return 0;
3350 }
3351
3352 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3353 {
3354 struct mem_cgroup_eventfd_list *ev;
3355
3356 spin_lock(&memcg_oom_lock);
3357
3358 list_for_each_entry(ev, &memcg->oom_notify, list)
3359 eventfd_signal(ev->eventfd, 1);
3360
3361 spin_unlock(&memcg_oom_lock);
3362 return 0;
3363 }
3364
3365 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3366 {
3367 struct mem_cgroup *iter;
3368
3369 for_each_mem_cgroup_tree(iter, memcg)
3370 mem_cgroup_oom_notify_cb(iter);
3371 }
3372
3373 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3374 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3375 {
3376 struct mem_cgroup_thresholds *thresholds;
3377 struct mem_cgroup_threshold_ary *new;
3378 unsigned long threshold;
3379 unsigned long usage;
3380 int i, size, ret;
3381
3382 ret = page_counter_memparse(args, "-1", &threshold);
3383 if (ret)
3384 return ret;
3385
3386 mutex_lock(&memcg->thresholds_lock);
3387
3388 if (type == _MEM) {
3389 thresholds = &memcg->thresholds;
3390 usage = mem_cgroup_usage(memcg, false);
3391 } else if (type == _MEMSWAP) {
3392 thresholds = &memcg->memsw_thresholds;
3393 usage = mem_cgroup_usage(memcg, true);
3394 } else
3395 BUG();
3396
3397 /* Check if a threshold crossed before adding a new one */
3398 if (thresholds->primary)
3399 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3400
3401 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3402
3403 /* Allocate memory for new array of thresholds */
3404 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3405 GFP_KERNEL);
3406 if (!new) {
3407 ret = -ENOMEM;
3408 goto unlock;
3409 }
3410 new->size = size;
3411
3412 /* Copy thresholds (if any) to new array */
3413 if (thresholds->primary) {
3414 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3415 sizeof(struct mem_cgroup_threshold));
3416 }
3417
3418 /* Add new threshold */
3419 new->entries[size - 1].eventfd = eventfd;
3420 new->entries[size - 1].threshold = threshold;
3421
3422 /* Sort thresholds. Registering of new threshold isn't time-critical */
3423 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3424 compare_thresholds, NULL);
3425
3426 /* Find current threshold */
3427 new->current_threshold = -1;
3428 for (i = 0; i < size; i++) {
3429 if (new->entries[i].threshold <= usage) {
3430 /*
3431 * new->current_threshold will not be used until
3432 * rcu_assign_pointer(), so it's safe to increment
3433 * it here.
3434 */
3435 ++new->current_threshold;
3436 } else
3437 break;
3438 }
3439
3440 /* Free old spare buffer and save old primary buffer as spare */
3441 kfree(thresholds->spare);
3442 thresholds->spare = thresholds->primary;
3443
3444 rcu_assign_pointer(thresholds->primary, new);
3445
3446 /* To be sure that nobody uses thresholds */
3447 synchronize_rcu();
3448
3449 unlock:
3450 mutex_unlock(&memcg->thresholds_lock);
3451
3452 return ret;
3453 }
3454
3455 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3456 struct eventfd_ctx *eventfd, const char *args)
3457 {
3458 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3459 }
3460
3461 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3462 struct eventfd_ctx *eventfd, const char *args)
3463 {
3464 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3465 }
3466
3467 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3468 struct eventfd_ctx *eventfd, enum res_type type)
3469 {
3470 struct mem_cgroup_thresholds *thresholds;
3471 struct mem_cgroup_threshold_ary *new;
3472 unsigned long usage;
3473 int i, j, size;
3474
3475 mutex_lock(&memcg->thresholds_lock);
3476
3477 if (type == _MEM) {
3478 thresholds = &memcg->thresholds;
3479 usage = mem_cgroup_usage(memcg, false);
3480 } else if (type == _MEMSWAP) {
3481 thresholds = &memcg->memsw_thresholds;
3482 usage = mem_cgroup_usage(memcg, true);
3483 } else
3484 BUG();
3485
3486 if (!thresholds->primary)
3487 goto unlock;
3488
3489 /* Check if a threshold crossed before removing */
3490 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3491
3492 /* Calculate new number of threshold */
3493 size = 0;
3494 for (i = 0; i < thresholds->primary->size; i++) {
3495 if (thresholds->primary->entries[i].eventfd != eventfd)
3496 size++;
3497 }
3498
3499 new = thresholds->spare;
3500
3501 /* Set thresholds array to NULL if we don't have thresholds */
3502 if (!size) {
3503 kfree(new);
3504 new = NULL;
3505 goto swap_buffers;
3506 }
3507
3508 new->size = size;
3509
3510 /* Copy thresholds and find current threshold */
3511 new->current_threshold = -1;
3512 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3513 if (thresholds->primary->entries[i].eventfd == eventfd)
3514 continue;
3515
3516 new->entries[j] = thresholds->primary->entries[i];
3517 if (new->entries[j].threshold <= usage) {
3518 /*
3519 * new->current_threshold will not be used
3520 * until rcu_assign_pointer(), so it's safe to increment
3521 * it here.
3522 */
3523 ++new->current_threshold;
3524 }
3525 j++;
3526 }
3527
3528 swap_buffers:
3529 /* Swap primary and spare array */
3530 thresholds->spare = thresholds->primary;
3531
3532 rcu_assign_pointer(thresholds->primary, new);
3533
3534 /* To be sure that nobody uses thresholds */
3535 synchronize_rcu();
3536
3537 /* If all events are unregistered, free the spare array */
3538 if (!new) {
3539 kfree(thresholds->spare);
3540 thresholds->spare = NULL;
3541 }
3542 unlock:
3543 mutex_unlock(&memcg->thresholds_lock);
3544 }
3545
3546 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3547 struct eventfd_ctx *eventfd)
3548 {
3549 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3550 }
3551
3552 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3553 struct eventfd_ctx *eventfd)
3554 {
3555 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3556 }
3557
3558 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3559 struct eventfd_ctx *eventfd, const char *args)
3560 {
3561 struct mem_cgroup_eventfd_list *event;
3562
3563 event = kmalloc(sizeof(*event), GFP_KERNEL);
3564 if (!event)
3565 return -ENOMEM;
3566
3567 spin_lock(&memcg_oom_lock);
3568
3569 event->eventfd = eventfd;
3570 list_add(&event->list, &memcg->oom_notify);
3571
3572 /* already in OOM ? */
3573 if (memcg->under_oom)
3574 eventfd_signal(eventfd, 1);
3575 spin_unlock(&memcg_oom_lock);
3576
3577 return 0;
3578 }
3579
3580 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3581 struct eventfd_ctx *eventfd)
3582 {
3583 struct mem_cgroup_eventfd_list *ev, *tmp;
3584
3585 spin_lock(&memcg_oom_lock);
3586
3587 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3588 if (ev->eventfd == eventfd) {
3589 list_del(&ev->list);
3590 kfree(ev);
3591 }
3592 }
3593
3594 spin_unlock(&memcg_oom_lock);
3595 }
3596
3597 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3598 {
3599 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3600
3601 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3602 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3603 return 0;
3604 }
3605
3606 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3607 struct cftype *cft, u64 val)
3608 {
3609 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3610
3611 /* cannot set to root cgroup and only 0 and 1 are allowed */
3612 if (!css->parent || !((val == 0) || (val == 1)))
3613 return -EINVAL;
3614
3615 memcg->oom_kill_disable = val;
3616 if (!val)
3617 memcg_oom_recover(memcg);
3618
3619 return 0;
3620 }
3621
3622 #ifdef CONFIG_CGROUP_WRITEBACK
3623
3624 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3625 {
3626 return &memcg->cgwb_list;
3627 }
3628
3629 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3630 {
3631 return wb_domain_init(&memcg->cgwb_domain, gfp);
3632 }
3633
3634 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3635 {
3636 wb_domain_exit(&memcg->cgwb_domain);
3637 }
3638
3639 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3640 {
3641 wb_domain_size_changed(&memcg->cgwb_domain);
3642 }
3643
3644 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3645 {
3646 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3647
3648 if (!memcg->css.parent)
3649 return NULL;
3650
3651 return &memcg->cgwb_domain;
3652 }
3653
3654 /**
3655 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3656 * @wb: bdi_writeback in question
3657 * @pfilepages: out parameter for number of file pages
3658 * @pheadroom: out parameter for number of allocatable pages according to memcg
3659 * @pdirty: out parameter for number of dirty pages
3660 * @pwriteback: out parameter for number of pages under writeback
3661 *
3662 * Determine the numbers of file, headroom, dirty, and writeback pages in
3663 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3664 * is a bit more involved.
3665 *
3666 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3667 * headroom is calculated as the lowest headroom of itself and the
3668 * ancestors. Note that this doesn't consider the actual amount of
3669 * available memory in the system. The caller should further cap
3670 * *@pheadroom accordingly.
3671 */
3672 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3673 unsigned long *pheadroom, unsigned long *pdirty,
3674 unsigned long *pwriteback)
3675 {
3676 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3677 struct mem_cgroup *parent;
3678
3679 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3680
3681 /* this should eventually include NR_UNSTABLE_NFS */
3682 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3683 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3684 (1 << LRU_ACTIVE_FILE));
3685 *pheadroom = PAGE_COUNTER_MAX;
3686
3687 while ((parent = parent_mem_cgroup(memcg))) {
3688 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3689 unsigned long used = page_counter_read(&memcg->memory);
3690
3691 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3692 memcg = parent;
3693 }
3694 }
3695
3696 #else /* CONFIG_CGROUP_WRITEBACK */
3697
3698 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3699 {
3700 return 0;
3701 }
3702
3703 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3704 {
3705 }
3706
3707 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3708 {
3709 }
3710
3711 #endif /* CONFIG_CGROUP_WRITEBACK */
3712
3713 /*
3714 * DO NOT USE IN NEW FILES.
3715 *
3716 * "cgroup.event_control" implementation.
3717 *
3718 * This is way over-engineered. It tries to support fully configurable
3719 * events for each user. Such level of flexibility is completely
3720 * unnecessary especially in the light of the planned unified hierarchy.
3721 *
3722 * Please deprecate this and replace with something simpler if at all
3723 * possible.
3724 */
3725
3726 /*
3727 * Unregister event and free resources.
