mm: rework mapcount accounting to enable 4k mapping of THPs
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include <net/tcp_memcontrol.h>
70 #include "slab.h"
71
72 #include <asm/uaccess.h>
73
74 #include <trace/events/vmscan.h>
75
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77 EXPORT_SYMBOL(memory_cgrp_subsys);
78
79 struct mem_cgroup *root_mem_cgroup __read_mostly;
80
81 #define MEM_CGROUP_RECLAIM_RETRIES 5
82
83 /* Socket memory accounting disabled? */
84 static bool cgroup_memory_nosocket;
85
86 /* Whether the swap controller is active */
87 #ifdef CONFIG_MEMCG_SWAP
88 int do_swap_account __read_mostly;
89 #else
90 #define do_swap_account 0
91 #endif
92
93 /* Whether legacy memory+swap accounting is active */
94 static bool do_memsw_account(void)
95 {
96 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
97 }
98
99 static const char * const mem_cgroup_stat_names[] = {
100 "cache",
101 "rss",
102 "rss_huge",
103 "mapped_file",
104 "dirty",
105 "writeback",
106 "swap",
107 };
108
109 static const char * const mem_cgroup_events_names[] = {
110 "pgpgin",
111 "pgpgout",
112 "pgfault",
113 "pgmajfault",
114 };
115
116 static const char * const mem_cgroup_lru_names[] = {
117 "inactive_anon",
118 "active_anon",
119 "inactive_file",
120 "active_file",
121 "unevictable",
122 };
123
124 #define THRESHOLDS_EVENTS_TARGET 128
125 #define SOFTLIMIT_EVENTS_TARGET 1024
126 #define NUMAINFO_EVENTS_TARGET 1024
127
128 /*
129 * Cgroups above their limits are maintained in a RB-Tree, independent of
130 * their hierarchy representation
131 */
132
133 struct mem_cgroup_tree_per_zone {
134 struct rb_root rb_root;
135 spinlock_t lock;
136 };
137
138 struct mem_cgroup_tree_per_node {
139 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
140 };
141
142 struct mem_cgroup_tree {
143 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
144 };
145
146 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
147
148 /* for OOM */
149 struct mem_cgroup_eventfd_list {
150 struct list_head list;
151 struct eventfd_ctx *eventfd;
152 };
153
154 /*
155 * cgroup_event represents events which userspace want to receive.
156 */
157 struct mem_cgroup_event {
158 /*
159 * memcg which the event belongs to.
160 */
161 struct mem_cgroup *memcg;
162 /*
163 * eventfd to signal userspace about the event.
164 */
165 struct eventfd_ctx *eventfd;
166 /*
167 * Each of these stored in a list by the cgroup.
168 */
169 struct list_head list;
170 /*
171 * register_event() callback will be used to add new userspace
172 * waiter for changes related to this event. Use eventfd_signal()
173 * on eventfd to send notification to userspace.
174 */
175 int (*register_event)(struct mem_cgroup *memcg,
176 struct eventfd_ctx *eventfd, const char *args);
177 /*
178 * unregister_event() callback will be called when userspace closes
179 * the eventfd or on cgroup removing. This callback must be set,
180 * if you want provide notification functionality.
181 */
182 void (*unregister_event)(struct mem_cgroup *memcg,
183 struct eventfd_ctx *eventfd);
184 /*
185 * All fields below needed to unregister event when
186 * userspace closes eventfd.
187 */
188 poll_table pt;
189 wait_queue_head_t *wqh;
190 wait_queue_t wait;
191 struct work_struct remove;
192 };
193
194 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
195 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
196
197 /* Stuffs for move charges at task migration. */
198 /*
199 * Types of charges to be moved.
200 */
201 #define MOVE_ANON 0x1U
202 #define MOVE_FILE 0x2U
203 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
204
205 /* "mc" and its members are protected by cgroup_mutex */
206 static struct move_charge_struct {
207 spinlock_t lock; /* for from, to */
208 struct mem_cgroup *from;
209 struct mem_cgroup *to;
210 unsigned long flags;
211 unsigned long precharge;
212 unsigned long moved_charge;
213 unsigned long moved_swap;
214 struct task_struct *moving_task; /* a task moving charges */
215 wait_queue_head_t waitq; /* a waitq for other context */
216 } mc = {
217 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
218 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
219 };
220
221 /*
222 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
223 * limit reclaim to prevent infinite loops, if they ever occur.
224 */
225 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
226 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
227
228 enum charge_type {
229 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
230 MEM_CGROUP_CHARGE_TYPE_ANON,
231 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
232 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
233 NR_CHARGE_TYPE,
234 };
235
236 /* for encoding cft->private value on file */
237 enum res_type {
238 _MEM,
239 _MEMSWAP,
240 _OOM_TYPE,
241 _KMEM,
242 };
243
244 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
245 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
246 #define MEMFILE_ATTR(val) ((val) & 0xffff)
247 /* Used for OOM nofiier */
248 #define OOM_CONTROL (0)
249
250 /*
251 * The memcg_create_mutex will be held whenever a new cgroup is created.
252 * As a consequence, any change that needs to protect against new child cgroups
253 * appearing has to hold it as well.
254 */
255 static DEFINE_MUTEX(memcg_create_mutex);
256
257 /* Some nice accessors for the vmpressure. */
258 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
259 {
260 if (!memcg)
261 memcg = root_mem_cgroup;
262 return &memcg->vmpressure;
263 }
264
265 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
266 {
267 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
268 }
269
270 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
271 {
272 return (memcg == root_mem_cgroup);
273 }
274
275 /*
276 * We restrict the id in the range of [1, 65535], so it can fit into
277 * an unsigned short.
278 */
279 #define MEM_CGROUP_ID_MAX USHRT_MAX
280
281 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
282 {
283 return memcg->css.id;
284 }
285
286 /*
287 * A helper function to get mem_cgroup from ID. must be called under
288 * rcu_read_lock(). The caller is responsible for calling
289 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
290 * refcnt from swap can be called against removed memcg.)
291 */
292 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
293 {
294 struct cgroup_subsys_state *css;
295
296 css = css_from_id(id, &memory_cgrp_subsys);
297 return mem_cgroup_from_css(css);
298 }
299
300 #ifdef CONFIG_MEMCG_KMEM
301 /*
302 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
303 * The main reason for not using cgroup id for this:
304 * this works better in sparse environments, where we have a lot of memcgs,
305 * but only a few kmem-limited. Or also, if we have, for instance, 200
306 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
307 * 200 entry array for that.
308 *
309 * The current size of the caches array is stored in memcg_nr_cache_ids. It
310 * will double each time we have to increase it.
311 */
312 static DEFINE_IDA(memcg_cache_ida);
313 int memcg_nr_cache_ids;
314
315 /* Protects memcg_nr_cache_ids */
316 static DECLARE_RWSEM(memcg_cache_ids_sem);
317
318 void memcg_get_cache_ids(void)
319 {
320 down_read(&memcg_cache_ids_sem);
321 }
322
323 void memcg_put_cache_ids(void)
324 {
325 up_read(&memcg_cache_ids_sem);
326 }
327
328 /*
329 * MIN_SIZE is different than 1, because we would like to avoid going through
330 * the alloc/free process all the time. In a small machine, 4 kmem-limited
331 * cgroups is a reasonable guess. In the future, it could be a parameter or
332 * tunable, but that is strictly not necessary.
333 *
334 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
335 * this constant directly from cgroup, but it is understandable that this is
336 * better kept as an internal representation in cgroup.c. In any case, the
337 * cgrp_id space is not getting any smaller, and we don't have to necessarily
338 * increase ours as well if it increases.
339 */
340 #define MEMCG_CACHES_MIN_SIZE 4
341 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
342
343 /*
344 * A lot of the calls to the cache allocation functions are expected to be
345 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
346 * conditional to this static branch, we'll have to allow modules that does
347 * kmem_cache_alloc and the such to see this symbol as well
348 */
349 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
350 EXPORT_SYMBOL(memcg_kmem_enabled_key);
351
352 #endif /* CONFIG_MEMCG_KMEM */
353
354 static struct mem_cgroup_per_zone *
355 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
356 {
357 int nid = zone_to_nid(zone);
358 int zid = zone_idx(zone);
359
360 return &memcg->nodeinfo[nid]->zoneinfo[zid];
361 }
362
363 /**
364 * mem_cgroup_css_from_page - css of the memcg associated with a page
365 * @page: page of interest
366 *
367 * If memcg is bound to the default hierarchy, css of the memcg associated
368 * with @page is returned. The returned css remains associated with @page
369 * until it is released.
370 *
371 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
372 * is returned.
373 *
374 * XXX: The above description of behavior on the default hierarchy isn't
375 * strictly true yet as replace_page_cache_page() can modify the
376 * association before @page is released even on the default hierarchy;
377 * however, the current and planned usages don't mix the the two functions
378 * and replace_page_cache_page() will soon be updated to make the invariant
379 * actually true.
380 */
381 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
382 {
383 struct mem_cgroup *memcg;
384
385 rcu_read_lock();
386
387 memcg = page->mem_cgroup;
388
389 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
390 memcg = root_mem_cgroup;
391
392 rcu_read_unlock();
393 return &memcg->css;
394 }
395
396 /**
397 * page_cgroup_ino - return inode number of the memcg a page is charged to
398 * @page: the page
399 *
400 * Look up the closest online ancestor of the memory cgroup @page is charged to
401 * and return its inode number or 0 if @page is not charged to any cgroup. It
402 * is safe to call this function without holding a reference to @page.
403 *
404 * Note, this function is inherently racy, because there is nothing to prevent
405 * the cgroup inode from getting torn down and potentially reallocated a moment
406 * after page_cgroup_ino() returns, so it only should be used by callers that
407 * do not care (such as procfs interfaces).
408 */
409 ino_t page_cgroup_ino(struct page *page)
410 {
411 struct mem_cgroup *memcg;
412 unsigned long ino = 0;
413
414 rcu_read_lock();
415 memcg = READ_ONCE(page->mem_cgroup);
416 while (memcg && !(memcg->css.flags & CSS_ONLINE))
417 memcg = parent_mem_cgroup(memcg);
418 if (memcg)
419 ino = cgroup_ino(memcg->css.cgroup);
420 rcu_read_unlock();
421 return ino;
422 }
423
424 static struct mem_cgroup_per_zone *
425 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
426 {
427 int nid = page_to_nid(page);
428 int zid = page_zonenum(page);
429
430 return &memcg->nodeinfo[nid]->zoneinfo[zid];
431 }
432
433 static struct mem_cgroup_tree_per_zone *
434 soft_limit_tree_node_zone(int nid, int zid)
435 {
436 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
437 }
438
439 static struct mem_cgroup_tree_per_zone *
440 soft_limit_tree_from_page(struct page *page)
441 {
442 int nid = page_to_nid(page);
443 int zid = page_zonenum(page);
444
445 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
446 }
447
448 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
449 struct mem_cgroup_tree_per_zone *mctz,
450 unsigned long new_usage_in_excess)
451 {
452 struct rb_node **p = &mctz->rb_root.rb_node;
453 struct rb_node *parent = NULL;
454 struct mem_cgroup_per_zone *mz_node;
455
456 if (mz->on_tree)
457 return;
458
459 mz->usage_in_excess = new_usage_in_excess;
460 if (!mz->usage_in_excess)
461 return;
462 while (*p) {
463 parent = *p;
464 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
465 tree_node);
466 if (mz->usage_in_excess < mz_node->usage_in_excess)
467 p = &(*p)->rb_left;
468 /*
469 * We can't avoid mem cgroups that are over their soft
470 * limit by the same amount
471 */
472 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
473 p = &(*p)->rb_right;
474 }
475 rb_link_node(&mz->tree_node, parent, p);
476 rb_insert_color(&mz->tree_node, &mctz->rb_root);
477 mz->on_tree = true;
478 }
479
480 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
481 struct mem_cgroup_tree_per_zone *mctz)
482 {
483 if (!mz->on_tree)
484 return;
485 rb_erase(&mz->tree_node, &mctz->rb_root);
486 mz->on_tree = false;
487 }
488
489 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
490 struct mem_cgroup_tree_per_zone *mctz)
491 {
492 unsigned long flags;
493
494 spin_lock_irqsave(&mctz->lock, flags);
495 __mem_cgroup_remove_exceeded(mz, mctz);
496 spin_unlock_irqrestore(&mctz->lock, flags);
497 }
498
499 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
500 {
501 unsigned long nr_pages = page_counter_read(&memcg->memory);
502 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
503 unsigned long excess = 0;
504
505 if (nr_pages > soft_limit)
506 excess = nr_pages - soft_limit;
507
508 return excess;
509 }
510
511 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
512 {
513 unsigned long excess;
514 struct mem_cgroup_per_zone *mz;
515 struct mem_cgroup_tree_per_zone *mctz;
516
517 mctz = soft_limit_tree_from_page(page);
518 /*
519 * Necessary to update all ancestors when hierarchy is used.
520 * because their event counter is not touched.
521 */
522 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
523 mz = mem_cgroup_page_zoneinfo(memcg, page);
524 excess = soft_limit_excess(memcg);
525 /*
526 * We have to update the tree if mz is on RB-tree or
527 * mem is over its softlimit.
528 */
529 if (excess || mz->on_tree) {
530 unsigned long flags;
531
532 spin_lock_irqsave(&mctz->lock, flags);
533 /* if on-tree, remove it */
534 if (mz->on_tree)
535 __mem_cgroup_remove_exceeded(mz, mctz);
536 /*
537 * Insert again. mz->usage_in_excess will be updated.
538 * If excess is 0, no tree ops.
539 */
540 __mem_cgroup_insert_exceeded(mz, mctz, excess);
541 spin_unlock_irqrestore(&mctz->lock, flags);
542 }
543 }
544 }
545
546 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
547 {
548 struct mem_cgroup_tree_per_zone *mctz;
549 struct mem_cgroup_per_zone *mz;
550 int nid, zid;
551
552 for_each_node(nid) {
553 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
554 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
555 mctz = soft_limit_tree_node_zone(nid, zid);
556 mem_cgroup_remove_exceeded(mz, mctz);
557 }
558 }
559 }
560
561 static struct mem_cgroup_per_zone *
562 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
563 {
564 struct rb_node *rightmost = NULL;
565 struct mem_cgroup_per_zone *mz;
566
567 retry:
568 mz = NULL;
569 rightmost = rb_last(&mctz->rb_root);
570 if (!rightmost)
571 goto done; /* Nothing to reclaim from */
572
573 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
574 /*
575 * Remove the node now but someone else can add it back,
576 * we will to add it back at the end of reclaim to its correct
577 * position in the tree.
578 */
579 __mem_cgroup_remove_exceeded(mz, mctz);
580 if (!soft_limit_excess(mz->memcg) ||
581 !css_tryget_online(&mz->memcg->css))
582 goto retry;
583 done:
584 return mz;
585 }
586
587 static struct mem_cgroup_per_zone *
588 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
589 {
590 struct mem_cgroup_per_zone *mz;
591
592 spin_lock_irq(&mctz->lock);
593 mz = __mem_cgroup_largest_soft_limit_node(mctz);
594 spin_unlock_irq(&mctz->lock);
595 return mz;
596 }
597
598 /*
599 * Return page count for single (non recursive) @memcg.
600 *
601 * Implementation Note: reading percpu statistics for memcg.
602 *
603 * Both of vmstat[] and percpu_counter has threshold and do periodic
604 * synchronization to implement "quick" read. There are trade-off between
605 * reading cost and precision of value. Then, we may have a chance to implement
606 * a periodic synchronization of counter in memcg's counter.
607 *
608 * But this _read() function is used for user interface now. The user accounts
609 * memory usage by memory cgroup and he _always_ requires exact value because
610 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
611 * have to visit all online cpus and make sum. So, for now, unnecessary
612 * synchronization is not implemented. (just implemented for cpu hotplug)
613 *
614 * If there are kernel internal actions which can make use of some not-exact
615 * value, and reading all cpu value can be performance bottleneck in some
616 * common workload, threshold and synchronization as vmstat[] should be
617 * implemented.
618 */
619 static unsigned long
620 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
621 {
622 long val = 0;
623 int cpu;
624
625 /* Per-cpu values can be negative, use a signed accumulator */
626 for_each_possible_cpu(cpu)
627 val += per_cpu(memcg->stat->count[idx], cpu);
628 /*
629 * Summing races with updates, so val may be negative. Avoid exposing
630 * transient negative values.
631 */
632 if (val < 0)
633 val = 0;
634 return val;
635 }
636
637 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
638 enum mem_cgroup_events_index idx)
639 {
640 unsigned long val = 0;
641 int cpu;
642
643 for_each_possible_cpu(cpu)
644 val += per_cpu(memcg->stat->events[idx], cpu);
645 return val;
646 }
647
648 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
649 struct page *page,
650 bool compound, int nr_pages)
651 {
652 /*
653 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
654 * counted as CACHE even if it's on ANON LRU.
655 */
656 if (PageAnon(page))
657 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
658 nr_pages);
659 else
660 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
661 nr_pages);
662
663 if (compound) {
664 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
665 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
666 nr_pages);
667 }
668
669 /* pagein of a big page is an event. So, ignore page size */
670 if (nr_pages > 0)
671 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
672 else {
673 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
674 nr_pages = -nr_pages; /* for event */
675 }
676
677 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
678 }
679
680 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
681 int nid,
682 unsigned int lru_mask)
683 {
684 unsigned long nr = 0;
685 int zid;
686
687 VM_BUG_ON((unsigned)nid >= nr_node_ids);
688
689 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
690 struct mem_cgroup_per_zone *mz;
691 enum lru_list lru;
692
693 for_each_lru(lru) {
694 if (!(BIT(lru) & lru_mask))
695 continue;
696 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
697 nr += mz->lru_size[lru];
698 }
699 }
700 return nr;
701 }
702
703 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
704 unsigned int lru_mask)
705 {
706 unsigned long nr = 0;
707 int nid;
708
709 for_each_node_state(nid, N_MEMORY)
710 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
711 return nr;
712 }
713
714 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
715 enum mem_cgroup_events_target target)
716 {
717 unsigned long val, next;
718
719 val = __this_cpu_read(memcg->stat->nr_page_events);
720 next = __this_cpu_read(memcg->stat->targets[target]);
721 /* from time_after() in jiffies.h */
722 if ((long)next - (long)val < 0) {
723 switch (target) {
724 case MEM_CGROUP_TARGET_THRESH:
725 next = val + THRESHOLDS_EVENTS_TARGET;
726 break;
727 case MEM_CGROUP_TARGET_SOFTLIMIT:
728 next = val + SOFTLIMIT_EVENTS_TARGET;
729 break;
730 case MEM_CGROUP_TARGET_NUMAINFO:
731 next = val + NUMAINFO_EVENTS_TARGET;
732 break;
733 default:
734 break;
735 }
736 __this_cpu_write(memcg->stat->targets[target], next);
737 return true;
738 }
739 return false;
740 }
741
742 /*
743 * Check events in order.
744 *
745 */
746 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
747 {
748 /* threshold event is triggered in finer grain than soft limit */
749 if (unlikely(mem_cgroup_event_ratelimit(memcg,
750 MEM_CGROUP_TARGET_THRESH))) {
751 bool do_softlimit;
752 bool do_numainfo __maybe_unused;
753
754 do_softlimit = mem_cgroup_event_ratelimit(memcg,
755 MEM_CGROUP_TARGET_SOFTLIMIT);
756 #if MAX_NUMNODES > 1
757 do_numainfo = mem_cgroup_event_ratelimit(memcg,
758 MEM_CGROUP_TARGET_NUMAINFO);
759 #endif
760 mem_cgroup_threshold(memcg);
761 if (unlikely(do_softlimit))
762 mem_cgroup_update_tree(memcg, page);
763 #if MAX_NUMNODES > 1
764 if (unlikely(do_numainfo))
765 atomic_inc(&memcg->numainfo_events);
766 #endif
767 }
768 }
769
770 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
771 {
772 /*
773 * mm_update_next_owner() may clear mm->owner to NULL
774 * if it races with swapoff, page migration, etc.
775 * So this can be called with p == NULL.
776 */
777 if (unlikely(!p))
778 return NULL;
779
780 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
781 }
782 EXPORT_SYMBOL(mem_cgroup_from_task);
783
784 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
785 {
786 struct mem_cgroup *memcg = NULL;
787
788 rcu_read_lock();
789 do {
790 /*
791 * Page cache insertions can happen withou an
792 * actual mm context, e.g. during disk probing
793 * on boot, loopback IO, acct() writes etc.
794 */
795 if (unlikely(!mm))
796 memcg = root_mem_cgroup;
797 else {
798 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
799 if (unlikely(!memcg))
800 memcg = root_mem_cgroup;
801 }
802 } while (!css_tryget_online(&memcg->css));
803 rcu_read_unlock();
804 return memcg;
805 }
806
807 /**
808 * mem_cgroup_iter - iterate over memory cgroup hierarchy
809 * @root: hierarchy root
810 * @prev: previously returned memcg, NULL on first invocation
811 * @reclaim: cookie for shared reclaim walks, NULL for full walks
812 *
813 * Returns references to children of the hierarchy below @root, or
814 * @root itself, or %NULL after a full round-trip.
