mm: memcontrol: separate kmem code from legacy tcp accounting code
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include <net/tcp_memcontrol.h>
70 #include "slab.h"
71
72 #include <asm/uaccess.h>
73
74 #include <trace/events/vmscan.h>
75
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77 EXPORT_SYMBOL(memory_cgrp_subsys);
78
79 struct mem_cgroup *root_mem_cgroup __read_mostly;
80
81 #define MEM_CGROUP_RECLAIM_RETRIES 5
82
83 /* Socket memory accounting disabled? */
84 static bool cgroup_memory_nosocket;
85
86 /* Whether the swap controller is active */
87 #ifdef CONFIG_MEMCG_SWAP
88 int do_swap_account __read_mostly;
89 #else
90 #define do_swap_account 0
91 #endif
92
93 /* Whether legacy memory+swap accounting is active */
94 static bool do_memsw_account(void)
95 {
96 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
97 }
98
99 static const char * const mem_cgroup_stat_names[] = {
100 "cache",
101 "rss",
102 "rss_huge",
103 "mapped_file",
104 "dirty",
105 "writeback",
106 "swap",
107 };
108
109 static const char * const mem_cgroup_events_names[] = {
110 "pgpgin",
111 "pgpgout",
112 "pgfault",
113 "pgmajfault",
114 };
115
116 static const char * const mem_cgroup_lru_names[] = {
117 "inactive_anon",
118 "active_anon",
119 "inactive_file",
120 "active_file",
121 "unevictable",
122 };
123
124 #define THRESHOLDS_EVENTS_TARGET 128
125 #define SOFTLIMIT_EVENTS_TARGET 1024
126 #define NUMAINFO_EVENTS_TARGET 1024
127
128 /*
129 * Cgroups above their limits are maintained in a RB-Tree, independent of
130 * their hierarchy representation
131 */
132
133 struct mem_cgroup_tree_per_zone {
134 struct rb_root rb_root;
135 spinlock_t lock;
136 };
137
138 struct mem_cgroup_tree_per_node {
139 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
140 };
141
142 struct mem_cgroup_tree {
143 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
144 };
145
146 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
147
148 /* for OOM */
149 struct mem_cgroup_eventfd_list {
150 struct list_head list;
151 struct eventfd_ctx *eventfd;
152 };
153
154 /*
155 * cgroup_event represents events which userspace want to receive.
156 */
157 struct mem_cgroup_event {
158 /*
159 * memcg which the event belongs to.
160 */
161 struct mem_cgroup *memcg;
162 /*
163 * eventfd to signal userspace about the event.
164 */
165 struct eventfd_ctx *eventfd;
166 /*
167 * Each of these stored in a list by the cgroup.
168 */
169 struct list_head list;
170 /*
171 * register_event() callback will be used to add new userspace
172 * waiter for changes related to this event. Use eventfd_signal()
173 * on eventfd to send notification to userspace.
174 */
175 int (*register_event)(struct mem_cgroup *memcg,
176 struct eventfd_ctx *eventfd, const char *args);
177 /*
178 * unregister_event() callback will be called when userspace closes
179 * the eventfd or on cgroup removing. This callback must be set,
180 * if you want provide notification functionality.
181 */
182 void (*unregister_event)(struct mem_cgroup *memcg,
183 struct eventfd_ctx *eventfd);
184 /*
185 * All fields below needed to unregister event when
186 * userspace closes eventfd.
187 */
188 poll_table pt;
189 wait_queue_head_t *wqh;
190 wait_queue_t wait;
191 struct work_struct remove;
192 };
193
194 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
195 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
196
197 /* Stuffs for move charges at task migration. */
198 /*
199 * Types of charges to be moved.
200 */
201 #define MOVE_ANON 0x1U
202 #define MOVE_FILE 0x2U
203 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
204
205 /* "mc" and its members are protected by cgroup_mutex */
206 static struct move_charge_struct {
207 spinlock_t lock; /* for from, to */
208 struct mem_cgroup *from;
209 struct mem_cgroup *to;
210 unsigned long flags;
211 unsigned long precharge;
212 unsigned long moved_charge;
213 unsigned long moved_swap;
214 struct task_struct *moving_task; /* a task moving charges */
215 wait_queue_head_t waitq; /* a waitq for other context */
216 } mc = {
217 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
218 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
219 };
220
221 /*
222 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
223 * limit reclaim to prevent infinite loops, if they ever occur.
224 */
225 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
226 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
227
228 enum charge_type {
229 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
230 MEM_CGROUP_CHARGE_TYPE_ANON,
231 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
232 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
233 NR_CHARGE_TYPE,
234 };
235
236 /* for encoding cft->private value on file */
237 enum res_type {
238 _MEM,
239 _MEMSWAP,
240 _OOM_TYPE,
241 _KMEM,
242 };
243
244 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
245 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
246 #define MEMFILE_ATTR(val) ((val) & 0xffff)
247 /* Used for OOM nofiier */
248 #define OOM_CONTROL (0)
249
250 /*
251 * The memcg_create_mutex will be held whenever a new cgroup is created.
252 * As a consequence, any change that needs to protect against new child cgroups
253 * appearing has to hold it as well.
254 */
255 static DEFINE_MUTEX(memcg_create_mutex);
256
257 /* Some nice accessors for the vmpressure. */
258 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
259 {
260 if (!memcg)
261 memcg = root_mem_cgroup;
262 return &memcg->vmpressure;
263 }
264
265 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
266 {
267 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
268 }
269
270 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
271 {
272 return (memcg == root_mem_cgroup);
273 }
274
275 /*
276 * We restrict the id in the range of [1, 65535], so it can fit into
277 * an unsigned short.
278 */
279 #define MEM_CGROUP_ID_MAX USHRT_MAX
280
281 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
282 {
283 return memcg->css.id;
284 }
285
286 /*
287 * A helper function to get mem_cgroup from ID. must be called under
288 * rcu_read_lock(). The caller is responsible for calling
289 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
290 * refcnt from swap can be called against removed memcg.)
291 */
292 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
293 {
294 struct cgroup_subsys_state *css;
295
296 css = css_from_id(id, &memory_cgrp_subsys);
297 return mem_cgroup_from_css(css);
298 }
299
300 #ifdef CONFIG_MEMCG_KMEM
301 /*
302 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
303 * The main reason for not using cgroup id for this:
304 * this works better in sparse environments, where we have a lot of memcgs,
305 * but only a few kmem-limited. Or also, if we have, for instance, 200
306 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
307 * 200 entry array for that.
308 *
309 * The current size of the caches array is stored in memcg_nr_cache_ids. It
310 * will double each time we have to increase it.
311 */
312 static DEFINE_IDA(memcg_cache_ida);
313 int memcg_nr_cache_ids;
314
315 /* Protects memcg_nr_cache_ids */
316 static DECLARE_RWSEM(memcg_cache_ids_sem);
317
318 void memcg_get_cache_ids(void)
319 {
320 down_read(&memcg_cache_ids_sem);
321 }
322
323 void memcg_put_cache_ids(void)
324 {
325 up_read(&memcg_cache_ids_sem);
326 }
327
328 /*
329 * MIN_SIZE is different than 1, because we would like to avoid going through
330 * the alloc/free process all the time. In a small machine, 4 kmem-limited
331 * cgroups is a reasonable guess. In the future, it could be a parameter or
332 * tunable, but that is strictly not necessary.
333 *
334 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
335 * this constant directly from cgroup, but it is understandable that this is
336 * better kept as an internal representation in cgroup.c. In any case, the
337 * cgrp_id space is not getting any smaller, and we don't have to necessarily
338 * increase ours as well if it increases.
339 */
340 #define MEMCG_CACHES_MIN_SIZE 4
341 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
342
343 /*
344 * A lot of the calls to the cache allocation functions are expected to be
345 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
346 * conditional to this static branch, we'll have to allow modules that does
347 * kmem_cache_alloc and the such to see this symbol as well
348 */
349 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
350 EXPORT_SYMBOL(memcg_kmem_enabled_key);
351
352 #endif /* CONFIG_MEMCG_KMEM */
353
354 static struct mem_cgroup_per_zone *
355 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
356 {
357 int nid = zone_to_nid(zone);
358 int zid = zone_idx(zone);
359
360 return &memcg->nodeinfo[nid]->zoneinfo[zid];
361 }
362
363 /**
364 * mem_cgroup_css_from_page - css of the memcg associated with a page
365 * @page: page of interest
366 *
367 * If memcg is bound to the default hierarchy, css of the memcg associated
368 * with @page is returned. The returned css remains associated with @page
369 * until it is released.
370 *
371 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
372 * is returned.
373 *
374 * XXX: The above description of behavior on the default hierarchy isn't
375 * strictly true yet as replace_page_cache_page() can modify the
376 * association before @page is released even on the default hierarchy;
377 * however, the current and planned usages don't mix the the two functions
378 * and replace_page_cache_page() will soon be updated to make the invariant
379 * actually true.
380 */
381 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
382 {
383 struct mem_cgroup *memcg;
384
385 memcg = page->mem_cgroup;
386
387 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
388 memcg = root_mem_cgroup;
389
390 return &memcg->css;
391 }
392
393 /**
394 * page_cgroup_ino - return inode number of the memcg a page is charged to
395 * @page: the page
396 *
397 * Look up the closest online ancestor of the memory cgroup @page is charged to
398 * and return its inode number or 0 if @page is not charged to any cgroup. It
399 * is safe to call this function without holding a reference to @page.
400 *
401 * Note, this function is inherently racy, because there is nothing to prevent
402 * the cgroup inode from getting torn down and potentially reallocated a moment
403 * after page_cgroup_ino() returns, so it only should be used by callers that
404 * do not care (such as procfs interfaces).
405 */
406 ino_t page_cgroup_ino(struct page *page)
407 {
408 struct mem_cgroup *memcg;
409 unsigned long ino = 0;
410
411 rcu_read_lock();
412 memcg = READ_ONCE(page->mem_cgroup);
413 while (memcg && !(memcg->css.flags & CSS_ONLINE))
414 memcg = parent_mem_cgroup(memcg);
415 if (memcg)
416 ino = cgroup_ino(memcg->css.cgroup);
417 rcu_read_unlock();
418 return ino;
419 }
420
421 static struct mem_cgroup_per_zone *
422 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
423 {
424 int nid = page_to_nid(page);
425 int zid = page_zonenum(page);
426
427 return &memcg->nodeinfo[nid]->zoneinfo[zid];
428 }
429
430 static struct mem_cgroup_tree_per_zone *
431 soft_limit_tree_node_zone(int nid, int zid)
432 {
433 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
434 }
435
436 static struct mem_cgroup_tree_per_zone *
437 soft_limit_tree_from_page(struct page *page)
438 {
439 int nid = page_to_nid(page);
440 int zid = page_zonenum(page);
441
442 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
443 }
444
445 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
446 struct mem_cgroup_tree_per_zone *mctz,
447 unsigned long new_usage_in_excess)
448 {
449 struct rb_node **p = &mctz->rb_root.rb_node;
450 struct rb_node *parent = NULL;
451 struct mem_cgroup_per_zone *mz_node;
452
453 if (mz->on_tree)
454 return;
455
456 mz->usage_in_excess = new_usage_in_excess;
457 if (!mz->usage_in_excess)
458 return;
459 while (*p) {
460 parent = *p;
461 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
462 tree_node);
463 if (mz->usage_in_excess < mz_node->usage_in_excess)
464 p = &(*p)->rb_left;
465 /*
466 * We can't avoid mem cgroups that are over their soft
467 * limit by the same amount
468 */
469 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
470 p = &(*p)->rb_right;
471 }
472 rb_link_node(&mz->tree_node, parent, p);
473 rb_insert_color(&mz->tree_node, &mctz->rb_root);
474 mz->on_tree = true;
475 }
476
477 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
478 struct mem_cgroup_tree_per_zone *mctz)
479 {
480 if (!mz->on_tree)
481 return;
482 rb_erase(&mz->tree_node, &mctz->rb_root);
483 mz->on_tree = false;
484 }
485
486 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
487 struct mem_cgroup_tree_per_zone *mctz)
488 {
489 unsigned long flags;
490
491 spin_lock_irqsave(&mctz->lock, flags);
492 __mem_cgroup_remove_exceeded(mz, mctz);
493 spin_unlock_irqrestore(&mctz->lock, flags);
494 }
495
496 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
497 {
498 unsigned long nr_pages = page_counter_read(&memcg->memory);
499 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
500 unsigned long excess = 0;
501
502 if (nr_pages > soft_limit)
503 excess = nr_pages - soft_limit;
504
505 return excess;
506 }
507
508 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
509 {
510 unsigned long excess;
511 struct mem_cgroup_per_zone *mz;
512 struct mem_cgroup_tree_per_zone *mctz;
513
514 mctz = soft_limit_tree_from_page(page);
515 /*
516 * Necessary to update all ancestors when hierarchy is used.
517 * because their event counter is not touched.
518 */
519 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
520 mz = mem_cgroup_page_zoneinfo(memcg, page);
521 excess = soft_limit_excess(memcg);
522 /*
523 * We have to update the tree if mz is on RB-tree or
524 * mem is over its softlimit.
525 */
526 if (excess || mz->on_tree) {
527 unsigned long flags;
528
529 spin_lock_irqsave(&mctz->lock, flags);
530 /* if on-tree, remove it */
531 if (mz->on_tree)
532 __mem_cgroup_remove_exceeded(mz, mctz);
533 /*
534 * Insert again. mz->usage_in_excess will be updated.
535 * If excess is 0, no tree ops.
536 */
537 __mem_cgroup_insert_exceeded(mz, mctz, excess);
538 spin_unlock_irqrestore(&mctz->lock, flags);
539 }
540 }
541 }
542
543 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
544 {
545 struct mem_cgroup_tree_per_zone *mctz;
546 struct mem_cgroup_per_zone *mz;
547 int nid, zid;
548
549 for_each_node(nid) {
550 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
551 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
552 mctz = soft_limit_tree_node_zone(nid, zid);
553 mem_cgroup_remove_exceeded(mz, mctz);
554 }
555 }
556 }
557
558 static struct mem_cgroup_per_zone *
559 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
560 {
561 struct rb_node *rightmost = NULL;
562 struct mem_cgroup_per_zone *mz;
563
564 retry:
565 mz = NULL;
566 rightmost = rb_last(&mctz->rb_root);
567 if (!rightmost)
568 goto done; /* Nothing to reclaim from */
569
570 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
571 /*
572 * Remove the node now but someone else can add it back,
573 * we will to add it back at the end of reclaim to its correct
574 * position in the tree.
575 */
576 __mem_cgroup_remove_exceeded(mz, mctz);
577 if (!soft_limit_excess(mz->memcg) ||
578 !css_tryget_online(&mz->memcg->css))
579 goto retry;
580 done:
581 return mz;
582 }
583
584 static struct mem_cgroup_per_zone *
585 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
586 {
587 struct mem_cgroup_per_zone *mz;
588
589 spin_lock_irq(&mctz->lock);
590 mz = __mem_cgroup_largest_soft_limit_node(mctz);
591 spin_unlock_irq(&mctz->lock);
592 return mz;
593 }
594
595 /*
596 * Return page count for single (non recursive) @memcg.
597 *
598 * Implementation Note: reading percpu statistics for memcg.
599 *
600 * Both of vmstat[] and percpu_counter has threshold and do periodic
601 * synchronization to implement "quick" read. There are trade-off between
602 * reading cost and precision of value. Then, we may have a chance to implement
603 * a periodic synchronization of counter in memcg's counter.
604 *
605 * But this _read() function is used for user interface now. The user accounts
606 * memory usage by memory cgroup and he _always_ requires exact value because
607 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
608 * have to visit all online cpus and make sum. So, for now, unnecessary
609 * synchronization is not implemented. (just implemented for cpu hotplug)
610 *
611 * If there are kernel internal actions which can make use of some not-exact
612 * value, and reading all cpu value can be performance bottleneck in some
613 * common workload, threshold and synchronization as vmstat[] should be
614 * implemented.
615 */
616 static unsigned long
617 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
618 {
619 long val = 0;
620 int cpu;
621
622 /* Per-cpu values can be negative, use a signed accumulator */
623 for_each_possible_cpu(cpu)
624 val += per_cpu(memcg->stat->count[idx], cpu);
625 /*
626 * Summing races with updates, so val may be negative. Avoid exposing
627 * transient negative values.
628 */
629 if (val < 0)
630 val = 0;
631 return val;
632 }
633
634 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
635 enum mem_cgroup_events_index idx)
636 {
637 unsigned long val = 0;
638 int cpu;
639
640 for_each_possible_cpu(cpu)
641 val += per_cpu(memcg->stat->events[idx], cpu);
642 return val;
643 }
644
645 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
646 struct page *page,
647 bool compound, int nr_pages)
648 {
649 /*
650 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
651 * counted as CACHE even if it's on ANON LRU.
652 */
653 if (PageAnon(page))
654 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
655 nr_pages);
656 else
657 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
658 nr_pages);
659
660 if (compound) {
661 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
662 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
663 nr_pages);
664 }
665
666 /* pagein of a big page is an event. So, ignore page size */
667 if (nr_pages > 0)
668 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
669 else {
670 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
671 nr_pages = -nr_pages; /* for event */
672 }
673
674 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
675 }
676
677 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
678 int nid,
679 unsigned int lru_mask)
680 {
681 unsigned long nr = 0;
682 int zid;
683
684 VM_BUG_ON((unsigned)nid >= nr_node_ids);
685
686 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
687 struct mem_cgroup_per_zone *mz;
688 enum lru_list lru;
689
690 for_each_lru(lru) {
691 if (!(BIT(lru) & lru_mask))
692 continue;
693 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
694 nr += mz->lru_size[lru];
695 }
696 }
697 return nr;
698 }
699
700 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
701 unsigned int lru_mask)
702 {
703 unsigned long nr = 0;
704 int nid;
705
706 for_each_node_state(nid, N_MEMORY)
707 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
708 return nr;
709 }
710
711 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
712 enum mem_cgroup_events_target target)
713 {
714 unsigned long val, next;
715
716 val = __this_cpu_read(memcg->stat->nr_page_events);
717 next = __this_cpu_read(memcg->stat->targets[target]);
718 /* from time_after() in jiffies.h */
719 if ((long)next - (long)val < 0) {
720 switch (target) {
721 case MEM_CGROUP_TARGET_THRESH:
722 next = val + THRESHOLDS_EVENTS_TARGET;
723 break;
724 case MEM_CGROUP_TARGET_SOFTLIMIT:
725 next = val + SOFTLIMIT_EVENTS_TARGET;
726 break;
727 case MEM_CGROUP_TARGET_NUMAINFO:
728 next = val + NUMAINFO_EVENTS_TARGET;
729 break;
730 default:
731 break;
732 }
733 __this_cpu_write(memcg->stat->targets[target], next);
734 return true;
735 }
736 return false;
737 }
738
739 /*
740 * Check events in order.
741 *
742 */
743 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
744 {
745 /* threshold event is triggered in finer grain than soft limit */
746 if (unlikely(mem_cgroup_event_ratelimit(memcg,
747 MEM_CGROUP_TARGET_THRESH))) {
748 bool do_softlimit;
749 bool do_numainfo __maybe_unused;
750
751 do_softlimit = mem_cgroup_event_ratelimit(memcg,
752 MEM_CGROUP_TARGET_SOFTLIMIT);
753 #if MAX_NUMNODES > 1
754 do_numainfo = mem_cgroup_event_ratelimit(memcg,
755 MEM_CGROUP_TARGET_NUMAINFO);
756 #endif
757 mem_cgroup_threshold(memcg);
758 if (unlikely(do_softlimit))
759 mem_cgroup_update_tree(memcg, page);
760 #if MAX_NUMNODES > 1
761 if (unlikely(do_numainfo))
762 atomic_inc(&memcg->numainfo_events);
763 #endif
764 }
765 }
766
767 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
768 {
769 /*
770 * mm_update_next_owner() may clear mm->owner to NULL
771 * if it races with swapoff, page migration, etc.
772 * So this can be called with p == NULL.
773 */
774 if (unlikely(!p))
775 return NULL;
776
777 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
778 }
779 EXPORT_SYMBOL(mem_cgroup_from_task);
780
781 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
782 {
783 struct mem_cgroup *memcg = NULL;
784
785 rcu_read_lock();
786 do {
787 /*
788 * Page cache insertions can happen withou an
789 * actual mm context, e.g. during disk probing
790 * on boot, loopback IO, acct() writes etc.
791 */
792 if (unlikely(!mm))
793 memcg = root_mem_cgroup;
794 else {
795 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
796 if (unlikely(!memcg))
797 memcg = root_mem_cgroup;
798 }
799 } while (!css_tryget_online(&memcg->css));
800 rcu_read_unlock();
801 return memcg;
802 }
803
804 /**
805 * mem_cgroup_iter - iterate over memory cgroup hierarchy
806 * @root: hierarchy root
807 * @prev: previously returned memcg, NULL on first invocation
808 * @reclaim: cookie for shared reclaim walks, NULL for full walks
809 *
810 * Returns references to children of the hierarchy below @root, or
811 * @root itself, or %NULL after a full round-trip.
