b3f16ab4b4311d00efd34e9e53022a42b0d43d28
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80 #define MEM_CGROUP_RECLAIM_RETRIES 5
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account 0
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "rss_huge",
105 "mapped_file",
106 "dirty",
107 "writeback",
108 "swap",
109 };
110
111 static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116 };
117
118 static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124 };
125
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
129
130 /*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135 struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142 };
143
144 struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146 };
147
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
150 /* for OOM */
151 struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154 };
155
156 /*
157 * cgroup_event represents events which userspace want to receive.
158 */
159 struct mem_cgroup_event {
160 /*
161 * memcg which the event belongs to.
162 */
163 struct mem_cgroup *memcg;
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
177 int (*register_event)(struct mem_cgroup *memcg,
178 struct eventfd_ctx *eventfd, const char *args);
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
184 void (*unregister_event)(struct mem_cgroup *memcg,
185 struct eventfd_ctx *eventfd);
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194 };
195
196 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198
199 /* Stuffs for move charges at task migration. */
200 /*
201 * Types of charges to be moved.
202 */
203 #define MOVE_ANON 0x1U
204 #define MOVE_FILE 0x2U
205 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
206
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct {
209 spinlock_t lock; /* for from, to */
210 struct mm_struct *mm;
211 struct mem_cgroup *from;
212 struct mem_cgroup *to;
213 unsigned long flags;
214 unsigned long precharge;
215 unsigned long moved_charge;
216 unsigned long moved_swap;
217 struct task_struct *moving_task; /* a task moving charges */
218 wait_queue_head_t waitq; /* a waitq for other context */
219 } mc = {
220 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
222 };
223
224 /*
225 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226 * limit reclaim to prevent infinite loops, if they ever occur.
227 */
228 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
229 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
230
231 enum charge_type {
232 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233 MEM_CGROUP_CHARGE_TYPE_ANON,
234 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
235 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
236 NR_CHARGE_TYPE,
237 };
238
239 /* for encoding cft->private value on file */
240 enum res_type {
241 _MEM,
242 _MEMSWAP,
243 _OOM_TYPE,
244 _KMEM,
245 _TCP,
246 };
247
248 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
249 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
250 #define MEMFILE_ATTR(val) ((val) & 0xffff)
251 /* Used for OOM nofiier */
252 #define OOM_CONTROL (0)
253
254 /* Some nice accessors for the vmpressure. */
255 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256 {
257 if (!memcg)
258 memcg = root_mem_cgroup;
259 return &memcg->vmpressure;
260 }
261
262 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263 {
264 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265 }
266
267 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
268 {
269 return (memcg == root_mem_cgroup);
270 }
271
272 #ifndef CONFIG_SLOB
273 /*
274 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
275 * The main reason for not using cgroup id for this:
276 * this works better in sparse environments, where we have a lot of memcgs,
277 * but only a few kmem-limited. Or also, if we have, for instance, 200
278 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
279 * 200 entry array for that.
280 *
281 * The current size of the caches array is stored in memcg_nr_cache_ids. It
282 * will double each time we have to increase it.
283 */
284 static DEFINE_IDA(memcg_cache_ida);
285 int memcg_nr_cache_ids;
286
287 /* Protects memcg_nr_cache_ids */
288 static DECLARE_RWSEM(memcg_cache_ids_sem);
289
290 void memcg_get_cache_ids(void)
291 {
292 down_read(&memcg_cache_ids_sem);
293 }
294
295 void memcg_put_cache_ids(void)
296 {
297 up_read(&memcg_cache_ids_sem);
298 }
299
300 /*
301 * MIN_SIZE is different than 1, because we would like to avoid going through
302 * the alloc/free process all the time. In a small machine, 4 kmem-limited
303 * cgroups is a reasonable guess. In the future, it could be a parameter or
304 * tunable, but that is strictly not necessary.
305 *
306 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307 * this constant directly from cgroup, but it is understandable that this is
308 * better kept as an internal representation in cgroup.c. In any case, the
309 * cgrp_id space is not getting any smaller, and we don't have to necessarily
310 * increase ours as well if it increases.
311 */
312 #define MEMCG_CACHES_MIN_SIZE 4
313 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
314
315 /*
316 * A lot of the calls to the cache allocation functions are expected to be
317 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318 * conditional to this static branch, we'll have to allow modules that does
319 * kmem_cache_alloc and the such to see this symbol as well
320 */
321 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
322 EXPORT_SYMBOL(memcg_kmem_enabled_key);
323
324 #endif /* !CONFIG_SLOB */
325
326 static struct mem_cgroup_per_zone *
327 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
328 {
329 int nid = zone_to_nid(zone);
330 int zid = zone_idx(zone);
331
332 return &memcg->nodeinfo[nid]->zoneinfo[zid];
333 }
334
335 /**
336 * mem_cgroup_css_from_page - css of the memcg associated with a page
337 * @page: page of interest
338 *
339 * If memcg is bound to the default hierarchy, css of the memcg associated
340 * with @page is returned. The returned css remains associated with @page
341 * until it is released.
342 *
343 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
344 * is returned.
345 */
346 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
347 {
348 struct mem_cgroup *memcg;
349
350 memcg = page->mem_cgroup;
351
352 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
353 memcg = root_mem_cgroup;
354
355 return &memcg->css;
356 }
357
358 /**
359 * page_cgroup_ino - return inode number of the memcg a page is charged to
360 * @page: the page
361 *
362 * Look up the closest online ancestor of the memory cgroup @page is charged to
363 * and return its inode number or 0 if @page is not charged to any cgroup. It
364 * is safe to call this function without holding a reference to @page.
365 *
366 * Note, this function is inherently racy, because there is nothing to prevent
367 * the cgroup inode from getting torn down and potentially reallocated a moment
368 * after page_cgroup_ino() returns, so it only should be used by callers that
369 * do not care (such as procfs interfaces).
370 */
371 ino_t page_cgroup_ino(struct page *page)
372 {
373 struct mem_cgroup *memcg;
374 unsigned long ino = 0;
375
376 rcu_read_lock();
377 memcg = READ_ONCE(page->mem_cgroup);
378 while (memcg && !(memcg->css.flags & CSS_ONLINE))
379 memcg = parent_mem_cgroup(memcg);
380 if (memcg)
381 ino = cgroup_ino(memcg->css.cgroup);
382 rcu_read_unlock();
383 return ino;
384 }
385
386 static struct mem_cgroup_per_zone *
387 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
388 {
389 int nid = page_to_nid(page);
390 int zid = page_zonenum(page);
391
392 return &memcg->nodeinfo[nid]->zoneinfo[zid];
393 }
394
395 static struct mem_cgroup_tree_per_zone *
396 soft_limit_tree_node_zone(int nid, int zid)
397 {
398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399 }
400
401 static struct mem_cgroup_tree_per_zone *
402 soft_limit_tree_from_page(struct page *page)
403 {
404 int nid = page_to_nid(page);
405 int zid = page_zonenum(page);
406
407 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
408 }
409
410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
411 struct mem_cgroup_tree_per_zone *mctz,
412 unsigned long new_usage_in_excess)
413 {
414 struct rb_node **p = &mctz->rb_root.rb_node;
415 struct rb_node *parent = NULL;
416 struct mem_cgroup_per_zone *mz_node;
417
418 if (mz->on_tree)
419 return;
420
421 mz->usage_in_excess = new_usage_in_excess;
422 if (!mz->usage_in_excess)
423 return;
424 while (*p) {
425 parent = *p;
426 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
427 tree_node);
428 if (mz->usage_in_excess < mz_node->usage_in_excess)
429 p = &(*p)->rb_left;
430 /*
431 * We can't avoid mem cgroups that are over their soft
432 * limit by the same amount
433 */
434 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
435 p = &(*p)->rb_right;
436 }
437 rb_link_node(&mz->tree_node, parent, p);
438 rb_insert_color(&mz->tree_node, &mctz->rb_root);
439 mz->on_tree = true;
440 }
441
442 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
443 struct mem_cgroup_tree_per_zone *mctz)
444 {
445 if (!mz->on_tree)
446 return;
447 rb_erase(&mz->tree_node, &mctz->rb_root);
448 mz->on_tree = false;
449 }
450
451 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
452 struct mem_cgroup_tree_per_zone *mctz)
453 {
454 unsigned long flags;
455
456 spin_lock_irqsave(&mctz->lock, flags);
457 __mem_cgroup_remove_exceeded(mz, mctz);
458 spin_unlock_irqrestore(&mctz->lock, flags);
459 }
460
461 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
462 {
463 unsigned long nr_pages = page_counter_read(&memcg->memory);
464 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
465 unsigned long excess = 0;
466
467 if (nr_pages > soft_limit)
468 excess = nr_pages - soft_limit;
469
470 return excess;
471 }
472
473 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
474 {
475 unsigned long excess;
476 struct mem_cgroup_per_zone *mz;
477 struct mem_cgroup_tree_per_zone *mctz;
478
479 mctz = soft_limit_tree_from_page(page);
480 /*
481 * Necessary to update all ancestors when hierarchy is used.
482 * because their event counter is not touched.
483 */
484 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
485 mz = mem_cgroup_page_zoneinfo(memcg, page);
486 excess = soft_limit_excess(memcg);
487 /*
488 * We have to update the tree if mz is on RB-tree or
489 * mem is over its softlimit.
490 */
491 if (excess || mz->on_tree) {
492 unsigned long flags;
493
494 spin_lock_irqsave(&mctz->lock, flags);
495 /* if on-tree, remove it */
496 if (mz->on_tree)
497 __mem_cgroup_remove_exceeded(mz, mctz);
498 /*
499 * Insert again. mz->usage_in_excess will be updated.
500 * If excess is 0, no tree ops.
501 */
502 __mem_cgroup_insert_exceeded(mz, mctz, excess);
503 spin_unlock_irqrestore(&mctz->lock, flags);
504 }
505 }
506 }
507
508 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
509 {
510 struct mem_cgroup_tree_per_zone *mctz;
511 struct mem_cgroup_per_zone *mz;
512 int nid, zid;
513
514 for_each_node(nid) {
515 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
516 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
517 mctz = soft_limit_tree_node_zone(nid, zid);
518 mem_cgroup_remove_exceeded(mz, mctz);
519 }
520 }
521 }
522
523 static struct mem_cgroup_per_zone *
524 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
525 {
526 struct rb_node *rightmost = NULL;
527 struct mem_cgroup_per_zone *mz;
528
529 retry:
530 mz = NULL;
531 rightmost = rb_last(&mctz->rb_root);
532 if (!rightmost)
533 goto done; /* Nothing to reclaim from */
534
535 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
536 /*
537 * Remove the node now but someone else can add it back,
538 * we will to add it back at the end of reclaim to its correct
539 * position in the tree.
540 */
541 __mem_cgroup_remove_exceeded(mz, mctz);
542 if (!soft_limit_excess(mz->memcg) ||
543 !css_tryget_online(&mz->memcg->css))
544 goto retry;
545 done:
546 return mz;
547 }
548
549 static struct mem_cgroup_per_zone *
550 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
551 {
552 struct mem_cgroup_per_zone *mz;
553
554 spin_lock_irq(&mctz->lock);
555 mz = __mem_cgroup_largest_soft_limit_node(mctz);
556 spin_unlock_irq(&mctz->lock);
557 return mz;
558 }
559
560 /*
561 * Return page count for single (non recursive) @memcg.
562 *
563 * Implementation Note: reading percpu statistics for memcg.
564 *
565 * Both of vmstat[] and percpu_counter has threshold and do periodic
566 * synchronization to implement "quick" read. There are trade-off between
567 * reading cost and precision of value. Then, we may have a chance to implement
568 * a periodic synchronization of counter in memcg's counter.
569 *
570 * But this _read() function is used for user interface now. The user accounts
571 * memory usage by memory cgroup and he _always_ requires exact value because
572 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
573 * have to visit all online cpus and make sum. So, for now, unnecessary
574 * synchronization is not implemented. (just implemented for cpu hotplug)
575 *
576 * If there are kernel internal actions which can make use of some not-exact
577 * value, and reading all cpu value can be performance bottleneck in some
578 * common workload, threshold and synchronization as vmstat[] should be
579 * implemented.
580 */
581 static unsigned long
582 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
583 {
584 long val = 0;
585 int cpu;
586
587 /* Per-cpu values can be negative, use a signed accumulator */
588 for_each_possible_cpu(cpu)
589 val += per_cpu(memcg->stat->count[idx], cpu);
590 /*
591 * Summing races with updates, so val may be negative. Avoid exposing
592 * transient negative values.
593 */
594 if (val < 0)
595 val = 0;
596 return val;
597 }
598
599 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
600 enum mem_cgroup_events_index idx)
601 {
602 unsigned long val = 0;
603 int cpu;
604
605 for_each_possible_cpu(cpu)
606 val += per_cpu(memcg->stat->events[idx], cpu);
607 return val;
608 }
609
610 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
611 struct page *page,
612 bool compound, int nr_pages)
613 {
614 /*
615 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
616 * counted as CACHE even if it's on ANON LRU.
617 */
618 if (PageAnon(page))
619 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
620 nr_pages);
621 else
622 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
623 nr_pages);
624
625 if (compound) {
626 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
627 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
628 nr_pages);
629 }
630
631 /* pagein of a big page is an event. So, ignore page size */
632 if (nr_pages > 0)
633 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
634 else {
635 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
636 nr_pages = -nr_pages; /* for event */
637 }
638
639 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
640 }
641
642 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
643 int nid, unsigned int lru_mask)
644 {
645 unsigned long nr = 0;
646 int zid;
647
648 VM_BUG_ON((unsigned)nid >= nr_node_ids);
649
650 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651 struct mem_cgroup_per_zone *mz;
652 enum lru_list lru;
653
654 for_each_lru(lru) {
655 if (!(BIT(lru) & lru_mask))
656 continue;
657 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658 nr += mz->lru_size[lru];
659 }
660 }
661 return nr;
662 }
663
664 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665 unsigned int lru_mask)
666 {
667 unsigned long nr = 0;
668 int nid;
669
670 for_each_node_state(nid, N_MEMORY)
671 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672 return nr;
673 }
674
675 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676 enum mem_cgroup_events_target target)
677 {
678 unsigned long val, next;
679
680 val = __this_cpu_read(memcg->stat->nr_page_events);
681 next = __this_cpu_read(memcg->stat->targets[target]);
682 /* from time_after() in jiffies.h */
683 if ((long)next - (long)val < 0) {
684 switch (target) {
685 case MEM_CGROUP_TARGET_THRESH:
686 next = val + THRESHOLDS_EVENTS_TARGET;
687 break;
688 case MEM_CGROUP_TARGET_SOFTLIMIT:
689 next = val + SOFTLIMIT_EVENTS_TARGET;
690 break;
691 case MEM_CGROUP_TARGET_NUMAINFO:
692 next = val + NUMAINFO_EVENTS_TARGET;
693 break;
694 default:
695 break;
696 }
697 __this_cpu_write(memcg->stat->targets[target], next);
698 return true;
699 }
700 return false;
701 }
702
703 /*
704 * Check events in order.
705 *
706 */
707 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
708 {
709 /* threshold event is triggered in finer grain than soft limit */
710 if (unlikely(mem_cgroup_event_ratelimit(memcg,
711 MEM_CGROUP_TARGET_THRESH))) {
712 bool do_softlimit;
713 bool do_numainfo __maybe_unused;
714
715 do_softlimit = mem_cgroup_event_ratelimit(memcg,
716 MEM_CGROUP_TARGET_SOFTLIMIT);
717 #if MAX_NUMNODES > 1
718 do_numainfo = mem_cgroup_event_ratelimit(memcg,
719 MEM_CGROUP_TARGET_NUMAINFO);
720 #endif
721 mem_cgroup_threshold(memcg);
722 if (unlikely(do_softlimit))
723 mem_cgroup_update_tree(memcg, page);
724 #if MAX_NUMNODES > 1
725 if (unlikely(do_numainfo))
726 atomic_inc(&memcg->numainfo_events);
727 #endif
728 }
729 }
730
731 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
732 {
733 /*
734 * mm_update_next_owner() may clear mm->owner to NULL
735 * if it races with swapoff, page migration, etc.
736 * So this can be called with p == NULL.
737 */
738 if (unlikely(!p))
739 return NULL;
740
741 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
742 }
743 EXPORT_SYMBOL(mem_cgroup_from_task);
744
745 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
746 {
747 struct mem_cgroup *memcg = NULL;
748
749 rcu_read_lock();
750 do {
751 /*
752 * Page cache insertions can happen withou an
753 * actual mm context, e.g. during disk probing
754 * on boot, loopback IO, acct() writes etc.
755 */
756 if (unlikely(!mm))
757 memcg = root_mem_cgroup;
758 else {
759 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760 if (unlikely(!memcg))
761 memcg = root_mem_cgroup;
762 }
763 } while (!css_tryget_online(&memcg->css));
764 rcu_read_unlock();
765 return memcg;
766 }
767
768 /**
769 * mem_cgroup_iter - iterate over memory cgroup hierarchy
770 * @root: hierarchy root
771 * @prev: previously returned memcg, NULL on first invocation
772 * @reclaim: cookie for shared reclaim walks, NULL for full walks
773 *
774 * Returns references to children of the hierarchy below @root, or
775 * @root itself, or %NULL after a full round-trip.
776 *
777 * Caller must pass the return value in @prev on subsequent
778 * invocations for reference counting, or use mem_cgroup_iter_break()
779 * to cancel a hierarchy walk before the round-trip is complete.
780 *
781 * Reclaimers can specify a zone and a priority level in @reclaim to
782 * divide up the memcgs in the hierarchy among all concurrent
783 * reclaimers operating on the same zone and priority.
784 */
785 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786 struct mem_cgroup *prev,
787 struct mem_cgroup_reclaim_cookie *reclaim)
788 {
789 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790 struct cgroup_subsys_state *css = NULL;
791 struct mem_cgroup *memcg = NULL;
792 struct mem_cgroup *pos = NULL;
793
794 if (mem_cgroup_disabled())
795 return NULL;
796
797 if (!root)
798 root = root_mem_cgroup;
799
800 if (prev && !reclaim)
801 pos = prev;
802
803 if (!root->use_hierarchy && root != root_mem_cgroup) {
804 if (prev)
805 goto out;
806 return root;
807 }
808
809 rcu_read_lock();
810
811 if (reclaim) {
812 struct mem_cgroup_per_zone *mz;
813
814 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815 iter = &mz->iter[reclaim->priority];
816
817 if (prev && reclaim->generation != iter->generation)
818 goto out_unlock;
819
820 while (1) {
821 pos = READ_ONCE(iter->position);
822 if (!pos || css_tryget(&pos->css))
823 break;
824 /*
825 * css reference reached zero, so iter->position will
826 * be cleared by ->css_released. However, we should not
827 * rely on this happening soon, because ->css_released
828 * is called from a work queue, and by busy-waiting we
829 * might block it. So we clear iter->position right
830 * away.
831 */
832 (void)cmpxchg(&iter->position, pos, NULL);
833 }
834 }
835
836 if (pos)
837 css = &pos->css;
838
839 for (;;) {
840 css = css_next_descendant_pre(css, &root->css);
841 if (!css) {
842 /*
843 * Reclaimers share the hierarchy walk, and a
844 * new one might jump in right at the end of
845 * the hierarchy - make sure they see at least
846 * one group and restart from the beginning.
847 */
848 if (!prev)
849 continue;
850 break;
851 }
852
853 /*
854 * Verify the css and acquire a reference. The root
855 * is provided by the caller, so we know it's alive
856 * and kicking, and don't take an extra reference.
857 */
858 memcg = mem_cgroup_from_css(css);
859
860 if (css == &root->css)
861 break;
862
863 if (css_tryget(css))
864 break;
865
866 memcg = NULL;
867 }
868
869 if (reclaim) {
870 /*
871 * The position could have already been updated by a competing
872 * thread, so check that the value hasn't changed since we read
873 * it to avoid reclaiming from the same cgroup twice.
874 */
875 (void)cmpxchg(&iter->position, pos, memcg);
876
877 if (pos)
878 css_put(&pos->css);
879
880 if (!memcg)
881 iter->generation++;
882 else if (!prev)
883 reclaim->generation = iter->generation;
884 }
885
886 out_unlock:
887 rcu_read_unlock();
888 out:
889 if (prev && prev != root)
890 css_put(&prev->css);
891
892 return memcg;
893 }
894
895 /**
896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897 * @root: hierarchy root
898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899 */
900 void mem_cgroup_iter_break(struct mem_cgroup *root,
901 struct mem_cgroup *prev)
902 {
903 if (!root)
904 root = root_mem_cgroup;
905 if (prev && prev != root)
906 css_put(&prev->css);
907 }
908
909 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910 {
911 struct mem_cgroup *memcg = dead_memcg;
912 struct mem_cgroup_reclaim_iter *iter;
913 struct mem_cgroup_per_zone *mz;
914 int nid, zid;
915 int i;
916
917 while ((memcg = parent_mem_cgroup(memcg))) {
918 for_each_node(nid) {
919 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921 for (i = 0; i <= DEF_PRIORITY; i++) {
922 iter = &mz->iter[i];
923 cmpxchg(&iter->position,
924 dead_memcg, NULL);
925 }
926 }
927 }
928 }
929 }
930
931 /*
932 * Iteration constructs for visiting all cgroups (under a tree). If
933 * loops are exited prematurely (break), mem_cgroup_iter_break() must
934 * be used for reference counting.
