mm: oom_kill: simplify OOM killer locking
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include <net/tcp_memcontrol.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 #define MEM_CGROUP_RECLAIM_RETRIES 5
79 static struct mem_cgroup *root_mem_cgroup __read_mostly;
80
81 /* Whether the swap controller is active */
82 #ifdef CONFIG_MEMCG_SWAP
83 int do_swap_account __read_mostly;
84 #else
85 #define do_swap_account 0
86 #endif
87
88 static const char * const mem_cgroup_stat_names[] = {
89 "cache",
90 "rss",
91 "rss_huge",
92 "mapped_file",
93 "writeback",
94 "swap",
95 };
96
97 static const char * const mem_cgroup_events_names[] = {
98 "pgpgin",
99 "pgpgout",
100 "pgfault",
101 "pgmajfault",
102 };
103
104 static const char * const mem_cgroup_lru_names[] = {
105 "inactive_anon",
106 "active_anon",
107 "inactive_file",
108 "active_file",
109 "unevictable",
110 };
111
112 /*
113 * Per memcg event counter is incremented at every pagein/pageout. With THP,
114 * it will be incremated by the number of pages. This counter is used for
115 * for trigger some periodic events. This is straightforward and better
116 * than using jiffies etc. to handle periodic memcg event.
117 */
118 enum mem_cgroup_events_target {
119 MEM_CGROUP_TARGET_THRESH,
120 MEM_CGROUP_TARGET_SOFTLIMIT,
121 MEM_CGROUP_TARGET_NUMAINFO,
122 MEM_CGROUP_NTARGETS,
123 };
124 #define THRESHOLDS_EVENTS_TARGET 128
125 #define SOFTLIMIT_EVENTS_TARGET 1024
126 #define NUMAINFO_EVENTS_TARGET 1024
127
128 struct mem_cgroup_stat_cpu {
129 long count[MEM_CGROUP_STAT_NSTATS];
130 unsigned long events[MEMCG_NR_EVENTS];
131 unsigned long nr_page_events;
132 unsigned long targets[MEM_CGROUP_NTARGETS];
133 };
134
135 struct reclaim_iter {
136 struct mem_cgroup *position;
137 /* scan generation, increased every round-trip */
138 unsigned int generation;
139 };
140
141 /*
142 * per-zone information in memory controller.
143 */
144 struct mem_cgroup_per_zone {
145 struct lruvec lruvec;
146 unsigned long lru_size[NR_LRU_LISTS];
147
148 struct reclaim_iter iter[DEF_PRIORITY + 1];
149
150 struct rb_node tree_node; /* RB tree node */
151 unsigned long usage_in_excess;/* Set to the value by which */
152 /* the soft limit is exceeded*/
153 bool on_tree;
154 struct mem_cgroup *memcg; /* Back pointer, we cannot */
155 /* use container_of */
156 };
157
158 struct mem_cgroup_per_node {
159 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
160 };
161
162 /*
163 * Cgroups above their limits are maintained in a RB-Tree, independent of
164 * their hierarchy representation
165 */
166
167 struct mem_cgroup_tree_per_zone {
168 struct rb_root rb_root;
169 spinlock_t lock;
170 };
171
172 struct mem_cgroup_tree_per_node {
173 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
174 };
175
176 struct mem_cgroup_tree {
177 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
178 };
179
180 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
181
182 struct mem_cgroup_threshold {
183 struct eventfd_ctx *eventfd;
184 unsigned long threshold;
185 };
186
187 /* For threshold */
188 struct mem_cgroup_threshold_ary {
189 /* An array index points to threshold just below or equal to usage. */
190 int current_threshold;
191 /* Size of entries[] */
192 unsigned int size;
193 /* Array of thresholds */
194 struct mem_cgroup_threshold entries[0];
195 };
196
197 struct mem_cgroup_thresholds {
198 /* Primary thresholds array */
199 struct mem_cgroup_threshold_ary *primary;
200 /*
201 * Spare threshold array.
202 * This is needed to make mem_cgroup_unregister_event() "never fail".
203 * It must be able to store at least primary->size - 1 entries.
204 */
205 struct mem_cgroup_threshold_ary *spare;
206 };
207
208 /* for OOM */
209 struct mem_cgroup_eventfd_list {
210 struct list_head list;
211 struct eventfd_ctx *eventfd;
212 };
213
214 /*
215 * cgroup_event represents events which userspace want to receive.
216 */
217 struct mem_cgroup_event {
218 /*
219 * memcg which the event belongs to.
220 */
221 struct mem_cgroup *memcg;
222 /*
223 * eventfd to signal userspace about the event.
224 */
225 struct eventfd_ctx *eventfd;
226 /*
227 * Each of these stored in a list by the cgroup.
228 */
229 struct list_head list;
230 /*
231 * register_event() callback will be used to add new userspace
232 * waiter for changes related to this event. Use eventfd_signal()
233 * on eventfd to send notification to userspace.
234 */
235 int (*register_event)(struct mem_cgroup *memcg,
236 struct eventfd_ctx *eventfd, const char *args);
237 /*
238 * unregister_event() callback will be called when userspace closes
239 * the eventfd or on cgroup removing. This callback must be set,
240 * if you want provide notification functionality.
241 */
242 void (*unregister_event)(struct mem_cgroup *memcg,
243 struct eventfd_ctx *eventfd);
244 /*
245 * All fields below needed to unregister event when
246 * userspace closes eventfd.
247 */
248 poll_table pt;
249 wait_queue_head_t *wqh;
250 wait_queue_t wait;
251 struct work_struct remove;
252 };
253
254 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
255 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
256
257 /*
258 * The memory controller data structure. The memory controller controls both
259 * page cache and RSS per cgroup. We would eventually like to provide
260 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
261 * to help the administrator determine what knobs to tune.
262 */
263 struct mem_cgroup {
264 struct cgroup_subsys_state css;
265
266 /* Accounted resources */
267 struct page_counter memory;
268 struct page_counter memsw;
269 struct page_counter kmem;
270
271 /* Normal memory consumption range */
272 unsigned long low;
273 unsigned long high;
274
275 unsigned long soft_limit;
276
277 /* vmpressure notifications */
278 struct vmpressure vmpressure;
279
280 /* css_online() has been completed */
281 int initialized;
282
283 /*
284 * Should the accounting and control be hierarchical, per subtree?
285 */
286 bool use_hierarchy;
287
288 bool oom_lock;
289 atomic_t under_oom;
290 atomic_t oom_wakeups;
291
292 int swappiness;
293 /* OOM-Killer disable */
294 int oom_kill_disable;
295
296 /* protect arrays of thresholds */
297 struct mutex thresholds_lock;
298
299 /* thresholds for memory usage. RCU-protected */
300 struct mem_cgroup_thresholds thresholds;
301
302 /* thresholds for mem+swap usage. RCU-protected */
303 struct mem_cgroup_thresholds memsw_thresholds;
304
305 /* For oom notifier event fd */
306 struct list_head oom_notify;
307
308 /*
309 * Should we move charges of a task when a task is moved into this
310 * mem_cgroup ? And what type of charges should we move ?
311 */
312 unsigned long move_charge_at_immigrate;
313 /*
314 * set > 0 if pages under this cgroup are moving to other cgroup.
315 */
316 atomic_t moving_account;
317 /* taken only while moving_account > 0 */
318 spinlock_t move_lock;
319 struct task_struct *move_lock_task;
320 unsigned long move_lock_flags;
321 /*
322 * percpu counter.
323 */
324 struct mem_cgroup_stat_cpu __percpu *stat;
325 /*
326 * used when a cpu is offlined or other synchronizations
327 * See mem_cgroup_read_stat().
328 */
329 struct mem_cgroup_stat_cpu nocpu_base;
330 spinlock_t pcp_counter_lock;
331
332 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
333 struct cg_proto tcp_mem;
334 #endif
335 #if defined(CONFIG_MEMCG_KMEM)
336 /* Index in the kmem_cache->memcg_params.memcg_caches array */
337 int kmemcg_id;
338 bool kmem_acct_activated;
339 bool kmem_acct_active;
340 #endif
341
342 int last_scanned_node;
343 #if MAX_NUMNODES > 1
344 nodemask_t scan_nodes;
345 atomic_t numainfo_events;
346 atomic_t numainfo_updating;
347 #endif
348
349 /* List of events which userspace want to receive */
350 struct list_head event_list;
351 spinlock_t event_list_lock;
352
353 struct mem_cgroup_per_node *nodeinfo[0];
354 /* WARNING: nodeinfo must be the last member here */
355 };
356
357 #ifdef CONFIG_MEMCG_KMEM
358 bool memcg_kmem_is_active(struct mem_cgroup *memcg)
359 {
360 return memcg->kmem_acct_active;
361 }
362 #endif
363
364 /* Stuffs for move charges at task migration. */
365 /*
366 * Types of charges to be moved.
367 */
368 #define MOVE_ANON 0x1U
369 #define MOVE_FILE 0x2U
370 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
371
372 /* "mc" and its members are protected by cgroup_mutex */
373 static struct move_charge_struct {
374 spinlock_t lock; /* for from, to */
375 struct mem_cgroup *from;
376 struct mem_cgroup *to;
377 unsigned long flags;
378 unsigned long precharge;
379 unsigned long moved_charge;
380 unsigned long moved_swap;
381 struct task_struct *moving_task; /* a task moving charges */
382 wait_queue_head_t waitq; /* a waitq for other context */
383 } mc = {
384 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
385 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
386 };
387
388 /*
389 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
390 * limit reclaim to prevent infinite loops, if they ever occur.
391 */
392 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
393 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
394
395 enum charge_type {
396 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
397 MEM_CGROUP_CHARGE_TYPE_ANON,
398 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
399 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
400 NR_CHARGE_TYPE,
401 };
402
403 /* for encoding cft->private value on file */
404 enum res_type {
405 _MEM,
406 _MEMSWAP,
407 _OOM_TYPE,
408 _KMEM,
409 };
410
411 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
412 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
413 #define MEMFILE_ATTR(val) ((val) & 0xffff)
414 /* Used for OOM nofiier */
415 #define OOM_CONTROL (0)
416
417 /*
418 * The memcg_create_mutex will be held whenever a new cgroup is created.
419 * As a consequence, any change that needs to protect against new child cgroups
420 * appearing has to hold it as well.
421 */
422 static DEFINE_MUTEX(memcg_create_mutex);
423
424 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
425 {
426 return s ? container_of(s, struct mem_cgroup, css) : NULL;
427 }
428
429 /* Some nice accessors for the vmpressure. */
430 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
431 {
432 if (!memcg)
433 memcg = root_mem_cgroup;
434 return &memcg->vmpressure;
435 }
436
437 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
438 {
439 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
440 }
441
442 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
443 {
444 return (memcg == root_mem_cgroup);
445 }
446
447 /*
448 * We restrict the id in the range of [1, 65535], so it can fit into
449 * an unsigned short.
450 */
451 #define MEM_CGROUP_ID_MAX USHRT_MAX
452
453 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
454 {
455 return memcg->css.id;
456 }
457
458 /*
459 * A helper function to get mem_cgroup from ID. must be called under
460 * rcu_read_lock(). The caller is responsible for calling
461 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
462 * refcnt from swap can be called against removed memcg.)
463 */
464 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
465 {
466 struct cgroup_subsys_state *css;
467
468 css = css_from_id(id, &memory_cgrp_subsys);
469 return mem_cgroup_from_css(css);
470 }
471
472 /* Writing them here to avoid exposing memcg's inner layout */
473 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
474
475 void sock_update_memcg(struct sock *sk)
476 {
477 if (mem_cgroup_sockets_enabled) {
478 struct mem_cgroup *memcg;
479 struct cg_proto *cg_proto;
480
481 BUG_ON(!sk->sk_prot->proto_cgroup);
482
483 /* Socket cloning can throw us here with sk_cgrp already
484 * filled. It won't however, necessarily happen from
485 * process context. So the test for root memcg given
486 * the current task's memcg won't help us in this case.
487 *
488 * Respecting the original socket's memcg is a better
489 * decision in this case.
490 */
491 if (sk->sk_cgrp) {
492 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
493 css_get(&sk->sk_cgrp->memcg->css);
494 return;
495 }
496
497 rcu_read_lock();
498 memcg = mem_cgroup_from_task(current);
499 cg_proto = sk->sk_prot->proto_cgroup(memcg);
500 if (!mem_cgroup_is_root(memcg) &&
501 memcg_proto_active(cg_proto) &&
502 css_tryget_online(&memcg->css)) {
503 sk->sk_cgrp = cg_proto;
504 }
505 rcu_read_unlock();
506 }
507 }
508 EXPORT_SYMBOL(sock_update_memcg);
509
510 void sock_release_memcg(struct sock *sk)
511 {
512 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
513 struct mem_cgroup *memcg;
514 WARN_ON(!sk->sk_cgrp->memcg);
515 memcg = sk->sk_cgrp->memcg;
516 css_put(&sk->sk_cgrp->memcg->css);
517 }
518 }
519
520 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
521 {
522 if (!memcg || mem_cgroup_is_root(memcg))
523 return NULL;
524
525 return &memcg->tcp_mem;
526 }
527 EXPORT_SYMBOL(tcp_proto_cgroup);
528
529 #endif
530
531 #ifdef CONFIG_MEMCG_KMEM
532 /*
533 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
534 * The main reason for not using cgroup id for this:
535 * this works better in sparse environments, where we have a lot of memcgs,
536 * but only a few kmem-limited. Or also, if we have, for instance, 200
537 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
538 * 200 entry array for that.
539 *
540 * The current size of the caches array is stored in memcg_nr_cache_ids. It
541 * will double each time we have to increase it.
542 */
543 static DEFINE_IDA(memcg_cache_ida);
544 int memcg_nr_cache_ids;
545
546 /* Protects memcg_nr_cache_ids */
547 static DECLARE_RWSEM(memcg_cache_ids_sem);
548
549 void memcg_get_cache_ids(void)
550 {
551 down_read(&memcg_cache_ids_sem);
552 }
553
554 void memcg_put_cache_ids(void)
555 {
556 up_read(&memcg_cache_ids_sem);
557 }
558
559 /*
560 * MIN_SIZE is different than 1, because we would like to avoid going through
561 * the alloc/free process all the time. In a small machine, 4 kmem-limited
562 * cgroups is a reasonable guess. In the future, it could be a parameter or
563 * tunable, but that is strictly not necessary.
564 *
565 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
566 * this constant directly from cgroup, but it is understandable that this is
567 * better kept as an internal representation in cgroup.c. In any case, the
568 * cgrp_id space is not getting any smaller, and we don't have to necessarily
569 * increase ours as well if it increases.
570 */
571 #define MEMCG_CACHES_MIN_SIZE 4
572 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
573
574 /*
575 * A lot of the calls to the cache allocation functions are expected to be
576 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
577 * conditional to this static branch, we'll have to allow modules that does
578 * kmem_cache_alloc and the such to see this symbol as well
579 */
580 struct static_key memcg_kmem_enabled_key;
581 EXPORT_SYMBOL(memcg_kmem_enabled_key);
582
583 #endif /* CONFIG_MEMCG_KMEM */
584
585 static struct mem_cgroup_per_zone *
586 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
587 {
588 int nid = zone_to_nid(zone);
589 int zid = zone_idx(zone);
590
591 return &memcg->nodeinfo[nid]->zoneinfo[zid];
592 }
593
594 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
595 {
596 return &memcg->css;
597 }
598
599 static struct mem_cgroup_per_zone *
600 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
601 {
602 int nid = page_to_nid(page);
603 int zid = page_zonenum(page);
604
605 return &memcg->nodeinfo[nid]->zoneinfo[zid];
606 }
607
608 static struct mem_cgroup_tree_per_zone *
609 soft_limit_tree_node_zone(int nid, int zid)
610 {
611 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
612 }
613
614 static struct mem_cgroup_tree_per_zone *
615 soft_limit_tree_from_page(struct page *page)
616 {
617 int nid = page_to_nid(page);
618 int zid = page_zonenum(page);
619
620 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
621 }
622
623 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
624 struct mem_cgroup_tree_per_zone *mctz,
625 unsigned long new_usage_in_excess)
626 {
627 struct rb_node **p = &mctz->rb_root.rb_node;
628 struct rb_node *parent = NULL;
629 struct mem_cgroup_per_zone *mz_node;
630
631 if (mz->on_tree)
632 return;
633
634 mz->usage_in_excess = new_usage_in_excess;
635 if (!mz->usage_in_excess)
636 return;
637 while (*p) {
638 parent = *p;
639 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
640 tree_node);
641 if (mz->usage_in_excess < mz_node->usage_in_excess)
642 p = &(*p)->rb_left;
643 /*
644 * We can't avoid mem cgroups that are over their soft
645 * limit by the same amount
646 */
647 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
648 p = &(*p)->rb_right;
649 }
650 rb_link_node(&mz->tree_node, parent, p);
651 rb_insert_color(&mz->tree_node, &mctz->rb_root);
652 mz->on_tree = true;
653 }
654
655 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
656 struct mem_cgroup_tree_per_zone *mctz)
657 {
658 if (!mz->on_tree)
659 return;
660 rb_erase(&mz->tree_node, &mctz->rb_root);
661 mz->on_tree = false;
662 }
663
664 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
665 struct mem_cgroup_tree_per_zone *mctz)
666 {
667 unsigned long flags;
668
669 spin_lock_irqsave(&mctz->lock, flags);
670 __mem_cgroup_remove_exceeded(mz, mctz);
671 spin_unlock_irqrestore(&mctz->lock, flags);
672 }
673
674 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
675 {
676 unsigned long nr_pages = page_counter_read(&memcg->memory);
677 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
678 unsigned long excess = 0;
679
680 if (nr_pages > soft_limit)
681 excess = nr_pages - soft_limit;
682
683 return excess;
684 }
685
686 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
687 {
688 unsigned long excess;
689 struct mem_cgroup_per_zone *mz;
690 struct mem_cgroup_tree_per_zone *mctz;
691
692 mctz = soft_limit_tree_from_page(page);
693 /*
694 * Necessary to update all ancestors when hierarchy is used.
695 * because their event counter is not touched.
696 */
697 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
698 mz = mem_cgroup_page_zoneinfo(memcg, page);
699 excess = soft_limit_excess(memcg);
700 /*
701 * We have to update the tree if mz is on RB-tree or
702 * mem is over its softlimit.
703 */
704 if (excess || mz->on_tree) {
705 unsigned long flags;
706
707 spin_lock_irqsave(&mctz->lock, flags);
708 /* if on-tree, remove it */
709 if (mz->on_tree)
710 __mem_cgroup_remove_exceeded(mz, mctz);
711 /*
712 * Insert again. mz->usage_in_excess will be updated.
713 * If excess is 0, no tree ops.
714 */
715 __mem_cgroup_insert_exceeded(mz, mctz, excess);
716 spin_unlock_irqrestore(&mctz->lock, flags);
717 }
718 }
719 }
720
721 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
722 {
723 struct mem_cgroup_tree_per_zone *mctz;
724 struct mem_cgroup_per_zone *mz;
725 int nid, zid;
726
727 for_each_node(nid) {
728 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
729 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
730 mctz = soft_limit_tree_node_zone(nid, zid);
731 mem_cgroup_remove_exceeded(mz, mctz);
732 }
733 }
734 }
735
736 static struct mem_cgroup_per_zone *
737 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
738 {
739 struct rb_node *rightmost = NULL;
740 struct mem_cgroup_per_zone *mz;
741
742 retry:
743 mz = NULL;
744 rightmost = rb_last(&mctz->rb_root);
745 if (!rightmost)
746 goto done; /* Nothing to reclaim from */
747
748 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
749 /*
750 * Remove the node now but someone else can add it back,
751 * we will to add it back at the end of reclaim to its correct
752 * position in the tree.
753 */
754 __mem_cgroup_remove_exceeded(mz, mctz);
755 if (!soft_limit_excess(mz->memcg) ||
756 !css_tryget_online(&mz->memcg->css))
757 goto retry;
758 done:
759 return mz;
760 }
761
762 static struct mem_cgroup_per_zone *
763 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
764 {
765 struct mem_cgroup_per_zone *mz;
766
767 spin_lock_irq(&mctz->lock);
768 mz = __mem_cgroup_largest_soft_limit_node(mctz);
769 spin_unlock_irq(&mctz->lock);
770 return mz;
771 }
772
773 /*
774 * Implementation Note: reading percpu statistics for memcg.
775 *
776 * Both of vmstat[] and percpu_counter has threshold and do periodic
777 * synchronization to implement "quick" read. There are trade-off between
778 * reading cost and precision of value. Then, we may have a chance to implement
779 * a periodic synchronizion of counter in memcg's counter.
780 *
781 * But this _read() function is used for user interface now. The user accounts
782 * memory usage by memory cgroup and he _always_ requires exact value because
783 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
784 * have to visit all online cpus and make sum. So, for now, unnecessary
785 * synchronization is not implemented. (just implemented for cpu hotplug)
786 *
787 * If there are kernel internal actions which can make use of some not-exact
788 * value, and reading all cpu value can be performance bottleneck in some
789 * common workload, threashold and synchonization as vmstat[] should be
790 * implemented.