812 *
813 * Caller must pass the return value in @prev on subsequent
814 * invocations for reference counting, or use mem_cgroup_iter_break()
815 * to cancel a hierarchy walk before the round-trip is complete.
816 *
817 * Reclaimers can specify a zone and a priority level in @reclaim to
818 * divide up the memcgs in the hierarchy among all concurrent
819 * reclaimers operating on the same zone and priority.
820 */
821 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
822 struct mem_cgroup *prev,
823 struct mem_cgroup_reclaim_cookie *reclaim)
824 {
825 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
826 struct cgroup_subsys_state *css = NULL;
827 struct mem_cgroup *memcg = NULL;
828 struct mem_cgroup *pos = NULL;
829
830 if (mem_cgroup_disabled())
831 return NULL;
832
833 if (!root)
834 root = root_mem_cgroup;
835
836 if (prev && !reclaim)
837 pos = prev;
838
839 if (!root->use_hierarchy && root != root_mem_cgroup) {
840 if (prev)
841 goto out;
842 return root;
843 }
844
845 rcu_read_lock();
846
847 if (reclaim) {
848 struct mem_cgroup_per_zone *mz;
849
850 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
851 iter = &mz->iter[reclaim->priority];
852
853 if (prev && reclaim->generation != iter->generation)
854 goto out_unlock;
855
856 while (1) {
857 pos = READ_ONCE(iter->position);
858 if (!pos || css_tryget(&pos->css))
859 break;
860 /*
861 * css reference reached zero, so iter->position will
862 * be cleared by ->css_released. However, we should not
863 * rely on this happening soon, because ->css_released
864 * is called from a work queue, and by busy-waiting we
865 * might block it. So we clear iter->position right
866 * away.
867 */
868 (void)cmpxchg(&iter->position, pos, NULL);
869 }
870 }
871
872 if (pos)
873 css = &pos->css;
874
875 for (;;) {
876 css = css_next_descendant_pre(css, &root->css);
877 if (!css) {
878 /*
879 * Reclaimers share the hierarchy walk, and a
880 * new one might jump in right at the end of
881 * the hierarchy - make sure they see at least
882 * one group and restart from the beginning.
883 */
884 if (!prev)
885 continue;
886 break;
887 }
888
889 /*
890 * Verify the css and acquire a reference. The root
891 * is provided by the caller, so we know it's alive
892 * and kicking, and don't take an extra reference.
893 */
894 memcg = mem_cgroup_from_css(css);
895
896 if (css == &root->css)
897 break;
898
899 if (css_tryget(css)) {
900 /*
901 * Make sure the memcg is initialized:
902 * mem_cgroup_css_online() orders the the
903 * initialization against setting the flag.
904 */
905 if (smp_load_acquire(&memcg->initialized))
906 break;
907
908 css_put(css);
909 }
910
911 memcg = NULL;
912 }
913
914 if (reclaim) {
915 /*
916 * The position could have already been updated by a competing
917 * thread, so check that the value hasn't changed since we read
918 * it to avoid reclaiming from the same cgroup twice.
919 */
920 (void)cmpxchg(&iter->position, pos, memcg);
921
922 if (pos)
923 css_put(&pos->css);
924
925 if (!memcg)
926 iter->generation++;
927 else if (!prev)
928 reclaim->generation = iter->generation;
929 }
930
931 out_unlock:
932 rcu_read_unlock();
933 out:
934 if (prev && prev != root)
935 css_put(&prev->css);
936
937 return memcg;
938 }
939
940 /**
941 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
942 * @root: hierarchy root
943 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
944 */
945 void mem_cgroup_iter_break(struct mem_cgroup *root,
946 struct mem_cgroup *prev)
947 {
948 if (!root)
949 root = root_mem_cgroup;
950 if (prev && prev != root)
951 css_put(&prev->css);
952 }
953
954 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
955 {
956 struct mem_cgroup *memcg = dead_memcg;
957 struct mem_cgroup_reclaim_iter *iter;
958 struct mem_cgroup_per_zone *mz;
959 int nid, zid;
960 int i;
961
962 while ((memcg = parent_mem_cgroup(memcg))) {
963 for_each_node(nid) {
964 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
965 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
966 for (i = 0; i <= DEF_PRIORITY; i++) {
967 iter = &mz->iter[i];
968 cmpxchg(&iter->position,
969 dead_memcg, NULL);
970 }
971 }
972 }
973 }
974 }
975
976 /*
977 * Iteration constructs for visiting all cgroups (under a tree). If
978 * loops are exited prematurely (break), mem_cgroup_iter_break() must
979 * be used for reference counting.
980 */
981 #define for_each_mem_cgroup_tree(iter, root) \
982 for (iter = mem_cgroup_iter(root, NULL, NULL); \
983 iter != NULL; \
984 iter = mem_cgroup_iter(root, iter, NULL))
985
986 #define for_each_mem_cgroup(iter) \
987 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
988 iter != NULL; \
989 iter = mem_cgroup_iter(NULL, iter, NULL))
990
991 /**
992 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
993 * @zone: zone of the wanted lruvec
994 * @memcg: memcg of the wanted lruvec
995 *
996 * Returns the lru list vector holding pages for the given @zone and
997 * @mem. This can be the global zone lruvec, if the memory controller
998 * is disabled.
999 */
1000 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1001 struct mem_cgroup *memcg)
1002 {
1003 struct mem_cgroup_per_zone *mz;
1004 struct lruvec *lruvec;
1005
1006 if (mem_cgroup_disabled()) {
1007 lruvec = &zone->lruvec;
1008 goto out;
1009 }
1010
1011 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1012 lruvec = &mz->lruvec;
1013 out:
1014 /*
1015 * Since a node can be onlined after the mem_cgroup was created,
1016 * we have to be prepared to initialize lruvec->zone here;
1017 * and if offlined then reonlined, we need to reinitialize it.
1018 */
1019 if (unlikely(lruvec->zone != zone))
1020 lruvec->zone = zone;
1021 return lruvec;
1022 }
1023
1024 /**
1025 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1026 * @page: the page
1027 * @zone: zone of the page
1028 *
1029 * This function is only safe when following the LRU page isolation
1030 * and putback protocol: the LRU lock must be held, and the page must
1031 * either be PageLRU() or the caller must have isolated/allocated it.
1032 */
1033 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1034 {
1035 struct mem_cgroup_per_zone *mz;
1036 struct mem_cgroup *memcg;
1037 struct lruvec *lruvec;
1038
1039 if (mem_cgroup_disabled()) {
1040 lruvec = &zone->lruvec;
1041 goto out;
1042 }
1043
1044 memcg = page->mem_cgroup;
1045 /*
1046 * Swapcache readahead pages are added to the LRU - and
1047 * possibly migrated - before they are charged.
1048 */
1049 if (!memcg)
1050 memcg = root_mem_cgroup;
1051
1052 mz = mem_cgroup_page_zoneinfo(memcg, page);
1053 lruvec = &mz->lruvec;
1054 out:
1055 /*
1056 * Since a node can be onlined after the mem_cgroup was created,
1057 * we have to be prepared to initialize lruvec->zone here;
1058 * and if offlined then reonlined, we need to reinitialize it.
1059 */
1060 if (unlikely(lruvec->zone != zone))
1061 lruvec->zone = zone;
1062 return lruvec;
1063 }
1064
1065 /**
1066 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1067 * @lruvec: mem_cgroup per zone lru vector
1068 * @lru: index of lru list the page is sitting on
1069 * @nr_pages: positive when adding or negative when removing
1070 *
1071 * This function must be called when a page is added to or removed from an
1072 * lru list.
1073 */
1074 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1075 int nr_pages)
1076 {
1077 struct mem_cgroup_per_zone *mz;
1078 unsigned long *lru_size;
1079
1080 if (mem_cgroup_disabled())
1081 return;
1082
1083 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1084 lru_size = mz->lru_size + lru;
1085 *lru_size += nr_pages;
1086 VM_BUG_ON((long)(*lru_size) < 0);
1087 }
1088
1089 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1090 {
1091 struct mem_cgroup *task_memcg;
1092 struct task_struct *p;
1093 bool ret;
1094
1095 p = find_lock_task_mm(task);
1096 if (p) {
1097 task_memcg = get_mem_cgroup_from_mm(p->mm);
1098 task_unlock(p);
1099 } else {
1100 /*
1101 * All threads may have already detached their mm's, but the oom
1102 * killer still needs to detect if they have already been oom
1103 * killed to prevent needlessly killing additional tasks.
1104 */
1105 rcu_read_lock();
1106 task_memcg = mem_cgroup_from_task(task);
1107 css_get(&task_memcg->css);
1108 rcu_read_unlock();
1109 }
1110 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1111 css_put(&task_memcg->css);
1112 return ret;
1113 }
1114
1115 /**
1116 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1117 * @memcg: the memory cgroup
1118 *
1119 * Returns the maximum amount of memory @mem can be charged with, in
1120 * pages.
1121 */
1122 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1123 {
1124 unsigned long margin = 0;
1125 unsigned long count;
1126 unsigned long limit;
1127
1128 count = page_counter_read(&memcg->memory);
1129 limit = READ_ONCE(memcg->memory.limit);
1130 if (count < limit)
1131 margin = limit - count;
1132
1133 if (do_memsw_account()) {
1134 count = page_counter_read(&memcg->memsw);
1135 limit = READ_ONCE(memcg->memsw.limit);
1136 if (count <= limit)
1137 margin = min(margin, limit - count);
1138 }
1139
1140 return margin;
1141 }
1142
1143 /*
1144 * A routine for checking "mem" is under move_account() or not.
1145 *
1146 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1147 * moving cgroups. This is for waiting at high-memory pressure
1148 * caused by "move".
1149 */
1150 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1151 {
1152 struct mem_cgroup *from;
1153 struct mem_cgroup *to;
1154 bool ret = false;
1155 /*
1156 * Unlike task_move routines, we access mc.to, mc.from not under
1157 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1158 */
1159 spin_lock(&mc.lock);
1160 from = mc.from;
1161 to = mc.to;
1162 if (!from)
1163 goto unlock;
1164
1165 ret = mem_cgroup_is_descendant(from, memcg) ||
1166 mem_cgroup_is_descendant(to, memcg);
1167 unlock:
1168 spin_unlock(&mc.lock);
1169 return ret;
1170 }
1171
1172 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1173 {
1174 if (mc.moving_task && current != mc.moving_task) {
1175 if (mem_cgroup_under_move(memcg)) {
1176 DEFINE_WAIT(wait);
1177 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1178 /* moving charge context might have finished. */
1179 if (mc.moving_task)
1180 schedule();
1181 finish_wait(&mc.waitq, &wait);
1182 return true;
1183 }
1184 }
1185 return false;
1186 }
1187
1188 #define K(x) ((x) << (PAGE_SHIFT-10))
1189 /**
1190 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1191 * @memcg: The memory cgroup that went over limit
1192 * @p: Task that is going to be killed
1193 *
1194 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1195 * enabled
1196 */
1197 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1198 {
1199 /* oom_info_lock ensures that parallel ooms do not interleave */
1200 static DEFINE_MUTEX(oom_info_lock);
1201 struct mem_cgroup *iter;
1202 unsigned int i;
1203
1204 mutex_lock(&oom_info_lock);
1205 rcu_read_lock();
1206
1207 if (p) {
1208 pr_info("Task in ");
1209 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1210 pr_cont(" killed as a result of limit of ");
1211 } else {
1212 pr_info("Memory limit reached of cgroup ");
1213 }
1214
1215 pr_cont_cgroup_path(memcg->css.cgroup);
1216 pr_cont("\n");
1217
1218 rcu_read_unlock();
1219
1220 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1221 K((u64)page_counter_read(&memcg->memory)),
1222 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1223 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1224 K((u64)page_counter_read(&memcg->memsw)),
1225 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1226 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1227 K((u64)page_counter_read(&memcg->kmem)),
1228 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1229
1230 for_each_mem_cgroup_tree(iter, memcg) {
1231 pr_info("Memory cgroup stats for ");
1232 pr_cont_cgroup_path(iter->css.cgroup);
1233 pr_cont(":");
1234
1235 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1236 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1237 continue;
1238 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1239 K(mem_cgroup_read_stat(iter, i)));
1240 }
1241
1242 for (i = 0; i < NR_LRU_LISTS; i++)
1243 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1244 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1245
1246 pr_cont("\n");
1247 }
1248 mutex_unlock(&oom_info_lock);
1249 }
1250
1251 /*
1252 * This function returns the number of memcg under hierarchy tree. Returns
1253 * 1(self count) if no children.
1254 */
1255 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1256 {
1257 int num = 0;
1258 struct mem_cgroup *iter;
1259
1260 for_each_mem_cgroup_tree(iter, memcg)
1261 num++;
1262 return num;
1263 }
1264
1265 /*
1266 * Return the memory (and swap, if configured) limit for a memcg.
1267 */
1268 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1269 {
1270 unsigned long limit;
1271
1272 limit = memcg->memory.limit;
1273 if (mem_cgroup_swappiness(memcg)) {
1274 unsigned long memsw_limit;
1275
1276 memsw_limit = memcg->memsw.limit;
1277 limit = min(limit + total_swap_pages, memsw_limit);
1278 }
1279 return limit;
1280 }
1281
1282 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1283 int order)
1284 {
1285 struct oom_control oc = {
1286 .zonelist = NULL,
1287 .nodemask = NULL,
1288 .gfp_mask = gfp_mask,
1289 .order = order,
1290 };
1291 struct mem_cgroup *iter;
1292 unsigned long chosen_points = 0;
1293 unsigned long totalpages;
1294 unsigned int points = 0;
1295 struct task_struct *chosen = NULL;
1296
1297 mutex_lock(&oom_lock);
1298
1299 /*
1300 * If current has a pending SIGKILL or is exiting, then automatically
1301 * select it. The goal is to allow it to allocate so that it may
1302 * quickly exit and free its memory.
1303 */
1304 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1305 mark_oom_victim(current);
1306 goto unlock;
1307 }
1308
1309 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1310 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1311 for_each_mem_cgroup_tree(iter, memcg) {
1312 struct css_task_iter it;
1313 struct task_struct *task;
1314
1315 css_task_iter_start(&iter->css, &it);
1316 while ((task = css_task_iter_next(&it))) {
1317 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1318 case OOM_SCAN_SELECT:
1319 if (chosen)
1320 put_task_struct(chosen);
1321 chosen = task;
1322 chosen_points = ULONG_MAX;
1323 get_task_struct(chosen);
1324 /* fall through */
1325 case OOM_SCAN_CONTINUE:
1326 continue;
1327 case OOM_SCAN_ABORT:
1328 css_task_iter_end(&it);
1329 mem_cgroup_iter_break(memcg, iter);
1330 if (chosen)
1331 put_task_struct(chosen);
1332 goto unlock;
1333 case OOM_SCAN_OK:
1334 break;
1335 };
1336 points = oom_badness(task, memcg, NULL, totalpages);
1337 if (!points || points < chosen_points)
1338 continue;
1339 /* Prefer thread group leaders for display purposes */
1340 if (points == chosen_points &&
1341 thread_group_leader(chosen))
1342 continue;
1343
1344 if (chosen)
1345 put_task_struct(chosen);
1346 chosen = task;
1347 chosen_points = points;
1348 get_task_struct(chosen);
1349 }
1350 css_task_iter_end(&it);
1351 }
1352
1353 if (chosen) {
1354 points = chosen_points * 1000 / totalpages;
1355 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1356 "Memory cgroup out of memory");
1357 }
1358 unlock:
1359 mutex_unlock(&oom_lock);
1360 }
1361
1362 #if MAX_NUMNODES > 1
1363
1364 /**
1365 * test_mem_cgroup_node_reclaimable
1366 * @memcg: the target memcg
1367 * @nid: the node ID to be checked.
1368 * @noswap : specify true here if the user wants flle only information.
1369 *
1370 * This function returns whether the specified memcg contains any
1371 * reclaimable pages on a node. Returns true if there are any reclaimable
1372 * pages in the node.
1373 */
1374 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1375 int nid, bool noswap)
1376 {
1377 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1378 return true;
1379 if (noswap || !total_swap_pages)
1380 return false;
1381 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1382 return true;
1383 return false;
1384
1385 }
1386
1387 /*
1388 * Always updating the nodemask is not very good - even if we have an empty
1389 * list or the wrong list here, we can start from some node and traverse all
1390 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1391 *
1392 */
1393 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1394 {
1395 int nid;
1396 /*
1397 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1398 * pagein/pageout changes since the last update.
1399 */
1400 if (!atomic_read(&memcg->numainfo_events))
1401 return;
1402 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1403 return;
1404
1405 /* make a nodemask where this memcg uses memory from */
1406 memcg->scan_nodes = node_states[N_MEMORY];
1407
1408 for_each_node_mask(nid, node_states[N_MEMORY]) {
1409
1410 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1411 node_clear(nid, memcg->scan_nodes);
1412 }
1413
1414 atomic_set(&memcg->numainfo_events, 0);
1415 atomic_set(&memcg->numainfo_updating, 0);
1416 }
1417
1418 /*
1419 * Selecting a node where we start reclaim from. Because what we need is just
1420 * reducing usage counter, start from anywhere is O,K. Considering
1421 * memory reclaim from current node, there are pros. and cons.
1422 *
1423 * Freeing memory from current node means freeing memory from a node which
1424 * we'll use or we've used. So, it may make LRU bad. And if several threads
1425 * hit limits, it will see a contention on a node. But freeing from remote
1426 * node means more costs for memory reclaim because of memory latency.
1427 *
1428 * Now, we use round-robin. Better algorithm is welcomed.
1429 */
1430 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1431 {
1432 int node;
1433
1434 mem_cgroup_may_update_nodemask(memcg);
1435 node = memcg->last_scanned_node;
1436
1437 node = next_node(node, memcg->scan_nodes);
1438 if (node == MAX_NUMNODES)
1439 node = first_node(memcg->scan_nodes);
1440 /*
1441 * We call this when we hit limit, not when pages are added to LRU.
1442 * No LRU may hold pages because all pages are UNEVICTABLE or
1443 * memcg is too small and all pages are not on LRU. In that case,
1444 * we use curret node.
1445 */
1446 if (unlikely(node == MAX_NUMNODES))
1447 node = numa_node_id();
1448
1449 memcg->last_scanned_node = node;
1450 return node;
1451 }
1452 #else
1453 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1454 {
1455 return 0;
1456 }
1457 #endif
1458
1459 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1460 struct zone *zone,
1461 gfp_t gfp_mask,
1462 unsigned long *total_scanned)
1463 {
1464 struct mem_cgroup *victim = NULL;
1465 int total = 0;
1466 int loop = 0;
1467 unsigned long excess;
1468 unsigned long nr_scanned;
1469 struct mem_cgroup_reclaim_cookie reclaim = {
1470 .zone = zone,
1471 .priority = 0,
1472 };
1473
1474 excess = soft_limit_excess(root_memcg);
1475
1476 while (1) {
1477 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1478 if (!victim) {
1479 loop++;
1480 if (loop >= 2) {
1481 /*
1482 * If we have not been able to reclaim
1483 * anything, it might because there are
1484 * no reclaimable pages under this hierarchy
1485 */
1486 if (!total)
1487 break;
1488 /*
1489 * We want to do more targeted reclaim.
1490 * excess >> 2 is not to excessive so as to
1491 * reclaim too much, nor too less that we keep
1492 * coming back to reclaim from this cgroup
1493 */
1494 if (total >= (excess >> 2) ||
1495 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1496 break;
1497 }
1498 continue;
1499 }
1500 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1501 zone, &nr_scanned);
1502 *total_scanned += nr_scanned;
1503 if (!soft_limit_excess(root_memcg))
1504 break;
1505 }
1506 mem_cgroup_iter_break(root_memcg, victim);
1507 return total;
1508 }
1509
1510 #ifdef CONFIG_LOCKDEP
1511 static struct lockdep_map memcg_oom_lock_dep_map = {
1512 .name = "memcg_oom_lock",
1513 };
1514 #endif
1515
1516 static DEFINE_SPINLOCK(memcg_oom_lock);
1517
1518 /*
1519 * Check OOM-Killer is already running under our hierarchy.
1520 * If someone is running, return false.
1521 */
1522 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1523 {
1524 struct mem_cgroup *iter, *failed = NULL;
1525
1526 spin_lock(&memcg_oom_lock);
1527
1528 for_each_mem_cgroup_tree(iter, memcg) {
1529 if (iter->oom_lock) {
1530 /*
1531 * this subtree of our hierarchy is already locked
1532 * so we cannot give a lock.