3728 *
3729 * Gets called from workqueue.
3730 */
3731 static void memcg_event_remove(struct work_struct *work)
3732 {
3733 struct mem_cgroup_event *event =
3734 container_of(work, struct mem_cgroup_event, remove);
3735 struct mem_cgroup *memcg = event->memcg;
3736
3737 remove_wait_queue(event->wqh, &event->wait);
3738
3739 event->unregister_event(memcg, event->eventfd);
3740
3741 /* Notify userspace the event is going away. */
3742 eventfd_signal(event->eventfd, 1);
3743
3744 eventfd_ctx_put(event->eventfd);
3745 kfree(event);
3746 css_put(&memcg->css);
3747 }
3748
3749 /*
3750 * Gets called on POLLHUP on eventfd when user closes it.
3751 *
3752 * Called with wqh->lock held and interrupts disabled.
3753 */
3754 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3755 int sync, void *key)
3756 {
3757 struct mem_cgroup_event *event =
3758 container_of(wait, struct mem_cgroup_event, wait);
3759 struct mem_cgroup *memcg = event->memcg;
3760 unsigned long flags = (unsigned long)key;
3761
3762 if (flags & POLLHUP) {
3763 /*
3764 * If the event has been detached at cgroup removal, we
3765 * can simply return knowing the other side will cleanup
3766 * for us.
3767 *
3768 * We can't race against event freeing since the other
3769 * side will require wqh->lock via remove_wait_queue(),
3770 * which we hold.
3771 */
3772 spin_lock(&memcg->event_list_lock);
3773 if (!list_empty(&event->list)) {
3774 list_del_init(&event->list);
3775 /*
3776 * We are in atomic context, but cgroup_event_remove()
3777 * may sleep, so we have to call it in workqueue.
3778 */
3779 schedule_work(&event->remove);
3780 }
3781 spin_unlock(&memcg->event_list_lock);
3782 }
3783
3784 return 0;
3785 }
3786
3787 static void memcg_event_ptable_queue_proc(struct file *file,
3788 wait_queue_head_t *wqh, poll_table *pt)
3789 {
3790 struct mem_cgroup_event *event =
3791 container_of(pt, struct mem_cgroup_event, pt);
3792
3793 event->wqh = wqh;
3794 add_wait_queue(wqh, &event->wait);
3795 }
3796
3797 /*
3798 * DO NOT USE IN NEW FILES.
3799 *
3800 * Parse input and register new cgroup event handler.
3801 *
3802 * Input must be in format '<event_fd> <control_fd> <args>'.
3803 * Interpretation of args is defined by control file implementation.
3804 */
3805 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3806 char *buf, size_t nbytes, loff_t off)
3807 {
3808 struct cgroup_subsys_state *css = of_css(of);
3809 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3810 struct mem_cgroup_event *event;
3811 struct cgroup_subsys_state *cfile_css;
3812 unsigned int efd, cfd;
3813 struct fd efile;
3814 struct fd cfile;
3815 const char *name;
3816 char *endp;
3817 int ret;
3818
3819 buf = strstrip(buf);
3820
3821 efd = simple_strtoul(buf, &endp, 10);
3822 if (*endp != ' ')
3823 return -EINVAL;
3824 buf = endp + 1;
3825
3826 cfd = simple_strtoul(buf, &endp, 10);
3827 if ((*endp != ' ') && (*endp != '\0'))
3828 return -EINVAL;
3829 buf = endp + 1;
3830
3831 event = kzalloc(sizeof(*event), GFP_KERNEL);
3832 if (!event)
3833 return -ENOMEM;
3834
3835 event->memcg = memcg;
3836 INIT_LIST_HEAD(&event->list);
3837 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3838 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3839 INIT_WORK(&event->remove, memcg_event_remove);
3840
3841 efile = fdget(efd);
3842 if (!efile.file) {
3843 ret = -EBADF;
3844 goto out_kfree;
3845 }
3846
3847 event->eventfd = eventfd_ctx_fileget(efile.file);
3848 if (IS_ERR(event->eventfd)) {
3849 ret = PTR_ERR(event->eventfd);
3850 goto out_put_efile;
3851 }
3852
3853 cfile = fdget(cfd);
3854 if (!cfile.file) {
3855 ret = -EBADF;
3856 goto out_put_eventfd;
3857 }
3858
3859 /* the process need read permission on control file */
3860 /* AV: shouldn't we check that it's been opened for read instead? */
3861 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3862 if (ret < 0)
3863 goto out_put_cfile;
3864
3865 /*
3866 * Determine the event callbacks and set them in @event. This used
3867 * to be done via struct cftype but cgroup core no longer knows
3868 * about these events. The following is crude but the whole thing
3869 * is for compatibility anyway.
3870 *
3871 * DO NOT ADD NEW FILES.
3872 */
3873 name = cfile.file->f_path.dentry->d_name.name;
3874
3875 if (!strcmp(name, "memory.usage_in_bytes")) {
3876 event->register_event = mem_cgroup_usage_register_event;
3877 event->unregister_event = mem_cgroup_usage_unregister_event;
3878 } else if (!strcmp(name, "memory.oom_control")) {
3879 event->register_event = mem_cgroup_oom_register_event;
3880 event->unregister_event = mem_cgroup_oom_unregister_event;
3881 } else if (!strcmp(name, "memory.pressure_level")) {
3882 event->register_event = vmpressure_register_event;
3883 event->unregister_event = vmpressure_unregister_event;
3884 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3885 event->register_event = memsw_cgroup_usage_register_event;
3886 event->unregister_event = memsw_cgroup_usage_unregister_event;
3887 } else {
3888 ret = -EINVAL;
3889 goto out_put_cfile;
3890 }
3891
3892 /*
3893 * Verify @cfile should belong to @css. Also, remaining events are
3894 * automatically removed on cgroup destruction but the removal is
3895 * asynchronous, so take an extra ref on @css.
3896 */
3897 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3898 &memory_cgrp_subsys);
3899 ret = -EINVAL;
3900 if (IS_ERR(cfile_css))
3901 goto out_put_cfile;
3902 if (cfile_css != css) {
3903 css_put(cfile_css);
3904 goto out_put_cfile;
3905 }
3906
3907 ret = event->register_event(memcg, event->eventfd, buf);
3908 if (ret)
3909 goto out_put_css;
3910
3911 efile.file->f_op->poll(efile.file, &event->pt);
3912
3913 spin_lock(&memcg->event_list_lock);
3914 list_add(&event->list, &memcg->event_list);
3915 spin_unlock(&memcg->event_list_lock);
3916
3917 fdput(cfile);
3918 fdput(efile);
3919
3920 return nbytes;
3921
3922 out_put_css:
3923 css_put(css);
3924 out_put_cfile:
3925 fdput(cfile);
3926 out_put_eventfd:
3927 eventfd_ctx_put(event->eventfd);
3928 out_put_efile:
3929 fdput(efile);
3930 out_kfree:
3931 kfree(event);
3932
3933 return ret;
3934 }
3935
3936 static struct cftype mem_cgroup_legacy_files[] = {
3937 {
3938 .name = "usage_in_bytes",
3939 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3940 .read_u64 = mem_cgroup_read_u64,
3941 },
3942 {
3943 .name = "max_usage_in_bytes",
3944 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3945 .write = mem_cgroup_reset,
3946 .read_u64 = mem_cgroup_read_u64,
3947 },
3948 {
3949 .name = "limit_in_bytes",
3950 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3951 .write = mem_cgroup_write,
3952 .read_u64 = mem_cgroup_read_u64,
3953 },
3954 {
3955 .name = "soft_limit_in_bytes",
3956 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3957 .write = mem_cgroup_write,
3958 .read_u64 = mem_cgroup_read_u64,
3959 },
3960 {
3961 .name = "failcnt",
3962 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3963 .write = mem_cgroup_reset,
3964 .read_u64 = mem_cgroup_read_u64,
3965 },
3966 {
3967 .name = "stat",
3968 .seq_show = memcg_stat_show,
3969 },
3970 {
3971 .name = "force_empty",
3972 .write = mem_cgroup_force_empty_write,
3973 },
3974 {
3975 .name = "use_hierarchy",
3976 .write_u64 = mem_cgroup_hierarchy_write,
3977 .read_u64 = mem_cgroup_hierarchy_read,
3978 },
3979 {
3980 .name = "cgroup.event_control", /* XXX: for compat */
3981 .write = memcg_write_event_control,
3982 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3983 },
3984 {
3985 .name = "swappiness",
3986 .read_u64 = mem_cgroup_swappiness_read,
3987 .write_u64 = mem_cgroup_swappiness_write,
3988 },
3989 {
3990 .name = "move_charge_at_immigrate",
3991 .read_u64 = mem_cgroup_move_charge_read,
3992 .write_u64 = mem_cgroup_move_charge_write,
3993 },
3994 {
3995 .name = "oom_control",
3996 .seq_show = mem_cgroup_oom_control_read,
3997 .write_u64 = mem_cgroup_oom_control_write,
3998 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3999 },
4000 {
4001 .name = "pressure_level",
4002 },
4003 #ifdef CONFIG_NUMA
4004 {
4005 .name = "numa_stat",
4006 .seq_show = memcg_numa_stat_show,
4007 },
4008 #endif
4009 {
4010 .name = "kmem.limit_in_bytes",
4011 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4012 .write = mem_cgroup_write,
4013 .read_u64 = mem_cgroup_read_u64,
4014 },
4015 {
4016 .name = "kmem.usage_in_bytes",
4017 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4018 .read_u64 = mem_cgroup_read_u64,
4019 },
4020 {
4021 .name = "kmem.failcnt",
4022 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4023 .write = mem_cgroup_reset,
4024 .read_u64 = mem_cgroup_read_u64,
4025 },
4026 {
4027 .name = "kmem.max_usage_in_bytes",
4028 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4029 .write = mem_cgroup_reset,
4030 .read_u64 = mem_cgroup_read_u64,
4031 },
4032 #ifdef CONFIG_SLABINFO
4033 {
4034 .name = "kmem.slabinfo",
4035 .seq_start = slab_start,
4036 .seq_next = slab_next,
4037 .seq_stop = slab_stop,
4038 .seq_show = memcg_slab_show,
4039 },
4040 #endif
4041 {
4042 .name = "kmem.tcp.limit_in_bytes",
4043 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4044 .write = mem_cgroup_write,
4045 .read_u64 = mem_cgroup_read_u64,
4046 },
4047 {
4048 .name = "kmem.tcp.usage_in_bytes",
4049 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4050 .read_u64 = mem_cgroup_read_u64,
4051 },
4052 {
4053 .name = "kmem.tcp.failcnt",
4054 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4055 .write = mem_cgroup_reset,
4056 .read_u64 = mem_cgroup_read_u64,
4057 },
4058 {
4059 .name = "kmem.tcp.max_usage_in_bytes",
4060 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4061 .write = mem_cgroup_reset,
4062 .read_u64 = mem_cgroup_read_u64,
4063 },
4064 { }, /* terminate */
4065 };
4066
4067 /*
4068 * Private memory cgroup IDR
4069 *
4070 * Swap-out records and page cache shadow entries need to store memcg
4071 * references in constrained space, so we maintain an ID space that is
4072 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4073 * memory-controlled cgroups to 64k.