791 */
792 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
793 enum mem_cgroup_stat_index idx)
794 {
795 long val = 0;
796 int cpu;
797
798 get_online_cpus();
799 for_each_online_cpu(cpu)
800 val += per_cpu(memcg->stat->count[idx], cpu);
801 #ifdef CONFIG_HOTPLUG_CPU
802 spin_lock(&memcg->pcp_counter_lock);
803 val += memcg->nocpu_base.count[idx];
804 spin_unlock(&memcg->pcp_counter_lock);
805 #endif
806 put_online_cpus();
807 return val;
808 }
809
810 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
811 enum mem_cgroup_events_index idx)
812 {
813 unsigned long val = 0;
814 int cpu;
815
816 get_online_cpus();
817 for_each_online_cpu(cpu)
818 val += per_cpu(memcg->stat->events[idx], cpu);
819 #ifdef CONFIG_HOTPLUG_CPU
820 spin_lock(&memcg->pcp_counter_lock);
821 val += memcg->nocpu_base.events[idx];
822 spin_unlock(&memcg->pcp_counter_lock);
823 #endif
824 put_online_cpus();
825 return val;
826 }
827
828 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
829 struct page *page,
830 int nr_pages)
831 {
832 /*
833 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
834 * counted as CACHE even if it's on ANON LRU.
835 */
836 if (PageAnon(page))
837 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
838 nr_pages);
839 else
840 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
841 nr_pages);
842
843 if (PageTransHuge(page))
844 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
845 nr_pages);
846
847 /* pagein of a big page is an event. So, ignore page size */
848 if (nr_pages > 0)
849 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
850 else {
851 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
852 nr_pages = -nr_pages; /* for event */
853 }
854
855 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
856 }
857
858 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
859 {
860 struct mem_cgroup_per_zone *mz;
861
862 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
863 return mz->lru_size[lru];
864 }
865
866 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
867 int nid,
868 unsigned int lru_mask)
869 {
870 unsigned long nr = 0;
871 int zid;
872
873 VM_BUG_ON((unsigned)nid >= nr_node_ids);
874
875 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
876 struct mem_cgroup_per_zone *mz;
877 enum lru_list lru;
878
879 for_each_lru(lru) {
880 if (!(BIT(lru) & lru_mask))
881 continue;
882 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
883 nr += mz->lru_size[lru];
884 }
885 }
886 return nr;
887 }
888
889 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
890 unsigned int lru_mask)
891 {
892 unsigned long nr = 0;
893 int nid;
894
895 for_each_node_state(nid, N_MEMORY)
896 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
897 return nr;
898 }
899
900 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
901 enum mem_cgroup_events_target target)
902 {
903 unsigned long val, next;
904
905 val = __this_cpu_read(memcg->stat->nr_page_events);
906 next = __this_cpu_read(memcg->stat->targets[target]);
907 /* from time_after() in jiffies.h */
908 if ((long)next - (long)val < 0) {
909 switch (target) {
910 case MEM_CGROUP_TARGET_THRESH:
911 next = val + THRESHOLDS_EVENTS_TARGET;
912 break;
913 case MEM_CGROUP_TARGET_SOFTLIMIT:
914 next = val + SOFTLIMIT_EVENTS_TARGET;
915 break;
916 case MEM_CGROUP_TARGET_NUMAINFO:
917 next = val + NUMAINFO_EVENTS_TARGET;
918 break;
919 default:
920 break;
921 }
922 __this_cpu_write(memcg->stat->targets[target], next);
923 return true;
924 }
925 return false;
926 }
927
928 /*
929 * Check events in order.
930 *
931 */
932 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
933 {
934 /* threshold event is triggered in finer grain than soft limit */
935 if (unlikely(mem_cgroup_event_ratelimit(memcg,
936 MEM_CGROUP_TARGET_THRESH))) {
937 bool do_softlimit;
938 bool do_numainfo __maybe_unused;
939
940 do_softlimit = mem_cgroup_event_ratelimit(memcg,
941 MEM_CGROUP_TARGET_SOFTLIMIT);
942 #if MAX_NUMNODES > 1
943 do_numainfo = mem_cgroup_event_ratelimit(memcg,
944 MEM_CGROUP_TARGET_NUMAINFO);
945 #endif
946 mem_cgroup_threshold(memcg);
947 if (unlikely(do_softlimit))
948 mem_cgroup_update_tree(memcg, page);
949 #if MAX_NUMNODES > 1
950 if (unlikely(do_numainfo))
951 atomic_inc(&memcg->numainfo_events);
952 #endif
953 }
954 }
955
956 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
957 {
958 /*
959 * mm_update_next_owner() may clear mm->owner to NULL
960 * if it races with swapoff, page migration, etc.
961 * So this can be called with p == NULL.
962 */
963 if (unlikely(!p))
964 return NULL;
965
966 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
967 }
968
969 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
970 {
971 struct mem_cgroup *memcg = NULL;
972
973 rcu_read_lock();
974 do {
975 /*
976 * Page cache insertions can happen withou an
977 * actual mm context, e.g. during disk probing
978 * on boot, loopback IO, acct() writes etc.
979 */
980 if (unlikely(!mm))
981 memcg = root_mem_cgroup;
982 else {
983 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
984 if (unlikely(!memcg))
985 memcg = root_mem_cgroup;
986 }
987 } while (!css_tryget_online(&memcg->css));
988 rcu_read_unlock();
989 return memcg;
990 }
991
992 /**
993 * mem_cgroup_iter - iterate over memory cgroup hierarchy
994 * @root: hierarchy root
995 * @prev: previously returned memcg, NULL on first invocation
996 * @reclaim: cookie for shared reclaim walks, NULL for full walks
997 *
998 * Returns references to children of the hierarchy below @root, or
999 * @root itself, or %NULL after a full round-trip.
1000 *
1001 * Caller must pass the return value in @prev on subsequent
1002 * invocations for reference counting, or use mem_cgroup_iter_break()
1003 * to cancel a hierarchy walk before the round-trip is complete.
1004 *
1005 * Reclaimers can specify a zone and a priority level in @reclaim to
1006 * divide up the memcgs in the hierarchy among all concurrent
1007 * reclaimers operating on the same zone and priority.
1008 */
1009 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1010 struct mem_cgroup *prev,
1011 struct mem_cgroup_reclaim_cookie *reclaim)
1012 {
1013 struct reclaim_iter *uninitialized_var(iter);
1014 struct cgroup_subsys_state *css = NULL;
1015 struct mem_cgroup *memcg = NULL;
1016 struct mem_cgroup *pos = NULL;
1017
1018 if (mem_cgroup_disabled())
1019 return NULL;
1020
1021 if (!root)
1022 root = root_mem_cgroup;
1023
1024 if (prev && !reclaim)
1025 pos = prev;
1026
1027 if (!root->use_hierarchy && root != root_mem_cgroup) {
1028 if (prev)
1029 goto out;
1030 return root;
1031 }
1032
1033 rcu_read_lock();
1034
1035 if (reclaim) {
1036 struct mem_cgroup_per_zone *mz;
1037
1038 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1039 iter = &mz->iter[reclaim->priority];
1040
1041 if (prev && reclaim->generation != iter->generation)
1042 goto out_unlock;
1043
1044 do {
1045 pos = READ_ONCE(iter->position);
1046 /*
1047 * A racing update may change the position and
1048 * put the last reference, hence css_tryget(),
1049 * or retry to see the updated position.
1050 */
1051 } while (pos && !css_tryget(&pos->css));
1052 }
1053
1054 if (pos)
1055 css = &pos->css;
1056
1057 for (;;) {
1058 css = css_next_descendant_pre(css, &root->css);
1059 if (!css) {
1060 /*
1061 * Reclaimers share the hierarchy walk, and a
1062 * new one might jump in right at the end of
1063 * the hierarchy - make sure they see at least
1064 * one group and restart from the beginning.
1065 */
1066 if (!prev)
1067 continue;
1068 break;
1069 }
1070
1071 /*
1072 * Verify the css and acquire a reference. The root
1073 * is provided by the caller, so we know it's alive
1074 * and kicking, and don't take an extra reference.
1075 */
1076 memcg = mem_cgroup_from_css(css);
1077
1078 if (css == &root->css)
1079 break;
1080
1081 if (css_tryget(css)) {
1082 /*
1083 * Make sure the memcg is initialized:
1084 * mem_cgroup_css_online() orders the the
1085 * initialization against setting the flag.
1086 */
1087 if (smp_load_acquire(&memcg->initialized))
1088 break;
1089
1090 css_put(css);
1091 }
1092
1093 memcg = NULL;
1094 }
1095
1096 if (reclaim) {
1097 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1098 if (memcg)
1099 css_get(&memcg->css);
1100 if (pos)
1101 css_put(&pos->css);
1102 }
1103
1104 /*
1105 * pairs with css_tryget when dereferencing iter->position
1106 * above.
1107 */
1108 if (pos)
1109 css_put(&pos->css);
1110
1111 if (!memcg)
1112 iter->generation++;
1113 else if (!prev)
1114 reclaim->generation = iter->generation;
1115 }
1116
1117 out_unlock:
1118 rcu_read_unlock();
1119 out:
1120 if (prev && prev != root)
1121 css_put(&prev->css);
1122
1123 return memcg;
1124 }
1125
1126 /**
1127 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1128 * @root: hierarchy root
1129 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1130 */
1131 void mem_cgroup_iter_break(struct mem_cgroup *root,
1132 struct mem_cgroup *prev)
1133 {
1134 if (!root)
1135 root = root_mem_cgroup;
1136 if (prev && prev != root)
1137 css_put(&prev->css);
1138 }
1139
1140 /*
1141 * Iteration constructs for visiting all cgroups (under a tree). If
1142 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1143 * be used for reference counting.
1144 */
1145 #define for_each_mem_cgroup_tree(iter, root) \
1146 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1147 iter != NULL; \
1148 iter = mem_cgroup_iter(root, iter, NULL))
1149
1150 #define for_each_mem_cgroup(iter) \
1151 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1152 iter != NULL; \
1153 iter = mem_cgroup_iter(NULL, iter, NULL))
1154
1155 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1156 {
1157 struct mem_cgroup *memcg;
1158
1159 rcu_read_lock();
1160 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1161 if (unlikely(!memcg))
1162 goto out;
1163
1164 switch (idx) {
1165 case PGFAULT:
1166 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1167 break;
1168 case PGMAJFAULT:
1169 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1170 break;
1171 default:
1172 BUG();
1173 }
1174 out:
1175 rcu_read_unlock();
1176 }
1177 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1178
1179 /**
1180 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1181 * @zone: zone of the wanted lruvec
1182 * @memcg: memcg of the wanted lruvec
1183 *
1184 * Returns the lru list vector holding pages for the given @zone and
1185 * @mem. This can be the global zone lruvec, if the memory controller
1186 * is disabled.
1187 */
1188 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1189 struct mem_cgroup *memcg)
1190 {
1191 struct mem_cgroup_per_zone *mz;
1192 struct lruvec *lruvec;
1193
1194 if (mem_cgroup_disabled()) {
1195 lruvec = &zone->lruvec;
1196 goto out;
1197 }
1198
1199 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1200 lruvec = &mz->lruvec;
1201 out:
1202 /*
1203 * Since a node can be onlined after the mem_cgroup was created,
1204 * we have to be prepared to initialize lruvec->zone here;
1205 * and if offlined then reonlined, we need to reinitialize it.
1206 */
1207 if (unlikely(lruvec->zone != zone))
1208 lruvec->zone = zone;
1209 return lruvec;
1210 }
1211
1212 /**
1213 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1214 * @page: the page
1215 * @zone: zone of the page
1216 *
1217 * This function is only safe when following the LRU page isolation
1218 * and putback protocol: the LRU lock must be held, and the page must
1219 * either be PageLRU() or the caller must have isolated/allocated it.
1220 */
1221 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1222 {
1223 struct mem_cgroup_per_zone *mz;
1224 struct mem_cgroup *memcg;
1225 struct lruvec *lruvec;
1226
1227 if (mem_cgroup_disabled()) {
1228 lruvec = &zone->lruvec;
1229 goto out;
1230 }
1231
1232 memcg = page->mem_cgroup;
1233 /*
1234 * Swapcache readahead pages are added to the LRU - and
1235 * possibly migrated - before they are charged.
1236 */
1237 if (!memcg)
1238 memcg = root_mem_cgroup;
1239
1240 mz = mem_cgroup_page_zoneinfo(memcg, page);
1241 lruvec = &mz->lruvec;
1242 out:
1243 /*
1244 * Since a node can be onlined after the mem_cgroup was created,
1245 * we have to be prepared to initialize lruvec->zone here;
1246 * and if offlined then reonlined, we need to reinitialize it.
1247 */
1248 if (unlikely(lruvec->zone != zone))
1249 lruvec->zone = zone;
1250 return lruvec;
1251 }
1252
1253 /**
1254 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1255 * @lruvec: mem_cgroup per zone lru vector
1256 * @lru: index of lru list the page is sitting on
1257 * @nr_pages: positive when adding or negative when removing
1258 *
1259 * This function must be called when a page is added to or removed from an
1260 * lru list.
1261 */
1262 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1263 int nr_pages)
1264 {
1265 struct mem_cgroup_per_zone *mz;
1266 unsigned long *lru_size;
1267
1268 if (mem_cgroup_disabled())
1269 return;
1270
1271 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1272 lru_size = mz->lru_size + lru;
1273 *lru_size += nr_pages;
1274 VM_BUG_ON((long)(*lru_size) < 0);
1275 }
1276
1277 bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1278 {
1279 if (root == memcg)
1280 return true;
1281 if (!root->use_hierarchy)
1282 return false;
1283 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1284 }
1285
1286 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1287 {
1288 struct mem_cgroup *task_memcg;
1289 struct task_struct *p;
1290 bool ret;
1291
1292 p = find_lock_task_mm(task);
1293 if (p) {
1294 task_memcg = get_mem_cgroup_from_mm(p->mm);
1295 task_unlock(p);
1296 } else {
1297 /*
1298 * All threads may have already detached their mm's, but the oom
1299 * killer still needs to detect if they have already been oom
1300 * killed to prevent needlessly killing additional tasks.
1301 */
1302 rcu_read_lock();
1303 task_memcg = mem_cgroup_from_task(task);
1304 css_get(&task_memcg->css);
1305 rcu_read_unlock();
1306 }
1307 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1308 css_put(&task_memcg->css);
1309 return ret;
1310 }
1311
1312 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1313 {
1314 unsigned long inactive_ratio;
1315 unsigned long inactive;
1316 unsigned long active;
1317 unsigned long gb;
1318
1319 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1320 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1321
1322 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1323 if (gb)
1324 inactive_ratio = int_sqrt(10 * gb);
1325 else
1326 inactive_ratio = 1;
1327
1328 return inactive * inactive_ratio < active;
1329 }
1330
1331 bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
1332 {
1333 struct mem_cgroup_per_zone *mz;
1334 struct mem_cgroup *memcg;
1335
1336 if (mem_cgroup_disabled())
1337 return true;
1338
1339 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1340 memcg = mz->memcg;
1341
1342 return !!(memcg->css.flags & CSS_ONLINE);
1343 }
1344
1345 #define mem_cgroup_from_counter(counter, member) \
1346 container_of(counter, struct mem_cgroup, member)
1347
1348 /**
1349 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1350 * @memcg: the memory cgroup
1351 *
1352 * Returns the maximum amount of memory @mem can be charged with, in
1353 * pages.
1354 */
1355 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1356 {
1357 unsigned long margin = 0;
1358 unsigned long count;
1359 unsigned long limit;
1360
1361 count = page_counter_read(&memcg->memory);
1362 limit = READ_ONCE(memcg->memory.limit);
1363 if (count < limit)
1364 margin = limit - count;
1365
1366 if (do_swap_account) {
1367 count = page_counter_read(&memcg->memsw);
1368 limit = READ_ONCE(memcg->memsw.limit);
1369 if (count <= limit)
1370 margin = min(margin, limit - count);
1371 }
1372
1373 return margin;
1374 }
1375
1376 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1377 {
1378 /* root ? */
1379 if (mem_cgroup_disabled() || !memcg->css.parent)
1380 return vm_swappiness;
1381
1382 return memcg->swappiness;
1383 }
1384
1385 /*
1386 * A routine for checking "mem" is under move_account() or not.
1387 *
1388 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1389 * moving cgroups. This is for waiting at high-memory pressure
1390 * caused by "move".
1391 */
1392 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1393 {
1394 struct mem_cgroup *from;
1395 struct mem_cgroup *to;
1396 bool ret = false;
1397 /*
1398 * Unlike task_move routines, we access mc.to, mc.from not under
1399 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1400 */
1401 spin_lock(&mc.lock);
1402 from = mc.from;
1403 to = mc.to;
1404 if (!from)
1405 goto unlock;
1406
1407 ret = mem_cgroup_is_descendant(from, memcg) ||
1408 mem_cgroup_is_descendant(to, memcg);
1409 unlock:
1410 spin_unlock(&mc.lock);
1411 return ret;
1412 }
1413
1414 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1415 {
1416 if (mc.moving_task && current != mc.moving_task) {
1417 if (mem_cgroup_under_move(memcg)) {
1418 DEFINE_WAIT(wait);
1419 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1420 /* moving charge context might have finished. */
1421 if (mc.moving_task)
1422 schedule();
1423 finish_wait(&mc.waitq, &wait);
1424 return true;
1425 }
1426 }
1427 return false;
1428 }
1429
1430 #define K(x) ((x) << (PAGE_SHIFT-10))
1431 /**
1432 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1433 * @memcg: The memory cgroup that went over limit
1434 * @p: Task that is going to be killed
1435 *
1436 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1437 * enabled
1438 */
1439 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1440 {
1441 /* oom_info_lock ensures that parallel ooms do not interleave */
1442 static DEFINE_MUTEX(oom_info_lock);
1443 struct mem_cgroup *iter;
1444 unsigned int i;
1445
1446 mutex_lock(&oom_info_lock);
1447 rcu_read_lock();
1448
1449 if (p) {
1450 pr_info("Task in ");
1451 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1452 pr_cont(" killed as a result of limit of ");
1453 } else {
1454 pr_info("Memory limit reached of cgroup ");
1455 }
1456
1457 pr_cont_cgroup_path(memcg->css.cgroup);
1458 pr_cont("\n");
1459
1460 rcu_read_unlock();
1461
1462 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1463 K((u64)page_counter_read(&memcg->memory)),
1464 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1465 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1466 K((u64)page_counter_read(&memcg->memsw)),
1467 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1468 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1469 K((u64)page_counter_read(&memcg->kmem)),
1470 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1471
1472 for_each_mem_cgroup_tree(iter, memcg) {
1473 pr_info("Memory cgroup stats for ");
1474 pr_cont_cgroup_path(iter->css.cgroup);
1475 pr_cont(":");
1476
1477 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1478 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1479 continue;
1480 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1481 K(mem_cgroup_read_stat(iter, i)));
1482 }
1483
1484 for (i = 0; i < NR_LRU_LISTS; i++)
1485 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1486 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1487
1488 pr_cont("\n");
1489 }
1490 mutex_unlock(&oom_info_lock);
1491 }
1492
1493 /*
1494 * This function returns the number of memcg under hierarchy tree. Returns
1495 * 1(self count) if no children.
1496 */
1497 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1498 {
1499 int num = 0;
1500 struct mem_cgroup *iter;
1501
1502 for_each_mem_cgroup_tree(iter, memcg)
1503 num++;
1504 return num;
1505 }
1506
1507 /*
1508 * Return the memory (and swap, if configured) limit for a memcg.
1509 */
1510 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1511 {
1512 unsigned long limit;
1513
1514 limit = memcg->memory.limit;
1515 if (mem_cgroup_swappiness(memcg)) {
1516 unsigned long memsw_limit;
1517
1518 memsw_limit = memcg->memsw.limit;
1519 limit = min(limit + total_swap_pages, memsw_limit);
1520 }
1521 return limit;
1522 }
1523
1524 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1525 int order)
1526 {
1527 struct mem_cgroup *iter;
1528 unsigned long chosen_points = 0;
1529 unsigned long totalpages;
1530 unsigned int points = 0;
1531 struct task_struct *chosen = NULL;
1532
1533 mutex_lock(&oom_lock);
1534
1535 /*
1536 * If current has a pending SIGKILL or is exiting, then automatically
1537 * select it. The goal is to allow it to allocate so that it may
1538 * quickly exit and free its memory.
1539 */
1540 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1541 mark_oom_victim(current);
1542 goto unlock;
1543 }
1544
1545 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL, memcg);
1546 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1547 for_each_mem_cgroup_tree(iter, memcg) {
1548 struct css_task_iter it;
1549 struct task_struct *task;
1550
1551 css_task_iter_start(&iter->css, &it);
1552 while ((task = css_task_iter_next(&it))) {
1553 switch (oom_scan_process_thread(task, totalpages, NULL,
1554 false)) {
1555 case OOM_SCAN_SELECT:
1556 if (chosen)
1557 put_task_struct(chosen);
1558 chosen = task;
1559 chosen_points = ULONG_MAX;
1560 get_task_struct(chosen);
1561 /* fall through */
1562 case OOM_SCAN_CONTINUE:
1563 continue;
1564 case OOM_SCAN_ABORT:
1565 css_task_iter_end(&it);
1566 mem_cgroup_iter_break(memcg, iter);
1567 if (chosen)
1568 put_task_struct(chosen);
1569 goto unlock;
1570 case OOM_SCAN_OK:
1571 break;
1572 };
1573 points = oom_badness(task, memcg, NULL, totalpages);
1574 if (!points || points < chosen_points)
1575 continue;
1576 /* Prefer thread group leaders for display purposes */
1577 if (points == chosen_points &&
1578 thread_group_leader(chosen))
1579 continue;
1580
1581 if (chosen)
1582 put_task_struct(chosen);
1583 chosen = task;
1584 chosen_points = points;
1585 get_task_struct(chosen);
1586 }
1587 css_task_iter_end(&it);
1588 }
1589
1590 if (chosen) {
1591 points = chosen_points * 1000 / totalpages;
1592 oom_kill_process(chosen, gfp_mask, order, points, totalpages,
1593 memcg, NULL, "Memory cgroup out of memory");
1594 }
1595 unlock:
1596 mutex_unlock(&oom_lock);
1597 }
1598
1599 #if MAX_NUMNODES > 1
1600
1601 /**
1602 * test_mem_cgroup_node_reclaimable
1603 * @memcg: the target memcg
1604 * @nid: the node ID to be checked.