1533 */
1534 failed = iter;
1535 mem_cgroup_iter_break(memcg, iter);
1536 break;
1537 } else
1538 iter->oom_lock = true;
1539 }
1540
1541 if (failed) {
1542 /*
1543 * OK, we failed to lock the whole subtree so we have
1544 * to clean up what we set up to the failing subtree
1545 */
1546 for_each_mem_cgroup_tree(iter, memcg) {
1547 if (iter == failed) {
1548 mem_cgroup_iter_break(memcg, iter);
1549 break;
1550 }
1551 iter->oom_lock = false;
1552 }
1553 } else
1554 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1555
1556 spin_unlock(&memcg_oom_lock);
1557
1558 return !failed;
1559 }
1560
1561 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1562 {
1563 struct mem_cgroup *iter;
1564
1565 spin_lock(&memcg_oom_lock);
1566 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1567 for_each_mem_cgroup_tree(iter, memcg)
1568 iter->oom_lock = false;
1569 spin_unlock(&memcg_oom_lock);
1570 }
1571
1572 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1573 {
1574 struct mem_cgroup *iter;
1575
1576 spin_lock(&memcg_oom_lock);
1577 for_each_mem_cgroup_tree(iter, memcg)
1578 iter->under_oom++;
1579 spin_unlock(&memcg_oom_lock);
1580 }
1581
1582 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1583 {
1584 struct mem_cgroup *iter;
1585
1586 /*
1587 * When a new child is created while the hierarchy is under oom,
1588 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1589 */
1590 spin_lock(&memcg_oom_lock);
1591 for_each_mem_cgroup_tree(iter, memcg)
1592 if (iter->under_oom > 0)
1593 iter->under_oom--;
1594 spin_unlock(&memcg_oom_lock);
1595 }
1596
1597 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1598
1599 struct oom_wait_info {
1600 struct mem_cgroup *memcg;
1601 wait_queue_t wait;
1602 };
1603
1604 static int memcg_oom_wake_function(wait_queue_t *wait,
1605 unsigned mode, int sync, void *arg)
1606 {
1607 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1608 struct mem_cgroup *oom_wait_memcg;
1609 struct oom_wait_info *oom_wait_info;
1610
1611 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1612 oom_wait_memcg = oom_wait_info->memcg;
1613
1614 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1615 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1616 return 0;
1617 return autoremove_wake_function(wait, mode, sync, arg);
1618 }
1619
1620 static void memcg_oom_recover(struct mem_cgroup *memcg)
1621 {
1622 /*
1623 * For the following lockless ->under_oom test, the only required
1624 * guarantee is that it must see the state asserted by an OOM when
1625 * this function is called as a result of userland actions
1626 * triggered by the notification of the OOM. This is trivially
1627 * achieved by invoking mem_cgroup_mark_under_oom() before
1628 * triggering notification.
1629 */
1630 if (memcg && memcg->under_oom)
1631 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1632 }
1633
1634 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1635 {
1636 if (!current->memcg_may_oom)
1637 return;
1638 /*
1639 * We are in the middle of the charge context here, so we
1640 * don't want to block when potentially sitting on a callstack
1641 * that holds all kinds of filesystem and mm locks.
1642 *
1643 * Also, the caller may handle a failed allocation gracefully
1644 * (like optional page cache readahead) and so an OOM killer
1645 * invocation might not even be necessary.
1646 *
1647 * That's why we don't do anything here except remember the
1648 * OOM context and then deal with it at the end of the page
1649 * fault when the stack is unwound, the locks are released,
1650 * and when we know whether the fault was overall successful.
1651 */
1652 css_get(&memcg->css);
1653 current->memcg_in_oom = memcg;
1654 current->memcg_oom_gfp_mask = mask;
1655 current->memcg_oom_order = order;
1656 }
1657
1658 /**
1659 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1660 * @handle: actually kill/wait or just clean up the OOM state
1661 *
1662 * This has to be called at the end of a page fault if the memcg OOM
1663 * handler was enabled.
1664 *
1665 * Memcg supports userspace OOM handling where failed allocations must
1666 * sleep on a waitqueue until the userspace task resolves the
1667 * situation. Sleeping directly in the charge context with all kinds
1668 * of locks held is not a good idea, instead we remember an OOM state
1669 * in the task and mem_cgroup_oom_synchronize() has to be called at
1670 * the end of the page fault to complete the OOM handling.
1671 *
1672 * Returns %true if an ongoing memcg OOM situation was detected and
1673 * completed, %false otherwise.
1674 */
1675 bool mem_cgroup_oom_synchronize(bool handle)
1676 {
1677 struct mem_cgroup *memcg = current->memcg_in_oom;
1678 struct oom_wait_info owait;
1679 bool locked;
1680
1681 /* OOM is global, do not handle */
1682 if (!memcg)
1683 return false;
1684
1685 if (!handle || oom_killer_disabled)
1686 goto cleanup;
1687
1688 owait.memcg = memcg;
1689 owait.wait.flags = 0;
1690 owait.wait.func = memcg_oom_wake_function;
1691 owait.wait.private = current;
1692 INIT_LIST_HEAD(&owait.wait.task_list);
1693
1694 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1695 mem_cgroup_mark_under_oom(memcg);
1696
1697 locked = mem_cgroup_oom_trylock(memcg);
1698
1699 if (locked)
1700 mem_cgroup_oom_notify(memcg);
1701
1702 if (locked && !memcg->oom_kill_disable) {
1703 mem_cgroup_unmark_under_oom(memcg);
1704 finish_wait(&memcg_oom_waitq, &owait.wait);
1705 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1706 current->memcg_oom_order);
1707 } else {
1708 schedule();
1709 mem_cgroup_unmark_under_oom(memcg);
1710 finish_wait(&memcg_oom_waitq, &owait.wait);
1711 }
1712
1713 if (locked) {
1714 mem_cgroup_oom_unlock(memcg);
1715 /*
1716 * There is no guarantee that an OOM-lock contender
1717 * sees the wakeups triggered by the OOM kill
1718 * uncharges. Wake any sleepers explicitely.
1719 */
1720 memcg_oom_recover(memcg);
1721 }
1722 cleanup:
1723 current->memcg_in_oom = NULL;
1724 css_put(&memcg->css);
1725 return true;
1726 }
1727
1728 /**
1729 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1730 * @page: page that is going to change accounted state
1731 *
1732 * This function must mark the beginning of an accounted page state
1733 * change to prevent double accounting when the page is concurrently
1734 * being moved to another memcg:
1735 *
1736 * memcg = mem_cgroup_begin_page_stat(page);
1737 * if (TestClearPageState(page))
1738 * mem_cgroup_update_page_stat(memcg, state, -1);
1739 * mem_cgroup_end_page_stat(memcg);
1740 */
1741 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1742 {
1743 struct mem_cgroup *memcg;
1744 unsigned long flags;
1745
1746 /*
1747 * The RCU lock is held throughout the transaction. The fast
1748 * path can get away without acquiring the memcg->move_lock
1749 * because page moving starts with an RCU grace period.
1750 *
1751 * The RCU lock also protects the memcg from being freed when
1752 * the page state that is going to change is the only thing
1753 * preventing the page from being uncharged.
1754 * E.g. end-writeback clearing PageWriteback(), which allows
1755 * migration to go ahead and uncharge the page before the
1756 * account transaction might be complete.
1757 */
1758 rcu_read_lock();
1759
1760 if (mem_cgroup_disabled())
1761 return NULL;
1762 again:
1763 memcg = page->mem_cgroup;
1764 if (unlikely(!memcg))
1765 return NULL;
1766
1767 if (atomic_read(&memcg->moving_account) <= 0)
1768 return memcg;
1769
1770 spin_lock_irqsave(&memcg->move_lock, flags);
1771 if (memcg != page->mem_cgroup) {
1772 spin_unlock_irqrestore(&memcg->move_lock, flags);
1773 goto again;
1774 }
1775
1776 /*
1777 * When charge migration first begins, we can have locked and
1778 * unlocked page stat updates happening concurrently. Track
1779 * the task who has the lock for mem_cgroup_end_page_stat().
1780 */
1781 memcg->move_lock_task = current;
1782 memcg->move_lock_flags = flags;
1783
1784 return memcg;
1785 }
1786 EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1787
1788 /**
1789 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1790 * @memcg: the memcg that was accounted against
1791 */
1792 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1793 {
1794 if (memcg && memcg->move_lock_task == current) {
1795 unsigned long flags = memcg->move_lock_flags;
1796
1797 memcg->move_lock_task = NULL;
1798 memcg->move_lock_flags = 0;
1799
1800 spin_unlock_irqrestore(&memcg->move_lock, flags);
1801 }
1802
1803 rcu_read_unlock();
1804 }
1805 EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1806
1807 /*
1808 * size of first charge trial. "32" comes from vmscan.c's magic value.
1809 * TODO: maybe necessary to use big numbers in big irons.
1810 */
1811 #define CHARGE_BATCH 32U
1812 struct memcg_stock_pcp {
1813 struct mem_cgroup *cached; /* this never be root cgroup */
1814 unsigned int nr_pages;
1815 struct work_struct work;
1816 unsigned long flags;
1817 #define FLUSHING_CACHED_CHARGE 0
1818 };
1819 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1820 static DEFINE_MUTEX(percpu_charge_mutex);
1821
1822 /**
1823 * consume_stock: Try to consume stocked charge on this cpu.
1824 * @memcg: memcg to consume from.
1825 * @nr_pages: how many pages to charge.
1826 *
1827 * The charges will only happen if @memcg matches the current cpu's memcg
1828 * stock, and at least @nr_pages are available in that stock. Failure to
1829 * service an allocation will refill the stock.
1830 *
1831 * returns true if successful, false otherwise.
1832 */
1833 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1834 {
1835 struct memcg_stock_pcp *stock;
1836 bool ret = false;
1837
1838 if (nr_pages > CHARGE_BATCH)
1839 return ret;
1840
1841 stock = &get_cpu_var(memcg_stock);
1842 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1843 stock->nr_pages -= nr_pages;
1844 ret = true;
1845 }
1846 put_cpu_var(memcg_stock);
1847 return ret;
1848 }
1849
1850 /*
1851 * Returns stocks cached in percpu and reset cached information.
1852 */
1853 static void drain_stock(struct memcg_stock_pcp *stock)
1854 {
1855 struct mem_cgroup *old = stock->cached;
1856
1857 if (stock->nr_pages) {
1858 page_counter_uncharge(&old->memory, stock->nr_pages);
1859 if (do_memsw_account())
1860 page_counter_uncharge(&old->memsw, stock->nr_pages);
1861 css_put_many(&old->css, stock->nr_pages);
1862 stock->nr_pages = 0;
1863 }
1864 stock->cached = NULL;
1865 }
1866
1867 /*
1868 * This must be called under preempt disabled or must be called by
1869 * a thread which is pinned to local cpu.
1870 */
1871 static void drain_local_stock(struct work_struct *dummy)
1872 {
1873 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1874 drain_stock(stock);
1875 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1876 }
1877
1878 /*
1879 * Cache charges(val) to local per_cpu area.
1880 * This will be consumed by consume_stock() function, later.
1881 */
1882 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1883 {
1884 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1885
1886 if (stock->cached != memcg) { /* reset if necessary */
1887 drain_stock(stock);
1888 stock->cached = memcg;
1889 }
1890 stock->nr_pages += nr_pages;
1891 put_cpu_var(memcg_stock);
1892 }
1893
1894 /*
1895 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1896 * of the hierarchy under it.
1897 */
1898 static void drain_all_stock(struct mem_cgroup *root_memcg)
1899 {
1900 int cpu, curcpu;
1901
1902 /* If someone's already draining, avoid adding running more workers. */
1903 if (!mutex_trylock(&percpu_charge_mutex))
1904 return;
1905 /* Notify other cpus that system-wide "drain" is running */
1906 get_online_cpus();
1907 curcpu = get_cpu();
1908 for_each_online_cpu(cpu) {
1909 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1910 struct mem_cgroup *memcg;
1911
1912 memcg = stock->cached;
1913 if (!memcg || !stock->nr_pages)
1914 continue;
1915 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1916 continue;
1917 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1918 if (cpu == curcpu)
1919 drain_local_stock(&stock->work);
1920 else
1921 schedule_work_on(cpu, &stock->work);
1922 }
1923 }
1924 put_cpu();
1925 put_online_cpus();
1926 mutex_unlock(&percpu_charge_mutex);
1927 }
1928
1929 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1930 unsigned long action,
1931 void *hcpu)
1932 {
1933 int cpu = (unsigned long)hcpu;
1934 struct memcg_stock_pcp *stock;
1935
1936 if (action == CPU_ONLINE)
1937 return NOTIFY_OK;
1938
1939 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1940 return NOTIFY_OK;
1941
1942 stock = &per_cpu(memcg_stock, cpu);
1943 drain_stock(stock);
1944 return NOTIFY_OK;
1945 }
1946
1947 static void reclaim_high(struct mem_cgroup *memcg,
1948 unsigned int nr_pages,
1949 gfp_t gfp_mask)
1950 {
1951 do {
1952 if (page_counter_read(&memcg->memory) <= memcg->high)
1953 continue;
1954 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1955 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1956 } while ((memcg = parent_mem_cgroup(memcg)));
1957 }
1958
1959 static void high_work_func(struct work_struct *work)
1960 {
1961 struct mem_cgroup *memcg;
1962
1963 memcg = container_of(work, struct mem_cgroup, high_work);
1964 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1965 }
1966
1967 /*
1968 * Scheduled by try_charge() to be executed from the userland return path
1969 * and reclaims memory over the high limit.
1970 */
1971 void mem_cgroup_handle_over_high(void)
1972 {
1973 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1974 struct mem_cgroup *memcg;
1975
1976 if (likely(!nr_pages))
1977 return;
1978
1979 memcg = get_mem_cgroup_from_mm(current->mm);
1980 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1981 css_put(&memcg->css);
1982 current->memcg_nr_pages_over_high = 0;
1983 }
1984
1985 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1986 unsigned int nr_pages)
1987 {
1988 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1989 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1990 struct mem_cgroup *mem_over_limit;
1991 struct page_counter *counter;
1992 unsigned long nr_reclaimed;
1993 bool may_swap = true;
1994 bool drained = false;
1995
1996 if (mem_cgroup_is_root(memcg))
1997 return 0;
1998 retry:
1999 if (consume_stock(memcg, nr_pages))
2000 return 0;
2001
2002 if (!do_memsw_account() ||
2003 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2004 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2005 goto done_restock;
2006 if (do_memsw_account())
2007 page_counter_uncharge(&memcg->memsw, batch);
2008 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2009 } else {
2010 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2011 may_swap = false;
2012 }
2013
2014 if (batch > nr_pages) {
2015 batch = nr_pages;
2016 goto retry;
2017 }
2018
2019 /*
2020 * Unlike in global OOM situations, memcg is not in a physical
2021 * memory shortage. Allow dying and OOM-killed tasks to
2022 * bypass the last charges so that they can exit quickly and
2023 * free their memory.
2024 */
2025 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2026 fatal_signal_pending(current) ||
2027 current->flags & PF_EXITING))
2028 goto force;
2029
2030 if (unlikely(task_in_memcg_oom(current)))
2031 goto nomem;
2032
2033 if (!gfpflags_allow_blocking(gfp_mask))
2034 goto nomem;
2035
2036 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2037
2038 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2039 gfp_mask, may_swap);
2040
2041 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2042 goto retry;
2043
2044 if (!drained) {
2045 drain_all_stock(mem_over_limit);
2046 drained = true;
2047 goto retry;
2048 }
2049
2050 if (gfp_mask & __GFP_NORETRY)
2051 goto nomem;
2052 /*
2053 * Even though the limit is exceeded at this point, reclaim
2054 * may have been able to free some pages. Retry the charge
2055 * before killing the task.
2056 *
2057 * Only for regular pages, though: huge pages are rather
2058 * unlikely to succeed so close to the limit, and we fall back
2059 * to regular pages anyway in case of failure.
2060 */
2061 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2062 goto retry;
2063 /*
2064 * At task move, charge accounts can be doubly counted. So, it's
2065 * better to wait until the end of task_move if something is going on.
2066 */
2067 if (mem_cgroup_wait_acct_move(mem_over_limit))
2068 goto retry;
2069
2070 if (nr_retries--)
2071 goto retry;
2072
2073 if (gfp_mask & __GFP_NOFAIL)
2074 goto force;
2075
2076 if (fatal_signal_pending(current))
2077 goto force;
2078
2079 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2080
2081 mem_cgroup_oom(mem_over_limit, gfp_mask,
2082 get_order(nr_pages * PAGE_SIZE));
2083 nomem:
2084 if (!(gfp_mask & __GFP_NOFAIL))
2085 return -ENOMEM;
2086 force:
2087 /*
2088 * The allocation either can't fail or will lead to more memory
2089 * being freed very soon. Allow memory usage go over the limit
2090 * temporarily by force charging it.
2091 */
2092 page_counter_charge(&memcg->memory, nr_pages);
2093 if (do_memsw_account())
2094 page_counter_charge(&memcg->memsw, nr_pages);
2095 css_get_many(&memcg->css, nr_pages);
2096
2097 return 0;
2098
2099 done_restock:
2100 css_get_many(&memcg->css, batch);
2101 if (batch > nr_pages)
2102 refill_stock(memcg, batch - nr_pages);
2103
2104 /*
2105 * If the hierarchy is above the normal consumption range, schedule
2106 * reclaim on returning to userland. We can perform reclaim here
2107 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2108 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2109 * not recorded as it most likely matches current's and won't
2110 * change in the meantime. As high limit is checked again before
2111 * reclaim, the cost of mismatch is negligible.
2112 */
2113 do {
2114 if (page_counter_read(&memcg->memory) > memcg->high) {
2115 /* Don't bother a random interrupted task */
2116 if (in_interrupt()) {
2117 schedule_work(&memcg->high_work);
2118 break;
2119 }
2120 current->memcg_nr_pages_over_high += batch;
2121 set_notify_resume(current);
2122 break;
2123 }
2124 } while ((memcg = parent_mem_cgroup(memcg)));
2125
2126 return 0;
2127 }
2128
2129 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2130 {
2131 if (mem_cgroup_is_root(memcg))
2132 return;
2133
2134 page_counter_uncharge(&memcg->memory, nr_pages);
2135 if (do_memsw_account())
2136 page_counter_uncharge(&memcg->memsw, nr_pages);
2137
2138 css_put_many(&memcg->css, nr_pages);
2139 }
2140
2141 static void lock_page_lru(struct page *page, int *isolated)
2142 {
2143 struct zone *zone = page_zone(page);
2144
2145 spin_lock_irq(&zone->lru_lock);
2146 if (PageLRU(page)) {
2147 struct lruvec *lruvec;
2148
2149 lruvec = mem_cgroup_page_lruvec(page, zone);
2150 ClearPageLRU(page);
2151 del_page_from_lru_list(page, lruvec, page_lru(page));
2152 *isolated = 1;
2153 } else
2154 *isolated = 0;
2155 }
2156
2157 static void unlock_page_lru(struct page *page, int isolated)
2158 {
2159 struct zone *zone = page_zone(page);
2160
2161 if (isolated) {
2162 struct lruvec *lruvec;
2163
2164 lruvec = mem_cgroup_page_lruvec(page, zone);
2165 VM_BUG_ON_PAGE(PageLRU(page), page);
2166 SetPageLRU(page);
2167 add_page_to_lru_list(page, lruvec, page_lru(page));
2168 }
2169 spin_unlock_irq(&zone->lru_lock);
2170 }
2171
2172 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2173 bool lrucare)
2174 {
2175 int isolated;
2176
2177 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2178
2179 /*
2180 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2181 * may already be on some other mem_cgroup's LRU. Take care of it.
2182 */
2183 if (lrucare)
2184 lock_page_lru(page, &isolated);
2185
2186 /*
2187 * Nobody should be changing or seriously looking at
2188 * page->mem_cgroup at this point:
2189 *
2190 * - the page is uncharged
2191 *
2192 * - the page is off-LRU
2193 *
2194 * - an anonymous fault has exclusive page access, except for
2195 * a locked page table
2196 *
2197 * - a page cache insertion, a swapin fault, or a migration
2198 * have the page locked
2199 */
2200 page->mem_cgroup = memcg;
2201
2202 if (lrucare)
2203 unlock_page_lru(page, isolated);
2204 }
2205
2206 #ifdef CONFIG_MEMCG_KMEM
2207 static int memcg_alloc_cache_id(void)
2208 {
2209 int id, size;
2210 int err;
2211
2212 id = ida_simple_get(&memcg_cache_ida,
2213 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2214 if (id < 0)
2215 return id;
2216
2217 if (id < memcg_nr_cache_ids)
2218 return id;
2219
2220 /*
2221 * There's no space for the new id in memcg_caches arrays,
2222 * so we have to grow them.