4074 *
4075 * However, there usually are many references to the oflline CSS after
4076 * the cgroup has been destroyed, such as page cache or reclaimable
4077 * slab objects, that don't need to hang on to the ID. We want to keep
4078 * those dead CSS from occupying IDs, or we might quickly exhaust the
4079 * relatively small ID space and prevent the creation of new cgroups
4080 * even when there are much fewer than 64k cgroups - possibly none.
4081 *
4082 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4083 * be freed and recycled when it's no longer needed, which is usually
4084 * when the CSS is offlined.
4085 *
4086 * The only exception to that are records of swapped out tmpfs/shmem
4087 * pages that need to be attributed to live ancestors on swapin. But
4088 * those references are manageable from userspace.
4089 */
4090
4091 static DEFINE_IDR(mem_cgroup_idr);
4092
4093 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4094 {
4095 atomic_add(n, &memcg->id.ref);
4096 }
4097
4098 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4099 {
4100 if (atomic_sub_and_test(n, &memcg->id.ref)) {
4101 idr_remove(&mem_cgroup_idr, memcg->id.id);
4102 memcg->id.id = 0;
4103
4104 /* Memcg ID pins CSS */
4105 css_put(&memcg->css);
4106 }
4107 }
4108
4109 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4110 {
4111 mem_cgroup_id_get_many(memcg, 1);
4112 }
4113
4114 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4115 {
4116 mem_cgroup_id_put_many(memcg, 1);
4117 }
4118
4119 /**
4120 * mem_cgroup_from_id - look up a memcg from a memcg id
4121 * @id: the memcg id to look up
4122 *
4123 * Caller must hold rcu_read_lock().
4124 */
4125 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4126 {
4127 WARN_ON_ONCE(!rcu_read_lock_held());
4128 return idr_find(&mem_cgroup_idr, id);
4129 }
4130
4131 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4132 {
4133 struct mem_cgroup_per_node *pn;
4134 int tmp = node;
4135 /*
4136 * This routine is called against possible nodes.
4137 * But it's BUG to call kmalloc() against offline node.
4138 *
4139 * TODO: this routine can waste much memory for nodes which will
4140 * never be onlined. It's better to use memory hotplug callback
4141 * function.
4142 */
4143 if (!node_state(node, N_NORMAL_MEMORY))
4144 tmp = -1;
4145 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4146 if (!pn)
4147 return 1;
4148
4149 lruvec_init(&pn->lruvec);
4150 pn->usage_in_excess = 0;
4151 pn->on_tree = false;
4152 pn->memcg = memcg;
4153
4154 memcg->nodeinfo[node] = pn;
4155 return 0;
4156 }
4157
4158 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4159 {
4160 kfree(memcg->nodeinfo[node]);
4161 }
4162
4163 static void mem_cgroup_free(struct mem_cgroup *memcg)
4164 {
4165 int node;
4166
4167 memcg_wb_domain_exit(memcg);
4168 for_each_node(node)
4169 free_mem_cgroup_per_node_info(memcg, node);
4170 free_percpu(memcg->stat);
4171 kfree(memcg);
4172 }
4173
4174 static struct mem_cgroup *mem_cgroup_alloc(void)
4175 {
4176 struct mem_cgroup *memcg;
4177 size_t size;
4178 int node;
4179
4180 size = sizeof(struct mem_cgroup);
4181 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4182
4183 memcg = kzalloc(size, GFP_KERNEL);
4184 if (!memcg)
4185 return NULL;
4186
4187 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4188 1, MEM_CGROUP_ID_MAX,
4189 GFP_KERNEL);
4190 if (memcg->id.id < 0)
4191 goto fail;
4192
4193 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4194 if (!memcg->stat)
4195 goto fail;
4196
4197 for_each_node(node)
4198 if (alloc_mem_cgroup_per_node_info(memcg, node))
4199 goto fail;
4200
4201 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4202 goto fail;
4203
4204 INIT_WORK(&memcg->high_work, high_work_func);
4205 memcg->last_scanned_node = MAX_NUMNODES;
4206 INIT_LIST_HEAD(&memcg->oom_notify);
4207 mutex_init(&memcg->thresholds_lock);
4208 spin_lock_init(&memcg->move_lock);
4209 vmpressure_init(&memcg->vmpressure);
4210 INIT_LIST_HEAD(&memcg->event_list);
4211 spin_lock_init(&memcg->event_list_lock);
4212 memcg->socket_pressure = jiffies;
4213 #ifndef CONFIG_SLOB
4214 memcg->kmemcg_id = -1;
4215 #endif
4216 #ifdef CONFIG_CGROUP_WRITEBACK
4217 INIT_LIST_HEAD(&memcg->cgwb_list);
4218 #endif
4219 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4220 return memcg;
4221 fail:
4222 if (memcg->id.id > 0)
4223 idr_remove(&mem_cgroup_idr, memcg->id.id);
4224 mem_cgroup_free(memcg);
4225 return NULL;
4226 }
4227
4228 static struct cgroup_subsys_state * __ref
4229 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4230 {
4231 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4232 struct mem_cgroup *memcg;
4233 long error = -ENOMEM;
4234
4235 memcg = mem_cgroup_alloc();
4236 if (!memcg)
4237 return ERR_PTR(error);
4238
4239 memcg->high = PAGE_COUNTER_MAX;
4240 memcg->soft_limit = PAGE_COUNTER_MAX;
4241 if (parent) {
4242 memcg->swappiness = mem_cgroup_swappiness(parent);
4243 memcg->oom_kill_disable = parent->oom_kill_disable;
4244 }
4245 if (parent && parent->use_hierarchy) {
4246 memcg->use_hierarchy = true;
4247 page_counter_init(&memcg->memory, &parent->memory);
4248 page_counter_init(&memcg->swap, &parent->swap);
4249 page_counter_init(&memcg->memsw, &parent->memsw);
4250 page_counter_init(&memcg->kmem, &parent->kmem);
4251 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4252 } else {
4253 page_counter_init(&memcg->memory, NULL);
4254 page_counter_init(&memcg->swap, NULL);
4255 page_counter_init(&memcg->memsw, NULL);
4256 page_counter_init(&memcg->kmem, NULL);
4257 page_counter_init(&memcg->tcpmem, NULL);
4258 /*
4259 * Deeper hierachy with use_hierarchy == false doesn't make
4260 * much sense so let cgroup subsystem know about this
4261 * unfortunate state in our controller.
4262 */
4263 if (parent != root_mem_cgroup)
4264 memory_cgrp_subsys.broken_hierarchy = true;
4265 }
4266
4267 /* The following stuff does not apply to the root */
4268 if (!parent) {
4269 root_mem_cgroup = memcg;
4270 return &memcg->css;
4271 }
4272
4273 error = memcg_online_kmem(memcg);
4274 if (error)
4275 goto fail;
4276
4277 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4278 static_branch_inc(&memcg_sockets_enabled_key);
4279
4280 return &memcg->css;
4281 fail:
4282 mem_cgroup_free(memcg);
4283 return ERR_PTR(-ENOMEM);
4284 }
4285
4286 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4287 {
4288 /* Online state pins memcg ID, memcg ID pins CSS */
4289 mem_cgroup_id_get(mem_cgroup_from_css(css));
4290 css_get(css);
4291 return 0;
4292 }
4293
4294 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4295 {
4296 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4297 struct mem_cgroup_event *event, *tmp;
4298
4299 /*
4300 * Unregister events and notify userspace.
4301 * Notify userspace about cgroup removing only after rmdir of cgroup
4302 * directory to avoid race between userspace and kernelspace.
4303 */
4304 spin_lock(&memcg->event_list_lock);
4305 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4306 list_del_init(&event->list);
4307 schedule_work(&event->remove);
4308 }
4309 spin_unlock(&memcg->event_list_lock);
4310
4311 memcg_offline_kmem(memcg);
4312 wb_memcg_offline(memcg);
4313
4314 mem_cgroup_id_put(memcg);
4315 }
4316
4317 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4318 {
4319 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4320
4321 invalidate_reclaim_iterators(memcg);
4322 }
4323
4324 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4325 {
4326 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4327
4328 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4329 static_branch_dec(&memcg_sockets_enabled_key);
4330
4331 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4332 static_branch_dec(&memcg_sockets_enabled_key);
4333
4334 vmpressure_cleanup(&memcg->vmpressure);
4335 cancel_work_sync(&memcg->high_work);
4336 mem_cgroup_remove_from_trees(memcg);
4337 memcg_free_kmem(memcg);
4338 mem_cgroup_free(memcg);
4339 }
4340
4341 /**
4342 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4343 * @css: the target css
4344 *
4345 * Reset the states of the mem_cgroup associated with @css. This is
4346 * invoked when the userland requests disabling on the default hierarchy
4347 * but the memcg is pinned through dependency. The memcg should stop
4348 * applying policies and should revert to the vanilla state as it may be
4349 * made visible again.
4350 *
4351 * The current implementation only resets the essential configurations.
4352 * This needs to be expanded to cover all the visible parts.