935 */
936 #define for_each_mem_cgroup_tree(iter, root) \
937 for (iter = mem_cgroup_iter(root, NULL, NULL); \
938 iter != NULL; \
939 iter = mem_cgroup_iter(root, iter, NULL))
940
941 #define for_each_mem_cgroup(iter) \
942 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
943 iter != NULL; \
944 iter = mem_cgroup_iter(NULL, iter, NULL))
945
946 /**
947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948 * @zone: zone of the wanted lruvec
949 * @memcg: memcg of the wanted lruvec
950 *
951 * Returns the lru list vector holding pages for the given @zone and
952 * @mem. This can be the global zone lruvec, if the memory controller
953 * is disabled.
954 */
955 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956 struct mem_cgroup *memcg)
957 {
958 struct mem_cgroup_per_zone *mz;
959 struct lruvec *lruvec;
960
961 if (mem_cgroup_disabled()) {
962 lruvec = &zone->lruvec;
963 goto out;
964 }
965
966 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967 lruvec = &mz->lruvec;
968 out:
969 /*
970 * Since a node can be onlined after the mem_cgroup was created,
971 * we have to be prepared to initialize lruvec->zone here;
972 * and if offlined then reonlined, we need to reinitialize it.
973 */
974 if (unlikely(lruvec->zone != zone))
975 lruvec->zone = zone;
976 return lruvec;
977 }
978
979 /**
980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981 * @page: the page
982 * @zone: zone of the page
983 *
984 * This function is only safe when following the LRU page isolation
985 * and putback protocol: the LRU lock must be held, and the page must
986 * either be PageLRU() or the caller must have isolated/allocated it.
987 */
988 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
989 {
990 struct mem_cgroup_per_zone *mz;
991 struct mem_cgroup *memcg;
992 struct lruvec *lruvec;
993
994 if (mem_cgroup_disabled()) {
995 lruvec = &zone->lruvec;
996 goto out;
997 }
998
999 memcg = page->mem_cgroup;
1000 /*
1001 * Swapcache readahead pages are added to the LRU - and
1002 * possibly migrated - before they are charged.
1003 */
1004 if (!memcg)
1005 memcg = root_mem_cgroup;
1006
1007 mz = mem_cgroup_page_zoneinfo(memcg, page);
1008 lruvec = &mz->lruvec;
1009 out:
1010 /*
1011 * Since a node can be onlined after the mem_cgroup was created,
1012 * we have to be prepared to initialize lruvec->zone here;
1013 * and if offlined then reonlined, we need to reinitialize it.
1014 */
1015 if (unlikely(lruvec->zone != zone))
1016 lruvec->zone = zone;
1017 return lruvec;
1018 }
1019
1020 /**
1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022 * @lruvec: mem_cgroup per zone lru vector
1023 * @lru: index of lru list the page is sitting on
1024 * @nr_pages: positive when adding or negative when removing
1025 *
1026 * This function must be called under lru_lock, just before a page is added
1027 * to or just after a page is removed from an lru list (that ordering being
1028 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1029 */
1030 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1031 int nr_pages)
1032 {
1033 struct mem_cgroup_per_zone *mz;
1034 unsigned long *lru_size;
1035 long size;
1036 bool empty;
1037
1038 __update_lru_size(lruvec, lru, nr_pages);
1039
1040 if (mem_cgroup_disabled())
1041 return;
1042
1043 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1044 lru_size = mz->lru_size + lru;
1045 empty = list_empty(lruvec->lists + lru);
1046
1047 if (nr_pages < 0)
1048 *lru_size += nr_pages;
1049
1050 size = *lru_size;
1051 if (WARN_ONCE(size < 0 || empty != !size,
1052 "%s(%p, %d, %d): lru_size %ld but %sempty\n",
1053 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
1054 VM_BUG_ON(1);
1055 *lru_size = 0;
1056 }
1057
1058 if (nr_pages > 0)
1059 *lru_size += nr_pages;
1060 }
1061
1062 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1063 {
1064 struct mem_cgroup *task_memcg;
1065 struct task_struct *p;
1066 bool ret;
1067
1068 p = find_lock_task_mm(task);
1069 if (p) {
1070 task_memcg = get_mem_cgroup_from_mm(p->mm);
1071 task_unlock(p);
1072 } else {
1073 /*
1074 * All threads may have already detached their mm's, but the oom
1075 * killer still needs to detect if they have already been oom
1076 * killed to prevent needlessly killing additional tasks.
1077 */
1078 rcu_read_lock();
1079 task_memcg = mem_cgroup_from_task(task);
1080 css_get(&task_memcg->css);
1081 rcu_read_unlock();
1082 }
1083 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1084 css_put(&task_memcg->css);
1085 return ret;
1086 }
1087
1088 /**
1089 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1090 * @memcg: the memory cgroup
1091 *
1092 * Returns the maximum amount of memory @mem can be charged with, in
1093 * pages.
1094 */
1095 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1096 {
1097 unsigned long margin = 0;
1098 unsigned long count;
1099 unsigned long limit;
1100
1101 count = page_counter_read(&memcg->memory);
1102 limit = READ_ONCE(memcg->memory.limit);
1103 if (count < limit)
1104 margin = limit - count;
1105
1106 if (do_memsw_account()) {
1107 count = page_counter_read(&memcg->memsw);
1108 limit = READ_ONCE(memcg->memsw.limit);
1109 if (count <= limit)
1110 margin = min(margin, limit - count);
1111 }
1112
1113 return margin;
1114 }
1115
1116 /*
1117 * A routine for checking "mem" is under move_account() or not.
1118 *
1119 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1120 * moving cgroups. This is for waiting at high-memory pressure
1121 * caused by "move".
1122 */
1123 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1124 {
1125 struct mem_cgroup *from;
1126 struct mem_cgroup *to;
1127 bool ret = false;
1128 /*
1129 * Unlike task_move routines, we access mc.to, mc.from not under
1130 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1131 */
1132 spin_lock(&mc.lock);
1133 from = mc.from;
1134 to = mc.to;
1135 if (!from)
1136 goto unlock;
1137
1138 ret = mem_cgroup_is_descendant(from, memcg) ||
1139 mem_cgroup_is_descendant(to, memcg);
1140 unlock:
1141 spin_unlock(&mc.lock);
1142 return ret;
1143 }
1144
1145 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1146 {
1147 if (mc.moving_task && current != mc.moving_task) {
1148 if (mem_cgroup_under_move(memcg)) {
1149 DEFINE_WAIT(wait);
1150 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1151 /* moving charge context might have finished. */
1152 if (mc.moving_task)
1153 schedule();
1154 finish_wait(&mc.waitq, &wait);
1155 return true;
1156 }
1157 }
1158 return false;
1159 }
1160
1161 #define K(x) ((x) << (PAGE_SHIFT-10))
1162 /**
1163 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1164 * @memcg: The memory cgroup that went over limit
1165 * @p: Task that is going to be killed
1166 *
1167 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1168 * enabled
1169 */
1170 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1171 {
1172 struct mem_cgroup *iter;
1173 unsigned int i;
1174
1175 rcu_read_lock();
1176
1177 if (p) {
1178 pr_info("Task in ");
1179 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1180 pr_cont(" killed as a result of limit of ");
1181 } else {
1182 pr_info("Memory limit reached of cgroup ");
1183 }
1184
1185 pr_cont_cgroup_path(memcg->css.cgroup);
1186 pr_cont("\n");
1187
1188 rcu_read_unlock();
1189
1190 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1191 K((u64)page_counter_read(&memcg->memory)),
1192 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1193 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1194 K((u64)page_counter_read(&memcg->memsw)),
1195 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1196 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1197 K((u64)page_counter_read(&memcg->kmem)),
1198 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1199
1200 for_each_mem_cgroup_tree(iter, memcg) {
1201 pr_info("Memory cgroup stats for ");
1202 pr_cont_cgroup_path(iter->css.cgroup);
1203 pr_cont(":");
1204
1205 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1206 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1207 continue;
1208 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1209 K(mem_cgroup_read_stat(iter, i)));
1210 }
1211
1212 for (i = 0; i < NR_LRU_LISTS; i++)
1213 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1214 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1215
1216 pr_cont("\n");
1217 }
1218 }
1219
1220 /*
1221 * This function returns the number of memcg under hierarchy tree. Returns
1222 * 1(self count) if no children.
1223 */
1224 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1225 {
1226 int num = 0;
1227 struct mem_cgroup *iter;
1228
1229 for_each_mem_cgroup_tree(iter, memcg)
1230 num++;
1231 return num;
1232 }
1233
1234 /*
1235 * Return the memory (and swap, if configured) limit for a memcg.
1236 */
1237 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1238 {
1239 unsigned long limit;
1240
1241 limit = memcg->memory.limit;
1242 if (mem_cgroup_swappiness(memcg)) {
1243 unsigned long memsw_limit;
1244 unsigned long swap_limit;
1245
1246 memsw_limit = memcg->memsw.limit;
1247 swap_limit = memcg->swap.limit;
1248 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1249 limit = min(limit + swap_limit, memsw_limit);
1250 }
1251 return limit;
1252 }
1253
1254 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1255 int order)
1256 {
1257 struct oom_control oc = {
1258 .zonelist = NULL,
1259 .nodemask = NULL,
1260 .gfp_mask = gfp_mask,
1261 .order = order,
1262 };
1263 struct mem_cgroup *iter;
1264 unsigned long chosen_points = 0;
1265 unsigned long totalpages;
1266 unsigned int points = 0;
1267 struct task_struct *chosen = NULL;
1268
1269 mutex_lock(&oom_lock);
1270
1271 /*
1272 * If current has a pending SIGKILL or is exiting, then automatically
1273 * select it. The goal is to allow it to allocate so that it may
1274 * quickly exit and free its memory.
1275 */
1276 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1277 mark_oom_victim(current);
1278 try_oom_reaper(current);
1279 goto unlock;
1280 }
1281
1282 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1283 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1284 for_each_mem_cgroup_tree(iter, memcg) {
1285 struct css_task_iter it;
1286 struct task_struct *task;
1287
1288 css_task_iter_start(&iter->css, &it);
1289 while ((task = css_task_iter_next(&it))) {
1290 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1291 case OOM_SCAN_SELECT:
1292 if (chosen)
1293 put_task_struct(chosen);
1294 chosen = task;
1295 chosen_points = ULONG_MAX;
1296 get_task_struct(chosen);
1297 /* fall through */
1298 case OOM_SCAN_CONTINUE:
1299 continue;
1300 case OOM_SCAN_ABORT:
1301 css_task_iter_end(&it);
1302 mem_cgroup_iter_break(memcg, iter);
1303 if (chosen)
1304 put_task_struct(chosen);
1305 goto unlock;
1306 case OOM_SCAN_OK:
1307 break;
1308 };
1309 points = oom_badness(task, memcg, NULL, totalpages);
1310 if (!points || points < chosen_points)
1311 continue;
1312 /* Prefer thread group leaders for display purposes */
1313 if (points == chosen_points &&
1314 thread_group_leader(chosen))
1315 continue;
1316
1317 if (chosen)
1318 put_task_struct(chosen);
1319 chosen = task;
1320 chosen_points = points;
1321 get_task_struct(chosen);
1322 }
1323 css_task_iter_end(&it);
1324 }
1325
1326 if (chosen) {
1327 points = chosen_points * 1000 / totalpages;
1328 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1329 "Memory cgroup out of memory");
1330 }
1331 unlock:
1332 mutex_unlock(&oom_lock);
1333 return chosen;
1334 }
1335
1336 #if MAX_NUMNODES > 1
1337
1338 /**
1339 * test_mem_cgroup_node_reclaimable
1340 * @memcg: the target memcg
1341 * @nid: the node ID to be checked.
1342 * @noswap : specify true here if the user wants flle only information.
1343 *
1344 * This function returns whether the specified memcg contains any
1345 * reclaimable pages on a node. Returns true if there are any reclaimable
1346 * pages in the node.
1347 */
1348 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1349 int nid, bool noswap)
1350 {
1351 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1352 return true;
1353 if (noswap || !total_swap_pages)
1354 return false;
1355 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1356 return true;
1357 return false;
1358
1359 }
1360
1361 /*
1362 * Always updating the nodemask is not very good - even if we have an empty
1363 * list or the wrong list here, we can start from some node and traverse all
1364 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1365 *
1366 */
1367 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1368 {
1369 int nid;
1370 /*
1371 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1372 * pagein/pageout changes since the last update.
1373 */
1374 if (!atomic_read(&memcg->numainfo_events))
1375 return;
1376 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1377 return;
1378
1379 /* make a nodemask where this memcg uses memory from */
1380 memcg->scan_nodes = node_states[N_MEMORY];
1381
1382 for_each_node_mask(nid, node_states[N_MEMORY]) {
1383
1384 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1385 node_clear(nid, memcg->scan_nodes);
1386 }
1387
1388 atomic_set(&memcg->numainfo_events, 0);
1389 atomic_set(&memcg->numainfo_updating, 0);
1390 }
1391
1392 /*
1393 * Selecting a node where we start reclaim from. Because what we need is just
1394 * reducing usage counter, start from anywhere is O,K. Considering
1395 * memory reclaim from current node, there are pros. and cons.
1396 *
1397 * Freeing memory from current node means freeing memory from a node which
1398 * we'll use or we've used. So, it may make LRU bad. And if several threads
1399 * hit limits, it will see a contention on a node. But freeing from remote
1400 * node means more costs for memory reclaim because of memory latency.
1401 *
1402 * Now, we use round-robin. Better algorithm is welcomed.
1403 */
1404 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1405 {
1406 int node;
1407
1408 mem_cgroup_may_update_nodemask(memcg);
1409 node = memcg->last_scanned_node;
1410
1411 node = next_node_in(node, memcg->scan_nodes);
1412 /*
1413 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1414 * last time it really checked all the LRUs due to rate limiting.
1415 * Fallback to the current node in that case for simplicity.
1416 */
1417 if (unlikely(node == MAX_NUMNODES))
1418 node = numa_node_id();
1419
1420 memcg->last_scanned_node = node;
1421 return node;
1422 }
1423 #else
1424 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1425 {
1426 return 0;
1427 }
1428 #endif
1429
1430 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1431 struct zone *zone,
1432 gfp_t gfp_mask,
1433 unsigned long *total_scanned)
1434 {
1435 struct mem_cgroup *victim = NULL;
1436 int total = 0;
1437 int loop = 0;
1438 unsigned long excess;
1439 unsigned long nr_scanned;
1440 struct mem_cgroup_reclaim_cookie reclaim = {
1441 .zone = zone,
1442 .priority = 0,
1443 };
1444
1445 excess = soft_limit_excess(root_memcg);
1446
1447 while (1) {
1448 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1449 if (!victim) {
1450 loop++;
1451 if (loop >= 2) {
1452 /*
1453 * If we have not been able to reclaim
1454 * anything, it might because there are
1455 * no reclaimable pages under this hierarchy
1456 */
1457 if (!total)
1458 break;
1459 /*
1460 * We want to do more targeted reclaim.
1461 * excess >> 2 is not to excessive so as to
1462 * reclaim too much, nor too less that we keep
1463 * coming back to reclaim from this cgroup
1464 */
1465 if (total >= (excess >> 2) ||
1466 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1467 break;
1468 }
1469 continue;
1470 }
1471 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1472 zone, &nr_scanned);
1473 *total_scanned += nr_scanned;
1474 if (!soft_limit_excess(root_memcg))
1475 break;
1476 }
1477 mem_cgroup_iter_break(root_memcg, victim);
1478 return total;
1479 }
1480
1481 #ifdef CONFIG_LOCKDEP
1482 static struct lockdep_map memcg_oom_lock_dep_map = {
1483 .name = "memcg_oom_lock",
1484 };
1485 #endif
1486
1487 static DEFINE_SPINLOCK(memcg_oom_lock);
1488
1489 /*
1490 * Check OOM-Killer is already running under our hierarchy.
1491 * If someone is running, return false.
1492 */
1493 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1494 {
1495 struct mem_cgroup *iter, *failed = NULL;
1496
1497 spin_lock(&memcg_oom_lock);
1498
1499 for_each_mem_cgroup_tree(iter, memcg) {
1500 if (iter->oom_lock) {
1501 /*
1502 * this subtree of our hierarchy is already locked
1503 * so we cannot give a lock.
1504 */
1505 failed = iter;
1506 mem_cgroup_iter_break(memcg, iter);
1507 break;
1508 } else
1509 iter->oom_lock = true;
1510 }
1511
1512 if (failed) {
1513 /*
1514 * OK, we failed to lock the whole subtree so we have
1515 * to clean up what we set up to the failing subtree
1516 */
1517 for_each_mem_cgroup_tree(iter, memcg) {
1518 if (iter == failed) {
1519 mem_cgroup_iter_break(memcg, iter);
1520 break;
1521 }
1522 iter->oom_lock = false;
1523 }
1524 } else
1525 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1526
1527 spin_unlock(&memcg_oom_lock);
1528
1529 return !failed;
1530 }
1531
1532 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1533 {
1534 struct mem_cgroup *iter;
1535
1536 spin_lock(&memcg_oom_lock);
1537 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1538 for_each_mem_cgroup_tree(iter, memcg)
1539 iter->oom_lock = false;
1540 spin_unlock(&memcg_oom_lock);
1541 }
1542
1543 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1544 {
1545 struct mem_cgroup *iter;
1546
1547 spin_lock(&memcg_oom_lock);
1548 for_each_mem_cgroup_tree(iter, memcg)
1549 iter->under_oom++;
1550 spin_unlock(&memcg_oom_lock);
1551 }
1552
1553 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1554 {
1555 struct mem_cgroup *iter;
1556
1557 /*
1558 * When a new child is created while the hierarchy is under oom,
1559 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1560 */
1561 spin_lock(&memcg_oom_lock);
1562 for_each_mem_cgroup_tree(iter, memcg)
1563 if (iter->under_oom > 0)
1564 iter->under_oom--;
1565 spin_unlock(&memcg_oom_lock);
1566 }
1567
1568 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1569
1570 struct oom_wait_info {
1571 struct mem_cgroup *memcg;
1572 wait_queue_t wait;
1573 };
1574
1575 static int memcg_oom_wake_function(wait_queue_t *wait,
1576 unsigned mode, int sync, void *arg)
1577 {
1578 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1579 struct mem_cgroup *oom_wait_memcg;
1580 struct oom_wait_info *oom_wait_info;
1581
1582 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1583 oom_wait_memcg = oom_wait_info->memcg;
1584
1585 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1586 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1587 return 0;
1588 return autoremove_wake_function(wait, mode, sync, arg);
1589 }
1590
1591 static void memcg_oom_recover(struct mem_cgroup *memcg)
1592 {
1593 /*
1594 * For the following lockless ->under_oom test, the only required
1595 * guarantee is that it must see the state asserted by an OOM when
1596 * this function is called as a result of userland actions
1597 * triggered by the notification of the OOM. This is trivially
1598 * achieved by invoking mem_cgroup_mark_under_oom() before
1599 * triggering notification.
1600 */
1601 if (memcg && memcg->under_oom)
1602 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1603 }
1604
1605 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1606 {
1607 if (!current->memcg_may_oom)
1608 return;
1609 /*
1610 * We are in the middle of the charge context here, so we
1611 * don't want to block when potentially sitting on a callstack
1612 * that holds all kinds of filesystem and mm locks.
1613 *
1614 * Also, the caller may handle a failed allocation gracefully
1615 * (like optional page cache readahead) and so an OOM killer
1616 * invocation might not even be necessary.
1617 *
1618 * That's why we don't do anything here except remember the
1619 * OOM context and then deal with it at the end of the page
1620 * fault when the stack is unwound, the locks are released,
1621 * and when we know whether the fault was overall successful.
1622 */
1623 css_get(&memcg->css);
1624 current->memcg_in_oom = memcg;
1625 current->memcg_oom_gfp_mask = mask;
1626 current->memcg_oom_order = order;
1627 }
1628
1629 /**
1630 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1631 * @handle: actually kill/wait or just clean up the OOM state
1632 *
1633 * This has to be called at the end of a page fault if the memcg OOM
1634 * handler was enabled.
1635 *
1636 * Memcg supports userspace OOM handling where failed allocations must
1637 * sleep on a waitqueue until the userspace task resolves the
1638 * situation. Sleeping directly in the charge context with all kinds
1639 * of locks held is not a good idea, instead we remember an OOM state
1640 * in the task and mem_cgroup_oom_synchronize() has to be called at
1641 * the end of the page fault to complete the OOM handling.
1642 *
1643 * Returns %true if an ongoing memcg OOM situation was detected and
1644 * completed, %false otherwise.