1605 * @noswap : specify true here if the user wants flle only information.
1606 *
1607 * This function returns whether the specified memcg contains any
1608 * reclaimable pages on a node. Returns true if there are any reclaimable
1609 * pages in the node.
1610 */
1611 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1612 int nid, bool noswap)
1613 {
1614 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1615 return true;
1616 if (noswap || !total_swap_pages)
1617 return false;
1618 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1619 return true;
1620 return false;
1621
1622 }
1623
1624 /*
1625 * Always updating the nodemask is not very good - even if we have an empty
1626 * list or the wrong list here, we can start from some node and traverse all
1627 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1628 *
1629 */
1630 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1631 {
1632 int nid;
1633 /*
1634 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1635 * pagein/pageout changes since the last update.
1636 */
1637 if (!atomic_read(&memcg->numainfo_events))
1638 return;
1639 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1640 return;
1641
1642 /* make a nodemask where this memcg uses memory from */
1643 memcg->scan_nodes = node_states[N_MEMORY];
1644
1645 for_each_node_mask(nid, node_states[N_MEMORY]) {
1646
1647 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1648 node_clear(nid, memcg->scan_nodes);
1649 }
1650
1651 atomic_set(&memcg->numainfo_events, 0);
1652 atomic_set(&memcg->numainfo_updating, 0);
1653 }
1654
1655 /*
1656 * Selecting a node where we start reclaim from. Because what we need is just
1657 * reducing usage counter, start from anywhere is O,K. Considering
1658 * memory reclaim from current node, there are pros. and cons.
1659 *
1660 * Freeing memory from current node means freeing memory from a node which
1661 * we'll use or we've used. So, it may make LRU bad. And if several threads
1662 * hit limits, it will see a contention on a node. But freeing from remote
1663 * node means more costs for memory reclaim because of memory latency.
1664 *
1665 * Now, we use round-robin. Better algorithm is welcomed.
1666 */
1667 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1668 {
1669 int node;
1670
1671 mem_cgroup_may_update_nodemask(memcg);
1672 node = memcg->last_scanned_node;
1673
1674 node = next_node(node, memcg->scan_nodes);
1675 if (node == MAX_NUMNODES)
1676 node = first_node(memcg->scan_nodes);
1677 /*
1678 * We call this when we hit limit, not when pages are added to LRU.
1679 * No LRU may hold pages because all pages are UNEVICTABLE or
1680 * memcg is too small and all pages are not on LRU. In that case,
1681 * we use curret node.
1682 */
1683 if (unlikely(node == MAX_NUMNODES))
1684 node = numa_node_id();
1685
1686 memcg->last_scanned_node = node;
1687 return node;
1688 }
1689 #else
1690 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1691 {
1692 return 0;
1693 }
1694 #endif
1695
1696 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1697 struct zone *zone,
1698 gfp_t gfp_mask,
1699 unsigned long *total_scanned)
1700 {
1701 struct mem_cgroup *victim = NULL;
1702 int total = 0;
1703 int loop = 0;
1704 unsigned long excess;
1705 unsigned long nr_scanned;
1706 struct mem_cgroup_reclaim_cookie reclaim = {
1707 .zone = zone,
1708 .priority = 0,
1709 };
1710
1711 excess = soft_limit_excess(root_memcg);
1712
1713 while (1) {
1714 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1715 if (!victim) {
1716 loop++;
1717 if (loop >= 2) {
1718 /*
1719 * If we have not been able to reclaim
1720 * anything, it might because there are
1721 * no reclaimable pages under this hierarchy
1722 */
1723 if (!total)
1724 break;
1725 /*
1726 * We want to do more targeted reclaim.
1727 * excess >> 2 is not to excessive so as to
1728 * reclaim too much, nor too less that we keep
1729 * coming back to reclaim from this cgroup
1730 */
1731 if (total >= (excess >> 2) ||
1732 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1733 break;
1734 }
1735 continue;
1736 }
1737 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1738 zone, &nr_scanned);
1739 *total_scanned += nr_scanned;
1740 if (!soft_limit_excess(root_memcg))
1741 break;
1742 }
1743 mem_cgroup_iter_break(root_memcg, victim);
1744 return total;
1745 }
1746
1747 #ifdef CONFIG_LOCKDEP
1748 static struct lockdep_map memcg_oom_lock_dep_map = {
1749 .name = "memcg_oom_lock",
1750 };
1751 #endif
1752
1753 static DEFINE_SPINLOCK(memcg_oom_lock);
1754
1755 /*
1756 * Check OOM-Killer is already running under our hierarchy.
1757 * If someone is running, return false.
1758 */
1759 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1760 {
1761 struct mem_cgroup *iter, *failed = NULL;
1762
1763 spin_lock(&memcg_oom_lock);
1764
1765 for_each_mem_cgroup_tree(iter, memcg) {
1766 if (iter->oom_lock) {
1767 /*
1768 * this subtree of our hierarchy is already locked
1769 * so we cannot give a lock.
1770 */
1771 failed = iter;
1772 mem_cgroup_iter_break(memcg, iter);
1773 break;
1774 } else
1775 iter->oom_lock = true;
1776 }
1777
1778 if (failed) {
1779 /*
1780 * OK, we failed to lock the whole subtree so we have
1781 * to clean up what we set up to the failing subtree
1782 */
1783 for_each_mem_cgroup_tree(iter, memcg) {
1784 if (iter == failed) {
1785 mem_cgroup_iter_break(memcg, iter);
1786 break;
1787 }
1788 iter->oom_lock = false;
1789 }
1790 } else
1791 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1792
1793 spin_unlock(&memcg_oom_lock);
1794
1795 return !failed;
1796 }
1797
1798 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1799 {
1800 struct mem_cgroup *iter;
1801
1802 spin_lock(&memcg_oom_lock);
1803 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1804 for_each_mem_cgroup_tree(iter, memcg)
1805 iter->oom_lock = false;
1806 spin_unlock(&memcg_oom_lock);
1807 }
1808
1809 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1810 {
1811 struct mem_cgroup *iter;
1812
1813 for_each_mem_cgroup_tree(iter, memcg)
1814 atomic_inc(&iter->under_oom);
1815 }
1816
1817 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1818 {
1819 struct mem_cgroup *iter;
1820
1821 /*
1822 * When a new child is created while the hierarchy is under oom,
1823 * mem_cgroup_oom_lock() may not be called. We have to use
1824 * atomic_add_unless() here.
1825 */
1826 for_each_mem_cgroup_tree(iter, memcg)
1827 atomic_add_unless(&iter->under_oom, -1, 0);
1828 }
1829
1830 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1831
1832 struct oom_wait_info {
1833 struct mem_cgroup *memcg;
1834 wait_queue_t wait;
1835 };
1836
1837 static int memcg_oom_wake_function(wait_queue_t *wait,
1838 unsigned mode, int sync, void *arg)
1839 {
1840 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1841 struct mem_cgroup *oom_wait_memcg;
1842 struct oom_wait_info *oom_wait_info;
1843
1844 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1845 oom_wait_memcg = oom_wait_info->memcg;
1846
1847 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1848 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1849 return 0;
1850 return autoremove_wake_function(wait, mode, sync, arg);
1851 }
1852
1853 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1854 {
1855 atomic_inc(&memcg->oom_wakeups);
1856 /* for filtering, pass "memcg" as argument. */
1857 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1858 }
1859
1860 static void memcg_oom_recover(struct mem_cgroup *memcg)
1861 {
1862 if (memcg && atomic_read(&memcg->under_oom))
1863 memcg_wakeup_oom(memcg);
1864 }
1865
1866 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1867 {
1868 if (!current->memcg_oom.may_oom)
1869 return;
1870 /*
1871 * We are in the middle of the charge context here, so we
1872 * don't want to block when potentially sitting on a callstack
1873 * that holds all kinds of filesystem and mm locks.
1874 *
1875 * Also, the caller may handle a failed allocation gracefully
1876 * (like optional page cache readahead) and so an OOM killer
1877 * invocation might not even be necessary.
1878 *
1879 * That's why we don't do anything here except remember the
1880 * OOM context and then deal with it at the end of the page
1881 * fault when the stack is unwound, the locks are released,
1882 * and when we know whether the fault was overall successful.
1883 */
1884 css_get(&memcg->css);
1885 current->memcg_oom.memcg = memcg;
1886 current->memcg_oom.gfp_mask = mask;
1887 current->memcg_oom.order = order;
1888 }
1889
1890 /**
1891 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1892 * @handle: actually kill/wait or just clean up the OOM state
1893 *
1894 * This has to be called at the end of a page fault if the memcg OOM
1895 * handler was enabled.
1896 *
1897 * Memcg supports userspace OOM handling where failed allocations must
1898 * sleep on a waitqueue until the userspace task resolves the
1899 * situation. Sleeping directly in the charge context with all kinds
1900 * of locks held is not a good idea, instead we remember an OOM state
1901 * in the task and mem_cgroup_oom_synchronize() has to be called at
1902 * the end of the page fault to complete the OOM handling.
1903 *
1904 * Returns %true if an ongoing memcg OOM situation was detected and
1905 * completed, %false otherwise.
1906 */
1907 bool mem_cgroup_oom_synchronize(bool handle)
1908 {
1909 struct mem_cgroup *memcg = current->memcg_oom.memcg;
1910 struct oom_wait_info owait;
1911 bool locked;
1912
1913 /* OOM is global, do not handle */
1914 if (!memcg)
1915 return false;
1916
1917 if (!handle || oom_killer_disabled)
1918 goto cleanup;
1919
1920 owait.memcg = memcg;
1921 owait.wait.flags = 0;
1922 owait.wait.func = memcg_oom_wake_function;
1923 owait.wait.private = current;
1924 INIT_LIST_HEAD(&owait.wait.task_list);
1925
1926 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1927 mem_cgroup_mark_under_oom(memcg);
1928
1929 locked = mem_cgroup_oom_trylock(memcg);
1930
1931 if (locked)
1932 mem_cgroup_oom_notify(memcg);
1933
1934 if (locked && !memcg->oom_kill_disable) {
1935 mem_cgroup_unmark_under_oom(memcg);
1936 finish_wait(&memcg_oom_waitq, &owait.wait);
1937 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1938 current->memcg_oom.order);
1939 } else {
1940 schedule();
1941 mem_cgroup_unmark_under_oom(memcg);
1942 finish_wait(&memcg_oom_waitq, &owait.wait);
1943 }
1944
1945 if (locked) {
1946 mem_cgroup_oom_unlock(memcg);
1947 /*
1948 * There is no guarantee that an OOM-lock contender
1949 * sees the wakeups triggered by the OOM kill
1950 * uncharges. Wake any sleepers explicitely.
1951 */
1952 memcg_oom_recover(memcg);
1953 }
1954 cleanup:
1955 current->memcg_oom.memcg = NULL;
1956 css_put(&memcg->css);
1957 return true;
1958 }
1959
1960 /**
1961 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1962 * @page: page that is going to change accounted state
1963 *
1964 * This function must mark the beginning of an accounted page state
1965 * change to prevent double accounting when the page is concurrently
1966 * being moved to another memcg:
1967 *
1968 * memcg = mem_cgroup_begin_page_stat(page);
1969 * if (TestClearPageState(page))
1970 * mem_cgroup_update_page_stat(memcg, state, -1);
1971 * mem_cgroup_end_page_stat(memcg);
1972 */
1973 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1974 {
1975 struct mem_cgroup *memcg;
1976 unsigned long flags;
1977
1978 /*
1979 * The RCU lock is held throughout the transaction. The fast
1980 * path can get away without acquiring the memcg->move_lock
1981 * because page moving starts with an RCU grace period.
1982 *
1983 * The RCU lock also protects the memcg from being freed when
1984 * the page state that is going to change is the only thing
1985 * preventing the page from being uncharged.
1986 * E.g. end-writeback clearing PageWriteback(), which allows
1987 * migration to go ahead and uncharge the page before the
1988 * account transaction might be complete.
1989 */
1990 rcu_read_lock();
1991
1992 if (mem_cgroup_disabled())
1993 return NULL;
1994 again:
1995 memcg = page->mem_cgroup;
1996 if (unlikely(!memcg))
1997 return NULL;
1998
1999 if (atomic_read(&memcg->moving_account) <= 0)
2000 return memcg;
2001
2002 spin_lock_irqsave(&memcg->move_lock, flags);
2003 if (memcg != page->mem_cgroup) {
2004 spin_unlock_irqrestore(&memcg->move_lock, flags);
2005 goto again;
2006 }
2007
2008 /*
2009 * When charge migration first begins, we can have locked and
2010 * unlocked page stat updates happening concurrently. Track
2011 * the task who has the lock for mem_cgroup_end_page_stat().
2012 */
2013 memcg->move_lock_task = current;
2014 memcg->move_lock_flags = flags;
2015
2016 return memcg;
2017 }
2018
2019 /**
2020 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2021 * @memcg: the memcg that was accounted against
2022 */
2023 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
2024 {
2025 if (memcg && memcg->move_lock_task == current) {
2026 unsigned long flags = memcg->move_lock_flags;
2027
2028 memcg->move_lock_task = NULL;
2029 memcg->move_lock_flags = 0;
2030
2031 spin_unlock_irqrestore(&memcg->move_lock, flags);
2032 }
2033
2034 rcu_read_unlock();
2035 }
2036
2037 /**
2038 * mem_cgroup_update_page_stat - update page state statistics
2039 * @memcg: memcg to account against
2040 * @idx: page state item to account
2041 * @val: number of pages (positive or negative)
2042 *
2043 * See mem_cgroup_begin_page_stat() for locking requirements.
2044 */
2045 void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
2046 enum mem_cgroup_stat_index idx, int val)
2047 {
2048 VM_BUG_ON(!rcu_read_lock_held());
2049
2050 if (memcg)
2051 this_cpu_add(memcg->stat->count[idx], val);
2052 }
2053
2054 /*
2055 * size of first charge trial. "32" comes from vmscan.c's magic value.
2056 * TODO: maybe necessary to use big numbers in big irons.
2057 */
2058 #define CHARGE_BATCH 32U
2059 struct memcg_stock_pcp {
2060 struct mem_cgroup *cached; /* this never be root cgroup */
2061 unsigned int nr_pages;
2062 struct work_struct work;
2063 unsigned long flags;
2064 #define FLUSHING_CACHED_CHARGE 0
2065 };
2066 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2067 static DEFINE_MUTEX(percpu_charge_mutex);
2068
2069 /**
2070 * consume_stock: Try to consume stocked charge on this cpu.
2071 * @memcg: memcg to consume from.
2072 * @nr_pages: how many pages to charge.
2073 *
2074 * The charges will only happen if @memcg matches the current cpu's memcg
2075 * stock, and at least @nr_pages are available in that stock. Failure to
2076 * service an allocation will refill the stock.
2077 *
2078 * returns true if successful, false otherwise.
2079 */
2080 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2081 {
2082 struct memcg_stock_pcp *stock;
2083 bool ret = false;
2084
2085 if (nr_pages > CHARGE_BATCH)
2086 return ret;
2087
2088 stock = &get_cpu_var(memcg_stock);
2089 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2090 stock->nr_pages -= nr_pages;
2091 ret = true;
2092 }
2093 put_cpu_var(memcg_stock);
2094 return ret;
2095 }
2096
2097 /*
2098 * Returns stocks cached in percpu and reset cached information.
2099 */
2100 static void drain_stock(struct memcg_stock_pcp *stock)
2101 {
2102 struct mem_cgroup *old = stock->cached;
2103
2104 if (stock->nr_pages) {
2105 page_counter_uncharge(&old->memory, stock->nr_pages);
2106 if (do_swap_account)
2107 page_counter_uncharge(&old->memsw, stock->nr_pages);
2108 css_put_many(&old->css, stock->nr_pages);
2109 stock->nr_pages = 0;
2110 }
2111 stock->cached = NULL;
2112 }
2113
2114 /*
2115 * This must be called under preempt disabled or must be called by
2116 * a thread which is pinned to local cpu.
2117 */
2118 static void drain_local_stock(struct work_struct *dummy)
2119 {
2120 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2121 drain_stock(stock);
2122 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2123 }
2124
2125 /*
2126 * Cache charges(val) to local per_cpu area.
2127 * This will be consumed by consume_stock() function, later.
2128 */
2129 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2130 {
2131 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2132
2133 if (stock->cached != memcg) { /* reset if necessary */
2134 drain_stock(stock);
2135 stock->cached = memcg;
2136 }
2137 stock->nr_pages += nr_pages;
2138 put_cpu_var(memcg_stock);
2139 }
2140
2141 /*
2142 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2143 * of the hierarchy under it.
2144 */
2145 static void drain_all_stock(struct mem_cgroup *root_memcg)
2146 {
2147 int cpu, curcpu;
2148
2149 /* If someone's already draining, avoid adding running more workers. */
2150 if (!mutex_trylock(&percpu_charge_mutex))
2151 return;
2152 /* Notify other cpus that system-wide "drain" is running */
2153 get_online_cpus();
2154 curcpu = get_cpu();
2155 for_each_online_cpu(cpu) {
2156 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2157 struct mem_cgroup *memcg;
2158
2159 memcg = stock->cached;
2160 if (!memcg || !stock->nr_pages)
2161 continue;
2162 if (!mem_cgroup_is_descendant(memcg, root_memcg))
2163 continue;
2164 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2165 if (cpu == curcpu)
2166 drain_local_stock(&stock->work);
2167 else
2168 schedule_work_on(cpu, &stock->work);
2169 }
2170 }
2171 put_cpu();
2172 put_online_cpus();
2173 mutex_unlock(&percpu_charge_mutex);
2174 }
2175
2176 /*
2177 * This function drains percpu counter value from DEAD cpu and
2178 * move it to local cpu. Note that this function can be preempted.
2179 */
2180 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2181 {
2182 int i;
2183
2184 spin_lock(&memcg->pcp_counter_lock);
2185 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2186 long x = per_cpu(memcg->stat->count[i], cpu);
2187
2188 per_cpu(memcg->stat->count[i], cpu) = 0;
2189 memcg->nocpu_base.count[i] += x;
2190 }
2191 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2192 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2193
2194 per_cpu(memcg->stat->events[i], cpu) = 0;
2195 memcg->nocpu_base.events[i] += x;
2196 }
2197 spin_unlock(&memcg->pcp_counter_lock);
2198 }
2199
2200 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2201 unsigned long action,
2202 void *hcpu)
2203 {
2204 int cpu = (unsigned long)hcpu;
2205 struct memcg_stock_pcp *stock;
2206 struct mem_cgroup *iter;
2207
2208 if (action == CPU_ONLINE)
2209 return NOTIFY_OK;
2210
2211 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2212 return NOTIFY_OK;
2213
2214 for_each_mem_cgroup(iter)
2215 mem_cgroup_drain_pcp_counter(iter, cpu);
2216
2217 stock = &per_cpu(memcg_stock, cpu);
2218 drain_stock(stock);
2219 return NOTIFY_OK;
2220 }
2221
2222 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2223 unsigned int nr_pages)
2224 {
2225 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2226 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2227 struct mem_cgroup *mem_over_limit;
2228 struct page_counter *counter;
2229 unsigned long nr_reclaimed;
2230 bool may_swap = true;
2231 bool drained = false;
2232 int ret = 0;
2233
2234 if (mem_cgroup_is_root(memcg))
2235 goto done;
2236 retry:
2237 if (consume_stock(memcg, nr_pages))
2238 goto done;
2239
2240 if (!do_swap_account ||
2241 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2242 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2243 goto done_restock;
2244 if (do_swap_account)
2245 page_counter_uncharge(&memcg->memsw, batch);
2246 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2247 } else {
2248 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2249 may_swap = false;
2250 }
2251
2252 if (batch > nr_pages) {
2253 batch = nr_pages;
2254 goto retry;
2255 }
2256
2257 /*
2258 * Unlike in global OOM situations, memcg is not in a physical
2259 * memory shortage. Allow dying and OOM-killed tasks to
2260 * bypass the last charges so that they can exit quickly and
2261 * free their memory.
2262 */
2263 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2264 fatal_signal_pending(current) ||
2265 current->flags & PF_EXITING))
2266 goto bypass;
2267
2268 if (unlikely(task_in_memcg_oom(current)))
2269 goto nomem;
2270
2271 if (!(gfp_mask & __GFP_WAIT))
2272 goto nomem;
2273
2274 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2275
2276 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2277 gfp_mask, may_swap);
2278
2279 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2280 goto retry;
2281
2282 if (!drained) {
2283 drain_all_stock(mem_over_limit);
2284 drained = true;
2285 goto retry;
2286 }
2287
2288 if (gfp_mask & __GFP_NORETRY)
2289 goto nomem;
2290 /*
2291 * Even though the limit is exceeded at this point, reclaim
2292 * may have been able to free some pages. Retry the charge
2293 * before killing the task.