815 *
816 * Caller must pass the return value in @prev on subsequent
817 * invocations for reference counting, or use mem_cgroup_iter_break()
818 * to cancel a hierarchy walk before the round-trip is complete.
819 *
820 * Reclaimers can specify a zone and a priority level in @reclaim to
821 * divide up the memcgs in the hierarchy among all concurrent
822 * reclaimers operating on the same zone and priority.
823 */
824 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
825 struct mem_cgroup *prev,
826 struct mem_cgroup_reclaim_cookie *reclaim)
827 {
828 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
829 struct cgroup_subsys_state *css = NULL;
830 struct mem_cgroup *memcg = NULL;
831 struct mem_cgroup *pos = NULL;
832
833 if (mem_cgroup_disabled())
834 return NULL;
835
836 if (!root)
837 root = root_mem_cgroup;
838
839 if (prev && !reclaim)
840 pos = prev;
841
842 if (!root->use_hierarchy && root != root_mem_cgroup) {
843 if (prev)
844 goto out;
845 return root;
846 }
847
848 rcu_read_lock();
849
850 if (reclaim) {
851 struct mem_cgroup_per_zone *mz;
852
853 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
854 iter = &mz->iter[reclaim->priority];
855
856 if (prev && reclaim->generation != iter->generation)
857 goto out_unlock;
858
859 while (1) {
860 pos = READ_ONCE(iter->position);
861 if (!pos || css_tryget(&pos->css))
862 break;
863 /*
864 * css reference reached zero, so iter->position will
865 * be cleared by ->css_released. However, we should not
866 * rely on this happening soon, because ->css_released
867 * is called from a work queue, and by busy-waiting we
868 * might block it. So we clear iter->position right
869 * away.
870 */
871 (void)cmpxchg(&iter->position, pos, NULL);
872 }
873 }
874
875 if (pos)
876 css = &pos->css;
877
878 for (;;) {
879 css = css_next_descendant_pre(css, &root->css);
880 if (!css) {
881 /*
882 * Reclaimers share the hierarchy walk, and a
883 * new one might jump in right at the end of
884 * the hierarchy - make sure they see at least
885 * one group and restart from the beginning.
886 */
887 if (!prev)
888 continue;
889 break;
890 }
891
892 /*
893 * Verify the css and acquire a reference. The root
894 * is provided by the caller, so we know it's alive
895 * and kicking, and don't take an extra reference.
896 */
897 memcg = mem_cgroup_from_css(css);
898
899 if (css == &root->css)
900 break;
901
902 if (css_tryget(css)) {
903 /*
904 * Make sure the memcg is initialized:
905 * mem_cgroup_css_online() orders the the
906 * initialization against setting the flag.
907 */
908 if (smp_load_acquire(&memcg->initialized))
909 break;
910
911 css_put(css);
912 }
913
914 memcg = NULL;
915 }
916
917 if (reclaim) {
918 /*
919 * The position could have already been updated by a competing
920 * thread, so check that the value hasn't changed since we read
921 * it to avoid reclaiming from the same cgroup twice.
922 */
923 (void)cmpxchg(&iter->position, pos, memcg);
924
925 if (pos)
926 css_put(&pos->css);
927
928 if (!memcg)
929 iter->generation++;
930 else if (!prev)
931 reclaim->generation = iter->generation;
932 }
933
934 out_unlock:
935 rcu_read_unlock();
936 out:
937 if (prev && prev != root)
938 css_put(&prev->css);
939
940 return memcg;
941 }
942
943 /**
944 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
945 * @root: hierarchy root
946 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
947 */
948 void mem_cgroup_iter_break(struct mem_cgroup *root,
949 struct mem_cgroup *prev)
950 {
951 if (!root)
952 root = root_mem_cgroup;
953 if (prev && prev != root)
954 css_put(&prev->css);
955 }
956
957 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
958 {
959 struct mem_cgroup *memcg = dead_memcg;
960 struct mem_cgroup_reclaim_iter *iter;
961 struct mem_cgroup_per_zone *mz;
962 int nid, zid;
963 int i;
964
965 while ((memcg = parent_mem_cgroup(memcg))) {
966 for_each_node(nid) {
967 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
968 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
969 for (i = 0; i <= DEF_PRIORITY; i++) {
970 iter = &mz->iter[i];
971 cmpxchg(&iter->position,
972 dead_memcg, NULL);
973 }
974 }
975 }
976 }
977 }
978
979 /*
980 * Iteration constructs for visiting all cgroups (under a tree). If
981 * loops are exited prematurely (break), mem_cgroup_iter_break() must
982 * be used for reference counting.
983 */
984 #define for_each_mem_cgroup_tree(iter, root) \
985 for (iter = mem_cgroup_iter(root, NULL, NULL); \
986 iter != NULL; \
987 iter = mem_cgroup_iter(root, iter, NULL))
988
989 #define for_each_mem_cgroup(iter) \
990 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
991 iter != NULL; \
992 iter = mem_cgroup_iter(NULL, iter, NULL))
993
994 /**
995 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
996 * @zone: zone of the wanted lruvec
997 * @memcg: memcg of the wanted lruvec
998 *
999 * Returns the lru list vector holding pages for the given @zone and
1000 * @mem. This can be the global zone lruvec, if the memory controller
1001 * is disabled.
1002 */
1003 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1004 struct mem_cgroup *memcg)
1005 {
1006 struct mem_cgroup_per_zone *mz;
1007 struct lruvec *lruvec;
1008
1009 if (mem_cgroup_disabled()) {
1010 lruvec = &zone->lruvec;
1011 goto out;
1012 }
1013
1014 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1015 lruvec = &mz->lruvec;
1016 out:
1017 /*
1018 * Since a node can be onlined after the mem_cgroup was created,
1019 * we have to be prepared to initialize lruvec->zone here;
1020 * and if offlined then reonlined, we need to reinitialize it.
1021 */
1022 if (unlikely(lruvec->zone != zone))
1023 lruvec->zone = zone;
1024 return lruvec;
1025 }
1026
1027 /**
1028 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1029 * @page: the page
1030 * @zone: zone of the page
1031 *
1032 * This function is only safe when following the LRU page isolation
1033 * and putback protocol: the LRU lock must be held, and the page must
1034 * either be PageLRU() or the caller must have isolated/allocated it.
1035 */
1036 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1037 {
1038 struct mem_cgroup_per_zone *mz;
1039 struct mem_cgroup *memcg;
1040 struct lruvec *lruvec;
1041
1042 if (mem_cgroup_disabled()) {
1043 lruvec = &zone->lruvec;
1044 goto out;
1045 }
1046
1047 memcg = page->mem_cgroup;
1048 /*
1049 * Swapcache readahead pages are added to the LRU - and
1050 * possibly migrated - before they are charged.
1051 */
1052 if (!memcg)
1053 memcg = root_mem_cgroup;
1054
1055 mz = mem_cgroup_page_zoneinfo(memcg, page);
1056 lruvec = &mz->lruvec;
1057 out:
1058 /*
1059 * Since a node can be onlined after the mem_cgroup was created,
1060 * we have to be prepared to initialize lruvec->zone here;
1061 * and if offlined then reonlined, we need to reinitialize it.
1062 */
1063 if (unlikely(lruvec->zone != zone))
1064 lruvec->zone = zone;
1065 return lruvec;
1066 }
1067
1068 /**
1069 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1070 * @lruvec: mem_cgroup per zone lru vector
1071 * @lru: index of lru list the page is sitting on
1072 * @nr_pages: positive when adding or negative when removing
1073 *
1074 * This function must be called when a page is added to or removed from an
1075 * lru list.
1076 */
1077 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1078 int nr_pages)
1079 {
1080 struct mem_cgroup_per_zone *mz;
1081 unsigned long *lru_size;
1082
1083 if (mem_cgroup_disabled())
1084 return;
1085
1086 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1087 lru_size = mz->lru_size + lru;
1088 *lru_size += nr_pages;
1089 VM_BUG_ON((long)(*lru_size) < 0);
1090 }
1091
1092 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1093 {
1094 struct mem_cgroup *task_memcg;
1095 struct task_struct *p;
1096 bool ret;
1097
1098 p = find_lock_task_mm(task);
1099 if (p) {
1100 task_memcg = get_mem_cgroup_from_mm(p->mm);
1101 task_unlock(p);
1102 } else {
1103 /*
1104 * All threads may have already detached their mm's, but the oom
1105 * killer still needs to detect if they have already been oom
1106 * killed to prevent needlessly killing additional tasks.
1107 */
1108 rcu_read_lock();
1109 task_memcg = mem_cgroup_from_task(task);
1110 css_get(&task_memcg->css);
1111 rcu_read_unlock();
1112 }
1113 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1114 css_put(&task_memcg->css);
1115 return ret;
1116 }
1117
1118 /**
1119 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1120 * @memcg: the memory cgroup
1121 *
1122 * Returns the maximum amount of memory @mem can be charged with, in
1123 * pages.
1124 */
1125 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1126 {
1127 unsigned long margin = 0;
1128 unsigned long count;
1129 unsigned long limit;
1130
1131 count = page_counter_read(&memcg->memory);
1132 limit = READ_ONCE(memcg->memory.limit);
1133 if (count < limit)
1134 margin = limit - count;
1135
1136 if (do_memsw_account()) {
1137 count = page_counter_read(&memcg->memsw);
1138 limit = READ_ONCE(memcg->memsw.limit);
1139 if (count <= limit)
1140 margin = min(margin, limit - count);
1141 }
1142
1143 return margin;
1144 }
1145
1146 /*
1147 * A routine for checking "mem" is under move_account() or not.
1148 *
1149 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1150 * moving cgroups. This is for waiting at high-memory pressure
1151 * caused by "move".
1152 */
1153 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1154 {
1155 struct mem_cgroup *from;
1156 struct mem_cgroup *to;
1157 bool ret = false;
1158 /*
1159 * Unlike task_move routines, we access mc.to, mc.from not under
1160 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1161 */
1162 spin_lock(&mc.lock);
1163 from = mc.from;
1164 to = mc.to;
1165 if (!from)
1166 goto unlock;
1167
1168 ret = mem_cgroup_is_descendant(from, memcg) ||
1169 mem_cgroup_is_descendant(to, memcg);
1170 unlock:
1171 spin_unlock(&mc.lock);
1172 return ret;
1173 }
1174
1175 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1176 {
1177 if (mc.moving_task && current != mc.moving_task) {
1178 if (mem_cgroup_under_move(memcg)) {
1179 DEFINE_WAIT(wait);
1180 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1181 /* moving charge context might have finished. */
1182 if (mc.moving_task)
1183 schedule();
1184 finish_wait(&mc.waitq, &wait);
1185 return true;
1186 }
1187 }
1188 return false;
1189 }
1190
1191 #define K(x) ((x) << (PAGE_SHIFT-10))
1192 /**
1193 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1194 * @memcg: The memory cgroup that went over limit
1195 * @p: Task that is going to be killed
1196 *
1197 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1198 * enabled
1199 */
1200 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1201 {
1202 /* oom_info_lock ensures that parallel ooms do not interleave */
1203 static DEFINE_MUTEX(oom_info_lock);
1204 struct mem_cgroup *iter;
1205 unsigned int i;
1206
1207 mutex_lock(&oom_info_lock);
1208 rcu_read_lock();
1209
1210 if (p) {
1211 pr_info("Task in ");
1212 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1213 pr_cont(" killed as a result of limit of ");
1214 } else {
1215 pr_info("Memory limit reached of cgroup ");
1216 }
1217
1218 pr_cont_cgroup_path(memcg->css.cgroup);
1219 pr_cont("\n");
1220
1221 rcu_read_unlock();
1222
1223 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1224 K((u64)page_counter_read(&memcg->memory)),
1225 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1226 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1227 K((u64)page_counter_read(&memcg->memsw)),
1228 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1229 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1230 K((u64)page_counter_read(&memcg->kmem)),
1231 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1232
1233 for_each_mem_cgroup_tree(iter, memcg) {
1234 pr_info("Memory cgroup stats for ");
1235 pr_cont_cgroup_path(iter->css.cgroup);
1236 pr_cont(":");
1237
1238 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1239 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1240 continue;
1241 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1242 K(mem_cgroup_read_stat(iter, i)));
1243 }
1244
1245 for (i = 0; i < NR_LRU_LISTS; i++)
1246 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1247 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1248
1249 pr_cont("\n");
1250 }
1251 mutex_unlock(&oom_info_lock);
1252 }
1253
1254 /*
1255 * This function returns the number of memcg under hierarchy tree. Returns
1256 * 1(self count) if no children.
1257 */
1258 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1259 {
1260 int num = 0;
1261 struct mem_cgroup *iter;
1262
1263 for_each_mem_cgroup_tree(iter, memcg)
1264 num++;
1265 return num;
1266 }
1267
1268 /*
1269 * Return the memory (and swap, if configured) limit for a memcg.
1270 */
1271 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1272 {
1273 unsigned long limit;
1274
1275 limit = memcg->memory.limit;
1276 if (mem_cgroup_swappiness(memcg)) {
1277 unsigned long memsw_limit;
1278
1279 memsw_limit = memcg->memsw.limit;
1280 limit = min(limit + total_swap_pages, memsw_limit);
1281 }
1282 return limit;
1283 }
1284
1285 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1286 int order)
1287 {
1288 struct oom_control oc = {
1289 .zonelist = NULL,
1290 .nodemask = NULL,
1291 .gfp_mask = gfp_mask,
1292 .order = order,
1293 };
1294 struct mem_cgroup *iter;
1295 unsigned long chosen_points = 0;
1296 unsigned long totalpages;
1297 unsigned int points = 0;
1298 struct task_struct *chosen = NULL;
1299
1300 mutex_lock(&oom_lock);
1301
1302 /*
1303 * If current has a pending SIGKILL or is exiting, then automatically
1304 * select it. The goal is to allow it to allocate so that it may
1305 * quickly exit and free its memory.
1306 */
1307 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1308 mark_oom_victim(current);
1309 goto unlock;
1310 }
1311
1312 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1313 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1314 for_each_mem_cgroup_tree(iter, memcg) {
1315 struct css_task_iter it;
1316 struct task_struct *task;
1317
1318 css_task_iter_start(&iter->css, &it);
1319 while ((task = css_task_iter_next(&it))) {
1320 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1321 case OOM_SCAN_SELECT:
1322 if (chosen)
1323 put_task_struct(chosen);
1324 chosen = task;
1325 chosen_points = ULONG_MAX;
1326 get_task_struct(chosen);
1327 /* fall through */
1328 case OOM_SCAN_CONTINUE:
1329 continue;
1330 case OOM_SCAN_ABORT:
1331 css_task_iter_end(&it);
1332 mem_cgroup_iter_break(memcg, iter);
1333 if (chosen)
1334 put_task_struct(chosen);
1335 goto unlock;
1336 case OOM_SCAN_OK:
1337 break;
1338 };
1339 points = oom_badness(task, memcg, NULL, totalpages);
1340 if (!points || points < chosen_points)
1341 continue;
1342 /* Prefer thread group leaders for display purposes */
1343 if (points == chosen_points &&
1344 thread_group_leader(chosen))
1345 continue;
1346
1347 if (chosen)
1348 put_task_struct(chosen);
1349 chosen = task;
1350 chosen_points = points;
1351 get_task_struct(chosen);
1352 }
1353 css_task_iter_end(&it);
1354 }
1355
1356 if (chosen) {
1357 points = chosen_points * 1000 / totalpages;
1358 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1359 "Memory cgroup out of memory");
1360 }
1361 unlock:
1362 mutex_unlock(&oom_lock);
1363 }
1364
1365 #if MAX_NUMNODES > 1
1366
1367 /**
1368 * test_mem_cgroup_node_reclaimable
1369 * @memcg: the target memcg
1370 * @nid: the node ID to be checked.
1371 * @noswap : specify true here if the user wants flle only information.
1372 *
1373 * This function returns whether the specified memcg contains any
1374 * reclaimable pages on a node. Returns true if there are any reclaimable
1375 * pages in the node.
1376 */
1377 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1378 int nid, bool noswap)
1379 {
1380 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1381 return true;
1382 if (noswap || !total_swap_pages)
1383 return false;
1384 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1385 return true;
1386 return false;
1387
1388 }
1389
1390 /*
1391 * Always updating the nodemask is not very good - even if we have an empty
1392 * list or the wrong list here, we can start from some node and traverse all
1393 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1394 *
1395 */
1396 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1397 {
1398 int nid;
1399 /*
1400 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1401 * pagein/pageout changes since the last update.
1402 */
1403 if (!atomic_read(&memcg->numainfo_events))
1404 return;
1405 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1406 return;
1407
1408 /* make a nodemask where this memcg uses memory from */
1409 memcg->scan_nodes = node_states[N_MEMORY];
1410
1411 for_each_node_mask(nid, node_states[N_MEMORY]) {
1412
1413 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1414 node_clear(nid, memcg->scan_nodes);
1415 }
1416
1417 atomic_set(&memcg->numainfo_events, 0);
1418 atomic_set(&memcg->numainfo_updating, 0);
1419 }
1420
1421 /*
1422 * Selecting a node where we start reclaim from. Because what we need is just
1423 * reducing usage counter, start from anywhere is O,K. Considering
1424 * memory reclaim from current node, there are pros. and cons.
1425 *
1426 * Freeing memory from current node means freeing memory from a node which
1427 * we'll use or we've used. So, it may make LRU bad. And if several threads
1428 * hit limits, it will see a contention on a node. But freeing from remote
1429 * node means more costs for memory reclaim because of memory latency.
1430 *
1431 * Now, we use round-robin. Better algorithm is welcomed.
1432 */
1433 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1434 {
1435 int node;
1436
1437 mem_cgroup_may_update_nodemask(memcg);
1438 node = memcg->last_scanned_node;
1439
1440 node = next_node(node, memcg->scan_nodes);
1441 if (node == MAX_NUMNODES)
1442 node = first_node(memcg->scan_nodes);
1443 /*
1444 * We call this when we hit limit, not when pages are added to LRU.
1445 * No LRU may hold pages because all pages are UNEVICTABLE or
1446 * memcg is too small and all pages are not on LRU. In that case,
1447 * we use curret node.
1448 */
1449 if (unlikely(node == MAX_NUMNODES))
1450 node = numa_node_id();
1451
1452 memcg->last_scanned_node = node;
1453 return node;
1454 }
1455 #else
1456 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1457 {
1458 return 0;
1459 }
1460 #endif
1461
1462 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1463 struct zone *zone,
1464 gfp_t gfp_mask,
1465 unsigned long *total_scanned)
1466 {
1467 struct mem_cgroup *victim = NULL;
1468 int total = 0;
1469 int loop = 0;
1470 unsigned long excess;
1471 unsigned long nr_scanned;
1472 struct mem_cgroup_reclaim_cookie reclaim = {
1473 .zone = zone,
1474 .priority = 0,
1475 };
1476
1477 excess = soft_limit_excess(root_memcg);
1478
1479 while (1) {
1480 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1481 if (!victim) {
1482 loop++;
1483 if (loop >= 2) {
1484 /*
1485 * If we have not been able to reclaim
1486 * anything, it might because there are
1487 * no reclaimable pages under this hierarchy
1488 */
1489 if (!total)
1490 break;
1491 /*
1492 * We want to do more targeted reclaim.
1493 * excess >> 2 is not to excessive so as to
1494 * reclaim too much, nor too less that we keep
1495 * coming back to reclaim from this cgroup
1496 */
1497 if (total >= (excess >> 2) ||
1498 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1499 break;
1500 }
1501 continue;
1502 }
1503 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1504 zone, &nr_scanned);
1505 *total_scanned += nr_scanned;
1506 if (!soft_limit_excess(root_memcg))
1507 break;
1508 }
1509 mem_cgroup_iter_break(root_memcg, victim);
1510 return total;
1511 }
1512
1513 #ifdef CONFIG_LOCKDEP
1514 static struct lockdep_map memcg_oom_lock_dep_map = {
1515 .name = "memcg_oom_lock",
1516 };
1517 #endif
1518
1519 static DEFINE_SPINLOCK(memcg_oom_lock);
1520
1521 /*
1522 * Check OOM-Killer is already running under our hierarchy.
1523 * If someone is running, return false.
1524 */
1525 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1526 {
1527 struct mem_cgroup *iter, *failed = NULL;
1528
1529 spin_lock(&memcg_oom_lock);
1530
1531 for_each_mem_cgroup_tree(iter, memcg) {
1532 if (iter->oom_lock) {
1533 /*
1534 * this subtree of our hierarchy is already locked
1535 * so we cannot give a lock.
