mm: memcontrol: give the kmem states more descriptive names
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include <net/tcp_memcontrol.h>
70 #include "slab.h"
71
72 #include <asm/uaccess.h>
73
74 #include <trace/events/vmscan.h>
75
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77 EXPORT_SYMBOL(memory_cgrp_subsys);
78
79 struct mem_cgroup *root_mem_cgroup __read_mostly;
80
81 #define MEM_CGROUP_RECLAIM_RETRIES 5
82
83 /* Socket memory accounting disabled? */
84 static bool cgroup_memory_nosocket;
85
86 /* Whether the swap controller is active */
87 #ifdef CONFIG_MEMCG_SWAP
88 int do_swap_account __read_mostly;
89 #else
90 #define do_swap_account 0
91 #endif
92
93 /* Whether legacy memory+swap accounting is active */
94 static bool do_memsw_account(void)
95 {
96 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
97 }
98
99 static const char * const mem_cgroup_stat_names[] = {
100 "cache",
101 "rss",
102 "rss_huge",
103 "mapped_file",
104 "dirty",
105 "writeback",
106 "swap",
107 };
108
109 static const char * const mem_cgroup_events_names[] = {
110 "pgpgin",
111 "pgpgout",
112 "pgfault",
113 "pgmajfault",
114 };
115
116 static const char * const mem_cgroup_lru_names[] = {
117 "inactive_anon",
118 "active_anon",
119 "inactive_file",
120 "active_file",
121 "unevictable",
122 };
123
124 #define THRESHOLDS_EVENTS_TARGET 128
125 #define SOFTLIMIT_EVENTS_TARGET 1024
126 #define NUMAINFO_EVENTS_TARGET 1024
127
128 /*
129 * Cgroups above their limits are maintained in a RB-Tree, independent of
130 * their hierarchy representation
131 */
132
133 struct mem_cgroup_tree_per_zone {
134 struct rb_root rb_root;
135 spinlock_t lock;
136 };
137
138 struct mem_cgroup_tree_per_node {
139 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
140 };
141
142 struct mem_cgroup_tree {
143 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
144 };
145
146 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
147
148 /* for OOM */
149 struct mem_cgroup_eventfd_list {
150 struct list_head list;
151 struct eventfd_ctx *eventfd;
152 };
153
154 /*
155 * cgroup_event represents events which userspace want to receive.
156 */
157 struct mem_cgroup_event {
158 /*
159 * memcg which the event belongs to.
160 */
161 struct mem_cgroup *memcg;
162 /*
163 * eventfd to signal userspace about the event.
164 */
165 struct eventfd_ctx *eventfd;
166 /*
167 * Each of these stored in a list by the cgroup.
168 */
169 struct list_head list;
170 /*
171 * register_event() callback will be used to add new userspace
172 * waiter for changes related to this event. Use eventfd_signal()
173 * on eventfd to send notification to userspace.
174 */
175 int (*register_event)(struct mem_cgroup *memcg,
176 struct eventfd_ctx *eventfd, const char *args);
177 /*
178 * unregister_event() callback will be called when userspace closes
179 * the eventfd or on cgroup removing. This callback must be set,
180 * if you want provide notification functionality.
181 */
182 void (*unregister_event)(struct mem_cgroup *memcg,
183 struct eventfd_ctx *eventfd);
184 /*
185 * All fields below needed to unregister event when
186 * userspace closes eventfd.
187 */
188 poll_table pt;
189 wait_queue_head_t *wqh;
190 wait_queue_t wait;
191 struct work_struct remove;
192 };
193
194 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
195 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
196
197 /* Stuffs for move charges at task migration. */
198 /*
199 * Types of charges to be moved.
200 */
201 #define MOVE_ANON 0x1U
202 #define MOVE_FILE 0x2U
203 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
204
205 /* "mc" and its members are protected by cgroup_mutex */
206 static struct move_charge_struct {
207 spinlock_t lock; /* for from, to */
208 struct mem_cgroup *from;
209 struct mem_cgroup *to;
210 unsigned long flags;
211 unsigned long precharge;
212 unsigned long moved_charge;
213 unsigned long moved_swap;
214 struct task_struct *moving_task; /* a task moving charges */
215 wait_queue_head_t waitq; /* a waitq for other context */
216 } mc = {
217 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
218 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
219 };
220
221 /*
222 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
223 * limit reclaim to prevent infinite loops, if they ever occur.