2223 */
2224 down_write(&memcg_cache_ids_sem);
2225
2226 size = 2 * (id + 1);
2227 if (size < MEMCG_CACHES_MIN_SIZE)
2228 size = MEMCG_CACHES_MIN_SIZE;
2229 else if (size > MEMCG_CACHES_MAX_SIZE)
2230 size = MEMCG_CACHES_MAX_SIZE;
2231
2232 err = memcg_update_all_caches(size);
2233 if (!err)
2234 err = memcg_update_all_list_lrus(size);
2235 if (!err)
2236 memcg_nr_cache_ids = size;
2237
2238 up_write(&memcg_cache_ids_sem);
2239
2240 if (err) {
2241 ida_simple_remove(&memcg_cache_ida, id);
2242 return err;
2243 }
2244 return id;
2245 }
2246
2247 static void memcg_free_cache_id(int id)
2248 {
2249 ida_simple_remove(&memcg_cache_ida, id);
2250 }
2251
2252 struct memcg_kmem_cache_create_work {
2253 struct mem_cgroup *memcg;
2254 struct kmem_cache *cachep;
2255 struct work_struct work;
2256 };
2257
2258 static void memcg_kmem_cache_create_func(struct work_struct *w)
2259 {
2260 struct memcg_kmem_cache_create_work *cw =
2261 container_of(w, struct memcg_kmem_cache_create_work, work);
2262 struct mem_cgroup *memcg = cw->memcg;
2263 struct kmem_cache *cachep = cw->cachep;
2264
2265 memcg_create_kmem_cache(memcg, cachep);
2266
2267 css_put(&memcg->css);
2268 kfree(cw);
2269 }
2270
2271 /*
2272 * Enqueue the creation of a per-memcg kmem_cache.
2273 */
2274 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2275 struct kmem_cache *cachep)
2276 {
2277 struct memcg_kmem_cache_create_work *cw;
2278
2279 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2280 if (!cw)
2281 return;
2282
2283 css_get(&memcg->css);
2284
2285 cw->memcg = memcg;
2286 cw->cachep = cachep;
2287 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2288
2289 schedule_work(&cw->work);
2290 }
2291
2292 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2293 struct kmem_cache *cachep)
2294 {
2295 /*
2296 * We need to stop accounting when we kmalloc, because if the
2297 * corresponding kmalloc cache is not yet created, the first allocation
2298 * in __memcg_schedule_kmem_cache_create will recurse.
2299 *
2300 * However, it is better to enclose the whole function. Depending on
2301 * the debugging options enabled, INIT_WORK(), for instance, can
2302 * trigger an allocation. This too, will make us recurse. Because at
2303 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2304 * the safest choice is to do it like this, wrapping the whole function.
2305 */
2306 current->memcg_kmem_skip_account = 1;
2307 __memcg_schedule_kmem_cache_create(memcg, cachep);
2308 current->memcg_kmem_skip_account = 0;
2309 }
2310
2311 /*
2312 * Return the kmem_cache we're supposed to use for a slab allocation.
2313 * We try to use the current memcg's version of the cache.
2314 *
2315 * If the cache does not exist yet, if we are the first user of it,
2316 * we either create it immediately, if possible, or create it asynchronously
2317 * in a workqueue.
2318 * In the latter case, we will let the current allocation go through with
2319 * the original cache.
2320 *
2321 * Can't be called in interrupt context or from kernel threads.
2322 * This function needs to be called with rcu_read_lock() held.
2323 */
2324 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2325 {
2326 struct mem_cgroup *memcg;
2327 struct kmem_cache *memcg_cachep;
2328 int kmemcg_id;
2329
2330 VM_BUG_ON(!is_root_cache(cachep));
2331
2332 if (cachep->flags & SLAB_ACCOUNT)
2333 gfp |= __GFP_ACCOUNT;
2334
2335 if (!(gfp & __GFP_ACCOUNT))
2336 return cachep;
2337
2338 if (current->memcg_kmem_skip_account)
2339 return cachep;
2340
2341 memcg = get_mem_cgroup_from_mm(current->mm);
2342 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2343 if (kmemcg_id < 0)
2344 goto out;
2345
2346 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2347 if (likely(memcg_cachep))
2348 return memcg_cachep;
2349
2350 /*
2351 * If we are in a safe context (can wait, and not in interrupt
2352 * context), we could be be predictable and return right away.
2353 * This would guarantee that the allocation being performed
2354 * already belongs in the new cache.
2355 *
2356 * However, there are some clashes that can arrive from locking.
2357 * For instance, because we acquire the slab_mutex while doing
2358 * memcg_create_kmem_cache, this means no further allocation
2359 * could happen with the slab_mutex held. So it's better to
2360 * defer everything.
2361 */
2362 memcg_schedule_kmem_cache_create(memcg, cachep);
2363 out:
2364 css_put(&memcg->css);
2365 return cachep;
2366 }
2367
2368 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2369 {
2370 if (!is_root_cache(cachep))
2371 css_put(&cachep->memcg_params.memcg->css);
2372 }
2373
2374 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2375 struct mem_cgroup *memcg)
2376 {
2377 unsigned int nr_pages = 1 << order;
2378 struct page_counter *counter;
2379 int ret;
2380
2381 if (!memcg_kmem_online(memcg))
2382 return 0;
2383
2384 if (!page_counter_try_charge(&memcg->kmem, nr_pages, &counter))
2385 return -ENOMEM;
2386
2387 ret = try_charge(memcg, gfp, nr_pages);
2388 if (ret) {
2389 page_counter_uncharge(&memcg->kmem, nr_pages);
2390 return ret;
2391 }
2392
2393 page->mem_cgroup = memcg;
2394
2395 return 0;
2396 }
2397
2398 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2399 {
2400 struct mem_cgroup *memcg;
2401 int ret;
2402
2403 memcg = get_mem_cgroup_from_mm(current->mm);
2404 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2405 css_put(&memcg->css);
2406 return ret;
2407 }
2408
2409 void __memcg_kmem_uncharge(struct page *page, int order)
2410 {
2411 struct mem_cgroup *memcg = page->mem_cgroup;
2412 unsigned int nr_pages = 1 << order;
2413
2414 if (!memcg)
2415 return;
2416
2417 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2418
2419 page_counter_uncharge(&memcg->kmem, nr_pages);
2420 page_counter_uncharge(&memcg->memory, nr_pages);
2421 if (do_memsw_account())
2422 page_counter_uncharge(&memcg->memsw, nr_pages);
2423
2424 page->mem_cgroup = NULL;
2425 css_put_many(&memcg->css, nr_pages);
2426 }
2427 #endif /* CONFIG_MEMCG_KMEM */
2428
2429 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2430
2431 /*
2432 * Because tail pages are not marked as "used", set it. We're under
2433 * zone->lru_lock and migration entries setup in all page mappings.
2434 */
2435 void mem_cgroup_split_huge_fixup(struct page *head)
2436 {
2437 int i;
2438
2439 if (mem_cgroup_disabled())
2440 return;
2441
2442 for (i = 1; i < HPAGE_PMD_NR; i++)
2443 head[i].mem_cgroup = head->mem_cgroup;
2444
2445 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2446 HPAGE_PMD_NR);
2447 }
2448 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2449
2450 #ifdef CONFIG_MEMCG_SWAP
2451 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2452 bool charge)
2453 {
2454 int val = (charge) ? 1 : -1;
2455 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2456 }
2457
2458 /**
2459 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2460 * @entry: swap entry to be moved
2461 * @from: mem_cgroup which the entry is moved from
2462 * @to: mem_cgroup which the entry is moved to
2463 *
2464 * It succeeds only when the swap_cgroup's record for this entry is the same
2465 * as the mem_cgroup's id of @from.
2466 *
2467 * Returns 0 on success, -EINVAL on failure.
2468 *
2469 * The caller must have charged to @to, IOW, called page_counter_charge() about
2470 * both res and memsw, and called css_get().
2471 */
2472 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2473 struct mem_cgroup *from, struct mem_cgroup *to)
2474 {
2475 unsigned short old_id, new_id;
2476
2477 old_id = mem_cgroup_id(from);
2478 new_id = mem_cgroup_id(to);
2479
2480 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2481 mem_cgroup_swap_statistics(from, false);
2482 mem_cgroup_swap_statistics(to, true);
2483 return 0;
2484 }
2485 return -EINVAL;
2486 }
2487 #else
2488 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2489 struct mem_cgroup *from, struct mem_cgroup *to)
2490 {
2491 return -EINVAL;
2492 }
2493 #endif
2494
2495 static DEFINE_MUTEX(memcg_limit_mutex);
2496
2497 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2498 unsigned long limit)
2499 {
2500 unsigned long curusage;
2501 unsigned long oldusage;
2502 bool enlarge = false;
2503 int retry_count;
2504 int ret;
2505
2506 /*
2507 * For keeping hierarchical_reclaim simple, how long we should retry
2508 * is depends on callers. We set our retry-count to be function
2509 * of # of children which we should visit in this loop.
2510 */
2511 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2512 mem_cgroup_count_children(memcg);
2513
2514 oldusage = page_counter_read(&memcg->memory);
2515
2516 do {
2517 if (signal_pending(current)) {
2518 ret = -EINTR;
2519 break;
2520 }
2521
2522 mutex_lock(&memcg_limit_mutex);
2523 if (limit > memcg->memsw.limit) {
2524 mutex_unlock(&memcg_limit_mutex);
2525 ret = -EINVAL;
2526 break;
2527 }
2528 if (limit > memcg->memory.limit)
2529 enlarge = true;
2530 ret = page_counter_limit(&memcg->memory, limit);
2531 mutex_unlock(&memcg_limit_mutex);
2532
2533 if (!ret)
2534 break;
2535
2536 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2537
2538 curusage = page_counter_read(&memcg->memory);
2539 /* Usage is reduced ? */
2540 if (curusage >= oldusage)
2541 retry_count--;
2542 else
2543 oldusage = curusage;
2544 } while (retry_count);
2545
2546 if (!ret && enlarge)
2547 memcg_oom_recover(memcg);
2548
2549 return ret;
2550 }
2551
2552 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2553 unsigned long limit)
2554 {
2555 unsigned long curusage;
2556 unsigned long oldusage;
2557 bool enlarge = false;
2558 int retry_count;
2559 int ret;
2560
2561 /* see mem_cgroup_resize_res_limit */
2562 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2563 mem_cgroup_count_children(memcg);
2564
2565 oldusage = page_counter_read(&memcg->memsw);
2566
2567 do {
2568 if (signal_pending(current)) {
2569 ret = -EINTR;
2570 break;
2571 }
2572
2573 mutex_lock(&memcg_limit_mutex);
2574 if (limit < memcg->memory.limit) {
2575 mutex_unlock(&memcg_limit_mutex);
2576 ret = -EINVAL;
2577 break;
2578 }
2579 if (limit > memcg->memsw.limit)
2580 enlarge = true;
2581 ret = page_counter_limit(&memcg->memsw, limit);
2582 mutex_unlock(&memcg_limit_mutex);
2583
2584 if (!ret)
2585 break;
2586
2587 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2588
2589 curusage = page_counter_read(&memcg->memsw);
2590 /* Usage is reduced ? */
2591 if (curusage >= oldusage)
2592 retry_count--;
2593 else
2594 oldusage = curusage;
2595 } while (retry_count);
2596
2597 if (!ret && enlarge)
2598 memcg_oom_recover(memcg);
2599
2600 return ret;
2601 }
2602
2603 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2604 gfp_t gfp_mask,
2605 unsigned long *total_scanned)
2606 {
2607 unsigned long nr_reclaimed = 0;
2608 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2609 unsigned long reclaimed;
2610 int loop = 0;
2611 struct mem_cgroup_tree_per_zone *mctz;
2612 unsigned long excess;
2613 unsigned long nr_scanned;
2614
2615 if (order > 0)
2616 return 0;
2617
2618 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2619 /*
2620 * This loop can run a while, specially if mem_cgroup's continuously
2621 * keep exceeding their soft limit and putting the system under
2622 * pressure
2623 */
2624 do {
2625 if (next_mz)
2626 mz = next_mz;
2627 else
2628 mz = mem_cgroup_largest_soft_limit_node(mctz);
2629 if (!mz)
2630 break;
2631
2632 nr_scanned = 0;
2633 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2634 gfp_mask, &nr_scanned);
2635 nr_reclaimed += reclaimed;
2636 *total_scanned += nr_scanned;
2637 spin_lock_irq(&mctz->lock);
2638 __mem_cgroup_remove_exceeded(mz, mctz);
2639
2640 /*
2641 * If we failed to reclaim anything from this memory cgroup
2642 * it is time to move on to the next cgroup
2643 */
2644 next_mz = NULL;
2645 if (!reclaimed)
2646 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2647
2648 excess = soft_limit_excess(mz->memcg);
2649 /*
2650 * One school of thought says that we should not add
2651 * back the node to the tree if reclaim returns 0.
2652 * But our reclaim could return 0, simply because due
2653 * to priority we are exposing a smaller subset of
2654 * memory to reclaim from. Consider this as a longer
2655 * term TODO.
2656 */
2657 /* If excess == 0, no tree ops */
2658 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2659 spin_unlock_irq(&mctz->lock);
2660 css_put(&mz->memcg->css);
2661 loop++;
2662 /*
2663 * Could not reclaim anything and there are no more
2664 * mem cgroups to try or we seem to be looping without
2665 * reclaiming anything.
2666 */
2667 if (!nr_reclaimed &&
2668 (next_mz == NULL ||
2669 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2670 break;
2671 } while (!nr_reclaimed);
2672 if (next_mz)
2673 css_put(&next_mz->memcg->css);
2674 return nr_reclaimed;
2675 }
2676
2677 /*
2678 * Test whether @memcg has children, dead or alive. Note that this
2679 * function doesn't care whether @memcg has use_hierarchy enabled and
2680 * returns %true if there are child csses according to the cgroup
2681 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2682 */
2683 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2684 {
2685 bool ret;
2686
2687 /*
2688 * The lock does not prevent addition or deletion of children, but
2689 * it prevents a new child from being initialized based on this
2690 * parent in css_online(), so it's enough to decide whether
2691 * hierarchically inherited attributes can still be changed or not.
2692 */
2693 lockdep_assert_held(&memcg_create_mutex);
2694
2695 rcu_read_lock();
2696 ret = css_next_child(NULL, &memcg->css);
2697 rcu_read_unlock();
2698 return ret;
2699 }
2700
2701 /*
2702 * Reclaims as many pages from the given memcg as possible and moves
2703 * the rest to the parent.
2704 *
2705 * Caller is responsible for holding css reference for memcg.
2706 */
2707 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2708 {
2709 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2710
2711 /* we call try-to-free pages for make this cgroup empty */
2712 lru_add_drain_all();
2713 /* try to free all pages in this cgroup */
2714 while (nr_retries && page_counter_read(&memcg->memory)) {
2715 int progress;
2716
2717 if (signal_pending(current))
2718 return -EINTR;
2719
2720 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2721 GFP_KERNEL, true);
2722 if (!progress) {
2723 nr_retries--;
2724 /* maybe some writeback is necessary */
2725 congestion_wait(BLK_RW_ASYNC, HZ/10);
2726 }
2727
2728 }
2729
2730 return 0;
2731 }
2732
2733 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2734 char *buf, size_t nbytes,
2735 loff_t off)
2736 {
2737 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2738
2739 if (mem_cgroup_is_root(memcg))
2740 return -EINVAL;
2741 return mem_cgroup_force_empty(memcg) ?: nbytes;
2742 }
2743
2744 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2745 struct cftype *cft)
2746 {
2747 return mem_cgroup_from_css(css)->use_hierarchy;
2748 }
2749
2750 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2751 struct cftype *cft, u64 val)
2752 {
2753 int retval = 0;
2754 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2755 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2756
2757 mutex_lock(&memcg_create_mutex);
2758
2759 if (memcg->use_hierarchy == val)
2760 goto out;
2761
2762 /*
2763 * If parent's use_hierarchy is set, we can't make any modifications
2764 * in the child subtrees. If it is unset, then the change can
2765 * occur, provided the current cgroup has no children.
2766 *
2767 * For the root cgroup, parent_mem is NULL, we allow value to be
2768 * set if there are no children.
2769 */
2770 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2771 (val == 1 || val == 0)) {
2772 if (!memcg_has_children(memcg))
2773 memcg->use_hierarchy = val;
2774 else
2775 retval = -EBUSY;
2776 } else
2777 retval = -EINVAL;
2778
2779 out:
2780 mutex_unlock(&memcg_create_mutex);
2781
2782 return retval;
2783 }
2784
2785 static unsigned long tree_stat(struct mem_cgroup *memcg,
2786 enum mem_cgroup_stat_index idx)
2787 {
2788 struct mem_cgroup *iter;
2789 unsigned long val = 0;
2790
2791 for_each_mem_cgroup_tree(iter, memcg)
2792 val += mem_cgroup_read_stat(iter, idx);
2793
2794 return val;
2795 }
2796
2797 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2798 {
2799 unsigned long val;
2800
2801 if (mem_cgroup_is_root(memcg)) {
2802 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2803 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2804 if (swap)
2805 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2806 } else {
2807 if (!swap)
2808 val = page_counter_read(&memcg->memory);
2809 else
2810 val = page_counter_read(&memcg->memsw);
2811 }
2812 return val;
2813 }
2814
2815 enum {
2816 RES_USAGE,
2817 RES_LIMIT,
2818 RES_MAX_USAGE,
2819 RES_FAILCNT,
2820 RES_SOFT_LIMIT,
2821 };
2822
2823 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2824 struct cftype *cft)
2825 {
2826 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2827 struct page_counter *counter;
2828
2829 switch (MEMFILE_TYPE(cft->private)) {
2830 case _MEM:
2831 counter = &memcg->memory;
2832 break;
2833 case _MEMSWAP:
2834 counter = &memcg->memsw;
2835 break;
2836 case _KMEM:
2837 counter = &memcg->kmem;
2838 break;
2839 default:
2840 BUG();
2841 }
2842
2843 switch (MEMFILE_ATTR(cft->private)) {
2844 case RES_USAGE:
2845 if (counter == &memcg->memory)
2846 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2847 if (counter == &memcg->memsw)
2848 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2849 return (u64)page_counter_read(counter) * PAGE_SIZE;
2850 case RES_LIMIT:
2851 return (u64)counter->limit * PAGE_SIZE;
2852 case RES_MAX_USAGE:
2853 return (u64)counter->watermark * PAGE_SIZE;
2854 case RES_FAILCNT:
2855 return counter->failcnt;
2856 case RES_SOFT_LIMIT:
2857 return (u64)memcg->soft_limit * PAGE_SIZE;
2858 default:
2859 BUG();
2860 }
2861 }
2862
2863 #ifdef CONFIG_MEMCG_KMEM
2864 static int memcg_online_kmem(struct mem_cgroup *memcg)
2865 {
2866 int err = 0;
2867 int memcg_id;
2868
2869 BUG_ON(memcg->kmemcg_id >= 0);
2870 BUG_ON(memcg->kmem_state);
2871
2872 /*
2873 * For simplicity, we won't allow this to be disabled. It also can't
2874 * be changed if the cgroup has children already, or if tasks had
2875 * already joined.
2876 *
2877 * If tasks join before we set the limit, a person looking at
2878 * kmem.usage_in_bytes will have no way to determine when it took
2879 * place, which makes the value quite meaningless.
2880 *
2881 * After it first became limited, changes in the value of the limit are
2882 * of course permitted.
2883 */
2884 mutex_lock(&memcg_create_mutex);
2885 if (cgroup_is_populated(memcg->css.cgroup) ||
2886 (memcg->use_hierarchy && memcg_has_children(memcg)))
2887 err = -EBUSY;
2888 mutex_unlock(&memcg_create_mutex);
2889 if (err)
2890 goto out;
2891
2892 memcg_id = memcg_alloc_cache_id();
2893 if (memcg_id < 0) {
2894 err = memcg_id;
2895 goto out;
2896 }
2897
2898 static_branch_inc(&memcg_kmem_enabled_key);
2899 /*
2900 * A memory cgroup is considered kmem-online as soon as it gets
2901 * kmemcg_id. Setting the id after enabling static branching will
2902 * guarantee no one starts accounting before all call sites are
2903 * patched.
2904 */
2905 memcg->kmemcg_id = memcg_id;
2906 memcg->kmem_state = KMEM_ONLINE;
2907 out:
2908 return err;
2909 }
2910
2911 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2912 unsigned long limit)
2913 {
2914 int ret;
2915
2916 mutex_lock(&memcg_limit_mutex);
2917 /* Top-level cgroup doesn't propagate from root */
2918 if (!memcg_kmem_online(memcg)) {
2919 ret = memcg_online_kmem(memcg);
2920 if (ret)
2921 goto out;
2922 }
2923 ret = page_counter_limit(&memcg->kmem, limit);
2924 out:
2925 mutex_unlock(&memcg_limit_mutex);
2926 return ret;
2927 }
2928
2929 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2930 {
2931 int ret = 0;
2932 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2933
2934 if (!parent)
2935 return 0;
2936
2937 mutex_lock(&memcg_limit_mutex);
2938 /*
2939 * If the parent cgroup is not kmem-online now, it cannot be
2940 * onlined after this point, because it has at least one child
2941 * already.