1536 */
1537 failed = iter;
1538 mem_cgroup_iter_break(memcg, iter);
1539 break;
1540 } else
1541 iter->oom_lock = true;
1542 }
1543
1544 if (failed) {
1545 /*
1546 * OK, we failed to lock the whole subtree so we have
1547 * to clean up what we set up to the failing subtree
1548 */
1549 for_each_mem_cgroup_tree(iter, memcg) {
1550 if (iter == failed) {
1551 mem_cgroup_iter_break(memcg, iter);
1552 break;
1553 }
1554 iter->oom_lock = false;
1555 }
1556 } else
1557 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1558
1559 spin_unlock(&memcg_oom_lock);
1560
1561 return !failed;
1562 }
1563
1564 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1565 {
1566 struct mem_cgroup *iter;
1567
1568 spin_lock(&memcg_oom_lock);
1569 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1570 for_each_mem_cgroup_tree(iter, memcg)
1571 iter->oom_lock = false;
1572 spin_unlock(&memcg_oom_lock);
1573 }
1574
1575 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1576 {
1577 struct mem_cgroup *iter;
1578
1579 spin_lock(&memcg_oom_lock);
1580 for_each_mem_cgroup_tree(iter, memcg)
1581 iter->under_oom++;
1582 spin_unlock(&memcg_oom_lock);
1583 }
1584
1585 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1586 {
1587 struct mem_cgroup *iter;
1588
1589 /*
1590 * When a new child is created while the hierarchy is under oom,
1591 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1592 */
1593 spin_lock(&memcg_oom_lock);
1594 for_each_mem_cgroup_tree(iter, memcg)
1595 if (iter->under_oom > 0)
1596 iter->under_oom--;
1597 spin_unlock(&memcg_oom_lock);
1598 }
1599
1600 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1601
1602 struct oom_wait_info {
1603 struct mem_cgroup *memcg;
1604 wait_queue_t wait;
1605 };
1606
1607 static int memcg_oom_wake_function(wait_queue_t *wait,
1608 unsigned mode, int sync, void *arg)
1609 {
1610 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1611 struct mem_cgroup *oom_wait_memcg;
1612 struct oom_wait_info *oom_wait_info;
1613
1614 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1615 oom_wait_memcg = oom_wait_info->memcg;
1616
1617 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1618 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1619 return 0;
1620 return autoremove_wake_function(wait, mode, sync, arg);
1621 }
1622
1623 static void memcg_oom_recover(struct mem_cgroup *memcg)
1624 {
1625 /*
1626 * For the following lockless ->under_oom test, the only required
1627 * guarantee is that it must see the state asserted by an OOM when
1628 * this function is called as a result of userland actions
1629 * triggered by the notification of the OOM. This is trivially
1630 * achieved by invoking mem_cgroup_mark_under_oom() before
1631 * triggering notification.
1632 */
1633 if (memcg && memcg->under_oom)
1634 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1635 }
1636
1637 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1638 {
1639 if (!current->memcg_may_oom)
1640 return;
1641 /*
1642 * We are in the middle of the charge context here, so we
1643 * don't want to block when potentially sitting on a callstack
1644 * that holds all kinds of filesystem and mm locks.
1645 *
1646 * Also, the caller may handle a failed allocation gracefully
1647 * (like optional page cache readahead) and so an OOM killer
1648 * invocation might not even be necessary.
1649 *
1650 * That's why we don't do anything here except remember the
1651 * OOM context and then deal with it at the end of the page
1652 * fault when the stack is unwound, the locks are released,
1653 * and when we know whether the fault was overall successful.
1654 */
1655 css_get(&memcg->css);
1656 current->memcg_in_oom = memcg;
1657 current->memcg_oom_gfp_mask = mask;
1658 current->memcg_oom_order = order;
1659 }
1660
1661 /**
1662 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1663 * @handle: actually kill/wait or just clean up the OOM state
1664 *
1665 * This has to be called at the end of a page fault if the memcg OOM
1666 * handler was enabled.
1667 *
1668 * Memcg supports userspace OOM handling where failed allocations must
1669 * sleep on a waitqueue until the userspace task resolves the
1670 * situation. Sleeping directly in the charge context with all kinds
1671 * of locks held is not a good idea, instead we remember an OOM state
1672 * in the task and mem_cgroup_oom_synchronize() has to be called at
1673 * the end of the page fault to complete the OOM handling.
1674 *
1675 * Returns %true if an ongoing memcg OOM situation was detected and
1676 * completed, %false otherwise.
1677 */
1678 bool mem_cgroup_oom_synchronize(bool handle)
1679 {
1680 struct mem_cgroup *memcg = current->memcg_in_oom;
1681 struct oom_wait_info owait;
1682 bool locked;
1683
1684 /* OOM is global, do not handle */
1685 if (!memcg)
1686 return false;
1687
1688 if (!handle || oom_killer_disabled)
1689 goto cleanup;
1690
1691 owait.memcg = memcg;
1692 owait.wait.flags = 0;
1693 owait.wait.func = memcg_oom_wake_function;
1694 owait.wait.private = current;
1695 INIT_LIST_HEAD(&owait.wait.task_list);
1696
1697 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1698 mem_cgroup_mark_under_oom(memcg);
1699
1700 locked = mem_cgroup_oom_trylock(memcg);
1701
1702 if (locked)
1703 mem_cgroup_oom_notify(memcg);
1704
1705 if (locked && !memcg->oom_kill_disable) {
1706 mem_cgroup_unmark_under_oom(memcg);
1707 finish_wait(&memcg_oom_waitq, &owait.wait);
1708 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1709 current->memcg_oom_order);
1710 } else {
1711 schedule();
1712 mem_cgroup_unmark_under_oom(memcg);
1713 finish_wait(&memcg_oom_waitq, &owait.wait);
1714 }
1715
1716 if (locked) {
1717 mem_cgroup_oom_unlock(memcg);
1718 /*
1719 * There is no guarantee that an OOM-lock contender
1720 * sees the wakeups triggered by the OOM kill
1721 * uncharges. Wake any sleepers explicitely.
1722 */
1723 memcg_oom_recover(memcg);
1724 }
1725 cleanup:
1726 current->memcg_in_oom = NULL;
1727 css_put(&memcg->css);
1728 return true;
1729 }
1730
1731 /**
1732 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1733 * @page: page that is going to change accounted state
1734 *
1735 * This function must mark the beginning of an accounted page state
1736 * change to prevent double accounting when the page is concurrently
1737 * being moved to another memcg:
1738 *
1739 * memcg = mem_cgroup_begin_page_stat(page);
1740 * if (TestClearPageState(page))
1741 * mem_cgroup_update_page_stat(memcg, state, -1);
1742 * mem_cgroup_end_page_stat(memcg);
1743 */
1744 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1745 {
1746 struct mem_cgroup *memcg;
1747 unsigned long flags;
1748
1749 /*
1750 * The RCU lock is held throughout the transaction. The fast
1751 * path can get away without acquiring the memcg->move_lock
1752 * because page moving starts with an RCU grace period.
1753 *
1754 * The RCU lock also protects the memcg from being freed when
1755 * the page state that is going to change is the only thing
1756 * preventing the page from being uncharged.
1757 * E.g. end-writeback clearing PageWriteback(), which allows
1758 * migration to go ahead and uncharge the page before the
1759 * account transaction might be complete.
1760 */
1761 rcu_read_lock();
1762
1763 if (mem_cgroup_disabled())
1764 return NULL;
1765 again:
1766 memcg = page->mem_cgroup;
1767 if (unlikely(!memcg))
1768 return NULL;
1769
1770 if (atomic_read(&memcg->moving_account) <= 0)
1771 return memcg;
1772
1773 spin_lock_irqsave(&memcg->move_lock, flags);
1774 if (memcg != page->mem_cgroup) {
1775 spin_unlock_irqrestore(&memcg->move_lock, flags);
1776 goto again;
1777 }
1778
1779 /*
1780 * When charge migration first begins, we can have locked and
1781 * unlocked page stat updates happening concurrently. Track
1782 * the task who has the lock for mem_cgroup_end_page_stat().
1783 */
1784 memcg->move_lock_task = current;
1785 memcg->move_lock_flags = flags;
1786
1787 return memcg;
1788 }
1789 EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1790
1791 /**
1792 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1793 * @memcg: the memcg that was accounted against
1794 */
1795 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1796 {
1797 if (memcg && memcg->move_lock_task == current) {
1798 unsigned long flags = memcg->move_lock_flags;
1799
1800 memcg->move_lock_task = NULL;
1801 memcg->move_lock_flags = 0;
1802
1803 spin_unlock_irqrestore(&memcg->move_lock, flags);
1804 }
1805
1806 rcu_read_unlock();
1807 }
1808 EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1809
1810 /*
1811 * size of first charge trial. "32" comes from vmscan.c's magic value.
1812 * TODO: maybe necessary to use big numbers in big irons.
1813 */
1814 #define CHARGE_BATCH 32U
1815 struct memcg_stock_pcp {
1816 struct mem_cgroup *cached; /* this never be root cgroup */
1817 unsigned int nr_pages;
1818 struct work_struct work;
1819 unsigned long flags;
1820 #define FLUSHING_CACHED_CHARGE 0
1821 };
1822 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1823 static DEFINE_MUTEX(percpu_charge_mutex);
1824
1825 /**
1826 * consume_stock: Try to consume stocked charge on this cpu.
1827 * @memcg: memcg to consume from.
1828 * @nr_pages: how many pages to charge.
1829 *
1830 * The charges will only happen if @memcg matches the current cpu's memcg
1831 * stock, and at least @nr_pages are available in that stock. Failure to
1832 * service an allocation will refill the stock.
1833 *
1834 * returns true if successful, false otherwise.
1835 */
1836 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1837 {
1838 struct memcg_stock_pcp *stock;
1839 bool ret = false;
1840
1841 if (nr_pages > CHARGE_BATCH)
1842 return ret;
1843
1844 stock = &get_cpu_var(memcg_stock);
1845 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1846 stock->nr_pages -= nr_pages;
1847 ret = true;
1848 }
1849 put_cpu_var(memcg_stock);
1850 return ret;
1851 }
1852
1853 /*
1854 * Returns stocks cached in percpu and reset cached information.
1855 */
1856 static void drain_stock(struct memcg_stock_pcp *stock)
1857 {
1858 struct mem_cgroup *old = stock->cached;
1859
1860 if (stock->nr_pages) {
1861 page_counter_uncharge(&old->memory, stock->nr_pages);
1862 if (do_memsw_account())
1863 page_counter_uncharge(&old->memsw, stock->nr_pages);
1864 css_put_many(&old->css, stock->nr_pages);
1865 stock->nr_pages = 0;
1866 }
1867 stock->cached = NULL;
1868 }
1869
1870 /*
1871 * This must be called under preempt disabled or must be called by
1872 * a thread which is pinned to local cpu.
1873 */
1874 static void drain_local_stock(struct work_struct *dummy)
1875 {
1876 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1877 drain_stock(stock);
1878 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1879 }
1880
1881 /*
1882 * Cache charges(val) to local per_cpu area.
1883 * This will be consumed by consume_stock() function, later.
1884 */
1885 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1886 {
1887 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1888
1889 if (stock->cached != memcg) { /* reset if necessary */
1890 drain_stock(stock);
1891 stock->cached = memcg;
1892 }
1893 stock->nr_pages += nr_pages;
1894 put_cpu_var(memcg_stock);
1895 }
1896
1897 /*
1898 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1899 * of the hierarchy under it.
1900 */
1901 static void drain_all_stock(struct mem_cgroup *root_memcg)
1902 {
1903 int cpu, curcpu;
1904
1905 /* If someone's already draining, avoid adding running more workers. */
1906 if (!mutex_trylock(&percpu_charge_mutex))
1907 return;
1908 /* Notify other cpus that system-wide "drain" is running */
1909 get_online_cpus();
1910 curcpu = get_cpu();
1911 for_each_online_cpu(cpu) {
1912 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1913 struct mem_cgroup *memcg;
1914
1915 memcg = stock->cached;
1916 if (!memcg || !stock->nr_pages)
1917 continue;
1918 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1919 continue;
1920 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1921 if (cpu == curcpu)
1922 drain_local_stock(&stock->work);
1923 else
1924 schedule_work_on(cpu, &stock->work);
1925 }
1926 }
1927 put_cpu();
1928 put_online_cpus();
1929 mutex_unlock(&percpu_charge_mutex);
1930 }
1931
1932 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1933 unsigned long action,
1934 void *hcpu)
1935 {
1936 int cpu = (unsigned long)hcpu;
1937 struct memcg_stock_pcp *stock;
1938
1939 if (action == CPU_ONLINE)
1940 return NOTIFY_OK;
1941
1942 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1943 return NOTIFY_OK;
1944
1945 stock = &per_cpu(memcg_stock, cpu);
1946 drain_stock(stock);
1947 return NOTIFY_OK;
1948 }
1949
1950 static void reclaim_high(struct mem_cgroup *memcg,
1951 unsigned int nr_pages,
1952 gfp_t gfp_mask)
1953 {
1954 do {
1955 if (page_counter_read(&memcg->memory) <= memcg->high)
1956 continue;
1957 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1958 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1959 } while ((memcg = parent_mem_cgroup(memcg)));
1960 }
1961
1962 static void high_work_func(struct work_struct *work)
1963 {
1964 struct mem_cgroup *memcg;
1965
1966 memcg = container_of(work, struct mem_cgroup, high_work);
1967 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1968 }
1969
1970 /*
1971 * Scheduled by try_charge() to be executed from the userland return path
1972 * and reclaims memory over the high limit.
1973 */
1974 void mem_cgroup_handle_over_high(void)
1975 {
1976 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1977 struct mem_cgroup *memcg;
1978
1979 if (likely(!nr_pages))
1980 return;
1981
1982 memcg = get_mem_cgroup_from_mm(current->mm);
1983 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1984 css_put(&memcg->css);
1985 current->memcg_nr_pages_over_high = 0;
1986 }
1987
1988 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1989 unsigned int nr_pages)
1990 {
1991 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1992 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1993 struct mem_cgroup *mem_over_limit;
1994 struct page_counter *counter;
1995 unsigned long nr_reclaimed;
1996 bool may_swap = true;
1997 bool drained = false;
1998
1999 if (mem_cgroup_is_root(memcg))
2000 return 0;
2001 retry:
2002 if (consume_stock(memcg, nr_pages))
2003 return 0;
2004
2005 if (!do_memsw_account() ||
2006 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2007 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2008 goto done_restock;
2009 if (do_memsw_account())
2010 page_counter_uncharge(&memcg->memsw, batch);
2011 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2012 } else {
2013 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2014 may_swap = false;
2015 }
2016
2017 if (batch > nr_pages) {
2018 batch = nr_pages;
2019 goto retry;
2020 }
2021
2022 /*
2023 * Unlike in global OOM situations, memcg is not in a physical
2024 * memory shortage. Allow dying and OOM-killed tasks to
2025 * bypass the last charges so that they can exit quickly and
2026 * free their memory.
2027 */
2028 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2029 fatal_signal_pending(current) ||
2030 current->flags & PF_EXITING))
2031 goto force;
2032
2033 if (unlikely(task_in_memcg_oom(current)))
2034 goto nomem;
2035
2036 if (!gfpflags_allow_blocking(gfp_mask))
2037 goto nomem;
2038
2039 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2040
2041 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2042 gfp_mask, may_swap);
2043
2044 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2045 goto retry;
2046
2047 if (!drained) {
2048 drain_all_stock(mem_over_limit);
2049 drained = true;
2050 goto retry;
2051 }
2052
2053 if (gfp_mask & __GFP_NORETRY)
2054 goto nomem;
2055 /*
2056 * Even though the limit is exceeded at this point, reclaim
2057 * may have been able to free some pages. Retry the charge
2058 * before killing the task.
2059 *
2060 * Only for regular pages, though: huge pages are rather
2061 * unlikely to succeed so close to the limit, and we fall back
2062 * to regular pages anyway in case of failure.
2063 */
2064 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2065 goto retry;
2066 /*
2067 * At task move, charge accounts can be doubly counted. So, it's
2068 * better to wait until the end of task_move if something is going on.
2069 */
2070 if (mem_cgroup_wait_acct_move(mem_over_limit))
2071 goto retry;
2072
2073 if (nr_retries--)
2074 goto retry;
2075
2076 if (gfp_mask & __GFP_NOFAIL)
2077 goto force;
2078
2079 if (fatal_signal_pending(current))
2080 goto force;
2081
2082 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2083
2084 mem_cgroup_oom(mem_over_limit, gfp_mask,
2085 get_order(nr_pages * PAGE_SIZE));
2086 nomem:
2087 if (!(gfp_mask & __GFP_NOFAIL))
2088 return -ENOMEM;
2089 force:
2090 /*
2091 * The allocation either can't fail or will lead to more memory
2092 * being freed very soon. Allow memory usage go over the limit
2093 * temporarily by force charging it.
2094 */
2095 page_counter_charge(&memcg->memory, nr_pages);
2096 if (do_memsw_account())
2097 page_counter_charge(&memcg->memsw, nr_pages);
2098 css_get_many(&memcg->css, nr_pages);
2099
2100 return 0;
2101
2102 done_restock:
2103 css_get_many(&memcg->css, batch);
2104 if (batch > nr_pages)
2105 refill_stock(memcg, batch - nr_pages);
2106
2107 /*
2108 * If the hierarchy is above the normal consumption range, schedule
2109 * reclaim on returning to userland. We can perform reclaim here
2110 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2111 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2112 * not recorded as it most likely matches current's and won't
2113 * change in the meantime. As high limit is checked again before
2114 * reclaim, the cost of mismatch is negligible.
2115 */
2116 do {
2117 if (page_counter_read(&memcg->memory) > memcg->high) {
2118 /* Don't bother a random interrupted task */
2119 if (in_interrupt()) {
2120 schedule_work(&memcg->high_work);
2121 break;
2122 }
2123 current->memcg_nr_pages_over_high += batch;
2124 set_notify_resume(current);
2125 break;
2126 }
2127 } while ((memcg = parent_mem_cgroup(memcg)));
2128
2129 return 0;
2130 }
2131
2132 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2133 {
2134 if (mem_cgroup_is_root(memcg))
2135 return;
2136
2137 page_counter_uncharge(&memcg->memory, nr_pages);
2138 if (do_memsw_account())
2139 page_counter_uncharge(&memcg->memsw, nr_pages);
2140
2141 css_put_many(&memcg->css, nr_pages);
2142 }
2143
2144 static void lock_page_lru(struct page *page, int *isolated)
2145 {
2146 struct zone *zone = page_zone(page);
2147
2148 spin_lock_irq(&zone->lru_lock);
2149 if (PageLRU(page)) {
2150 struct lruvec *lruvec;
2151
2152 lruvec = mem_cgroup_page_lruvec(page, zone);
2153 ClearPageLRU(page);
2154 del_page_from_lru_list(page, lruvec, page_lru(page));
2155 *isolated = 1;
2156 } else
2157 *isolated = 0;
2158 }
2159
2160 static void unlock_page_lru(struct page *page, int isolated)
2161 {
2162 struct zone *zone = page_zone(page);
2163
2164 if (isolated) {
2165 struct lruvec *lruvec;
2166
2167 lruvec = mem_cgroup_page_lruvec(page, zone);
2168 VM_BUG_ON_PAGE(PageLRU(page), page);
2169 SetPageLRU(page);
2170 add_page_to_lru_list(page, lruvec, page_lru(page));
2171 }
2172 spin_unlock_irq(&zone->lru_lock);
2173 }
2174
2175 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2176 bool lrucare)
2177 {
2178 int isolated;
2179
2180 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2181
2182 /*
2183 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2184 * may already be on some other mem_cgroup's LRU. Take care of it.
2185 */
2186 if (lrucare)
2187 lock_page_lru(page, &isolated);
2188
2189 /*
2190 * Nobody should be changing or seriously looking at
2191 * page->mem_cgroup at this point:
2192 *
2193 * - the page is uncharged
2194 *
2195 * - the page is off-LRU
2196 *
2197 * - an anonymous fault has exclusive page access, except for
2198 * a locked page table
2199 *
2200 * - a page cache insertion, a swapin fault, or a migration
2201 * have the page locked
2202 */
2203 page->mem_cgroup = memcg;
2204
2205 if (lrucare)
2206 unlock_page_lru(page, isolated);
2207 }
2208
2209 #ifdef CONFIG_MEMCG_KMEM
2210 static int memcg_alloc_cache_id(void)
2211 {
2212 int id, size;
2213 int err;
2214
2215 id = ida_simple_get(&memcg_cache_ida,
2216 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2217 if (id < 0)
2218 return id;
2219
2220 if (id < memcg_nr_cache_ids)
2221 return id;
2222
2223 /*
2224 * There's no space for the new id in memcg_caches arrays,
2225 * so we have to grow them.