1645 */
1646 bool mem_cgroup_oom_synchronize(bool handle)
1647 {
1648 struct mem_cgroup *memcg = current->memcg_in_oom;
1649 struct oom_wait_info owait;
1650 bool locked;
1651
1652 /* OOM is global, do not handle */
1653 if (!memcg)
1654 return false;
1655
1656 if (!handle || oom_killer_disabled)
1657 goto cleanup;
1658
1659 owait.memcg = memcg;
1660 owait.wait.flags = 0;
1661 owait.wait.func = memcg_oom_wake_function;
1662 owait.wait.private = current;
1663 INIT_LIST_HEAD(&owait.wait.task_list);
1664
1665 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1666 mem_cgroup_mark_under_oom(memcg);
1667
1668 locked = mem_cgroup_oom_trylock(memcg);
1669
1670 if (locked)
1671 mem_cgroup_oom_notify(memcg);
1672
1673 if (locked && !memcg->oom_kill_disable) {
1674 mem_cgroup_unmark_under_oom(memcg);
1675 finish_wait(&memcg_oom_waitq, &owait.wait);
1676 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1677 current->memcg_oom_order);
1678 } else {
1679 schedule();
1680 mem_cgroup_unmark_under_oom(memcg);
1681 finish_wait(&memcg_oom_waitq, &owait.wait);
1682 }
1683
1684 if (locked) {
1685 mem_cgroup_oom_unlock(memcg);
1686 /*
1687 * There is no guarantee that an OOM-lock contender
1688 * sees the wakeups triggered by the OOM kill
1689 * uncharges. Wake any sleepers explicitely.
1690 */
1691 memcg_oom_recover(memcg);
1692 }
1693 cleanup:
1694 current->memcg_in_oom = NULL;
1695 css_put(&memcg->css);
1696 return true;
1697 }
1698
1699 /**
1700 * lock_page_memcg - lock a page->mem_cgroup binding
1701 * @page: the page
1702 *
1703 * This function protects unlocked LRU pages from being moved to
1704 * another cgroup and stabilizes their page->mem_cgroup binding.
1705 */
1706 void lock_page_memcg(struct page *page)
1707 {
1708 struct mem_cgroup *memcg;
1709 unsigned long flags;
1710
1711 /*
1712 * The RCU lock is held throughout the transaction. The fast
1713 * path can get away without acquiring the memcg->move_lock
1714 * because page moving starts with an RCU grace period.
1715 */
1716 rcu_read_lock();
1717
1718 if (mem_cgroup_disabled())
1719 return;
1720 again:
1721 memcg = page->mem_cgroup;
1722 if (unlikely(!memcg))
1723 return;
1724
1725 if (atomic_read(&memcg->moving_account) <= 0)
1726 return;
1727
1728 spin_lock_irqsave(&memcg->move_lock, flags);
1729 if (memcg != page->mem_cgroup) {
1730 spin_unlock_irqrestore(&memcg->move_lock, flags);
1731 goto again;
1732 }
1733
1734 /*
1735 * When charge migration first begins, we can have locked and
1736 * unlocked page stat updates happening concurrently. Track
1737 * the task who has the lock for unlock_page_memcg().
1738 */
1739 memcg->move_lock_task = current;
1740 memcg->move_lock_flags = flags;
1741
1742 return;
1743 }
1744 EXPORT_SYMBOL(lock_page_memcg);
1745
1746 /**
1747 * unlock_page_memcg - unlock a page->mem_cgroup binding
1748 * @page: the page
1749 */
1750 void unlock_page_memcg(struct page *page)
1751 {
1752 struct mem_cgroup *memcg = page->mem_cgroup;
1753
1754 if (memcg && memcg->move_lock_task == current) {
1755 unsigned long flags = memcg->move_lock_flags;
1756
1757 memcg->move_lock_task = NULL;
1758 memcg->move_lock_flags = 0;
1759
1760 spin_unlock_irqrestore(&memcg->move_lock, flags);
1761 }
1762
1763 rcu_read_unlock();
1764 }
1765 EXPORT_SYMBOL(unlock_page_memcg);
1766
1767 /*
1768 * size of first charge trial. "32" comes from vmscan.c's magic value.
1769 * TODO: maybe necessary to use big numbers in big irons.
1770 */
1771 #define CHARGE_BATCH 32U
1772 struct memcg_stock_pcp {
1773 struct mem_cgroup *cached; /* this never be root cgroup */
1774 unsigned int nr_pages;
1775 struct work_struct work;
1776 unsigned long flags;
1777 #define FLUSHING_CACHED_CHARGE 0
1778 };
1779 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1780 static DEFINE_MUTEX(percpu_charge_mutex);
1781
1782 /**
1783 * consume_stock: Try to consume stocked charge on this cpu.
1784 * @memcg: memcg to consume from.
1785 * @nr_pages: how many pages to charge.
1786 *
1787 * The charges will only happen if @memcg matches the current cpu's memcg
1788 * stock, and at least @nr_pages are available in that stock. Failure to
1789 * service an allocation will refill the stock.
1790 *
1791 * returns true if successful, false otherwise.
1792 */
1793 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1794 {
1795 struct memcg_stock_pcp *stock;
1796 bool ret = false;
1797
1798 if (nr_pages > CHARGE_BATCH)
1799 return ret;
1800
1801 stock = &get_cpu_var(memcg_stock);
1802 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1803 stock->nr_pages -= nr_pages;
1804 ret = true;
1805 }
1806 put_cpu_var(memcg_stock);
1807 return ret;
1808 }
1809
1810 /*
1811 * Returns stocks cached in percpu and reset cached information.
1812 */
1813 static void drain_stock(struct memcg_stock_pcp *stock)
1814 {
1815 struct mem_cgroup *old = stock->cached;
1816
1817 if (stock->nr_pages) {
1818 page_counter_uncharge(&old->memory, stock->nr_pages);
1819 if (do_memsw_account())
1820 page_counter_uncharge(&old->memsw, stock->nr_pages);
1821 css_put_many(&old->css, stock->nr_pages);
1822 stock->nr_pages = 0;
1823 }
1824 stock->cached = NULL;
1825 }
1826
1827 /*
1828 * This must be called under preempt disabled or must be called by
1829 * a thread which is pinned to local cpu.
1830 */
1831 static void drain_local_stock(struct work_struct *dummy)
1832 {
1833 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1834 drain_stock(stock);
1835 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1836 }
1837
1838 /*
1839 * Cache charges(val) to local per_cpu area.
1840 * This will be consumed by consume_stock() function, later.
1841 */
1842 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1843 {
1844 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1845
1846 if (stock->cached != memcg) { /* reset if necessary */
1847 drain_stock(stock);
1848 stock->cached = memcg;
1849 }
1850 stock->nr_pages += nr_pages;
1851 put_cpu_var(memcg_stock);
1852 }
1853
1854 /*
1855 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1856 * of the hierarchy under it.
1857 */
1858 static void drain_all_stock(struct mem_cgroup *root_memcg)
1859 {
1860 int cpu, curcpu;
1861
1862 /* If someone's already draining, avoid adding running more workers. */
1863 if (!mutex_trylock(&percpu_charge_mutex))
1864 return;
1865 /* Notify other cpus that system-wide "drain" is running */
1866 get_online_cpus();
1867 curcpu = get_cpu();
1868 for_each_online_cpu(cpu) {
1869 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1870 struct mem_cgroup *memcg;
1871
1872 memcg = stock->cached;
1873 if (!memcg || !stock->nr_pages)
1874 continue;
1875 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1876 continue;
1877 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1878 if (cpu == curcpu)
1879 drain_local_stock(&stock->work);
1880 else
1881 schedule_work_on(cpu, &stock->work);
1882 }
1883 }
1884 put_cpu();
1885 put_online_cpus();
1886 mutex_unlock(&percpu_charge_mutex);
1887 }
1888
1889 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1890 unsigned long action,
1891 void *hcpu)
1892 {
1893 int cpu = (unsigned long)hcpu;
1894 struct memcg_stock_pcp *stock;
1895
1896 if (action == CPU_ONLINE)
1897 return NOTIFY_OK;
1898
1899 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1900 return NOTIFY_OK;
1901
1902 stock = &per_cpu(memcg_stock, cpu);
1903 drain_stock(stock);
1904 return NOTIFY_OK;
1905 }
1906
1907 static void reclaim_high(struct mem_cgroup *memcg,
1908 unsigned int nr_pages,
1909 gfp_t gfp_mask)
1910 {
1911 do {
1912 if (page_counter_read(&memcg->memory) <= memcg->high)
1913 continue;
1914 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1915 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1916 } while ((memcg = parent_mem_cgroup(memcg)));
1917 }
1918
1919 static void high_work_func(struct work_struct *work)
1920 {
1921 struct mem_cgroup *memcg;
1922
1923 memcg = container_of(work, struct mem_cgroup, high_work);
1924 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1925 }
1926
1927 /*
1928 * Scheduled by try_charge() to be executed from the userland return path
1929 * and reclaims memory over the high limit.
1930 */
1931 void mem_cgroup_handle_over_high(void)
1932 {
1933 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1934 struct mem_cgroup *memcg;
1935
1936 if (likely(!nr_pages))
1937 return;
1938
1939 memcg = get_mem_cgroup_from_mm(current->mm);
1940 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1941 css_put(&memcg->css);
1942 current->memcg_nr_pages_over_high = 0;
1943 }
1944
1945 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1946 unsigned int nr_pages)
1947 {
1948 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1949 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1950 struct mem_cgroup *mem_over_limit;
1951 struct page_counter *counter;
1952 unsigned long nr_reclaimed;
1953 bool may_swap = true;
1954 bool drained = false;
1955
1956 if (mem_cgroup_is_root(memcg))
1957 return 0;
1958 retry:
1959 if (consume_stock(memcg, nr_pages))
1960 return 0;
1961
1962 if (!do_memsw_account() ||
1963 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1964 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1965 goto done_restock;
1966 if (do_memsw_account())
1967 page_counter_uncharge(&memcg->memsw, batch);
1968 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1969 } else {
1970 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1971 may_swap = false;
1972 }
1973
1974 if (batch > nr_pages) {
1975 batch = nr_pages;
1976 goto retry;
1977 }
1978
1979 /*
1980 * Unlike in global OOM situations, memcg is not in a physical
1981 * memory shortage. Allow dying and OOM-killed tasks to
1982 * bypass the last charges so that they can exit quickly and
1983 * free their memory.
1984 */
1985 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1986 fatal_signal_pending(current) ||
1987 current->flags & PF_EXITING))
1988 goto force;
1989
1990 if (unlikely(task_in_memcg_oom(current)))
1991 goto nomem;
1992
1993 if (!gfpflags_allow_blocking(gfp_mask))
1994 goto nomem;
1995
1996 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1997
1998 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1999 gfp_mask, may_swap);
2000
2001 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2002 goto retry;
2003
2004 if (!drained) {
2005 drain_all_stock(mem_over_limit);
2006 drained = true;
2007 goto retry;
2008 }
2009
2010 if (gfp_mask & __GFP_NORETRY)
2011 goto nomem;
2012 /*
2013 * Even though the limit is exceeded at this point, reclaim
2014 * may have been able to free some pages. Retry the charge
2015 * before killing the task.
2016 *
2017 * Only for regular pages, though: huge pages are rather
2018 * unlikely to succeed so close to the limit, and we fall back
2019 * to regular pages anyway in case of failure.
2020 */
2021 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2022 goto retry;
2023 /*
2024 * At task move, charge accounts can be doubly counted. So, it's
2025 * better to wait until the end of task_move if something is going on.
2026 */
2027 if (mem_cgroup_wait_acct_move(mem_over_limit))
2028 goto retry;
2029
2030 if (nr_retries--)
2031 goto retry;
2032
2033 if (gfp_mask & __GFP_NOFAIL)
2034 goto force;
2035
2036 if (fatal_signal_pending(current))
2037 goto force;
2038
2039 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2040
2041 mem_cgroup_oom(mem_over_limit, gfp_mask,
2042 get_order(nr_pages * PAGE_SIZE));
2043 nomem:
2044 if (!(gfp_mask & __GFP_NOFAIL))
2045 return -ENOMEM;
2046 force:
2047 /*
2048 * The allocation either can't fail or will lead to more memory
2049 * being freed very soon. Allow memory usage go over the limit
2050 * temporarily by force charging it.
2051 */
2052 page_counter_charge(&memcg->memory, nr_pages);
2053 if (do_memsw_account())
2054 page_counter_charge(&memcg->memsw, nr_pages);
2055 css_get_many(&memcg->css, nr_pages);
2056
2057 return 0;
2058
2059 done_restock:
2060 css_get_many(&memcg->css, batch);
2061 if (batch > nr_pages)
2062 refill_stock(memcg, batch - nr_pages);
2063
2064 /*
2065 * If the hierarchy is above the normal consumption range, schedule
2066 * reclaim on returning to userland. We can perform reclaim here
2067 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2068 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2069 * not recorded as it most likely matches current's and won't
2070 * change in the meantime. As high limit is checked again before
2071 * reclaim, the cost of mismatch is negligible.
2072 */
2073 do {
2074 if (page_counter_read(&memcg->memory) > memcg->high) {
2075 /* Don't bother a random interrupted task */
2076 if (in_interrupt()) {
2077 schedule_work(&memcg->high_work);
2078 break;
2079 }
2080 current->memcg_nr_pages_over_high += batch;
2081 set_notify_resume(current);
2082 break;
2083 }
2084 } while ((memcg = parent_mem_cgroup(memcg)));
2085
2086 return 0;
2087 }
2088
2089 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2090 {
2091 if (mem_cgroup_is_root(memcg))
2092 return;
2093
2094 page_counter_uncharge(&memcg->memory, nr_pages);
2095 if (do_memsw_account())
2096 page_counter_uncharge(&memcg->memsw, nr_pages);
2097
2098 css_put_many(&memcg->css, nr_pages);
2099 }
2100
2101 static void lock_page_lru(struct page *page, int *isolated)
2102 {
2103 struct zone *zone = page_zone(page);
2104
2105 spin_lock_irq(&zone->lru_lock);
2106 if (PageLRU(page)) {
2107 struct lruvec *lruvec;
2108
2109 lruvec = mem_cgroup_page_lruvec(page, zone);
2110 ClearPageLRU(page);
2111 del_page_from_lru_list(page, lruvec, page_lru(page));
2112 *isolated = 1;
2113 } else
2114 *isolated = 0;
2115 }
2116
2117 static void unlock_page_lru(struct page *page, int isolated)
2118 {
2119 struct zone *zone = page_zone(page);
2120
2121 if (isolated) {
2122 struct lruvec *lruvec;
2123
2124 lruvec = mem_cgroup_page_lruvec(page, zone);
2125 VM_BUG_ON_PAGE(PageLRU(page), page);
2126 SetPageLRU(page);
2127 add_page_to_lru_list(page, lruvec, page_lru(page));
2128 }
2129 spin_unlock_irq(&zone->lru_lock);
2130 }
2131
2132 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2133 bool lrucare)
2134 {
2135 int isolated;
2136
2137 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2138
2139 /*
2140 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2141 * may already be on some other mem_cgroup's LRU. Take care of it.
2142 */
2143 if (lrucare)
2144 lock_page_lru(page, &isolated);
2145
2146 /*
2147 * Nobody should be changing or seriously looking at
2148 * page->mem_cgroup at this point:
2149 *
2150 * - the page is uncharged
2151 *
2152 * - the page is off-LRU
2153 *
2154 * - an anonymous fault has exclusive page access, except for
2155 * a locked page table
2156 *
2157 * - a page cache insertion, a swapin fault, or a migration
2158 * have the page locked
2159 */
2160 page->mem_cgroup = memcg;
2161
2162 if (lrucare)
2163 unlock_page_lru(page, isolated);
2164 }
2165
2166 #ifndef CONFIG_SLOB
2167 static int memcg_alloc_cache_id(void)
2168 {
2169 int id, size;
2170 int err;
2171
2172 id = ida_simple_get(&memcg_cache_ida,
2173 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2174 if (id < 0)
2175 return id;
2176
2177 if (id < memcg_nr_cache_ids)
2178 return id;
2179
2180 /*
2181 * There's no space for the new id in memcg_caches arrays,
2182 * so we have to grow them.
2183 */
2184 down_write(&memcg_cache_ids_sem);
2185
2186 size = 2 * (id + 1);
2187 if (size < MEMCG_CACHES_MIN_SIZE)
2188 size = MEMCG_CACHES_MIN_SIZE;
2189 else if (size > MEMCG_CACHES_MAX_SIZE)
2190 size = MEMCG_CACHES_MAX_SIZE;
2191
2192 err = memcg_update_all_caches(size);
2193 if (!err)
2194 err = memcg_update_all_list_lrus(size);
2195 if (!err)
2196 memcg_nr_cache_ids = size;
2197
2198 up_write(&memcg_cache_ids_sem);
2199
2200 if (err) {
2201 ida_simple_remove(&memcg_cache_ida, id);
2202 return err;
2203 }
2204 return id;
2205 }
2206
2207 static void memcg_free_cache_id(int id)
2208 {
2209 ida_simple_remove(&memcg_cache_ida, id);
2210 }
2211
2212 struct memcg_kmem_cache_create_work {
2213 struct mem_cgroup *memcg;
2214 struct kmem_cache *cachep;
2215 struct work_struct work;
2216 };
2217
2218 static void memcg_kmem_cache_create_func(struct work_struct *w)
2219 {
2220 struct memcg_kmem_cache_create_work *cw =
2221 container_of(w, struct memcg_kmem_cache_create_work, work);
2222 struct mem_cgroup *memcg = cw->memcg;
2223 struct kmem_cache *cachep = cw->cachep;
2224
2225 memcg_create_kmem_cache(memcg, cachep);
2226
2227 css_put(&memcg->css);
2228 kfree(cw);
2229 }
2230
2231 /*
2232 * Enqueue the creation of a per-memcg kmem_cache.
2233 */
2234 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2235 struct kmem_cache *cachep)
2236 {
2237 struct memcg_kmem_cache_create_work *cw;
2238
2239 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2240 if (!cw)
2241 return;
2242
2243 css_get(&memcg->css);
2244
2245 cw->memcg = memcg;
2246 cw->cachep = cachep;
2247 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2248
2249 schedule_work(&cw->work);
2250 }
2251
2252 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2253 struct kmem_cache *cachep)
2254 {
2255 /*
2256 * We need to stop accounting when we kmalloc, because if the
2257 * corresponding kmalloc cache is not yet created, the first allocation
2258 * in __memcg_schedule_kmem_cache_create will recurse.
2259 *
2260 * However, it is better to enclose the whole function. Depending on
2261 * the debugging options enabled, INIT_WORK(), for instance, can
2262 * trigger an allocation. This too, will make us recurse. Because at
2263 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2264 * the safest choice is to do it like this, wrapping the whole function.
2265 */
2266 current->memcg_kmem_skip_account = 1;
2267 __memcg_schedule_kmem_cache_create(memcg, cachep);
2268 current->memcg_kmem_skip_account = 0;
2269 }
2270
2271 /*
2272 * Return the kmem_cache we're supposed to use for a slab allocation.
2273 * We try to use the current memcg's version of the cache.
2274 *
2275 * If the cache does not exist yet, if we are the first user of it,
2276 * we either create it immediately, if possible, or create it asynchronously
2277 * in a workqueue.
2278 * In the latter case, we will let the current allocation go through with
2279 * the original cache.
2280 *
2281 * Can't be called in interrupt context or from kernel threads.
2282 * This function needs to be called with rcu_read_lock() held.
2283 */
2284 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2285 {
2286 struct mem_cgroup *memcg;
2287 struct kmem_cache *memcg_cachep;
2288 int kmemcg_id;
2289
2290 VM_BUG_ON(!is_root_cache(cachep));
2291
2292 if (cachep->flags & SLAB_ACCOUNT)
2293 gfp |= __GFP_ACCOUNT;
2294
2295 if (!(gfp & __GFP_ACCOUNT))
2296 return cachep;
2297
2298 if (current->memcg_kmem_skip_account)
2299 return cachep;
2300
2301 memcg = get_mem_cgroup_from_mm(current->mm);
2302 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2303 if (kmemcg_id < 0)
2304 goto out;
2305
2306 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2307 if (likely(memcg_cachep))
2308 return memcg_cachep;
2309
2310 /*
2311 * If we are in a safe context (can wait, and not in interrupt
2312 * context), we could be be predictable and return right away.
2313 * This would guarantee that the allocation being performed
2314 * already belongs in the new cache.
2315 *
2316 * However, there are some clashes that can arrive from locking.
2317 * For instance, because we acquire the slab_mutex while doing
2318 * memcg_create_kmem_cache, this means no further allocation
2319 * could happen with the slab_mutex held. So it's better to
2320 * defer everything.