4353 */
4354 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4355 {
4356 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4357
4358 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4359 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4360 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4361 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4362 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4363 memcg->low = 0;
4364 memcg->high = PAGE_COUNTER_MAX;
4365 memcg->soft_limit = PAGE_COUNTER_MAX;
4366 memcg_wb_domain_size_changed(memcg);
4367 }
4368
4369 #ifdef CONFIG_MMU
4370 /* Handlers for move charge at task migration. */
4371 static int mem_cgroup_do_precharge(unsigned long count)
4372 {
4373 int ret;
4374
4375 /* Try a single bulk charge without reclaim first, kswapd may wake */
4376 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4377 if (!ret) {
4378 mc.precharge += count;
4379 return ret;
4380 }
4381
4382 /* Try charges one by one with reclaim */
4383 while (count--) {
4384 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4385 if (ret)
4386 return ret;
4387 mc.precharge++;
4388 cond_resched();
4389 }
4390 return 0;
4391 }
4392
4393 union mc_target {
4394 struct page *page;
4395 swp_entry_t ent;
4396 };
4397
4398 enum mc_target_type {
4399 MC_TARGET_NONE = 0,
4400 MC_TARGET_PAGE,
4401 MC_TARGET_SWAP,
4402 };
4403
4404 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4405 unsigned long addr, pte_t ptent)
4406 {
4407 struct page *page = vm_normal_page(vma, addr, ptent);
4408
4409 if (!page || !page_mapped(page))
4410 return NULL;
4411 if (PageAnon(page)) {
4412 if (!(mc.flags & MOVE_ANON))
4413 return NULL;
4414 } else {
4415 if (!(mc.flags & MOVE_FILE))
4416 return NULL;
4417 }
4418 if (!get_page_unless_zero(page))
4419 return NULL;
4420
4421 return page;
4422 }
4423
4424 #ifdef CONFIG_SWAP
4425 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4426 pte_t ptent, swp_entry_t *entry)
4427 {
4428 struct page *page = NULL;
4429 swp_entry_t ent = pte_to_swp_entry(ptent);
4430
4431 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4432 return NULL;
4433 /*
4434 * Because lookup_swap_cache() updates some statistics counter,
4435 * we call find_get_page() with swapper_space directly.
4436 */
4437 page = find_get_page(swap_address_space(ent), ent.val);
4438 if (do_memsw_account())
4439 entry->val = ent.val;
4440
4441 return page;
4442 }
4443 #else
4444 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4445 pte_t ptent, swp_entry_t *entry)
4446 {
4447 return NULL;
4448 }
4449 #endif
4450
4451 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4452 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4453 {
4454 struct page *page = NULL;
4455 struct address_space *mapping;
4456 pgoff_t pgoff;
4457
4458 if (!vma->vm_file) /* anonymous vma */
4459 return NULL;
4460 if (!(mc.flags & MOVE_FILE))
4461 return NULL;
4462
4463 mapping = vma->vm_file->f_mapping;
4464 pgoff = linear_page_index(vma, addr);
4465
4466 /* page is moved even if it's not RSS of this task(page-faulted). */
4467 #ifdef CONFIG_SWAP
4468 /* shmem/tmpfs may report page out on swap: account for that too. */
4469 if (shmem_mapping(mapping)) {
4470 page = find_get_entry(mapping, pgoff);
4471 if (radix_tree_exceptional_entry(page)) {
4472 swp_entry_t swp = radix_to_swp_entry(page);
4473 if (do_memsw_account())
4474 *entry = swp;
4475 page = find_get_page(swap_address_space(swp), swp.val);
4476 }
4477 } else
4478 page = find_get_page(mapping, pgoff);
4479 #else
4480 page = find_get_page(mapping, pgoff);
4481 #endif
4482 return page;
4483 }
4484
4485 /**
4486 * mem_cgroup_move_account - move account of the page
4487 * @page: the page
4488 * @compound: charge the page as compound or small page
4489 * @from: mem_cgroup which the page is moved from.
4490 * @to: mem_cgroup which the page is moved to. @from != @to.
4491 *
4492 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4493 *
4494 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4495 * from old cgroup.
4496 */
4497 static int mem_cgroup_move_account(struct page *page,
4498 bool compound,
4499 struct mem_cgroup *from,
4500 struct mem_cgroup *to)
4501 {
4502 unsigned long flags;
4503 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4504 int ret;
4505 bool anon;
4506
4507 VM_BUG_ON(from == to);
4508 VM_BUG_ON_PAGE(PageLRU(page), page);
4509 VM_BUG_ON(compound && !PageTransHuge(page));
4510
4511 /*
4512 * Prevent mem_cgroup_migrate() from looking at
4513 * page->mem_cgroup of its source page while we change it.
4514 */
4515 ret = -EBUSY;
4516 if (!trylock_page(page))
4517 goto out;
4518
4519 ret = -EINVAL;
4520 if (page->mem_cgroup != from)
4521 goto out_unlock;
4522
4523 anon = PageAnon(page);
4524
4525 spin_lock_irqsave(&from->move_lock, flags);
4526
4527 if (!anon && page_mapped(page)) {
4528 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4529 nr_pages);
4530 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4531 nr_pages);
4532 }
4533
4534 /*
4535 * move_lock grabbed above and caller set from->moving_account, so
4536 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4537 * So mapping should be stable for dirty pages.
4538 */
4539 if (!anon && PageDirty(page)) {
4540 struct address_space *mapping = page_mapping(page);
4541
4542 if (mapping_cap_account_dirty(mapping)) {
4543 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4544 nr_pages);
4545 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4546 nr_pages);
4547 }
4548 }
4549
4550 if (PageWriteback(page)) {
4551 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4552 nr_pages);
4553 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4554 nr_pages);
4555 }
4556
4557 /*
4558 * It is safe to change page->mem_cgroup here because the page
4559 * is referenced, charged, and isolated - we can't race with
4560 * uncharging, charging, migration, or LRU putback.
4561 */
4562
4563 /* caller should have done css_get */
4564 page->mem_cgroup = to;
4565 spin_unlock_irqrestore(&from->move_lock, flags);
4566
4567 ret = 0;
4568
4569 local_irq_disable();
4570 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4571 memcg_check_events(to, page);
4572 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4573 memcg_check_events(from, page);
4574 local_irq_enable();
4575 out_unlock:
4576 unlock_page(page);
4577 out:
4578 return ret;
4579 }
4580
4581 /**
4582 * get_mctgt_type - get target type of moving charge
4583 * @vma: the vma the pte to be checked belongs
4584 * @addr: the address corresponding to the pte to be checked
4585 * @ptent: the pte to be checked
4586 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4587 *
4588 * Returns
4589 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4590 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4591 * move charge. if @target is not NULL, the page is stored in target->page
4592 * with extra refcnt got(Callers should handle it).
4593 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4594 * target for charge migration. if @target is not NULL, the entry is stored
4595 * in target->ent.
4596 *
4597 * Called with pte lock held.
4598 */
4599
4600 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4601 unsigned long addr, pte_t ptent, union mc_target *target)
4602 {
4603 struct page *page = NULL;
4604 enum mc_target_type ret = MC_TARGET_NONE;
4605 swp_entry_t ent = { .val = 0 };
4606
4607 if (pte_present(ptent))
4608 page = mc_handle_present_pte(vma, addr, ptent);
4609 else if (is_swap_pte(ptent))
4610 page = mc_handle_swap_pte(vma, ptent, &ent);
4611 else if (pte_none(ptent))
4612 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4613
4614 if (!page && !ent.val)
4615 return ret;
4616 if (page) {
4617 /*
4618 * Do only loose check w/o serialization.
4619 * mem_cgroup_move_account() checks the page is valid or
4620 * not under LRU exclusion.
4621 */
4622 if (page->mem_cgroup == mc.from) {
4623 ret = MC_TARGET_PAGE;
4624 if (target)
4625 target->page = page;
4626 }
4627 if (!ret || !target)
4628 put_page(page);
4629 }
4630 /* There is a swap entry and a page doesn't exist or isn't charged */
4631 if (ent.val && !ret &&
4632 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4633 ret = MC_TARGET_SWAP;
4634 if (target)
4635 target->ent = ent;
4636 }
4637 return ret;
4638 }
4639
4640 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4641 /*
4642 * We don't consider swapping or file mapped pages because THP does not
4643 * support them for now.
4644 * Caller should make sure that pmd_trans_huge(pmd) is true.
4645 */
4646 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4647 unsigned long addr, pmd_t pmd, union mc_target *target)
4648 {
4649 struct page *page = NULL;
4650 enum mc_target_type ret = MC_TARGET_NONE;
4651
4652 page = pmd_page(pmd);
4653 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4654 if (!(mc.flags & MOVE_ANON))
4655 return ret;
4656 if (page->mem_cgroup == mc.from) {
4657 ret = MC_TARGET_PAGE;
4658 if (target) {
4659 get_page(page);
4660 target->page = page;
4661 }
4662 }
4663 return ret;
4664 }
4665 #else
4666 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4667 unsigned long addr, pmd_t pmd, union mc_target *target)
4668 {
4669 return MC_TARGET_NONE;
4670 }
4671 #endif
4672
4673 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4674 unsigned long addr, unsigned long end,
4675 struct mm_walk *walk)
4676 {
4677 struct vm_area_struct *vma = walk->vma;
4678 pte_t *pte;
4679 spinlock_t *ptl;
4680
4681 ptl = pmd_trans_huge_lock(pmd, vma);
4682 if (ptl) {
4683 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4684 mc.precharge += HPAGE_PMD_NR;
4685 spin_unlock(ptl);
4686 return 0;
4687 }
4688
4689 if (pmd_trans_unstable(pmd))
4690 return 0;
4691 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4692 for (; addr != end; pte++, addr += PAGE_SIZE)
4693 if (get_mctgt_type(vma, addr, *pte, NULL))
4694 mc.precharge++; /* increment precharge temporarily */
4695 pte_unmap_unlock(pte - 1, ptl);
4696 cond_resched();
4697
4698 return 0;
4699 }
4700
4701 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4702 {
4703 unsigned long precharge;
4704
4705 struct mm_walk mem_cgroup_count_precharge_walk = {
4706 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4707 .mm = mm,
4708 };
4709 down_read(&mm->mmap_sem);
4710 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4711 up_read(&mm->mmap_sem);
4712
4713 precharge = mc.precharge;
4714 mc.precharge = 0;
4715
4716 return precharge;
4717 }
4718
4719 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4720 {
4721 unsigned long precharge = mem_cgroup_count_precharge(mm);
4722
4723 VM_BUG_ON(mc.moving_task);
4724 mc.moving_task = current;
4725 return mem_cgroup_do_precharge(precharge);
4726 }
4727
4728 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4729 static void __mem_cgroup_clear_mc(void)
4730 {
4731 struct mem_cgroup *from = mc.from;
4732 struct mem_cgroup *to = mc.to;
4733
4734 /* we must uncharge all the leftover precharges from mc.to */
4735 if (mc.precharge) {
4736 cancel_charge(mc.to, mc.precharge);
4737 mc.precharge = 0;
4738 }
4739 /*
4740 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4741 * we must uncharge here.