224 */
225 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
226 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
227
228 enum charge_type {
229 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
230 MEM_CGROUP_CHARGE_TYPE_ANON,
231 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
232 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
233 NR_CHARGE_TYPE,
234 };
235
236 /* for encoding cft->private value on file */
237 enum res_type {
238 _MEM,
239 _MEMSWAP,
240 _OOM_TYPE,
241 _KMEM,
242 };
243
244 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
245 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
246 #define MEMFILE_ATTR(val) ((val) & 0xffff)
247 /* Used for OOM nofiier */
248 #define OOM_CONTROL (0)
249
250 /*
251 * The memcg_create_mutex will be held whenever a new cgroup is created.
252 * As a consequence, any change that needs to protect against new child cgroups
253 * appearing has to hold it as well.
254 */
255 static DEFINE_MUTEX(memcg_create_mutex);
256
257 /* Some nice accessors for the vmpressure. */
258 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
259 {
260 if (!memcg)
261 memcg = root_mem_cgroup;
262 return &memcg->vmpressure;
263 }
264
265 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
266 {
267 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
268 }
269
270 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
271 {
272 return (memcg == root_mem_cgroup);
273 }
274
275 /*
276 * We restrict the id in the range of [1, 65535], so it can fit into
277 * an unsigned short.
278 */
279 #define MEM_CGROUP_ID_MAX USHRT_MAX
280
281 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
282 {
283 return memcg->css.id;
284 }
285
286 /*
287 * A helper function to get mem_cgroup from ID. must be called under
288 * rcu_read_lock(). The caller is responsible for calling
289 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
290 * refcnt from swap can be called against removed memcg.)
291 */
292 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
293 {
294 struct cgroup_subsys_state *css;
295
296 css = css_from_id(id, &memory_cgrp_subsys);
297 return mem_cgroup_from_css(css);
298 }
299
300 #ifdef CONFIG_MEMCG_KMEM
301 /*
302 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
303 * The main reason for not using cgroup id for this:
304 * this works better in sparse environments, where we have a lot of memcgs,
305 * but only a few kmem-limited. Or also, if we have, for instance, 200
306 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
307 * 200 entry array for that.
308 *
309 * The current size of the caches array is stored in memcg_nr_cache_ids. It
310 * will double each time we have to increase it.
311 */
312 static DEFINE_IDA(memcg_cache_ida);
313 int memcg_nr_cache_ids;
314
315 /* Protects memcg_nr_cache_ids */
316 static DECLARE_RWSEM(memcg_cache_ids_sem);
317
318 void memcg_get_cache_ids(void)
319 {
320 down_read(&memcg_cache_ids_sem);
321 }
322
323 void memcg_put_cache_ids(void)
324 {
325 up_read(&memcg_cache_ids_sem);
326 }
327
328 /*
329 * MIN_SIZE is different than 1, because we would like to avoid going through
330 * the alloc/free process all the time. In a small machine, 4 kmem-limited
331 * cgroups is a reasonable guess. In the future, it could be a parameter or
332 * tunable, but that is strictly not necessary.
333 *
334 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
335 * this constant directly from cgroup, but it is understandable that this is
336 * better kept as an internal representation in cgroup.c. In any case, the
337 * cgrp_id space is not getting any smaller, and we don't have to necessarily
338 * increase ours as well if it increases.
339 */
340 #define MEMCG_CACHES_MIN_SIZE 4
341 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
342
343 /*
344 * A lot of the calls to the cache allocation functions are expected to be
345 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
346 * conditional to this static branch, we'll have to allow modules that does
347 * kmem_cache_alloc and the such to see this symbol as well
348 */
349 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
350 EXPORT_SYMBOL(memcg_kmem_enabled_key);
351
352 #endif /* CONFIG_MEMCG_KMEM */
353
354 static struct mem_cgroup_per_zone *
355 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
356 {
357 int nid = zone_to_nid(zone);
358 int zid = zone_idx(zone);
359
360 return &memcg->nodeinfo[nid]->zoneinfo[zid];
361 }
362
363 /**
364 * mem_cgroup_css_from_page - css of the memcg associated with a page
365 * @page: page of interest
366 *
367 * If memcg is bound to the default hierarchy, css of the memcg associated
368 * with @page is returned. The returned css remains associated with @page
369 * until it is released.