2226 */
2227 down_write(&memcg_cache_ids_sem);
2228
2229 size = 2 * (id + 1);
2230 if (size < MEMCG_CACHES_MIN_SIZE)
2231 size = MEMCG_CACHES_MIN_SIZE;
2232 else if (size > MEMCG_CACHES_MAX_SIZE)
2233 size = MEMCG_CACHES_MAX_SIZE;
2234
2235 err = memcg_update_all_caches(size);
2236 if (!err)
2237 err = memcg_update_all_list_lrus(size);
2238 if (!err)
2239 memcg_nr_cache_ids = size;
2240
2241 up_write(&memcg_cache_ids_sem);
2242
2243 if (err) {
2244 ida_simple_remove(&memcg_cache_ida, id);
2245 return err;
2246 }
2247 return id;
2248 }
2249
2250 static void memcg_free_cache_id(int id)
2251 {
2252 ida_simple_remove(&memcg_cache_ida, id);
2253 }
2254
2255 struct memcg_kmem_cache_create_work {
2256 struct mem_cgroup *memcg;
2257 struct kmem_cache *cachep;
2258 struct work_struct work;
2259 };
2260
2261 static void memcg_kmem_cache_create_func(struct work_struct *w)
2262 {
2263 struct memcg_kmem_cache_create_work *cw =
2264 container_of(w, struct memcg_kmem_cache_create_work, work);
2265 struct mem_cgroup *memcg = cw->memcg;
2266 struct kmem_cache *cachep = cw->cachep;
2267
2268 memcg_create_kmem_cache(memcg, cachep);
2269
2270 css_put(&memcg->css);
2271 kfree(cw);
2272 }
2273
2274 /*
2275 * Enqueue the creation of a per-memcg kmem_cache.
2276 */
2277 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2278 struct kmem_cache *cachep)
2279 {
2280 struct memcg_kmem_cache_create_work *cw;
2281
2282 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2283 if (!cw)
2284 return;
2285
2286 css_get(&memcg->css);
2287
2288 cw->memcg = memcg;
2289 cw->cachep = cachep;
2290 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2291
2292 schedule_work(&cw->work);
2293 }
2294
2295 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2296 struct kmem_cache *cachep)
2297 {
2298 /*
2299 * We need to stop accounting when we kmalloc, because if the
2300 * corresponding kmalloc cache is not yet created, the first allocation
2301 * in __memcg_schedule_kmem_cache_create will recurse.
2302 *
2303 * However, it is better to enclose the whole function. Depending on
2304 * the debugging options enabled, INIT_WORK(), for instance, can
2305 * trigger an allocation. This too, will make us recurse. Because at
2306 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2307 * the safest choice is to do it like this, wrapping the whole function.
2308 */
2309 current->memcg_kmem_skip_account = 1;
2310 __memcg_schedule_kmem_cache_create(memcg, cachep);
2311 current->memcg_kmem_skip_account = 0;
2312 }
2313
2314 /*
2315 * Return the kmem_cache we're supposed to use for a slab allocation.
2316 * We try to use the current memcg's version of the cache.
2317 *
2318 * If the cache does not exist yet, if we are the first user of it,
2319 * we either create it immediately, if possible, or create it asynchronously
2320 * in a workqueue.
2321 * In the latter case, we will let the current allocation go through with
2322 * the original cache.
2323 *
2324 * Can't be called in interrupt context or from kernel threads.
2325 * This function needs to be called with rcu_read_lock() held.
2326 */
2327 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2328 {
2329 struct mem_cgroup *memcg;
2330 struct kmem_cache *memcg_cachep;
2331 int kmemcg_id;
2332
2333 VM_BUG_ON(!is_root_cache(cachep));
2334
2335 if (cachep->flags & SLAB_ACCOUNT)
2336 gfp |= __GFP_ACCOUNT;
2337
2338 if (!(gfp & __GFP_ACCOUNT))
2339 return cachep;
2340
2341 if (current->memcg_kmem_skip_account)
2342 return cachep;
2343
2344 memcg = get_mem_cgroup_from_mm(current->mm);
2345 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2346 if (kmemcg_id < 0)
2347 goto out;
2348
2349 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2350 if (likely(memcg_cachep))
2351 return memcg_cachep;
2352
2353 /*
2354 * If we are in a safe context (can wait, and not in interrupt
2355 * context), we could be be predictable and return right away.
2356 * This would guarantee that the allocation being performed
2357 * already belongs in the new cache.
2358 *
2359 * However, there are some clashes that can arrive from locking.
2360 * For instance, because we acquire the slab_mutex while doing
2361 * memcg_create_kmem_cache, this means no further allocation
2362 * could happen with the slab_mutex held. So it's better to
2363 * defer everything.
2364 */
2365 memcg_schedule_kmem_cache_create(memcg, cachep);
2366 out:
2367 css_put(&memcg->css);
2368 return cachep;
2369 }
2370
2371 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2372 {
2373 if (!is_root_cache(cachep))
2374 css_put(&cachep->memcg_params.memcg->css);
2375 }
2376
2377 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2378 struct mem_cgroup *memcg)
2379 {
2380 unsigned int nr_pages = 1 << order;
2381 struct page_counter *counter;
2382 int ret;
2383
2384 if (!memcg_kmem_is_active(memcg))
2385 return 0;
2386
2387 if (!page_counter_try_charge(&memcg->kmem, nr_pages, &counter))
2388 return -ENOMEM;
2389
2390 ret = try_charge(memcg, gfp, nr_pages);
2391 if (ret) {
2392 page_counter_uncharge(&memcg->kmem, nr_pages);
2393 return ret;
2394 }
2395
2396 page->mem_cgroup = memcg;
2397
2398 return 0;
2399 }
2400
2401 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2402 {
2403 struct mem_cgroup *memcg;
2404 int ret;
2405
2406 memcg = get_mem_cgroup_from_mm(current->mm);
2407 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2408 css_put(&memcg->css);
2409 return ret;
2410 }
2411
2412 void __memcg_kmem_uncharge(struct page *page, int order)
2413 {
2414 struct mem_cgroup *memcg = page->mem_cgroup;
2415 unsigned int nr_pages = 1 << order;
2416
2417 if (!memcg)
2418 return;
2419
2420 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2421
2422 page_counter_uncharge(&memcg->kmem, nr_pages);
2423 page_counter_uncharge(&memcg->memory, nr_pages);
2424 if (do_memsw_account())
2425 page_counter_uncharge(&memcg->memsw, nr_pages);
2426
2427 page->mem_cgroup = NULL;
2428 css_put_many(&memcg->css, nr_pages);
2429 }
2430 #endif /* CONFIG_MEMCG_KMEM */
2431
2432 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2433
2434 /*
2435 * Because tail pages are not marked as "used", set it. We're under
2436 * zone->lru_lock and migration entries setup in all page mappings.
2437 */
2438 void mem_cgroup_split_huge_fixup(struct page *head)
2439 {
2440 int i;
2441
2442 if (mem_cgroup_disabled())
2443 return;
2444
2445 for (i = 1; i < HPAGE_PMD_NR; i++)
2446 head[i].mem_cgroup = head->mem_cgroup;
2447
2448 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2449 HPAGE_PMD_NR);
2450 }
2451 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2452
2453 #ifdef CONFIG_MEMCG_SWAP
2454 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2455 bool charge)
2456 {
2457 int val = (charge) ? 1 : -1;
2458 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2459 }
2460
2461 /**
2462 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2463 * @entry: swap entry to be moved
2464 * @from: mem_cgroup which the entry is moved from
2465 * @to: mem_cgroup which the entry is moved to
2466 *
2467 * It succeeds only when the swap_cgroup's record for this entry is the same
2468 * as the mem_cgroup's id of @from.
2469 *
2470 * Returns 0 on success, -EINVAL on failure.
2471 *
2472 * The caller must have charged to @to, IOW, called page_counter_charge() about
2473 * both res and memsw, and called css_get().
2474 */
2475 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2476 struct mem_cgroup *from, struct mem_cgroup *to)
2477 {
2478 unsigned short old_id, new_id;
2479
2480 old_id = mem_cgroup_id(from);
2481 new_id = mem_cgroup_id(to);
2482
2483 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2484 mem_cgroup_swap_statistics(from, false);
2485 mem_cgroup_swap_statistics(to, true);
2486 return 0;
2487 }
2488 return -EINVAL;
2489 }
2490 #else
2491 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2492 struct mem_cgroup *from, struct mem_cgroup *to)
2493 {
2494 return -EINVAL;
2495 }
2496 #endif
2497
2498 static DEFINE_MUTEX(memcg_limit_mutex);
2499
2500 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2501 unsigned long limit)
2502 {
2503 unsigned long curusage;
2504 unsigned long oldusage;
2505 bool enlarge = false;
2506 int retry_count;
2507 int ret;
2508
2509 /*
2510 * For keeping hierarchical_reclaim simple, how long we should retry
2511 * is depends on callers. We set our retry-count to be function
2512 * of # of children which we should visit in this loop.
2513 */
2514 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2515 mem_cgroup_count_children(memcg);
2516
2517 oldusage = page_counter_read(&memcg->memory);
2518
2519 do {
2520 if (signal_pending(current)) {
2521 ret = -EINTR;
2522 break;
2523 }
2524
2525 mutex_lock(&memcg_limit_mutex);
2526 if (limit > memcg->memsw.limit) {
2527 mutex_unlock(&memcg_limit_mutex);
2528 ret = -EINVAL;
2529 break;
2530 }
2531 if (limit > memcg->memory.limit)
2532 enlarge = true;
2533 ret = page_counter_limit(&memcg->memory, limit);
2534 mutex_unlock(&memcg_limit_mutex);
2535
2536 if (!ret)
2537 break;
2538
2539 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2540
2541 curusage = page_counter_read(&memcg->memory);
2542 /* Usage is reduced ? */
2543 if (curusage >= oldusage)
2544 retry_count--;
2545 else
2546 oldusage = curusage;
2547 } while (retry_count);
2548
2549 if (!ret && enlarge)
2550 memcg_oom_recover(memcg);
2551
2552 return ret;
2553 }
2554
2555 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2556 unsigned long limit)
2557 {
2558 unsigned long curusage;
2559 unsigned long oldusage;
2560 bool enlarge = false;
2561 int retry_count;
2562 int ret;
2563
2564 /* see mem_cgroup_resize_res_limit */
2565 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2566 mem_cgroup_count_children(memcg);
2567
2568 oldusage = page_counter_read(&memcg->memsw);
2569
2570 do {
2571 if (signal_pending(current)) {
2572 ret = -EINTR;
2573 break;
2574 }
2575
2576 mutex_lock(&memcg_limit_mutex);
2577 if (limit < memcg->memory.limit) {
2578 mutex_unlock(&memcg_limit_mutex);
2579 ret = -EINVAL;
2580 break;
2581 }
2582 if (limit > memcg->memsw.limit)
2583 enlarge = true;
2584 ret = page_counter_limit(&memcg->memsw, limit);
2585 mutex_unlock(&memcg_limit_mutex);
2586
2587 if (!ret)
2588 break;
2589
2590 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2591
2592 curusage = page_counter_read(&memcg->memsw);
2593 /* Usage is reduced ? */
2594 if (curusage >= oldusage)
2595 retry_count--;
2596 else
2597 oldusage = curusage;
2598 } while (retry_count);
2599
2600 if (!ret && enlarge)
2601 memcg_oom_recover(memcg);
2602
2603 return ret;
2604 }
2605
2606 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2607 gfp_t gfp_mask,
2608 unsigned long *total_scanned)
2609 {
2610 unsigned long nr_reclaimed = 0;
2611 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2612 unsigned long reclaimed;
2613 int loop = 0;
2614 struct mem_cgroup_tree_per_zone *mctz;
2615 unsigned long excess;
2616 unsigned long nr_scanned;
2617
2618 if (order > 0)
2619 return 0;
2620
2621 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2622 /*
2623 * This loop can run a while, specially if mem_cgroup's continuously
2624 * keep exceeding their soft limit and putting the system under
2625 * pressure
2626 */
2627 do {
2628 if (next_mz)
2629 mz = next_mz;
2630 else
2631 mz = mem_cgroup_largest_soft_limit_node(mctz);
2632 if (!mz)
2633 break;
2634
2635 nr_scanned = 0;
2636 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2637 gfp_mask, &nr_scanned);
2638 nr_reclaimed += reclaimed;
2639 *total_scanned += nr_scanned;
2640 spin_lock_irq(&mctz->lock);
2641 __mem_cgroup_remove_exceeded(mz, mctz);
2642
2643 /*
2644 * If we failed to reclaim anything from this memory cgroup
2645 * it is time to move on to the next cgroup
2646 */
2647 next_mz = NULL;
2648 if (!reclaimed)
2649 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2650
2651 excess = soft_limit_excess(mz->memcg);
2652 /*
2653 * One school of thought says that we should not add
2654 * back the node to the tree if reclaim returns 0.
2655 * But our reclaim could return 0, simply because due
2656 * to priority we are exposing a smaller subset of
2657 * memory to reclaim from. Consider this as a longer
2658 * term TODO.
2659 */
2660 /* If excess == 0, no tree ops */
2661 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2662 spin_unlock_irq(&mctz->lock);
2663 css_put(&mz->memcg->css);
2664 loop++;
2665 /*
2666 * Could not reclaim anything and there are no more
2667 * mem cgroups to try or we seem to be looping without
2668 * reclaiming anything.
2669 */
2670 if (!nr_reclaimed &&
2671 (next_mz == NULL ||
2672 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2673 break;
2674 } while (!nr_reclaimed);
2675 if (next_mz)
2676 css_put(&next_mz->memcg->css);
2677 return nr_reclaimed;
2678 }
2679
2680 /*
2681 * Test whether @memcg has children, dead or alive. Note that this
2682 * function doesn't care whether @memcg has use_hierarchy enabled and
2683 * returns %true if there are child csses according to the cgroup
2684 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2685 */
2686 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2687 {
2688 bool ret;
2689
2690 /*
2691 * The lock does not prevent addition or deletion of children, but
2692 * it prevents a new child from being initialized based on this
2693 * parent in css_online(), so it's enough to decide whether
2694 * hierarchically inherited attributes can still be changed or not.
2695 */
2696 lockdep_assert_held(&memcg_create_mutex);
2697
2698 rcu_read_lock();
2699 ret = css_next_child(NULL, &memcg->css);
2700 rcu_read_unlock();
2701 return ret;
2702 }
2703
2704 /*
2705 * Reclaims as many pages from the given memcg as possible and moves
2706 * the rest to the parent.
2707 *
2708 * Caller is responsible for holding css reference for memcg.
2709 */
2710 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2711 {
2712 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2713
2714 /* we call try-to-free pages for make this cgroup empty */
2715 lru_add_drain_all();
2716 /* try to free all pages in this cgroup */
2717 while (nr_retries && page_counter_read(&memcg->memory)) {
2718 int progress;
2719
2720 if (signal_pending(current))
2721 return -EINTR;
2722
2723 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2724 GFP_KERNEL, true);
2725 if (!progress) {
2726 nr_retries--;
2727 /* maybe some writeback is necessary */
2728 congestion_wait(BLK_RW_ASYNC, HZ/10);
2729 }
2730
2731 }
2732
2733 return 0;
2734 }
2735
2736 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2737 char *buf, size_t nbytes,
2738 loff_t off)
2739 {
2740 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2741
2742 if (mem_cgroup_is_root(memcg))
2743 return -EINVAL;
2744 return mem_cgroup_force_empty(memcg) ?: nbytes;
2745 }
2746
2747 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2748 struct cftype *cft)
2749 {
2750 return mem_cgroup_from_css(css)->use_hierarchy;
2751 }
2752
2753 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2754 struct cftype *cft, u64 val)
2755 {
2756 int retval = 0;
2757 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2758 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2759
2760 mutex_lock(&memcg_create_mutex);
2761
2762 if (memcg->use_hierarchy == val)
2763 goto out;
2764
2765 /*
2766 * If parent's use_hierarchy is set, we can't make any modifications
2767 * in the child subtrees. If it is unset, then the change can
2768 * occur, provided the current cgroup has no children.
2769 *
2770 * For the root cgroup, parent_mem is NULL, we allow value to be
2771 * set if there are no children.
2772 */
2773 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2774 (val == 1 || val == 0)) {
2775 if (!memcg_has_children(memcg))
2776 memcg->use_hierarchy = val;
2777 else
2778 retval = -EBUSY;
2779 } else
2780 retval = -EINVAL;
2781
2782 out:
2783 mutex_unlock(&memcg_create_mutex);
2784
2785 return retval;
2786 }
2787
2788 static unsigned long tree_stat(struct mem_cgroup *memcg,
2789 enum mem_cgroup_stat_index idx)
2790 {
2791 struct mem_cgroup *iter;
2792 unsigned long val = 0;
2793
2794 for_each_mem_cgroup_tree(iter, memcg)
2795 val += mem_cgroup_read_stat(iter, idx);
2796
2797 return val;
2798 }
2799
2800 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2801 {
2802 unsigned long val;
2803
2804 if (mem_cgroup_is_root(memcg)) {
2805 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2806 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2807 if (swap)
2808 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2809 } else {
2810 if (!swap)
2811 val = page_counter_read(&memcg->memory);
2812 else
2813 val = page_counter_read(&memcg->memsw);
2814 }
2815 return val;
2816 }
2817
2818 enum {
2819 RES_USAGE,
2820 RES_LIMIT,
2821 RES_MAX_USAGE,
2822 RES_FAILCNT,
2823 RES_SOFT_LIMIT,
2824 };
2825
2826 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2827 struct cftype *cft)
2828 {
2829 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2830 struct page_counter *counter;
2831
2832 switch (MEMFILE_TYPE(cft->private)) {
2833 case _MEM:
2834 counter = &memcg->memory;
2835 break;
2836 case _MEMSWAP:
2837 counter = &memcg->memsw;
2838 break;
2839 case _KMEM:
2840 counter = &memcg->kmem;
2841 break;
2842 default:
2843 BUG();
2844 }
2845
2846 switch (MEMFILE_ATTR(cft->private)) {
2847 case RES_USAGE:
2848 if (counter == &memcg->memory)
2849 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2850 if (counter == &memcg->memsw)
2851 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2852 return (u64)page_counter_read(counter) * PAGE_SIZE;
2853 case RES_LIMIT:
2854 return (u64)counter->limit * PAGE_SIZE;
2855 case RES_MAX_USAGE:
2856 return (u64)counter->watermark * PAGE_SIZE;
2857 case RES_FAILCNT:
2858 return counter->failcnt;
2859 case RES_SOFT_LIMIT:
2860 return (u64)memcg->soft_limit * PAGE_SIZE;
2861 default:
2862 BUG();
2863 }
2864 }
2865
2866 #ifdef CONFIG_MEMCG_KMEM
2867 static int memcg_activate_kmem(struct mem_cgroup *memcg,
2868 unsigned long nr_pages)
2869 {
2870 int err = 0;
2871 int memcg_id;
2872
2873 BUG_ON(memcg->kmemcg_id >= 0);
2874 BUG_ON(memcg->kmem_acct_activated);
2875 BUG_ON(memcg->kmem_acct_active);
2876
2877 /*
2878 * For simplicity, we won't allow this to be disabled. It also can't
2879 * be changed if the cgroup has children already, or if tasks had
2880 * already joined.
2881 *
2882 * If tasks join before we set the limit, a person looking at
2883 * kmem.usage_in_bytes will have no way to determine when it took
2884 * place, which makes the value quite meaningless.
2885 *
2886 * After it first became limited, changes in the value of the limit are
2887 * of course permitted.
2888 */
2889 mutex_lock(&memcg_create_mutex);
2890 if (cgroup_is_populated(memcg->css.cgroup) ||
2891 (memcg->use_hierarchy && memcg_has_children(memcg)))
2892 err = -EBUSY;
2893 mutex_unlock(&memcg_create_mutex);
2894 if (err)
2895 goto out;
2896
2897 memcg_id = memcg_alloc_cache_id();
2898 if (memcg_id < 0) {
2899 err = memcg_id;
2900 goto out;
2901 }
2902
2903 /*
2904 * We couldn't have accounted to this cgroup, because it hasn't got
2905 * activated yet, so this should succeed.
2906 */
2907 err = page_counter_limit(&memcg->kmem, nr_pages);
2908 VM_BUG_ON(err);
2909
2910 static_branch_inc(&memcg_kmem_enabled_key);
2911 /*
2912 * A memory cgroup is considered kmem-active as soon as it gets
2913 * kmemcg_id. Setting the id after enabling static branching will
2914 * guarantee no one starts accounting before all call sites are
2915 * patched.