4742 */
4743 if (mc.moved_charge) {
4744 cancel_charge(mc.from, mc.moved_charge);
4745 mc.moved_charge = 0;
4746 }
4747 /* we must fixup refcnts and charges */
4748 if (mc.moved_swap) {
4749 /* uncharge swap account from the old cgroup */
4750 if (!mem_cgroup_is_root(mc.from))
4751 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4752
4753 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4754
4755 /*
4756 * we charged both to->memory and to->memsw, so we
4757 * should uncharge to->memory.
4758 */
4759 if (!mem_cgroup_is_root(mc.to))
4760 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4761
4762 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4763 css_put_many(&mc.to->css, mc.moved_swap);
4764
4765 mc.moved_swap = 0;
4766 }
4767 memcg_oom_recover(from);
4768 memcg_oom_recover(to);
4769 wake_up_all(&mc.waitq);
4770 }
4771
4772 static void mem_cgroup_clear_mc(void)
4773 {
4774 struct mm_struct *mm = mc.mm;
4775
4776 /*
4777 * we must clear moving_task before waking up waiters at the end of
4778 * task migration.
4779 */
4780 mc.moving_task = NULL;
4781 __mem_cgroup_clear_mc();
4782 spin_lock(&mc.lock);
4783 mc.from = NULL;
4784 mc.to = NULL;
4785 mc.mm = NULL;
4786 spin_unlock(&mc.lock);
4787
4788 mmput(mm);
4789 }
4790
4791 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4792 {
4793 struct cgroup_subsys_state *css;
4794 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4795 struct mem_cgroup *from;
4796 struct task_struct *leader, *p;
4797 struct mm_struct *mm;
4798 unsigned long move_flags;
4799 int ret = 0;
4800
4801 /* charge immigration isn't supported on the default hierarchy */
4802 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4803 return 0;
4804
4805 /*
4806 * Multi-process migrations only happen on the default hierarchy
4807 * where charge immigration is not used. Perform charge
4808 * immigration if @tset contains a leader and whine if there are
4809 * multiple.
4810 */
4811 p = NULL;
4812 cgroup_taskset_for_each_leader(leader, css, tset) {
4813 WARN_ON_ONCE(p);
4814 p = leader;
4815 memcg = mem_cgroup_from_css(css);
4816 }
4817 if (!p)
4818 return 0;
4819
4820 /*
4821 * We are now commited to this value whatever it is. Changes in this
4822 * tunable will only affect upcoming migrations, not the current one.
4823 * So we need to save it, and keep it going.
4824 */
4825 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4826 if (!move_flags)
4827 return 0;
4828
4829 from = mem_cgroup_from_task(p);
4830
4831 VM_BUG_ON(from == memcg);
4832
4833 mm = get_task_mm(p);
4834 if (!mm)
4835 return 0;
4836 /* We move charges only when we move a owner of the mm */
4837 if (mm->owner == p) {
4838 VM_BUG_ON(mc.from);
4839 VM_BUG_ON(mc.to);
4840 VM_BUG_ON(mc.precharge);
4841 VM_BUG_ON(mc.moved_charge);
4842 VM_BUG_ON(mc.moved_swap);
4843
4844 spin_lock(&mc.lock);
4845 mc.mm = mm;
4846 mc.from = from;
4847 mc.to = memcg;
4848 mc.flags = move_flags;
4849 spin_unlock(&mc.lock);
4850 /* We set mc.moving_task later */
4851
4852 ret = mem_cgroup_precharge_mc(mm);
4853 if (ret)
4854 mem_cgroup_clear_mc();
4855 } else {
4856 mmput(mm);
4857 }
4858 return ret;
4859 }
4860
4861 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4862 {
4863 if (mc.to)
4864 mem_cgroup_clear_mc();
4865 }
4866
4867 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4868 unsigned long addr, unsigned long end,
4869 struct mm_walk *walk)
4870 {
4871 int ret = 0;
4872 struct vm_area_struct *vma = walk->vma;
4873 pte_t *pte;
4874 spinlock_t *ptl;
4875 enum mc_target_type target_type;
4876 union mc_target target;
4877 struct page *page;
4878
4879 ptl = pmd_trans_huge_lock(pmd, vma);
4880 if (ptl) {
4881 if (mc.precharge < HPAGE_PMD_NR) {
4882 spin_unlock(ptl);
4883 return 0;
4884 }
4885 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4886 if (target_type == MC_TARGET_PAGE) {
4887 page = target.page;
4888 if (!isolate_lru_page(page)) {
4889 if (!mem_cgroup_move_account(page, true,
4890 mc.from, mc.to)) {
4891 mc.precharge -= HPAGE_PMD_NR;
4892 mc.moved_charge += HPAGE_PMD_NR;
4893 }
4894 putback_lru_page(page);
4895 }
4896 put_page(page);
4897 }
4898 spin_unlock(ptl);
4899 return 0;
4900 }
4901
4902 if (pmd_trans_unstable(pmd))
4903 return 0;
4904 retry:
4905 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4906 for (; addr != end; addr += PAGE_SIZE) {
4907 pte_t ptent = *(pte++);
4908 swp_entry_t ent;
4909
4910 if (!mc.precharge)
4911 break;
4912
4913 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4914 case MC_TARGET_PAGE:
4915 page = target.page;
4916 /*
4917 * We can have a part of the split pmd here. Moving it
4918 * can be done but it would be too convoluted so simply
4919 * ignore such a partial THP and keep it in original
4920 * memcg. There should be somebody mapping the head.
4921 */
4922 if (PageTransCompound(page))
4923 goto put;
4924 if (isolate_lru_page(page))
4925 goto put;
4926 if (!mem_cgroup_move_account(page, false,
4927 mc.from, mc.to)) {
4928 mc.precharge--;
4929 /* we uncharge from mc.from later. */
4930 mc.moved_charge++;
4931 }
4932 putback_lru_page(page);
4933 put: /* get_mctgt_type() gets the page */
4934 put_page(page);
4935 break;
4936 case MC_TARGET_SWAP:
4937 ent = target.ent;
4938 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4939 mc.precharge--;
4940 /* we fixup refcnts and charges later. */
4941 mc.moved_swap++;
4942 }
4943 break;
4944 default:
4945 break;
4946 }
4947 }
4948 pte_unmap_unlock(pte - 1, ptl);
4949 cond_resched();
4950
4951 if (addr != end) {
4952 /*
4953 * We have consumed all precharges we got in can_attach().
4954 * We try charge one by one, but don't do any additional
4955 * charges to mc.to if we have failed in charge once in attach()
4956 * phase.
4957 */
4958 ret = mem_cgroup_do_precharge(1);
4959 if (!ret)
4960 goto retry;
4961 }
4962
4963 return ret;
4964 }
4965
4966 static void mem_cgroup_move_charge(void)
4967 {
4968 struct mm_walk mem_cgroup_move_charge_walk = {
4969 .pmd_entry = mem_cgroup_move_charge_pte_range,
4970 .mm = mc.mm,
4971 };
4972
4973 lru_add_drain_all();
4974 /*
4975 * Signal lock_page_memcg() to take the memcg's move_lock
4976 * while we're moving its pages to another memcg. Then wait
4977 * for already started RCU-only updates to finish.
4978 */
4979 atomic_inc(&mc.from->moving_account);
4980 synchronize_rcu();
4981 retry:
4982 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4983 /*
4984 * Someone who are holding the mmap_sem might be waiting in
4985 * waitq. So we cancel all extra charges, wake up all waiters,
4986 * and retry. Because we cancel precharges, we might not be able
4987 * to move enough charges, but moving charge is a best-effort
4988 * feature anyway, so it wouldn't be a big problem.
4989 */
4990 __mem_cgroup_clear_mc();
4991 cond_resched();
4992 goto retry;
4993 }
4994 /*
4995 * When we have consumed all precharges and failed in doing
4996 * additional charge, the page walk just aborts.
4997 */
4998 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4999 up_read(&mc.mm->mmap_sem);
5000 atomic_dec(&mc.from->moving_account);
5001 }
5002
5003 static void mem_cgroup_move_task(void)
5004 {
5005 if (mc.to) {
5006 mem_cgroup_move_charge();
5007 mem_cgroup_clear_mc();
5008 }
5009 }
5010 #else /* !CONFIG_MMU */
5011 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5012 {
5013 return 0;
5014 }
5015 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5016 {
5017 }
5018 static void mem_cgroup_move_task(void)
5019 {
5020 }
5021 #endif
5022
5023 /*
5024 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5025 * to verify whether we're attached to the default hierarchy on each mount
5026 * attempt.
5027 */
5028 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5029 {
5030 /*
5031 * use_hierarchy is forced on the default hierarchy. cgroup core
5032 * guarantees that @root doesn't have any children, so turning it
5033 * on for the root memcg is enough.