2321 */
2322 memcg_schedule_kmem_cache_create(memcg, cachep);
2323 out:
2324 css_put(&memcg->css);
2325 return cachep;
2326 }
2327
2328 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2329 {
2330 if (!is_root_cache(cachep))
2331 css_put(&cachep->memcg_params.memcg->css);
2332 }
2333
2334 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2335 struct mem_cgroup *memcg)
2336 {
2337 unsigned int nr_pages = 1 << order;
2338 struct page_counter *counter;
2339 int ret;
2340
2341 ret = try_charge(memcg, gfp, nr_pages);
2342 if (ret)
2343 return ret;
2344
2345 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2346 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2347 cancel_charge(memcg, nr_pages);
2348 return -ENOMEM;
2349 }
2350
2351 page->mem_cgroup = memcg;
2352
2353 return 0;
2354 }
2355
2356 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2357 {
2358 struct mem_cgroup *memcg;
2359 int ret = 0;
2360
2361 memcg = get_mem_cgroup_from_mm(current->mm);
2362 if (!mem_cgroup_is_root(memcg))
2363 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2364 css_put(&memcg->css);
2365 return ret;
2366 }
2367
2368 void __memcg_kmem_uncharge(struct page *page, int order)
2369 {
2370 struct mem_cgroup *memcg = page->mem_cgroup;
2371 unsigned int nr_pages = 1 << order;
2372
2373 if (!memcg)
2374 return;
2375
2376 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2377
2378 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2379 page_counter_uncharge(&memcg->kmem, nr_pages);
2380
2381 page_counter_uncharge(&memcg->memory, nr_pages);
2382 if (do_memsw_account())
2383 page_counter_uncharge(&memcg->memsw, nr_pages);
2384
2385 page->mem_cgroup = NULL;
2386 css_put_many(&memcg->css, nr_pages);
2387 }
2388 #endif /* !CONFIG_SLOB */
2389
2390 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2391
2392 /*
2393 * Because tail pages are not marked as "used", set it. We're under
2394 * zone->lru_lock and migration entries setup in all page mappings.
2395 */
2396 void mem_cgroup_split_huge_fixup(struct page *head)
2397 {
2398 int i;
2399
2400 if (mem_cgroup_disabled())
2401 return;
2402
2403 for (i = 1; i < HPAGE_PMD_NR; i++)
2404 head[i].mem_cgroup = head->mem_cgroup;
2405
2406 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2407 HPAGE_PMD_NR);
2408 }
2409 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2410
2411 #ifdef CONFIG_MEMCG_SWAP
2412 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2413 bool charge)
2414 {
2415 int val = (charge) ? 1 : -1;
2416 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2417 }
2418
2419 /**
2420 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2421 * @entry: swap entry to be moved
2422 * @from: mem_cgroup which the entry is moved from
2423 * @to: mem_cgroup which the entry is moved to
2424 *
2425 * It succeeds only when the swap_cgroup's record for this entry is the same
2426 * as the mem_cgroup's id of @from.
2427 *
2428 * Returns 0 on success, -EINVAL on failure.
2429 *
2430 * The caller must have charged to @to, IOW, called page_counter_charge() about
2431 * both res and memsw, and called css_get().
2432 */
2433 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2434 struct mem_cgroup *from, struct mem_cgroup *to)
2435 {
2436 unsigned short old_id, new_id;
2437
2438 old_id = mem_cgroup_id(from);
2439 new_id = mem_cgroup_id(to);
2440
2441 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2442 mem_cgroup_swap_statistics(from, false);
2443 mem_cgroup_swap_statistics(to, true);
2444 return 0;
2445 }
2446 return -EINVAL;
2447 }
2448 #else
2449 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2450 struct mem_cgroup *from, struct mem_cgroup *to)
2451 {
2452 return -EINVAL;
2453 }
2454 #endif
2455
2456 static DEFINE_MUTEX(memcg_limit_mutex);
2457
2458 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2459 unsigned long limit)
2460 {
2461 unsigned long curusage;
2462 unsigned long oldusage;
2463 bool enlarge = false;
2464 int retry_count;
2465 int ret;
2466
2467 /*
2468 * For keeping hierarchical_reclaim simple, how long we should retry
2469 * is depends on callers. We set our retry-count to be function
2470 * of # of children which we should visit in this loop.
2471 */
2472 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2473 mem_cgroup_count_children(memcg);
2474
2475 oldusage = page_counter_read(&memcg->memory);
2476
2477 do {
2478 if (signal_pending(current)) {
2479 ret = -EINTR;
2480 break;
2481 }
2482
2483 mutex_lock(&memcg_limit_mutex);
2484 if (limit > memcg->memsw.limit) {
2485 mutex_unlock(&memcg_limit_mutex);
2486 ret = -EINVAL;
2487 break;
2488 }
2489 if (limit > memcg->memory.limit)
2490 enlarge = true;
2491 ret = page_counter_limit(&memcg->memory, limit);
2492 mutex_unlock(&memcg_limit_mutex);
2493
2494 if (!ret)
2495 break;
2496
2497 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2498
2499 curusage = page_counter_read(&memcg->memory);
2500 /* Usage is reduced ? */
2501 if (curusage >= oldusage)
2502 retry_count--;
2503 else
2504 oldusage = curusage;
2505 } while (retry_count);
2506
2507 if (!ret && enlarge)
2508 memcg_oom_recover(memcg);
2509
2510 return ret;
2511 }
2512
2513 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2514 unsigned long limit)
2515 {
2516 unsigned long curusage;
2517 unsigned long oldusage;
2518 bool enlarge = false;
2519 int retry_count;
2520 int ret;
2521
2522 /* see mem_cgroup_resize_res_limit */
2523 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2524 mem_cgroup_count_children(memcg);
2525
2526 oldusage = page_counter_read(&memcg->memsw);
2527
2528 do {
2529 if (signal_pending(current)) {
2530 ret = -EINTR;
2531 break;
2532 }
2533
2534 mutex_lock(&memcg_limit_mutex);
2535 if (limit < memcg->memory.limit) {
2536 mutex_unlock(&memcg_limit_mutex);
2537 ret = -EINVAL;
2538 break;
2539 }
2540 if (limit > memcg->memsw.limit)
2541 enlarge = true;
2542 ret = page_counter_limit(&memcg->memsw, limit);
2543 mutex_unlock(&memcg_limit_mutex);
2544
2545 if (!ret)
2546 break;
2547
2548 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2549
2550 curusage = page_counter_read(&memcg->memsw);
2551 /* Usage is reduced ? */
2552 if (curusage >= oldusage)
2553 retry_count--;
2554 else
2555 oldusage = curusage;
2556 } while (retry_count);
2557
2558 if (!ret && enlarge)
2559 memcg_oom_recover(memcg);
2560
2561 return ret;
2562 }
2563
2564 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2565 gfp_t gfp_mask,
2566 unsigned long *total_scanned)
2567 {
2568 unsigned long nr_reclaimed = 0;
2569 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2570 unsigned long reclaimed;
2571 int loop = 0;
2572 struct mem_cgroup_tree_per_zone *mctz;
2573 unsigned long excess;
2574 unsigned long nr_scanned;
2575
2576 if (order > 0)
2577 return 0;
2578
2579 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2580 /*
2581 * This loop can run a while, specially if mem_cgroup's continuously
2582 * keep exceeding their soft limit and putting the system under
2583 * pressure
2584 */
2585 do {
2586 if (next_mz)
2587 mz = next_mz;
2588 else
2589 mz = mem_cgroup_largest_soft_limit_node(mctz);
2590 if (!mz)
2591 break;
2592
2593 nr_scanned = 0;
2594 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2595 gfp_mask, &nr_scanned);
2596 nr_reclaimed += reclaimed;
2597 *total_scanned += nr_scanned;
2598 spin_lock_irq(&mctz->lock);
2599 __mem_cgroup_remove_exceeded(mz, mctz);
2600
2601 /*
2602 * If we failed to reclaim anything from this memory cgroup
2603 * it is time to move on to the next cgroup
2604 */
2605 next_mz = NULL;
2606 if (!reclaimed)
2607 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2608
2609 excess = soft_limit_excess(mz->memcg);
2610 /*
2611 * One school of thought says that we should not add
2612 * back the node to the tree if reclaim returns 0.
2613 * But our reclaim could return 0, simply because due
2614 * to priority we are exposing a smaller subset of
2615 * memory to reclaim from. Consider this as a longer
2616 * term TODO.
2617 */
2618 /* If excess == 0, no tree ops */
2619 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2620 spin_unlock_irq(&mctz->lock);
2621 css_put(&mz->memcg->css);
2622 loop++;
2623 /*
2624 * Could not reclaim anything and there are no more
2625 * mem cgroups to try or we seem to be looping without
2626 * reclaiming anything.
2627 */
2628 if (!nr_reclaimed &&
2629 (next_mz == NULL ||
2630 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2631 break;
2632 } while (!nr_reclaimed);
2633 if (next_mz)
2634 css_put(&next_mz->memcg->css);
2635 return nr_reclaimed;
2636 }
2637
2638 /*
2639 * Test whether @memcg has children, dead or alive. Note that this
2640 * function doesn't care whether @memcg has use_hierarchy enabled and
2641 * returns %true if there are child csses according to the cgroup
2642 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2643 */
2644 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2645 {
2646 bool ret;
2647
2648 rcu_read_lock();
2649 ret = css_next_child(NULL, &memcg->css);
2650 rcu_read_unlock();
2651 return ret;
2652 }
2653
2654 /*
2655 * Reclaims as many pages from the given memcg as possible.
2656 *
2657 * Caller is responsible for holding css reference for memcg.
2658 */
2659 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2660 {
2661 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2662
2663 /* we call try-to-free pages for make this cgroup empty */
2664 lru_add_drain_all();
2665 /* try to free all pages in this cgroup */
2666 while (nr_retries && page_counter_read(&memcg->memory)) {
2667 int progress;
2668
2669 if (signal_pending(current))
2670 return -EINTR;
2671
2672 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2673 GFP_KERNEL, true);
2674 if (!progress) {
2675 nr_retries--;
2676 /* maybe some writeback is necessary */
2677 congestion_wait(BLK_RW_ASYNC, HZ/10);
2678 }
2679
2680 }
2681
2682 return 0;
2683 }
2684
2685 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2686 char *buf, size_t nbytes,
2687 loff_t off)
2688 {
2689 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2690
2691 if (mem_cgroup_is_root(memcg))
2692 return -EINVAL;
2693 return mem_cgroup_force_empty(memcg) ?: nbytes;
2694 }
2695
2696 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2697 struct cftype *cft)
2698 {
2699 return mem_cgroup_from_css(css)->use_hierarchy;
2700 }
2701
2702 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2703 struct cftype *cft, u64 val)
2704 {
2705 int retval = 0;
2706 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2707 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2708
2709 if (memcg->use_hierarchy == val)
2710 return 0;
2711
2712 /*
2713 * If parent's use_hierarchy is set, we can't make any modifications
2714 * in the child subtrees. If it is unset, then the change can
2715 * occur, provided the current cgroup has no children.
2716 *
2717 * For the root cgroup, parent_mem is NULL, we allow value to be
2718 * set if there are no children.
2719 */
2720 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2721 (val == 1 || val == 0)) {
2722 if (!memcg_has_children(memcg))
2723 memcg->use_hierarchy = val;
2724 else
2725 retval = -EBUSY;
2726 } else
2727 retval = -EINVAL;
2728
2729 return retval;
2730 }
2731
2732 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2733 {
2734 struct mem_cgroup *iter;
2735 int i;
2736
2737 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2738
2739 for_each_mem_cgroup_tree(iter, memcg) {
2740 for (i = 0; i < MEMCG_NR_STAT; i++)
2741 stat[i] += mem_cgroup_read_stat(iter, i);
2742 }
2743 }
2744
2745 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2746 {
2747 struct mem_cgroup *iter;
2748 int i;
2749
2750 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2751
2752 for_each_mem_cgroup_tree(iter, memcg) {
2753 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2754 events[i] += mem_cgroup_read_events(iter, i);
2755 }
2756 }
2757
2758 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2759 {
2760 unsigned long val = 0;
2761
2762 if (mem_cgroup_is_root(memcg)) {
2763 struct mem_cgroup *iter;
2764
2765 for_each_mem_cgroup_tree(iter, memcg) {
2766 val += mem_cgroup_read_stat(iter,
2767 MEM_CGROUP_STAT_CACHE);
2768 val += mem_cgroup_read_stat(iter,
2769 MEM_CGROUP_STAT_RSS);
2770 if (swap)
2771 val += mem_cgroup_read_stat(iter,
2772 MEM_CGROUP_STAT_SWAP);
2773 }
2774 } else {
2775 if (!swap)
2776 val = page_counter_read(&memcg->memory);
2777 else
2778 val = page_counter_read(&memcg->memsw);
2779 }
2780 return val;
2781 }
2782
2783 enum {
2784 RES_USAGE,
2785 RES_LIMIT,
2786 RES_MAX_USAGE,
2787 RES_FAILCNT,
2788 RES_SOFT_LIMIT,
2789 };
2790
2791 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2792 struct cftype *cft)
2793 {
2794 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2795 struct page_counter *counter;
2796
2797 switch (MEMFILE_TYPE(cft->private)) {
2798 case _MEM:
2799 counter = &memcg->memory;
2800 break;
2801 case _MEMSWAP:
2802 counter = &memcg->memsw;
2803 break;
2804 case _KMEM:
2805 counter = &memcg->kmem;
2806 break;
2807 case _TCP:
2808 counter = &memcg->tcpmem;
2809 break;
2810 default:
2811 BUG();
2812 }
2813
2814 switch (MEMFILE_ATTR(cft->private)) {
2815 case RES_USAGE:
2816 if (counter == &memcg->memory)
2817 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2818 if (counter == &memcg->memsw)
2819 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2820 return (u64)page_counter_read(counter) * PAGE_SIZE;
2821 case RES_LIMIT:
2822 return (u64)counter->limit * PAGE_SIZE;
2823 case RES_MAX_USAGE:
2824 return (u64)counter->watermark * PAGE_SIZE;
2825 case RES_FAILCNT:
2826 return counter->failcnt;
2827 case RES_SOFT_LIMIT:
2828 return (u64)memcg->soft_limit * PAGE_SIZE;
2829 default:
2830 BUG();
2831 }
2832 }
2833
2834 #ifndef CONFIG_SLOB
2835 static int memcg_online_kmem(struct mem_cgroup *memcg)
2836 {
2837 int memcg_id;
2838
2839 if (cgroup_memory_nokmem)
2840 return 0;
2841
2842 BUG_ON(memcg->kmemcg_id >= 0);
2843 BUG_ON(memcg->kmem_state);
2844
2845 memcg_id = memcg_alloc_cache_id();
2846 if (memcg_id < 0)
2847 return memcg_id;
2848
2849 static_branch_inc(&memcg_kmem_enabled_key);
2850 /*
2851 * A memory cgroup is considered kmem-online as soon as it gets
2852 * kmemcg_id. Setting the id after enabling static branching will
2853 * guarantee no one starts accounting before all call sites are
2854 * patched.
2855 */
2856 memcg->kmemcg_id = memcg_id;
2857 memcg->kmem_state = KMEM_ONLINE;
2858
2859 return 0;
2860 }
2861
2862 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2863 {
2864 struct cgroup_subsys_state *css;
2865 struct mem_cgroup *parent, *child;
2866 int kmemcg_id;
2867
2868 if (memcg->kmem_state != KMEM_ONLINE)
2869 return;
2870 /*
2871 * Clear the online state before clearing memcg_caches array
2872 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2873 * guarantees that no cache will be created for this cgroup
2874 * after we are done (see memcg_create_kmem_cache()).
2875 */
2876 memcg->kmem_state = KMEM_ALLOCATED;
2877
2878 memcg_deactivate_kmem_caches(memcg);
2879
2880 kmemcg_id = memcg->kmemcg_id;
2881 BUG_ON(kmemcg_id < 0);
2882
2883 parent = parent_mem_cgroup(memcg);
2884 if (!parent)
2885 parent = root_mem_cgroup;
2886
2887 /*
2888 * Change kmemcg_id of this cgroup and all its descendants to the
2889 * parent's id, and then move all entries from this cgroup's list_lrus
2890 * to ones of the parent. After we have finished, all list_lrus
2891 * corresponding to this cgroup are guaranteed to remain empty. The
2892 * ordering is imposed by list_lru_node->lock taken by
2893 * memcg_drain_all_list_lrus().
2894 */
2895 css_for_each_descendant_pre(css, &memcg->css) {
2896 child = mem_cgroup_from_css(css);
2897 BUG_ON(child->kmemcg_id != kmemcg_id);
2898 child->kmemcg_id = parent->kmemcg_id;
2899 if (!memcg->use_hierarchy)
2900 break;
2901 }
2902 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2903
2904 memcg_free_cache_id(kmemcg_id);
2905 }
2906
2907 static void memcg_free_kmem(struct mem_cgroup *memcg)
2908 {
2909 /* css_alloc() failed, offlining didn't happen */
2910 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2911 memcg_offline_kmem(memcg);
2912
2913 if (memcg->kmem_state == KMEM_ALLOCATED) {
2914 memcg_destroy_kmem_caches(memcg);
2915 static_branch_dec(&memcg_kmem_enabled_key);
2916 WARN_ON(page_counter_read(&memcg->kmem));
2917 }
2918 }
2919 #else
2920 static int memcg_online_kmem(struct mem_cgroup *memcg)
2921 {
2922 return 0;
2923 }
2924 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2925 {
2926 }
2927 static void memcg_free_kmem(struct mem_cgroup *memcg)
2928 {
2929 }
2930 #endif /* !CONFIG_SLOB */
2931
2932 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2933 unsigned long limit)
2934 {
2935 int ret;
2936
2937 mutex_lock(&memcg_limit_mutex);
2938 ret = page_counter_limit(&memcg->kmem, limit);
2939 mutex_unlock(&memcg_limit_mutex);
2940 return ret;
2941 }
2942
2943 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2944 {
2945 int ret;
2946
2947 mutex_lock(&memcg_limit_mutex);
2948
2949 ret = page_counter_limit(&memcg->tcpmem, limit);
2950 if (ret)
2951 goto out;
2952
2953 if (!memcg->tcpmem_active) {
2954 /*
2955 * The active flag needs to be written after the static_key
2956 * update. This is what guarantees that the socket activation
2957 * function is the last one to run. See sock_update_memcg() for
2958 * details, and note that we don't mark any socket as belonging
2959 * to this memcg until that flag is up.
2960 *
2961 * We need to do this, because static_keys will span multiple
2962 * sites, but we can't control their order. If we mark a socket
2963 * as accounted, but the accounting functions are not patched in
2964 * yet, we'll lose accounting.
2965 *
2966 * We never race with the readers in sock_update_memcg(),
2967 * because when this value change, the code to process it is not
2968 * patched in yet.
2969 */
2970 static_branch_inc(&memcg_sockets_enabled_key);
2971 memcg->tcpmem_active = true;
2972 }
2973 out:
2974 mutex_unlock(&memcg_limit_mutex);
2975 return ret;
2976 }
2977
2978 /*
2979 * The user of this function is...
2980 * RES_LIMIT.
2981 */
2982 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2983 char *buf, size_t nbytes, loff_t off)
2984 {
2985 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2986 unsigned long nr_pages;
2987 int ret;
2988
2989 buf = strstrip(buf);
2990 ret = page_counter_memparse(buf, "-1", &nr_pages);
2991 if (ret)
2992 return ret;
2993
2994 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2995 case RES_LIMIT:
2996 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2997 ret = -EINVAL;
2998 break;
2999 }
3000 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3001 case _MEM:
3002 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3003 break;
3004 case _MEMSWAP:
3005 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3006 break;
3007 case _KMEM:
3008 ret = memcg_update_kmem_limit(memcg, nr_pages);
3009 break;
3010 case _TCP:
3011 ret = memcg_update_tcp_limit(memcg, nr_pages);
3012 break;
3013 }
3014 break;
3015 case RES_SOFT_LIMIT:
3016 memcg->soft_limit = nr_pages;
3017 ret = 0;
3018 break;
3019 }
3020 return ret ?: nbytes;
3021 }
3022
3023 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3024 size_t nbytes, loff_t off)
3025 {
3026 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3027 struct page_counter *counter;
3028
3029 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3030 case _MEM:
3031 counter = &memcg->memory;
3032 break;
3033 case _MEMSWAP:
3034 counter = &memcg->memsw;
3035 break;
3036 case _KMEM:
3037 counter = &memcg->kmem;
3038 break;
3039 case _TCP:
3040 counter = &memcg->tcpmem;
3041 break;
3042 default:
3043 BUG();
3044 }
3045
3046 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3047 case RES_MAX_USAGE:
3048 page_counter_reset_watermark(counter);
3049 break;
3050 case RES_FAILCNT:
3051 counter->failcnt = 0;
3052 break;
3053 default:
3054 BUG();
3055 }
3056
3057 return nbytes;
3058 }
3059
3060 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3061 struct cftype *cft)
3062 {
3063 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3064 }
3065
3066 #ifdef CONFIG_MMU
3067 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3068 struct cftype *cft, u64 val)
3069 {
3070 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3071
3072 if (val & ~MOVE_MASK)
3073 return -EINVAL;
3074
3075 /*
3076 * No kind of locking is needed in here, because ->can_attach() will
3077 * check this value once in the beginning of the process, and then carry
3078 * on with stale data. This means that changes to this value will only
3079 * affect task migrations starting after the change.