370 *
371 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
372 * is returned.
373 *
374 * XXX: The above description of behavior on the default hierarchy isn't
375 * strictly true yet as replace_page_cache_page() can modify the
376 * association before @page is released even on the default hierarchy;
377 * however, the current and planned usages don't mix the the two functions
378 * and replace_page_cache_page() will soon be updated to make the invariant
379 * actually true.
380 */
381 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
382 {
383 struct mem_cgroup *memcg;
384
385 memcg = page->mem_cgroup;
386
387 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
388 memcg = root_mem_cgroup;
389
390 return &memcg->css;
391 }
392
393 /**
394 * page_cgroup_ino - return inode number of the memcg a page is charged to
395 * @page: the page
396 *
397 * Look up the closest online ancestor of the memory cgroup @page is charged to
398 * and return its inode number or 0 if @page is not charged to any cgroup. It
399 * is safe to call this function without holding a reference to @page.
400 *
401 * Note, this function is inherently racy, because there is nothing to prevent
402 * the cgroup inode from getting torn down and potentially reallocated a moment
403 * after page_cgroup_ino() returns, so it only should be used by callers that
404 * do not care (such as procfs interfaces).
405 */
406 ino_t page_cgroup_ino(struct page *page)
407 {
408 struct mem_cgroup *memcg;
409 unsigned long ino = 0;
410
411 rcu_read_lock();
412 memcg = READ_ONCE(page->mem_cgroup);
413 while (memcg && !(memcg->css.flags & CSS_ONLINE))
414 memcg = parent_mem_cgroup(memcg);
415 if (memcg)
416 ino = cgroup_ino(memcg->css.cgroup);
417 rcu_read_unlock();
418 return ino;
419 }
420
421 static struct mem_cgroup_per_zone *
422 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
423 {
424 int nid = page_to_nid(page);
425 int zid = page_zonenum(page);
426
427 return &memcg->nodeinfo[nid]->zoneinfo[zid];
428 }
429
430 static struct mem_cgroup_tree_per_zone *
431 soft_limit_tree_node_zone(int nid, int zid)
432 {
433 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
434 }
435
436 static struct mem_cgroup_tree_per_zone *
437 soft_limit_tree_from_page(struct page *page)
438 {
439 int nid = page_to_nid(page);
440 int zid = page_zonenum(page);
441
442 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
443 }
444
445 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
446 struct mem_cgroup_tree_per_zone *mctz,
447 unsigned long new_usage_in_excess)
448 {
449 struct rb_node **p = &mctz->rb_root.rb_node;
450 struct rb_node *parent = NULL;
451 struct mem_cgroup_per_zone *mz_node;
452
453 if (mz->on_tree)
454 return;
455
456 mz->usage_in_excess = new_usage_in_excess;
457 if (!mz->usage_in_excess)
458 return;
459 while (*p) {
460 parent = *p;
461 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
462 tree_node);
463 if (mz->usage_in_excess < mz_node->usage_in_excess)
464 p = &(*p)->rb_left;
465 /*
466 * We can't avoid mem cgroups that are over their soft
467 * limit by the same amount
468 */
469 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
470 p = &(*p)->rb_right;
471 }
472 rb_link_node(&mz->tree_node, parent, p);
473 rb_insert_color(&mz->tree_node, &mctz->rb_root);
474 mz->on_tree = true;
475 }
476
477 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
478 struct mem_cgroup_tree_per_zone *mctz)
479 {
480 if (!mz->on_tree)
481 return;
482 rb_erase(&mz->tree_node, &mctz->rb_root);
483 mz->on_tree = false;
484 }
485
486 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
487 struct mem_cgroup_tree_per_zone *mctz)
488 {
489 unsigned long flags;
490
491 spin_lock_irqsave(&mctz->lock, flags);
492 __mem_cgroup_remove_exceeded(mz, mctz);
493 spin_unlock_irqrestore(&mctz->lock, flags);
494 }
495
496 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
497 {
498 unsigned long nr_pages = page_counter_read(&memcg->memory);
499 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
500 unsigned long excess = 0;
501
502 if (nr_pages > soft_limit)
503 excess = nr_pages - soft_limit;
504
505 return excess;
506 }
507
508 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
509 {
510 unsigned long excess;
511 struct mem_cgroup_per_zone *mz;
512 struct mem_cgroup_tree_per_zone *mctz;
513
514 mctz = soft_limit_tree_from_page(page);
515 /*
516 * Necessary to update all ancestors when hierarchy is used.