5034 */
5035 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5036 root_mem_cgroup->use_hierarchy = true;
5037 else
5038 root_mem_cgroup->use_hierarchy = false;
5039 }
5040
5041 static u64 memory_current_read(struct cgroup_subsys_state *css,
5042 struct cftype *cft)
5043 {
5044 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5045
5046 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5047 }
5048
5049 static int memory_low_show(struct seq_file *m, void *v)
5050 {
5051 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5052 unsigned long low = READ_ONCE(memcg->low);
5053
5054 if (low == PAGE_COUNTER_MAX)
5055 seq_puts(m, "max\n");
5056 else
5057 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5058
5059 return 0;
5060 }
5061
5062 static ssize_t memory_low_write(struct kernfs_open_file *of,
5063 char *buf, size_t nbytes, loff_t off)
5064 {
5065 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5066 unsigned long low;
5067 int err;
5068
5069 buf = strstrip(buf);
5070 err = page_counter_memparse(buf, "max", &low);
5071 if (err)
5072 return err;
5073
5074 memcg->low = low;
5075
5076 return nbytes;
5077 }
5078
5079 static int memory_high_show(struct seq_file *m, void *v)
5080 {
5081 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5082 unsigned long high = READ_ONCE(memcg->high);
5083
5084 if (high == PAGE_COUNTER_MAX)
5085 seq_puts(m, "max\n");
5086 else
5087 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5088
5089 return 0;
5090 }
5091
5092 static ssize_t memory_high_write(struct kernfs_open_file *of,
5093 char *buf, size_t nbytes, loff_t off)
5094 {
5095 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5096 unsigned long nr_pages;
5097 unsigned long high;
5098 int err;
5099
5100 buf = strstrip(buf);
5101 err = page_counter_memparse(buf, "max", &high);
5102 if (err)
5103 return err;
5104
5105 memcg->high = high;
5106
5107 nr_pages = page_counter_read(&memcg->memory);
5108 if (nr_pages > high)
5109 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5110 GFP_KERNEL, true);
5111
5112 memcg_wb_domain_size_changed(memcg);
5113 return nbytes;
5114 }
5115
5116 static int memory_max_show(struct seq_file *m, void *v)
5117 {
5118 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5119 unsigned long max = READ_ONCE(memcg->memory.limit);
5120
5121 if (max == PAGE_COUNTER_MAX)
5122 seq_puts(m, "max\n");
5123 else
5124 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5125
5126 return 0;
5127 }
5128
5129 static ssize_t memory_max_write(struct kernfs_open_file *of,
5130 char *buf, size_t nbytes, loff_t off)
5131 {
5132 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5133 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5134 bool drained = false;
5135 unsigned long max;
5136 int err;
5137
5138 buf = strstrip(buf);
5139 err = page_counter_memparse(buf, "max", &max);
5140 if (err)
5141 return err;
5142
5143 xchg(&memcg->memory.limit, max);
5144
5145 for (;;) {
5146 unsigned long nr_pages = page_counter_read(&memcg->memory);
5147
5148 if (nr_pages <= max)
5149 break;
5150
5151 if (signal_pending(current)) {
5152 err = -EINTR;
5153 break;
5154 }
5155
5156 if (!drained) {
5157 drain_all_stock(memcg);
5158 drained = true;
5159 continue;
5160 }
5161
5162 if (nr_reclaims) {
5163 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5164 GFP_KERNEL, true))
5165 nr_reclaims--;
5166 continue;
5167 }
5168
5169 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5170 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5171 break;
5172 }
5173
5174 memcg_wb_domain_size_changed(memcg);
5175 return nbytes;
5176 }
5177
5178 static int memory_events_show(struct seq_file *m, void *v)
5179 {
5180 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5181
5182 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5183 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5184 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5185 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5186
5187 return 0;
5188 }
5189
5190 static int memory_stat_show(struct seq_file *m, void *v)
5191 {
5192 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5193 unsigned long stat[MEMCG_NR_STAT];
5194 unsigned long events[MEMCG_NR_EVENTS];
5195 int i;
5196
5197 /*
5198 * Provide statistics on the state of the memory subsystem as
5199 * well as cumulative event counters that show past behavior.
5200 *
5201 * This list is ordered following a combination of these gradients:
5202 * 1) generic big picture -> specifics and details
5203 * 2) reflecting userspace activity -> reflecting kernel heuristics
5204 *
5205 * Current memory state:
5206 */
5207
5208 tree_stat(memcg, stat);
5209 tree_events(memcg, events);
5210
5211 seq_printf(m, "anon %llu\n",
5212 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5213 seq_printf(m, "file %llu\n",
5214 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5215 seq_printf(m, "kernel_stack %llu\n",
5216 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5217 seq_printf(m, "slab %llu\n",
5218 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5219 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5220 seq_printf(m, "sock %llu\n",
5221 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5222
5223 seq_printf(m, "file_mapped %llu\n",
5224 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5225 seq_printf(m, "file_dirty %llu\n",
5226 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5227 seq_printf(m, "file_writeback %llu\n",
5228 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5229
5230 for (i = 0; i < NR_LRU_LISTS; i++) {
5231 struct mem_cgroup *mi;
5232 unsigned long val = 0;
5233
5234 for_each_mem_cgroup_tree(mi, memcg)
5235 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5236 seq_printf(m, "%s %llu\n",
5237 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5238 }
5239
5240 seq_printf(m, "slab_reclaimable %llu\n",
5241 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5242 seq_printf(m, "slab_unreclaimable %llu\n",
5243 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5244
5245 /* Accumulated memory events */
5246
5247 seq_printf(m, "pgfault %lu\n",
5248 events[MEM_CGROUP_EVENTS_PGFAULT]);
5249 seq_printf(m, "pgmajfault %lu\n",
5250 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5251
5252 return 0;
5253 }
5254
5255 static struct cftype memory_files[] = {
5256 {
5257 .name = "current",
5258 .flags = CFTYPE_NOT_ON_ROOT,
5259 .read_u64 = memory_current_read,
5260 },
5261 {
5262 .name = "low",
5263 .flags = CFTYPE_NOT_ON_ROOT,
5264 .seq_show = memory_low_show,
5265 .write = memory_low_write,
5266 },
5267 {
5268 .name = "high",
5269 .flags = CFTYPE_NOT_ON_ROOT,
5270 .seq_show = memory_high_show,
5271 .write = memory_high_write,
5272 },
5273 {
5274 .name = "max",
5275 .flags = CFTYPE_NOT_ON_ROOT,
5276 .seq_show = memory_max_show,
5277 .write = memory_max_write,
5278 },
5279 {
5280 .name = "events",
5281 .flags = CFTYPE_NOT_ON_ROOT,
5282 .file_offset = offsetof(struct mem_cgroup, events_file),
5283 .seq_show = memory_events_show,
5284 },
5285 {
5286 .name = "stat",
5287 .flags = CFTYPE_NOT_ON_ROOT,
5288 .seq_show = memory_stat_show,
5289 },
5290 { } /* terminate */
5291 };
5292
5293 struct cgroup_subsys memory_cgrp_subsys = {
5294 .css_alloc = mem_cgroup_css_alloc,
5295 .css_online = mem_cgroup_css_online,
5296 .css_offline = mem_cgroup_css_offline,
5297 .css_released = mem_cgroup_css_released,
5298 .css_free = mem_cgroup_css_free,
5299 .css_reset = mem_cgroup_css_reset,
5300 .can_attach = mem_cgroup_can_attach,
5301 .cancel_attach = mem_cgroup_cancel_attach,
5302 .post_attach = mem_cgroup_move_task,
5303 .bind = mem_cgroup_bind,
5304 .dfl_cftypes = memory_files,
5305 .legacy_cftypes = mem_cgroup_legacy_files,
5306 .early_init = 0,
5307 };
5308
5309 /**
5310 * mem_cgroup_low - check if memory consumption is below the normal range
5311 * @root: the highest ancestor to consider
5312 * @memcg: the memory cgroup to check
5313 *
5314 * Returns %true if memory consumption of @memcg, and that of all
5315 * configurable ancestors up to @root, is below the normal range.
5316 */
5317 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5318 {
5319 if (mem_cgroup_disabled())
5320 return false;
5321
5322 /*
5323 * The toplevel group doesn't have a configurable range, so
5324 * it's never low when looked at directly, and it is not
5325 * considered an ancestor when assessing the hierarchy.
5326 */
5327
5328 if (memcg == root_mem_cgroup)
5329 return false;
5330
5331 if (page_counter_read(&memcg->memory) >= memcg->low)
5332 return false;
5333
5334 while (memcg != root) {
5335 memcg = parent_mem_cgroup(memcg);
5336
5337 if (memcg == root_mem_cgroup)
5338 break;
5339
5340 if (page_counter_read(&memcg->memory) >= memcg->low)
5341 return false;
5342 }
5343 return true;
5344 }
5345
5346 /**
5347 * mem_cgroup_try_charge - try charging a page
5348 * @page: page to charge
5349 * @mm: mm context of the victim
5350 * @gfp_mask: reclaim mode
5351 * @memcgp: charged memcg return
5352 * @compound: charge the page as compound or small page
5353 *
5354 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5355 * pages according to @gfp_mask if necessary.
5356 *
5357 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5358 * Otherwise, an error code is returned.
5359 *
5360 * After page->mapping has been set up, the caller must finalize the
5361 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5362 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5363 */
5364 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5365 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5366 bool compound)
5367 {
5368 struct mem_cgroup *memcg = NULL;
5369 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5370 int ret = 0;
5371
5372 if (mem_cgroup_disabled())
5373 goto out;
5374
5375 if (PageSwapCache(page)) {
5376 /*
5377 * Every swap fault against a single page tries to charge the
5378 * page, bail as early as possible. shmem_unuse() encounters
5379 * already charged pages, too. The USED bit is protected by
5380 * the page lock, which serializes swap cache removal, which
5381 * in turn serializes uncharging.
5382 */
5383 VM_BUG_ON_PAGE(!PageLocked(page), page);
5384 if (page->mem_cgroup)
5385 goto out;
5386
5387 if (do_swap_account) {
5388 swp_entry_t ent = { .val = page_private(page), };
5389 unsigned short id = lookup_swap_cgroup_id(ent);
5390
5391 rcu_read_lock();
5392 memcg = mem_cgroup_from_id(id);
5393 if (memcg && !css_tryget_online(&memcg->css))
5394 memcg = NULL;
5395 rcu_read_unlock();
5396 }
5397 }
5398
5399 if (!memcg)
5400 memcg = get_mem_cgroup_from_mm(mm);
5401
5402 ret = try_charge(memcg, gfp_mask, nr_pages);
5403
5404 css_put(&memcg->css);
5405 out:
5406 *memcgp = memcg;
5407 return ret;
5408 }
5409
5410 /**
5411 * mem_cgroup_commit_charge - commit a page charge
5412 * @page: page to charge
5413 * @memcg: memcg to charge the page to
5414 * @lrucare: page might be on LRU already
5415 * @compound: charge the page as compound or small page
5416 *
5417 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5418 * after page->mapping has been set up. This must happen atomically
5419 * as part of the page instantiation, i.e. under the page table lock
5420 * for anonymous pages, under the page lock for page and swap cache.