3080 */
3081 memcg->move_charge_at_immigrate = val;
3082 return 0;
3083 }
3084 #else
3085 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3086 struct cftype *cft, u64 val)
3087 {
3088 return -ENOSYS;
3089 }
3090 #endif
3091
3092 #ifdef CONFIG_NUMA
3093 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3094 {
3095 struct numa_stat {
3096 const char *name;
3097 unsigned int lru_mask;
3098 };
3099
3100 static const struct numa_stat stats[] = {
3101 { "total", LRU_ALL },
3102 { "file", LRU_ALL_FILE },
3103 { "anon", LRU_ALL_ANON },
3104 { "unevictable", BIT(LRU_UNEVICTABLE) },
3105 };
3106 const struct numa_stat *stat;
3107 int nid;
3108 unsigned long nr;
3109 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3110
3111 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3112 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3113 seq_printf(m, "%s=%lu", stat->name, nr);
3114 for_each_node_state(nid, N_MEMORY) {
3115 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3116 stat->lru_mask);
3117 seq_printf(m, " N%d=%lu", nid, nr);
3118 }
3119 seq_putc(m, '\n');
3120 }
3121
3122 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3123 struct mem_cgroup *iter;
3124
3125 nr = 0;
3126 for_each_mem_cgroup_tree(iter, memcg)
3127 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3128 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3129 for_each_node_state(nid, N_MEMORY) {
3130 nr = 0;
3131 for_each_mem_cgroup_tree(iter, memcg)
3132 nr += mem_cgroup_node_nr_lru_pages(
3133 iter, nid, stat->lru_mask);
3134 seq_printf(m, " N%d=%lu", nid, nr);
3135 }
3136 seq_putc(m, '\n');
3137 }
3138
3139 return 0;
3140 }
3141 #endif /* CONFIG_NUMA */
3142
3143 static int memcg_stat_show(struct seq_file *m, void *v)
3144 {
3145 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3146 unsigned long memory, memsw;
3147 struct mem_cgroup *mi;
3148 unsigned int i;
3149
3150 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3151 MEM_CGROUP_STAT_NSTATS);
3152 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3153 MEM_CGROUP_EVENTS_NSTATS);
3154 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3155
3156 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3157 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3158 continue;
3159 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3160 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3161 }
3162
3163 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3164 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3165 mem_cgroup_read_events(memcg, i));
3166
3167 for (i = 0; i < NR_LRU_LISTS; i++)
3168 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3169 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3170
3171 /* Hierarchical information */
3172 memory = memsw = PAGE_COUNTER_MAX;
3173 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3174 memory = min(memory, mi->memory.limit);
3175 memsw = min(memsw, mi->memsw.limit);
3176 }
3177 seq_printf(m, "hierarchical_memory_limit %llu\n",
3178 (u64)memory * PAGE_SIZE);
3179 if (do_memsw_account())
3180 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3181 (u64)memsw * PAGE_SIZE);
3182
3183 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3184 unsigned long long val = 0;
3185
3186 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3187 continue;
3188 for_each_mem_cgroup_tree(mi, memcg)
3189 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3190 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3191 }
3192
3193 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3194 unsigned long long val = 0;
3195
3196 for_each_mem_cgroup_tree(mi, memcg)
3197 val += mem_cgroup_read_events(mi, i);
3198 seq_printf(m, "total_%s %llu\n",
3199 mem_cgroup_events_names[i], val);
3200 }
3201
3202 for (i = 0; i < NR_LRU_LISTS; i++) {
3203 unsigned long long val = 0;
3204
3205 for_each_mem_cgroup_tree(mi, memcg)
3206 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3207 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3208 }
3209
3210 #ifdef CONFIG_DEBUG_VM
3211 {
3212 int nid, zid;
3213 struct mem_cgroup_per_zone *mz;
3214 struct zone_reclaim_stat *rstat;
3215 unsigned long recent_rotated[2] = {0, 0};
3216 unsigned long recent_scanned[2] = {0, 0};
3217
3218 for_each_online_node(nid)
3219 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3220 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3221 rstat = &mz->lruvec.reclaim_stat;
3222
3223 recent_rotated[0] += rstat->recent_rotated[0];
3224 recent_rotated[1] += rstat->recent_rotated[1];
3225 recent_scanned[0] += rstat->recent_scanned[0];
3226 recent_scanned[1] += rstat->recent_scanned[1];
3227 }
3228 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3229 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3230 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3231 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3232 }
3233 #endif
3234
3235 return 0;
3236 }
3237
3238 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3239 struct cftype *cft)
3240 {
3241 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3242
3243 return mem_cgroup_swappiness(memcg);
3244 }
3245
3246 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3247 struct cftype *cft, u64 val)
3248 {
3249 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3250
3251 if (val > 100)
3252 return -EINVAL;
3253
3254 if (css->parent)
3255 memcg->swappiness = val;
3256 else
3257 vm_swappiness = val;
3258
3259 return 0;
3260 }
3261
3262 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3263 {
3264 struct mem_cgroup_threshold_ary *t;
3265 unsigned long usage;
3266 int i;
3267
3268 rcu_read_lock();
3269 if (!swap)
3270 t = rcu_dereference(memcg->thresholds.primary);
3271 else
3272 t = rcu_dereference(memcg->memsw_thresholds.primary);
3273
3274 if (!t)
3275 goto unlock;
3276
3277 usage = mem_cgroup_usage(memcg, swap);
3278
3279 /*
3280 * current_threshold points to threshold just below or equal to usage.
3281 * If it's not true, a threshold was crossed after last
3282 * call of __mem_cgroup_threshold().
3283 */
3284 i = t->current_threshold;
3285
3286 /*
3287 * Iterate backward over array of thresholds starting from
3288 * current_threshold and check if a threshold is crossed.
3289 * If none of thresholds below usage is crossed, we read
3290 * only one element of the array here.
3291 */
3292 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3293 eventfd_signal(t->entries[i].eventfd, 1);
3294
3295 /* i = current_threshold + 1 */
3296 i++;
3297
3298 /*
3299 * Iterate forward over array of thresholds starting from
3300 * current_threshold+1 and check if a threshold is crossed.
3301 * If none of thresholds above usage is crossed, we read
3302 * only one element of the array here.
3303 */
3304 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3305 eventfd_signal(t->entries[i].eventfd, 1);
3306
3307 /* Update current_threshold */
3308 t->current_threshold = i - 1;
3309 unlock:
3310 rcu_read_unlock();
3311 }
3312
3313 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3314 {
3315 while (memcg) {
3316 __mem_cgroup_threshold(memcg, false);
3317 if (do_memsw_account())
3318 __mem_cgroup_threshold(memcg, true);
3319
3320 memcg = parent_mem_cgroup(memcg);
3321 }
3322 }
3323
3324 static int compare_thresholds(const void *a, const void *b)
3325 {
3326 const struct mem_cgroup_threshold *_a = a;
3327 const struct mem_cgroup_threshold *_b = b;
3328
3329 if (_a->threshold > _b->threshold)
3330 return 1;
3331
3332 if (_a->threshold < _b->threshold)
3333 return -1;
3334
3335 return 0;
3336 }
3337
3338 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3339 {
3340 struct mem_cgroup_eventfd_list *ev;
3341
3342 spin_lock(&memcg_oom_lock);
3343
3344 list_for_each_entry(ev, &memcg->oom_notify, list)
3345 eventfd_signal(ev->eventfd, 1);
3346
3347 spin_unlock(&memcg_oom_lock);
3348 return 0;
3349 }
3350
3351 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3352 {
3353 struct mem_cgroup *iter;
3354
3355 for_each_mem_cgroup_tree(iter, memcg)
3356 mem_cgroup_oom_notify_cb(iter);
3357 }
3358
3359 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3360 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3361 {
3362 struct mem_cgroup_thresholds *thresholds;
3363 struct mem_cgroup_threshold_ary *new;
3364 unsigned long threshold;
3365 unsigned long usage;
3366 int i, size, ret;
3367
3368 ret = page_counter_memparse(args, "-1", &threshold);
3369 if (ret)
3370 return ret;
3371
3372 mutex_lock(&memcg->thresholds_lock);
3373
3374 if (type == _MEM) {
3375 thresholds = &memcg->thresholds;
3376 usage = mem_cgroup_usage(memcg, false);
3377 } else if (type == _MEMSWAP) {
3378 thresholds = &memcg->memsw_thresholds;
3379 usage = mem_cgroup_usage(memcg, true);
3380 } else
3381 BUG();
3382
3383 /* Check if a threshold crossed before adding a new one */
3384 if (thresholds->primary)
3385 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3386
3387 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3388
3389 /* Allocate memory for new array of thresholds */
3390 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3391 GFP_KERNEL);
3392 if (!new) {
3393 ret = -ENOMEM;
3394 goto unlock;
3395 }
3396 new->size = size;
3397
3398 /* Copy thresholds (if any) to new array */
3399 if (thresholds->primary) {
3400 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3401 sizeof(struct mem_cgroup_threshold));
3402 }
3403
3404 /* Add new threshold */
3405 new->entries[size - 1].eventfd = eventfd;
3406 new->entries[size - 1].threshold = threshold;
3407
3408 /* Sort thresholds. Registering of new threshold isn't time-critical */
3409 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3410 compare_thresholds, NULL);
3411
3412 /* Find current threshold */
3413 new->current_threshold = -1;
3414 for (i = 0; i < size; i++) {
3415 if (new->entries[i].threshold <= usage) {
3416 /*
3417 * new->current_threshold will not be used until
3418 * rcu_assign_pointer(), so it's safe to increment
3419 * it here.
3420 */
3421 ++new->current_threshold;
3422 } else
3423 break;
3424 }
3425
3426 /* Free old spare buffer and save old primary buffer as spare */
3427 kfree(thresholds->spare);
3428 thresholds->spare = thresholds->primary;
3429
3430 rcu_assign_pointer(thresholds->primary, new);
3431
3432 /* To be sure that nobody uses thresholds */
3433 synchronize_rcu();
3434
3435 unlock:
3436 mutex_unlock(&memcg->thresholds_lock);
3437
3438 return ret;
3439 }
3440
3441 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3442 struct eventfd_ctx *eventfd, const char *args)
3443 {
3444 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3445 }
3446
3447 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3448 struct eventfd_ctx *eventfd, const char *args)
3449 {
3450 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3451 }
3452
3453 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3454 struct eventfd_ctx *eventfd, enum res_type type)
3455 {
3456 struct mem_cgroup_thresholds *thresholds;
3457 struct mem_cgroup_threshold_ary *new;
3458 unsigned long usage;
3459 int i, j, size;
3460
3461 mutex_lock(&memcg->thresholds_lock);
3462
3463 if (type == _MEM) {
3464 thresholds = &memcg->thresholds;
3465 usage = mem_cgroup_usage(memcg, false);
3466 } else if (type == _MEMSWAP) {
3467 thresholds = &memcg->memsw_thresholds;
3468 usage = mem_cgroup_usage(memcg, true);
3469 } else
3470 BUG();
3471
3472 if (!thresholds->primary)
3473 goto unlock;
3474
3475 /* Check if a threshold crossed before removing */
3476 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3477
3478 /* Calculate new number of threshold */
3479 size = 0;
3480 for (i = 0; i < thresholds->primary->size; i++) {
3481 if (thresholds->primary->entries[i].eventfd != eventfd)
3482 size++;
3483 }
3484
3485 new = thresholds->spare;
3486
3487 /* Set thresholds array to NULL if we don't have thresholds */
3488 if (!size) {
3489 kfree(new);
3490 new = NULL;
3491 goto swap_buffers;
3492 }
3493
3494 new->size = size;
3495
3496 /* Copy thresholds and find current threshold */
3497 new->current_threshold = -1;
3498 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3499 if (thresholds->primary->entries[i].eventfd == eventfd)
3500 continue;
3501
3502 new->entries[j] = thresholds->primary->entries[i];
3503 if (new->entries[j].threshold <= usage) {
3504 /*
3505 * new->current_threshold will not be used
3506 * until rcu_assign_pointer(), so it's safe to increment
3507 * it here.
3508 */
3509 ++new->current_threshold;
3510 }
3511 j++;
3512 }
3513
3514 swap_buffers:
3515 /* Swap primary and spare array */
3516 thresholds->spare = thresholds->primary;
3517
3518 rcu_assign_pointer(thresholds->primary, new);
3519
3520 /* To be sure that nobody uses thresholds */
3521 synchronize_rcu();
3522
3523 /* If all events are unregistered, free the spare array */
3524 if (!new) {
3525 kfree(thresholds->spare);
3526 thresholds->spare = NULL;
3527 }
3528 unlock:
3529 mutex_unlock(&memcg->thresholds_lock);
3530 }
3531
3532 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3533 struct eventfd_ctx *eventfd)
3534 {
3535 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3536 }
3537
3538 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3539 struct eventfd_ctx *eventfd)
3540 {
3541 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3542 }
3543
3544 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3545 struct eventfd_ctx *eventfd, const char *args)
3546 {
3547 struct mem_cgroup_eventfd_list *event;
3548
3549 event = kmalloc(sizeof(*event), GFP_KERNEL);
3550 if (!event)
3551 return -ENOMEM;
3552
3553 spin_lock(&memcg_oom_lock);
3554
3555 event->eventfd = eventfd;
3556 list_add(&event->list, &memcg->oom_notify);
3557
3558 /* already in OOM ? */
3559 if (memcg->under_oom)
3560 eventfd_signal(eventfd, 1);
3561 spin_unlock(&memcg_oom_lock);
3562
3563 return 0;
3564 }
3565
3566 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3567 struct eventfd_ctx *eventfd)
3568 {
3569 struct mem_cgroup_eventfd_list *ev, *tmp;
3570
3571 spin_lock(&memcg_oom_lock);
3572
3573 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3574 if (ev->eventfd == eventfd) {
3575 list_del(&ev->list);
3576 kfree(ev);
3577 }
3578 }
3579
3580 spin_unlock(&memcg_oom_lock);
3581 }
3582
3583 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3584 {
3585 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3586
3587 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3588 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3589 return 0;
3590 }
3591
3592 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3593 struct cftype *cft, u64 val)
3594 {
3595 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3596
3597 /* cannot set to root cgroup and only 0 and 1 are allowed */
3598 if (!css->parent || !((val == 0) || (val == 1)))
3599 return -EINVAL;
3600
3601 memcg->oom_kill_disable = val;
3602 if (!val)
3603 memcg_oom_recover(memcg);
3604
3605 return 0;
3606 }
3607
3608 #ifdef CONFIG_CGROUP_WRITEBACK
3609
3610 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3611 {
3612 return &memcg->cgwb_list;
3613 }
3614
3615 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3616 {
3617 return wb_domain_init(&memcg->cgwb_domain, gfp);
3618 }
3619
3620 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3621 {
3622 wb_domain_exit(&memcg->cgwb_domain);
3623 }
3624
3625 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3626 {
3627 wb_domain_size_changed(&memcg->cgwb_domain);
3628 }
3629
3630 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3631 {
3632 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3633
3634 if (!memcg->css.parent)
3635 return NULL;
3636
3637 return &memcg->cgwb_domain;
3638 }
3639
3640 /**
3641 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3642 * @wb: bdi_writeback in question
3643 * @pfilepages: out parameter for number of file pages
3644 * @pheadroom: out parameter for number of allocatable pages according to memcg
3645 * @pdirty: out parameter for number of dirty pages
3646 * @pwriteback: out parameter for number of pages under writeback
3647 *
3648 * Determine the numbers of file, headroom, dirty, and writeback pages in
3649 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3650 * is a bit more involved.
3651 *
3652 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3653 * headroom is calculated as the lowest headroom of itself and the
3654 * ancestors. Note that this doesn't consider the actual amount of
3655 * available memory in the system. The caller should further cap
3656 * *@pheadroom accordingly.
3657 */
3658 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3659 unsigned long *pheadroom, unsigned long *pdirty,
3660 unsigned long *pwriteback)
3661 {
3662 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3663 struct mem_cgroup *parent;
3664
3665 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3666
3667 /* this should eventually include NR_UNSTABLE_NFS */
3668 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3669 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3670 (1 << LRU_ACTIVE_FILE));
3671 *pheadroom = PAGE_COUNTER_MAX;
3672
3673 while ((parent = parent_mem_cgroup(memcg))) {
3674 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3675 unsigned long used = page_counter_read(&memcg->memory);
3676
3677 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3678 memcg = parent;
3679 }
3680 }
3681
3682 #else /* CONFIG_CGROUP_WRITEBACK */
3683
3684 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3685 {
3686 return 0;
3687 }
3688
3689 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3690 {
3691 }
3692
3693 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3694 {
3695 }
3696
3697 #endif /* CONFIG_CGROUP_WRITEBACK */
3698
3699 /*
3700 * DO NOT USE IN NEW FILES.
3701 *
3702 * "cgroup.event_control" implementation.
3703 *
3704 * This is way over-engineered. It tries to support fully configurable
3705 * events for each user. Such level of flexibility is completely
3706 * unnecessary especially in the light of the planned unified hierarchy.
3707 *
3708 * Please deprecate this and replace with something simpler if at all
3709 * possible.
3710 */
3711
3712 /*
3713 * Unregister event and free resources.
3714 *
3715 * Gets called from workqueue.
3716 */
3717 static void memcg_event_remove(struct work_struct *work)
3718 {
3719 struct mem_cgroup_event *event =
3720 container_of(work, struct mem_cgroup_event, remove);
3721 struct mem_cgroup *memcg = event->memcg;
3722
3723 remove_wait_queue(event->wqh, &event->wait);
3724
3725 event->unregister_event(memcg, event->eventfd);
3726
3727 /* Notify userspace the event is going away. */
3728 eventfd_signal(event->eventfd, 1);
3729
3730 eventfd_ctx_put(event->eventfd);
3731 kfree(event);
3732 css_put(&memcg->css);
3733 }
3734
3735 /*
3736 * Gets called on POLLHUP on eventfd when user closes it.
3737 *
3738 * Called with wqh->lock held and interrupts disabled.
3739 */
3740 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3741 int sync, void *key)
3742 {
3743 struct mem_cgroup_event *event =
3744 container_of(wait, struct mem_cgroup_event, wait);
3745 struct mem_cgroup *memcg = event->memcg;
3746 unsigned long flags = (unsigned long)key;
3747
3748 if (flags & POLLHUP) {
3749 /*
3750 * If the event has been detached at cgroup removal, we
3751 * can simply return knowing the other side will cleanup
3752 * for us.
3753 *
3754 * We can't race against event freeing since the other
3755 * side will require wqh->lock via remove_wait_queue(),
3756 * which we hold.
3757 */
3758 spin_lock(&memcg->event_list_lock);
3759 if (!list_empty(&event->list)) {
3760 list_del_init(&event->list);
3761 /*
3762 * We are in atomic context, but cgroup_event_remove()
3763 * may sleep, so we have to call it in workqueue.
3764 */
3765 schedule_work(&event->remove);
3766 }
3767 spin_unlock(&memcg->event_list_lock);
3768 }
3769
3770 return 0;
3771 }
3772
3773 static void memcg_event_ptable_queue_proc(struct file *file,
3774 wait_queue_head_t *wqh, poll_table *pt)
3775 {
3776 struct mem_cgroup_event *event =
3777 container_of(pt, struct mem_cgroup_event, pt);
3778
3779 event->wqh = wqh;
3780 add_wait_queue(wqh, &event->wait);
3781 }
3782
3783 /*
3784 * DO NOT USE IN NEW FILES.
3785 *
3786 * Parse input and register new cgroup event handler.
3787 *
3788 * Input must be in format '<event_fd> <control_fd> <args>'.
3789 * Interpretation of args is defined by control file implementation.
3790 */
3791 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3792 char *buf, size_t nbytes, loff_t off)
3793 {
3794 struct cgroup_subsys_state *css = of_css(of);
3795 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3796 struct mem_cgroup_event *event;
3797 struct cgroup_subsys_state *cfile_css;
3798 unsigned int efd, cfd;
3799 struct fd efile;
3800 struct fd cfile;
3801 const char *name;
3802 char *endp;
3803 int ret;
3804
3805 buf = strstrip(buf);
3806
3807 efd = simple_strtoul(buf, &endp, 10);
3808 if (*endp != ' ')
3809 return -EINVAL;
3810 buf = endp + 1;
3811
3812 cfd = simple_strtoul(buf, &endp, 10);
3813 if ((*endp != ' ') && (*endp != '\0'))
3814 return -EINVAL;
3815 buf = endp + 1;
3816
3817 event = kzalloc(sizeof(*event), GFP_KERNEL);
3818 if (!event)
3819 return -ENOMEM;
3820
3821 event->memcg = memcg;
3822 INIT_LIST_HEAD(&event->list);
3823 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3824 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3825 INIT_WORK(&event->remove, memcg_event_remove);
3826
3827 efile = fdget(efd);
3828 if (!efile.file) {
3829 ret = -EBADF;
3830 goto out_kfree;
3831 }
3832
3833 event->eventfd = eventfd_ctx_fileget(efile.file);
3834 if (IS_ERR(event->eventfd)) {
3835 ret = PTR_ERR(event->eventfd);
3836 goto out_put_efile;
3837 }
3838
3839 cfile = fdget(cfd);
3840 if (!cfile.file) {
3841 ret = -EBADF;
3842 goto out_put_eventfd;
3843 }
3844
3845 /* the process need read permission on control file */
3846 /* AV: shouldn't we check that it's been opened for read instead? */
3847 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3848 if (ret < 0)
3849 goto out_put_cfile;
3850
3851 /*
3852 * Determine the event callbacks and set them in @event. This used
3853 * to be done via struct cftype but cgroup core no longer knows
3854 * about these events. The following is crude but the whole thing
3855 * is for compatibility anyway.