2294 *
2295 * Only for regular pages, though: huge pages are rather
2296 * unlikely to succeed so close to the limit, and we fall back
2297 * to regular pages anyway in case of failure.
2298 */
2299 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2300 goto retry;
2301 /*
2302 * At task move, charge accounts can be doubly counted. So, it's
2303 * better to wait until the end of task_move if something is going on.
2304 */
2305 if (mem_cgroup_wait_acct_move(mem_over_limit))
2306 goto retry;
2307
2308 if (nr_retries--)
2309 goto retry;
2310
2311 if (gfp_mask & __GFP_NOFAIL)
2312 goto bypass;
2313
2314 if (fatal_signal_pending(current))
2315 goto bypass;
2316
2317 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2318
2319 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2320 nomem:
2321 if (!(gfp_mask & __GFP_NOFAIL))
2322 return -ENOMEM;
2323 bypass:
2324 return -EINTR;
2325
2326 done_restock:
2327 css_get_many(&memcg->css, batch);
2328 if (batch > nr_pages)
2329 refill_stock(memcg, batch - nr_pages);
2330 if (!(gfp_mask & __GFP_WAIT))
2331 goto done;
2332 /*
2333 * If the hierarchy is above the normal consumption range,
2334 * make the charging task trim their excess contribution.
2335 */
2336 do {
2337 if (page_counter_read(&memcg->memory) <= memcg->high)
2338 continue;
2339 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
2340 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2341 } while ((memcg = parent_mem_cgroup(memcg)));
2342 done:
2343 return ret;
2344 }
2345
2346 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2347 {
2348 if (mem_cgroup_is_root(memcg))
2349 return;
2350
2351 page_counter_uncharge(&memcg->memory, nr_pages);
2352 if (do_swap_account)
2353 page_counter_uncharge(&memcg->memsw, nr_pages);
2354
2355 css_put_many(&memcg->css, nr_pages);
2356 }
2357
2358 /*
2359 * try_get_mem_cgroup_from_page - look up page's memcg association
2360 * @page: the page
2361 *
2362 * Look up, get a css reference, and return the memcg that owns @page.
2363 *
2364 * The page must be locked to prevent racing with swap-in and page
2365 * cache charges. If coming from an unlocked page table, the caller
2366 * must ensure the page is on the LRU or this can race with charging.
2367 */
2368 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2369 {
2370 struct mem_cgroup *memcg;
2371 unsigned short id;
2372 swp_entry_t ent;
2373
2374 VM_BUG_ON_PAGE(!PageLocked(page), page);
2375
2376 memcg = page->mem_cgroup;
2377 if (memcg) {
2378 if (!css_tryget_online(&memcg->css))
2379 memcg = NULL;
2380 } else if (PageSwapCache(page)) {
2381 ent.val = page_private(page);
2382 id = lookup_swap_cgroup_id(ent);
2383 rcu_read_lock();
2384 memcg = mem_cgroup_from_id(id);
2385 if (memcg && !css_tryget_online(&memcg->css))
2386 memcg = NULL;
2387 rcu_read_unlock();
2388 }
2389 return memcg;
2390 }
2391
2392 static void lock_page_lru(struct page *page, int *isolated)
2393 {
2394 struct zone *zone = page_zone(page);
2395
2396 spin_lock_irq(&zone->lru_lock);
2397 if (PageLRU(page)) {
2398 struct lruvec *lruvec;
2399
2400 lruvec = mem_cgroup_page_lruvec(page, zone);
2401 ClearPageLRU(page);
2402 del_page_from_lru_list(page, lruvec, page_lru(page));
2403 *isolated = 1;
2404 } else
2405 *isolated = 0;
2406 }
2407
2408 static void unlock_page_lru(struct page *page, int isolated)
2409 {
2410 struct zone *zone = page_zone(page);
2411
2412 if (isolated) {
2413 struct lruvec *lruvec;
2414
2415 lruvec = mem_cgroup_page_lruvec(page, zone);
2416 VM_BUG_ON_PAGE(PageLRU(page), page);
2417 SetPageLRU(page);
2418 add_page_to_lru_list(page, lruvec, page_lru(page));
2419 }
2420 spin_unlock_irq(&zone->lru_lock);
2421 }
2422
2423 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2424 bool lrucare)
2425 {
2426 int isolated;
2427
2428 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2429
2430 /*
2431 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2432 * may already be on some other mem_cgroup's LRU. Take care of it.
2433 */
2434 if (lrucare)
2435 lock_page_lru(page, &isolated);
2436
2437 /*
2438 * Nobody should be changing or seriously looking at
2439 * page->mem_cgroup at this point:
2440 *
2441 * - the page is uncharged
2442 *
2443 * - the page is off-LRU
2444 *
2445 * - an anonymous fault has exclusive page access, except for
2446 * a locked page table
2447 *
2448 * - a page cache insertion, a swapin fault, or a migration
2449 * have the page locked
2450 */
2451 page->mem_cgroup = memcg;
2452
2453 if (lrucare)
2454 unlock_page_lru(page, isolated);
2455 }
2456
2457 #ifdef CONFIG_MEMCG_KMEM
2458 int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2459 unsigned long nr_pages)
2460 {
2461 struct page_counter *counter;
2462 int ret = 0;
2463
2464 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2465 if (ret < 0)
2466 return ret;
2467
2468 ret = try_charge(memcg, gfp, nr_pages);
2469 if (ret == -EINTR) {
2470 /*
2471 * try_charge() chose to bypass to root due to OOM kill or
2472 * fatal signal. Since our only options are to either fail
2473 * the allocation or charge it to this cgroup, do it as a
2474 * temporary condition. But we can't fail. From a kmem/slab
2475 * perspective, the cache has already been selected, by
2476 * mem_cgroup_kmem_get_cache(), so it is too late to change
2477 * our minds.
2478 *
2479 * This condition will only trigger if the task entered
2480 * memcg_charge_kmem in a sane state, but was OOM-killed
2481 * during try_charge() above. Tasks that were already dying
2482 * when the allocation triggers should have been already
2483 * directed to the root cgroup in memcontrol.h
2484 */
2485 page_counter_charge(&memcg->memory, nr_pages);
2486 if (do_swap_account)
2487 page_counter_charge(&memcg->memsw, nr_pages);
2488 css_get_many(&memcg->css, nr_pages);
2489 ret = 0;
2490 } else if (ret)
2491 page_counter_uncharge(&memcg->kmem, nr_pages);
2492
2493 return ret;
2494 }
2495
2496 void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2497 {
2498 page_counter_uncharge(&memcg->memory, nr_pages);
2499 if (do_swap_account)
2500 page_counter_uncharge(&memcg->memsw, nr_pages);
2501
2502 page_counter_uncharge(&memcg->kmem, nr_pages);
2503
2504 css_put_many(&memcg->css, nr_pages);
2505 }
2506
2507 /*
2508 * helper for acessing a memcg's index. It will be used as an index in the
2509 * child cache array in kmem_cache, and also to derive its name. This function
2510 * will return -1 when this is not a kmem-limited memcg.
2511 */
2512 int memcg_cache_id(struct mem_cgroup *memcg)
2513 {
2514 return memcg ? memcg->kmemcg_id : -1;
2515 }
2516
2517 static int memcg_alloc_cache_id(void)
2518 {
2519 int id, size;
2520 int err;
2521
2522 id = ida_simple_get(&memcg_cache_ida,
2523 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2524 if (id < 0)
2525 return id;
2526
2527 if (id < memcg_nr_cache_ids)
2528 return id;
2529
2530 /*
2531 * There's no space for the new id in memcg_caches arrays,
2532 * so we have to grow them.
2533 */
2534 down_write(&memcg_cache_ids_sem);
2535
2536 size = 2 * (id + 1);
2537 if (size < MEMCG_CACHES_MIN_SIZE)
2538 size = MEMCG_CACHES_MIN_SIZE;
2539 else if (size > MEMCG_CACHES_MAX_SIZE)
2540 size = MEMCG_CACHES_MAX_SIZE;
2541
2542 err = memcg_update_all_caches(size);
2543 if (!err)
2544 err = memcg_update_all_list_lrus(size);
2545 if (!err)
2546 memcg_nr_cache_ids = size;
2547
2548 up_write(&memcg_cache_ids_sem);
2549
2550 if (err) {
2551 ida_simple_remove(&memcg_cache_ida, id);
2552 return err;
2553 }
2554 return id;
2555 }
2556
2557 static void memcg_free_cache_id(int id)
2558 {
2559 ida_simple_remove(&memcg_cache_ida, id);
2560 }
2561
2562 struct memcg_kmem_cache_create_work {
2563 struct mem_cgroup *memcg;
2564 struct kmem_cache *cachep;
2565 struct work_struct work;
2566 };
2567
2568 static void memcg_kmem_cache_create_func(struct work_struct *w)
2569 {
2570 struct memcg_kmem_cache_create_work *cw =
2571 container_of(w, struct memcg_kmem_cache_create_work, work);
2572 struct mem_cgroup *memcg = cw->memcg;
2573 struct kmem_cache *cachep = cw->cachep;
2574
2575 memcg_create_kmem_cache(memcg, cachep);
2576
2577 css_put(&memcg->css);
2578 kfree(cw);
2579 }
2580
2581 /*
2582 * Enqueue the creation of a per-memcg kmem_cache.
2583 */
2584 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2585 struct kmem_cache *cachep)
2586 {
2587 struct memcg_kmem_cache_create_work *cw;
2588
2589 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2590 if (!cw)
2591 return;
2592
2593 css_get(&memcg->css);
2594
2595 cw->memcg = memcg;
2596 cw->cachep = cachep;
2597 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2598
2599 schedule_work(&cw->work);
2600 }
2601
2602 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2603 struct kmem_cache *cachep)
2604 {
2605 /*
2606 * We need to stop accounting when we kmalloc, because if the
2607 * corresponding kmalloc cache is not yet created, the first allocation
2608 * in __memcg_schedule_kmem_cache_create will recurse.
2609 *
2610 * However, it is better to enclose the whole function. Depending on
2611 * the debugging options enabled, INIT_WORK(), for instance, can
2612 * trigger an allocation. This too, will make us recurse. Because at
2613 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2614 * the safest choice is to do it like this, wrapping the whole function.
2615 */
2616 current->memcg_kmem_skip_account = 1;
2617 __memcg_schedule_kmem_cache_create(memcg, cachep);
2618 current->memcg_kmem_skip_account = 0;
2619 }
2620
2621 /*
2622 * Return the kmem_cache we're supposed to use for a slab allocation.
2623 * We try to use the current memcg's version of the cache.
2624 *
2625 * If the cache does not exist yet, if we are the first user of it,
2626 * we either create it immediately, if possible, or create it asynchronously
2627 * in a workqueue.
2628 * In the latter case, we will let the current allocation go through with
2629 * the original cache.
2630 *
2631 * Can't be called in interrupt context or from kernel threads.
2632 * This function needs to be called with rcu_read_lock() held.
2633 */
2634 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2635 {
2636 struct mem_cgroup *memcg;
2637 struct kmem_cache *memcg_cachep;
2638 int kmemcg_id;
2639
2640 VM_BUG_ON(!is_root_cache(cachep));
2641
2642 if (current->memcg_kmem_skip_account)
2643 return cachep;
2644
2645 memcg = get_mem_cgroup_from_mm(current->mm);
2646 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2647 if (kmemcg_id < 0)
2648 goto out;
2649
2650 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2651 if (likely(memcg_cachep))
2652 return memcg_cachep;
2653
2654 /*
2655 * If we are in a safe context (can wait, and not in interrupt
2656 * context), we could be be predictable and return right away.
2657 * This would guarantee that the allocation being performed
2658 * already belongs in the new cache.
2659 *
2660 * However, there are some clashes that can arrive from locking.
2661 * For instance, because we acquire the slab_mutex while doing
2662 * memcg_create_kmem_cache, this means no further allocation
2663 * could happen with the slab_mutex held. So it's better to
2664 * defer everything.
2665 */
2666 memcg_schedule_kmem_cache_create(memcg, cachep);
2667 out:
2668 css_put(&memcg->css);
2669 return cachep;
2670 }
2671
2672 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2673 {
2674 if (!is_root_cache(cachep))
2675 css_put(&cachep->memcg_params.memcg->css);
2676 }
2677
2678 /*
2679 * We need to verify if the allocation against current->mm->owner's memcg is
2680 * possible for the given order. But the page is not allocated yet, so we'll
2681 * need a further commit step to do the final arrangements.
2682 *
2683 * It is possible for the task to switch cgroups in this mean time, so at
2684 * commit time, we can't rely on task conversion any longer. We'll then use
2685 * the handle argument to return to the caller which cgroup we should commit
2686 * against. We could also return the memcg directly and avoid the pointer
2687 * passing, but a boolean return value gives better semantics considering
2688 * the compiled-out case as well.
2689 *
2690 * Returning true means the allocation is possible.
2691 */
2692 bool
2693 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2694 {
2695 struct mem_cgroup *memcg;
2696 int ret;
2697
2698 *_memcg = NULL;
2699
2700 memcg = get_mem_cgroup_from_mm(current->mm);
2701
2702 if (!memcg_kmem_is_active(memcg)) {
2703 css_put(&memcg->css);
2704 return true;
2705 }
2706
2707 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2708 if (!ret)
2709 *_memcg = memcg;
2710
2711 css_put(&memcg->css);
2712 return (ret == 0);
2713 }
2714
2715 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2716 int order)
2717 {
2718 VM_BUG_ON(mem_cgroup_is_root(memcg));
2719
2720 /* The page allocation failed. Revert */
2721 if (!page) {
2722 memcg_uncharge_kmem(memcg, 1 << order);
2723 return;
2724 }
2725 page->mem_cgroup = memcg;
2726 }
2727
2728 void __memcg_kmem_uncharge_pages(struct page *page, int order)
2729 {
2730 struct mem_cgroup *memcg = page->mem_cgroup;
2731
2732 if (!memcg)
2733 return;
2734
2735 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2736
2737 memcg_uncharge_kmem(memcg, 1 << order);
2738 page->mem_cgroup = NULL;
2739 }
2740
2741 struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
2742 {
2743 struct mem_cgroup *memcg = NULL;
2744 struct kmem_cache *cachep;
2745 struct page *page;
2746
2747 page = virt_to_head_page(ptr);
2748 if (PageSlab(page)) {
2749 cachep = page->slab_cache;
2750 if (!is_root_cache(cachep))
2751 memcg = cachep->memcg_params.memcg;
2752 } else
2753 /* page allocated by alloc_kmem_pages */
2754 memcg = page->mem_cgroup;
2755
2756 return memcg;
2757 }
2758 #endif /* CONFIG_MEMCG_KMEM */
2759
2760 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2761
2762 /*
2763 * Because tail pages are not marked as "used", set it. We're under
2764 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2765 * charge/uncharge will be never happen and move_account() is done under
2766 * compound_lock(), so we don't have to take care of races.
2767 */
2768 void mem_cgroup_split_huge_fixup(struct page *head)
2769 {
2770 int i;
2771
2772 if (mem_cgroup_disabled())
2773 return;
2774
2775 for (i = 1; i < HPAGE_PMD_NR; i++)
2776 head[i].mem_cgroup = head->mem_cgroup;
2777
2778 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2779 HPAGE_PMD_NR);
2780 }
2781 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2782
2783 #ifdef CONFIG_MEMCG_SWAP
2784 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2785 bool charge)
2786 {
2787 int val = (charge) ? 1 : -1;
2788 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2789 }
2790
2791 /**
2792 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2793 * @entry: swap entry to be moved
2794 * @from: mem_cgroup which the entry is moved from
2795 * @to: mem_cgroup which the entry is moved to
2796 *
2797 * It succeeds only when the swap_cgroup's record for this entry is the same
2798 * as the mem_cgroup's id of @from.
2799 *
2800 * Returns 0 on success, -EINVAL on failure.
2801 *
2802 * The caller must have charged to @to, IOW, called page_counter_charge() about
2803 * both res and memsw, and called css_get().
2804 */
2805 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2806 struct mem_cgroup *from, struct mem_cgroup *to)
2807 {
2808 unsigned short old_id, new_id;
2809
2810 old_id = mem_cgroup_id(from);
2811 new_id = mem_cgroup_id(to);
2812
2813 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2814 mem_cgroup_swap_statistics(from, false);
2815 mem_cgroup_swap_statistics(to, true);
2816 return 0;
2817 }
2818 return -EINVAL;
2819 }
2820 #else
2821 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2822 struct mem_cgroup *from, struct mem_cgroup *to)
2823 {
2824 return -EINVAL;
2825 }
2826 #endif
2827
2828 static DEFINE_MUTEX(memcg_limit_mutex);
2829
2830 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2831 unsigned long limit)
2832 {
2833 unsigned long curusage;
2834 unsigned long oldusage;
2835 bool enlarge = false;
2836 int retry_count;
2837 int ret;
2838
2839 /*
2840 * For keeping hierarchical_reclaim simple, how long we should retry
2841 * is depends on callers. We set our retry-count to be function
2842 * of # of children which we should visit in this loop.
2843 */
2844 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2845 mem_cgroup_count_children(memcg);
2846
2847 oldusage = page_counter_read(&memcg->memory);
2848
2849 do {
2850 if (signal_pending(current)) {
2851 ret = -EINTR;
2852 break;
2853 }
2854
2855 mutex_lock(&memcg_limit_mutex);
2856 if (limit > memcg->memsw.limit) {
2857 mutex_unlock(&memcg_limit_mutex);
2858 ret = -EINVAL;
2859 break;
2860 }
2861 if (limit > memcg->memory.limit)
2862 enlarge = true;
2863 ret = page_counter_limit(&memcg->memory, limit);
2864 mutex_unlock(&memcg_limit_mutex);
2865
2866 if (!ret)
2867 break;
2868
2869 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2870
2871 curusage = page_counter_read(&memcg->memory);
2872 /* Usage is reduced ? */
2873 if (curusage >= oldusage)
2874 retry_count--;
2875 else
2876 oldusage = curusage;
2877 } while (retry_count);
2878
2879 if (!ret && enlarge)
2880 memcg_oom_recover(memcg);
2881
2882 return ret;
2883 }
2884
2885 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2886 unsigned long limit)
2887 {
2888 unsigned long curusage;
2889 unsigned long oldusage;
2890 bool enlarge = false;
2891 int retry_count;
2892 int ret;
2893
2894 /* see mem_cgroup_resize_res_limit */
2895 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2896 mem_cgroup_count_children(memcg);
2897
2898 oldusage = page_counter_read(&memcg->memsw);
2899
2900 do {
2901 if (signal_pending(current)) {
2902 ret = -EINTR;
2903 break;
2904 }
2905
2906 mutex_lock(&memcg_limit_mutex);
2907 if (limit < memcg->memory.limit) {
2908 mutex_unlock(&memcg_limit_mutex);
2909 ret = -EINVAL;
2910 break;
2911 }
2912 if (limit > memcg->memsw.limit)
2913 enlarge = true;
2914 ret = page_counter_limit(&memcg->memsw, limit);
2915 mutex_unlock(&memcg_limit_mutex);
2916
2917 if (!ret)
2918 break;
2919
2920 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2921
2922 curusage = page_counter_read(&memcg->memsw);
2923 /* Usage is reduced ? */
2924 if (curusage >= oldusage)
2925 retry_count--;
2926 else
2927 oldusage = curusage;
2928 } while (retry_count);
2929
2930 if (!ret && enlarge)
2931 memcg_oom_recover(memcg);
2932
2933 return ret;
2934 }
2935
2936 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2937 gfp_t gfp_mask,
2938 unsigned long *total_scanned)
2939 {
2940 unsigned long nr_reclaimed = 0;
2941 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2942 unsigned long reclaimed;
2943 int loop = 0;
2944 struct mem_cgroup_tree_per_zone *mctz;
2945 unsigned long excess;
2946 unsigned long nr_scanned;
2947
2948 if (order > 0)
2949 return 0;
2950
2951 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2952 /*
2953 * This loop can run a while, specially if mem_cgroup's continuously
2954 * keep exceeding their soft limit and putting the system under
2955 * pressure
2956 */
2957 do {
2958 if (next_mz)
2959 mz = next_mz;
2960 else
2961 mz = mem_cgroup_largest_soft_limit_node(mctz);
2962 if (!mz)
2963 break;
2964
2965 nr_scanned = 0;
2966 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2967 gfp_mask, &nr_scanned);
2968 nr_reclaimed += reclaimed;
2969 *total_scanned += nr_scanned;
2970 spin_lock_irq(&mctz->lock);
2971 __mem_cgroup_remove_exceeded(mz, mctz);
2972
2973 /*
2974 * If we failed to reclaim anything from this memory cgroup
2975 * it is time to move on to the next cgroup
2976 */
2977 next_mz = NULL;
2978 if (!reclaimed)
2979 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2980
2981 excess = soft_limit_excess(mz->memcg);
2982 /*
2983 * One school of thought says that we should not add
2984 * back the node to the tree if reclaim returns 0.
2985 * But our reclaim could return 0, simply because due
2986 * to priority we are exposing a smaller subset of
2987 * memory to reclaim from. Consider this as a longer
2988 * term TODO.