5421 *
5422 * In addition, the page must not be on the LRU during the commit, to
5423 * prevent racing with task migration. If it might be, use @lrucare.
5424 *
5425 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5426 */
5427 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5428 bool lrucare, bool compound)
5429 {
5430 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5431
5432 VM_BUG_ON_PAGE(!page->mapping, page);
5433 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5434
5435 if (mem_cgroup_disabled())
5436 return;
5437 /*
5438 * Swap faults will attempt to charge the same page multiple
5439 * times. But reuse_swap_page() might have removed the page
5440 * from swapcache already, so we can't check PageSwapCache().
5441 */
5442 if (!memcg)
5443 return;
5444
5445 commit_charge(page, memcg, lrucare);
5446
5447 local_irq_disable();
5448 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5449 memcg_check_events(memcg, page);
5450 local_irq_enable();
5451
5452 if (do_memsw_account() && PageSwapCache(page)) {
5453 swp_entry_t entry = { .val = page_private(page) };
5454 /*
5455 * The swap entry might not get freed for a long time,
5456 * let's not wait for it. The page already received a
5457 * memory+swap charge, drop the swap entry duplicate.
5458 */
5459 mem_cgroup_uncharge_swap(entry);
5460 }
5461 }
5462
5463 /**
5464 * mem_cgroup_cancel_charge - cancel a page charge
5465 * @page: page to charge
5466 * @memcg: memcg to charge the page to
5467 * @compound: charge the page as compound or small page
5468 *
5469 * Cancel a charge transaction started by mem_cgroup_try_charge().
5470 */
5471 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5472 bool compound)
5473 {
5474 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5475
5476 if (mem_cgroup_disabled())
5477 return;
5478 /*
5479 * Swap faults will attempt to charge the same page multiple
5480 * times. But reuse_swap_page() might have removed the page
5481 * from swapcache already, so we can't check PageSwapCache().
5482 */
5483 if (!memcg)
5484 return;
5485
5486 cancel_charge(memcg, nr_pages);
5487 }
5488
5489 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5490 unsigned long nr_anon, unsigned long nr_file,
5491 unsigned long nr_huge, unsigned long nr_kmem,
5492 struct page *dummy_page)
5493 {
5494 unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5495 unsigned long flags;
5496
5497 if (!mem_cgroup_is_root(memcg)) {
5498 page_counter_uncharge(&memcg->memory, nr_pages);
5499 if (do_memsw_account())
5500 page_counter_uncharge(&memcg->memsw, nr_pages);
5501 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5502 page_counter_uncharge(&memcg->kmem, nr_kmem);
5503 memcg_oom_recover(memcg);
5504 }
5505
5506 local_irq_save(flags);
5507 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5508 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5509 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5510 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5511 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5512 memcg_check_events(memcg, dummy_page);
5513 local_irq_restore(flags);
5514
5515 if (!mem_cgroup_is_root(memcg))
5516 css_put_many(&memcg->css, nr_pages);
5517 }
5518
5519 static void uncharge_list(struct list_head *page_list)
5520 {
5521 struct mem_cgroup *memcg = NULL;
5522 unsigned long nr_anon = 0;
5523 unsigned long nr_file = 0;
5524 unsigned long nr_huge = 0;
5525 unsigned long nr_kmem = 0;
5526 unsigned long pgpgout = 0;
5527 struct list_head *next;
5528 struct page *page;
5529
5530 /*
5531 * Note that the list can be a single page->lru; hence the
5532 * do-while loop instead of a simple list_for_each_entry().
5533 */
5534 next = page_list->next;
5535 do {
5536 page = list_entry(next, struct page, lru);
5537 next = page->lru.next;
5538
5539 VM_BUG_ON_PAGE(PageLRU(page), page);
5540 VM_BUG_ON_PAGE(page_count(page), page);
5541
5542 if (!page->mem_cgroup)
5543 continue;
5544
5545 /*
5546 * Nobody should be changing or seriously looking at
5547 * page->mem_cgroup at this point, we have fully
5548 * exclusive access to the page.
5549 */
5550
5551 if (memcg != page->mem_cgroup) {
5552 if (memcg) {
5553 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5554 nr_huge, nr_kmem, page);
5555 pgpgout = nr_anon = nr_file =
5556 nr_huge = nr_kmem = 0;
5557 }
5558 memcg = page->mem_cgroup;
5559 }
5560
5561 if (!PageKmemcg(page)) {
5562 unsigned int nr_pages = 1;
5563
5564 if (PageTransHuge(page)) {
5565 nr_pages <<= compound_order(page);
5566 nr_huge += nr_pages;
5567 }
5568 if (PageAnon(page))
5569 nr_anon += nr_pages;
5570 else
5571 nr_file += nr_pages;
5572 pgpgout++;
5573 } else {
5574 nr_kmem += 1 << compound_order(page);
5575 __ClearPageKmemcg(page);
5576 }
5577
5578 page->mem_cgroup = NULL;
5579 } while (next != page_list);
5580
5581 if (memcg)
5582 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5583 nr_huge, nr_kmem, page);
5584 }
5585
5586 /**
5587 * mem_cgroup_uncharge - uncharge a page
5588 * @page: page to uncharge
5589 *
5590 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5591 * mem_cgroup_commit_charge().
5592 */
5593 void mem_cgroup_uncharge(struct page *page)
5594 {
5595 if (mem_cgroup_disabled())
5596 return;
5597
5598 /* Don't touch page->lru of any random page, pre-check: */
5599 if (!page->mem_cgroup)
5600 return;
5601
5602 INIT_LIST_HEAD(&page->lru);
5603 uncharge_list(&page->lru);
5604 }
5605
5606 /**
5607 * mem_cgroup_uncharge_list - uncharge a list of page
5608 * @page_list: list of pages to uncharge
5609 *
5610 * Uncharge a list of pages previously charged with
5611 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5612 */
5613 void mem_cgroup_uncharge_list(struct list_head *page_list)
5614 {
5615 if (mem_cgroup_disabled())
5616 return;
5617
5618 if (!list_empty(page_list))
5619 uncharge_list(page_list);
5620 }
5621
5622 /**
5623 * mem_cgroup_migrate - charge a page's replacement
5624 * @oldpage: currently circulating page
5625 * @newpage: replacement page
5626 *
5627 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5628 * be uncharged upon free.
5629 *
5630 * Both pages must be locked, @newpage->mapping must be set up.
5631 */
5632 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5633 {
5634 struct mem_cgroup *memcg;
5635 unsigned int nr_pages;
5636 bool compound;
5637 unsigned long flags;
5638
5639 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5640 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5641 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5642 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5643 newpage);
5644
5645 if (mem_cgroup_disabled())
5646 return;
5647
5648 /* Page cache replacement: new page already charged? */
5649 if (newpage->mem_cgroup)
5650 return;
5651
5652 /* Swapcache readahead pages can get replaced before being charged */
5653 memcg = oldpage->mem_cgroup;
5654 if (!memcg)
5655 return;
5656
5657 /* Force-charge the new page. The old one will be freed soon */
5658 compound = PageTransHuge(newpage);
5659 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5660
5661 page_counter_charge(&memcg->memory, nr_pages);
5662 if (do_memsw_account())
5663 page_counter_charge(&memcg->memsw, nr_pages);
5664 css_get_many(&memcg->css, nr_pages);
5665
5666 commit_charge(newpage, memcg, false);
5667
5668 local_irq_save(flags);
5669 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5670 memcg_check_events(memcg, newpage);
5671 local_irq_restore(flags);
5672 }
5673
5674 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5675 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5676
5677 void sock_update_memcg(struct sock *sk)
5678 {
5679 struct mem_cgroup *memcg;
5680
5681 /* Socket cloning can throw us here with sk_cgrp already
5682 * filled. It won't however, necessarily happen from
5683 * process context. So the test for root memcg given
5684 * the current task's memcg won't help us in this case.
5685 *
5686 * Respecting the original socket's memcg is a better
5687 * decision in this case.
5688 */
5689 if (sk->sk_memcg) {
5690 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5691 css_get(&sk->sk_memcg->css);
5692 return;
5693 }
5694
5695 rcu_read_lock();
5696 memcg = mem_cgroup_from_task(current);
5697 if (memcg == root_mem_cgroup)
5698 goto out;
5699 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5700 goto out;
5701 if (css_tryget_online(&memcg->css))
5702 sk->sk_memcg = memcg;
5703 out:
5704 rcu_read_unlock();
5705 }
5706 EXPORT_SYMBOL(sock_update_memcg);
5707
5708 void sock_release_memcg(struct sock *sk)
5709 {
5710 WARN_ON(!sk->sk_memcg);
5711 css_put(&sk->sk_memcg->css);
5712 }
5713
5714 /**
5715 * mem_cgroup_charge_skmem - charge socket memory
5716 * @memcg: memcg to charge
5717 * @nr_pages: number of pages to charge
5718 *
5719 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5720 * @memcg's configured limit, %false if the charge had to be forced.
5721 */
5722 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5723 {
5724 gfp_t gfp_mask = GFP_KERNEL;
5725
5726 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5727 struct page_counter *fail;
5728
5729 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5730 memcg->tcpmem_pressure = 0;
5731 return true;
5732 }
5733 page_counter_charge(&memcg->tcpmem, nr_pages);
5734 memcg->tcpmem_pressure = 1;
5735 return false;
5736 }
5737
5738 /* Don't block in the packet receive path */
5739 if (in_softirq())
5740 gfp_mask = GFP_NOWAIT;
5741
5742 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5743
5744 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5745 return true;
5746
5747 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5748 return false;
5749 }
5750
5751 /**
5752 * mem_cgroup_uncharge_skmem - uncharge socket memory
5753 * @memcg - memcg to uncharge
5754 * @nr_pages - number of pages to uncharge
5755 */
5756 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5757 {
5758 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5759 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5760 return;
5761 }
5762
5763 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5764
5765 page_counter_uncharge(&memcg->memory, nr_pages);
5766 css_put_many(&memcg->css, nr_pages);
5767 }
5768
5769 static int __init cgroup_memory(char *s)
5770 {
5771 char *token;
5772
5773 while ((token = strsep(&s, ",")) != NULL) {
5774 if (!*token)
5775 continue;
5776 if (!strcmp(token, "nosocket"))
5777 cgroup_memory_nosocket = true;
5778 if (!strcmp(token, "nokmem"))
5779 cgroup_memory_nokmem = true;
5780 }
5781 return 0;
5782 }
5783 __setup("cgroup.memory=", cgroup_memory);
5784
5785 /*
5786 * subsys_initcall() for memory controller.