2942 */
2943 if (memcg_kmem_online(parent))
2944 ret = memcg_online_kmem(memcg);
2945 mutex_unlock(&memcg_limit_mutex);
2946 return ret;
2947 }
2948
2949 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2950 {
2951 struct cgroup_subsys_state *css;
2952 struct mem_cgroup *parent, *child;
2953 int kmemcg_id;
2954
2955 if (memcg->kmem_state != KMEM_ONLINE)
2956 return;
2957 /*
2958 * Clear the online state before clearing memcg_caches array
2959 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2960 * guarantees that no cache will be created for this cgroup
2961 * after we are done (see memcg_create_kmem_cache()).
2962 */
2963 memcg->kmem_state = KMEM_ALLOCATED;
2964
2965 memcg_deactivate_kmem_caches(memcg);
2966
2967 kmemcg_id = memcg->kmemcg_id;
2968 BUG_ON(kmemcg_id < 0);
2969
2970 parent = parent_mem_cgroup(memcg);
2971 if (!parent)
2972 parent = root_mem_cgroup;
2973
2974 /*
2975 * Change kmemcg_id of this cgroup and all its descendants to the
2976 * parent's id, and then move all entries from this cgroup's list_lrus
2977 * to ones of the parent. After we have finished, all list_lrus
2978 * corresponding to this cgroup are guaranteed to remain empty. The
2979 * ordering is imposed by list_lru_node->lock taken by
2980 * memcg_drain_all_list_lrus().
2981 */
2982 css_for_each_descendant_pre(css, &memcg->css) {
2983 child = mem_cgroup_from_css(css);
2984 BUG_ON(child->kmemcg_id != kmemcg_id);
2985 child->kmemcg_id = parent->kmemcg_id;
2986 if (!memcg->use_hierarchy)
2987 break;
2988 }
2989 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2990
2991 memcg_free_cache_id(kmemcg_id);
2992 }
2993
2994 static void memcg_free_kmem(struct mem_cgroup *memcg)
2995 {
2996 if (memcg->kmem_state == KMEM_ALLOCATED) {
2997 memcg_destroy_kmem_caches(memcg);
2998 static_branch_dec(&memcg_kmem_enabled_key);
2999 WARN_ON(page_counter_read(&memcg->kmem));
3000 }
3001 }
3002 #else
3003 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3004 unsigned long limit)
3005 {
3006 return -EINVAL;
3007 }
3008 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3009 {
3010 }
3011 #endif /* CONFIG_MEMCG_KMEM */
3012
3013 /*
3014 * The user of this function is...
3015 * RES_LIMIT.
3016 */
3017 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3018 char *buf, size_t nbytes, loff_t off)
3019 {
3020 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3021 unsigned long nr_pages;
3022 int ret;
3023
3024 buf = strstrip(buf);
3025 ret = page_counter_memparse(buf, "-1", &nr_pages);
3026 if (ret)
3027 return ret;
3028
3029 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3030 case RES_LIMIT:
3031 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3032 ret = -EINVAL;
3033 break;
3034 }
3035 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3036 case _MEM:
3037 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3038 break;
3039 case _MEMSWAP:
3040 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3041 break;
3042 case _KMEM:
3043 ret = memcg_update_kmem_limit(memcg, nr_pages);
3044 break;
3045 }
3046 break;
3047 case RES_SOFT_LIMIT:
3048 memcg->soft_limit = nr_pages;
3049 ret = 0;
3050 break;
3051 }
3052 return ret ?: nbytes;
3053 }
3054
3055 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3056 size_t nbytes, loff_t off)
3057 {
3058 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3059 struct page_counter *counter;
3060
3061 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3062 case _MEM:
3063 counter = &memcg->memory;
3064 break;
3065 case _MEMSWAP:
3066 counter = &memcg->memsw;
3067 break;
3068 case _KMEM:
3069 counter = &memcg->kmem;
3070 break;
3071 default:
3072 BUG();
3073 }
3074
3075 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3076 case RES_MAX_USAGE:
3077 page_counter_reset_watermark(counter);
3078 break;
3079 case RES_FAILCNT:
3080 counter->failcnt = 0;
3081 break;
3082 default:
3083 BUG();
3084 }
3085
3086 return nbytes;
3087 }
3088
3089 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3090 struct cftype *cft)
3091 {
3092 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3093 }
3094
3095 #ifdef CONFIG_MMU
3096 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3097 struct cftype *cft, u64 val)
3098 {
3099 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3100
3101 if (val & ~MOVE_MASK)
3102 return -EINVAL;
3103
3104 /*
3105 * No kind of locking is needed in here, because ->can_attach() will
3106 * check this value once in the beginning of the process, and then carry
3107 * on with stale data. This means that changes to this value will only
3108 * affect task migrations starting after the change.
3109 */
3110 memcg->move_charge_at_immigrate = val;
3111 return 0;
3112 }
3113 #else
3114 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3115 struct cftype *cft, u64 val)
3116 {
3117 return -ENOSYS;
3118 }
3119 #endif
3120
3121 #ifdef CONFIG_NUMA
3122 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3123 {
3124 struct numa_stat {
3125 const char *name;
3126 unsigned int lru_mask;
3127 };
3128
3129 static const struct numa_stat stats[] = {
3130 { "total", LRU_ALL },
3131 { "file", LRU_ALL_FILE },
3132 { "anon", LRU_ALL_ANON },
3133 { "unevictable", BIT(LRU_UNEVICTABLE) },
3134 };
3135 const struct numa_stat *stat;
3136 int nid;
3137 unsigned long nr;
3138 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3139
3140 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3141 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3142 seq_printf(m, "%s=%lu", stat->name, nr);
3143 for_each_node_state(nid, N_MEMORY) {
3144 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3145 stat->lru_mask);
3146 seq_printf(m, " N%d=%lu", nid, nr);
3147 }
3148 seq_putc(m, '\n');
3149 }
3150
3151 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3152 struct mem_cgroup *iter;
3153
3154 nr = 0;
3155 for_each_mem_cgroup_tree(iter, memcg)
3156 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3157 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3158 for_each_node_state(nid, N_MEMORY) {
3159 nr = 0;
3160 for_each_mem_cgroup_tree(iter, memcg)
3161 nr += mem_cgroup_node_nr_lru_pages(
3162 iter, nid, stat->lru_mask);
3163 seq_printf(m, " N%d=%lu", nid, nr);
3164 }
3165 seq_putc(m, '\n');
3166 }
3167
3168 return 0;
3169 }
3170 #endif /* CONFIG_NUMA */
3171
3172 static int memcg_stat_show(struct seq_file *m, void *v)
3173 {
3174 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3175 unsigned long memory, memsw;
3176 struct mem_cgroup *mi;
3177 unsigned int i;
3178
3179 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3180 MEM_CGROUP_STAT_NSTATS);
3181 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3182 MEM_CGROUP_EVENTS_NSTATS);
3183 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3184
3185 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3186 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3187 continue;
3188 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3189 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3190 }
3191
3192 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3193 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3194 mem_cgroup_read_events(memcg, i));
3195
3196 for (i = 0; i < NR_LRU_LISTS; i++)
3197 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3198 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3199
3200 /* Hierarchical information */
3201 memory = memsw = PAGE_COUNTER_MAX;
3202 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3203 memory = min(memory, mi->memory.limit);
3204 memsw = min(memsw, mi->memsw.limit);
3205 }
3206 seq_printf(m, "hierarchical_memory_limit %llu\n",
3207 (u64)memory * PAGE_SIZE);
3208 if (do_memsw_account())
3209 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3210 (u64)memsw * PAGE_SIZE);
3211
3212 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3213 unsigned long long val = 0;
3214
3215 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3216 continue;
3217 for_each_mem_cgroup_tree(mi, memcg)
3218 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3219 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3220 }
3221
3222 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3223 unsigned long long val = 0;
3224
3225 for_each_mem_cgroup_tree(mi, memcg)
3226 val += mem_cgroup_read_events(mi, i);
3227 seq_printf(m, "total_%s %llu\n",
3228 mem_cgroup_events_names[i], val);
3229 }
3230
3231 for (i = 0; i < NR_LRU_LISTS; i++) {
3232 unsigned long long val = 0;
3233
3234 for_each_mem_cgroup_tree(mi, memcg)
3235 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3236 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3237 }
3238
3239 #ifdef CONFIG_DEBUG_VM
3240 {
3241 int nid, zid;
3242 struct mem_cgroup_per_zone *mz;
3243 struct zone_reclaim_stat *rstat;
3244 unsigned long recent_rotated[2] = {0, 0};
3245 unsigned long recent_scanned[2] = {0, 0};
3246
3247 for_each_online_node(nid)
3248 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3249 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3250 rstat = &mz->lruvec.reclaim_stat;
3251
3252 recent_rotated[0] += rstat->recent_rotated[0];
3253 recent_rotated[1] += rstat->recent_rotated[1];
3254 recent_scanned[0] += rstat->recent_scanned[0];
3255 recent_scanned[1] += rstat->recent_scanned[1];
3256 }
3257 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3258 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3259 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3260 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3261 }
3262 #endif
3263
3264 return 0;
3265 }
3266
3267 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3268 struct cftype *cft)
3269 {
3270 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3271
3272 return mem_cgroup_swappiness(memcg);
3273 }
3274
3275 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3276 struct cftype *cft, u64 val)
3277 {
3278 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3279
3280 if (val > 100)
3281 return -EINVAL;
3282
3283 if (css->parent)
3284 memcg->swappiness = val;
3285 else
3286 vm_swappiness = val;
3287
3288 return 0;
3289 }
3290
3291 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3292 {
3293 struct mem_cgroup_threshold_ary *t;
3294 unsigned long usage;
3295 int i;
3296
3297 rcu_read_lock();
3298 if (!swap)
3299 t = rcu_dereference(memcg->thresholds.primary);
3300 else
3301 t = rcu_dereference(memcg->memsw_thresholds.primary);
3302
3303 if (!t)
3304 goto unlock;
3305
3306 usage = mem_cgroup_usage(memcg, swap);
3307
3308 /*
3309 * current_threshold points to threshold just below or equal to usage.
3310 * If it's not true, a threshold was crossed after last
3311 * call of __mem_cgroup_threshold().
3312 */
3313 i = t->current_threshold;
3314
3315 /*
3316 * Iterate backward over array of thresholds starting from
3317 * current_threshold and check if a threshold is crossed.
3318 * If none of thresholds below usage is crossed, we read
3319 * only one element of the array here.
3320 */
3321 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3322 eventfd_signal(t->entries[i].eventfd, 1);
3323
3324 /* i = current_threshold + 1 */
3325 i++;
3326
3327 /*
3328 * Iterate forward over array of thresholds starting from
3329 * current_threshold+1 and check if a threshold is crossed.
3330 * If none of thresholds above usage is crossed, we read
3331 * only one element of the array here.
3332 */
3333 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3334 eventfd_signal(t->entries[i].eventfd, 1);
3335
3336 /* Update current_threshold */
3337 t->current_threshold = i - 1;
3338 unlock:
3339 rcu_read_unlock();
3340 }
3341
3342 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3343 {
3344 while (memcg) {
3345 __mem_cgroup_threshold(memcg, false);
3346 if (do_memsw_account())
3347 __mem_cgroup_threshold(memcg, true);
3348
3349 memcg = parent_mem_cgroup(memcg);
3350 }
3351 }
3352
3353 static int compare_thresholds(const void *a, const void *b)
3354 {
3355 const struct mem_cgroup_threshold *_a = a;
3356 const struct mem_cgroup_threshold *_b = b;
3357
3358 if (_a->threshold > _b->threshold)
3359 return 1;
3360
3361 if (_a->threshold < _b->threshold)
3362 return -1;
3363
3364 return 0;
3365 }
3366
3367 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3368 {
3369 struct mem_cgroup_eventfd_list *ev;
3370
3371 spin_lock(&memcg_oom_lock);
3372
3373 list_for_each_entry(ev, &memcg->oom_notify, list)
3374 eventfd_signal(ev->eventfd, 1);
3375
3376 spin_unlock(&memcg_oom_lock);
3377 return 0;
3378 }
3379
3380 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3381 {
3382 struct mem_cgroup *iter;
3383
3384 for_each_mem_cgroup_tree(iter, memcg)
3385 mem_cgroup_oom_notify_cb(iter);
3386 }
3387
3388 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3389 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3390 {
3391 struct mem_cgroup_thresholds *thresholds;
3392 struct mem_cgroup_threshold_ary *new;
3393 unsigned long threshold;
3394 unsigned long usage;
3395 int i, size, ret;
3396
3397 ret = page_counter_memparse(args, "-1", &threshold);
3398 if (ret)
3399 return ret;
3400
3401 mutex_lock(&memcg->thresholds_lock);
3402
3403 if (type == _MEM) {
3404 thresholds = &memcg->thresholds;
3405 usage = mem_cgroup_usage(memcg, false);
3406 } else if (type == _MEMSWAP) {
3407 thresholds = &memcg->memsw_thresholds;
3408 usage = mem_cgroup_usage(memcg, true);
3409 } else
3410 BUG();
3411
3412 /* Check if a threshold crossed before adding a new one */
3413 if (thresholds->primary)
3414 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3415
3416 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3417
3418 /* Allocate memory for new array of thresholds */
3419 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3420 GFP_KERNEL);
3421 if (!new) {
3422 ret = -ENOMEM;
3423 goto unlock;
3424 }
3425 new->size = size;
3426
3427 /* Copy thresholds (if any) to new array */
3428 if (thresholds->primary) {
3429 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3430 sizeof(struct mem_cgroup_threshold));
3431 }
3432
3433 /* Add new threshold */
3434 new->entries[size - 1].eventfd = eventfd;
3435 new->entries[size - 1].threshold = threshold;
3436
3437 /* Sort thresholds. Registering of new threshold isn't time-critical */
3438 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3439 compare_thresholds, NULL);
3440
3441 /* Find current threshold */
3442 new->current_threshold = -1;
3443 for (i = 0; i < size; i++) {
3444 if (new->entries[i].threshold <= usage) {
3445 /*
3446 * new->current_threshold will not be used until
3447 * rcu_assign_pointer(), so it's safe to increment
3448 * it here.
3449 */
3450 ++new->current_threshold;
3451 } else
3452 break;
3453 }
3454
3455 /* Free old spare buffer and save old primary buffer as spare */
3456 kfree(thresholds->spare);
3457 thresholds->spare = thresholds->primary;
3458
3459 rcu_assign_pointer(thresholds->primary, new);
3460
3461 /* To be sure that nobody uses thresholds */
3462 synchronize_rcu();
3463
3464 unlock:
3465 mutex_unlock(&memcg->thresholds_lock);
3466
3467 return ret;
3468 }
3469
3470 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3471 struct eventfd_ctx *eventfd, const char *args)
3472 {
3473 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3474 }
3475
3476 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3477 struct eventfd_ctx *eventfd, const char *args)
3478 {
3479 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3480 }
3481
3482 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3483 struct eventfd_ctx *eventfd, enum res_type type)
3484 {
3485 struct mem_cgroup_thresholds *thresholds;
3486 struct mem_cgroup_threshold_ary *new;
3487 unsigned long usage;
3488 int i, j, size;
3489
3490 mutex_lock(&memcg->thresholds_lock);
3491
3492 if (type == _MEM) {
3493 thresholds = &memcg->thresholds;
3494 usage = mem_cgroup_usage(memcg, false);
3495 } else if (type == _MEMSWAP) {
3496 thresholds = &memcg->memsw_thresholds;
3497 usage = mem_cgroup_usage(memcg, true);
3498 } else
3499 BUG();
3500
3501 if (!thresholds->primary)
3502 goto unlock;
3503
3504 /* Check if a threshold crossed before removing */
3505 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3506
3507 /* Calculate new number of threshold */
3508 size = 0;
3509 for (i = 0; i < thresholds->primary->size; i++) {
3510 if (thresholds->primary->entries[i].eventfd != eventfd)
3511 size++;
3512 }
3513
3514 new = thresholds->spare;
3515
3516 /* Set thresholds array to NULL if we don't have thresholds */
3517 if (!size) {
3518 kfree(new);
3519 new = NULL;
3520 goto swap_buffers;
3521 }
3522
3523 new->size = size;
3524
3525 /* Copy thresholds and find current threshold */
3526 new->current_threshold = -1;
3527 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3528 if (thresholds->primary->entries[i].eventfd == eventfd)
3529 continue;
3530
3531 new->entries[j] = thresholds->primary->entries[i];
3532 if (new->entries[j].threshold <= usage) {
3533 /*
3534 * new->current_threshold will not be used
3535 * until rcu_assign_pointer(), so it's safe to increment
3536 * it here.
3537 */
3538 ++new->current_threshold;
3539 }
3540 j++;
3541 }
3542
3543 swap_buffers:
3544 /* Swap primary and spare array */
3545 thresholds->spare = thresholds->primary;
3546
3547 rcu_assign_pointer(thresholds->primary, new);
3548
3549 /* To be sure that nobody uses thresholds */
3550 synchronize_rcu();
3551
3552 /* If all events are unregistered, free the spare array */
3553 if (!new) {
3554 kfree(thresholds->spare);
3555 thresholds->spare = NULL;
3556 }
3557 unlock:
3558 mutex_unlock(&memcg->thresholds_lock);
3559 }
3560
3561 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3562 struct eventfd_ctx *eventfd)
3563 {
3564 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3565 }
3566
3567 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3568 struct eventfd_ctx *eventfd)
3569 {
3570 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3571 }
3572
3573 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3574 struct eventfd_ctx *eventfd, const char *args)
3575 {
3576 struct mem_cgroup_eventfd_list *event;
3577
3578 event = kmalloc(sizeof(*event), GFP_KERNEL);
3579 if (!event)
3580 return -ENOMEM;
3581
3582 spin_lock(&memcg_oom_lock);
3583
3584 event->eventfd = eventfd;
3585 list_add(&event->list, &memcg->oom_notify);
3586
3587 /* already in OOM ? */
3588 if (memcg->under_oom)
3589 eventfd_signal(eventfd, 1);
3590 spin_unlock(&memcg_oom_lock);
3591
3592 return 0;
3593 }
3594
3595 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3596 struct eventfd_ctx *eventfd)
3597 {
3598 struct mem_cgroup_eventfd_list *ev, *tmp;
3599
3600 spin_lock(&memcg_oom_lock);
3601
3602 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3603 if (ev->eventfd == eventfd) {
3604 list_del(&ev->list);
3605 kfree(ev);
3606 }
3607 }
3608
3609 spin_unlock(&memcg_oom_lock);
3610 }
3611
3612 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3613 {
3614 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3615
3616 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3617 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3618 return 0;
3619 }
3620
3621 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3622 struct cftype *cft, u64 val)
3623 {
3624 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3625
3626 /* cannot set to root cgroup and only 0 and 1 are allowed */
3627 if (!css->parent || !((val == 0) || (val == 1)))
3628 return -EINVAL;
3629
3630 memcg->oom_kill_disable = val;
3631 if (!val)
3632 memcg_oom_recover(memcg);
3633
3634 return 0;
3635 }
3636
3637 #ifdef CONFIG_CGROUP_WRITEBACK
3638
3639 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3640 {
3641 return &memcg->cgwb_list;
3642 }
3643
3644 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3645 {
3646 return wb_domain_init(&memcg->cgwb_domain, gfp);
3647 }
3648
3649 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3650 {
3651 wb_domain_exit(&memcg->cgwb_domain);
3652 }
3653
3654 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3655 {
3656 wb_domain_size_changed(&memcg->cgwb_domain);
3657 }
3658
3659 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3660 {
3661 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3662
3663 if (!memcg->css.parent)
3664 return NULL;
3665
3666 return &memcg->cgwb_domain;
3667 }
3668
3669 /**
3670 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3671 * @wb: bdi_writeback in question
3672 * @pfilepages: out parameter for number of file pages
3673 * @pheadroom: out parameter for number of allocatable pages according to memcg
3674 * @pdirty: out parameter for number of dirty pages
3675 * @pwriteback: out parameter for number of pages under writeback
3676 *
3677 * Determine the numbers of file, headroom, dirty, and writeback pages in
3678 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3679 * is a bit more involved.
3680 *
3681 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3682 * headroom is calculated as the lowest headroom of itself and the
3683 * ancestors. Note that this doesn't consider the actual amount of
3684 * available memory in the system. The caller should further cap
3685 * *@pheadroom accordingly.