2989 */
2990 /* If excess == 0, no tree ops */
2991 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2992 spin_unlock_irq(&mctz->lock);
2993 css_put(&mz->memcg->css);
2994 loop++;
2995 /*
2996 * Could not reclaim anything and there are no more
2997 * mem cgroups to try or we seem to be looping without
2998 * reclaiming anything.
2999 */
3000 if (!nr_reclaimed &&
3001 (next_mz == NULL ||
3002 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3003 break;
3004 } while (!nr_reclaimed);
3005 if (next_mz)
3006 css_put(&next_mz->memcg->css);
3007 return nr_reclaimed;
3008 }
3009
3010 /*
3011 * Test whether @memcg has children, dead or alive. Note that this
3012 * function doesn't care whether @memcg has use_hierarchy enabled and
3013 * returns %true if there are child csses according to the cgroup
3014 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3015 */
3016 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3017 {
3018 bool ret;
3019
3020 /*
3021 * The lock does not prevent addition or deletion of children, but
3022 * it prevents a new child from being initialized based on this
3023 * parent in css_online(), so it's enough to decide whether
3024 * hierarchically inherited attributes can still be changed or not.
3025 */
3026 lockdep_assert_held(&memcg_create_mutex);
3027
3028 rcu_read_lock();
3029 ret = css_next_child(NULL, &memcg->css);
3030 rcu_read_unlock();
3031 return ret;
3032 }
3033
3034 /*
3035 * Reclaims as many pages from the given memcg as possible and moves
3036 * the rest to the parent.
3037 *
3038 * Caller is responsible for holding css reference for memcg.
3039 */
3040 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3041 {
3042 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3043
3044 /* we call try-to-free pages for make this cgroup empty */
3045 lru_add_drain_all();
3046 /* try to free all pages in this cgroup */
3047 while (nr_retries && page_counter_read(&memcg->memory)) {
3048 int progress;
3049
3050 if (signal_pending(current))
3051 return -EINTR;
3052
3053 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3054 GFP_KERNEL, true);
3055 if (!progress) {
3056 nr_retries--;
3057 /* maybe some writeback is necessary */
3058 congestion_wait(BLK_RW_ASYNC, HZ/10);
3059 }
3060
3061 }
3062
3063 return 0;
3064 }
3065
3066 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3067 char *buf, size_t nbytes,
3068 loff_t off)
3069 {
3070 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3071
3072 if (mem_cgroup_is_root(memcg))
3073 return -EINVAL;
3074 return mem_cgroup_force_empty(memcg) ?: nbytes;
3075 }
3076
3077 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3078 struct cftype *cft)
3079 {
3080 return mem_cgroup_from_css(css)->use_hierarchy;
3081 }
3082
3083 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3084 struct cftype *cft, u64 val)
3085 {
3086 int retval = 0;
3087 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3088 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3089
3090 mutex_lock(&memcg_create_mutex);
3091
3092 if (memcg->use_hierarchy == val)
3093 goto out;
3094
3095 /*
3096 * If parent's use_hierarchy is set, we can't make any modifications
3097 * in the child subtrees. If it is unset, then the change can
3098 * occur, provided the current cgroup has no children.
3099 *
3100 * For the root cgroup, parent_mem is NULL, we allow value to be
3101 * set if there are no children.
3102 */
3103 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3104 (val == 1 || val == 0)) {
3105 if (!memcg_has_children(memcg))
3106 memcg->use_hierarchy = val;
3107 else
3108 retval = -EBUSY;
3109 } else
3110 retval = -EINVAL;
3111
3112 out:
3113 mutex_unlock(&memcg_create_mutex);
3114
3115 return retval;
3116 }
3117
3118 static unsigned long tree_stat(struct mem_cgroup *memcg,
3119 enum mem_cgroup_stat_index idx)
3120 {
3121 struct mem_cgroup *iter;
3122 long val = 0;
3123
3124 /* Per-cpu values can be negative, use a signed accumulator */
3125 for_each_mem_cgroup_tree(iter, memcg)
3126 val += mem_cgroup_read_stat(iter, idx);
3127
3128 if (val < 0) /* race ? */
3129 val = 0;
3130 return val;
3131 }
3132
3133 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3134 {
3135 u64 val;
3136
3137 if (mem_cgroup_is_root(memcg)) {
3138 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3139 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3140 if (swap)
3141 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3142 } else {
3143 if (!swap)
3144 val = page_counter_read(&memcg->memory);
3145 else
3146 val = page_counter_read(&memcg->memsw);
3147 }
3148 return val << PAGE_SHIFT;
3149 }
3150
3151 enum {
3152 RES_USAGE,
3153 RES_LIMIT,
3154 RES_MAX_USAGE,
3155 RES_FAILCNT,
3156 RES_SOFT_LIMIT,
3157 };
3158
3159 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3160 struct cftype *cft)
3161 {
3162 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3163 struct page_counter *counter;
3164
3165 switch (MEMFILE_TYPE(cft->private)) {
3166 case _MEM:
3167 counter = &memcg->memory;
3168 break;
3169 case _MEMSWAP:
3170 counter = &memcg->memsw;
3171 break;
3172 case _KMEM:
3173 counter = &memcg->kmem;
3174 break;
3175 default:
3176 BUG();
3177 }
3178
3179 switch (MEMFILE_ATTR(cft->private)) {
3180 case RES_USAGE:
3181 if (counter == &memcg->memory)
3182 return mem_cgroup_usage(memcg, false);
3183 if (counter == &memcg->memsw)
3184 return mem_cgroup_usage(memcg, true);
3185 return (u64)page_counter_read(counter) * PAGE_SIZE;
3186 case RES_LIMIT:
3187 return (u64)counter->limit * PAGE_SIZE;
3188 case RES_MAX_USAGE:
3189 return (u64)counter->watermark * PAGE_SIZE;
3190 case RES_FAILCNT:
3191 return counter->failcnt;
3192 case RES_SOFT_LIMIT:
3193 return (u64)memcg->soft_limit * PAGE_SIZE;
3194 default:
3195 BUG();
3196 }
3197 }
3198
3199 #ifdef CONFIG_MEMCG_KMEM
3200 static int memcg_activate_kmem(struct mem_cgroup *memcg,
3201 unsigned long nr_pages)
3202 {
3203 int err = 0;
3204 int memcg_id;
3205
3206 BUG_ON(memcg->kmemcg_id >= 0);
3207 BUG_ON(memcg->kmem_acct_activated);
3208 BUG_ON(memcg->kmem_acct_active);
3209
3210 /*
3211 * For simplicity, we won't allow this to be disabled. It also can't
3212 * be changed if the cgroup has children already, or if tasks had
3213 * already joined.
3214 *
3215 * If tasks join before we set the limit, a person looking at
3216 * kmem.usage_in_bytes will have no way to determine when it took
3217 * place, which makes the value quite meaningless.
3218 *
3219 * After it first became limited, changes in the value of the limit are
3220 * of course permitted.
3221 */
3222 mutex_lock(&memcg_create_mutex);
3223 if (cgroup_has_tasks(memcg->css.cgroup) ||
3224 (memcg->use_hierarchy && memcg_has_children(memcg)))
3225 err = -EBUSY;
3226 mutex_unlock(&memcg_create_mutex);
3227 if (err)
3228 goto out;
3229
3230 memcg_id = memcg_alloc_cache_id();
3231 if (memcg_id < 0) {
3232 err = memcg_id;
3233 goto out;
3234 }
3235
3236 /*
3237 * We couldn't have accounted to this cgroup, because it hasn't got
3238 * activated yet, so this should succeed.
3239 */
3240 err = page_counter_limit(&memcg->kmem, nr_pages);
3241 VM_BUG_ON(err);
3242
3243 static_key_slow_inc(&memcg_kmem_enabled_key);
3244 /*
3245 * A memory cgroup is considered kmem-active as soon as it gets
3246 * kmemcg_id. Setting the id after enabling static branching will
3247 * guarantee no one starts accounting before all call sites are
3248 * patched.
3249 */
3250 memcg->kmemcg_id = memcg_id;
3251 memcg->kmem_acct_activated = true;
3252 memcg->kmem_acct_active = true;
3253 out:
3254 return err;
3255 }
3256
3257 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3258 unsigned long limit)
3259 {
3260 int ret;
3261
3262 mutex_lock(&memcg_limit_mutex);
3263 if (!memcg_kmem_is_active(memcg))
3264 ret = memcg_activate_kmem(memcg, limit);
3265 else
3266 ret = page_counter_limit(&memcg->kmem, limit);
3267 mutex_unlock(&memcg_limit_mutex);
3268 return ret;
3269 }
3270
3271 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3272 {
3273 int ret = 0;
3274 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3275
3276 if (!parent)
3277 return 0;
3278
3279 mutex_lock(&memcg_limit_mutex);
3280 /*
3281 * If the parent cgroup is not kmem-active now, it cannot be activated
3282 * after this point, because it has at least one child already.
3283 */
3284 if (memcg_kmem_is_active(parent))
3285 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3286 mutex_unlock(&memcg_limit_mutex);
3287 return ret;
3288 }
3289 #else
3290 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3291 unsigned long limit)
3292 {
3293 return -EINVAL;
3294 }
3295 #endif /* CONFIG_MEMCG_KMEM */
3296
3297 /*
3298 * The user of this function is...
3299 * RES_LIMIT.
3300 */
3301 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3302 char *buf, size_t nbytes, loff_t off)
3303 {
3304 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3305 unsigned long nr_pages;
3306 int ret;
3307
3308 buf = strstrip(buf);
3309 ret = page_counter_memparse(buf, "-1", &nr_pages);
3310 if (ret)
3311 return ret;
3312
3313 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3314 case RES_LIMIT:
3315 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3316 ret = -EINVAL;
3317 break;
3318 }
3319 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3320 case _MEM:
3321 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3322 break;
3323 case _MEMSWAP:
3324 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3325 break;
3326 case _KMEM:
3327 ret = memcg_update_kmem_limit(memcg, nr_pages);
3328 break;
3329 }
3330 break;
3331 case RES_SOFT_LIMIT:
3332 memcg->soft_limit = nr_pages;
3333 ret = 0;
3334 break;
3335 }
3336 return ret ?: nbytes;
3337 }
3338
3339 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3340 size_t nbytes, loff_t off)
3341 {
3342 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3343 struct page_counter *counter;
3344
3345 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3346 case _MEM:
3347 counter = &memcg->memory;
3348 break;
3349 case _MEMSWAP:
3350 counter = &memcg->memsw;
3351 break;
3352 case _KMEM:
3353 counter = &memcg->kmem;
3354 break;
3355 default:
3356 BUG();
3357 }
3358
3359 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3360 case RES_MAX_USAGE:
3361 page_counter_reset_watermark(counter);
3362 break;
3363 case RES_FAILCNT:
3364 counter->failcnt = 0;
3365 break;
3366 default:
3367 BUG();
3368 }
3369
3370 return nbytes;
3371 }
3372
3373 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3374 struct cftype *cft)
3375 {
3376 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3377 }
3378
3379 #ifdef CONFIG_MMU
3380 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3381 struct cftype *cft, u64 val)
3382 {
3383 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3384
3385 if (val & ~MOVE_MASK)
3386 return -EINVAL;
3387
3388 /*
3389 * No kind of locking is needed in here, because ->can_attach() will
3390 * check this value once in the beginning of the process, and then carry
3391 * on with stale data. This means that changes to this value will only
3392 * affect task migrations starting after the change.
3393 */
3394 memcg->move_charge_at_immigrate = val;
3395 return 0;
3396 }
3397 #else
3398 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3399 struct cftype *cft, u64 val)
3400 {
3401 return -ENOSYS;
3402 }
3403 #endif
3404
3405 #ifdef CONFIG_NUMA
3406 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3407 {
3408 struct numa_stat {
3409 const char *name;
3410 unsigned int lru_mask;
3411 };
3412
3413 static const struct numa_stat stats[] = {
3414 { "total", LRU_ALL },
3415 { "file", LRU_ALL_FILE },
3416 { "anon", LRU_ALL_ANON },
3417 { "unevictable", BIT(LRU_UNEVICTABLE) },
3418 };
3419 const struct numa_stat *stat;
3420 int nid;
3421 unsigned long nr;
3422 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3423
3424 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3425 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3426 seq_printf(m, "%s=%lu", stat->name, nr);
3427 for_each_node_state(nid, N_MEMORY) {
3428 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3429 stat->lru_mask);
3430 seq_printf(m, " N%d=%lu", nid, nr);
3431 }
3432 seq_putc(m, '\n');
3433 }
3434
3435 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3436 struct mem_cgroup *iter;
3437
3438 nr = 0;
3439 for_each_mem_cgroup_tree(iter, memcg)
3440 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3441 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3442 for_each_node_state(nid, N_MEMORY) {
3443 nr = 0;
3444 for_each_mem_cgroup_tree(iter, memcg)
3445 nr += mem_cgroup_node_nr_lru_pages(
3446 iter, nid, stat->lru_mask);
3447 seq_printf(m, " N%d=%lu", nid, nr);
3448 }
3449 seq_putc(m, '\n');
3450 }
3451
3452 return 0;
3453 }
3454 #endif /* CONFIG_NUMA */
3455
3456 static int memcg_stat_show(struct seq_file *m, void *v)
3457 {
3458 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3459 unsigned long memory, memsw;
3460 struct mem_cgroup *mi;
3461 unsigned int i;
3462
3463 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3464 MEM_CGROUP_STAT_NSTATS);
3465 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3466 MEM_CGROUP_EVENTS_NSTATS);
3467 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3468
3469 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3470 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3471 continue;
3472 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3473 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3474 }
3475
3476 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3477 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3478 mem_cgroup_read_events(memcg, i));
3479
3480 for (i = 0; i < NR_LRU_LISTS; i++)
3481 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3482 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3483
3484 /* Hierarchical information */
3485 memory = memsw = PAGE_COUNTER_MAX;
3486 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3487 memory = min(memory, mi->memory.limit);
3488 memsw = min(memsw, mi->memsw.limit);
3489 }
3490 seq_printf(m, "hierarchical_memory_limit %llu\n",
3491 (u64)memory * PAGE_SIZE);
3492 if (do_swap_account)
3493 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3494 (u64)memsw * PAGE_SIZE);
3495
3496 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3497 long long val = 0;
3498
3499 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3500 continue;
3501 for_each_mem_cgroup_tree(mi, memcg)
3502 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3503 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3504 }
3505
3506 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3507 unsigned long long val = 0;
3508
3509 for_each_mem_cgroup_tree(mi, memcg)
3510 val += mem_cgroup_read_events(mi, i);
3511 seq_printf(m, "total_%s %llu\n",
3512 mem_cgroup_events_names[i], val);
3513 }
3514
3515 for (i = 0; i < NR_LRU_LISTS; i++) {
3516 unsigned long long val = 0;
3517
3518 for_each_mem_cgroup_tree(mi, memcg)
3519 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3520 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3521 }
3522
3523 #ifdef CONFIG_DEBUG_VM
3524 {
3525 int nid, zid;
3526 struct mem_cgroup_per_zone *mz;
3527 struct zone_reclaim_stat *rstat;
3528 unsigned long recent_rotated[2] = {0, 0};
3529 unsigned long recent_scanned[2] = {0, 0};
3530
3531 for_each_online_node(nid)
3532 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3533 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3534 rstat = &mz->lruvec.reclaim_stat;
3535
3536 recent_rotated[0] += rstat->recent_rotated[0];
3537 recent_rotated[1] += rstat->recent_rotated[1];
3538 recent_scanned[0] += rstat->recent_scanned[0];
3539 recent_scanned[1] += rstat->recent_scanned[1];
3540 }
3541 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3542 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3543 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3544 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3545 }
3546 #endif
3547
3548 return 0;
3549 }
3550
3551 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3552 struct cftype *cft)
3553 {
3554 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3555
3556 return mem_cgroup_swappiness(memcg);
3557 }
3558
3559 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3560 struct cftype *cft, u64 val)
3561 {
3562 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3563
3564 if (val > 100)
3565 return -EINVAL;
3566
3567 if (css->parent)
3568 memcg->swappiness = val;
3569 else
3570 vm_swappiness = val;
3571
3572 return 0;
3573 }
3574
3575 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3576 {
3577 struct mem_cgroup_threshold_ary *t;
3578 unsigned long usage;
3579 int i;
3580
3581 rcu_read_lock();
3582 if (!swap)
3583 t = rcu_dereference(memcg->thresholds.primary);
3584 else
3585 t = rcu_dereference(memcg->memsw_thresholds.primary);
3586
3587 if (!t)
3588 goto unlock;
3589
3590 usage = mem_cgroup_usage(memcg, swap);
3591
3592 /*
3593 * current_threshold points to threshold just below or equal to usage.
3594 * If it's not true, a threshold was crossed after last
3595 * call of __mem_cgroup_threshold().
3596 */
3597 i = t->current_threshold;
3598
3599 /*
3600 * Iterate backward over array of thresholds starting from
3601 * current_threshold and check if a threshold is crossed.
3602 * If none of thresholds below usage is crossed, we read
3603 * only one element of the array here.
3604 */
3605 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3606 eventfd_signal(t->entries[i].eventfd, 1);
3607
3608 /* i = current_threshold + 1 */
3609 i++;
3610
3611 /*
3612 * Iterate forward over array of thresholds starting from
3613 * current_threshold+1 and check if a threshold is crossed.
3614 * If none of thresholds above usage is crossed, we read
3615 * only one element of the array here.
3616 */
3617 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3618 eventfd_signal(t->entries[i].eventfd, 1);
3619
3620 /* Update current_threshold */
3621 t->current_threshold = i - 1;
3622 unlock:
3623 rcu_read_unlock();
3624 }
3625
3626 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3627 {
3628 while (memcg) {
3629 __mem_cgroup_threshold(memcg, false);
3630 if (do_swap_account)
3631 __mem_cgroup_threshold(memcg, true);
3632
3633 memcg = parent_mem_cgroup(memcg);
3634 }
3635 }
3636
3637 static int compare_thresholds(const void *a, const void *b)
3638 {
3639 const struct mem_cgroup_threshold *_a = a;
3640 const struct mem_cgroup_threshold *_b = b;
3641
3642 if (_a->threshold > _b->threshold)
3643 return 1;
3644
3645 if (_a->threshold < _b->threshold)
3646 return -1;
3647
3648 return 0;
3649 }
3650
3651 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3652 {
3653 struct mem_cgroup_eventfd_list *ev;
3654
3655 spin_lock(&memcg_oom_lock);
3656
3657 list_for_each_entry(ev, &memcg->oom_notify, list)
3658 eventfd_signal(ev->eventfd, 1);
3659
3660 spin_unlock(&memcg_oom_lock);
3661 return 0;
3662 }
3663
3664 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3665 {
3666 struct mem_cgroup *iter;
3667
3668 for_each_mem_cgroup_tree(iter, memcg)
3669 mem_cgroup_oom_notify_cb(iter);
3670 }
3671
3672 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3673 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3674 {
3675 struct mem_cgroup_thresholds *thresholds;
3676 struct mem_cgroup_threshold_ary *new;
3677 unsigned long threshold;
3678 unsigned long usage;
3679 int i, size, ret;
3680
3681 ret = page_counter_memparse(args, "-1", &threshold);
3682 if (ret)
3683 return ret;
3684
3685 mutex_lock(&memcg->thresholds_lock);
3686
3687 if (type == _MEM) {
3688 thresholds = &memcg->thresholds;
3689 usage = mem_cgroup_usage(memcg, false);
3690 } else if (type == _MEMSWAP) {
3691 thresholds = &memcg->memsw_thresholds;
3692 usage = mem_cgroup_usage(memcg, true);
3693 } else
3694 BUG();
3695
3696 /* Check if a threshold crossed before adding a new one */
3697 if (thresholds->primary)
3698 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3699
3700 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3701
3702 /* Allocate memory for new array of thresholds */
3703 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3704 GFP_KERNEL);
3705 if (!new) {
3706 ret = -ENOMEM;
3707 goto unlock;
3708 }
3709 new->size = size;
3710
3711 /* Copy thresholds (if any) to new array */
3712 if (thresholds->primary) {
3713 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3714 sizeof(struct mem_cgroup_threshold));
3715 }
3716
3717 /* Add new threshold */
3718 new->entries[size - 1].eventfd = eventfd;
3719 new->entries[size - 1].threshold = threshold;
3720
3721 /* Sort thresholds. Registering of new threshold isn't time-critical */
3722 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3723 compare_thresholds, NULL);
3724
3725 /* Find current threshold */
3726 new->current_threshold = -1;
3727 for (i = 0; i < size; i++) {
3728 if (new->entries[i].threshold <= usage) {
3729 /*
3730 * new->current_threshold will not be used until
3731 * rcu_assign_pointer(), so it's safe to increment
3732 * it here.