2916 */
2917 memcg->kmemcg_id = memcg_id;
2918 memcg->kmem_acct_activated = true;
2919 memcg->kmem_acct_active = true;
2920 out:
2921 return err;
2922 }
2923
2924 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2925 unsigned long limit)
2926 {
2927 int ret;
2928
2929 mutex_lock(&memcg_limit_mutex);
2930 if (!memcg_kmem_is_active(memcg))
2931 ret = memcg_activate_kmem(memcg, limit);
2932 else
2933 ret = page_counter_limit(&memcg->kmem, limit);
2934 mutex_unlock(&memcg_limit_mutex);
2935 return ret;
2936 }
2937
2938 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2939 {
2940 int ret = 0;
2941 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2942
2943 if (!parent)
2944 return 0;
2945
2946 mutex_lock(&memcg_limit_mutex);
2947 /*
2948 * If the parent cgroup is not kmem-active now, it cannot be activated
2949 * after this point, because it has at least one child already.
2950 */
2951 if (memcg_kmem_is_active(parent))
2952 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
2953 mutex_unlock(&memcg_limit_mutex);
2954 return ret;
2955 }
2956 #else
2957 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2958 unsigned long limit)
2959 {
2960 return -EINVAL;
2961 }
2962 #endif /* CONFIG_MEMCG_KMEM */
2963
2964 /*
2965 * The user of this function is...
2966 * RES_LIMIT.
2967 */
2968 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2969 char *buf, size_t nbytes, loff_t off)
2970 {
2971 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2972 unsigned long nr_pages;
2973 int ret;
2974
2975 buf = strstrip(buf);
2976 ret = page_counter_memparse(buf, "-1", &nr_pages);
2977 if (ret)
2978 return ret;
2979
2980 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2981 case RES_LIMIT:
2982 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2983 ret = -EINVAL;
2984 break;
2985 }
2986 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2987 case _MEM:
2988 ret = mem_cgroup_resize_limit(memcg, nr_pages);
2989 break;
2990 case _MEMSWAP:
2991 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2992 break;
2993 case _KMEM:
2994 ret = memcg_update_kmem_limit(memcg, nr_pages);
2995 break;
2996 }
2997 break;
2998 case RES_SOFT_LIMIT:
2999 memcg->soft_limit = nr_pages;
3000 ret = 0;
3001 break;
3002 }
3003 return ret ?: nbytes;
3004 }
3005
3006 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3007 size_t nbytes, loff_t off)
3008 {
3009 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3010 struct page_counter *counter;
3011
3012 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3013 case _MEM:
3014 counter = &memcg->memory;
3015 break;
3016 case _MEMSWAP:
3017 counter = &memcg->memsw;
3018 break;
3019 case _KMEM:
3020 counter = &memcg->kmem;
3021 break;
3022 default:
3023 BUG();
3024 }
3025
3026 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3027 case RES_MAX_USAGE:
3028 page_counter_reset_watermark(counter);
3029 break;
3030 case RES_FAILCNT:
3031 counter->failcnt = 0;
3032 break;
3033 default:
3034 BUG();
3035 }
3036
3037 return nbytes;
3038 }
3039
3040 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3041 struct cftype *cft)
3042 {
3043 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3044 }
3045
3046 #ifdef CONFIG_MMU
3047 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3048 struct cftype *cft, u64 val)
3049 {
3050 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3051
3052 if (val & ~MOVE_MASK)
3053 return -EINVAL;
3054
3055 /*
3056 * No kind of locking is needed in here, because ->can_attach() will
3057 * check this value once in the beginning of the process, and then carry
3058 * on with stale data. This means that changes to this value will only
3059 * affect task migrations starting after the change.
3060 */
3061 memcg->move_charge_at_immigrate = val;
3062 return 0;
3063 }
3064 #else
3065 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3066 struct cftype *cft, u64 val)
3067 {
3068 return -ENOSYS;
3069 }
3070 #endif
3071
3072 #ifdef CONFIG_NUMA
3073 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3074 {
3075 struct numa_stat {
3076 const char *name;
3077 unsigned int lru_mask;
3078 };
3079
3080 static const struct numa_stat stats[] = {
3081 { "total", LRU_ALL },
3082 { "file", LRU_ALL_FILE },
3083 { "anon", LRU_ALL_ANON },
3084 { "unevictable", BIT(LRU_UNEVICTABLE) },
3085 };
3086 const struct numa_stat *stat;
3087 int nid;
3088 unsigned long nr;
3089 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3090
3091 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3092 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3093 seq_printf(m, "%s=%lu", stat->name, nr);
3094 for_each_node_state(nid, N_MEMORY) {
3095 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3096 stat->lru_mask);
3097 seq_printf(m, " N%d=%lu", nid, nr);
3098 }
3099 seq_putc(m, '\n');
3100 }
3101
3102 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3103 struct mem_cgroup *iter;
3104
3105 nr = 0;
3106 for_each_mem_cgroup_tree(iter, memcg)
3107 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3108 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3109 for_each_node_state(nid, N_MEMORY) {
3110 nr = 0;
3111 for_each_mem_cgroup_tree(iter, memcg)
3112 nr += mem_cgroup_node_nr_lru_pages(
3113 iter, nid, stat->lru_mask);
3114 seq_printf(m, " N%d=%lu", nid, nr);
3115 }
3116 seq_putc(m, '\n');
3117 }
3118
3119 return 0;
3120 }
3121 #endif /* CONFIG_NUMA */
3122
3123 static int memcg_stat_show(struct seq_file *m, void *v)
3124 {
3125 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3126 unsigned long memory, memsw;
3127 struct mem_cgroup *mi;
3128 unsigned int i;
3129
3130 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3131 MEM_CGROUP_STAT_NSTATS);
3132 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3133 MEM_CGROUP_EVENTS_NSTATS);
3134 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3135
3136 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3137 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3138 continue;
3139 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3140 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3141 }
3142
3143 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3144 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3145 mem_cgroup_read_events(memcg, i));
3146
3147 for (i = 0; i < NR_LRU_LISTS; i++)
3148 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3149 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3150
3151 /* Hierarchical information */
3152 memory = memsw = PAGE_COUNTER_MAX;
3153 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3154 memory = min(memory, mi->memory.limit);
3155 memsw = min(memsw, mi->memsw.limit);
3156 }
3157 seq_printf(m, "hierarchical_memory_limit %llu\n",
3158 (u64)memory * PAGE_SIZE);
3159 if (do_memsw_account())
3160 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3161 (u64)memsw * PAGE_SIZE);
3162
3163 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3164 unsigned long long val = 0;
3165
3166 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3167 continue;
3168 for_each_mem_cgroup_tree(mi, memcg)
3169 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3170 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3171 }
3172
3173 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3174 unsigned long long val = 0;
3175
3176 for_each_mem_cgroup_tree(mi, memcg)
3177 val += mem_cgroup_read_events(mi, i);
3178 seq_printf(m, "total_%s %llu\n",
3179 mem_cgroup_events_names[i], val);
3180 }
3181
3182 for (i = 0; i < NR_LRU_LISTS; i++) {
3183 unsigned long long val = 0;
3184
3185 for_each_mem_cgroup_tree(mi, memcg)
3186 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3187 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3188 }
3189
3190 #ifdef CONFIG_DEBUG_VM
3191 {
3192 int nid, zid;
3193 struct mem_cgroup_per_zone *mz;
3194 struct zone_reclaim_stat *rstat;
3195 unsigned long recent_rotated[2] = {0, 0};
3196 unsigned long recent_scanned[2] = {0, 0};
3197
3198 for_each_online_node(nid)
3199 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3200 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3201 rstat = &mz->lruvec.reclaim_stat;
3202
3203 recent_rotated[0] += rstat->recent_rotated[0];
3204 recent_rotated[1] += rstat->recent_rotated[1];
3205 recent_scanned[0] += rstat->recent_scanned[0];
3206 recent_scanned[1] += rstat->recent_scanned[1];
3207 }
3208 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3209 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3210 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3211 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3212 }
3213 #endif
3214
3215 return 0;
3216 }
3217
3218 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3219 struct cftype *cft)
3220 {
3221 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3222
3223 return mem_cgroup_swappiness(memcg);
3224 }
3225
3226 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3227 struct cftype *cft, u64 val)
3228 {
3229 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3230
3231 if (val > 100)
3232 return -EINVAL;
3233
3234 if (css->parent)
3235 memcg->swappiness = val;
3236 else
3237 vm_swappiness = val;
3238
3239 return 0;
3240 }
3241
3242 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3243 {
3244 struct mem_cgroup_threshold_ary *t;
3245 unsigned long usage;
3246 int i;
3247
3248 rcu_read_lock();
3249 if (!swap)
3250 t = rcu_dereference(memcg->thresholds.primary);
3251 else
3252 t = rcu_dereference(memcg->memsw_thresholds.primary);
3253
3254 if (!t)
3255 goto unlock;
3256
3257 usage = mem_cgroup_usage(memcg, swap);
3258
3259 /*
3260 * current_threshold points to threshold just below or equal to usage.
3261 * If it's not true, a threshold was crossed after last
3262 * call of __mem_cgroup_threshold().
3263 */
3264 i = t->current_threshold;
3265
3266 /*
3267 * Iterate backward over array of thresholds starting from
3268 * current_threshold and check if a threshold is crossed.
3269 * If none of thresholds below usage is crossed, we read
3270 * only one element of the array here.
3271 */
3272 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3273 eventfd_signal(t->entries[i].eventfd, 1);
3274
3275 /* i = current_threshold + 1 */
3276 i++;
3277
3278 /*
3279 * Iterate forward over array of thresholds starting from
3280 * current_threshold+1 and check if a threshold is crossed.
3281 * If none of thresholds above usage is crossed, we read
3282 * only one element of the array here.
3283 */
3284 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3285 eventfd_signal(t->entries[i].eventfd, 1);
3286
3287 /* Update current_threshold */
3288 t->current_threshold = i - 1;
3289 unlock:
3290 rcu_read_unlock();
3291 }
3292
3293 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3294 {
3295 while (memcg) {
3296 __mem_cgroup_threshold(memcg, false);
3297 if (do_memsw_account())
3298 __mem_cgroup_threshold(memcg, true);
3299
3300 memcg = parent_mem_cgroup(memcg);
3301 }
3302 }
3303
3304 static int compare_thresholds(const void *a, const void *b)
3305 {
3306 const struct mem_cgroup_threshold *_a = a;
3307 const struct mem_cgroup_threshold *_b = b;
3308
3309 if (_a->threshold > _b->threshold)
3310 return 1;
3311
3312 if (_a->threshold < _b->threshold)
3313 return -1;
3314
3315 return 0;
3316 }
3317
3318 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3319 {
3320 struct mem_cgroup_eventfd_list *ev;
3321
3322 spin_lock(&memcg_oom_lock);
3323
3324 list_for_each_entry(ev, &memcg->oom_notify, list)
3325 eventfd_signal(ev->eventfd, 1);
3326
3327 spin_unlock(&memcg_oom_lock);
3328 return 0;
3329 }
3330
3331 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3332 {
3333 struct mem_cgroup *iter;
3334
3335 for_each_mem_cgroup_tree(iter, memcg)
3336 mem_cgroup_oom_notify_cb(iter);
3337 }
3338
3339 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3340 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3341 {
3342 struct mem_cgroup_thresholds *thresholds;
3343 struct mem_cgroup_threshold_ary *new;
3344 unsigned long threshold;
3345 unsigned long usage;
3346 int i, size, ret;
3347
3348 ret = page_counter_memparse(args, "-1", &threshold);
3349 if (ret)
3350 return ret;
3351
3352 mutex_lock(&memcg->thresholds_lock);
3353
3354 if (type == _MEM) {
3355 thresholds = &memcg->thresholds;
3356 usage = mem_cgroup_usage(memcg, false);
3357 } else if (type == _MEMSWAP) {
3358 thresholds = &memcg->memsw_thresholds;
3359 usage = mem_cgroup_usage(memcg, true);
3360 } else
3361 BUG();
3362
3363 /* Check if a threshold crossed before adding a new one */
3364 if (thresholds->primary)
3365 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3366
3367 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3368
3369 /* Allocate memory for new array of thresholds */
3370 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3371 GFP_KERNEL);
3372 if (!new) {
3373 ret = -ENOMEM;
3374 goto unlock;
3375 }
3376 new->size = size;
3377
3378 /* Copy thresholds (if any) to new array */
3379 if (thresholds->primary) {
3380 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3381 sizeof(struct mem_cgroup_threshold));
3382 }
3383
3384 /* Add new threshold */
3385 new->entries[size - 1].eventfd = eventfd;
3386 new->entries[size - 1].threshold = threshold;
3387
3388 /* Sort thresholds. Registering of new threshold isn't time-critical */
3389 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3390 compare_thresholds, NULL);
3391
3392 /* Find current threshold */
3393 new->current_threshold = -1;
3394 for (i = 0; i < size; i++) {
3395 if (new->entries[i].threshold <= usage) {
3396 /*
3397 * new->current_threshold will not be used until
3398 * rcu_assign_pointer(), so it's safe to increment
3399 * it here.
3400 */
3401 ++new->current_threshold;
3402 } else
3403 break;
3404 }
3405
3406 /* Free old spare buffer and save old primary buffer as spare */
3407 kfree(thresholds->spare);
3408 thresholds->spare = thresholds->primary;
3409
3410 rcu_assign_pointer(thresholds->primary, new);
3411
3412 /* To be sure that nobody uses thresholds */
3413 synchronize_rcu();
3414
3415 unlock:
3416 mutex_unlock(&memcg->thresholds_lock);
3417
3418 return ret;
3419 }
3420
3421 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3422 struct eventfd_ctx *eventfd, const char *args)
3423 {
3424 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3425 }
3426
3427 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3428 struct eventfd_ctx *eventfd, const char *args)
3429 {
3430 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3431 }
3432
3433 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3434 struct eventfd_ctx *eventfd, enum res_type type)
3435 {
3436 struct mem_cgroup_thresholds *thresholds;
3437 struct mem_cgroup_threshold_ary *new;
3438 unsigned long usage;
3439 int i, j, size;
3440
3441 mutex_lock(&memcg->thresholds_lock);
3442
3443 if (type == _MEM) {
3444 thresholds = &memcg->thresholds;
3445 usage = mem_cgroup_usage(memcg, false);
3446 } else if (type == _MEMSWAP) {
3447 thresholds = &memcg->memsw_thresholds;
3448 usage = mem_cgroup_usage(memcg, true);
3449 } else
3450 BUG();
3451
3452 if (!thresholds->primary)
3453 goto unlock;
3454
3455 /* Check if a threshold crossed before removing */
3456 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3457
3458 /* Calculate new number of threshold */
3459 size = 0;
3460 for (i = 0; i < thresholds->primary->size; i++) {
3461 if (thresholds->primary->entries[i].eventfd != eventfd)
3462 size++;
3463 }
3464
3465 new = thresholds->spare;
3466
3467 /* Set thresholds array to NULL if we don't have thresholds */
3468 if (!size) {
3469 kfree(new);
3470 new = NULL;
3471 goto swap_buffers;
3472 }
3473
3474 new->size = size;
3475
3476 /* Copy thresholds and find current threshold */
3477 new->current_threshold = -1;
3478 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3479 if (thresholds->primary->entries[i].eventfd == eventfd)
3480 continue;
3481
3482 new->entries[j] = thresholds->primary->entries[i];
3483 if (new->entries[j].threshold <= usage) {
3484 /*
3485 * new->current_threshold will not be used
3486 * until rcu_assign_pointer(), so it's safe to increment
3487 * it here.
3488 */
3489 ++new->current_threshold;
3490 }
3491 j++;
3492 }
3493
3494 swap_buffers:
3495 /* Swap primary and spare array */
3496 thresholds->spare = thresholds->primary;
3497 /* If all events are unregistered, free the spare array */
3498 if (!new) {
3499 kfree(thresholds->spare);
3500 thresholds->spare = NULL;
3501 }
3502
3503 rcu_assign_pointer(thresholds->primary, new);
3504
3505 /* To be sure that nobody uses thresholds */
3506 synchronize_rcu();
3507 unlock:
3508 mutex_unlock(&memcg->thresholds_lock);
3509 }
3510
3511 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3512 struct eventfd_ctx *eventfd)
3513 {
3514 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3515 }
3516
3517 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3518 struct eventfd_ctx *eventfd)
3519 {
3520 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3521 }
3522
3523 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3524 struct eventfd_ctx *eventfd, const char *args)
3525 {
3526 struct mem_cgroup_eventfd_list *event;
3527
3528 event = kmalloc(sizeof(*event), GFP_KERNEL);
3529 if (!event)
3530 return -ENOMEM;
3531
3532 spin_lock(&memcg_oom_lock);
3533
3534 event->eventfd = eventfd;
3535 list_add(&event->list, &memcg->oom_notify);
3536
3537 /* already in OOM ? */
3538 if (memcg->under_oom)
3539 eventfd_signal(eventfd, 1);
3540 spin_unlock(&memcg_oom_lock);
3541
3542 return 0;
3543 }
3544
3545 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3546 struct eventfd_ctx *eventfd)
3547 {
3548 struct mem_cgroup_eventfd_list *ev, *tmp;
3549
3550 spin_lock(&memcg_oom_lock);
3551
3552 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3553 if (ev->eventfd == eventfd) {
3554 list_del(&ev->list);
3555 kfree(ev);
3556 }
3557 }
3558
3559 spin_unlock(&memcg_oom_lock);
3560 }
3561
3562 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3563 {
3564 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3565
3566 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3567 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3568 return 0;
3569 }
3570
3571 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3572 struct cftype *cft, u64 val)
3573 {
3574 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3575
3576 /* cannot set to root cgroup and only 0 and 1 are allowed */
3577 if (!css->parent || !((val == 0) || (val == 1)))
3578 return -EINVAL;
3579
3580 memcg->oom_kill_disable = val;
3581 if (!val)
3582 memcg_oom_recover(memcg);
3583
3584 return 0;
3585 }
3586
3587 #ifdef CONFIG_MEMCG_KMEM
3588 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3589 {
3590 int ret;
3591
3592 ret = memcg_propagate_kmem(memcg);
3593 if (ret)
3594 return ret;
3595
3596 return tcp_init_cgroup(memcg, ss);
3597 }
3598
3599 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3600 {
3601 struct cgroup_subsys_state *css;
3602 struct mem_cgroup *parent, *child;
3603 int kmemcg_id;
3604
3605 if (!memcg->kmem_acct_active)
3606 return;
3607
3608 /*
3609 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3610 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3611 * guarantees no cache will be created for this cgroup after we are
3612 * done (see memcg_create_kmem_cache()).
3613 */
3614 memcg->kmem_acct_active = false;
3615
3616 memcg_deactivate_kmem_caches(memcg);
3617
3618 kmemcg_id = memcg->kmemcg_id;
3619 BUG_ON(kmemcg_id < 0);
3620
3621 parent = parent_mem_cgroup(memcg);
3622 if (!parent)
3623 parent = root_mem_cgroup;
3624
3625 /*
3626 * Change kmemcg_id of this cgroup and all its descendants to the
3627 * parent's id, and then move all entries from this cgroup's list_lrus
3628 * to ones of the parent. After we have finished, all list_lrus
3629 * corresponding to this cgroup are guaranteed to remain empty. The
3630 * ordering is imposed by list_lru_node->lock taken by
3631 * memcg_drain_all_list_lrus().
3632 */
3633 css_for_each_descendant_pre(css, &memcg->css) {
3634 child = mem_cgroup_from_css(css);
3635 BUG_ON(child->kmemcg_id != kmemcg_id);
3636 child->kmemcg_id = parent->kmemcg_id;
3637 if (!memcg->use_hierarchy)
3638 break;
3639 }
3640 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3641
3642 memcg_free_cache_id(kmemcg_id);
3643 }
3644
3645 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3646 {
3647 if (memcg->kmem_acct_activated) {
3648 memcg_destroy_kmem_caches(memcg);
3649 static_branch_dec(&memcg_kmem_enabled_key);
3650 WARN_ON(page_counter_read(&memcg->kmem));
3651 }
3652 tcp_destroy_cgroup(memcg);
3653 }
3654 #else
3655 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3656 {
3657 return 0;
3658 }
3659
3660 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3661 {
3662 }
3663
3664 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3665 {
3666 }
3667 #endif
3668
3669 #ifdef CONFIG_CGROUP_WRITEBACK
3670
3671 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3672 {
3673 return &memcg->cgwb_list;
3674 }
3675
3676 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3677 {
3678 return wb_domain_init(&memcg->cgwb_domain, gfp);
3679 }
3680
3681 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3682 {
3683 wb_domain_exit(&memcg->cgwb_domain);
3684 }
3685
3686 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3687 {
3688 wb_domain_size_changed(&memcg->cgwb_domain);
3689 }
3690
3691 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3692 {
3693 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3694
3695 if (!memcg->css.parent)
3696 return NULL;
3697
3698 return &memcg->cgwb_domain;
3699 }
3700
3701 /**
3702 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3703 * @wb: bdi_writeback in question
3704 * @pfilepages: out parameter for number of file pages
3705 * @pheadroom: out parameter for number of allocatable pages according to memcg
3706 * @pdirty: out parameter for number of dirty pages
3707 * @pwriteback: out parameter for number of pages under writeback
3708 *
3709 * Determine the numbers of file, headroom, dirty, and writeback pages in
3710 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3711 * is a bit more involved.