3686 */
3687 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3688 unsigned long *pheadroom, unsigned long *pdirty,
3689 unsigned long *pwriteback)
3690 {
3691 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3692 struct mem_cgroup *parent;
3693
3694 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3695
3696 /* this should eventually include NR_UNSTABLE_NFS */
3697 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3698 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3699 (1 << LRU_ACTIVE_FILE));
3700 *pheadroom = PAGE_COUNTER_MAX;
3701
3702 while ((parent = parent_mem_cgroup(memcg))) {
3703 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3704 unsigned long used = page_counter_read(&memcg->memory);
3705
3706 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3707 memcg = parent;
3708 }
3709 }
3710
3711 #else /* CONFIG_CGROUP_WRITEBACK */
3712
3713 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3714 {
3715 return 0;
3716 }
3717
3718 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3719 {
3720 }
3721
3722 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3723 {
3724 }
3725
3726 #endif /* CONFIG_CGROUP_WRITEBACK */
3727
3728 /*
3729 * DO NOT USE IN NEW FILES.
3730 *
3731 * "cgroup.event_control" implementation.
3732 *
3733 * This is way over-engineered. It tries to support fully configurable
3734 * events for each user. Such level of flexibility is completely
3735 * unnecessary especially in the light of the planned unified hierarchy.
3736 *
3737 * Please deprecate this and replace with something simpler if at all
3738 * possible.
3739 */
3740
3741 /*
3742 * Unregister event and free resources.
3743 *
3744 * Gets called from workqueue.
3745 */
3746 static void memcg_event_remove(struct work_struct *work)
3747 {
3748 struct mem_cgroup_event *event =
3749 container_of(work, struct mem_cgroup_event, remove);
3750 struct mem_cgroup *memcg = event->memcg;
3751
3752 remove_wait_queue(event->wqh, &event->wait);
3753
3754 event->unregister_event(memcg, event->eventfd);
3755
3756 /* Notify userspace the event is going away. */
3757 eventfd_signal(event->eventfd, 1);
3758
3759 eventfd_ctx_put(event->eventfd);
3760 kfree(event);
3761 css_put(&memcg->css);
3762 }
3763
3764 /*
3765 * Gets called on POLLHUP on eventfd when user closes it.
3766 *
3767 * Called with wqh->lock held and interrupts disabled.
3768 */
3769 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3770 int sync, void *key)
3771 {
3772 struct mem_cgroup_event *event =
3773 container_of(wait, struct mem_cgroup_event, wait);
3774 struct mem_cgroup *memcg = event->memcg;
3775 unsigned long flags = (unsigned long)key;
3776
3777 if (flags & POLLHUP) {
3778 /*
3779 * If the event has been detached at cgroup removal, we
3780 * can simply return knowing the other side will cleanup
3781 * for us.
3782 *
3783 * We can't race against event freeing since the other
3784 * side will require wqh->lock via remove_wait_queue(),
3785 * which we hold.
3786 */
3787 spin_lock(&memcg->event_list_lock);
3788 if (!list_empty(&event->list)) {
3789 list_del_init(&event->list);
3790 /*
3791 * We are in atomic context, but cgroup_event_remove()
3792 * may sleep, so we have to call it in workqueue.
3793 */
3794 schedule_work(&event->remove);
3795 }
3796 spin_unlock(&memcg->event_list_lock);
3797 }
3798
3799 return 0;
3800 }
3801
3802 static void memcg_event_ptable_queue_proc(struct file *file,
3803 wait_queue_head_t *wqh, poll_table *pt)
3804 {
3805 struct mem_cgroup_event *event =
3806 container_of(pt, struct mem_cgroup_event, pt);
3807
3808 event->wqh = wqh;
3809 add_wait_queue(wqh, &event->wait);
3810 }
3811
3812 /*
3813 * DO NOT USE IN NEW FILES.
3814 *
3815 * Parse input and register new cgroup event handler.
3816 *
3817 * Input must be in format '<event_fd> <control_fd> <args>'.
3818 * Interpretation of args is defined by control file implementation.
3819 */
3820 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3821 char *buf, size_t nbytes, loff_t off)
3822 {
3823 struct cgroup_subsys_state *css = of_css(of);
3824 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3825 struct mem_cgroup_event *event;
3826 struct cgroup_subsys_state *cfile_css;
3827 unsigned int efd, cfd;
3828 struct fd efile;
3829 struct fd cfile;
3830 const char *name;
3831 char *endp;
3832 int ret;
3833
3834 buf = strstrip(buf);
3835
3836 efd = simple_strtoul(buf, &endp, 10);
3837 if (*endp != ' ')
3838 return -EINVAL;
3839 buf = endp + 1;
3840
3841 cfd = simple_strtoul(buf, &endp, 10);
3842 if ((*endp != ' ') && (*endp != '\0'))
3843 return -EINVAL;
3844 buf = endp + 1;
3845
3846 event = kzalloc(sizeof(*event), GFP_KERNEL);
3847 if (!event)
3848 return -ENOMEM;
3849
3850 event->memcg = memcg;
3851 INIT_LIST_HEAD(&event->list);
3852 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3853 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3854 INIT_WORK(&event->remove, memcg_event_remove);
3855
3856 efile = fdget(efd);
3857 if (!efile.file) {
3858 ret = -EBADF;
3859 goto out_kfree;
3860 }
3861
3862 event->eventfd = eventfd_ctx_fileget(efile.file);
3863 if (IS_ERR(event->eventfd)) {
3864 ret = PTR_ERR(event->eventfd);
3865 goto out_put_efile;
3866 }
3867
3868 cfile = fdget(cfd);
3869 if (!cfile.file) {
3870 ret = -EBADF;
3871 goto out_put_eventfd;
3872 }
3873
3874 /* the process need read permission on control file */
3875 /* AV: shouldn't we check that it's been opened for read instead? */
3876 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3877 if (ret < 0)
3878 goto out_put_cfile;
3879
3880 /*
3881 * Determine the event callbacks and set them in @event. This used
3882 * to be done via struct cftype but cgroup core no longer knows
3883 * about these events. The following is crude but the whole thing
3884 * is for compatibility anyway.
3885 *
3886 * DO NOT ADD NEW FILES.
3887 */
3888 name = cfile.file->f_path.dentry->d_name.name;
3889
3890 if (!strcmp(name, "memory.usage_in_bytes")) {
3891 event->register_event = mem_cgroup_usage_register_event;
3892 event->unregister_event = mem_cgroup_usage_unregister_event;
3893 } else if (!strcmp(name, "memory.oom_control")) {
3894 event->register_event = mem_cgroup_oom_register_event;
3895 event->unregister_event = mem_cgroup_oom_unregister_event;
3896 } else if (!strcmp(name, "memory.pressure_level")) {
3897 event->register_event = vmpressure_register_event;
3898 event->unregister_event = vmpressure_unregister_event;
3899 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3900 event->register_event = memsw_cgroup_usage_register_event;
3901 event->unregister_event = memsw_cgroup_usage_unregister_event;
3902 } else {
3903 ret = -EINVAL;
3904 goto out_put_cfile;
3905 }
3906
3907 /*
3908 * Verify @cfile should belong to @css. Also, remaining events are
3909 * automatically removed on cgroup destruction but the removal is
3910 * asynchronous, so take an extra ref on @css.
3911 */
3912 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3913 &memory_cgrp_subsys);
3914 ret = -EINVAL;
3915 if (IS_ERR(cfile_css))
3916 goto out_put_cfile;
3917 if (cfile_css != css) {
3918 css_put(cfile_css);
3919 goto out_put_cfile;
3920 }
3921
3922 ret = event->register_event(memcg, event->eventfd, buf);
3923 if (ret)
3924 goto out_put_css;
3925
3926 efile.file->f_op->poll(efile.file, &event->pt);
3927
3928 spin_lock(&memcg->event_list_lock);
3929 list_add(&event->list, &memcg->event_list);
3930 spin_unlock(&memcg->event_list_lock);
3931
3932 fdput(cfile);
3933 fdput(efile);
3934
3935 return nbytes;
3936
3937 out_put_css:
3938 css_put(css);
3939 out_put_cfile:
3940 fdput(cfile);
3941 out_put_eventfd:
3942 eventfd_ctx_put(event->eventfd);
3943 out_put_efile:
3944 fdput(efile);
3945 out_kfree:
3946 kfree(event);
3947
3948 return ret;
3949 }
3950
3951 static struct cftype mem_cgroup_legacy_files[] = {
3952 {
3953 .name = "usage_in_bytes",
3954 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3955 .read_u64 = mem_cgroup_read_u64,
3956 },
3957 {
3958 .name = "max_usage_in_bytes",
3959 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3960 .write = mem_cgroup_reset,
3961 .read_u64 = mem_cgroup_read_u64,
3962 },
3963 {
3964 .name = "limit_in_bytes",
3965 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3966 .write = mem_cgroup_write,
3967 .read_u64 = mem_cgroup_read_u64,
3968 },
3969 {
3970 .name = "soft_limit_in_bytes",
3971 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3972 .write = mem_cgroup_write,
3973 .read_u64 = mem_cgroup_read_u64,
3974 },
3975 {
3976 .name = "failcnt",
3977 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3978 .write = mem_cgroup_reset,
3979 .read_u64 = mem_cgroup_read_u64,
3980 },
3981 {
3982 .name = "stat",
3983 .seq_show = memcg_stat_show,
3984 },
3985 {
3986 .name = "force_empty",
3987 .write = mem_cgroup_force_empty_write,
3988 },
3989 {
3990 .name = "use_hierarchy",
3991 .write_u64 = mem_cgroup_hierarchy_write,
3992 .read_u64 = mem_cgroup_hierarchy_read,
3993 },
3994 {
3995 .name = "cgroup.event_control", /* XXX: for compat */
3996 .write = memcg_write_event_control,
3997 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3998 },
3999 {
4000 .name = "swappiness",
4001 .read_u64 = mem_cgroup_swappiness_read,
4002 .write_u64 = mem_cgroup_swappiness_write,
4003 },
4004 {
4005 .name = "move_charge_at_immigrate",
4006 .read_u64 = mem_cgroup_move_charge_read,
4007 .write_u64 = mem_cgroup_move_charge_write,
4008 },
4009 {
4010 .name = "oom_control",
4011 .seq_show = mem_cgroup_oom_control_read,
4012 .write_u64 = mem_cgroup_oom_control_write,
4013 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4014 },
4015 {
4016 .name = "pressure_level",
4017 },
4018 #ifdef CONFIG_NUMA
4019 {
4020 .name = "numa_stat",
4021 .seq_show = memcg_numa_stat_show,
4022 },
4023 #endif
4024 #ifdef CONFIG_MEMCG_KMEM
4025 {
4026 .name = "kmem.limit_in_bytes",
4027 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4028 .write = mem_cgroup_write,
4029 .read_u64 = mem_cgroup_read_u64,
4030 },
4031 {
4032 .name = "kmem.usage_in_bytes",
4033 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4034 .read_u64 = mem_cgroup_read_u64,
4035 },
4036 {
4037 .name = "kmem.failcnt",
4038 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4039 .write = mem_cgroup_reset,
4040 .read_u64 = mem_cgroup_read_u64,
4041 },
4042 {
4043 .name = "kmem.max_usage_in_bytes",
4044 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4045 .write = mem_cgroup_reset,
4046 .read_u64 = mem_cgroup_read_u64,
4047 },
4048 #ifdef CONFIG_SLABINFO
4049 {
4050 .name = "kmem.slabinfo",
4051 .seq_start = slab_start,
4052 .seq_next = slab_next,
4053 .seq_stop = slab_stop,
4054 .seq_show = memcg_slab_show,
4055 },
4056 #endif
4057 #endif
4058 { }, /* terminate */
4059 };
4060
4061 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4062 {
4063 struct mem_cgroup_per_node *pn;
4064 struct mem_cgroup_per_zone *mz;
4065 int zone, tmp = node;
4066 /*
4067 * This routine is called against possible nodes.
4068 * But it's BUG to call kmalloc() against offline node.
4069 *
4070 * TODO: this routine can waste much memory for nodes which will
4071 * never be onlined. It's better to use memory hotplug callback
4072 * function.
4073 */
4074 if (!node_state(node, N_NORMAL_MEMORY))
4075 tmp = -1;
4076 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4077 if (!pn)
4078 return 1;
4079
4080 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4081 mz = &pn->zoneinfo[zone];
4082 lruvec_init(&mz->lruvec);
4083 mz->usage_in_excess = 0;
4084 mz->on_tree = false;
4085 mz->memcg = memcg;
4086 }
4087 memcg->nodeinfo[node] = pn;
4088 return 0;
4089 }
4090
4091 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4092 {
4093 kfree(memcg->nodeinfo[node]);
4094 }
4095
4096 static struct mem_cgroup *mem_cgroup_alloc(void)
4097 {
4098 struct mem_cgroup *memcg;
4099 size_t size;
4100
4101 size = sizeof(struct mem_cgroup);
4102 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4103
4104 memcg = kzalloc(size, GFP_KERNEL);
4105 if (!memcg)
4106 return NULL;
4107
4108 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4109 if (!memcg->stat)
4110 goto out_free;
4111
4112 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4113 goto out_free_stat;
4114
4115 return memcg;
4116
4117 out_free_stat:
4118 free_percpu(memcg->stat);
4119 out_free:
4120 kfree(memcg);
4121 return NULL;
4122 }
4123
4124 /*
4125 * At destroying mem_cgroup, references from swap_cgroup can remain.
4126 * (scanning all at force_empty is too costly...)
4127 *
4128 * Instead of clearing all references at force_empty, we remember
4129 * the number of reference from swap_cgroup and free mem_cgroup when
4130 * it goes down to 0.
4131 *
4132 * Removal of cgroup itself succeeds regardless of refs from swap.
4133 */
4134
4135 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4136 {
4137 int node;
4138
4139 cancel_work_sync(&memcg->high_work);
4140
4141 mem_cgroup_remove_from_trees(memcg);
4142
4143 for_each_node(node)
4144 free_mem_cgroup_per_zone_info(memcg, node);
4145
4146 free_percpu(memcg->stat);
4147 memcg_wb_domain_exit(memcg);
4148 kfree(memcg);
4149 }
4150
4151 static struct cgroup_subsys_state * __ref
4152 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4153 {
4154 struct mem_cgroup *memcg;
4155 long error = -ENOMEM;
4156 int node;
4157
4158 memcg = mem_cgroup_alloc();
4159 if (!memcg)
4160 return ERR_PTR(error);
4161
4162 for_each_node(node)
4163 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4164 goto free_out;
4165
4166 /* root ? */
4167 if (parent_css == NULL) {
4168 root_mem_cgroup = memcg;
4169 page_counter_init(&memcg->memory, NULL);
4170 memcg->high = PAGE_COUNTER_MAX;
4171 memcg->soft_limit = PAGE_COUNTER_MAX;
4172 page_counter_init(&memcg->memsw, NULL);
4173 page_counter_init(&memcg->kmem, NULL);
4174 }
4175
4176 INIT_WORK(&memcg->high_work, high_work_func);
4177 memcg->last_scanned_node = MAX_NUMNODES;
4178 INIT_LIST_HEAD(&memcg->oom_notify);
4179 memcg->move_charge_at_immigrate = 0;
4180 mutex_init(&memcg->thresholds_lock);
4181 spin_lock_init(&memcg->move_lock);
4182 vmpressure_init(&memcg->vmpressure);
4183 INIT_LIST_HEAD(&memcg->event_list);
4184 spin_lock_init(&memcg->event_list_lock);
4185 #ifdef CONFIG_MEMCG_KMEM
4186 memcg->kmemcg_id = -1;
4187 #endif
4188 #ifdef CONFIG_CGROUP_WRITEBACK
4189 INIT_LIST_HEAD(&memcg->cgwb_list);
4190 #endif
4191 #ifdef CONFIG_INET
4192 memcg->socket_pressure = jiffies;
4193 #endif
4194 return &memcg->css;
4195
4196 free_out:
4197 __mem_cgroup_free(memcg);
4198 return ERR_PTR(error);
4199 }
4200
4201 static int
4202 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4203 {
4204 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4205 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4206 int ret;
4207
4208 if (css->id > MEM_CGROUP_ID_MAX)
4209 return -ENOSPC;
4210
4211 if (!parent)
4212 return 0;
4213
4214 mutex_lock(&memcg_create_mutex);
4215
4216 memcg->use_hierarchy = parent->use_hierarchy;
4217 memcg->oom_kill_disable = parent->oom_kill_disable;
4218 memcg->swappiness = mem_cgroup_swappiness(parent);
4219
4220 if (parent->use_hierarchy) {
4221 page_counter_init(&memcg->memory, &parent->memory);
4222 memcg->high = PAGE_COUNTER_MAX;
4223 memcg->soft_limit = PAGE_COUNTER_MAX;
4224 page_counter_init(&memcg->memsw, &parent->memsw);
4225 page_counter_init(&memcg->kmem, &parent->kmem);
4226
4227 /*
4228 * No need to take a reference to the parent because cgroup
4229 * core guarantees its existence.
4230 */
4231 } else {
4232 page_counter_init(&memcg->memory, NULL);
4233 memcg->high = PAGE_COUNTER_MAX;
4234 memcg->soft_limit = PAGE_COUNTER_MAX;
4235 page_counter_init(&memcg->memsw, NULL);
4236 page_counter_init(&memcg->kmem, NULL);
4237 /*
4238 * Deeper hierachy with use_hierarchy == false doesn't make
4239 * much sense so let cgroup subsystem know about this
4240 * unfortunate state in our controller.
4241 */
4242 if (parent != root_mem_cgroup)
4243 memory_cgrp_subsys.broken_hierarchy = true;
4244 }
4245 mutex_unlock(&memcg_create_mutex);
4246
4247 #ifdef CONFIG_MEMCG_KMEM
4248 ret = memcg_propagate_kmem(memcg);
4249 if (ret)
4250 return ret;
4251 ret = tcp_init_cgroup(memcg);
4252 if (ret)
4253 return ret;
4254 #endif
4255
4256 #ifdef CONFIG_INET
4257 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4258 static_branch_inc(&memcg_sockets_enabled_key);
4259 #endif
4260
4261 /*
4262 * Make sure the memcg is initialized: mem_cgroup_iter()
4263 * orders reading memcg->initialized against its callers
4264 * reading the memcg members.
4265 */
4266 smp_store_release(&memcg->initialized, 1);
4267
4268 return 0;
4269 }
4270
4271 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4272 {
4273 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4274 struct mem_cgroup_event *event, *tmp;
4275
4276 /*
4277 * Unregister events and notify userspace.
4278 * Notify userspace about cgroup removing only after rmdir of cgroup
4279 * directory to avoid race between userspace and kernelspace.
4280 */
4281 spin_lock(&memcg->event_list_lock);
4282 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4283 list_del_init(&event->list);
4284 schedule_work(&event->remove);
4285 }
4286 spin_unlock(&memcg->event_list_lock);
4287
4288 vmpressure_cleanup(&memcg->vmpressure);
4289
4290 memcg_offline_kmem(memcg);
4291
4292 wb_memcg_offline(memcg);
4293 }
4294
4295 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4296 {
4297 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4298
4299 invalidate_reclaim_iterators(memcg);
4300 }
4301
4302 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4303 {
4304 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4305
4306 #ifdef CONFIG_INET
4307 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4308 static_branch_dec(&memcg_sockets_enabled_key);
4309 #endif
4310
4311 #ifdef CONFIG_MEMCG_KMEM
4312 memcg_free_kmem(memcg);
4313 tcp_destroy_cgroup(memcg);
4314 #endif
4315
4316 __mem_cgroup_free(memcg);
4317 }
4318
4319 /**
4320 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4321 * @css: the target css
4322 *
4323 * Reset the states of the mem_cgroup associated with @css. This is
4324 * invoked when the userland requests disabling on the default hierarchy
4325 * but the memcg is pinned through dependency. The memcg should stop
4326 * applying policies and should revert to the vanilla state as it may be
4327 * made visible again.
4328 *
4329 * The current implementation only resets the essential configurations.
4330 * This needs to be expanded to cover all the visible parts.
4331 */
4332 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4333 {
4334 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4335
4336 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4337 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4338 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4339 memcg->low = 0;
4340 memcg->high = PAGE_COUNTER_MAX;
4341 memcg->soft_limit = PAGE_COUNTER_MAX;
4342 memcg_wb_domain_size_changed(memcg);
4343 }
4344
4345 #ifdef CONFIG_MMU
4346 /* Handlers for move charge at task migration. */
4347 static int mem_cgroup_do_precharge(unsigned long count)
4348 {
4349 int ret;
4350
4351 /* Try a single bulk charge without reclaim first, kswapd may wake */
4352 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4353 if (!ret) {
4354 mc.precharge += count;
4355 return ret;
4356 }
4357
4358 /* Try charges one by one with reclaim */
4359 while (count--) {
4360 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4361 if (ret)
4362 return ret;
4363 mc.precharge++;
4364 cond_resched();
4365 }
4366 return 0;
4367 }
4368
4369 /**
4370 * get_mctgt_type - get target type of moving charge
4371 * @vma: the vma the pte to be checked belongs
4372 * @addr: the address corresponding to the pte to be checked
4373 * @ptent: the pte to be checked
4374 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4375 *
4376 * Returns
4377 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4378 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4379 * move charge. if @target is not NULL, the page is stored in target->page
4380 * with extra refcnt got(Callers should handle it).