3733 */
3734 ++new->current_threshold;
3735 } else
3736 break;
3737 }
3738
3739 /* Free old spare buffer and save old primary buffer as spare */
3740 kfree(thresholds->spare);
3741 thresholds->spare = thresholds->primary;
3742
3743 rcu_assign_pointer(thresholds->primary, new);
3744
3745 /* To be sure that nobody uses thresholds */
3746 synchronize_rcu();
3747
3748 unlock:
3749 mutex_unlock(&memcg->thresholds_lock);
3750
3751 return ret;
3752 }
3753
3754 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3755 struct eventfd_ctx *eventfd, const char *args)
3756 {
3757 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3758 }
3759
3760 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3761 struct eventfd_ctx *eventfd, const char *args)
3762 {
3763 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3764 }
3765
3766 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3767 struct eventfd_ctx *eventfd, enum res_type type)
3768 {
3769 struct mem_cgroup_thresholds *thresholds;
3770 struct mem_cgroup_threshold_ary *new;
3771 unsigned long usage;
3772 int i, j, size;
3773
3774 mutex_lock(&memcg->thresholds_lock);
3775
3776 if (type == _MEM) {
3777 thresholds = &memcg->thresholds;
3778 usage = mem_cgroup_usage(memcg, false);
3779 } else if (type == _MEMSWAP) {
3780 thresholds = &memcg->memsw_thresholds;
3781 usage = mem_cgroup_usage(memcg, true);
3782 } else
3783 BUG();
3784
3785 if (!thresholds->primary)
3786 goto unlock;
3787
3788 /* Check if a threshold crossed before removing */
3789 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3790
3791 /* Calculate new number of threshold */
3792 size = 0;
3793 for (i = 0; i < thresholds->primary->size; i++) {
3794 if (thresholds->primary->entries[i].eventfd != eventfd)
3795 size++;
3796 }
3797
3798 new = thresholds->spare;
3799
3800 /* Set thresholds array to NULL if we don't have thresholds */
3801 if (!size) {
3802 kfree(new);
3803 new = NULL;
3804 goto swap_buffers;
3805 }
3806
3807 new->size = size;
3808
3809 /* Copy thresholds and find current threshold */
3810 new->current_threshold = -1;
3811 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3812 if (thresholds->primary->entries[i].eventfd == eventfd)
3813 continue;
3814
3815 new->entries[j] = thresholds->primary->entries[i];
3816 if (new->entries[j].threshold <= usage) {
3817 /*
3818 * new->current_threshold will not be used
3819 * until rcu_assign_pointer(), so it's safe to increment
3820 * it here.
3821 */
3822 ++new->current_threshold;
3823 }
3824 j++;
3825 }
3826
3827 swap_buffers:
3828 /* Swap primary and spare array */
3829 thresholds->spare = thresholds->primary;
3830 /* If all events are unregistered, free the spare array */
3831 if (!new) {
3832 kfree(thresholds->spare);
3833 thresholds->spare = NULL;
3834 }
3835
3836 rcu_assign_pointer(thresholds->primary, new);
3837
3838 /* To be sure that nobody uses thresholds */
3839 synchronize_rcu();
3840 unlock:
3841 mutex_unlock(&memcg->thresholds_lock);
3842 }
3843
3844 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3845 struct eventfd_ctx *eventfd)
3846 {
3847 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3848 }
3849
3850 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3851 struct eventfd_ctx *eventfd)
3852 {
3853 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3854 }
3855
3856 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3857 struct eventfd_ctx *eventfd, const char *args)
3858 {
3859 struct mem_cgroup_eventfd_list *event;
3860
3861 event = kmalloc(sizeof(*event), GFP_KERNEL);
3862 if (!event)
3863 return -ENOMEM;
3864
3865 spin_lock(&memcg_oom_lock);
3866
3867 event->eventfd = eventfd;
3868 list_add(&event->list, &memcg->oom_notify);
3869
3870 /* already in OOM ? */
3871 if (atomic_read(&memcg->under_oom))
3872 eventfd_signal(eventfd, 1);
3873 spin_unlock(&memcg_oom_lock);
3874
3875 return 0;
3876 }
3877
3878 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3879 struct eventfd_ctx *eventfd)
3880 {
3881 struct mem_cgroup_eventfd_list *ev, *tmp;
3882
3883 spin_lock(&memcg_oom_lock);
3884
3885 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3886 if (ev->eventfd == eventfd) {
3887 list_del(&ev->list);
3888 kfree(ev);
3889 }
3890 }
3891
3892 spin_unlock(&memcg_oom_lock);
3893 }
3894
3895 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3896 {
3897 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3898
3899 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3900 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3901 return 0;
3902 }
3903
3904 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3905 struct cftype *cft, u64 val)
3906 {
3907 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3908
3909 /* cannot set to root cgroup and only 0 and 1 are allowed */
3910 if (!css->parent || !((val == 0) || (val == 1)))
3911 return -EINVAL;
3912
3913 memcg->oom_kill_disable = val;
3914 if (!val)
3915 memcg_oom_recover(memcg);
3916
3917 return 0;
3918 }
3919
3920 #ifdef CONFIG_MEMCG_KMEM
3921 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3922 {
3923 int ret;
3924
3925 ret = memcg_propagate_kmem(memcg);
3926 if (ret)
3927 return ret;
3928
3929 return mem_cgroup_sockets_init(memcg, ss);
3930 }
3931
3932 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3933 {
3934 struct cgroup_subsys_state *css;
3935 struct mem_cgroup *parent, *child;
3936 int kmemcg_id;
3937
3938 if (!memcg->kmem_acct_active)
3939 return;
3940
3941 /*
3942 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3943 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3944 * guarantees no cache will be created for this cgroup after we are
3945 * done (see memcg_create_kmem_cache()).
3946 */
3947 memcg->kmem_acct_active = false;
3948
3949 memcg_deactivate_kmem_caches(memcg);
3950
3951 kmemcg_id = memcg->kmemcg_id;
3952 BUG_ON(kmemcg_id < 0);
3953
3954 parent = parent_mem_cgroup(memcg);
3955 if (!parent)
3956 parent = root_mem_cgroup;
3957
3958 /*
3959 * Change kmemcg_id of this cgroup and all its descendants to the
3960 * parent's id, and then move all entries from this cgroup's list_lrus
3961 * to ones of the parent. After we have finished, all list_lrus
3962 * corresponding to this cgroup are guaranteed to remain empty. The
3963 * ordering is imposed by list_lru_node->lock taken by
3964 * memcg_drain_all_list_lrus().
3965 */
3966 css_for_each_descendant_pre(css, &memcg->css) {
3967 child = mem_cgroup_from_css(css);
3968 BUG_ON(child->kmemcg_id != kmemcg_id);
3969 child->kmemcg_id = parent->kmemcg_id;
3970 if (!memcg->use_hierarchy)
3971 break;
3972 }
3973 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3974
3975 memcg_free_cache_id(kmemcg_id);
3976 }
3977
3978 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3979 {
3980 if (memcg->kmem_acct_activated) {
3981 memcg_destroy_kmem_caches(memcg);
3982 static_key_slow_dec(&memcg_kmem_enabled_key);
3983 WARN_ON(page_counter_read(&memcg->kmem));
3984 }
3985 mem_cgroup_sockets_destroy(memcg);
3986 }
3987 #else
3988 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3989 {
3990 return 0;
3991 }
3992
3993 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3994 {
3995 }
3996
3997 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3998 {
3999 }
4000 #endif
4001
4002 /*
4003 * DO NOT USE IN NEW FILES.
4004 *
4005 * "cgroup.event_control" implementation.
4006 *
4007 * This is way over-engineered. It tries to support fully configurable
4008 * events for each user. Such level of flexibility is completely
4009 * unnecessary especially in the light of the planned unified hierarchy.
4010 *
4011 * Please deprecate this and replace with something simpler if at all
4012 * possible.
4013 */
4014
4015 /*
4016 * Unregister event and free resources.
4017 *
4018 * Gets called from workqueue.
4019 */
4020 static void memcg_event_remove(struct work_struct *work)
4021 {
4022 struct mem_cgroup_event *event =
4023 container_of(work, struct mem_cgroup_event, remove);
4024 struct mem_cgroup *memcg = event->memcg;
4025
4026 remove_wait_queue(event->wqh, &event->wait);
4027
4028 event->unregister_event(memcg, event->eventfd);
4029
4030 /* Notify userspace the event is going away. */
4031 eventfd_signal(event->eventfd, 1);
4032
4033 eventfd_ctx_put(event->eventfd);
4034 kfree(event);
4035 css_put(&memcg->css);
4036 }
4037
4038 /*
4039 * Gets called on POLLHUP on eventfd when user closes it.
4040 *
4041 * Called with wqh->lock held and interrupts disabled.
4042 */
4043 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4044 int sync, void *key)
4045 {
4046 struct mem_cgroup_event *event =
4047 container_of(wait, struct mem_cgroup_event, wait);
4048 struct mem_cgroup *memcg = event->memcg;
4049 unsigned long flags = (unsigned long)key;
4050
4051 if (flags & POLLHUP) {
4052 /*
4053 * If the event has been detached at cgroup removal, we
4054 * can simply return knowing the other side will cleanup
4055 * for us.
4056 *
4057 * We can't race against event freeing since the other
4058 * side will require wqh->lock via remove_wait_queue(),
4059 * which we hold.
4060 */
4061 spin_lock(&memcg->event_list_lock);
4062 if (!list_empty(&event->list)) {
4063 list_del_init(&event->list);
4064 /*
4065 * We are in atomic context, but cgroup_event_remove()
4066 * may sleep, so we have to call it in workqueue.
4067 */
4068 schedule_work(&event->remove);
4069 }
4070 spin_unlock(&memcg->event_list_lock);
4071 }
4072
4073 return 0;
4074 }
4075
4076 static void memcg_event_ptable_queue_proc(struct file *file,
4077 wait_queue_head_t *wqh, poll_table *pt)
4078 {
4079 struct mem_cgroup_event *event =
4080 container_of(pt, struct mem_cgroup_event, pt);
4081
4082 event->wqh = wqh;
4083 add_wait_queue(wqh, &event->wait);
4084 }
4085
4086 /*
4087 * DO NOT USE IN NEW FILES.
4088 *
4089 * Parse input and register new cgroup event handler.
4090 *
4091 * Input must be in format '<event_fd> <control_fd> <args>'.
4092 * Interpretation of args is defined by control file implementation.
4093 */
4094 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4095 char *buf, size_t nbytes, loff_t off)
4096 {
4097 struct cgroup_subsys_state *css = of_css(of);
4098 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4099 struct mem_cgroup_event *event;
4100 struct cgroup_subsys_state *cfile_css;
4101 unsigned int efd, cfd;
4102 struct fd efile;
4103 struct fd cfile;
4104 const char *name;
4105 char *endp;
4106 int ret;
4107
4108 buf = strstrip(buf);
4109
4110 efd = simple_strtoul(buf, &endp, 10);
4111 if (*endp != ' ')
4112 return -EINVAL;
4113 buf = endp + 1;
4114
4115 cfd = simple_strtoul(buf, &endp, 10);
4116 if ((*endp != ' ') && (*endp != '\0'))
4117 return -EINVAL;
4118 buf = endp + 1;
4119
4120 event = kzalloc(sizeof(*event), GFP_KERNEL);
4121 if (!event)
4122 return -ENOMEM;
4123
4124 event->memcg = memcg;
4125 INIT_LIST_HEAD(&event->list);
4126 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4127 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4128 INIT_WORK(&event->remove, memcg_event_remove);
4129
4130 efile = fdget(efd);
4131 if (!efile.file) {
4132 ret = -EBADF;
4133 goto out_kfree;
4134 }
4135
4136 event->eventfd = eventfd_ctx_fileget(efile.file);
4137 if (IS_ERR(event->eventfd)) {
4138 ret = PTR_ERR(event->eventfd);
4139 goto out_put_efile;
4140 }
4141
4142 cfile = fdget(cfd);
4143 if (!cfile.file) {
4144 ret = -EBADF;
4145 goto out_put_eventfd;
4146 }
4147
4148 /* the process need read permission on control file */
4149 /* AV: shouldn't we check that it's been opened for read instead? */
4150 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4151 if (ret < 0)
4152 goto out_put_cfile;
4153
4154 /*
4155 * Determine the event callbacks and set them in @event. This used
4156 * to be done via struct cftype but cgroup core no longer knows
4157 * about these events. The following is crude but the whole thing
4158 * is for compatibility anyway.
4159 *
4160 * DO NOT ADD NEW FILES.
4161 */
4162 name = cfile.file->f_path.dentry->d_name.name;
4163
4164 if (!strcmp(name, "memory.usage_in_bytes")) {
4165 event->register_event = mem_cgroup_usage_register_event;
4166 event->unregister_event = mem_cgroup_usage_unregister_event;
4167 } else if (!strcmp(name, "memory.oom_control")) {
4168 event->register_event = mem_cgroup_oom_register_event;
4169 event->unregister_event = mem_cgroup_oom_unregister_event;
4170 } else if (!strcmp(name, "memory.pressure_level")) {
4171 event->register_event = vmpressure_register_event;
4172 event->unregister_event = vmpressure_unregister_event;
4173 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4174 event->register_event = memsw_cgroup_usage_register_event;
4175 event->unregister_event = memsw_cgroup_usage_unregister_event;
4176 } else {
4177 ret = -EINVAL;
4178 goto out_put_cfile;
4179 }
4180
4181 /*
4182 * Verify @cfile should belong to @css. Also, remaining events are
4183 * automatically removed on cgroup destruction but the removal is
4184 * asynchronous, so take an extra ref on @css.
4185 */
4186 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4187 &memory_cgrp_subsys);
4188 ret = -EINVAL;
4189 if (IS_ERR(cfile_css))
4190 goto out_put_cfile;
4191 if (cfile_css != css) {
4192 css_put(cfile_css);
4193 goto out_put_cfile;
4194 }
4195
4196 ret = event->register_event(memcg, event->eventfd, buf);
4197 if (ret)
4198 goto out_put_css;
4199
4200 efile.file->f_op->poll(efile.file, &event->pt);
4201
4202 spin_lock(&memcg->event_list_lock);
4203 list_add(&event->list, &memcg->event_list);
4204 spin_unlock(&memcg->event_list_lock);
4205
4206 fdput(cfile);
4207 fdput(efile);
4208
4209 return nbytes;
4210
4211 out_put_css:
4212 css_put(css);
4213 out_put_cfile:
4214 fdput(cfile);
4215 out_put_eventfd:
4216 eventfd_ctx_put(event->eventfd);
4217 out_put_efile:
4218 fdput(efile);
4219 out_kfree:
4220 kfree(event);
4221
4222 return ret;
4223 }
4224
4225 static struct cftype mem_cgroup_legacy_files[] = {
4226 {
4227 .name = "usage_in_bytes",
4228 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4229 .read_u64 = mem_cgroup_read_u64,
4230 },
4231 {
4232 .name = "max_usage_in_bytes",
4233 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4234 .write = mem_cgroup_reset,
4235 .read_u64 = mem_cgroup_read_u64,
4236 },
4237 {
4238 .name = "limit_in_bytes",
4239 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4240 .write = mem_cgroup_write,
4241 .read_u64 = mem_cgroup_read_u64,
4242 },
4243 {
4244 .name = "soft_limit_in_bytes",
4245 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4246 .write = mem_cgroup_write,
4247 .read_u64 = mem_cgroup_read_u64,
4248 },
4249 {
4250 .name = "failcnt",
4251 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4252 .write = mem_cgroup_reset,
4253 .read_u64 = mem_cgroup_read_u64,
4254 },
4255 {
4256 .name = "stat",
4257 .seq_show = memcg_stat_show,
4258 },
4259 {
4260 .name = "force_empty",
4261 .write = mem_cgroup_force_empty_write,
4262 },
4263 {
4264 .name = "use_hierarchy",
4265 .write_u64 = mem_cgroup_hierarchy_write,
4266 .read_u64 = mem_cgroup_hierarchy_read,
4267 },
4268 {
4269 .name = "cgroup.event_control", /* XXX: for compat */
4270 .write = memcg_write_event_control,
4271 .flags = CFTYPE_NO_PREFIX,
4272 .mode = S_IWUGO,
4273 },
4274 {
4275 .name = "swappiness",
4276 .read_u64 = mem_cgroup_swappiness_read,
4277 .write_u64 = mem_cgroup_swappiness_write,
4278 },
4279 {
4280 .name = "move_charge_at_immigrate",
4281 .read_u64 = mem_cgroup_move_charge_read,
4282 .write_u64 = mem_cgroup_move_charge_write,
4283 },
4284 {
4285 .name = "oom_control",
4286 .seq_show = mem_cgroup_oom_control_read,
4287 .write_u64 = mem_cgroup_oom_control_write,
4288 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4289 },
4290 {
4291 .name = "pressure_level",
4292 },
4293 #ifdef CONFIG_NUMA
4294 {
4295 .name = "numa_stat",
4296 .seq_show = memcg_numa_stat_show,
4297 },
4298 #endif
4299 #ifdef CONFIG_MEMCG_KMEM
4300 {
4301 .name = "kmem.limit_in_bytes",
4302 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4303 .write = mem_cgroup_write,
4304 .read_u64 = mem_cgroup_read_u64,
4305 },
4306 {
4307 .name = "kmem.usage_in_bytes",
4308 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4309 .read_u64 = mem_cgroup_read_u64,
4310 },
4311 {
4312 .name = "kmem.failcnt",
4313 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4314 .write = mem_cgroup_reset,
4315 .read_u64 = mem_cgroup_read_u64,
4316 },
4317 {
4318 .name = "kmem.max_usage_in_bytes",
4319 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4320 .write = mem_cgroup_reset,
4321 .read_u64 = mem_cgroup_read_u64,
4322 },
4323 #ifdef CONFIG_SLABINFO
4324 {
4325 .name = "kmem.slabinfo",
4326 .seq_start = slab_start,
4327 .seq_next = slab_next,
4328 .seq_stop = slab_stop,
4329 .seq_show = memcg_slab_show,
4330 },
4331 #endif
4332 #endif
4333 { }, /* terminate */
4334 };
4335
4336 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4337 {
4338 struct mem_cgroup_per_node *pn;
4339 struct mem_cgroup_per_zone *mz;
4340 int zone, tmp = node;
4341 /*
4342 * This routine is called against possible nodes.
4343 * But it's BUG to call kmalloc() against offline node.
4344 *
4345 * TODO: this routine can waste much memory for nodes which will
4346 * never be onlined. It's better to use memory hotplug callback
4347 * function.
4348 */
4349 if (!node_state(node, N_NORMAL_MEMORY))
4350 tmp = -1;
4351 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4352 if (!pn)
4353 return 1;
4354
4355 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4356 mz = &pn->zoneinfo[zone];
4357 lruvec_init(&mz->lruvec);
4358 mz->usage_in_excess = 0;
4359 mz->on_tree = false;
4360 mz->memcg = memcg;
4361 }
4362 memcg->nodeinfo[node] = pn;
4363 return 0;
4364 }
4365
4366 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4367 {
4368 kfree(memcg->nodeinfo[node]);
4369 }
4370
4371 static struct mem_cgroup *mem_cgroup_alloc(void)
4372 {
4373 struct mem_cgroup *memcg;
4374 size_t size;
4375
4376 size = sizeof(struct mem_cgroup);
4377 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4378
4379 memcg = kzalloc(size, GFP_KERNEL);
4380 if (!memcg)
4381 return NULL;
4382
4383 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4384 if (!memcg->stat)
4385 goto out_free;
4386 spin_lock_init(&memcg->pcp_counter_lock);
4387 return memcg;
4388
4389 out_free:
4390 kfree(memcg);
4391 return NULL;
4392 }
4393
4394 /*
4395 * At destroying mem_cgroup, references from swap_cgroup can remain.
4396 * (scanning all at force_empty is too costly...)
4397 *
4398 * Instead of clearing all references at force_empty, we remember
4399 * the number of reference from swap_cgroup and free mem_cgroup when
4400 * it goes down to 0.
4401 *
4402 * Removal of cgroup itself succeeds regardless of refs from swap.
4403 */
4404
4405 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4406 {
4407 int node;
4408
4409 mem_cgroup_remove_from_trees(memcg);
4410
4411 for_each_node(node)
4412 free_mem_cgroup_per_zone_info(memcg, node);
4413
4414 free_percpu(memcg->stat);
4415 kfree(memcg);
4416 }
4417
4418 /*
4419 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4420 */
4421 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4422 {
4423 if (!memcg->memory.parent)
4424 return NULL;
4425 return mem_cgroup_from_counter(memcg->memory.parent, memory);
4426 }
4427 EXPORT_SYMBOL(parent_mem_cgroup);
4428
4429 static struct cgroup_subsys_state * __ref
4430 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4431 {
4432 struct mem_cgroup *memcg;
4433 long error = -ENOMEM;
4434 int node;
4435
4436 memcg = mem_cgroup_alloc();
4437 if (!memcg)
4438 return ERR_PTR(error);
4439
4440 for_each_node(node)
4441 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4442 goto free_out;
4443
4444 /* root ? */
4445 if (parent_css == NULL) {
4446 root_mem_cgroup = memcg;
4447 page_counter_init(&memcg->memory, NULL);
4448 memcg->high = PAGE_COUNTER_MAX;
4449 memcg->soft_limit = PAGE_COUNTER_MAX;
4450 page_counter_init(&memcg->memsw, NULL);
4451 page_counter_init(&memcg->kmem, NULL);
4452 }
4453
4454 memcg->last_scanned_node = MAX_NUMNODES;
4455 INIT_LIST_HEAD(&memcg->oom_notify);
4456 memcg->move_charge_at_immigrate = 0;
4457 mutex_init(&memcg->thresholds_lock);
4458 spin_lock_init(&memcg->move_lock);
4459 vmpressure_init(&memcg->vmpressure);
4460 INIT_LIST_HEAD(&memcg->event_list);
4461 spin_lock_init(&memcg->event_list_lock);
4462 #ifdef CONFIG_MEMCG_KMEM
4463 memcg->kmemcg_id = -1;
4464 #endif
4465
4466 return &memcg->css;
4467
4468 free_out:
4469 __mem_cgroup_free(memcg);
4470 return ERR_PTR(error);
4471 }
4472
4473 static int
4474 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4475 {
4476 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4477 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4478 int ret;
4479
4480 if (css->id > MEM_CGROUP_ID_MAX)
4481 return -ENOSPC;
4482
4483 if (!parent)
4484 return 0;
4485
4486 mutex_lock(&memcg_create_mutex);
4487
4488 memcg->use_hierarchy = parent->use_hierarchy;
4489 memcg->oom_kill_disable = parent->oom_kill_disable;
4490 memcg->swappiness = mem_cgroup_swappiness(parent);
4491
4492 if (parent->use_hierarchy) {
4493 page_counter_init(&memcg->memory, &parent->memory);
4494 memcg->high = PAGE_COUNTER_MAX;
4495 memcg->soft_limit = PAGE_COUNTER_MAX;
4496 page_counter_init(&memcg->memsw, &parent->memsw);
4497 page_counter_init(&memcg->kmem, &parent->kmem);
4498
4499 /*
4500 * No need to take a reference to the parent because cgroup
4501 * core guarantees its existence.