3712 *
3713 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3714 * headroom is calculated as the lowest headroom of itself and the
3715 * ancestors. Note that this doesn't consider the actual amount of
3716 * available memory in the system. The caller should further cap
3717 * *@pheadroom accordingly.
3718 */
3719 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3720 unsigned long *pheadroom, unsigned long *pdirty,
3721 unsigned long *pwriteback)
3722 {
3723 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3724 struct mem_cgroup *parent;
3725
3726 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3727
3728 /* this should eventually include NR_UNSTABLE_NFS */
3729 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3730 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3731 (1 << LRU_ACTIVE_FILE));
3732 *pheadroom = PAGE_COUNTER_MAX;
3733
3734 while ((parent = parent_mem_cgroup(memcg))) {
3735 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3736 unsigned long used = page_counter_read(&memcg->memory);
3737
3738 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3739 memcg = parent;
3740 }
3741 }
3742
3743 #else /* CONFIG_CGROUP_WRITEBACK */
3744
3745 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3746 {
3747 return 0;
3748 }
3749
3750 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3751 {
3752 }
3753
3754 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3755 {
3756 }
3757
3758 #endif /* CONFIG_CGROUP_WRITEBACK */
3759
3760 /*
3761 * DO NOT USE IN NEW FILES.
3762 *
3763 * "cgroup.event_control" implementation.
3764 *
3765 * This is way over-engineered. It tries to support fully configurable
3766 * events for each user. Such level of flexibility is completely
3767 * unnecessary especially in the light of the planned unified hierarchy.
3768 *
3769 * Please deprecate this and replace with something simpler if at all
3770 * possible.
3771 */
3772
3773 /*
3774 * Unregister event and free resources.
3775 *
3776 * Gets called from workqueue.
3777 */
3778 static void memcg_event_remove(struct work_struct *work)
3779 {
3780 struct mem_cgroup_event *event =
3781 container_of(work, struct mem_cgroup_event, remove);
3782 struct mem_cgroup *memcg = event->memcg;
3783
3784 remove_wait_queue(event->wqh, &event->wait);
3785
3786 event->unregister_event(memcg, event->eventfd);
3787
3788 /* Notify userspace the event is going away. */
3789 eventfd_signal(event->eventfd, 1);
3790
3791 eventfd_ctx_put(event->eventfd);
3792 kfree(event);
3793 css_put(&memcg->css);
3794 }
3795
3796 /*
3797 * Gets called on POLLHUP on eventfd when user closes it.
3798 *
3799 * Called with wqh->lock held and interrupts disabled.
3800 */
3801 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3802 int sync, void *key)
3803 {
3804 struct mem_cgroup_event *event =
3805 container_of(wait, struct mem_cgroup_event, wait);
3806 struct mem_cgroup *memcg = event->memcg;
3807 unsigned long flags = (unsigned long)key;
3808
3809 if (flags & POLLHUP) {
3810 /*
3811 * If the event has been detached at cgroup removal, we
3812 * can simply return knowing the other side will cleanup
3813 * for us.
3814 *
3815 * We can't race against event freeing since the other
3816 * side will require wqh->lock via remove_wait_queue(),
3817 * which we hold.
3818 */
3819 spin_lock(&memcg->event_list_lock);
3820 if (!list_empty(&event->list)) {
3821 list_del_init(&event->list);
3822 /*
3823 * We are in atomic context, but cgroup_event_remove()
3824 * may sleep, so we have to call it in workqueue.
3825 */
3826 schedule_work(&event->remove);
3827 }
3828 spin_unlock(&memcg->event_list_lock);
3829 }
3830
3831 return 0;
3832 }
3833
3834 static void memcg_event_ptable_queue_proc(struct file *file,
3835 wait_queue_head_t *wqh, poll_table *pt)
3836 {
3837 struct mem_cgroup_event *event =
3838 container_of(pt, struct mem_cgroup_event, pt);
3839
3840 event->wqh = wqh;
3841 add_wait_queue(wqh, &event->wait);
3842 }
3843
3844 /*
3845 * DO NOT USE IN NEW FILES.
3846 *
3847 * Parse input and register new cgroup event handler.
3848 *
3849 * Input must be in format '<event_fd> <control_fd> <args>'.
3850 * Interpretation of args is defined by control file implementation.
3851 */
3852 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3853 char *buf, size_t nbytes, loff_t off)
3854 {
3855 struct cgroup_subsys_state *css = of_css(of);
3856 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3857 struct mem_cgroup_event *event;
3858 struct cgroup_subsys_state *cfile_css;
3859 unsigned int efd, cfd;
3860 struct fd efile;
3861 struct fd cfile;
3862 const char *name;
3863 char *endp;
3864 int ret;
3865
3866 buf = strstrip(buf);
3867
3868 efd = simple_strtoul(buf, &endp, 10);
3869 if (*endp != ' ')
3870 return -EINVAL;
3871 buf = endp + 1;
3872
3873 cfd = simple_strtoul(buf, &endp, 10);
3874 if ((*endp != ' ') && (*endp != '\0'))
3875 return -EINVAL;
3876 buf = endp + 1;
3877
3878 event = kzalloc(sizeof(*event), GFP_KERNEL);
3879 if (!event)
3880 return -ENOMEM;
3881
3882 event->memcg = memcg;
3883 INIT_LIST_HEAD(&event->list);
3884 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3885 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3886 INIT_WORK(&event->remove, memcg_event_remove);
3887
3888 efile = fdget(efd);
3889 if (!efile.file) {
3890 ret = -EBADF;
3891 goto out_kfree;
3892 }
3893
3894 event->eventfd = eventfd_ctx_fileget(efile.file);
3895 if (IS_ERR(event->eventfd)) {
3896 ret = PTR_ERR(event->eventfd);
3897 goto out_put_efile;
3898 }
3899
3900 cfile = fdget(cfd);
3901 if (!cfile.file) {
3902 ret = -EBADF;
3903 goto out_put_eventfd;
3904 }
3905
3906 /* the process need read permission on control file */
3907 /* AV: shouldn't we check that it's been opened for read instead? */
3908 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3909 if (ret < 0)
3910 goto out_put_cfile;
3911
3912 /*
3913 * Determine the event callbacks and set them in @event. This used
3914 * to be done via struct cftype but cgroup core no longer knows
3915 * about these events. The following is crude but the whole thing
3916 * is for compatibility anyway.
3917 *
3918 * DO NOT ADD NEW FILES.
3919 */
3920 name = cfile.file->f_path.dentry->d_name.name;
3921
3922 if (!strcmp(name, "memory.usage_in_bytes")) {
3923 event->register_event = mem_cgroup_usage_register_event;
3924 event->unregister_event = mem_cgroup_usage_unregister_event;
3925 } else if (!strcmp(name, "memory.oom_control")) {
3926 event->register_event = mem_cgroup_oom_register_event;
3927 event->unregister_event = mem_cgroup_oom_unregister_event;
3928 } else if (!strcmp(name, "memory.pressure_level")) {
3929 event->register_event = vmpressure_register_event;
3930 event->unregister_event = vmpressure_unregister_event;
3931 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3932 event->register_event = memsw_cgroup_usage_register_event;
3933 event->unregister_event = memsw_cgroup_usage_unregister_event;
3934 } else {
3935 ret = -EINVAL;
3936 goto out_put_cfile;
3937 }
3938
3939 /*
3940 * Verify @cfile should belong to @css. Also, remaining events are
3941 * automatically removed on cgroup destruction but the removal is
3942 * asynchronous, so take an extra ref on @css.
3943 */
3944 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3945 &memory_cgrp_subsys);
3946 ret = -EINVAL;
3947 if (IS_ERR(cfile_css))
3948 goto out_put_cfile;
3949 if (cfile_css != css) {
3950 css_put(cfile_css);
3951 goto out_put_cfile;
3952 }
3953
3954 ret = event->register_event(memcg, event->eventfd, buf);
3955 if (ret)
3956 goto out_put_css;
3957
3958 efile.file->f_op->poll(efile.file, &event->pt);
3959
3960 spin_lock(&memcg->event_list_lock);
3961 list_add(&event->list, &memcg->event_list);
3962 spin_unlock(&memcg->event_list_lock);
3963
3964 fdput(cfile);
3965 fdput(efile);
3966
3967 return nbytes;
3968
3969 out_put_css:
3970 css_put(css);
3971 out_put_cfile:
3972 fdput(cfile);
3973 out_put_eventfd:
3974 eventfd_ctx_put(event->eventfd);
3975 out_put_efile:
3976 fdput(efile);
3977 out_kfree:
3978 kfree(event);
3979
3980 return ret;
3981 }
3982
3983 static struct cftype mem_cgroup_legacy_files[] = {
3984 {
3985 .name = "usage_in_bytes",
3986 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3987 .read_u64 = mem_cgroup_read_u64,
3988 },
3989 {
3990 .name = "max_usage_in_bytes",
3991 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3992 .write = mem_cgroup_reset,
3993 .read_u64 = mem_cgroup_read_u64,
3994 },
3995 {
3996 .name = "limit_in_bytes",
3997 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3998 .write = mem_cgroup_write,
3999 .read_u64 = mem_cgroup_read_u64,
4000 },
4001 {
4002 .name = "soft_limit_in_bytes",
4003 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4004 .write = mem_cgroup_write,
4005 .read_u64 = mem_cgroup_read_u64,
4006 },
4007 {
4008 .name = "failcnt",
4009 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4010 .write = mem_cgroup_reset,
4011 .read_u64 = mem_cgroup_read_u64,
4012 },
4013 {
4014 .name = "stat",
4015 .seq_show = memcg_stat_show,
4016 },
4017 {
4018 .name = "force_empty",
4019 .write = mem_cgroup_force_empty_write,
4020 },
4021 {
4022 .name = "use_hierarchy",
4023 .write_u64 = mem_cgroup_hierarchy_write,
4024 .read_u64 = mem_cgroup_hierarchy_read,
4025 },
4026 {
4027 .name = "cgroup.event_control", /* XXX: for compat */
4028 .write = memcg_write_event_control,
4029 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4030 },
4031 {
4032 .name = "swappiness",
4033 .read_u64 = mem_cgroup_swappiness_read,
4034 .write_u64 = mem_cgroup_swappiness_write,
4035 },
4036 {
4037 .name = "move_charge_at_immigrate",
4038 .read_u64 = mem_cgroup_move_charge_read,
4039 .write_u64 = mem_cgroup_move_charge_write,
4040 },
4041 {
4042 .name = "oom_control",
4043 .seq_show = mem_cgroup_oom_control_read,
4044 .write_u64 = mem_cgroup_oom_control_write,
4045 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4046 },
4047 {
4048 .name = "pressure_level",
4049 },
4050 #ifdef CONFIG_NUMA
4051 {
4052 .name = "numa_stat",
4053 .seq_show = memcg_numa_stat_show,
4054 },
4055 #endif
4056 #ifdef CONFIG_MEMCG_KMEM
4057 {
4058 .name = "kmem.limit_in_bytes",
4059 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4060 .write = mem_cgroup_write,
4061 .read_u64 = mem_cgroup_read_u64,
4062 },
4063 {
4064 .name = "kmem.usage_in_bytes",
4065 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4066 .read_u64 = mem_cgroup_read_u64,
4067 },
4068 {
4069 .name = "kmem.failcnt",
4070 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4071 .write = mem_cgroup_reset,
4072 .read_u64 = mem_cgroup_read_u64,
4073 },
4074 {
4075 .name = "kmem.max_usage_in_bytes",
4076 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4077 .write = mem_cgroup_reset,
4078 .read_u64 = mem_cgroup_read_u64,
4079 },
4080 #ifdef CONFIG_SLABINFO
4081 {
4082 .name = "kmem.slabinfo",
4083 .seq_start = slab_start,
4084 .seq_next = slab_next,
4085 .seq_stop = slab_stop,
4086 .seq_show = memcg_slab_show,
4087 },
4088 #endif
4089 #endif
4090 { }, /* terminate */
4091 };
4092
4093 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4094 {
4095 struct mem_cgroup_per_node *pn;
4096 struct mem_cgroup_per_zone *mz;
4097 int zone, tmp = node;
4098 /*
4099 * This routine is called against possible nodes.
4100 * But it's BUG to call kmalloc() against offline node.
4101 *
4102 * TODO: this routine can waste much memory for nodes which will
4103 * never be onlined. It's better to use memory hotplug callback
4104 * function.
4105 */
4106 if (!node_state(node, N_NORMAL_MEMORY))
4107 tmp = -1;
4108 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4109 if (!pn)
4110 return 1;
4111
4112 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4113 mz = &pn->zoneinfo[zone];
4114 lruvec_init(&mz->lruvec);
4115 mz->usage_in_excess = 0;
4116 mz->on_tree = false;
4117 mz->memcg = memcg;
4118 }
4119 memcg->nodeinfo[node] = pn;
4120 return 0;
4121 }
4122
4123 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4124 {
4125 kfree(memcg->nodeinfo[node]);
4126 }
4127
4128 static struct mem_cgroup *mem_cgroup_alloc(void)
4129 {
4130 struct mem_cgroup *memcg;
4131 size_t size;
4132
4133 size = sizeof(struct mem_cgroup);
4134 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4135
4136 memcg = kzalloc(size, GFP_KERNEL);
4137 if (!memcg)
4138 return NULL;
4139
4140 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4141 if (!memcg->stat)
4142 goto out_free;
4143
4144 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4145 goto out_free_stat;
4146
4147 return memcg;
4148
4149 out_free_stat:
4150 free_percpu(memcg->stat);
4151 out_free:
4152 kfree(memcg);
4153 return NULL;
4154 }
4155
4156 /*
4157 * At destroying mem_cgroup, references from swap_cgroup can remain.
4158 * (scanning all at force_empty is too costly...)
4159 *
4160 * Instead of clearing all references at force_empty, we remember
4161 * the number of reference from swap_cgroup and free mem_cgroup when
4162 * it goes down to 0.
4163 *
4164 * Removal of cgroup itself succeeds regardless of refs from swap.
4165 */
4166
4167 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4168 {
4169 int node;
4170
4171 cancel_work_sync(&memcg->high_work);
4172
4173 mem_cgroup_remove_from_trees(memcg);
4174
4175 for_each_node(node)
4176 free_mem_cgroup_per_zone_info(memcg, node);
4177
4178 free_percpu(memcg->stat);
4179 memcg_wb_domain_exit(memcg);
4180 kfree(memcg);
4181 }
4182
4183 static struct cgroup_subsys_state * __ref
4184 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4185 {
4186 struct mem_cgroup *memcg;
4187 long error = -ENOMEM;
4188 int node;
4189
4190 memcg = mem_cgroup_alloc();
4191 if (!memcg)
4192 return ERR_PTR(error);
4193
4194 for_each_node(node)
4195 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4196 goto free_out;
4197
4198 /* root ? */
4199 if (parent_css == NULL) {
4200 root_mem_cgroup = memcg;
4201 page_counter_init(&memcg->memory, NULL);
4202 memcg->high = PAGE_COUNTER_MAX;
4203 memcg->soft_limit = PAGE_COUNTER_MAX;
4204 page_counter_init(&memcg->memsw, NULL);
4205 page_counter_init(&memcg->kmem, NULL);
4206 }
4207
4208 INIT_WORK(&memcg->high_work, high_work_func);
4209 memcg->last_scanned_node = MAX_NUMNODES;
4210 INIT_LIST_HEAD(&memcg->oom_notify);
4211 memcg->move_charge_at_immigrate = 0;
4212 mutex_init(&memcg->thresholds_lock);
4213 spin_lock_init(&memcg->move_lock);
4214 vmpressure_init(&memcg->vmpressure);
4215 INIT_LIST_HEAD(&memcg->event_list);
4216 spin_lock_init(&memcg->event_list_lock);
4217 #ifdef CONFIG_MEMCG_KMEM
4218 memcg->kmemcg_id = -1;
4219 #endif
4220 #ifdef CONFIG_CGROUP_WRITEBACK
4221 INIT_LIST_HEAD(&memcg->cgwb_list);
4222 #endif
4223 #ifdef CONFIG_INET
4224 memcg->socket_pressure = jiffies;
4225 #endif
4226 return &memcg->css;
4227
4228 free_out:
4229 __mem_cgroup_free(memcg);
4230 return ERR_PTR(error);
4231 }
4232
4233 static int
4234 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4235 {
4236 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4237 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4238 int ret;
4239
4240 if (css->id > MEM_CGROUP_ID_MAX)
4241 return -ENOSPC;
4242
4243 if (!parent)
4244 return 0;
4245
4246 mutex_lock(&memcg_create_mutex);
4247
4248 memcg->use_hierarchy = parent->use_hierarchy;
4249 memcg->oom_kill_disable = parent->oom_kill_disable;
4250 memcg->swappiness = mem_cgroup_swappiness(parent);
4251
4252 if (parent->use_hierarchy) {
4253 page_counter_init(&memcg->memory, &parent->memory);
4254 memcg->high = PAGE_COUNTER_MAX;
4255 memcg->soft_limit = PAGE_COUNTER_MAX;
4256 page_counter_init(&memcg->memsw, &parent->memsw);
4257 page_counter_init(&memcg->kmem, &parent->kmem);
4258
4259 /*
4260 * No need to take a reference to the parent because cgroup
4261 * core guarantees its existence.
4262 */
4263 } else {
4264 page_counter_init(&memcg->memory, NULL);
4265 memcg->high = PAGE_COUNTER_MAX;
4266 memcg->soft_limit = PAGE_COUNTER_MAX;
4267 page_counter_init(&memcg->memsw, NULL);
4268 page_counter_init(&memcg->kmem, NULL);
4269 /*
4270 * Deeper hierachy with use_hierarchy == false doesn't make
4271 * much sense so let cgroup subsystem know about this
4272 * unfortunate state in our controller.
4273 */
4274 if (parent != root_mem_cgroup)
4275 memory_cgrp_subsys.broken_hierarchy = true;
4276 }
4277 mutex_unlock(&memcg_create_mutex);
4278
4279 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4280 if (ret)
4281 return ret;
4282
4283 #ifdef CONFIG_INET
4284 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4285 static_branch_inc(&memcg_sockets_enabled_key);
4286 #endif
4287
4288 /*
4289 * Make sure the memcg is initialized: mem_cgroup_iter()
4290 * orders reading memcg->initialized against its callers
4291 * reading the memcg members.
4292 */
4293 smp_store_release(&memcg->initialized, 1);
4294
4295 return 0;
4296 }
4297
4298 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4299 {
4300 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4301 struct mem_cgroup_event *event, *tmp;
4302
4303 /*
4304 * Unregister events and notify userspace.
4305 * Notify userspace about cgroup removing only after rmdir of cgroup
4306 * directory to avoid race between userspace and kernelspace.
4307 */
4308 spin_lock(&memcg->event_list_lock);
4309 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4310 list_del_init(&event->list);
4311 schedule_work(&event->remove);
4312 }
4313 spin_unlock(&memcg->event_list_lock);
4314
4315 vmpressure_cleanup(&memcg->vmpressure);
4316
4317 memcg_deactivate_kmem(memcg);
4318
4319 wb_memcg_offline(memcg);
4320 }
4321
4322 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4323 {
4324 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4325
4326 invalidate_reclaim_iterators(memcg);
4327 }
4328
4329 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4330 {
4331 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4332
4333 memcg_destroy_kmem(memcg);
4334 #ifdef CONFIG_INET
4335 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4336 static_branch_dec(&memcg_sockets_enabled_key);
4337 #endif
4338 __mem_cgroup_free(memcg);
4339 }
4340
4341 /**
4342 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4343 * @css: the target css
4344 *
4345 * Reset the states of the mem_cgroup associated with @css. This is
4346 * invoked when the userland requests disabling on the default hierarchy
4347 * but the memcg is pinned through dependency. The memcg should stop
4348 * applying policies and should revert to the vanilla state as it may be
4349 * made visible again.
4350 *
4351 * The current implementation only resets the essential configurations.
4352 * This needs to be expanded to cover all the visible parts.
4353 */
4354 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4355 {
4356 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4357
4358 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4359 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4360 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4361 memcg->low = 0;
4362 memcg->high = PAGE_COUNTER_MAX;
4363 memcg->soft_limit = PAGE_COUNTER_MAX;
4364 memcg_wb_domain_size_changed(memcg);
4365 }
4366
4367 #ifdef CONFIG_MMU
4368 /* Handlers for move charge at task migration. */
4369 static int mem_cgroup_do_precharge(unsigned long count)
4370 {
4371 int ret;
4372
4373 /* Try a single bulk charge without reclaim first, kswapd may wake */
4374 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4375 if (!ret) {
4376 mc.precharge += count;
4377 return ret;
4378 }
4379
4380 /* Try charges one by one with reclaim */
4381 while (count--) {
4382 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4383 if (ret)
4384 return ret;
4385 mc.precharge++;
4386 cond_resched();
4387 }
4388 return 0;
4389 }
4390
4391 /**
4392 * get_mctgt_type - get target type of moving charge
4393 * @vma: the vma the pte to be checked belongs
4394 * @addr: the address corresponding to the pte to be checked
4395 * @ptent: the pte to be checked
4396 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4397 *
4398 * Returns
4399 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4400 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4401 * move charge. if @target is not NULL, the page is stored in target->page
4402 * with extra refcnt got(Callers should handle it).