4381 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4382 * target for charge migration. if @target is not NULL, the entry is stored
4383 * in target->ent.
4384 *
4385 * Called with pte lock held.
4386 */
4387 union mc_target {
4388 struct page *page;
4389 swp_entry_t ent;
4390 };
4391
4392 enum mc_target_type {
4393 MC_TARGET_NONE = 0,
4394 MC_TARGET_PAGE,
4395 MC_TARGET_SWAP,
4396 };
4397
4398 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4399 unsigned long addr, pte_t ptent)
4400 {
4401 struct page *page = vm_normal_page(vma, addr, ptent);
4402
4403 if (!page || !page_mapped(page))
4404 return NULL;
4405 if (PageAnon(page)) {
4406 if (!(mc.flags & MOVE_ANON))
4407 return NULL;
4408 } else {
4409 if (!(mc.flags & MOVE_FILE))
4410 return NULL;
4411 }
4412 if (!get_page_unless_zero(page))
4413 return NULL;
4414
4415 return page;
4416 }
4417
4418 #ifdef CONFIG_SWAP
4419 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4420 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4421 {
4422 struct page *page = NULL;
4423 swp_entry_t ent = pte_to_swp_entry(ptent);
4424
4425 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4426 return NULL;
4427 /*
4428 * Because lookup_swap_cache() updates some statistics counter,
4429 * we call find_get_page() with swapper_space directly.
4430 */
4431 page = find_get_page(swap_address_space(ent), ent.val);
4432 if (do_memsw_account())
4433 entry->val = ent.val;
4434
4435 return page;
4436 }
4437 #else
4438 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4439 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4440 {
4441 return NULL;
4442 }
4443 #endif
4444
4445 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4446 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4447 {
4448 struct page *page = NULL;
4449 struct address_space *mapping;
4450 pgoff_t pgoff;
4451
4452 if (!vma->vm_file) /* anonymous vma */
4453 return NULL;
4454 if (!(mc.flags & MOVE_FILE))
4455 return NULL;
4456
4457 mapping = vma->vm_file->f_mapping;
4458 pgoff = linear_page_index(vma, addr);
4459
4460 /* page is moved even if it's not RSS of this task(page-faulted). */
4461 #ifdef CONFIG_SWAP
4462 /* shmem/tmpfs may report page out on swap: account for that too. */
4463 if (shmem_mapping(mapping)) {
4464 page = find_get_entry(mapping, pgoff);
4465 if (radix_tree_exceptional_entry(page)) {
4466 swp_entry_t swp = radix_to_swp_entry(page);
4467 if (do_memsw_account())
4468 *entry = swp;
4469 page = find_get_page(swap_address_space(swp), swp.val);
4470 }
4471 } else
4472 page = find_get_page(mapping, pgoff);
4473 #else
4474 page = find_get_page(mapping, pgoff);
4475 #endif
4476 return page;
4477 }
4478
4479 /**
4480 * mem_cgroup_move_account - move account of the page
4481 * @page: the page
4482 * @nr_pages: number of regular pages (>1 for huge pages)
4483 * @from: mem_cgroup which the page is moved from.
4484 * @to: mem_cgroup which the page is moved to. @from != @to.
4485 *
4486 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4487 *
4488 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4489 * from old cgroup.
4490 */
4491 static int mem_cgroup_move_account(struct page *page,
4492 bool compound,
4493 struct mem_cgroup *from,
4494 struct mem_cgroup *to)
4495 {
4496 unsigned long flags;
4497 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4498 int ret;
4499 bool anon;
4500
4501 VM_BUG_ON(from == to);
4502 VM_BUG_ON_PAGE(PageLRU(page), page);
4503 VM_BUG_ON(compound && !PageTransHuge(page));
4504
4505 /*
4506 * Prevent mem_cgroup_replace_page() from looking at
4507 * page->mem_cgroup of its source page while we change it.
4508 */
4509 ret = -EBUSY;
4510 if (!trylock_page(page))
4511 goto out;
4512
4513 ret = -EINVAL;
4514 if (page->mem_cgroup != from)
4515 goto out_unlock;
4516
4517 anon = PageAnon(page);
4518
4519 spin_lock_irqsave(&from->move_lock, flags);
4520
4521 if (!anon && page_mapped(page)) {
4522 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4523 nr_pages);
4524 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4525 nr_pages);
4526 }
4527
4528 /*
4529 * move_lock grabbed above and caller set from->moving_account, so
4530 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4531 * So mapping should be stable for dirty pages.
4532 */
4533 if (!anon && PageDirty(page)) {
4534 struct address_space *mapping = page_mapping(page);
4535
4536 if (mapping_cap_account_dirty(mapping)) {
4537 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4538 nr_pages);
4539 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4540 nr_pages);
4541 }
4542 }
4543
4544 if (PageWriteback(page)) {
4545 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4546 nr_pages);
4547 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4548 nr_pages);
4549 }
4550
4551 /*
4552 * It is safe to change page->mem_cgroup here because the page
4553 * is referenced, charged, and isolated - we can't race with
4554 * uncharging, charging, migration, or LRU putback.
4555 */
4556
4557 /* caller should have done css_get */
4558 page->mem_cgroup = to;
4559 spin_unlock_irqrestore(&from->move_lock, flags);
4560
4561 ret = 0;
4562
4563 local_irq_disable();
4564 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4565 memcg_check_events(to, page);
4566 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4567 memcg_check_events(from, page);
4568 local_irq_enable();
4569 out_unlock:
4570 unlock_page(page);
4571 out:
4572 return ret;
4573 }
4574
4575 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4576 unsigned long addr, pte_t ptent, union mc_target *target)
4577 {
4578 struct page *page = NULL;
4579 enum mc_target_type ret = MC_TARGET_NONE;
4580 swp_entry_t ent = { .val = 0 };
4581
4582 if (pte_present(ptent))
4583 page = mc_handle_present_pte(vma, addr, ptent);
4584 else if (is_swap_pte(ptent))
4585 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4586 else if (pte_none(ptent))
4587 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4588
4589 if (!page && !ent.val)
4590 return ret;
4591 if (page) {
4592 /*
4593 * Do only loose check w/o serialization.
4594 * mem_cgroup_move_account() checks the page is valid or
4595 * not under LRU exclusion.
4596 */
4597 if (page->mem_cgroup == mc.from) {
4598 ret = MC_TARGET_PAGE;
4599 if (target)
4600 target->page = page;
4601 }
4602 if (!ret || !target)
4603 put_page(page);
4604 }
4605 /* There is a swap entry and a page doesn't exist or isn't charged */
4606 if (ent.val && !ret &&
4607 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4608 ret = MC_TARGET_SWAP;
4609 if (target)
4610 target->ent = ent;
4611 }
4612 return ret;
4613 }
4614
4615 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4616 /*
4617 * We don't consider swapping or file mapped pages because THP does not
4618 * support them for now.
4619 * Caller should make sure that pmd_trans_huge(pmd) is true.
4620 */
4621 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4622 unsigned long addr, pmd_t pmd, union mc_target *target)
4623 {
4624 struct page *page = NULL;
4625 enum mc_target_type ret = MC_TARGET_NONE;
4626
4627 page = pmd_page(pmd);
4628 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4629 if (!(mc.flags & MOVE_ANON))
4630 return ret;
4631 if (page->mem_cgroup == mc.from) {
4632 ret = MC_TARGET_PAGE;
4633 if (target) {
4634 get_page(page);
4635 target->page = page;
4636 }
4637 }
4638 return ret;
4639 }
4640 #else
4641 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4642 unsigned long addr, pmd_t pmd, union mc_target *target)
4643 {
4644 return MC_TARGET_NONE;
4645 }
4646 #endif
4647
4648 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4649 unsigned long addr, unsigned long end,
4650 struct mm_walk *walk)
4651 {
4652 struct vm_area_struct *vma = walk->vma;
4653 pte_t *pte;
4654 spinlock_t *ptl;
4655
4656 if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
4657 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4658 mc.precharge += HPAGE_PMD_NR;
4659 spin_unlock(ptl);
4660 return 0;
4661 }
4662
4663 if (pmd_trans_unstable(pmd))
4664 return 0;
4665 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4666 for (; addr != end; pte++, addr += PAGE_SIZE)
4667 if (get_mctgt_type(vma, addr, *pte, NULL))
4668 mc.precharge++; /* increment precharge temporarily */
4669 pte_unmap_unlock(pte - 1, ptl);
4670 cond_resched();
4671
4672 return 0;
4673 }
4674
4675 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4676 {
4677 unsigned long precharge;
4678
4679 struct mm_walk mem_cgroup_count_precharge_walk = {
4680 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4681 .mm = mm,
4682 };
4683 down_read(&mm->mmap_sem);
4684 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4685 up_read(&mm->mmap_sem);
4686
4687 precharge = mc.precharge;
4688 mc.precharge = 0;
4689
4690 return precharge;
4691 }
4692
4693 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4694 {
4695 unsigned long precharge = mem_cgroup_count_precharge(mm);
4696
4697 VM_BUG_ON(mc.moving_task);
4698 mc.moving_task = current;
4699 return mem_cgroup_do_precharge(precharge);
4700 }
4701
4702 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4703 static void __mem_cgroup_clear_mc(void)
4704 {
4705 struct mem_cgroup *from = mc.from;
4706 struct mem_cgroup *to = mc.to;
4707
4708 /* we must uncharge all the leftover precharges from mc.to */
4709 if (mc.precharge) {
4710 cancel_charge(mc.to, mc.precharge);
4711 mc.precharge = 0;
4712 }
4713 /*
4714 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4715 * we must uncharge here.
4716 */
4717 if (mc.moved_charge) {
4718 cancel_charge(mc.from, mc.moved_charge);
4719 mc.moved_charge = 0;
4720 }
4721 /* we must fixup refcnts and charges */
4722 if (mc.moved_swap) {
4723 /* uncharge swap account from the old cgroup */
4724 if (!mem_cgroup_is_root(mc.from))
4725 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4726
4727 /*
4728 * we charged both to->memory and to->memsw, so we
4729 * should uncharge to->memory.
4730 */
4731 if (!mem_cgroup_is_root(mc.to))
4732 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4733
4734 css_put_many(&mc.from->css, mc.moved_swap);
4735
4736 /* we've already done css_get(mc.to) */
4737 mc.moved_swap = 0;
4738 }
4739 memcg_oom_recover(from);
4740 memcg_oom_recover(to);
4741 wake_up_all(&mc.waitq);
4742 }
4743
4744 static void mem_cgroup_clear_mc(void)
4745 {
4746 /*
4747 * we must clear moving_task before waking up waiters at the end of
4748 * task migration.
4749 */
4750 mc.moving_task = NULL;
4751 __mem_cgroup_clear_mc();
4752 spin_lock(&mc.lock);
4753 mc.from = NULL;
4754 mc.to = NULL;
4755 spin_unlock(&mc.lock);
4756 }
4757
4758 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4759 {
4760 struct cgroup_subsys_state *css;
4761 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4762 struct mem_cgroup *from;
4763 struct task_struct *leader, *p;
4764 struct mm_struct *mm;
4765 unsigned long move_flags;
4766 int ret = 0;
4767
4768 /* charge immigration isn't supported on the default hierarchy */
4769 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4770 return 0;
4771
4772 /*
4773 * Multi-process migrations only happen on the default hierarchy
4774 * where charge immigration is not used. Perform charge
4775 * immigration if @tset contains a leader and whine if there are
4776 * multiple.
4777 */
4778 p = NULL;
4779 cgroup_taskset_for_each_leader(leader, css, tset) {
4780 WARN_ON_ONCE(p);
4781 p = leader;
4782 memcg = mem_cgroup_from_css(css);
4783 }
4784 if (!p)
4785 return 0;
4786
4787 /*
4788 * We are now commited to this value whatever it is. Changes in this
4789 * tunable will only affect upcoming migrations, not the current one.
4790 * So we need to save it, and keep it going.
4791 */
4792 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4793 if (!move_flags)
4794 return 0;
4795
4796 from = mem_cgroup_from_task(p);
4797
4798 VM_BUG_ON(from == memcg);
4799
4800 mm = get_task_mm(p);
4801 if (!mm)
4802 return 0;
4803 /* We move charges only when we move a owner of the mm */
4804 if (mm->owner == p) {
4805 VM_BUG_ON(mc.from);
4806 VM_BUG_ON(mc.to);
4807 VM_BUG_ON(mc.precharge);
4808 VM_BUG_ON(mc.moved_charge);
4809 VM_BUG_ON(mc.moved_swap);
4810
4811 spin_lock(&mc.lock);
4812 mc.from = from;
4813 mc.to = memcg;
4814 mc.flags = move_flags;
4815 spin_unlock(&mc.lock);
4816 /* We set mc.moving_task later */
4817
4818 ret = mem_cgroup_precharge_mc(mm);
4819 if (ret)
4820 mem_cgroup_clear_mc();
4821 }
4822 mmput(mm);
4823 return ret;
4824 }
4825
4826 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4827 {
4828 if (mc.to)
4829 mem_cgroup_clear_mc();
4830 }
4831
4832 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4833 unsigned long addr, unsigned long end,
4834 struct mm_walk *walk)
4835 {
4836 int ret = 0;
4837 struct vm_area_struct *vma = walk->vma;
4838 pte_t *pte;
4839 spinlock_t *ptl;
4840 enum mc_target_type target_type;
4841 union mc_target target;
4842 struct page *page;
4843
4844 if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
4845 if (mc.precharge < HPAGE_PMD_NR) {
4846 spin_unlock(ptl);
4847 return 0;
4848 }
4849 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4850 if (target_type == MC_TARGET_PAGE) {
4851 page = target.page;
4852 if (!isolate_lru_page(page)) {
4853 if (!mem_cgroup_move_account(page, true,
4854 mc.from, mc.to)) {
4855 mc.precharge -= HPAGE_PMD_NR;
4856 mc.moved_charge += HPAGE_PMD_NR;
4857 }
4858 putback_lru_page(page);
4859 }
4860 put_page(page);
4861 }
4862 spin_unlock(ptl);
4863 return 0;
4864 }
4865
4866 if (pmd_trans_unstable(pmd))
4867 return 0;
4868 retry:
4869 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4870 for (; addr != end; addr += PAGE_SIZE) {
4871 pte_t ptent = *(pte++);
4872 swp_entry_t ent;
4873
4874 if (!mc.precharge)
4875 break;
4876
4877 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4878 case MC_TARGET_PAGE:
4879 page = target.page;
4880 /*
4881 * We can have a part of the split pmd here. Moving it
4882 * can be done but it would be too convoluted so simply
4883 * ignore such a partial THP and keep it in original
4884 * memcg. There should be somebody mapping the head.
4885 */
4886 if (PageTransCompound(page))
4887 goto put;
4888 if (isolate_lru_page(page))
4889 goto put;
4890 if (!mem_cgroup_move_account(page, false,
4891 mc.from, mc.to)) {
4892 mc.precharge--;
4893 /* we uncharge from mc.from later. */
4894 mc.moved_charge++;
4895 }
4896 putback_lru_page(page);
4897 put: /* get_mctgt_type() gets the page */
4898 put_page(page);
4899 break;
4900 case MC_TARGET_SWAP:
4901 ent = target.ent;
4902 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4903 mc.precharge--;
4904 /* we fixup refcnts and charges later. */
4905 mc.moved_swap++;
4906 }
4907 break;
4908 default:
4909 break;
4910 }
4911 }
4912 pte_unmap_unlock(pte - 1, ptl);
4913 cond_resched();
4914
4915 if (addr != end) {
4916 /*
4917 * We have consumed all precharges we got in can_attach().
4918 * We try charge one by one, but don't do any additional
4919 * charges to mc.to if we have failed in charge once in attach()
4920 * phase.
4921 */
4922 ret = mem_cgroup_do_precharge(1);
4923 if (!ret)
4924 goto retry;
4925 }
4926
4927 return ret;
4928 }
4929
4930 static void mem_cgroup_move_charge(struct mm_struct *mm)
4931 {
4932 struct mm_walk mem_cgroup_move_charge_walk = {
4933 .pmd_entry = mem_cgroup_move_charge_pte_range,
4934 .mm = mm,
4935 };
4936
4937 lru_add_drain_all();
4938 /*
4939 * Signal mem_cgroup_begin_page_stat() to take the memcg's
4940 * move_lock while we're moving its pages to another memcg.
4941 * Then wait for already started RCU-only updates to finish.
4942 */
4943 atomic_inc(&mc.from->moving_account);
4944 synchronize_rcu();
4945 retry:
4946 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4947 /*
4948 * Someone who are holding the mmap_sem might be waiting in
4949 * waitq. So we cancel all extra charges, wake up all waiters,
4950 * and retry. Because we cancel precharges, we might not be able
4951 * to move enough charges, but moving charge is a best-effort
4952 * feature anyway, so it wouldn't be a big problem.
4953 */
4954 __mem_cgroup_clear_mc();
4955 cond_resched();
4956 goto retry;
4957 }
4958 /*
4959 * When we have consumed all precharges and failed in doing
4960 * additional charge, the page walk just aborts.
4961 */
4962 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4963 up_read(&mm->mmap_sem);
4964 atomic_dec(&mc.from->moving_account);
4965 }
4966
4967 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4968 {
4969 struct cgroup_subsys_state *css;
4970 struct task_struct *p = cgroup_taskset_first(tset, &css);
4971 struct mm_struct *mm = get_task_mm(p);
4972
4973 if (mm) {
4974 if (mc.to)
4975 mem_cgroup_move_charge(mm);
4976 mmput(mm);
4977 }
4978 if (mc.to)
4979 mem_cgroup_clear_mc();
4980 }
4981 #else /* !CONFIG_MMU */
4982 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4983 {
4984 return 0;
4985 }
4986 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4987 {
4988 }
4989 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4990 {
4991 }
4992 #endif
4993
4994 /*
4995 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4996 * to verify whether we're attached to the default hierarchy on each mount
4997 * attempt.
4998 */
4999 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5000 {
5001 /*
5002 * use_hierarchy is forced on the default hierarchy. cgroup core
5003 * guarantees that @root doesn't have any children, so turning it
5004 * on for the root memcg is enough.