4502 */
4503 } else {
4504 page_counter_init(&memcg->memory, NULL);
4505 memcg->high = PAGE_COUNTER_MAX;
4506 memcg->soft_limit = PAGE_COUNTER_MAX;
4507 page_counter_init(&memcg->memsw, NULL);
4508 page_counter_init(&memcg->kmem, NULL);
4509 /*
4510 * Deeper hierachy with use_hierarchy == false doesn't make
4511 * much sense so let cgroup subsystem know about this
4512 * unfortunate state in our controller.
4513 */
4514 if (parent != root_mem_cgroup)
4515 memory_cgrp_subsys.broken_hierarchy = true;
4516 }
4517 mutex_unlock(&memcg_create_mutex);
4518
4519 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4520 if (ret)
4521 return ret;
4522
4523 /*
4524 * Make sure the memcg is initialized: mem_cgroup_iter()
4525 * orders reading memcg->initialized against its callers
4526 * reading the memcg members.
4527 */
4528 smp_store_release(&memcg->initialized, 1);
4529
4530 return 0;
4531 }
4532
4533 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4534 {
4535 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4536 struct mem_cgroup_event *event, *tmp;
4537
4538 /*
4539 * Unregister events and notify userspace.
4540 * Notify userspace about cgroup removing only after rmdir of cgroup
4541 * directory to avoid race between userspace and kernelspace.
4542 */
4543 spin_lock(&memcg->event_list_lock);
4544 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4545 list_del_init(&event->list);
4546 schedule_work(&event->remove);
4547 }
4548 spin_unlock(&memcg->event_list_lock);
4549
4550 vmpressure_cleanup(&memcg->vmpressure);
4551
4552 memcg_deactivate_kmem(memcg);
4553 }
4554
4555 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4556 {
4557 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4558
4559 memcg_destroy_kmem(memcg);
4560 __mem_cgroup_free(memcg);
4561 }
4562
4563 /**
4564 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4565 * @css: the target css
4566 *
4567 * Reset the states of the mem_cgroup associated with @css. This is
4568 * invoked when the userland requests disabling on the default hierarchy
4569 * but the memcg is pinned through dependency. The memcg should stop
4570 * applying policies and should revert to the vanilla state as it may be
4571 * made visible again.
4572 *
4573 * The current implementation only resets the essential configurations.
4574 * This needs to be expanded to cover all the visible parts.
4575 */
4576 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4577 {
4578 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4579
4580 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4581 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4582 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4583 memcg->low = 0;
4584 memcg->high = PAGE_COUNTER_MAX;
4585 memcg->soft_limit = PAGE_COUNTER_MAX;
4586 }
4587
4588 #ifdef CONFIG_MMU
4589 /* Handlers for move charge at task migration. */
4590 static int mem_cgroup_do_precharge(unsigned long count)
4591 {
4592 int ret;
4593
4594 /* Try a single bulk charge without reclaim first */
4595 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4596 if (!ret) {
4597 mc.precharge += count;
4598 return ret;
4599 }
4600 if (ret == -EINTR) {
4601 cancel_charge(root_mem_cgroup, count);
4602 return ret;
4603 }
4604
4605 /* Try charges one by one with reclaim */
4606 while (count--) {
4607 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4608 /*
4609 * In case of failure, any residual charges against
4610 * mc.to will be dropped by mem_cgroup_clear_mc()
4611 * later on. However, cancel any charges that are
4612 * bypassed to root right away or they'll be lost.
4613 */
4614 if (ret == -EINTR)
4615 cancel_charge(root_mem_cgroup, 1);
4616 if (ret)
4617 return ret;
4618 mc.precharge++;
4619 cond_resched();
4620 }
4621 return 0;
4622 }
4623
4624 /**
4625 * get_mctgt_type - get target type of moving charge
4626 * @vma: the vma the pte to be checked belongs
4627 * @addr: the address corresponding to the pte to be checked
4628 * @ptent: the pte to be checked
4629 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4630 *
4631 * Returns
4632 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4633 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4634 * move charge. if @target is not NULL, the page is stored in target->page
4635 * with extra refcnt got(Callers should handle it).
4636 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4637 * target for charge migration. if @target is not NULL, the entry is stored
4638 * in target->ent.
4639 *
4640 * Called with pte lock held.
4641 */
4642 union mc_target {
4643 struct page *page;
4644 swp_entry_t ent;
4645 };
4646
4647 enum mc_target_type {
4648 MC_TARGET_NONE = 0,
4649 MC_TARGET_PAGE,
4650 MC_TARGET_SWAP,
4651 };
4652
4653 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4654 unsigned long addr, pte_t ptent)
4655 {
4656 struct page *page = vm_normal_page(vma, addr, ptent);
4657
4658 if (!page || !page_mapped(page))
4659 return NULL;
4660 if (PageAnon(page)) {
4661 if (!(mc.flags & MOVE_ANON))
4662 return NULL;
4663 } else {
4664 if (!(mc.flags & MOVE_FILE))
4665 return NULL;
4666 }
4667 if (!get_page_unless_zero(page))
4668 return NULL;
4669
4670 return page;
4671 }
4672
4673 #ifdef CONFIG_SWAP
4674 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4675 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4676 {
4677 struct page *page = NULL;
4678 swp_entry_t ent = pte_to_swp_entry(ptent);
4679
4680 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4681 return NULL;
4682 /*
4683 * Because lookup_swap_cache() updates some statistics counter,
4684 * we call find_get_page() with swapper_space directly.
4685 */
4686 page = find_get_page(swap_address_space(ent), ent.val);
4687 if (do_swap_account)
4688 entry->val = ent.val;
4689
4690 return page;
4691 }
4692 #else
4693 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4694 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4695 {
4696 return NULL;
4697 }
4698 #endif
4699
4700 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4701 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4702 {
4703 struct page *page = NULL;
4704 struct address_space *mapping;
4705 pgoff_t pgoff;
4706
4707 if (!vma->vm_file) /* anonymous vma */
4708 return NULL;
4709 if (!(mc.flags & MOVE_FILE))
4710 return NULL;
4711
4712 mapping = vma->vm_file->f_mapping;
4713 pgoff = linear_page_index(vma, addr);
4714
4715 /* page is moved even if it's not RSS of this task(page-faulted). */
4716 #ifdef CONFIG_SWAP
4717 /* shmem/tmpfs may report page out on swap: account for that too. */
4718 if (shmem_mapping(mapping)) {
4719 page = find_get_entry(mapping, pgoff);
4720 if (radix_tree_exceptional_entry(page)) {
4721 swp_entry_t swp = radix_to_swp_entry(page);
4722 if (do_swap_account)
4723 *entry = swp;
4724 page = find_get_page(swap_address_space(swp), swp.val);
4725 }
4726 } else
4727 page = find_get_page(mapping, pgoff);
4728 #else
4729 page = find_get_page(mapping, pgoff);
4730 #endif
4731 return page;
4732 }
4733
4734 /**
4735 * mem_cgroup_move_account - move account of the page
4736 * @page: the page
4737 * @nr_pages: number of regular pages (>1 for huge pages)
4738 * @from: mem_cgroup which the page is moved from.
4739 * @to: mem_cgroup which the page is moved to. @from != @to.
4740 *
4741 * The caller must confirm following.
4742 * - page is not on LRU (isolate_page() is useful.)
4743 * - compound_lock is held when nr_pages > 1
4744 *
4745 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4746 * from old cgroup.
4747 */
4748 static int mem_cgroup_move_account(struct page *page,
4749 unsigned int nr_pages,
4750 struct mem_cgroup *from,
4751 struct mem_cgroup *to)
4752 {
4753 unsigned long flags;
4754 int ret;
4755
4756 VM_BUG_ON(from == to);
4757 VM_BUG_ON_PAGE(PageLRU(page), page);
4758 /*
4759 * The page is isolated from LRU. So, collapse function
4760 * will not handle this page. But page splitting can happen.
4761 * Do this check under compound_page_lock(). The caller should
4762 * hold it.
4763 */
4764 ret = -EBUSY;
4765 if (nr_pages > 1 && !PageTransHuge(page))
4766 goto out;
4767
4768 /*
4769 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
4770 * of its source page while we change it: page migration takes
4771 * both pages off the LRU, but page cache replacement doesn't.
4772 */
4773 if (!trylock_page(page))
4774 goto out;
4775
4776 ret = -EINVAL;
4777 if (page->mem_cgroup != from)
4778 goto out_unlock;
4779
4780 spin_lock_irqsave(&from->move_lock, flags);
4781
4782 if (!PageAnon(page) && page_mapped(page)) {
4783 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4784 nr_pages);
4785 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4786 nr_pages);
4787 }
4788
4789 if (PageWriteback(page)) {
4790 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4791 nr_pages);
4792 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4793 nr_pages);
4794 }
4795
4796 /*
4797 * It is safe to change page->mem_cgroup here because the page
4798 * is referenced, charged, and isolated - we can't race with
4799 * uncharging, charging, migration, or LRU putback.
4800 */
4801
4802 /* caller should have done css_get */
4803 page->mem_cgroup = to;
4804 spin_unlock_irqrestore(&from->move_lock, flags);
4805
4806 ret = 0;
4807
4808 local_irq_disable();
4809 mem_cgroup_charge_statistics(to, page, nr_pages);
4810 memcg_check_events(to, page);
4811 mem_cgroup_charge_statistics(from, page, -nr_pages);
4812 memcg_check_events(from, page);
4813 local_irq_enable();
4814 out_unlock:
4815 unlock_page(page);
4816 out:
4817 return ret;
4818 }
4819
4820 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4821 unsigned long addr, pte_t ptent, union mc_target *target)
4822 {
4823 struct page *page = NULL;
4824 enum mc_target_type ret = MC_TARGET_NONE;
4825 swp_entry_t ent = { .val = 0 };
4826
4827 if (pte_present(ptent))
4828 page = mc_handle_present_pte(vma, addr, ptent);
4829 else if (is_swap_pte(ptent))
4830 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4831 else if (pte_none(ptent))
4832 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4833
4834 if (!page && !ent.val)
4835 return ret;
4836 if (page) {
4837 /*
4838 * Do only loose check w/o serialization.
4839 * mem_cgroup_move_account() checks the page is valid or
4840 * not under LRU exclusion.
4841 */
4842 if (page->mem_cgroup == mc.from) {
4843 ret = MC_TARGET_PAGE;
4844 if (target)
4845 target->page = page;
4846 }
4847 if (!ret || !target)
4848 put_page(page);
4849 }
4850 /* There is a swap entry and a page doesn't exist or isn't charged */
4851 if (ent.val && !ret &&
4852 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4853 ret = MC_TARGET_SWAP;
4854 if (target)
4855 target->ent = ent;
4856 }
4857 return ret;
4858 }
4859
4860 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4861 /*
4862 * We don't consider swapping or file mapped pages because THP does not
4863 * support them for now.
4864 * Caller should make sure that pmd_trans_huge(pmd) is true.
4865 */
4866 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4867 unsigned long addr, pmd_t pmd, union mc_target *target)
4868 {
4869 struct page *page = NULL;
4870 enum mc_target_type ret = MC_TARGET_NONE;
4871
4872 page = pmd_page(pmd);
4873 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4874 if (!(mc.flags & MOVE_ANON))
4875 return ret;
4876 if (page->mem_cgroup == mc.from) {
4877 ret = MC_TARGET_PAGE;
4878 if (target) {
4879 get_page(page);
4880 target->page = page;
4881 }
4882 }
4883 return ret;
4884 }
4885 #else
4886 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4887 unsigned long addr, pmd_t pmd, union mc_target *target)
4888 {
4889 return MC_TARGET_NONE;
4890 }
4891 #endif
4892
4893 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4894 unsigned long addr, unsigned long end,
4895 struct mm_walk *walk)
4896 {
4897 struct vm_area_struct *vma = walk->vma;
4898 pte_t *pte;
4899 spinlock_t *ptl;
4900
4901 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4902 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4903 mc.precharge += HPAGE_PMD_NR;
4904 spin_unlock(ptl);
4905 return 0;
4906 }
4907
4908 if (pmd_trans_unstable(pmd))
4909 return 0;
4910 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4911 for (; addr != end; pte++, addr += PAGE_SIZE)
4912 if (get_mctgt_type(vma, addr, *pte, NULL))
4913 mc.precharge++; /* increment precharge temporarily */
4914 pte_unmap_unlock(pte - 1, ptl);
4915 cond_resched();
4916
4917 return 0;
4918 }
4919
4920 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4921 {
4922 unsigned long precharge;
4923
4924 struct mm_walk mem_cgroup_count_precharge_walk = {
4925 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4926 .mm = mm,
4927 };
4928 down_read(&mm->mmap_sem);
4929 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4930 up_read(&mm->mmap_sem);
4931
4932 precharge = mc.precharge;
4933 mc.precharge = 0;
4934
4935 return precharge;
4936 }
4937
4938 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4939 {
4940 unsigned long precharge = mem_cgroup_count_precharge(mm);
4941
4942 VM_BUG_ON(mc.moving_task);
4943 mc.moving_task = current;
4944 return mem_cgroup_do_precharge(precharge);
4945 }
4946
4947 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4948 static void __mem_cgroup_clear_mc(void)
4949 {
4950 struct mem_cgroup *from = mc.from;
4951 struct mem_cgroup *to = mc.to;
4952
4953 /* we must uncharge all the leftover precharges from mc.to */
4954 if (mc.precharge) {
4955 cancel_charge(mc.to, mc.precharge);
4956 mc.precharge = 0;
4957 }
4958 /*
4959 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4960 * we must uncharge here.
4961 */
4962 if (mc.moved_charge) {
4963 cancel_charge(mc.from, mc.moved_charge);
4964 mc.moved_charge = 0;
4965 }
4966 /* we must fixup refcnts and charges */
4967 if (mc.moved_swap) {
4968 /* uncharge swap account from the old cgroup */
4969 if (!mem_cgroup_is_root(mc.from))
4970 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4971
4972 /*
4973 * we charged both to->memory and to->memsw, so we
4974 * should uncharge to->memory.
4975 */
4976 if (!mem_cgroup_is_root(mc.to))
4977 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4978
4979 css_put_many(&mc.from->css, mc.moved_swap);
4980
4981 /* we've already done css_get(mc.to) */
4982 mc.moved_swap = 0;
4983 }
4984 memcg_oom_recover(from);
4985 memcg_oom_recover(to);
4986 wake_up_all(&mc.waitq);
4987 }
4988
4989 static void mem_cgroup_clear_mc(void)
4990 {
4991 /*
4992 * we must clear moving_task before waking up waiters at the end of
4993 * task migration.
4994 */
4995 mc.moving_task = NULL;
4996 __mem_cgroup_clear_mc();
4997 spin_lock(&mc.lock);
4998 mc.from = NULL;
4999 mc.to = NULL;
5000 spin_unlock(&mc.lock);
5001 }
5002
5003 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5004 struct cgroup_taskset *tset)
5005 {
5006 struct task_struct *p = cgroup_taskset_first(tset);
5007 int ret = 0;
5008 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5009 unsigned long move_flags;
5010
5011 /*
5012 * We are now commited to this value whatever it is. Changes in this
5013 * tunable will only affect upcoming migrations, not the current one.
5014 * So we need to save it, and keep it going.
5015 */
5016 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5017 if (move_flags) {
5018 struct mm_struct *mm;
5019 struct mem_cgroup *from = mem_cgroup_from_task(p);
5020
5021 VM_BUG_ON(from == memcg);
5022
5023 mm = get_task_mm(p);
5024 if (!mm)
5025 return 0;
5026 /* We move charges only when we move a owner of the mm */
5027 if (mm->owner == p) {
5028 VM_BUG_ON(mc.from);
5029 VM_BUG_ON(mc.to);
5030 VM_BUG_ON(mc.precharge);
5031 VM_BUG_ON(mc.moved_charge);
5032 VM_BUG_ON(mc.moved_swap);
5033
5034 spin_lock(&mc.lock);
5035 mc.from = from;
5036 mc.to = memcg;
5037 mc.flags = move_flags;
5038 spin_unlock(&mc.lock);
5039 /* We set mc.moving_task later */
5040
5041 ret = mem_cgroup_precharge_mc(mm);
5042 if (ret)
5043 mem_cgroup_clear_mc();
5044 }
5045 mmput(mm);
5046 }
5047 return ret;
5048 }
5049
5050 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5051 struct cgroup_taskset *tset)
5052 {
5053 if (mc.to)
5054 mem_cgroup_clear_mc();
5055 }
5056
5057 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5058 unsigned long addr, unsigned long end,
5059 struct mm_walk *walk)
5060 {
5061 int ret = 0;
5062 struct vm_area_struct *vma = walk->vma;
5063 pte_t *pte;
5064 spinlock_t *ptl;
5065 enum mc_target_type target_type;
5066 union mc_target target;
5067 struct page *page;
5068
5069 /*
5070 * We don't take compound_lock() here but no race with splitting thp
5071 * happens because:
5072 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5073 * under splitting, which means there's no concurrent thp split,
5074 * - if another thread runs into split_huge_page() just after we
5075 * entered this if-block, the thread must wait for page table lock
5076 * to be unlocked in __split_huge_page_splitting(), where the main
5077 * part of thp split is not executed yet.
5078 */
5079 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5080 if (mc.precharge < HPAGE_PMD_NR) {
5081 spin_unlock(ptl);
5082 return 0;
5083 }
5084 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5085 if (target_type == MC_TARGET_PAGE) {
5086 page = target.page;
5087 if (!isolate_lru_page(page)) {
5088 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5089 mc.from, mc.to)) {
5090 mc.precharge -= HPAGE_PMD_NR;
5091 mc.moved_charge += HPAGE_PMD_NR;
5092 }
5093 putback_lru_page(page);
5094 }
5095 put_page(page);
5096 }
5097 spin_unlock(ptl);
5098 return 0;
5099 }
5100
5101 if (pmd_trans_unstable(pmd))
5102 return 0;
5103 retry:
5104 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5105 for (; addr != end; addr += PAGE_SIZE) {
5106 pte_t ptent = *(pte++);
5107 swp_entry_t ent;
5108
5109 if (!mc.precharge)
5110 break;
5111
5112 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5113 case MC_TARGET_PAGE:
5114 page = target.page;
5115 if (isolate_lru_page(page))
5116 goto put;
5117 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5118 mc.precharge--;
5119 /* we uncharge from mc.from later. */
5120 mc.moved_charge++;
5121 }
5122 putback_lru_page(page);
5123 put: /* get_mctgt_type() gets the page */
5124 put_page(page);
5125 break;
5126 case MC_TARGET_SWAP:
5127 ent = target.ent;
5128 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5129 mc.precharge--;
5130 /* we fixup refcnts and charges later. */
5131 mc.moved_swap++;
5132 }
5133 break;
5134 default:
5135 break;
5136 }
5137 }
5138 pte_unmap_unlock(pte - 1, ptl);
5139 cond_resched();
5140
5141 if (addr != end) {
5142 /*
5143 * We have consumed all precharges we got in can_attach().
5144 * We try charge one by one, but don't do any additional
5145 * charges to mc.to if we have failed in charge once in attach()
5146 * phase.
5147 */
5148 ret = mem_cgroup_do_precharge(1);
5149 if (!ret)
5150 goto retry;
5151 }
5152
5153 return ret;
5154 }
5155
5156 static void mem_cgroup_move_charge(struct mm_struct *mm)
5157 {
5158 struct mm_walk mem_cgroup_move_charge_walk = {
5159 .pmd_entry = mem_cgroup_move_charge_pte_range,
5160 .mm = mm,
5161 };
5162
5163 lru_add_drain_all();
5164 /*
5165 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5166 * move_lock while we're moving its pages to another memcg.
5167 * Then wait for already started RCU-only updates to finish.
5168 */
5169 atomic_inc(&mc.from->moving_account);
5170 synchronize_rcu();
5171 retry:
5172 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5173 /*
5174 * Someone who are holding the mmap_sem might be waiting in
5175 * waitq. So we cancel all extra charges, wake up all waiters,
5176 * and retry. Because we cancel precharges, we might not be able
5177 * to move enough charges, but moving charge is a best-effort
5178 * feature anyway, so it wouldn't be a big problem.
5179 */
5180 __mem_cgroup_clear_mc();
5181 cond_resched();
5182 goto retry;
5183 }
5184 /*
5185 * When we have consumed all precharges and failed in doing
5186 * additional charge, the page walk just aborts.