4403 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4404 * target for charge migration. if @target is not NULL, the entry is stored
4405 * in target->ent.
4406 *
4407 * Called with pte lock held.
4408 */
4409 union mc_target {
4410 struct page *page;
4411 swp_entry_t ent;
4412 };
4413
4414 enum mc_target_type {
4415 MC_TARGET_NONE = 0,
4416 MC_TARGET_PAGE,
4417 MC_TARGET_SWAP,
4418 };
4419
4420 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4421 unsigned long addr, pte_t ptent)
4422 {
4423 struct page *page = vm_normal_page(vma, addr, ptent);
4424
4425 if (!page || !page_mapped(page))
4426 return NULL;
4427 if (PageAnon(page)) {
4428 if (!(mc.flags & MOVE_ANON))
4429 return NULL;
4430 } else {
4431 if (!(mc.flags & MOVE_FILE))
4432 return NULL;
4433 }
4434 if (!get_page_unless_zero(page))
4435 return NULL;
4436
4437 return page;
4438 }
4439
4440 #ifdef CONFIG_SWAP
4441 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4442 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4443 {
4444 struct page *page = NULL;
4445 swp_entry_t ent = pte_to_swp_entry(ptent);
4446
4447 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4448 return NULL;
4449 /*
4450 * Because lookup_swap_cache() updates some statistics counter,
4451 * we call find_get_page() with swapper_space directly.
4452 */
4453 page = find_get_page(swap_address_space(ent), ent.val);
4454 if (do_memsw_account())
4455 entry->val = ent.val;
4456
4457 return page;
4458 }
4459 #else
4460 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4461 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4462 {
4463 return NULL;
4464 }
4465 #endif
4466
4467 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4468 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4469 {
4470 struct page *page = NULL;
4471 struct address_space *mapping;
4472 pgoff_t pgoff;
4473
4474 if (!vma->vm_file) /* anonymous vma */
4475 return NULL;
4476 if (!(mc.flags & MOVE_FILE))
4477 return NULL;
4478
4479 mapping = vma->vm_file->f_mapping;
4480 pgoff = linear_page_index(vma, addr);
4481
4482 /* page is moved even if it's not RSS of this task(page-faulted). */
4483 #ifdef CONFIG_SWAP
4484 /* shmem/tmpfs may report page out on swap: account for that too. */
4485 if (shmem_mapping(mapping)) {
4486 page = find_get_entry(mapping, pgoff);
4487 if (radix_tree_exceptional_entry(page)) {
4488 swp_entry_t swp = radix_to_swp_entry(page);
4489 if (do_memsw_account())
4490 *entry = swp;
4491 page = find_get_page(swap_address_space(swp), swp.val);
4492 }
4493 } else
4494 page = find_get_page(mapping, pgoff);
4495 #else
4496 page = find_get_page(mapping, pgoff);
4497 #endif
4498 return page;
4499 }
4500
4501 /**
4502 * mem_cgroup_move_account - move account of the page
4503 * @page: the page
4504 * @nr_pages: number of regular pages (>1 for huge pages)
4505 * @from: mem_cgroup which the page is moved from.
4506 * @to: mem_cgroup which the page is moved to. @from != @to.
4507 *
4508 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4509 *
4510 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4511 * from old cgroup.
4512 */
4513 static int mem_cgroup_move_account(struct page *page,
4514 bool compound,
4515 struct mem_cgroup *from,
4516 struct mem_cgroup *to)
4517 {
4518 unsigned long flags;
4519 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4520 int ret;
4521 bool anon;
4522
4523 VM_BUG_ON(from == to);
4524 VM_BUG_ON_PAGE(PageLRU(page), page);
4525 VM_BUG_ON(compound && !PageTransHuge(page));
4526
4527 /*
4528 * Prevent mem_cgroup_replace_page() from looking at
4529 * page->mem_cgroup of its source page while we change it.
4530 */
4531 ret = -EBUSY;
4532 if (!trylock_page(page))
4533 goto out;
4534
4535 ret = -EINVAL;
4536 if (page->mem_cgroup != from)
4537 goto out_unlock;
4538
4539 anon = PageAnon(page);
4540
4541 spin_lock_irqsave(&from->move_lock, flags);
4542
4543 if (!anon && page_mapped(page)) {
4544 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4545 nr_pages);
4546 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4547 nr_pages);
4548 }
4549
4550 /*
4551 * move_lock grabbed above and caller set from->moving_account, so
4552 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4553 * So mapping should be stable for dirty pages.
4554 */
4555 if (!anon && PageDirty(page)) {
4556 struct address_space *mapping = page_mapping(page);
4557
4558 if (mapping_cap_account_dirty(mapping)) {
4559 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4560 nr_pages);
4561 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4562 nr_pages);
4563 }
4564 }
4565
4566 if (PageWriteback(page)) {
4567 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4568 nr_pages);
4569 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4570 nr_pages);
4571 }
4572
4573 /*
4574 * It is safe to change page->mem_cgroup here because the page
4575 * is referenced, charged, and isolated - we can't race with
4576 * uncharging, charging, migration, or LRU putback.
4577 */
4578
4579 /* caller should have done css_get */
4580 page->mem_cgroup = to;
4581 spin_unlock_irqrestore(&from->move_lock, flags);
4582
4583 ret = 0;
4584
4585 local_irq_disable();
4586 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4587 memcg_check_events(to, page);
4588 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4589 memcg_check_events(from, page);
4590 local_irq_enable();
4591 out_unlock:
4592 unlock_page(page);
4593 out:
4594 return ret;
4595 }
4596
4597 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4598 unsigned long addr, pte_t ptent, union mc_target *target)
4599 {
4600 struct page *page = NULL;
4601 enum mc_target_type ret = MC_TARGET_NONE;
4602 swp_entry_t ent = { .val = 0 };
4603
4604 if (pte_present(ptent))
4605 page = mc_handle_present_pte(vma, addr, ptent);
4606 else if (is_swap_pte(ptent))
4607 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4608 else if (pte_none(ptent))
4609 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4610
4611 if (!page && !ent.val)
4612 return ret;
4613 if (page) {
4614 /*
4615 * Do only loose check w/o serialization.
4616 * mem_cgroup_move_account() checks the page is valid or
4617 * not under LRU exclusion.
4618 */
4619 if (page->mem_cgroup == mc.from) {
4620 ret = MC_TARGET_PAGE;
4621 if (target)
4622 target->page = page;
4623 }
4624 if (!ret || !target)
4625 put_page(page);
4626 }
4627 /* There is a swap entry and a page doesn't exist or isn't charged */
4628 if (ent.val && !ret &&
4629 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4630 ret = MC_TARGET_SWAP;
4631 if (target)
4632 target->ent = ent;
4633 }
4634 return ret;
4635 }
4636
4637 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4638 /*
4639 * We don't consider swapping or file mapped pages because THP does not
4640 * support them for now.
4641 * Caller should make sure that pmd_trans_huge(pmd) is true.
4642 */
4643 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4644 unsigned long addr, pmd_t pmd, union mc_target *target)
4645 {
4646 struct page *page = NULL;
4647 enum mc_target_type ret = MC_TARGET_NONE;
4648
4649 page = pmd_page(pmd);
4650 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4651 if (!(mc.flags & MOVE_ANON))
4652 return ret;
4653 if (page->mem_cgroup == mc.from) {
4654 ret = MC_TARGET_PAGE;
4655 if (target) {
4656 get_page(page);
4657 target->page = page;
4658 }
4659 }
4660 return ret;
4661 }
4662 #else
4663 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4664 unsigned long addr, pmd_t pmd, union mc_target *target)
4665 {
4666 return MC_TARGET_NONE;
4667 }
4668 #endif
4669
4670 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4671 unsigned long addr, unsigned long end,
4672 struct mm_walk *walk)
4673 {
4674 struct vm_area_struct *vma = walk->vma;
4675 pte_t *pte;
4676 spinlock_t *ptl;
4677
4678 if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
4679 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4680 mc.precharge += HPAGE_PMD_NR;
4681 spin_unlock(ptl);
4682 return 0;
4683 }
4684
4685 if (pmd_trans_unstable(pmd))
4686 return 0;
4687 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4688 for (; addr != end; pte++, addr += PAGE_SIZE)
4689 if (get_mctgt_type(vma, addr, *pte, NULL))
4690 mc.precharge++; /* increment precharge temporarily */
4691 pte_unmap_unlock(pte - 1, ptl);
4692 cond_resched();
4693
4694 return 0;
4695 }
4696
4697 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4698 {
4699 unsigned long precharge;
4700
4701 struct mm_walk mem_cgroup_count_precharge_walk = {
4702 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4703 .mm = mm,
4704 };
4705 down_read(&mm->mmap_sem);
4706 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4707 up_read(&mm->mmap_sem);
4708
4709 precharge = mc.precharge;
4710 mc.precharge = 0;
4711
4712 return precharge;
4713 }
4714
4715 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4716 {
4717 unsigned long precharge = mem_cgroup_count_precharge(mm);
4718
4719 VM_BUG_ON(mc.moving_task);
4720 mc.moving_task = current;
4721 return mem_cgroup_do_precharge(precharge);
4722 }
4723
4724 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4725 static void __mem_cgroup_clear_mc(void)
4726 {
4727 struct mem_cgroup *from = mc.from;
4728 struct mem_cgroup *to = mc.to;
4729
4730 /* we must uncharge all the leftover precharges from mc.to */
4731 if (mc.precharge) {
4732 cancel_charge(mc.to, mc.precharge);
4733 mc.precharge = 0;
4734 }
4735 /*
4736 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4737 * we must uncharge here.
4738 */
4739 if (mc.moved_charge) {
4740 cancel_charge(mc.from, mc.moved_charge);
4741 mc.moved_charge = 0;
4742 }
4743 /* we must fixup refcnts and charges */
4744 if (mc.moved_swap) {
4745 /* uncharge swap account from the old cgroup */
4746 if (!mem_cgroup_is_root(mc.from))
4747 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4748
4749 /*
4750 * we charged both to->memory and to->memsw, so we
4751 * should uncharge to->memory.
4752 */
4753 if (!mem_cgroup_is_root(mc.to))
4754 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4755
4756 css_put_many(&mc.from->css, mc.moved_swap);
4757
4758 /* we've already done css_get(mc.to) */
4759 mc.moved_swap = 0;
4760 }
4761 memcg_oom_recover(from);
4762 memcg_oom_recover(to);
4763 wake_up_all(&mc.waitq);
4764 }
4765
4766 static void mem_cgroup_clear_mc(void)
4767 {
4768 /*
4769 * we must clear moving_task before waking up waiters at the end of
4770 * task migration.
4771 */
4772 mc.moving_task = NULL;
4773 __mem_cgroup_clear_mc();
4774 spin_lock(&mc.lock);
4775 mc.from = NULL;
4776 mc.to = NULL;
4777 spin_unlock(&mc.lock);
4778 }
4779
4780 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4781 {
4782 struct cgroup_subsys_state *css;
4783 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4784 struct mem_cgroup *from;
4785 struct task_struct *leader, *p;
4786 struct mm_struct *mm;
4787 unsigned long move_flags;
4788 int ret = 0;
4789
4790 /* charge immigration isn't supported on the default hierarchy */
4791 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4792 return 0;
4793
4794 /*
4795 * Multi-process migrations only happen on the default hierarchy
4796 * where charge immigration is not used. Perform charge
4797 * immigration if @tset contains a leader and whine if there are
4798 * multiple.
4799 */
4800 p = NULL;
4801 cgroup_taskset_for_each_leader(leader, css, tset) {
4802 WARN_ON_ONCE(p);
4803 p = leader;
4804 memcg = mem_cgroup_from_css(css);
4805 }
4806 if (!p)
4807 return 0;
4808
4809 /*
4810 * We are now commited to this value whatever it is. Changes in this
4811 * tunable will only affect upcoming migrations, not the current one.
4812 * So we need to save it, and keep it going.
4813 */
4814 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4815 if (!move_flags)
4816 return 0;
4817
4818 from = mem_cgroup_from_task(p);
4819
4820 VM_BUG_ON(from == memcg);
4821
4822 mm = get_task_mm(p);
4823 if (!mm)
4824 return 0;
4825 /* We move charges only when we move a owner of the mm */
4826 if (mm->owner == p) {
4827 VM_BUG_ON(mc.from);
4828 VM_BUG_ON(mc.to);
4829 VM_BUG_ON(mc.precharge);
4830 VM_BUG_ON(mc.moved_charge);
4831 VM_BUG_ON(mc.moved_swap);
4832
4833 spin_lock(&mc.lock);
4834 mc.from = from;
4835 mc.to = memcg;
4836 mc.flags = move_flags;
4837 spin_unlock(&mc.lock);
4838 /* We set mc.moving_task later */
4839
4840 ret = mem_cgroup_precharge_mc(mm);
4841 if (ret)
4842 mem_cgroup_clear_mc();
4843 }
4844 mmput(mm);
4845 return ret;
4846 }
4847
4848 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4849 {
4850 if (mc.to)
4851 mem_cgroup_clear_mc();
4852 }
4853
4854 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4855 unsigned long addr, unsigned long end,
4856 struct mm_walk *walk)
4857 {
4858 int ret = 0;
4859 struct vm_area_struct *vma = walk->vma;
4860 pte_t *pte;
4861 spinlock_t *ptl;
4862 enum mc_target_type target_type;
4863 union mc_target target;
4864 struct page *page;
4865
4866 if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
4867 if (mc.precharge < HPAGE_PMD_NR) {
4868 spin_unlock(ptl);
4869 return 0;
4870 }
4871 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4872 if (target_type == MC_TARGET_PAGE) {
4873 page = target.page;
4874 if (!isolate_lru_page(page)) {
4875 if (!mem_cgroup_move_account(page, true,
4876 mc.from, mc.to)) {
4877 mc.precharge -= HPAGE_PMD_NR;
4878 mc.moved_charge += HPAGE_PMD_NR;
4879 }
4880 putback_lru_page(page);
4881 }
4882 put_page(page);
4883 }
4884 spin_unlock(ptl);
4885 return 0;
4886 }
4887
4888 if (pmd_trans_unstable(pmd))
4889 return 0;
4890 retry:
4891 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4892 for (; addr != end; addr += PAGE_SIZE) {
4893 pte_t ptent = *(pte++);
4894 swp_entry_t ent;
4895
4896 if (!mc.precharge)
4897 break;
4898
4899 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4900 case MC_TARGET_PAGE:
4901 page = target.page;
4902 /*
4903 * We can have a part of the split pmd here. Moving it
4904 * can be done but it would be too convoluted so simply
4905 * ignore such a partial THP and keep it in original
4906 * memcg. There should be somebody mapping the head.
4907 */
4908 if (PageTransCompound(page))
4909 goto put;
4910 if (isolate_lru_page(page))
4911 goto put;
4912 if (!mem_cgroup_move_account(page, false,
4913 mc.from, mc.to)) {
4914 mc.precharge--;
4915 /* we uncharge from mc.from later. */
4916 mc.moved_charge++;
4917 }
4918 putback_lru_page(page);
4919 put: /* get_mctgt_type() gets the page */
4920 put_page(page);
4921 break;
4922 case MC_TARGET_SWAP:
4923 ent = target.ent;
4924 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4925 mc.precharge--;
4926 /* we fixup refcnts and charges later. */
4927 mc.moved_swap++;
4928 }
4929 break;
4930 default:
4931 break;
4932 }
4933 }
4934 pte_unmap_unlock(pte - 1, ptl);
4935 cond_resched();
4936
4937 if (addr != end) {
4938 /*
4939 * We have consumed all precharges we got in can_attach().
4940 * We try charge one by one, but don't do any additional
4941 * charges to mc.to if we have failed in charge once in attach()
4942 * phase.
4943 */
4944 ret = mem_cgroup_do_precharge(1);
4945 if (!ret)
4946 goto retry;
4947 }
4948
4949 return ret;
4950 }
4951
4952 static void mem_cgroup_move_charge(struct mm_struct *mm)
4953 {
4954 struct mm_walk mem_cgroup_move_charge_walk = {
4955 .pmd_entry = mem_cgroup_move_charge_pte_range,
4956 .mm = mm,
4957 };
4958
4959 lru_add_drain_all();
4960 /*
4961 * Signal mem_cgroup_begin_page_stat() to take the memcg's
4962 * move_lock while we're moving its pages to another memcg.
4963 * Then wait for already started RCU-only updates to finish.
4964 */
4965 atomic_inc(&mc.from->moving_account);
4966 synchronize_rcu();
4967 retry:
4968 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4969 /*
4970 * Someone who are holding the mmap_sem might be waiting in
4971 * waitq. So we cancel all extra charges, wake up all waiters,
4972 * and retry. Because we cancel precharges, we might not be able
4973 * to move enough charges, but moving charge is a best-effort
4974 * feature anyway, so it wouldn't be a big problem.
4975 */
4976 __mem_cgroup_clear_mc();
4977 cond_resched();
4978 goto retry;
4979 }
4980 /*
4981 * When we have consumed all precharges and failed in doing
4982 * additional charge, the page walk just aborts.
4983 */
4984 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4985 up_read(&mm->mmap_sem);
4986 atomic_dec(&mc.from->moving_account);
4987 }
4988
4989 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4990 {
4991 struct cgroup_subsys_state *css;
4992 struct task_struct *p = cgroup_taskset_first(tset, &css);
4993 struct mm_struct *mm = get_task_mm(p);
4994
4995 if (mm) {
4996 if (mc.to)
4997 mem_cgroup_move_charge(mm);
4998 mmput(mm);
4999 }
5000 if (mc.to)
5001 mem_cgroup_clear_mc();
5002 }
5003 #else /* !CONFIG_MMU */
5004 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5005 {
5006 return 0;
5007 }
5008 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5009 {
5010 }
5011 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5012 {
5013 }
5014 #endif
5015
5016 /*
5017 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5018 * to verify whether we're attached to the default hierarchy on each mount
5019 * attempt.
5020 */
5021 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5022 {
5023 /*
5024 * use_hierarchy is forced on the default hierarchy. cgroup core
5025 * guarantees that @root doesn't have any children, so turning it
5026 * on for the root memcg is enough.