5005 */
5006 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5007 root_mem_cgroup->use_hierarchy = true;
5008 else
5009 root_mem_cgroup->use_hierarchy = false;
5010 }
5011
5012 static u64 memory_current_read(struct cgroup_subsys_state *css,
5013 struct cftype *cft)
5014 {
5015 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5016
5017 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5018 }
5019
5020 static int memory_low_show(struct seq_file *m, void *v)
5021 {
5022 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5023 unsigned long low = READ_ONCE(memcg->low);
5024
5025 if (low == PAGE_COUNTER_MAX)
5026 seq_puts(m, "max\n");
5027 else
5028 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5029
5030 return 0;
5031 }
5032
5033 static ssize_t memory_low_write(struct kernfs_open_file *of,
5034 char *buf, size_t nbytes, loff_t off)
5035 {
5036 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5037 unsigned long low;
5038 int err;
5039
5040 buf = strstrip(buf);
5041 err = page_counter_memparse(buf, "max", &low);
5042 if (err)
5043 return err;
5044
5045 memcg->low = low;
5046
5047 return nbytes;
5048 }
5049
5050 static int memory_high_show(struct seq_file *m, void *v)
5051 {
5052 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5053 unsigned long high = READ_ONCE(memcg->high);
5054
5055 if (high == PAGE_COUNTER_MAX)
5056 seq_puts(m, "max\n");
5057 else
5058 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5059
5060 return 0;
5061 }
5062
5063 static ssize_t memory_high_write(struct kernfs_open_file *of,
5064 char *buf, size_t nbytes, loff_t off)
5065 {
5066 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5067 unsigned long high;
5068 int err;
5069
5070 buf = strstrip(buf);
5071 err = page_counter_memparse(buf, "max", &high);
5072 if (err)
5073 return err;
5074
5075 memcg->high = high;
5076
5077 memcg_wb_domain_size_changed(memcg);
5078 return nbytes;
5079 }
5080
5081 static int memory_max_show(struct seq_file *m, void *v)
5082 {
5083 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5084 unsigned long max = READ_ONCE(memcg->memory.limit);
5085
5086 if (max == PAGE_COUNTER_MAX)
5087 seq_puts(m, "max\n");
5088 else
5089 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5090
5091 return 0;
5092 }
5093
5094 static ssize_t memory_max_write(struct kernfs_open_file *of,
5095 char *buf, size_t nbytes, loff_t off)
5096 {
5097 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5098 unsigned long max;
5099 int err;
5100
5101 buf = strstrip(buf);
5102 err = page_counter_memparse(buf, "max", &max);
5103 if (err)
5104 return err;
5105
5106 err = mem_cgroup_resize_limit(memcg, max);
5107 if (err)
5108 return err;
5109
5110 memcg_wb_domain_size_changed(memcg);
5111 return nbytes;
5112 }
5113
5114 static int memory_events_show(struct seq_file *m, void *v)
5115 {
5116 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5117
5118 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5119 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5120 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5121 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5122
5123 return 0;
5124 }
5125
5126 static struct cftype memory_files[] = {
5127 {
5128 .name = "current",
5129 .flags = CFTYPE_NOT_ON_ROOT,
5130 .read_u64 = memory_current_read,
5131 },
5132 {
5133 .name = "low",
5134 .flags = CFTYPE_NOT_ON_ROOT,
5135 .seq_show = memory_low_show,
5136 .write = memory_low_write,
5137 },
5138 {
5139 .name = "high",
5140 .flags = CFTYPE_NOT_ON_ROOT,
5141 .seq_show = memory_high_show,
5142 .write = memory_high_write,
5143 },
5144 {
5145 .name = "max",
5146 .flags = CFTYPE_NOT_ON_ROOT,
5147 .seq_show = memory_max_show,
5148 .write = memory_max_write,
5149 },
5150 {
5151 .name = "events",
5152 .flags = CFTYPE_NOT_ON_ROOT,
5153 .file_offset = offsetof(struct mem_cgroup, events_file),
5154 .seq_show = memory_events_show,
5155 },
5156 { } /* terminate */
5157 };
5158
5159 struct cgroup_subsys memory_cgrp_subsys = {
5160 .css_alloc = mem_cgroup_css_alloc,
5161 .css_online = mem_cgroup_css_online,
5162 .css_offline = mem_cgroup_css_offline,
5163 .css_released = mem_cgroup_css_released,
5164 .css_free = mem_cgroup_css_free,
5165 .css_reset = mem_cgroup_css_reset,
5166 .can_attach = mem_cgroup_can_attach,
5167 .cancel_attach = mem_cgroup_cancel_attach,
5168 .attach = mem_cgroup_move_task,
5169 .bind = mem_cgroup_bind,
5170 .dfl_cftypes = memory_files,
5171 .legacy_cftypes = mem_cgroup_legacy_files,
5172 .early_init = 0,
5173 };
5174
5175 /**
5176 * mem_cgroup_low - check if memory consumption is below the normal range
5177 * @root: the highest ancestor to consider
5178 * @memcg: the memory cgroup to check
5179 *
5180 * Returns %true if memory consumption of @memcg, and that of all
5181 * configurable ancestors up to @root, is below the normal range.
5182 */
5183 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5184 {
5185 if (mem_cgroup_disabled())
5186 return false;
5187
5188 /*
5189 * The toplevel group doesn't have a configurable range, so
5190 * it's never low when looked at directly, and it is not
5191 * considered an ancestor when assessing the hierarchy.
5192 */
5193
5194 if (memcg == root_mem_cgroup)
5195 return false;
5196
5197 if (page_counter_read(&memcg->memory) >= memcg->low)
5198 return false;
5199
5200 while (memcg != root) {
5201 memcg = parent_mem_cgroup(memcg);
5202
5203 if (memcg == root_mem_cgroup)
5204 break;
5205
5206 if (page_counter_read(&memcg->memory) >= memcg->low)
5207 return false;
5208 }
5209 return true;
5210 }
5211
5212 /**
5213 * mem_cgroup_try_charge - try charging a page
5214 * @page: page to charge
5215 * @mm: mm context of the victim
5216 * @gfp_mask: reclaim mode
5217 * @memcgp: charged memcg return
5218 *
5219 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5220 * pages according to @gfp_mask if necessary.
5221 *
5222 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5223 * Otherwise, an error code is returned.
5224 *
5225 * After page->mapping has been set up, the caller must finalize the
5226 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5227 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5228 */
5229 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5230 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5231 bool compound)
5232 {
5233 struct mem_cgroup *memcg = NULL;
5234 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5235 int ret = 0;
5236
5237 if (mem_cgroup_disabled())
5238 goto out;
5239
5240 if (PageSwapCache(page)) {
5241 /*
5242 * Every swap fault against a single page tries to charge the
5243 * page, bail as early as possible. shmem_unuse() encounters
5244 * already charged pages, too. The USED bit is protected by
5245 * the page lock, which serializes swap cache removal, which
5246 * in turn serializes uncharging.
5247 */
5248 VM_BUG_ON_PAGE(!PageLocked(page), page);
5249 if (page->mem_cgroup)
5250 goto out;
5251
5252 if (do_memsw_account()) {
5253 swp_entry_t ent = { .val = page_private(page), };
5254 unsigned short id = lookup_swap_cgroup_id(ent);
5255
5256 rcu_read_lock();
5257 memcg = mem_cgroup_from_id(id);
5258 if (memcg && !css_tryget_online(&memcg->css))
5259 memcg = NULL;
5260 rcu_read_unlock();
5261 }
5262 }
5263
5264 if (!memcg)
5265 memcg = get_mem_cgroup_from_mm(mm);
5266
5267 ret = try_charge(memcg, gfp_mask, nr_pages);
5268
5269 css_put(&memcg->css);
5270 out:
5271 *memcgp = memcg;
5272 return ret;
5273 }
5274
5275 /**
5276 * mem_cgroup_commit_charge - commit a page charge
5277 * @page: page to charge
5278 * @memcg: memcg to charge the page to
5279 * @lrucare: page might be on LRU already
5280 *
5281 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5282 * after page->mapping has been set up. This must happen atomically
5283 * as part of the page instantiation, i.e. under the page table lock
5284 * for anonymous pages, under the page lock for page and swap cache.
5285 *
5286 * In addition, the page must not be on the LRU during the commit, to
5287 * prevent racing with task migration. If it might be, use @lrucare.
5288 *
5289 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5290 */
5291 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5292 bool lrucare, bool compound)
5293 {
5294 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5295
5296 VM_BUG_ON_PAGE(!page->mapping, page);
5297 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5298
5299 if (mem_cgroup_disabled())
5300 return;
5301 /*
5302 * Swap faults will attempt to charge the same page multiple
5303 * times. But reuse_swap_page() might have removed the page
5304 * from swapcache already, so we can't check PageSwapCache().
5305 */
5306 if (!memcg)
5307 return;
5308
5309 commit_charge(page, memcg, lrucare);
5310
5311 local_irq_disable();
5312 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5313 memcg_check_events(memcg, page);
5314 local_irq_enable();
5315
5316 if (do_memsw_account() && PageSwapCache(page)) {
5317 swp_entry_t entry = { .val = page_private(page) };
5318 /*
5319 * The swap entry might not get freed for a long time,
5320 * let's not wait for it. The page already received a
5321 * memory+swap charge, drop the swap entry duplicate.
5322 */
5323 mem_cgroup_uncharge_swap(entry);
5324 }
5325 }
5326
5327 /**
5328 * mem_cgroup_cancel_charge - cancel a page charge
5329 * @page: page to charge
5330 * @memcg: memcg to charge the page to
5331 *
5332 * Cancel a charge transaction started by mem_cgroup_try_charge().
5333 */
5334 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5335 bool compound)
5336 {
5337 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5338
5339 if (mem_cgroup_disabled())
5340 return;
5341 /*
5342 * Swap faults will attempt to charge the same page multiple
5343 * times. But reuse_swap_page() might have removed the page
5344 * from swapcache already, so we can't check PageSwapCache().
5345 */
5346 if (!memcg)
5347 return;
5348
5349 cancel_charge(memcg, nr_pages);
5350 }
5351
5352 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5353 unsigned long nr_anon, unsigned long nr_file,
5354 unsigned long nr_huge, struct page *dummy_page)
5355 {
5356 unsigned long nr_pages = nr_anon + nr_file;
5357 unsigned long flags;
5358
5359 if (!mem_cgroup_is_root(memcg)) {
5360 page_counter_uncharge(&memcg->memory, nr_pages);
5361 if (do_memsw_account())
5362 page_counter_uncharge(&memcg->memsw, nr_pages);
5363 memcg_oom_recover(memcg);
5364 }
5365
5366 local_irq_save(flags);
5367 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5368 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5369 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5370 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5371 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5372 memcg_check_events(memcg, dummy_page);
5373 local_irq_restore(flags);
5374
5375 if (!mem_cgroup_is_root(memcg))
5376 css_put_many(&memcg->css, nr_pages);
5377 }
5378
5379 static void uncharge_list(struct list_head *page_list)
5380 {
5381 struct mem_cgroup *memcg = NULL;
5382 unsigned long nr_anon = 0;
5383 unsigned long nr_file = 0;
5384 unsigned long nr_huge = 0;
5385 unsigned long pgpgout = 0;
5386 struct list_head *next;
5387 struct page *page;
5388
5389 next = page_list->next;
5390 do {
5391 unsigned int nr_pages = 1;
5392
5393 page = list_entry(next, struct page, lru);
5394 next = page->lru.next;
5395
5396 VM_BUG_ON_PAGE(PageLRU(page), page);
5397 VM_BUG_ON_PAGE(page_count(page), page);
5398
5399 if (!page->mem_cgroup)
5400 continue;
5401
5402 /*
5403 * Nobody should be changing or seriously looking at
5404 * page->mem_cgroup at this point, we have fully
5405 * exclusive access to the page.
5406 */
5407
5408 if (memcg != page->mem_cgroup) {
5409 if (memcg) {
5410 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5411 nr_huge, page);
5412 pgpgout = nr_anon = nr_file = nr_huge = 0;
5413 }
5414 memcg = page->mem_cgroup;
5415 }
5416
5417 if (PageTransHuge(page)) {
5418 nr_pages <<= compound_order(page);
5419 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5420 nr_huge += nr_pages;
5421 }
5422
5423 if (PageAnon(page))
5424 nr_anon += nr_pages;
5425 else
5426 nr_file += nr_pages;
5427
5428 page->mem_cgroup = NULL;
5429
5430 pgpgout++;
5431 } while (next != page_list);
5432
5433 if (memcg)
5434 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5435 nr_huge, page);
5436 }
5437
5438 /**
5439 * mem_cgroup_uncharge - uncharge a page
5440 * @page: page to uncharge
5441 *
5442 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5443 * mem_cgroup_commit_charge().
5444 */
5445 void mem_cgroup_uncharge(struct page *page)
5446 {
5447 if (mem_cgroup_disabled())
5448 return;
5449
5450 /* Don't touch page->lru of any random page, pre-check: */
5451 if (!page->mem_cgroup)
5452 return;
5453
5454 INIT_LIST_HEAD(&page->lru);
5455 uncharge_list(&page->lru);
5456 }
5457
5458 /**
5459 * mem_cgroup_uncharge_list - uncharge a list of page
5460 * @page_list: list of pages to uncharge
5461 *
5462 * Uncharge a list of pages previously charged with
5463 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5464 */
5465 void mem_cgroup_uncharge_list(struct list_head *page_list)
5466 {
5467 if (mem_cgroup_disabled())
5468 return;
5469
5470 if (!list_empty(page_list))
5471 uncharge_list(page_list);
5472 }
5473
5474 /**
5475 * mem_cgroup_replace_page - migrate a charge to another page
5476 * @oldpage: currently charged page
5477 * @newpage: page to transfer the charge to
5478 *
5479 * Migrate the charge from @oldpage to @newpage.
5480 *
5481 * Both pages must be locked, @newpage->mapping must be set up.
5482 * Either or both pages might be on the LRU already.
5483 */
5484 void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
5485 {
5486 struct mem_cgroup *memcg;
5487 int isolated;
5488
5489 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5490 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5491 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5492 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5493 newpage);
5494
5495 if (mem_cgroup_disabled())
5496 return;
5497
5498 /* Page cache replacement: new page already charged? */
5499 if (newpage->mem_cgroup)
5500 return;
5501
5502 /* Swapcache readahead pages can get replaced before being charged */
5503 memcg = oldpage->mem_cgroup;
5504 if (!memcg)
5505 return;
5506
5507 lock_page_lru(oldpage, &isolated);
5508 oldpage->mem_cgroup = NULL;
5509 unlock_page_lru(oldpage, isolated);
5510
5511 commit_charge(newpage, memcg, true);
5512 }
5513
5514 #ifdef CONFIG_INET
5515
5516 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5517 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5518
5519 void sock_update_memcg(struct sock *sk)
5520 {
5521 struct mem_cgroup *memcg;
5522
5523 /* Socket cloning can throw us here with sk_cgrp already
5524 * filled. It won't however, necessarily happen from
5525 * process context. So the test for root memcg given
5526 * the current task's memcg won't help us in this case.
5527 *
5528 * Respecting the original socket's memcg is a better
5529 * decision in this case.
5530 */
5531 if (sk->sk_memcg) {
5532 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5533 css_get(&sk->sk_memcg->css);
5534 return;
5535 }
5536
5537 rcu_read_lock();
5538 memcg = mem_cgroup_from_task(current);
5539 if (memcg == root_mem_cgroup)
5540 goto out;
5541 #ifdef CONFIG_MEMCG_KMEM
5542 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcp_mem.active)
5543 goto out;
5544 #endif
5545 if (css_tryget_online(&memcg->css))
5546 sk->sk_memcg = memcg;
5547 out:
5548 rcu_read_unlock();
5549 }
5550 EXPORT_SYMBOL(sock_update_memcg);
5551
5552 void sock_release_memcg(struct sock *sk)
5553 {
5554 WARN_ON(!sk->sk_memcg);
5555 css_put(&sk->sk_memcg->css);
5556 }
5557
5558 /**
5559 * mem_cgroup_charge_skmem - charge socket memory
5560 * @memcg: memcg to charge
5561 * @nr_pages: number of pages to charge
5562 *
5563 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5564 * @memcg's configured limit, %false if the charge had to be forced.
5565 */
5566 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5567 {
5568 gfp_t gfp_mask = GFP_KERNEL;
5569
5570 #ifdef CONFIG_MEMCG_KMEM
5571 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5572 struct page_counter *counter;
5573
5574 if (page_counter_try_charge(&memcg->tcp_mem.memory_allocated,
5575 nr_pages, &counter)) {
5576 memcg->tcp_mem.memory_pressure = 0;
5577 return true;
5578 }
5579 page_counter_charge(&memcg->tcp_mem.memory_allocated, nr_pages);
5580 memcg->tcp_mem.memory_pressure = 1;
5581 return false;
5582 }
5583 #endif
5584 /* Don't block in the packet receive path */
5585 if (in_softirq())
5586 gfp_mask = GFP_NOWAIT;
5587
5588 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5589 return true;
5590
5591 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5592 return false;
5593 }
5594
5595 /**
5596 * mem_cgroup_uncharge_skmem - uncharge socket memory
5597 * @memcg - memcg to uncharge
5598 * @nr_pages - number of pages to uncharge
5599 */
5600 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5601 {
5602 #ifdef CONFIG_MEMCG_KMEM
5603 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5604 page_counter_uncharge(&memcg->tcp_mem.memory_allocated,
5605 nr_pages);
5606 return;
5607 }
5608 #endif
5609 page_counter_uncharge(&memcg->memory, nr_pages);
5610 css_put_many(&memcg->css, nr_pages);
5611 }
5612
5613 #endif /* CONFIG_INET */
5614
5615 static int __init cgroup_memory(char *s)
5616 {
5617 char *token;
5618
5619 while ((token = strsep(&s, ",")) != NULL) {
5620 if (!*token)
5621 continue;
5622 if (!strcmp(token, "nosocket"))
5623 cgroup_memory_nosocket = true;
5624 }
5625 return 0;
5626 }
5627 __setup("cgroup.memory=", cgroup_memory);
5628
5629 /*
5630 * subsys_initcall() for memory controller.
5631 *
5632 * Some parts like hotcpu_notifier() have to be initialized from this context
5633 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5634 * everything that doesn't depend on a specific mem_cgroup structure should
5635 * be initialized from here.
5636 */
5637 static int __init mem_cgroup_init(void)
5638 {
5639 int cpu, node;
5640
5641 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5642
5643 for_each_possible_cpu(cpu)
5644 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5645 drain_local_stock);
5646
5647 for_each_node(node) {
5648 struct mem_cgroup_tree_per_node *rtpn;
5649 int zone;
5650
5651 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5652 node_online(node) ? node : NUMA_NO_NODE);
5653
5654 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5655 struct mem_cgroup_tree_per_zone *rtpz;
5656
5657 rtpz = &rtpn->rb_tree_per_zone[zone];
5658 rtpz->rb_root = RB_ROOT;
5659 spin_lock_init(&rtpz->lock);
5660 }
5661 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5662 }
5663
5664 return 0;
5665 }
5666 subsys_initcall(mem_cgroup_init);
5667
5668 #ifdef CONFIG_MEMCG_SWAP
5669 /**
5670 * mem_cgroup_swapout - transfer a memsw charge to swap
5671 * @page: page whose memsw charge to transfer
5672 * @entry: swap entry to move the charge to
5673 *
5674 * Transfer the memsw charge of @page to @entry.
5675 */
5676 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5677 {
5678 struct mem_cgroup *memcg;
5679 unsigned short oldid;
5680
5681 VM_BUG_ON_PAGE(PageLRU(page), page);
5682 VM_BUG_ON_PAGE(page_count(page), page);
5683
5684 if (!do_memsw_account())
5685 return;
5686
5687 memcg = page->mem_cgroup;
5688
5689 /* Readahead page, never charged */
5690 if (!memcg)
5691 return;
5692
5693 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5694 VM_BUG_ON_PAGE(oldid, page);
5695 mem_cgroup_swap_statistics(memcg, true);
5696
5697 page->mem_cgroup = NULL;
5698
5699 if (!mem_cgroup_is_root(memcg))
5700 page_counter_uncharge(&memcg->memory, 1);
5701
5702 /*
5703 * Interrupts should be disabled here because the caller holds the
5704 * mapping->tree_lock lock which is taken with interrupts-off. It is
5705 * important here to have the interrupts disabled because it is the
5706 * only synchronisation we have for udpating the per-CPU variables.
5707 */
5708 VM_BUG_ON(!irqs_disabled());
5709 mem_cgroup_charge_statistics(memcg, page, false, -1);
5710 memcg_check_events(memcg, page);
5711 }
5712
5713 /**
5714 * mem_cgroup_uncharge_swap - uncharge a swap entry
5715 * @entry: swap entry to uncharge
5716 *
5717 * Drop the memsw charge associated with @entry.
5718 */
5719 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5720 {
5721 struct mem_cgroup *memcg;
5722 unsigned short id;
5723
5724 if (!do_memsw_account())
5725 return;
5726
5727 id = swap_cgroup_record(entry, 0);
5728 rcu_read_lock();
5729 memcg = mem_cgroup_from_id(id);
5730 if (memcg) {
5731 if (!mem_cgroup_is_root(memcg))
5732 page_counter_uncharge(&memcg->memsw, 1);
5733 mem_cgroup_swap_statistics(memcg, false);
5734 css_put(&memcg->css);
5735 }
5736 rcu_read_unlock();
5737 }
5738
5739 /* for remember boot option*/
5740 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5741 static int really_do_swap_account __initdata = 1;
5742 #else
5743 static int really_do_swap_account __initdata;
5744 #endif
5745
5746 static int __init enable_swap_account(char *s)
5747 {
5748 if (!strcmp(s, "1"))
5749 really_do_swap_account = 1;
5750 else if (!strcmp(s, "0"))
5751 really_do_swap_account = 0;
5752 return 1;
5753 }
5754 __setup("swapaccount=", enable_swap_account);
5755
5756 static struct cftype memsw_cgroup_files[] = {
5757 {
5758 .name = "memsw.usage_in_bytes",
5759 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5760 .read_u64 = mem_cgroup_read_u64,
5761 },
5762 {
5763 .name = "memsw.max_usage_in_bytes",
5764 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5765 .write = mem_cgroup_reset,
5766 .read_u64 = mem_cgroup_read_u64,
5767 },
5768 {
5769 .name = "memsw.limit_in_bytes",
5770 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5771 .write = mem_cgroup_write,
5772 .read_u64 = mem_cgroup_read_u64,
5773 },
5774 {
5775 .name = "memsw.failcnt",
5776 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5777 .write = mem_cgroup_reset,
5778 .read_u64 = mem_cgroup_read_u64,
5779 },
5780 { }, /* terminate */
5781 };
5782
5783 static int __init mem_cgroup_swap_init(void)
5784 {
5785 if (!mem_cgroup_disabled() && really_do_swap_account) {
5786 do_swap_account = 1;
5787 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5788 memsw_cgroup_files));
5789 }
5790 return 0;
5791 }
5792 subsys_initcall(mem_cgroup_swap_init);
5793
5794 #endif /* CONFIG_MEMCG_SWAP */
This page took 0.251232 seconds and 6 git commands to generate.