3856 *
3857 * DO NOT ADD NEW FILES.
3858 */
3859 name = cfile.file->f_path.dentry->d_name.name;
3860
3861 if (!strcmp(name, "memory.usage_in_bytes")) {
3862 event->register_event = mem_cgroup_usage_register_event;
3863 event->unregister_event = mem_cgroup_usage_unregister_event;
3864 } else if (!strcmp(name, "memory.oom_control")) {
3865 event->register_event = mem_cgroup_oom_register_event;
3866 event->unregister_event = mem_cgroup_oom_unregister_event;
3867 } else if (!strcmp(name, "memory.pressure_level")) {
3868 event->register_event = vmpressure_register_event;
3869 event->unregister_event = vmpressure_unregister_event;
3870 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3871 event->register_event = memsw_cgroup_usage_register_event;
3872 event->unregister_event = memsw_cgroup_usage_unregister_event;
3873 } else {
3874 ret = -EINVAL;
3875 goto out_put_cfile;
3876 }
3877
3878 /*
3879 * Verify @cfile should belong to @css. Also, remaining events are
3880 * automatically removed on cgroup destruction but the removal is
3881 * asynchronous, so take an extra ref on @css.
3882 */
3883 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3884 &memory_cgrp_subsys);
3885 ret = -EINVAL;
3886 if (IS_ERR(cfile_css))
3887 goto out_put_cfile;
3888 if (cfile_css != css) {
3889 css_put(cfile_css);
3890 goto out_put_cfile;
3891 }
3892
3893 ret = event->register_event(memcg, event->eventfd, buf);
3894 if (ret)
3895 goto out_put_css;
3896
3897 efile.file->f_op->poll(efile.file, &event->pt);
3898
3899 spin_lock(&memcg->event_list_lock);
3900 list_add(&event->list, &memcg->event_list);
3901 spin_unlock(&memcg->event_list_lock);
3902
3903 fdput(cfile);
3904 fdput(efile);
3905
3906 return nbytes;
3907
3908 out_put_css:
3909 css_put(css);
3910 out_put_cfile:
3911 fdput(cfile);
3912 out_put_eventfd:
3913 eventfd_ctx_put(event->eventfd);
3914 out_put_efile:
3915 fdput(efile);
3916 out_kfree:
3917 kfree(event);
3918
3919 return ret;
3920 }
3921
3922 static struct cftype mem_cgroup_legacy_files[] = {
3923 {
3924 .name = "usage_in_bytes",
3925 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3926 .read_u64 = mem_cgroup_read_u64,
3927 },
3928 {
3929 .name = "max_usage_in_bytes",
3930 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3931 .write = mem_cgroup_reset,
3932 .read_u64 = mem_cgroup_read_u64,
3933 },
3934 {
3935 .name = "limit_in_bytes",
3936 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3937 .write = mem_cgroup_write,
3938 .read_u64 = mem_cgroup_read_u64,
3939 },
3940 {
3941 .name = "soft_limit_in_bytes",
3942 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3943 .write = mem_cgroup_write,
3944 .read_u64 = mem_cgroup_read_u64,
3945 },
3946 {
3947 .name = "failcnt",
3948 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3949 .write = mem_cgroup_reset,
3950 .read_u64 = mem_cgroup_read_u64,
3951 },
3952 {
3953 .name = "stat",
3954 .seq_show = memcg_stat_show,
3955 },
3956 {
3957 .name = "force_empty",
3958 .write = mem_cgroup_force_empty_write,
3959 },
3960 {
3961 .name = "use_hierarchy",
3962 .write_u64 = mem_cgroup_hierarchy_write,
3963 .read_u64 = mem_cgroup_hierarchy_read,
3964 },
3965 {
3966 .name = "cgroup.event_control", /* XXX: for compat */
3967 .write = memcg_write_event_control,
3968 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3969 },
3970 {
3971 .name = "swappiness",
3972 .read_u64 = mem_cgroup_swappiness_read,
3973 .write_u64 = mem_cgroup_swappiness_write,
3974 },
3975 {
3976 .name = "move_charge_at_immigrate",
3977 .read_u64 = mem_cgroup_move_charge_read,
3978 .write_u64 = mem_cgroup_move_charge_write,
3979 },
3980 {
3981 .name = "oom_control",
3982 .seq_show = mem_cgroup_oom_control_read,
3983 .write_u64 = mem_cgroup_oom_control_write,
3984 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3985 },
3986 {
3987 .name = "pressure_level",
3988 },
3989 #ifdef CONFIG_NUMA
3990 {
3991 .name = "numa_stat",
3992 .seq_show = memcg_numa_stat_show,
3993 },
3994 #endif
3995 {
3996 .name = "kmem.limit_in_bytes",
3997 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3998 .write = mem_cgroup_write,
3999 .read_u64 = mem_cgroup_read_u64,
4000 },
4001 {
4002 .name = "kmem.usage_in_bytes",
4003 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4004 .read_u64 = mem_cgroup_read_u64,
4005 },
4006 {
4007 .name = "kmem.failcnt",
4008 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4009 .write = mem_cgroup_reset,
4010 .read_u64 = mem_cgroup_read_u64,
4011 },
4012 {
4013 .name = "kmem.max_usage_in_bytes",
4014 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4015 .write = mem_cgroup_reset,
4016 .read_u64 = mem_cgroup_read_u64,
4017 },
4018 #ifdef CONFIG_SLABINFO
4019 {
4020 .name = "kmem.slabinfo",
4021 .seq_start = slab_start,
4022 .seq_next = slab_next,
4023 .seq_stop = slab_stop,
4024 .seq_show = memcg_slab_show,
4025 },
4026 #endif
4027 {
4028 .name = "kmem.tcp.limit_in_bytes",
4029 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4030 .write = mem_cgroup_write,
4031 .read_u64 = mem_cgroup_read_u64,
4032 },
4033 {
4034 .name = "kmem.tcp.usage_in_bytes",
4035 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4036 .read_u64 = mem_cgroup_read_u64,
4037 },
4038 {
4039 .name = "kmem.tcp.failcnt",
4040 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4041 .write = mem_cgroup_reset,
4042 .read_u64 = mem_cgroup_read_u64,
4043 },
4044 {
4045 .name = "kmem.tcp.max_usage_in_bytes",
4046 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4047 .write = mem_cgroup_reset,
4048 .read_u64 = mem_cgroup_read_u64,
4049 },
4050 { }, /* terminate */
4051 };
4052
4053 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4054 {
4055 struct mem_cgroup_per_node *pn;
4056 struct mem_cgroup_per_zone *mz;
4057 int zone, tmp = node;
4058 /*
4059 * This routine is called against possible nodes.
4060 * But it's BUG to call kmalloc() against offline node.
4061 *
4062 * TODO: this routine can waste much memory for nodes which will
4063 * never be onlined. It's better to use memory hotplug callback
4064 * function.
4065 */
4066 if (!node_state(node, N_NORMAL_MEMORY))
4067 tmp = -1;
4068 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4069 if (!pn)
4070 return 1;
4071
4072 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4073 mz = &pn->zoneinfo[zone];
4074 lruvec_init(&mz->lruvec);
4075 mz->usage_in_excess = 0;
4076 mz->on_tree = false;
4077 mz->memcg = memcg;
4078 }
4079 memcg->nodeinfo[node] = pn;
4080 return 0;
4081 }
4082
4083 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4084 {
4085 kfree(memcg->nodeinfo[node]);
4086 }
4087
4088 static void mem_cgroup_free(struct mem_cgroup *memcg)
4089 {
4090 int node;
4091
4092 memcg_wb_domain_exit(memcg);
4093 for_each_node(node)
4094 free_mem_cgroup_per_zone_info(memcg, node);
4095 free_percpu(memcg->stat);
4096 kfree(memcg);
4097 }
4098
4099 static struct mem_cgroup *mem_cgroup_alloc(void)
4100 {
4101 struct mem_cgroup *memcg;
4102 size_t size;
4103 int node;
4104
4105 size = sizeof(struct mem_cgroup);
4106 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4107
4108 memcg = kzalloc(size, GFP_KERNEL);
4109 if (!memcg)
4110 return NULL;
4111
4112 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4113 if (!memcg->stat)
4114 goto fail;
4115
4116 for_each_node(node)
4117 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4118 goto fail;
4119
4120 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4121 goto fail;
4122
4123 INIT_WORK(&memcg->high_work, high_work_func);
4124 memcg->last_scanned_node = MAX_NUMNODES;
4125 INIT_LIST_HEAD(&memcg->oom_notify);
4126 mutex_init(&memcg->thresholds_lock);
4127 spin_lock_init(&memcg->move_lock);
4128 vmpressure_init(&memcg->vmpressure);
4129 INIT_LIST_HEAD(&memcg->event_list);
4130 spin_lock_init(&memcg->event_list_lock);
4131 memcg->socket_pressure = jiffies;
4132 #ifndef CONFIG_SLOB
4133 memcg->kmemcg_id = -1;
4134 #endif
4135 #ifdef CONFIG_CGROUP_WRITEBACK
4136 INIT_LIST_HEAD(&memcg->cgwb_list);
4137 #endif
4138 return memcg;
4139 fail:
4140 mem_cgroup_free(memcg);
4141 return NULL;
4142 }
4143
4144 static struct cgroup_subsys_state * __ref
4145 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4146 {
4147 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4148 struct mem_cgroup *memcg;
4149 long error = -ENOMEM;
4150
4151 memcg = mem_cgroup_alloc();
4152 if (!memcg)
4153 return ERR_PTR(error);
4154
4155 memcg->high = PAGE_COUNTER_MAX;
4156 memcg->soft_limit = PAGE_COUNTER_MAX;
4157 if (parent) {
4158 memcg->swappiness = mem_cgroup_swappiness(parent);
4159 memcg->oom_kill_disable = parent->oom_kill_disable;
4160 }
4161 if (parent && parent->use_hierarchy) {
4162 memcg->use_hierarchy = true;
4163 page_counter_init(&memcg->memory, &parent->memory);
4164 page_counter_init(&memcg->swap, &parent->swap);
4165 page_counter_init(&memcg->memsw, &parent->memsw);
4166 page_counter_init(&memcg->kmem, &parent->kmem);
4167 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4168 } else {
4169 page_counter_init(&memcg->memory, NULL);
4170 page_counter_init(&memcg->swap, NULL);
4171 page_counter_init(&memcg->memsw, NULL);
4172 page_counter_init(&memcg->kmem, NULL);
4173 page_counter_init(&memcg->tcpmem, NULL);
4174 /*
4175 * Deeper hierachy with use_hierarchy == false doesn't make
4176 * much sense so let cgroup subsystem know about this
4177 * unfortunate state in our controller.
4178 */
4179 if (parent != root_mem_cgroup)
4180 memory_cgrp_subsys.broken_hierarchy = true;
4181 }
4182
4183 /* The following stuff does not apply to the root */
4184 if (!parent) {
4185 root_mem_cgroup = memcg;
4186 return &memcg->css;
4187 }
4188
4189 error = memcg_online_kmem(memcg);
4190 if (error)
4191 goto fail;
4192
4193 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4194 static_branch_inc(&memcg_sockets_enabled_key);
4195
4196 return &memcg->css;
4197 fail:
4198 mem_cgroup_free(memcg);
4199 return NULL;
4200 }
4201
4202 static int
4203 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4204 {
4205 if (css->id > MEM_CGROUP_ID_MAX)
4206 return -ENOSPC;
4207
4208 return 0;
4209 }
4210
4211 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4212 {
4213 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4214 struct mem_cgroup_event *event, *tmp;
4215
4216 /*
4217 * Unregister events and notify userspace.
4218 * Notify userspace about cgroup removing only after rmdir of cgroup
4219 * directory to avoid race between userspace and kernelspace.
4220 */
4221 spin_lock(&memcg->event_list_lock);
4222 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4223 list_del_init(&event->list);
4224 schedule_work(&event->remove);
4225 }
4226 spin_unlock(&memcg->event_list_lock);
4227
4228 memcg_offline_kmem(memcg);
4229 wb_memcg_offline(memcg);
4230 }
4231
4232 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4233 {
4234 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4235
4236 invalidate_reclaim_iterators(memcg);
4237 }
4238
4239 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4240 {
4241 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4242
4243 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4244 static_branch_dec(&memcg_sockets_enabled_key);
4245
4246 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4247 static_branch_dec(&memcg_sockets_enabled_key);
4248
4249 vmpressure_cleanup(&memcg->vmpressure);
4250 cancel_work_sync(&memcg->high_work);
4251 mem_cgroup_remove_from_trees(memcg);
4252 memcg_free_kmem(memcg);
4253 mem_cgroup_free(memcg);
4254 }
4255
4256 /**
4257 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4258 * @css: the target css
4259 *
4260 * Reset the states of the mem_cgroup associated with @css. This is
4261 * invoked when the userland requests disabling on the default hierarchy
4262 * but the memcg is pinned through dependency. The memcg should stop
4263 * applying policies and should revert to the vanilla state as it may be
4264 * made visible again.
4265 *
4266 * The current implementation only resets the essential configurations.
4267 * This needs to be expanded to cover all the visible parts.
4268 */
4269 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4270 {
4271 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4272
4273 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4274 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4275 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4276 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4277 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4278 memcg->low = 0;
4279 memcg->high = PAGE_COUNTER_MAX;
4280 memcg->soft_limit = PAGE_COUNTER_MAX;
4281 memcg_wb_domain_size_changed(memcg);
4282 }
4283
4284 #ifdef CONFIG_MMU
4285 /* Handlers for move charge at task migration. */
4286 static int mem_cgroup_do_precharge(unsigned long count)
4287 {
4288 int ret;
4289
4290 /* Try a single bulk charge without reclaim first, kswapd may wake */
4291 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4292 if (!ret) {
4293 mc.precharge += count;
4294 return ret;
4295 }
4296
4297 /* Try charges one by one with reclaim */
4298 while (count--) {
4299 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4300 if (ret)
4301 return ret;
4302 mc.precharge++;
4303 cond_resched();
4304 }
4305 return 0;
4306 }
4307
4308 /**
4309 * get_mctgt_type - get target type of moving charge
4310 * @vma: the vma the pte to be checked belongs
4311 * @addr: the address corresponding to the pte to be checked
4312 * @ptent: the pte to be checked
4313 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4314 *
4315 * Returns
4316 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4317 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4318 * move charge. if @target is not NULL, the page is stored in target->page
4319 * with extra refcnt got(Callers should handle it).
4320 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4321 * target for charge migration. if @target is not NULL, the entry is stored
4322 * in target->ent.
4323 *
4324 * Called with pte lock held.
4325 */
4326 union mc_target {
4327 struct page *page;
4328 swp_entry_t ent;
4329 };
4330
4331 enum mc_target_type {
4332 MC_TARGET_NONE = 0,
4333 MC_TARGET_PAGE,
4334 MC_TARGET_SWAP,
4335 };
4336
4337 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4338 unsigned long addr, pte_t ptent)
4339 {
4340 struct page *page = vm_normal_page(vma, addr, ptent);
4341
4342 if (!page || !page_mapped(page))
4343 return NULL;
4344 if (PageAnon(page)) {
4345 if (!(mc.flags & MOVE_ANON))
4346 return NULL;
4347 } else {
4348 if (!(mc.flags & MOVE_FILE))
4349 return NULL;
4350 }
4351 if (!get_page_unless_zero(page))
4352 return NULL;
4353
4354 return page;
4355 }
4356
4357 #ifdef CONFIG_SWAP
4358 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4359 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4360 {
4361 struct page *page = NULL;
4362 swp_entry_t ent = pte_to_swp_entry(ptent);
4363
4364 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4365 return NULL;
4366 /*
4367 * Because lookup_swap_cache() updates some statistics counter,
4368 * we call find_get_page() with swapper_space directly.
4369 */
4370 page = find_get_page(swap_address_space(ent), ent.val);
4371 if (do_memsw_account())
4372 entry->val = ent.val;
4373
4374 return page;
4375 }
4376 #else
4377 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4378 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4379 {
4380 return NULL;
4381 }
4382 #endif
4383
4384 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4385 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4386 {
4387 struct page *page = NULL;
4388 struct address_space *mapping;
4389 pgoff_t pgoff;
4390
4391 if (!vma->vm_file) /* anonymous vma */
4392 return NULL;
4393 if (!(mc.flags & MOVE_FILE))
4394 return NULL;
4395
4396 mapping = vma->vm_file->f_mapping;
4397 pgoff = linear_page_index(vma, addr);
4398
4399 /* page is moved even if it's not RSS of this task(page-faulted). */
4400 #ifdef CONFIG_SWAP
4401 /* shmem/tmpfs may report page out on swap: account for that too. */
4402 if (shmem_mapping(mapping)) {
4403 page = find_get_entry(mapping, pgoff);
4404 if (radix_tree_exceptional_entry(page)) {
4405 swp_entry_t swp = radix_to_swp_entry(page);
4406 if (do_memsw_account())
4407 *entry = swp;
4408 page = find_get_page(swap_address_space(swp), swp.val);
4409 }
4410 } else
4411 page = find_get_page(mapping, pgoff);
4412 #else
4413 page = find_get_page(mapping, pgoff);
4414 #endif
4415 return page;
4416 }
4417
4418 /**
4419 * mem_cgroup_move_account - move account of the page
4420 * @page: the page
4421 * @nr_pages: number of regular pages (>1 for huge pages)
4422 * @from: mem_cgroup which the page is moved from.
4423 * @to: mem_cgroup which the page is moved to. @from != @to.
4424 *
4425 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4426 *
4427 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4428 * from old cgroup.
4429 */
4430 static int mem_cgroup_move_account(struct page *page,
4431 bool compound,
4432 struct mem_cgroup *from,
4433 struct mem_cgroup *to)
4434 {
4435 unsigned long flags;
4436 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4437 int ret;
4438 bool anon;
4439
4440 VM_BUG_ON(from == to);
4441 VM_BUG_ON_PAGE(PageLRU(page), page);
4442 VM_BUG_ON(compound && !PageTransHuge(page));
4443
4444 /*
4445 * Prevent mem_cgroup_migrate() from looking at
4446 * page->mem_cgroup of its source page while we change it.
4447 */
4448 ret = -EBUSY;
4449 if (!trylock_page(page))
4450 goto out;
4451
4452 ret = -EINVAL;
4453 if (page->mem_cgroup != from)
4454 goto out_unlock;
4455
4456 anon = PageAnon(page);
4457
4458 spin_lock_irqsave(&from->move_lock, flags);
4459
4460 if (!anon && page_mapped(page)) {
4461 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4462 nr_pages);
4463 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4464 nr_pages);
4465 }
4466
4467 /*
4468 * move_lock grabbed above and caller set from->moving_account, so
4469 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4470 * So mapping should be stable for dirty pages.
4471 */
4472 if (!anon && PageDirty(page)) {
4473 struct address_space *mapping = page_mapping(page);
4474
4475 if (mapping_cap_account_dirty(mapping)) {
4476 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4477 nr_pages);
4478 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4479 nr_pages);
4480 }
4481 }
4482
4483 if (PageWriteback(page)) {
4484 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4485 nr_pages);
4486 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4487 nr_pages);
4488 }
4489
4490 /*
4491 * It is safe to change page->mem_cgroup here because the page
4492 * is referenced, charged, and isolated - we can't race with
4493 * uncharging, charging, migration, or LRU putback.
4494 */
4495
4496 /* caller should have done css_get */
4497 page->mem_cgroup = to;
4498 spin_unlock_irqrestore(&from->move_lock, flags);
4499
4500 ret = 0;
4501
4502 local_irq_disable();
4503 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4504 memcg_check_events(to, page);
4505 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4506 memcg_check_events(from, page);
4507 local_irq_enable();
4508 out_unlock:
4509 unlock_page(page);
4510 out:
4511 return ret;
4512 }
4513
4514 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4515 unsigned long addr, pte_t ptent, union mc_target *target)
4516 {
4517 struct page *page = NULL;
4518 enum mc_target_type ret = MC_TARGET_NONE;
4519 swp_entry_t ent = { .val = 0 };
4520
4521 if (pte_present(ptent))
4522 page = mc_handle_present_pte(vma, addr, ptent);
4523 else if (is_swap_pte(ptent))
4524 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4525 else if (pte_none(ptent))
4526 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4527
4528 if (!page && !ent.val)
4529 return ret;
4530 if (page) {
4531 /*
4532 * Do only loose check w/o serialization.