517 * because their event counter is not touched.
518 */
519 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
520 mz = mem_cgroup_page_zoneinfo(memcg, page);
521 excess = soft_limit_excess(memcg);
522 /*
523 * We have to update the tree if mz is on RB-tree or
524 * mem is over its softlimit.
525 */
526 if (excess || mz->on_tree) {
527 unsigned long flags;
528
529 spin_lock_irqsave(&mctz->lock, flags);
530 /* if on-tree, remove it */
531 if (mz->on_tree)
532 __mem_cgroup_remove_exceeded(mz, mctz);
533 /*
534 * Insert again. mz->usage_in_excess will be updated.
535 * If excess is 0, no tree ops.
536 */
537 __mem_cgroup_insert_exceeded(mz, mctz, excess);
538 spin_unlock_irqrestore(&mctz->lock, flags);
539 }
540 }
541 }
542
543 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
544 {
545 struct mem_cgroup_tree_per_zone *mctz;
546 struct mem_cgroup_per_zone *mz;
547 int nid, zid;
548
549 for_each_node(nid) {
550 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
551 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
552 mctz = soft_limit_tree_node_zone(nid, zid);
553 mem_cgroup_remove_exceeded(mz, mctz);
554 }
555 }
556 }
557
558 static struct mem_cgroup_per_zone *
559 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
560 {
561 struct rb_node *rightmost = NULL;
562 struct mem_cgroup_per_zone *mz;
563
564 retry:
565 mz = NULL;
566 rightmost = rb_last(&mctz->rb_root);
567 if (!rightmost)
568 goto done; /* Nothing to reclaim from */
569
570 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
571 /*
572 * Remove the node now but someone else can add it back,
573 * we will to add it back at the end of reclaim to its correct
574 * position in the tree.
575 */
576 __mem_cgroup_remove_exceeded(mz, mctz);
577 if (!soft_limit_excess(mz->memcg) ||
578 !css_tryget_online(&mz->memcg->css))
579 goto retry;
580 done:
581 return mz;
582 }
583
584 static struct mem_cgroup_per_zone *
585 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
586 {
587 struct mem_cgroup_per_zone *mz;
588
589 spin_lock_irq(&mctz->lock);
590 mz = __mem_cgroup_largest_soft_limit_node(mctz);
591 spin_unlock_irq(&mctz->lock);
592 return mz;
593 }
594
595 /*
596 * Return page count for single (non recursive) @memcg.
597 *
598 * Implementation Note: reading percpu statistics for memcg.
599 *
600 * Both of vmstat[] and percpu_counter has threshold and do periodic
601 * synchronization to implement "quick" read. There are trade-off between
602 * reading cost and precision of value. Then, we may have a chance to implement
603 * a periodic synchronization of counter in memcg's counter.
604 *
605 * But this _read() function is used for user interface now. The user accounts
606 * memory usage by memory cgroup and he _always_ requires exact value because
607 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
608 * have to visit all online cpus and make sum. So, for now, unnecessary
609 * synchronization is not implemented. (just implemented for cpu hotplug)
610 *
611 * If there are kernel internal actions which can make use of some not-exact
612 * value, and reading all cpu value can be performance bottleneck in some
613 * common workload, threshold and synchronization as vmstat[] should be
614 * implemented.
615 */
616 static unsigned long
617 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
618 {
619 long val = 0;
620 int cpu;
621
622 /* Per-cpu values can be negative, use a signed accumulator */
623 for_each_possible_cpu(cpu)
624 val += per_cpu(memcg->stat->count[idx], cpu);
625 /*
626 * Summing races with updates, so val may be negative. Avoid exposing
627 * transient negative values.
628 */
629 if (val < 0)
630 val = 0;
631 return val;
632 }
633
634 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
635 enum mem_cgroup_events_index idx)
636 {
637 unsigned long val = 0;
638 int cpu;
639
640 for_each_possible_cpu(cpu)
641 val += per_cpu(memcg->stat->events[idx], cpu);
642 return val;
643 }
644
645 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
646 struct page *page,
647 bool compound, int nr_pages)
648 {
649 /*
650 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
651 * counted as CACHE even if it's on ANON LRU.