5187 */
5188 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5189 up_read(&mm->mmap_sem);
5190 atomic_dec(&mc.from->moving_account);
5191 }
5192
5193 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5194 struct cgroup_taskset *tset)
5195 {
5196 struct task_struct *p = cgroup_taskset_first(tset);
5197 struct mm_struct *mm = get_task_mm(p);
5198
5199 if (mm) {
5200 if (mc.to)
5201 mem_cgroup_move_charge(mm);
5202 mmput(mm);
5203 }
5204 if (mc.to)
5205 mem_cgroup_clear_mc();
5206 }
5207 #else /* !CONFIG_MMU */
5208 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5209 struct cgroup_taskset *tset)
5210 {
5211 return 0;
5212 }
5213 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5214 struct cgroup_taskset *tset)
5215 {
5216 }
5217 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5218 struct cgroup_taskset *tset)
5219 {
5220 }
5221 #endif
5222
5223 /*
5224 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5225 * to verify whether we're attached to the default hierarchy on each mount
5226 * attempt.
5227 */
5228 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5229 {
5230 /*
5231 * use_hierarchy is forced on the default hierarchy. cgroup core
5232 * guarantees that @root doesn't have any children, so turning it
5233 * on for the root memcg is enough.
5234 */
5235 if (cgroup_on_dfl(root_css->cgroup))
5236 root_mem_cgroup->use_hierarchy = true;
5237 else
5238 root_mem_cgroup->use_hierarchy = false;
5239 }
5240
5241 static u64 memory_current_read(struct cgroup_subsys_state *css,
5242 struct cftype *cft)
5243 {
5244 return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5245 }
5246
5247 static int memory_low_show(struct seq_file *m, void *v)
5248 {
5249 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5250 unsigned long low = READ_ONCE(memcg->low);
5251
5252 if (low == PAGE_COUNTER_MAX)
5253 seq_puts(m, "max\n");
5254 else
5255 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5256
5257 return 0;
5258 }
5259
5260 static ssize_t memory_low_write(struct kernfs_open_file *of,
5261 char *buf, size_t nbytes, loff_t off)
5262 {
5263 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5264 unsigned long low;
5265 int err;
5266
5267 buf = strstrip(buf);
5268 err = page_counter_memparse(buf, "max", &low);
5269 if (err)
5270 return err;
5271
5272 memcg->low = low;
5273
5274 return nbytes;
5275 }
5276
5277 static int memory_high_show(struct seq_file *m, void *v)
5278 {
5279 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5280 unsigned long high = READ_ONCE(memcg->high);
5281
5282 if (high == PAGE_COUNTER_MAX)
5283 seq_puts(m, "max\n");
5284 else
5285 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5286
5287 return 0;
5288 }
5289
5290 static ssize_t memory_high_write(struct kernfs_open_file *of,
5291 char *buf, size_t nbytes, loff_t off)
5292 {
5293 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5294 unsigned long high;
5295 int err;
5296
5297 buf = strstrip(buf);
5298 err = page_counter_memparse(buf, "max", &high);
5299 if (err)
5300 return err;
5301
5302 memcg->high = high;
5303
5304 return nbytes;
5305 }
5306
5307 static int memory_max_show(struct seq_file *m, void *v)
5308 {
5309 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5310 unsigned long max = READ_ONCE(memcg->memory.limit);
5311
5312 if (max == PAGE_COUNTER_MAX)
5313 seq_puts(m, "max\n");
5314 else
5315 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5316
5317 return 0;
5318 }
5319
5320 static ssize_t memory_max_write(struct kernfs_open_file *of,
5321 char *buf, size_t nbytes, loff_t off)
5322 {
5323 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5324 unsigned long max;
5325 int err;
5326
5327 buf = strstrip(buf);
5328 err = page_counter_memparse(buf, "max", &max);
5329 if (err)
5330 return err;
5331
5332 err = mem_cgroup_resize_limit(memcg, max);
5333 if (err)
5334 return err;
5335
5336 return nbytes;
5337 }
5338
5339 static int memory_events_show(struct seq_file *m, void *v)
5340 {
5341 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5342
5343 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5344 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5345 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5346 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5347
5348 return 0;
5349 }
5350
5351 static struct cftype memory_files[] = {
5352 {
5353 .name = "current",
5354 .read_u64 = memory_current_read,
5355 },
5356 {
5357 .name = "low",
5358 .flags = CFTYPE_NOT_ON_ROOT,
5359 .seq_show = memory_low_show,
5360 .write = memory_low_write,
5361 },
5362 {
5363 .name = "high",
5364 .flags = CFTYPE_NOT_ON_ROOT,
5365 .seq_show = memory_high_show,
5366 .write = memory_high_write,
5367 },
5368 {
5369 .name = "max",
5370 .flags = CFTYPE_NOT_ON_ROOT,
5371 .seq_show = memory_max_show,
5372 .write = memory_max_write,
5373 },
5374 {
5375 .name = "events",
5376 .flags = CFTYPE_NOT_ON_ROOT,
5377 .seq_show = memory_events_show,
5378 },
5379 { } /* terminate */
5380 };
5381
5382 struct cgroup_subsys memory_cgrp_subsys = {
5383 .css_alloc = mem_cgroup_css_alloc,
5384 .css_online = mem_cgroup_css_online,
5385 .css_offline = mem_cgroup_css_offline,
5386 .css_free = mem_cgroup_css_free,
5387 .css_reset = mem_cgroup_css_reset,
5388 .can_attach = mem_cgroup_can_attach,
5389 .cancel_attach = mem_cgroup_cancel_attach,
5390 .attach = mem_cgroup_move_task,
5391 .bind = mem_cgroup_bind,
5392 .dfl_cftypes = memory_files,
5393 .legacy_cftypes = mem_cgroup_legacy_files,
5394 .early_init = 0,
5395 };
5396
5397 /**
5398 * mem_cgroup_events - count memory events against a cgroup
5399 * @memcg: the memory cgroup
5400 * @idx: the event index
5401 * @nr: the number of events to account for
5402 */
5403 void mem_cgroup_events(struct mem_cgroup *memcg,
5404 enum mem_cgroup_events_index idx,
5405 unsigned int nr)
5406 {
5407 this_cpu_add(memcg->stat->events[idx], nr);
5408 }
5409
5410 /**
5411 * mem_cgroup_low - check if memory consumption is below the normal range
5412 * @root: the highest ancestor to consider
5413 * @memcg: the memory cgroup to check
5414 *
5415 * Returns %true if memory consumption of @memcg, and that of all
5416 * configurable ancestors up to @root, is below the normal range.
5417 */
5418 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5419 {
5420 if (mem_cgroup_disabled())
5421 return false;
5422
5423 /*
5424 * The toplevel group doesn't have a configurable range, so
5425 * it's never low when looked at directly, and it is not
5426 * considered an ancestor when assessing the hierarchy.
5427 */
5428
5429 if (memcg == root_mem_cgroup)
5430 return false;
5431
5432 if (page_counter_read(&memcg->memory) >= memcg->low)
5433 return false;
5434
5435 while (memcg != root) {
5436 memcg = parent_mem_cgroup(memcg);
5437
5438 if (memcg == root_mem_cgroup)
5439 break;
5440
5441 if (page_counter_read(&memcg->memory) >= memcg->low)
5442 return false;
5443 }
5444 return true;
5445 }
5446
5447 /**
5448 * mem_cgroup_try_charge - try charging a page
5449 * @page: page to charge
5450 * @mm: mm context of the victim
5451 * @gfp_mask: reclaim mode
5452 * @memcgp: charged memcg return
5453 *
5454 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5455 * pages according to @gfp_mask if necessary.
5456 *
5457 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5458 * Otherwise, an error code is returned.
5459 *
5460 * After page->mapping has been set up, the caller must finalize the
5461 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5462 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5463 */
5464 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5465 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5466 {
5467 struct mem_cgroup *memcg = NULL;
5468 unsigned int nr_pages = 1;
5469 int ret = 0;
5470
5471 if (mem_cgroup_disabled())
5472 goto out;
5473
5474 if (PageSwapCache(page)) {
5475 /*
5476 * Every swap fault against a single page tries to charge the
5477 * page, bail as early as possible. shmem_unuse() encounters
5478 * already charged pages, too. The USED bit is protected by
5479 * the page lock, which serializes swap cache removal, which
5480 * in turn serializes uncharging.
5481 */
5482 if (page->mem_cgroup)
5483 goto out;
5484 }
5485
5486 if (PageTransHuge(page)) {
5487 nr_pages <<= compound_order(page);
5488 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5489 }
5490
5491 if (do_swap_account && PageSwapCache(page))
5492 memcg = try_get_mem_cgroup_from_page(page);
5493 if (!memcg)
5494 memcg = get_mem_cgroup_from_mm(mm);
5495
5496 ret = try_charge(memcg, gfp_mask, nr_pages);
5497
5498 css_put(&memcg->css);
5499
5500 if (ret == -EINTR) {
5501 memcg = root_mem_cgroup;
5502 ret = 0;
5503 }
5504 out:
5505 *memcgp = memcg;
5506 return ret;
5507 }
5508
5509 /**
5510 * mem_cgroup_commit_charge - commit a page charge
5511 * @page: page to charge
5512 * @memcg: memcg to charge the page to
5513 * @lrucare: page might be on LRU already
5514 *
5515 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5516 * after page->mapping has been set up. This must happen atomically
5517 * as part of the page instantiation, i.e. under the page table lock
5518 * for anonymous pages, under the page lock for page and swap cache.
5519 *
5520 * In addition, the page must not be on the LRU during the commit, to
5521 * prevent racing with task migration. If it might be, use @lrucare.
5522 *
5523 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5524 */
5525 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5526 bool lrucare)
5527 {
5528 unsigned int nr_pages = 1;
5529
5530 VM_BUG_ON_PAGE(!page->mapping, page);
5531 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5532
5533 if (mem_cgroup_disabled())
5534 return;
5535 /*
5536 * Swap faults will attempt to charge the same page multiple
5537 * times. But reuse_swap_page() might have removed the page
5538 * from swapcache already, so we can't check PageSwapCache().
5539 */
5540 if (!memcg)
5541 return;
5542
5543 commit_charge(page, memcg, lrucare);
5544
5545 if (PageTransHuge(page)) {
5546 nr_pages <<= compound_order(page);
5547 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5548 }
5549
5550 local_irq_disable();
5551 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5552 memcg_check_events(memcg, page);
5553 local_irq_enable();
5554
5555 if (do_swap_account && PageSwapCache(page)) {
5556 swp_entry_t entry = { .val = page_private(page) };
5557 /*
5558 * The swap entry might not get freed for a long time,
5559 * let's not wait for it. The page already received a
5560 * memory+swap charge, drop the swap entry duplicate.
5561 */
5562 mem_cgroup_uncharge_swap(entry);
5563 }
5564 }
5565
5566 /**
5567 * mem_cgroup_cancel_charge - cancel a page charge
5568 * @page: page to charge
5569 * @memcg: memcg to charge the page to
5570 *
5571 * Cancel a charge transaction started by mem_cgroup_try_charge().
5572 */
5573 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5574 {
5575 unsigned int nr_pages = 1;
5576
5577 if (mem_cgroup_disabled())
5578 return;
5579 /*
5580 * Swap faults will attempt to charge the same page multiple
5581 * times. But reuse_swap_page() might have removed the page
5582 * from swapcache already, so we can't check PageSwapCache().
5583 */
5584 if (!memcg)
5585 return;
5586
5587 if (PageTransHuge(page)) {
5588 nr_pages <<= compound_order(page);
5589 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5590 }
5591
5592 cancel_charge(memcg, nr_pages);
5593 }
5594
5595 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5596 unsigned long nr_anon, unsigned long nr_file,
5597 unsigned long nr_huge, struct page *dummy_page)
5598 {
5599 unsigned long nr_pages = nr_anon + nr_file;
5600 unsigned long flags;
5601
5602 if (!mem_cgroup_is_root(memcg)) {
5603 page_counter_uncharge(&memcg->memory, nr_pages);
5604 if (do_swap_account)
5605 page_counter_uncharge(&memcg->memsw, nr_pages);
5606 memcg_oom_recover(memcg);
5607 }
5608
5609 local_irq_save(flags);
5610 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5611 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5612 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5613 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5614 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5615 memcg_check_events(memcg, dummy_page);
5616 local_irq_restore(flags);
5617
5618 if (!mem_cgroup_is_root(memcg))
5619 css_put_many(&memcg->css, nr_pages);
5620 }
5621
5622 static void uncharge_list(struct list_head *page_list)
5623 {
5624 struct mem_cgroup *memcg = NULL;
5625 unsigned long nr_anon = 0;
5626 unsigned long nr_file = 0;
5627 unsigned long nr_huge = 0;
5628 unsigned long pgpgout = 0;
5629 struct list_head *next;
5630 struct page *page;
5631
5632 next = page_list->next;
5633 do {
5634 unsigned int nr_pages = 1;
5635
5636 page = list_entry(next, struct page, lru);
5637 next = page->lru.next;
5638
5639 VM_BUG_ON_PAGE(PageLRU(page), page);
5640 VM_BUG_ON_PAGE(page_count(page), page);
5641
5642 if (!page->mem_cgroup)
5643 continue;
5644
5645 /*
5646 * Nobody should be changing or seriously looking at
5647 * page->mem_cgroup at this point, we have fully
5648 * exclusive access to the page.
5649 */
5650
5651 if (memcg != page->mem_cgroup) {
5652 if (memcg) {
5653 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5654 nr_huge, page);
5655 pgpgout = nr_anon = nr_file = nr_huge = 0;
5656 }
5657 memcg = page->mem_cgroup;
5658 }
5659
5660 if (PageTransHuge(page)) {
5661 nr_pages <<= compound_order(page);
5662 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5663 nr_huge += nr_pages;
5664 }
5665
5666 if (PageAnon(page))
5667 nr_anon += nr_pages;
5668 else
5669 nr_file += nr_pages;
5670
5671 page->mem_cgroup = NULL;
5672
5673 pgpgout++;
5674 } while (next != page_list);
5675
5676 if (memcg)
5677 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5678 nr_huge, page);
5679 }
5680
5681 /**
5682 * mem_cgroup_uncharge - uncharge a page
5683 * @page: page to uncharge
5684 *
5685 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5686 * mem_cgroup_commit_charge().
5687 */
5688 void mem_cgroup_uncharge(struct page *page)
5689 {
5690 if (mem_cgroup_disabled())
5691 return;
5692
5693 /* Don't touch page->lru of any random page, pre-check: */
5694 if (!page->mem_cgroup)
5695 return;
5696
5697 INIT_LIST_HEAD(&page->lru);
5698 uncharge_list(&page->lru);
5699 }
5700
5701 /**
5702 * mem_cgroup_uncharge_list - uncharge a list of page
5703 * @page_list: list of pages to uncharge
5704 *
5705 * Uncharge a list of pages previously charged with
5706 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5707 */
5708 void mem_cgroup_uncharge_list(struct list_head *page_list)
5709 {
5710 if (mem_cgroup_disabled())
5711 return;
5712
5713 if (!list_empty(page_list))
5714 uncharge_list(page_list);
5715 }
5716
5717 /**
5718 * mem_cgroup_migrate - migrate a charge to another page
5719 * @oldpage: currently charged page
5720 * @newpage: page to transfer the charge to
5721 * @lrucare: either or both pages might be on the LRU already
5722 *
5723 * Migrate the charge from @oldpage to @newpage.
5724 *
5725 * Both pages must be locked, @newpage->mapping must be set up.
5726 */
5727 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5728 bool lrucare)
5729 {
5730 struct mem_cgroup *memcg;
5731 int isolated;
5732
5733 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5734 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5735 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5736 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5737 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5738 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5739 newpage);
5740
5741 if (mem_cgroup_disabled())
5742 return;
5743
5744 /* Page cache replacement: new page already charged? */
5745 if (newpage->mem_cgroup)
5746 return;
5747
5748 /*
5749 * Swapcache readahead pages can get migrated before being
5750 * charged, and migration from compaction can happen to an
5751 * uncharged page when the PFN walker finds a page that
5752 * reclaim just put back on the LRU but has not released yet.
5753 */
5754 memcg = oldpage->mem_cgroup;
5755 if (!memcg)
5756 return;
5757
5758 if (lrucare)
5759 lock_page_lru(oldpage, &isolated);
5760
5761 oldpage->mem_cgroup = NULL;
5762
5763 if (lrucare)
5764 unlock_page_lru(oldpage, isolated);
5765
5766 commit_charge(newpage, memcg, lrucare);
5767 }
5768
5769 /*
5770 * subsys_initcall() for memory controller.
5771 *
5772 * Some parts like hotcpu_notifier() have to be initialized from this context
5773 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5774 * everything that doesn't depend on a specific mem_cgroup structure should
5775 * be initialized from here.
5776 */
5777 static int __init mem_cgroup_init(void)
5778 {
5779 int cpu, node;
5780
5781 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5782
5783 for_each_possible_cpu(cpu)
5784 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5785 drain_local_stock);
5786
5787 for_each_node(node) {
5788 struct mem_cgroup_tree_per_node *rtpn;
5789 int zone;
5790
5791 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5792 node_online(node) ? node : NUMA_NO_NODE);
5793
5794 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5795 struct mem_cgroup_tree_per_zone *rtpz;
5796
5797 rtpz = &rtpn->rb_tree_per_zone[zone];
5798 rtpz->rb_root = RB_ROOT;
5799 spin_lock_init(&rtpz->lock);
5800 }
5801 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5802 }
5803
5804 return 0;
5805 }
5806 subsys_initcall(mem_cgroup_init);
5807
5808 #ifdef CONFIG_MEMCG_SWAP
5809 /**
5810 * mem_cgroup_swapout - transfer a memsw charge to swap
5811 * @page: page whose memsw charge to transfer
5812 * @entry: swap entry to move the charge to
5813 *
5814 * Transfer the memsw charge of @page to @entry.
5815 */
5816 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5817 {
5818 struct mem_cgroup *memcg;
5819 unsigned short oldid;
5820
5821 VM_BUG_ON_PAGE(PageLRU(page), page);
5822 VM_BUG_ON_PAGE(page_count(page), page);
5823
5824 if (!do_swap_account)
5825 return;
5826
5827 memcg = page->mem_cgroup;
5828
5829 /* Readahead page, never charged */
5830 if (!memcg)
5831 return;
5832
5833 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5834 VM_BUG_ON_PAGE(oldid, page);
5835 mem_cgroup_swap_statistics(memcg, true);
5836
5837 page->mem_cgroup = NULL;
5838
5839 if (!mem_cgroup_is_root(memcg))
5840 page_counter_uncharge(&memcg->memory, 1);
5841
5842 /* Caller disabled preemption with mapping->tree_lock */
5843 mem_cgroup_charge_statistics(memcg, page, -1);
5844 memcg_check_events(memcg, page);
5845 }
5846
5847 /**
5848 * mem_cgroup_uncharge_swap - uncharge a swap entry
5849 * @entry: swap entry to uncharge
5850 *
5851 * Drop the memsw charge associated with @entry.
5852 */
5853 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5854 {
5855 struct mem_cgroup *memcg;
5856 unsigned short id;
5857
5858 if (!do_swap_account)
5859 return;
5860
5861 id = swap_cgroup_record(entry, 0);
5862 rcu_read_lock();
5863 memcg = mem_cgroup_from_id(id);
5864 if (memcg) {
5865 if (!mem_cgroup_is_root(memcg))
5866 page_counter_uncharge(&memcg->memsw, 1);
5867 mem_cgroup_swap_statistics(memcg, false);
5868 css_put(&memcg->css);
5869 }
5870 rcu_read_unlock();
5871 }
5872
5873 /* for remember boot option*/
5874 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5875 static int really_do_swap_account __initdata = 1;
5876 #else
5877 static int really_do_swap_account __initdata;
5878 #endif
5879
5880 static int __init enable_swap_account(char *s)
5881 {
5882 if (!strcmp(s, "1"))
5883 really_do_swap_account = 1;
5884 else if (!strcmp(s, "0"))
5885 really_do_swap_account = 0;
5886 return 1;
5887 }
5888 __setup("swapaccount=", enable_swap_account);
5889
5890 static struct cftype memsw_cgroup_files[] = {
5891 {
5892 .name = "memsw.usage_in_bytes",
5893 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5894 .read_u64 = mem_cgroup_read_u64,
5895 },
5896 {
5897 .name = "memsw.max_usage_in_bytes",
5898 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5899 .write = mem_cgroup_reset,
5900 .read_u64 = mem_cgroup_read_u64,
5901 },
5902 {
5903 .name = "memsw.limit_in_bytes",
5904 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5905 .write = mem_cgroup_write,
5906 .read_u64 = mem_cgroup_read_u64,
5907 },
5908 {
5909 .name = "memsw.failcnt",
5910 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5911 .write = mem_cgroup_reset,
5912 .read_u64 = mem_cgroup_read_u64,
5913 },
5914 { }, /* terminate */
5915 };
5916
5917 static int __init mem_cgroup_swap_init(void)
5918 {
5919 if (!mem_cgroup_disabled() && really_do_swap_account) {
5920 do_swap_account = 1;
5921 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5922 memsw_cgroup_files));
5923 }
5924 return 0;
5925 }
5926 subsys_initcall(mem_cgroup_swap_init);
5927
5928 #endif /* CONFIG_MEMCG_SWAP */
This page took 0.170063 seconds and 5 git commands to generate.