4533 * mem_cgroup_move_account() checks the page is valid or
4534 * not under LRU exclusion.
4535 */
4536 if (page->mem_cgroup == mc.from) {
4537 ret = MC_TARGET_PAGE;
4538 if (target)
4539 target->page = page;
4540 }
4541 if (!ret || !target)
4542 put_page(page);
4543 }
4544 /* There is a swap entry and a page doesn't exist or isn't charged */
4545 if (ent.val && !ret &&
4546 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4547 ret = MC_TARGET_SWAP;
4548 if (target)
4549 target->ent = ent;
4550 }
4551 return ret;
4552 }
4553
4554 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4555 /*
4556 * We don't consider swapping or file mapped pages because THP does not
4557 * support them for now.
4558 * Caller should make sure that pmd_trans_huge(pmd) is true.
4559 */
4560 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4561 unsigned long addr, pmd_t pmd, union mc_target *target)
4562 {
4563 struct page *page = NULL;
4564 enum mc_target_type ret = MC_TARGET_NONE;
4565
4566 page = pmd_page(pmd);
4567 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4568 if (!(mc.flags & MOVE_ANON))
4569 return ret;
4570 if (page->mem_cgroup == mc.from) {
4571 ret = MC_TARGET_PAGE;
4572 if (target) {
4573 get_page(page);
4574 target->page = page;
4575 }
4576 }
4577 return ret;
4578 }
4579 #else
4580 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4581 unsigned long addr, pmd_t pmd, union mc_target *target)
4582 {
4583 return MC_TARGET_NONE;
4584 }
4585 #endif
4586
4587 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4588 unsigned long addr, unsigned long end,
4589 struct mm_walk *walk)
4590 {
4591 struct vm_area_struct *vma = walk->vma;
4592 pte_t *pte;
4593 spinlock_t *ptl;
4594
4595 ptl = pmd_trans_huge_lock(pmd, vma);
4596 if (ptl) {
4597 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4598 mc.precharge += HPAGE_PMD_NR;
4599 spin_unlock(ptl);
4600 return 0;
4601 }
4602
4603 if (pmd_trans_unstable(pmd))
4604 return 0;
4605 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4606 for (; addr != end; pte++, addr += PAGE_SIZE)
4607 if (get_mctgt_type(vma, addr, *pte, NULL))
4608 mc.precharge++; /* increment precharge temporarily */
4609 pte_unmap_unlock(pte - 1, ptl);
4610 cond_resched();
4611
4612 return 0;
4613 }
4614
4615 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4616 {
4617 unsigned long precharge;
4618
4619 struct mm_walk mem_cgroup_count_precharge_walk = {
4620 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4621 .mm = mm,
4622 };
4623 down_read(&mm->mmap_sem);
4624 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4625 up_read(&mm->mmap_sem);
4626
4627 precharge = mc.precharge;
4628 mc.precharge = 0;
4629
4630 return precharge;
4631 }
4632
4633 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4634 {
4635 unsigned long precharge = mem_cgroup_count_precharge(mm);
4636
4637 VM_BUG_ON(mc.moving_task);
4638 mc.moving_task = current;
4639 return mem_cgroup_do_precharge(precharge);
4640 }
4641
4642 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4643 static void __mem_cgroup_clear_mc(void)
4644 {
4645 struct mem_cgroup *from = mc.from;
4646 struct mem_cgroup *to = mc.to;
4647
4648 /* we must uncharge all the leftover precharges from mc.to */
4649 if (mc.precharge) {
4650 cancel_charge(mc.to, mc.precharge);
4651 mc.precharge = 0;
4652 }
4653 /*
4654 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4655 * we must uncharge here.
4656 */
4657 if (mc.moved_charge) {
4658 cancel_charge(mc.from, mc.moved_charge);
4659 mc.moved_charge = 0;
4660 }
4661 /* we must fixup refcnts and charges */
4662 if (mc.moved_swap) {
4663 /* uncharge swap account from the old cgroup */
4664 if (!mem_cgroup_is_root(mc.from))
4665 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4666
4667 /*
4668 * we charged both to->memory and to->memsw, so we
4669 * should uncharge to->memory.
4670 */
4671 if (!mem_cgroup_is_root(mc.to))
4672 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4673
4674 css_put_many(&mc.from->css, mc.moved_swap);
4675
4676 /* we've already done css_get(mc.to) */
4677 mc.moved_swap = 0;
4678 }
4679 memcg_oom_recover(from);
4680 memcg_oom_recover(to);
4681 wake_up_all(&mc.waitq);
4682 }
4683
4684 static void mem_cgroup_clear_mc(void)
4685 {
4686 struct mm_struct *mm = mc.mm;
4687
4688 /*
4689 * we must clear moving_task before waking up waiters at the end of
4690 * task migration.
4691 */
4692 mc.moving_task = NULL;
4693 __mem_cgroup_clear_mc();
4694 spin_lock(&mc.lock);
4695 mc.from = NULL;
4696 mc.to = NULL;
4697 mc.mm = NULL;
4698 spin_unlock(&mc.lock);
4699
4700 mmput(mm);
4701 }
4702
4703 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4704 {
4705 struct cgroup_subsys_state *css;
4706 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4707 struct mem_cgroup *from;
4708 struct task_struct *leader, *p;
4709 struct mm_struct *mm;
4710 unsigned long move_flags;
4711 int ret = 0;
4712
4713 /* charge immigration isn't supported on the default hierarchy */
4714 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4715 return 0;
4716
4717 /*
4718 * Multi-process migrations only happen on the default hierarchy
4719 * where charge immigration is not used. Perform charge
4720 * immigration if @tset contains a leader and whine if there are
4721 * multiple.
4722 */
4723 p = NULL;
4724 cgroup_taskset_for_each_leader(leader, css, tset) {
4725 WARN_ON_ONCE(p);
4726 p = leader;
4727 memcg = mem_cgroup_from_css(css);
4728 }
4729 if (!p)
4730 return 0;
4731
4732 /*
4733 * We are now commited to this value whatever it is. Changes in this
4734 * tunable will only affect upcoming migrations, not the current one.
4735 * So we need to save it, and keep it going.
4736 */
4737 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4738 if (!move_flags)
4739 return 0;
4740
4741 from = mem_cgroup_from_task(p);
4742
4743 VM_BUG_ON(from == memcg);
4744
4745 mm = get_task_mm(p);
4746 if (!mm)
4747 return 0;
4748 /* We move charges only when we move a owner of the mm */
4749 if (mm->owner == p) {
4750 VM_BUG_ON(mc.from);
4751 VM_BUG_ON(mc.to);
4752 VM_BUG_ON(mc.precharge);
4753 VM_BUG_ON(mc.moved_charge);
4754 VM_BUG_ON(mc.moved_swap);
4755
4756 spin_lock(&mc.lock);
4757 mc.mm = mm;
4758 mc.from = from;
4759 mc.to = memcg;
4760 mc.flags = move_flags;
4761 spin_unlock(&mc.lock);
4762 /* We set mc.moving_task later */
4763
4764 ret = mem_cgroup_precharge_mc(mm);
4765 if (ret)
4766 mem_cgroup_clear_mc();
4767 } else {
4768 mmput(mm);
4769 }
4770 return ret;
4771 }
4772
4773 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4774 {
4775 if (mc.to)
4776 mem_cgroup_clear_mc();
4777 }
4778
4779 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4780 unsigned long addr, unsigned long end,
4781 struct mm_walk *walk)
4782 {
4783 int ret = 0;
4784 struct vm_area_struct *vma = walk->vma;
4785 pte_t *pte;
4786 spinlock_t *ptl;
4787 enum mc_target_type target_type;
4788 union mc_target target;
4789 struct page *page;
4790
4791 ptl = pmd_trans_huge_lock(pmd, vma);
4792 if (ptl) {
4793 if (mc.precharge < HPAGE_PMD_NR) {
4794 spin_unlock(ptl);
4795 return 0;
4796 }
4797 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4798 if (target_type == MC_TARGET_PAGE) {
4799 page = target.page;
4800 if (!isolate_lru_page(page)) {
4801 if (!mem_cgroup_move_account(page, true,
4802 mc.from, mc.to)) {
4803 mc.precharge -= HPAGE_PMD_NR;
4804 mc.moved_charge += HPAGE_PMD_NR;
4805 }
4806 putback_lru_page(page);
4807 }
4808 put_page(page);
4809 }
4810 spin_unlock(ptl);
4811 return 0;
4812 }
4813
4814 if (pmd_trans_unstable(pmd))
4815 return 0;
4816 retry:
4817 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4818 for (; addr != end; addr += PAGE_SIZE) {
4819 pte_t ptent = *(pte++);
4820 swp_entry_t ent;
4821
4822 if (!mc.precharge)
4823 break;
4824
4825 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4826 case MC_TARGET_PAGE:
4827 page = target.page;
4828 /*
4829 * We can have a part of the split pmd here. Moving it
4830 * can be done but it would be too convoluted so simply
4831 * ignore such a partial THP and keep it in original
4832 * memcg. There should be somebody mapping the head.
4833 */
4834 if (PageTransCompound(page))
4835 goto put;
4836 if (isolate_lru_page(page))
4837 goto put;
4838 if (!mem_cgroup_move_account(page, false,
4839 mc.from, mc.to)) {
4840 mc.precharge--;
4841 /* we uncharge from mc.from later. */
4842 mc.moved_charge++;
4843 }
4844 putback_lru_page(page);
4845 put: /* get_mctgt_type() gets the page */
4846 put_page(page);
4847 break;
4848 case MC_TARGET_SWAP:
4849 ent = target.ent;
4850 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4851 mc.precharge--;
4852 /* we fixup refcnts and charges later. */
4853 mc.moved_swap++;
4854 }
4855 break;
4856 default:
4857 break;
4858 }
4859 }
4860 pte_unmap_unlock(pte - 1, ptl);
4861 cond_resched();
4862
4863 if (addr != end) {
4864 /*
4865 * We have consumed all precharges we got in can_attach().
4866 * We try charge one by one, but don't do any additional
4867 * charges to mc.to if we have failed in charge once in attach()
4868 * phase.
4869 */
4870 ret = mem_cgroup_do_precharge(1);
4871 if (!ret)
4872 goto retry;
4873 }
4874
4875 return ret;
4876 }
4877
4878 static void mem_cgroup_move_charge(void)
4879 {
4880 struct mm_walk mem_cgroup_move_charge_walk = {
4881 .pmd_entry = mem_cgroup_move_charge_pte_range,
4882 .mm = mc.mm,
4883 };
4884
4885 lru_add_drain_all();
4886 /*
4887 * Signal lock_page_memcg() to take the memcg's move_lock
4888 * while we're moving its pages to another memcg. Then wait
4889 * for already started RCU-only updates to finish.
4890 */
4891 atomic_inc(&mc.from->moving_account);
4892 synchronize_rcu();
4893 retry:
4894 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4895 /*
4896 * Someone who are holding the mmap_sem might be waiting in
4897 * waitq. So we cancel all extra charges, wake up all waiters,
4898 * and retry. Because we cancel precharges, we might not be able
4899 * to move enough charges, but moving charge is a best-effort
4900 * feature anyway, so it wouldn't be a big problem.
4901 */
4902 __mem_cgroup_clear_mc();
4903 cond_resched();
4904 goto retry;
4905 }
4906 /*
4907 * When we have consumed all precharges and failed in doing
4908 * additional charge, the page walk just aborts.
4909 */
4910 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4911 up_read(&mc.mm->mmap_sem);
4912 atomic_dec(&mc.from->moving_account);
4913 }
4914
4915 static void mem_cgroup_move_task(void)
4916 {
4917 if (mc.to) {
4918 mem_cgroup_move_charge();
4919 mem_cgroup_clear_mc();
4920 }
4921 }
4922 #else /* !CONFIG_MMU */
4923 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4924 {
4925 return 0;
4926 }
4927 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4928 {
4929 }
4930 static void mem_cgroup_move_task(void)
4931 {
4932 }
4933 #endif
4934
4935 /*
4936 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4937 * to verify whether we're attached to the default hierarchy on each mount
4938 * attempt.
4939 */
4940 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4941 {
4942 /*
4943 * use_hierarchy is forced on the default hierarchy. cgroup core
4944 * guarantees that @root doesn't have any children, so turning it
4945 * on for the root memcg is enough.
4946 */
4947 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4948 root_mem_cgroup->use_hierarchy = true;
4949 else
4950 root_mem_cgroup->use_hierarchy = false;
4951 }
4952
4953 static u64 memory_current_read(struct cgroup_subsys_state *css,
4954 struct cftype *cft)
4955 {
4956 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4957
4958 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4959 }
4960
4961 static int memory_low_show(struct seq_file *m, void *v)
4962 {
4963 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4964 unsigned long low = READ_ONCE(memcg->low);
4965
4966 if (low == PAGE_COUNTER_MAX)
4967 seq_puts(m, "max\n");
4968 else
4969 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4970
4971 return 0;
4972 }
4973
4974 static ssize_t memory_low_write(struct kernfs_open_file *of,
4975 char *buf, size_t nbytes, loff_t off)
4976 {
4977 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4978 unsigned long low;
4979 int err;
4980
4981 buf = strstrip(buf);
4982 err = page_counter_memparse(buf, "max", &low);
4983 if (err)
4984 return err;
4985
4986 memcg->low = low;
4987
4988 return nbytes;
4989 }
4990
4991 static int memory_high_show(struct seq_file *m, void *v)
4992 {
4993 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4994 unsigned long high = READ_ONCE(memcg->high);
4995
4996 if (high == PAGE_COUNTER_MAX)
4997 seq_puts(m, "max\n");
4998 else
4999 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5000
5001 return 0;
5002 }
5003
5004 static ssize_t memory_high_write(struct kernfs_open_file *of,
5005 char *buf, size_t nbytes, loff_t off)
5006 {
5007 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5008 unsigned long nr_pages;
5009 unsigned long high;
5010 int err;
5011
5012 buf = strstrip(buf);
5013 err = page_counter_memparse(buf, "max", &high);
5014 if (err)
5015 return err;
5016
5017 memcg->high = high;
5018
5019 nr_pages = page_counter_read(&memcg->memory);
5020 if (nr_pages > high)
5021 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5022 GFP_KERNEL, true);
5023
5024 memcg_wb_domain_size_changed(memcg);
5025 return nbytes;
5026 }
5027
5028 static int memory_max_show(struct seq_file *m, void *v)
5029 {
5030 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5031 unsigned long max = READ_ONCE(memcg->memory.limit);
5032
5033 if (max == PAGE_COUNTER_MAX)
5034 seq_puts(m, "max\n");
5035 else
5036 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5037
5038 return 0;
5039 }
5040
5041 static ssize_t memory_max_write(struct kernfs_open_file *of,
5042 char *buf, size_t nbytes, loff_t off)
5043 {
5044 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5045 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5046 bool drained = false;
5047 unsigned long max;
5048 int err;
5049
5050 buf = strstrip(buf);
5051 err = page_counter_memparse(buf, "max", &max);
5052 if (err)
5053 return err;
5054
5055 xchg(&memcg->memory.limit, max);
5056
5057 for (;;) {
5058 unsigned long nr_pages = page_counter_read(&memcg->memory);
5059
5060 if (nr_pages <= max)
5061 break;
5062
5063 if (signal_pending(current)) {
5064 err = -EINTR;
5065 break;
5066 }
5067
5068 if (!drained) {
5069 drain_all_stock(memcg);
5070 drained = true;
5071 continue;
5072 }
5073
5074 if (nr_reclaims) {
5075 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5076 GFP_KERNEL, true))
5077 nr_reclaims--;
5078 continue;
5079 }
5080
5081 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5082 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5083 break;
5084 }
5085
5086 memcg_wb_domain_size_changed(memcg);
5087 return nbytes;
5088 }
5089
5090 static int memory_events_show(struct seq_file *m, void *v)
5091 {
5092 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5093
5094 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5095 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5096 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5097 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5098
5099 return 0;
5100 }
5101
5102 static int memory_stat_show(struct seq_file *m, void *v)
5103 {
5104 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5105 unsigned long stat[MEMCG_NR_STAT];
5106 unsigned long events[MEMCG_NR_EVENTS];
5107 int i;
5108
5109 /*
5110 * Provide statistics on the state of the memory subsystem as
5111 * well as cumulative event counters that show past behavior.
5112 *
5113 * This list is ordered following a combination of these gradients:
5114 * 1) generic big picture -> specifics and details
5115 * 2) reflecting userspace activity -> reflecting kernel heuristics
5116 *
5117 * Current memory state:
5118 */
5119
5120 tree_stat(memcg, stat);
5121 tree_events(memcg, events);
5122
5123 seq_printf(m, "anon %llu\n",
5124 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5125 seq_printf(m, "file %llu\n",
5126 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5127 seq_printf(m, "kernel_stack %llu\n",
5128 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5129 seq_printf(m, "slab %llu\n",
5130 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5131 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5132 seq_printf(m, "sock %llu\n",
5133 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5134
5135 seq_printf(m, "file_mapped %llu\n",
5136 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5137 seq_printf(m, "file_dirty %llu\n",
5138 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5139 seq_printf(m, "file_writeback %llu\n",
5140 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5141
5142 for (i = 0; i < NR_LRU_LISTS; i++) {
5143 struct mem_cgroup *mi;
5144 unsigned long val = 0;
5145
5146 for_each_mem_cgroup_tree(mi, memcg)
5147 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5148 seq_printf(m, "%s %llu\n",
5149 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5150 }
5151
5152 seq_printf(m, "slab_reclaimable %llu\n",
5153 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5154 seq_printf(m, "slab_unreclaimable %llu\n",
5155 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5156
5157 /* Accumulated memory events */
5158
5159 seq_printf(m, "pgfault %lu\n",
5160 events[MEM_CGROUP_EVENTS_PGFAULT]);
5161 seq_printf(m, "pgmajfault %lu\n",
5162 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5163
5164 return 0;
5165 }
5166
5167 static struct cftype memory_files[] = {
5168 {
5169 .name = "current",
5170 .flags = CFTYPE_NOT_ON_ROOT,
5171 .read_u64 = memory_current_read,
5172 },
5173 {
5174 .name = "low",
5175 .flags = CFTYPE_NOT_ON_ROOT,
5176 .seq_show = memory_low_show,
5177 .write = memory_low_write,
5178 },
5179 {
5180 .name = "high",
5181 .flags = CFTYPE_NOT_ON_ROOT,
5182 .seq_show = memory_high_show,
5183 .write = memory_high_write,
5184 },
5185 {
5186 .name = "max",
5187 .flags = CFTYPE_NOT_ON_ROOT,
5188 .seq_show = memory_max_show,
5189 .write = memory_max_write,
5190 },
5191 {
5192 .name = "events",
5193 .flags = CFTYPE_NOT_ON_ROOT,
5194 .file_offset = offsetof(struct mem_cgroup, events_file),
5195 .seq_show = memory_events_show,
5196 },
5197 {
5198 .name = "stat",
5199 .flags = CFTYPE_NOT_ON_ROOT,
5200 .seq_show = memory_stat_show,
5201 },
5202 { } /* terminate */
5203 };
5204
5205 struct cgroup_subsys memory_cgrp_subsys = {
5206 .css_alloc = mem_cgroup_css_alloc,
5207 .css_online = mem_cgroup_css_online,
5208 .css_offline = mem_cgroup_css_offline,
5209 .css_released = mem_cgroup_css_released,
5210 .css_free = mem_cgroup_css_free,
5211 .css_reset = mem_cgroup_css_reset,
5212 .can_attach = mem_cgroup_can_attach,
5213 .cancel_attach = mem_cgroup_cancel_attach,
5214 .post_attach = mem_cgroup_move_task,
5215 .bind = mem_cgroup_bind,
5216 .dfl_cftypes = memory_files,
5217 .legacy_cftypes = mem_cgroup_legacy_files,
5218 .early_init = 0,
5219 };
5220
5221 /**
5222 * mem_cgroup_low - check if memory consumption is below the normal range
5223 * @root: the highest ancestor to consider
5224 * @memcg: the memory cgroup to check
5225 *
5226 * Returns %true if memory consumption of @memcg, and that of all
5227 * configurable ancestors up to @root, is below the normal range.
5228 */
5229 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5230 {
5231 if (mem_cgroup_disabled())
5232 return false;
5233
5234 /*
5235 * The toplevel group doesn't have a configurable range, so
5236 * it's never low when looked at directly, and it is not
5237 * considered an ancestor when assessing the hierarchy.
5238 */
5239
5240 if (memcg == root_mem_cgroup)
5241 return false;
5242
5243 if (page_counter_read(&memcg->memory) >= memcg->low)
5244 return false;
5245
5246 while (memcg != root) {
5247 memcg = parent_mem_cgroup(memcg);
5248
5249 if (memcg == root_mem_cgroup)
5250 break;
5251
5252 if (page_counter_read(&memcg->memory) >= memcg->low)
5253 return false;
5254 }
5255 return true;
5256 }
5257
5258 /**
5259 * mem_cgroup_try_charge - try charging a page
5260 * @page: page to charge
5261 * @mm: mm context of the victim
5262 * @gfp_mask: reclaim mode
5263 * @memcgp: charged memcg return
5264 *
5265 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5266 * pages according to @gfp_mask if necessary.