652 */
653 if (PageAnon(page))
654 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
655 nr_pages);
656 else
657 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
658 nr_pages);
659
660 if (compound) {
661 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
662 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
663 nr_pages);
664 }
665
666 /* pagein of a big page is an event. So, ignore page size */
667 if (nr_pages > 0)
668 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
669 else {
670 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
671 nr_pages = -nr_pages; /* for event */
672 }
673
674 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
675 }
676
677 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
678 int nid,
679 unsigned int lru_mask)
680 {
681 unsigned long nr = 0;
682 int zid;
683
684 VM_BUG_ON((unsigned)nid >= nr_node_ids);
685
686 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
687 struct mem_cgroup_per_zone *mz;
688 enum lru_list lru;
689
690 for_each_lru(lru) {
691 if (!(BIT(lru) & lru_mask))
692 continue;
693 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
694 nr += mz->lru_size[lru];
695 }
696 }
697 return nr;
698 }
699
700 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
701 unsigned int lru_mask)
702 {
703 unsigned long nr = 0;
704 int nid;
705
706 for_each_node_state(nid, N_MEMORY)
707 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
708 return nr;
709 }
710
711 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
712 enum mem_cgroup_events_target target)
713 {
714 unsigned long val, next;
715
716 val = __this_cpu_read(memcg->stat->nr_page_events);
717 next = __this_cpu_read(memcg->stat->targets[target]);
718 /* from time_after() in jiffies.h */
719 if ((long)next - (long)val < 0) {
720 switch (target) {
721 case MEM_CGROUP_TARGET_THRESH:
722 next = val + THRESHOLDS_EVENTS_TARGET;
723 break;
724 case MEM_CGROUP_TARGET_SOFTLIMIT:
725 next = val + SOFTLIMIT_EVENTS_TARGET;
726 break;
727 case MEM_CGROUP_TARGET_NUMAINFO:
728 next = val + NUMAINFO_EVENTS_TARGET;
729 break;
730 default:
731 break;
732 }
733 __this_cpu_write(memcg->stat->targets[target], next);
734 return true;
735 }
736 return false;
737 }
738
739 /*
740 * Check events in order.
741 *
742 */
743 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
744 {
745 /* threshold event is triggered in finer grain than soft limit */
746 if (unlikely(mem_cgroup_event_ratelimit(memcg,
747 MEM_CGROUP_TARGET_THRESH))) {
748 bool do_softlimit;
749 bool do_numainfo __maybe_unused;
750
751 do_softlimit = mem_cgroup_event_ratelimit(memcg,
752 MEM_CGROUP_TARGET_SOFTLIMIT);
753 #if MAX_NUMNODES > 1
754 do_numainfo = mem_cgroup_event_ratelimit(memcg,
755 MEM_CGROUP_TARGET_NUMAINFO);
756 #endif
757 mem_cgroup_threshold(memcg);
758 if (unlikely(do_softlimit))
759 mem_cgroup_update_tree(memcg, page);
760 #if MAX_NUMNODES > 1
761 if (unlikely(do_numainfo))
762 atomic_inc(&memcg->numainfo_events);
763 #endif
764 }
765 }
766
767 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
768 {
769 /*
770 * mm_update_next_owner() may clear mm->owner to NULL
771 * if it races with swapoff, page migration, etc.
772 * So this can be called with p == NULL.
773 */
774 if (unlikely(!p))
775 return NULL;
776
777 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
778 }
779 EXPORT_SYMBOL(mem_cgroup_from_task);
780
781 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
782 {
783 struct mem_cgroup *memcg = NULL;
784
785 rcu_read_lock();
786 do {
787 /*
788 * Page cache insertions can happen withou an
789 * actual mm context, e.g. during disk probing
790 * on boot, loopback IO, acct() writes etc.
791 */
792 if (unlikely(!mm))
793 memcg = root_mem_cgroup;
794 else {
795 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
796 if (unlikely(!memcg))
797 memcg = root_mem_cgroup;
798 }
799 } while (!css_tryget_online(&memcg->css));
800 rcu_read_unlock();
801 return memcg;
802 }
803
804 /**
805 * mem_cgroup_iter - iterate over memory cgroup hierarchy
806 * @root: hierarchy root
807 * @prev: previously returned memcg, NULL on first invocation
808 * @reclaim: cookie for shared reclaim walks, NULL for full walks
809 *
810 * Returns references to children of the hierarchy below @root, or
811 * @root itself, or %NULL after a full round-trip.