5027 */
5028 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5029 root_mem_cgroup->use_hierarchy = true;
5030 else
5031 root_mem_cgroup->use_hierarchy = false;
5032 }
5033
5034 static u64 memory_current_read(struct cgroup_subsys_state *css,
5035 struct cftype *cft)
5036 {
5037 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5038
5039 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5040 }
5041
5042 static int memory_low_show(struct seq_file *m, void *v)
5043 {
5044 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5045 unsigned long low = READ_ONCE(memcg->low);
5046
5047 if (low == PAGE_COUNTER_MAX)
5048 seq_puts(m, "max\n");
5049 else
5050 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5051
5052 return 0;
5053 }
5054
5055 static ssize_t memory_low_write(struct kernfs_open_file *of,
5056 char *buf, size_t nbytes, loff_t off)
5057 {
5058 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5059 unsigned long low;
5060 int err;
5061
5062 buf = strstrip(buf);
5063 err = page_counter_memparse(buf, "max", &low);
5064 if (err)
5065 return err;
5066
5067 memcg->low = low;
5068
5069 return nbytes;
5070 }
5071
5072 static int memory_high_show(struct seq_file *m, void *v)
5073 {
5074 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5075 unsigned long high = READ_ONCE(memcg->high);
5076
5077 if (high == PAGE_COUNTER_MAX)
5078 seq_puts(m, "max\n");
5079 else
5080 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5081
5082 return 0;
5083 }
5084
5085 static ssize_t memory_high_write(struct kernfs_open_file *of,
5086 char *buf, size_t nbytes, loff_t off)
5087 {
5088 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5089 unsigned long high;
5090 int err;
5091
5092 buf = strstrip(buf);
5093 err = page_counter_memparse(buf, "max", &high);
5094 if (err)
5095 return err;
5096
5097 memcg->high = high;
5098
5099 memcg_wb_domain_size_changed(memcg);
5100 return nbytes;
5101 }
5102
5103 static int memory_max_show(struct seq_file *m, void *v)
5104 {
5105 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5106 unsigned long max = READ_ONCE(memcg->memory.limit);
5107
5108 if (max == PAGE_COUNTER_MAX)
5109 seq_puts(m, "max\n");
5110 else
5111 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5112
5113 return 0;
5114 }
5115
5116 static ssize_t memory_max_write(struct kernfs_open_file *of,
5117 char *buf, size_t nbytes, loff_t off)
5118 {
5119 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5120 unsigned long max;
5121 int err;
5122
5123 buf = strstrip(buf);
5124 err = page_counter_memparse(buf, "max", &max);
5125 if (err)
5126 return err;
5127
5128 err = mem_cgroup_resize_limit(memcg, max);
5129 if (err)
5130 return err;
5131
5132 memcg_wb_domain_size_changed(memcg);
5133 return nbytes;
5134 }
5135
5136 static int memory_events_show(struct seq_file *m, void *v)
5137 {
5138 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5139
5140 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5141 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5142 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5143 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5144
5145 return 0;
5146 }
5147
5148 static struct cftype memory_files[] = {
5149 {
5150 .name = "current",
5151 .flags = CFTYPE_NOT_ON_ROOT,
5152 .read_u64 = memory_current_read,
5153 },
5154 {
5155 .name = "low",
5156 .flags = CFTYPE_NOT_ON_ROOT,
5157 .seq_show = memory_low_show,
5158 .write = memory_low_write,
5159 },
5160 {
5161 .name = "high",
5162 .flags = CFTYPE_NOT_ON_ROOT,
5163 .seq_show = memory_high_show,
5164 .write = memory_high_write,
5165 },
5166 {
5167 .name = "max",
5168 .flags = CFTYPE_NOT_ON_ROOT,
5169 .seq_show = memory_max_show,
5170 .write = memory_max_write,
5171 },
5172 {
5173 .name = "events",
5174 .flags = CFTYPE_NOT_ON_ROOT,
5175 .file_offset = offsetof(struct mem_cgroup, events_file),
5176 .seq_show = memory_events_show,
5177 },
5178 { } /* terminate */
5179 };
5180
5181 struct cgroup_subsys memory_cgrp_subsys = {
5182 .css_alloc = mem_cgroup_css_alloc,
5183 .css_online = mem_cgroup_css_online,
5184 .css_offline = mem_cgroup_css_offline,
5185 .css_released = mem_cgroup_css_released,
5186 .css_free = mem_cgroup_css_free,
5187 .css_reset = mem_cgroup_css_reset,
5188 .can_attach = mem_cgroup_can_attach,
5189 .cancel_attach = mem_cgroup_cancel_attach,
5190 .attach = mem_cgroup_move_task,
5191 .bind = mem_cgroup_bind,
5192 .dfl_cftypes = memory_files,
5193 .legacy_cftypes = mem_cgroup_legacy_files,
5194 .early_init = 0,
5195 };
5196
5197 /**
5198 * mem_cgroup_low - check if memory consumption is below the normal range
5199 * @root: the highest ancestor to consider
5200 * @memcg: the memory cgroup to check
5201 *
5202 * Returns %true if memory consumption of @memcg, and that of all
5203 * configurable ancestors up to @root, is below the normal range.
5204 */
5205 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5206 {
5207 if (mem_cgroup_disabled())
5208 return false;
5209
5210 /*
5211 * The toplevel group doesn't have a configurable range, so
5212 * it's never low when looked at directly, and it is not
5213 * considered an ancestor when assessing the hierarchy.
5214 */
5215
5216 if (memcg == root_mem_cgroup)
5217 return false;
5218
5219 if (page_counter_read(&memcg->memory) >= memcg->low)
5220 return false;
5221
5222 while (memcg != root) {
5223 memcg = parent_mem_cgroup(memcg);
5224
5225 if (memcg == root_mem_cgroup)
5226 break;
5227
5228 if (page_counter_read(&memcg->memory) >= memcg->low)
5229 return false;
5230 }
5231 return true;
5232 }
5233
5234 /**
5235 * mem_cgroup_try_charge - try charging a page
5236 * @page: page to charge
5237 * @mm: mm context of the victim
5238 * @gfp_mask: reclaim mode
5239 * @memcgp: charged memcg return
5240 *
5241 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5242 * pages according to @gfp_mask if necessary.
5243 *
5244 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5245 * Otherwise, an error code is returned.
5246 *
5247 * After page->mapping has been set up, the caller must finalize the
5248 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5249 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5250 */
5251 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5252 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5253 bool compound)
5254 {
5255 struct mem_cgroup *memcg = NULL;
5256 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5257 int ret = 0;
5258
5259 if (mem_cgroup_disabled())
5260 goto out;
5261
5262 if (PageSwapCache(page)) {
5263 /*
5264 * Every swap fault against a single page tries to charge the
5265 * page, bail as early as possible. shmem_unuse() encounters
5266 * already charged pages, too. The USED bit is protected by
5267 * the page lock, which serializes swap cache removal, which
5268 * in turn serializes uncharging.
5269 */
5270 VM_BUG_ON_PAGE(!PageLocked(page), page);
5271 if (page->mem_cgroup)
5272 goto out;
5273
5274 if (do_memsw_account()) {
5275 swp_entry_t ent = { .val = page_private(page), };
5276 unsigned short id = lookup_swap_cgroup_id(ent);
5277
5278 rcu_read_lock();
5279 memcg = mem_cgroup_from_id(id);
5280 if (memcg && !css_tryget_online(&memcg->css))
5281 memcg = NULL;
5282 rcu_read_unlock();
5283 }
5284 }
5285
5286 if (!memcg)
5287 memcg = get_mem_cgroup_from_mm(mm);
5288
5289 ret = try_charge(memcg, gfp_mask, nr_pages);
5290
5291 css_put(&memcg->css);
5292 out:
5293 *memcgp = memcg;
5294 return ret;
5295 }
5296
5297 /**
5298 * mem_cgroup_commit_charge - commit a page charge
5299 * @page: page to charge
5300 * @memcg: memcg to charge the page to
5301 * @lrucare: page might be on LRU already
5302 *
5303 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5304 * after page->mapping has been set up. This must happen atomically
5305 * as part of the page instantiation, i.e. under the page table lock
5306 * for anonymous pages, under the page lock for page and swap cache.
5307 *
5308 * In addition, the page must not be on the LRU during the commit, to
5309 * prevent racing with task migration. If it might be, use @lrucare.
5310 *
5311 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5312 */
5313 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5314 bool lrucare, bool compound)
5315 {
5316 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5317
5318 VM_BUG_ON_PAGE(!page->mapping, page);
5319 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5320
5321 if (mem_cgroup_disabled())
5322 return;
5323 /*
5324 * Swap faults will attempt to charge the same page multiple
5325 * times. But reuse_swap_page() might have removed the page
5326 * from swapcache already, so we can't check PageSwapCache().
5327 */
5328 if (!memcg)
5329 return;
5330
5331 commit_charge(page, memcg, lrucare);
5332
5333 local_irq_disable();
5334 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5335 memcg_check_events(memcg, page);
5336 local_irq_enable();
5337
5338 if (do_memsw_account() && PageSwapCache(page)) {
5339 swp_entry_t entry = { .val = page_private(page) };
5340 /*
5341 * The swap entry might not get freed for a long time,
5342 * let's not wait for it. The page already received a
5343 * memory+swap charge, drop the swap entry duplicate.
5344 */
5345 mem_cgroup_uncharge_swap(entry);
5346 }
5347 }
5348
5349 /**
5350 * mem_cgroup_cancel_charge - cancel a page charge
5351 * @page: page to charge
5352 * @memcg: memcg to charge the page to
5353 *
5354 * Cancel a charge transaction started by mem_cgroup_try_charge().
5355 */
5356 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5357 bool compound)
5358 {
5359 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5360
5361 if (mem_cgroup_disabled())
5362 return;
5363 /*
5364 * Swap faults will attempt to charge the same page multiple
5365 * times. But reuse_swap_page() might have removed the page
5366 * from swapcache already, so we can't check PageSwapCache().
5367 */
5368 if (!memcg)
5369 return;
5370
5371 cancel_charge(memcg, nr_pages);
5372 }
5373
5374 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5375 unsigned long nr_anon, unsigned long nr_file,
5376 unsigned long nr_huge, struct page *dummy_page)
5377 {
5378 unsigned long nr_pages = nr_anon + nr_file;
5379 unsigned long flags;
5380
5381 if (!mem_cgroup_is_root(memcg)) {
5382 page_counter_uncharge(&memcg->memory, nr_pages);
5383 if (do_memsw_account())
5384 page_counter_uncharge(&memcg->memsw, nr_pages);
5385 memcg_oom_recover(memcg);
5386 }
5387
5388 local_irq_save(flags);
5389 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5390 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5391 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5392 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5393 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5394 memcg_check_events(memcg, dummy_page);
5395 local_irq_restore(flags);
5396
5397 if (!mem_cgroup_is_root(memcg))
5398 css_put_many(&memcg->css, nr_pages);
5399 }
5400
5401 static void uncharge_list(struct list_head *page_list)
5402 {
5403 struct mem_cgroup *memcg = NULL;
5404 unsigned long nr_anon = 0;
5405 unsigned long nr_file = 0;
5406 unsigned long nr_huge = 0;
5407 unsigned long pgpgout = 0;
5408 struct list_head *next;
5409 struct page *page;
5410
5411 next = page_list->next;
5412 do {
5413 unsigned int nr_pages = 1;
5414
5415 page = list_entry(next, struct page, lru);
5416 next = page->lru.next;
5417
5418 VM_BUG_ON_PAGE(PageLRU(page), page);
5419 VM_BUG_ON_PAGE(page_count(page), page);
5420
5421 if (!page->mem_cgroup)
5422 continue;
5423
5424 /*
5425 * Nobody should be changing or seriously looking at
5426 * page->mem_cgroup at this point, we have fully
5427 * exclusive access to the page.
5428 */
5429
5430 if (memcg != page->mem_cgroup) {
5431 if (memcg) {
5432 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5433 nr_huge, page);
5434 pgpgout = nr_anon = nr_file = nr_huge = 0;
5435 }
5436 memcg = page->mem_cgroup;
5437 }
5438
5439 if (PageTransHuge(page)) {
5440 nr_pages <<= compound_order(page);
5441 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5442 nr_huge += nr_pages;
5443 }
5444
5445 if (PageAnon(page))
5446 nr_anon += nr_pages;
5447 else
5448 nr_file += nr_pages;
5449
5450 page->mem_cgroup = NULL;
5451
5452 pgpgout++;
5453 } while (next != page_list);
5454
5455 if (memcg)
5456 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5457 nr_huge, page);
5458 }
5459
5460 /**
5461 * mem_cgroup_uncharge - uncharge a page
5462 * @page: page to uncharge
5463 *
5464 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5465 * mem_cgroup_commit_charge().
5466 */
5467 void mem_cgroup_uncharge(struct page *page)
5468 {
5469 if (mem_cgroup_disabled())
5470 return;
5471
5472 /* Don't touch page->lru of any random page, pre-check: */
5473 if (!page->mem_cgroup)
5474 return;
5475
5476 INIT_LIST_HEAD(&page->lru);
5477 uncharge_list(&page->lru);
5478 }
5479
5480 /**
5481 * mem_cgroup_uncharge_list - uncharge a list of page
5482 * @page_list: list of pages to uncharge
5483 *
5484 * Uncharge a list of pages previously charged with
5485 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5486 */
5487 void mem_cgroup_uncharge_list(struct list_head *page_list)
5488 {
5489 if (mem_cgroup_disabled())
5490 return;
5491
5492 if (!list_empty(page_list))
5493 uncharge_list(page_list);
5494 }
5495
5496 /**
5497 * mem_cgroup_replace_page - migrate a charge to another page
5498 * @oldpage: currently charged page
5499 * @newpage: page to transfer the charge to
5500 *
5501 * Migrate the charge from @oldpage to @newpage.
5502 *
5503 * Both pages must be locked, @newpage->mapping must be set up.
5504 * Either or both pages might be on the LRU already.
5505 */
5506 void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
5507 {
5508 struct mem_cgroup *memcg;
5509 int isolated;
5510
5511 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5512 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5513 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5514 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5515 newpage);
5516
5517 if (mem_cgroup_disabled())
5518 return;
5519
5520 /* Page cache replacement: new page already charged? */
5521 if (newpage->mem_cgroup)
5522 return;
5523
5524 /* Swapcache readahead pages can get replaced before being charged */
5525 memcg = oldpage->mem_cgroup;
5526 if (!memcg)
5527 return;
5528
5529 lock_page_lru(oldpage, &isolated);
5530 oldpage->mem_cgroup = NULL;
5531 unlock_page_lru(oldpage, isolated);
5532
5533 commit_charge(newpage, memcg, true);
5534 }
5535
5536 #ifdef CONFIG_INET
5537
5538 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5539 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5540
5541 void sock_update_memcg(struct sock *sk)
5542 {
5543 struct mem_cgroup *memcg;
5544
5545 /* Socket cloning can throw us here with sk_cgrp already
5546 * filled. It won't however, necessarily happen from
5547 * process context. So the test for root memcg given
5548 * the current task's memcg won't help us in this case.
5549 *
5550 * Respecting the original socket's memcg is a better
5551 * decision in this case.
5552 */
5553 if (sk->sk_memcg) {
5554 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5555 css_get(&sk->sk_memcg->css);
5556 return;
5557 }
5558
5559 rcu_read_lock();
5560 memcg = mem_cgroup_from_task(current);
5561 if (memcg == root_mem_cgroup)
5562 goto out;
5563 #ifdef CONFIG_MEMCG_KMEM
5564 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcp_mem.active)
5565 goto out;
5566 #endif
5567 if (css_tryget_online(&memcg->css))
5568 sk->sk_memcg = memcg;
5569 out:
5570 rcu_read_unlock();
5571 }
5572 EXPORT_SYMBOL(sock_update_memcg);
5573
5574 void sock_release_memcg(struct sock *sk)
5575 {
5576 WARN_ON(!sk->sk_memcg);
5577 css_put(&sk->sk_memcg->css);
5578 }
5579
5580 /**
5581 * mem_cgroup_charge_skmem - charge socket memory
5582 * @memcg: memcg to charge
5583 * @nr_pages: number of pages to charge
5584 *
5585 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5586 * @memcg's configured limit, %false if the charge had to be forced.
5587 */
5588 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5589 {
5590 gfp_t gfp_mask = GFP_KERNEL;
5591
5592 #ifdef CONFIG_MEMCG_KMEM
5593 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5594 struct page_counter *counter;
5595
5596 if (page_counter_try_charge(&memcg->tcp_mem.memory_allocated,
5597 nr_pages, &counter)) {
5598 memcg->tcp_mem.memory_pressure = 0;
5599 return true;
5600 }
5601 page_counter_charge(&memcg->tcp_mem.memory_allocated, nr_pages);
5602 memcg->tcp_mem.memory_pressure = 1;
5603 return false;
5604 }
5605 #endif
5606 /* Don't block in the packet receive path */
5607 if (in_softirq())
5608 gfp_mask = GFP_NOWAIT;
5609
5610 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5611 return true;
5612
5613 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5614 return false;
5615 }
5616
5617 /**
5618 * mem_cgroup_uncharge_skmem - uncharge socket memory
5619 * @memcg - memcg to uncharge
5620 * @nr_pages - number of pages to uncharge
5621 */
5622 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5623 {
5624 #ifdef CONFIG_MEMCG_KMEM
5625 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5626 page_counter_uncharge(&memcg->tcp_mem.memory_allocated,
5627 nr_pages);
5628 return;
5629 }
5630 #endif
5631 page_counter_uncharge(&memcg->memory, nr_pages);
5632 css_put_many(&memcg->css, nr_pages);
5633 }
5634
5635 #endif /* CONFIG_INET */
5636
5637 static int __init cgroup_memory(char *s)
5638 {
5639 char *token;
5640
5641 while ((token = strsep(&s, ",")) != NULL) {
5642 if (!*token)
5643 continue;
5644 if (!strcmp(token, "nosocket"))
5645 cgroup_memory_nosocket = true;
5646 }
5647 return 0;
5648 }
5649 __setup("cgroup.memory=", cgroup_memory);
5650
5651 /*
5652 * subsys_initcall() for memory controller.
5653 *
5654 * Some parts like hotcpu_notifier() have to be initialized from this context
5655 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5656 * everything that doesn't depend on a specific mem_cgroup structure should
5657 * be initialized from here.
5658 */
5659 static int __init mem_cgroup_init(void)
5660 {
5661 int cpu, node;
5662
5663 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5664
5665 for_each_possible_cpu(cpu)
5666 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5667 drain_local_stock);
5668
5669 for_each_node(node) {
5670 struct mem_cgroup_tree_per_node *rtpn;
5671 int zone;
5672
5673 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5674 node_online(node) ? node : NUMA_NO_NODE);
5675
5676 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5677 struct mem_cgroup_tree_per_zone *rtpz;
5678
5679 rtpz = &rtpn->rb_tree_per_zone[zone];
5680 rtpz->rb_root = RB_ROOT;
5681 spin_lock_init(&rtpz->lock);
5682 }
5683 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5684 }
5685
5686 return 0;
5687 }
5688 subsys_initcall(mem_cgroup_init);
5689
5690 #ifdef CONFIG_MEMCG_SWAP
5691 /**
5692 * mem_cgroup_swapout - transfer a memsw charge to swap
5693 * @page: page whose memsw charge to transfer
5694 * @entry: swap entry to move the charge to
5695 *
5696 * Transfer the memsw charge of @page to @entry.
5697 */
5698 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5699 {
5700 struct mem_cgroup *memcg;
5701 unsigned short oldid;
5702
5703 VM_BUG_ON_PAGE(PageLRU(page), page);
5704 VM_BUG_ON_PAGE(page_count(page), page);
5705
5706 if (!do_memsw_account())
5707 return;
5708
5709 memcg = page->mem_cgroup;
5710
5711 /* Readahead page, never charged */
5712 if (!memcg)
5713 return;
5714
5715 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5716 VM_BUG_ON_PAGE(oldid, page);
5717 mem_cgroup_swap_statistics(memcg, true);
5718
5719 page->mem_cgroup = NULL;
5720
5721 if (!mem_cgroup_is_root(memcg))
5722 page_counter_uncharge(&memcg->memory, 1);
5723
5724 /*
5725 * Interrupts should be disabled here because the caller holds the
5726 * mapping->tree_lock lock which is taken with interrupts-off. It is
5727 * important here to have the interrupts disabled because it is the
5728 * only synchronisation we have for udpating the per-CPU variables.
5729 */
5730 VM_BUG_ON(!irqs_disabled());
5731 mem_cgroup_charge_statistics(memcg, page, false, -1);
5732 memcg_check_events(memcg, page);
5733 }
5734
5735 /**
5736 * mem_cgroup_uncharge_swap - uncharge a swap entry
5737 * @entry: swap entry to uncharge
5738 *
5739 * Drop the memsw charge associated with @entry.
5740 */
5741 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5742 {
5743 struct mem_cgroup *memcg;
5744 unsigned short id;
5745
5746 if (!do_memsw_account())
5747 return;
5748
5749 id = swap_cgroup_record(entry, 0);
5750 rcu_read_lock();
5751 memcg = mem_cgroup_from_id(id);
5752 if (memcg) {
5753 if (!mem_cgroup_is_root(memcg))
5754 page_counter_uncharge(&memcg->memsw, 1);
5755 mem_cgroup_swap_statistics(memcg, false);
5756 css_put(&memcg->css);
5757 }
5758 rcu_read_unlock();
5759 }
5760
5761 /* for remember boot option*/
5762 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5763 static int really_do_swap_account __initdata = 1;
5764 #else
5765 static int really_do_swap_account __initdata;
5766 #endif
5767
5768 static int __init enable_swap_account(char *s)
5769 {
5770 if (!strcmp(s, "1"))
5771 really_do_swap_account = 1;
5772 else if (!strcmp(s, "0"))
5773 really_do_swap_account = 0;
5774 return 1;
5775 }
5776 __setup("swapaccount=", enable_swap_account);
5777
5778 static struct cftype memsw_cgroup_files[] = {
5779 {
5780 .name = "memsw.usage_in_bytes",
5781 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5782 .read_u64 = mem_cgroup_read_u64,
5783 },
5784 {
5785 .name = "memsw.max_usage_in_bytes",
5786 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5787 .write = mem_cgroup_reset,
5788 .read_u64 = mem_cgroup_read_u64,
5789 },
5790 {
5791 .name = "memsw.limit_in_bytes",
5792 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5793 .write = mem_cgroup_write,
5794 .read_u64 = mem_cgroup_read_u64,
5795 },
5796 {
5797 .name = "memsw.failcnt",
5798 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5799 .write = mem_cgroup_reset,
5800 .read_u64 = mem_cgroup_read_u64,
5801 },
5802 { }, /* terminate */
5803 };
5804
5805 static int __init mem_cgroup_swap_init(void)
5806 {
5807 if (!mem_cgroup_disabled() && really_do_swap_account) {
5808 do_swap_account = 1;
5809 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5810 memsw_cgroup_files));
5811 }
5812 return 0;
5813 }
5814 subsys_initcall(mem_cgroup_swap_init);
5815
5816 #endif /* CONFIG_MEMCG_SWAP */
This page took 0.144556 seconds and 6 git commands to generate.