5787 *
5788 * Some parts like hotcpu_notifier() have to be initialized from this context
5789 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5790 * everything that doesn't depend on a specific mem_cgroup structure should
5791 * be initialized from here.
5792 */
5793 static int __init mem_cgroup_init(void)
5794 {
5795 int cpu, node;
5796
5797 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5798
5799 for_each_possible_cpu(cpu)
5800 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5801 drain_local_stock);
5802
5803 for_each_node(node) {
5804 struct mem_cgroup_tree_per_node *rtpn;
5805
5806 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5807 node_online(node) ? node : NUMA_NO_NODE);
5808
5809 rtpn->rb_root = RB_ROOT;
5810 spin_lock_init(&rtpn->lock);
5811 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5812 }
5813
5814 return 0;
5815 }
5816 subsys_initcall(mem_cgroup_init);
5817
5818 #ifdef CONFIG_MEMCG_SWAP
5819 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5820 {
5821 while (!atomic_inc_not_zero(&memcg->id.ref)) {
5822 /*
5823 * The root cgroup cannot be destroyed, so it's refcount must
5824 * always be >= 1.
5825 */
5826 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5827 VM_BUG_ON(1);
5828 break;
5829 }
5830 memcg = parent_mem_cgroup(memcg);
5831 if (!memcg)
5832 memcg = root_mem_cgroup;
5833 }
5834 return memcg;
5835 }
5836
5837 /**
5838 * mem_cgroup_swapout - transfer a memsw charge to swap
5839 * @page: page whose memsw charge to transfer
5840 * @entry: swap entry to move the charge to
5841 *
5842 * Transfer the memsw charge of @page to @entry.
5843 */
5844 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5845 {
5846 struct mem_cgroup *memcg, *swap_memcg;
5847 unsigned short oldid;
5848
5849 VM_BUG_ON_PAGE(PageLRU(page), page);
5850 VM_BUG_ON_PAGE(page_count(page), page);
5851
5852 if (!do_memsw_account())
5853 return;
5854
5855 memcg = page->mem_cgroup;
5856
5857 /* Readahead page, never charged */
5858 if (!memcg)
5859 return;
5860
5861 /*
5862 * In case the memcg owning these pages has been offlined and doesn't
5863 * have an ID allocated to it anymore, charge the closest online
5864 * ancestor for the swap instead and transfer the memory+swap charge.
5865 */
5866 swap_memcg = mem_cgroup_id_get_online(memcg);
5867 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
5868 VM_BUG_ON_PAGE(oldid, page);
5869 mem_cgroup_swap_statistics(swap_memcg, true);
5870
5871 page->mem_cgroup = NULL;
5872
5873 if (!mem_cgroup_is_root(memcg))
5874 page_counter_uncharge(&memcg->memory, 1);
5875
5876 if (memcg != swap_memcg) {
5877 if (!mem_cgroup_is_root(swap_memcg))
5878 page_counter_charge(&swap_memcg->memsw, 1);
5879 page_counter_uncharge(&memcg->memsw, 1);
5880 }
5881
5882 /*
5883 * Interrupts should be disabled here because the caller holds the
5884 * mapping->tree_lock lock which is taken with interrupts-off. It is
5885 * important here to have the interrupts disabled because it is the
5886 * only synchronisation we have for udpating the per-CPU variables.
5887 */
5888 VM_BUG_ON(!irqs_disabled());
5889 mem_cgroup_charge_statistics(memcg, page, false, -1);
5890 memcg_check_events(memcg, page);
5891
5892 if (!mem_cgroup_is_root(memcg))
5893 css_put(&memcg->css);
5894 }
5895
5896 /*
5897 * mem_cgroup_try_charge_swap - try charging a swap entry
5898 * @page: page being added to swap
5899 * @entry: swap entry to charge
5900 *
5901 * Try to charge @entry to the memcg that @page belongs to.
5902 *
5903 * Returns 0 on success, -ENOMEM on failure.
5904 */
5905 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5906 {
5907 struct mem_cgroup *memcg;
5908 struct page_counter *counter;
5909 unsigned short oldid;
5910
5911 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5912 return 0;
5913
5914 memcg = page->mem_cgroup;
5915
5916 /* Readahead page, never charged */
5917 if (!memcg)
5918 return 0;
5919
5920 memcg = mem_cgroup_id_get_online(memcg);
5921
5922 if (!mem_cgroup_is_root(memcg) &&
5923 !page_counter_try_charge(&memcg->swap, 1, &counter)) {
5924 mem_cgroup_id_put(memcg);
5925 return -ENOMEM;
5926 }
5927
5928 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5929 VM_BUG_ON_PAGE(oldid, page);
5930 mem_cgroup_swap_statistics(memcg, true);
5931
5932 return 0;
5933 }
5934
5935 /**
5936 * mem_cgroup_uncharge_swap - uncharge a swap entry
5937 * @entry: swap entry to uncharge
5938 *
5939 * Drop the swap charge associated with @entry.
5940 */
5941 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5942 {
5943 struct mem_cgroup *memcg;
5944 unsigned short id;
5945
5946 if (!do_swap_account)
5947 return;
5948
5949 id = swap_cgroup_record(entry, 0);
5950 rcu_read_lock();
5951 memcg = mem_cgroup_from_id(id);
5952 if (memcg) {
5953 if (!mem_cgroup_is_root(memcg)) {
5954 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5955 page_counter_uncharge(&memcg->swap, 1);
5956 else
5957 page_counter_uncharge(&memcg->memsw, 1);
5958 }
5959 mem_cgroup_swap_statistics(memcg, false);
5960 mem_cgroup_id_put(memcg);
5961 }
5962 rcu_read_unlock();
5963 }
5964
5965 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5966 {
5967 long nr_swap_pages = get_nr_swap_pages();
5968
5969 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5970 return nr_swap_pages;
5971 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5972 nr_swap_pages = min_t(long, nr_swap_pages,
5973 READ_ONCE(memcg->swap.limit) -
5974 page_counter_read(&memcg->swap));
5975 return nr_swap_pages;
5976 }
5977
5978 bool mem_cgroup_swap_full(struct page *page)
5979 {
5980 struct mem_cgroup *memcg;
5981
5982 VM_BUG_ON_PAGE(!PageLocked(page), page);
5983
5984 if (vm_swap_full())
5985 return true;
5986 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5987 return false;
5988
5989 memcg = page->mem_cgroup;
5990 if (!memcg)
5991 return false;
5992
5993 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5994 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5995 return true;
5996
5997 return false;
5998 }
5999
6000 /* for remember boot option*/
6001 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6002 static int really_do_swap_account __initdata = 1;
6003 #else
6004 static int really_do_swap_account __initdata;
6005 #endif
6006
6007 static int __init enable_swap_account(char *s)
6008 {
6009 if (!strcmp(s, "1"))
6010 really_do_swap_account = 1;
6011 else if (!strcmp(s, "0"))
6012 really_do_swap_account = 0;
6013 return 1;
6014 }
6015 __setup("swapaccount=", enable_swap_account);
6016
6017 static u64 swap_current_read(struct cgroup_subsys_state *css,
6018 struct cftype *cft)
6019 {
6020 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6021
6022 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6023 }
6024
6025 static int swap_max_show(struct seq_file *m, void *v)
6026 {
6027 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6028 unsigned long max = READ_ONCE(memcg->swap.limit);
6029
6030 if (max == PAGE_COUNTER_MAX)
6031 seq_puts(m, "max\n");
6032 else
6033 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6034
6035 return 0;
6036 }
6037
6038 static ssize_t swap_max_write(struct kernfs_open_file *of,
6039 char *buf, size_t nbytes, loff_t off)
6040 {
6041 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6042 unsigned long max;
6043 int err;
6044
6045 buf = strstrip(buf);
6046 err = page_counter_memparse(buf, "max", &max);
6047 if (err)
6048 return err;
6049
6050 mutex_lock(&memcg_limit_mutex);
6051 err = page_counter_limit(&memcg->swap, max);
6052 mutex_unlock(&memcg_limit_mutex);
6053 if (err)
6054 return err;
6055
6056 return nbytes;
6057 }
6058
6059 static struct cftype swap_files[] = {
6060 {
6061 .name = "swap.current",
6062 .flags = CFTYPE_NOT_ON_ROOT,
6063 .read_u64 = swap_current_read,
6064 },
6065 {
6066 .name = "swap.max",
6067 .flags = CFTYPE_NOT_ON_ROOT,
6068 .seq_show = swap_max_show,
6069 .write = swap_max_write,
6070 },
6071 { } /* terminate */
6072 };
6073
6074 static struct cftype memsw_cgroup_files[] = {
6075 {
6076 .name = "memsw.usage_in_bytes",
6077 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6078 .read_u64 = mem_cgroup_read_u64,
6079 },
6080 {
6081 .name = "memsw.max_usage_in_bytes",
6082 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6083 .write = mem_cgroup_reset,
6084 .read_u64 = mem_cgroup_read_u64,
6085 },
6086 {
6087 .name = "memsw.limit_in_bytes",
6088 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6089 .write = mem_cgroup_write,
6090 .read_u64 = mem_cgroup_read_u64,
6091 },
6092 {
6093 .name = "memsw.failcnt",
6094 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6095 .write = mem_cgroup_reset,
6096 .read_u64 = mem_cgroup_read_u64,
6097 },
6098 { }, /* terminate */
6099 };
6100
6101 static int __init mem_cgroup_swap_init(void)
6102 {
6103 if (!mem_cgroup_disabled() && really_do_swap_account) {
6104 do_swap_account = 1;
6105 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6106 swap_files));
6107 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6108 memsw_cgroup_files));
6109 }
6110 return 0;
6111 }
6112 subsys_initcall(mem_cgroup_swap_init);
6113
6114 #endif /* CONFIG_MEMCG_SWAP */
This page took 0.191452 seconds and 5 git commands to generate.