5267 *
5268 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5269 * Otherwise, an error code is returned.
5270 *
5271 * After page->mapping has been set up, the caller must finalize the
5272 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5273 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5274 */
5275 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5276 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5277 bool compound)
5278 {
5279 struct mem_cgroup *memcg = NULL;
5280 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5281 int ret = 0;
5282
5283 if (mem_cgroup_disabled())
5284 goto out;
5285
5286 if (PageSwapCache(page)) {
5287 /*
5288 * Every swap fault against a single page tries to charge the
5289 * page, bail as early as possible. shmem_unuse() encounters
5290 * already charged pages, too. The USED bit is protected by
5291 * the page lock, which serializes swap cache removal, which
5292 * in turn serializes uncharging.
5293 */
5294 VM_BUG_ON_PAGE(!PageLocked(page), page);
5295 if (page->mem_cgroup)
5296 goto out;
5297
5298 if (do_swap_account) {
5299 swp_entry_t ent = { .val = page_private(page), };
5300 unsigned short id = lookup_swap_cgroup_id(ent);
5301
5302 rcu_read_lock();
5303 memcg = mem_cgroup_from_id(id);
5304 if (memcg && !css_tryget_online(&memcg->css))
5305 memcg = NULL;
5306 rcu_read_unlock();
5307 }
5308 }
5309
5310 if (!memcg)
5311 memcg = get_mem_cgroup_from_mm(mm);
5312
5313 ret = try_charge(memcg, gfp_mask, nr_pages);
5314
5315 css_put(&memcg->css);
5316 out:
5317 *memcgp = memcg;
5318 return ret;
5319 }
5320
5321 /**
5322 * mem_cgroup_commit_charge - commit a page charge
5323 * @page: page to charge
5324 * @memcg: memcg to charge the page to
5325 * @lrucare: page might be on LRU already
5326 *
5327 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5328 * after page->mapping has been set up. This must happen atomically
5329 * as part of the page instantiation, i.e. under the page table lock
5330 * for anonymous pages, under the page lock for page and swap cache.
5331 *
5332 * In addition, the page must not be on the LRU during the commit, to
5333 * prevent racing with task migration. If it might be, use @lrucare.
5334 *
5335 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5336 */
5337 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5338 bool lrucare, bool compound)
5339 {
5340 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5341
5342 VM_BUG_ON_PAGE(!page->mapping, page);
5343 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5344
5345 if (mem_cgroup_disabled())
5346 return;
5347 /*
5348 * Swap faults will attempt to charge the same page multiple
5349 * times. But reuse_swap_page() might have removed the page
5350 * from swapcache already, so we can't check PageSwapCache().
5351 */
5352 if (!memcg)
5353 return;
5354
5355 commit_charge(page, memcg, lrucare);
5356
5357 local_irq_disable();
5358 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5359 memcg_check_events(memcg, page);
5360 local_irq_enable();
5361
5362 if (do_memsw_account() && PageSwapCache(page)) {
5363 swp_entry_t entry = { .val = page_private(page) };
5364 /*
5365 * The swap entry might not get freed for a long time,
5366 * let's not wait for it. The page already received a
5367 * memory+swap charge, drop the swap entry duplicate.
5368 */
5369 mem_cgroup_uncharge_swap(entry);
5370 }
5371 }
5372
5373 /**
5374 * mem_cgroup_cancel_charge - cancel a page charge
5375 * @page: page to charge
5376 * @memcg: memcg to charge the page to
5377 *
5378 * Cancel a charge transaction started by mem_cgroup_try_charge().
5379 */
5380 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5381 bool compound)
5382 {
5383 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5384
5385 if (mem_cgroup_disabled())
5386 return;
5387 /*
5388 * Swap faults will attempt to charge the same page multiple
5389 * times. But reuse_swap_page() might have removed the page
5390 * from swapcache already, so we can't check PageSwapCache().
5391 */
5392 if (!memcg)
5393 return;
5394
5395 cancel_charge(memcg, nr_pages);
5396 }
5397
5398 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5399 unsigned long nr_anon, unsigned long nr_file,
5400 unsigned long nr_huge, struct page *dummy_page)
5401 {
5402 unsigned long nr_pages = nr_anon + nr_file;
5403 unsigned long flags;
5404
5405 if (!mem_cgroup_is_root(memcg)) {
5406 page_counter_uncharge(&memcg->memory, nr_pages);
5407 if (do_memsw_account())
5408 page_counter_uncharge(&memcg->memsw, nr_pages);
5409 memcg_oom_recover(memcg);
5410 }
5411
5412 local_irq_save(flags);
5413 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5414 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5415 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5416 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5417 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5418 memcg_check_events(memcg, dummy_page);
5419 local_irq_restore(flags);
5420
5421 if (!mem_cgroup_is_root(memcg))
5422 css_put_many(&memcg->css, nr_pages);
5423 }
5424
5425 static void uncharge_list(struct list_head *page_list)
5426 {
5427 struct mem_cgroup *memcg = NULL;
5428 unsigned long nr_anon = 0;
5429 unsigned long nr_file = 0;
5430 unsigned long nr_huge = 0;
5431 unsigned long pgpgout = 0;
5432 struct list_head *next;
5433 struct page *page;
5434
5435 /*
5436 * Note that the list can be a single page->lru; hence the
5437 * do-while loop instead of a simple list_for_each_entry().
5438 */
5439 next = page_list->next;
5440 do {
5441 unsigned int nr_pages = 1;
5442
5443 page = list_entry(next, struct page, lru);
5444 next = page->lru.next;
5445
5446 VM_BUG_ON_PAGE(PageLRU(page), page);
5447 VM_BUG_ON_PAGE(page_count(page), page);
5448
5449 if (!page->mem_cgroup)
5450 continue;
5451
5452 /*
5453 * Nobody should be changing or seriously looking at
5454 * page->mem_cgroup at this point, we have fully
5455 * exclusive access to the page.
5456 */
5457
5458 if (memcg != page->mem_cgroup) {
5459 if (memcg) {
5460 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5461 nr_huge, page);
5462 pgpgout = nr_anon = nr_file = nr_huge = 0;
5463 }
5464 memcg = page->mem_cgroup;
5465 }
5466
5467 if (PageTransHuge(page)) {
5468 nr_pages <<= compound_order(page);
5469 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5470 nr_huge += nr_pages;
5471 }
5472
5473 if (PageAnon(page))
5474 nr_anon += nr_pages;
5475 else
5476 nr_file += nr_pages;
5477
5478 page->mem_cgroup = NULL;
5479
5480 pgpgout++;
5481 } while (next != page_list);
5482
5483 if (memcg)
5484 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5485 nr_huge, page);
5486 }
5487
5488 /**
5489 * mem_cgroup_uncharge - uncharge a page
5490 * @page: page to uncharge
5491 *
5492 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5493 * mem_cgroup_commit_charge().
5494 */
5495 void mem_cgroup_uncharge(struct page *page)
5496 {
5497 if (mem_cgroup_disabled())
5498 return;
5499
5500 /* Don't touch page->lru of any random page, pre-check: */
5501 if (!page->mem_cgroup)
5502 return;
5503
5504 INIT_LIST_HEAD(&page->lru);
5505 uncharge_list(&page->lru);
5506 }
5507
5508 /**
5509 * mem_cgroup_uncharge_list - uncharge a list of page
5510 * @page_list: list of pages to uncharge
5511 *
5512 * Uncharge a list of pages previously charged with
5513 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5514 */
5515 void mem_cgroup_uncharge_list(struct list_head *page_list)
5516 {
5517 if (mem_cgroup_disabled())
5518 return;
5519
5520 if (!list_empty(page_list))
5521 uncharge_list(page_list);
5522 }
5523
5524 /**
5525 * mem_cgroup_migrate - charge a page's replacement
5526 * @oldpage: currently circulating page
5527 * @newpage: replacement page
5528 *
5529 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5530 * be uncharged upon free.
5531 *
5532 * Both pages must be locked, @newpage->mapping must be set up.
5533 */
5534 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5535 {
5536 struct mem_cgroup *memcg;
5537 unsigned int nr_pages;
5538 bool compound;
5539
5540 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5541 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5542 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5543 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5544 newpage);
5545
5546 if (mem_cgroup_disabled())
5547 return;
5548
5549 /* Page cache replacement: new page already charged? */
5550 if (newpage->mem_cgroup)
5551 return;
5552
5553 /* Swapcache readahead pages can get replaced before being charged */
5554 memcg = oldpage->mem_cgroup;
5555 if (!memcg)
5556 return;
5557
5558 /* Force-charge the new page. The old one will be freed soon */
5559 compound = PageTransHuge(newpage);
5560 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5561
5562 page_counter_charge(&memcg->memory, nr_pages);
5563 if (do_memsw_account())
5564 page_counter_charge(&memcg->memsw, nr_pages);
5565 css_get_many(&memcg->css, nr_pages);
5566
5567 commit_charge(newpage, memcg, false);
5568
5569 local_irq_disable();
5570 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5571 memcg_check_events(memcg, newpage);
5572 local_irq_enable();
5573 }
5574
5575 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5576 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5577
5578 void sock_update_memcg(struct sock *sk)
5579 {
5580 struct mem_cgroup *memcg;
5581
5582 /* Socket cloning can throw us here with sk_cgrp already
5583 * filled. It won't however, necessarily happen from
5584 * process context. So the test for root memcg given
5585 * the current task's memcg won't help us in this case.
5586 *
5587 * Respecting the original socket's memcg is a better
5588 * decision in this case.
5589 */
5590 if (sk->sk_memcg) {
5591 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5592 css_get(&sk->sk_memcg->css);
5593 return;
5594 }
5595
5596 rcu_read_lock();
5597 memcg = mem_cgroup_from_task(current);
5598 if (memcg == root_mem_cgroup)
5599 goto out;
5600 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5601 goto out;
5602 if (css_tryget_online(&memcg->css))
5603 sk->sk_memcg = memcg;
5604 out:
5605 rcu_read_unlock();
5606 }
5607 EXPORT_SYMBOL(sock_update_memcg);
5608
5609 void sock_release_memcg(struct sock *sk)
5610 {
5611 WARN_ON(!sk->sk_memcg);
5612 css_put(&sk->sk_memcg->css);
5613 }
5614
5615 /**
5616 * mem_cgroup_charge_skmem - charge socket memory
5617 * @memcg: memcg to charge
5618 * @nr_pages: number of pages to charge
5619 *
5620 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5621 * @memcg's configured limit, %false if the charge had to be forced.
5622 */
5623 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5624 {
5625 gfp_t gfp_mask = GFP_KERNEL;
5626
5627 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5628 struct page_counter *fail;
5629
5630 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5631 memcg->tcpmem_pressure = 0;
5632 return true;
5633 }
5634 page_counter_charge(&memcg->tcpmem, nr_pages);
5635 memcg->tcpmem_pressure = 1;
5636 return false;
5637 }
5638
5639 /* Don't block in the packet receive path */
5640 if (in_softirq())
5641 gfp_mask = GFP_NOWAIT;
5642
5643 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5644
5645 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5646 return true;
5647
5648 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5649 return false;
5650 }
5651
5652 /**
5653 * mem_cgroup_uncharge_skmem - uncharge socket memory
5654 * @memcg - memcg to uncharge
5655 * @nr_pages - number of pages to uncharge
5656 */
5657 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5658 {
5659 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5660 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5661 return;
5662 }
5663
5664 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5665
5666 page_counter_uncharge(&memcg->memory, nr_pages);
5667 css_put_many(&memcg->css, nr_pages);
5668 }
5669
5670 static int __init cgroup_memory(char *s)
5671 {
5672 char *token;
5673
5674 while ((token = strsep(&s, ",")) != NULL) {
5675 if (!*token)
5676 continue;
5677 if (!strcmp(token, "nosocket"))
5678 cgroup_memory_nosocket = true;
5679 if (!strcmp(token, "nokmem"))
5680 cgroup_memory_nokmem = true;
5681 }
5682 return 0;
5683 }
5684 __setup("cgroup.memory=", cgroup_memory);
5685
5686 /*
5687 * subsys_initcall() for memory controller.
5688 *
5689 * Some parts like hotcpu_notifier() have to be initialized from this context
5690 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5691 * everything that doesn't depend on a specific mem_cgroup structure should
5692 * be initialized from here.
5693 */
5694 static int __init mem_cgroup_init(void)
5695 {
5696 int cpu, node;
5697
5698 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5699
5700 for_each_possible_cpu(cpu)
5701 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5702 drain_local_stock);
5703
5704 for_each_node(node) {
5705 struct mem_cgroup_tree_per_node *rtpn;
5706 int zone;
5707
5708 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5709 node_online(node) ? node : NUMA_NO_NODE);
5710
5711 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5712 struct mem_cgroup_tree_per_zone *rtpz;
5713
5714 rtpz = &rtpn->rb_tree_per_zone[zone];
5715 rtpz->rb_root = RB_ROOT;
5716 spin_lock_init(&rtpz->lock);
5717 }
5718 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5719 }
5720
5721 return 0;
5722 }
5723 subsys_initcall(mem_cgroup_init);
5724
5725 #ifdef CONFIG_MEMCG_SWAP
5726 /**
5727 * mem_cgroup_swapout - transfer a memsw charge to swap
5728 * @page: page whose memsw charge to transfer
5729 * @entry: swap entry to move the charge to
5730 *
5731 * Transfer the memsw charge of @page to @entry.
5732 */
5733 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5734 {
5735 struct mem_cgroup *memcg;
5736 unsigned short oldid;
5737
5738 VM_BUG_ON_PAGE(PageLRU(page), page);
5739 VM_BUG_ON_PAGE(page_count(page), page);
5740
5741 if (!do_memsw_account())
5742 return;
5743
5744 memcg = page->mem_cgroup;
5745
5746 /* Readahead page, never charged */
5747 if (!memcg)
5748 return;
5749
5750 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5751 VM_BUG_ON_PAGE(oldid, page);
5752 mem_cgroup_swap_statistics(memcg, true);
5753
5754 page->mem_cgroup = NULL;
5755
5756 if (!mem_cgroup_is_root(memcg))
5757 page_counter_uncharge(&memcg->memory, 1);
5758
5759 /*
5760 * Interrupts should be disabled here because the caller holds the
5761 * mapping->tree_lock lock which is taken with interrupts-off. It is
5762 * important here to have the interrupts disabled because it is the
5763 * only synchronisation we have for udpating the per-CPU variables.
5764 */
5765 VM_BUG_ON(!irqs_disabled());
5766 mem_cgroup_charge_statistics(memcg, page, false, -1);
5767 memcg_check_events(memcg, page);
5768 }
5769
5770 /*
5771 * mem_cgroup_try_charge_swap - try charging a swap entry
5772 * @page: page being added to swap
5773 * @entry: swap entry to charge
5774 *
5775 * Try to charge @entry to the memcg that @page belongs to.
5776 *
5777 * Returns 0 on success, -ENOMEM on failure.
5778 */
5779 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5780 {
5781 struct mem_cgroup *memcg;
5782 struct page_counter *counter;
5783 unsigned short oldid;
5784
5785 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5786 return 0;
5787
5788 memcg = page->mem_cgroup;
5789
5790 /* Readahead page, never charged */
5791 if (!memcg)
5792 return 0;
5793
5794 if (!mem_cgroup_is_root(memcg) &&
5795 !page_counter_try_charge(&memcg->swap, 1, &counter))
5796 return -ENOMEM;
5797
5798 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5799 VM_BUG_ON_PAGE(oldid, page);
5800 mem_cgroup_swap_statistics(memcg, true);
5801
5802 css_get(&memcg->css);
5803 return 0;
5804 }
5805
5806 /**
5807 * mem_cgroup_uncharge_swap - uncharge a swap entry
5808 * @entry: swap entry to uncharge
5809 *
5810 * Drop the swap charge associated with @entry.
5811 */
5812 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5813 {
5814 struct mem_cgroup *memcg;
5815 unsigned short id;
5816
5817 if (!do_swap_account)
5818 return;
5819
5820 id = swap_cgroup_record(entry, 0);
5821 rcu_read_lock();
5822 memcg = mem_cgroup_from_id(id);
5823 if (memcg) {
5824 if (!mem_cgroup_is_root(memcg)) {
5825 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5826 page_counter_uncharge(&memcg->swap, 1);
5827 else
5828 page_counter_uncharge(&memcg->memsw, 1);
5829 }
5830 mem_cgroup_swap_statistics(memcg, false);
5831 css_put(&memcg->css);
5832 }
5833 rcu_read_unlock();
5834 }
5835
5836 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5837 {
5838 long nr_swap_pages = get_nr_swap_pages();
5839
5840 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5841 return nr_swap_pages;
5842 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5843 nr_swap_pages = min_t(long, nr_swap_pages,
5844 READ_ONCE(memcg->swap.limit) -
5845 page_counter_read(&memcg->swap));
5846 return nr_swap_pages;
5847 }
5848
5849 bool mem_cgroup_swap_full(struct page *page)
5850 {
5851 struct mem_cgroup *memcg;
5852
5853 VM_BUG_ON_PAGE(!PageLocked(page), page);
5854
5855 if (vm_swap_full())
5856 return true;
5857 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5858 return false;
5859
5860 memcg = page->mem_cgroup;
5861 if (!memcg)
5862 return false;
5863
5864 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5865 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5866 return true;
5867
5868 return false;
5869 }
5870
5871 /* for remember boot option*/
5872 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5873 static int really_do_swap_account __initdata = 1;
5874 #else
5875 static int really_do_swap_account __initdata;
5876 #endif
5877
5878 static int __init enable_swap_account(char *s)
5879 {
5880 if (!strcmp(s, "1"))
5881 really_do_swap_account = 1;
5882 else if (!strcmp(s, "0"))
5883 really_do_swap_account = 0;
5884 return 1;
5885 }
5886 __setup("swapaccount=", enable_swap_account);
5887
5888 static u64 swap_current_read(struct cgroup_subsys_state *css,
5889 struct cftype *cft)
5890 {
5891 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5892
5893 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5894 }
5895
5896 static int swap_max_show(struct seq_file *m, void *v)
5897 {
5898 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5899 unsigned long max = READ_ONCE(memcg->swap.limit);
5900
5901 if (max == PAGE_COUNTER_MAX)
5902 seq_puts(m, "max\n");
5903 else
5904 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5905
5906 return 0;
5907 }
5908
5909 static ssize_t swap_max_write(struct kernfs_open_file *of,
5910 char *buf, size_t nbytes, loff_t off)
5911 {
5912 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5913 unsigned long max;
5914 int err;
5915
5916 buf = strstrip(buf);
5917 err = page_counter_memparse(buf, "max", &max);
5918 if (err)
5919 return err;
5920
5921 mutex_lock(&memcg_limit_mutex);
5922 err = page_counter_limit(&memcg->swap, max);
5923 mutex_unlock(&memcg_limit_mutex);
5924 if (err)
5925 return err;
5926
5927 return nbytes;
5928 }
5929
5930 static struct cftype swap_files[] = {
5931 {
5932 .name = "swap.current",
5933 .flags = CFTYPE_NOT_ON_ROOT,
5934 .read_u64 = swap_current_read,
5935 },
5936 {
5937 .name = "swap.max",
5938 .flags = CFTYPE_NOT_ON_ROOT,
5939 .seq_show = swap_max_show,
5940 .write = swap_max_write,
5941 },
5942 { } /* terminate */
5943 };
5944
5945 static struct cftype memsw_cgroup_files[] = {
5946 {
5947 .name = "memsw.usage_in_bytes",
5948 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5949 .read_u64 = mem_cgroup_read_u64,
5950 },
5951 {
5952 .name = "memsw.max_usage_in_bytes",
5953 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5954 .write = mem_cgroup_reset,
5955 .read_u64 = mem_cgroup_read_u64,
5956 },
5957 {
5958 .name = "memsw.limit_in_bytes",
5959 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5960 .write = mem_cgroup_write,
5961 .read_u64 = mem_cgroup_read_u64,
5962 },
5963 {
5964 .name = "memsw.failcnt",
5965 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5966 .write = mem_cgroup_reset,
5967 .read_u64 = mem_cgroup_read_u64,
5968 },
5969 { }, /* terminate */
5970 };
5971
5972 static int __init mem_cgroup_swap_init(void)
5973 {
5974 if (!mem_cgroup_disabled() && really_do_swap_account) {
5975 do_swap_account = 1;
5976 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5977 swap_files));
5978 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5979 memsw_cgroup_files));
5980 }
5981 return 0;
5982 }
5983 subsys_initcall(mem_cgroup_swap_init);
5984
5985 #endif /* CONFIG_MEMCG_SWAP */
This page took 0.168032 seconds and 4 git commands to generate.