812 *
813 * Caller must pass the return value in @prev on subsequent
814 * invocations for reference counting, or use mem_cgroup_iter_break()
815 * to cancel a hierarchy walk before the round-trip is complete.
816 *
817 * Reclaimers can specify a zone and a priority level in @reclaim to
818 * divide up the memcgs in the hierarchy among all concurrent
819 * reclaimers operating on the same zone and priority.
820 */
821 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
822 struct mem_cgroup *prev,
823 struct mem_cgroup_reclaim_cookie *reclaim)
824 {
825 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
826 struct cgroup_subsys_state *css = NULL;
827 struct mem_cgroup *memcg = NULL;
828 struct mem_cgroup *pos = NULL;
829
830 if (mem_cgroup_disabled())
831 return NULL;
832
833 if (!root)
834 root = root_mem_cgroup;
835
836 if (prev && !reclaim)
837 pos = prev;
838
839 if (!root->use_hierarchy && root != root_mem_cgroup) {
840 if (prev)
841 goto out;
842 return root;
843 }
844
845 rcu_read_lock();
846
847 if (reclaim) {
848 struct mem_cgroup_per_zone *mz;
849
850 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
851 iter = &mz->iter[reclaim->priority];
852
853 if (prev && reclaim->generation != iter->generation)
854 goto out_unlock;
855
856 while (1) {
857 pos = READ_ONCE(iter->position);
858 if (!pos || css_tryget(&pos->css))
859 break;
860 /*
861 * css reference reached zero, so iter->position will
862 * be cleared by ->css_released. However, we should not
863 * rely on this happening soon, because ->css_released
864 * is called from a work queue, and by busy-waiting we
865 * might block it. So we clear iter->position right
866 * away.
867 */
868 (void)cmpxchg(&iter->position, pos, NULL);
869 }
870 }
871
872 if (pos)
873 css = &pos->css;
874
875 for (;;) {
876 css = css_next_descendant_pre(css, &root->css);
877 if (!css) {
878 /*
879 * Reclaimers share the hierarchy walk, and a
880 * new one might jump in right at the end of
881 * the hierarchy - make sure they see at least
882 * one group and restart from the beginning.
883 */
884 if (!prev)
885 continue;
886 break;
887 }
888
889 /*
890 * Verify the css and acquire a reference. The root
891 * is provided by the caller, so we know it's alive
892 * and kicking, and don't take an extra reference.
893 */
894 memcg = mem_cgroup_from_css(css);
895
896 if (css == &root->css)
897 break;
898
899 if (css_tryget(css)) {
900 /*
901 * Make sure the memcg is initialized:
902 * mem_cgroup_css_online() orders the the
903 * initialization against setting the flag.
904 */
905 if (smp_load_acquire(&memcg->initialized))
906 break;
907
908 css_put(css);
909 }
910
911 memcg = NULL;
912 }
913
914 if (reclaim) {
915 /*
916 * The position could have already been updated by a competing
917 * thread, so check that the value hasn't changed since we read
918 * it to avoid reclaiming from the same cgroup twice.
919 */
920 (void)cmpxchg(&iter->position, pos, memcg);
921
922 if (pos)
923 css_put(&pos->css);
924
925 if (!memcg)
926 iter->generation++;
927 else if (!prev)
928 reclaim->generation = iter->generation;
929 }
930
931 out_unlock:
932 rcu_read_unlock();
933 out:
934 if (prev && prev != root)
935 css_put(&prev->css);
936
937 return memcg;
938 }
939
940 /**
941 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
942 * @root: hierarchy root
943 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
944 */
945 void mem_cgroup_iter_break(struct mem_cgroup *root,
946 struct mem_cgroup *prev)
947 {
948 if (!root)
949 root = root_mem_cgroup;
950 if (prev && prev != root)
951 css_put(&prev->css);
952 }
953
954 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
955 {
956 struct mem_cgroup *memcg = dead_memcg;
957 struct mem_cgroup_reclaim_iter *iter;
958 struct mem_cgroup_per_zone *mz;
959 int nid, zid;
960 int i;
961
962 while ((memcg = parent_mem_cgroup(memcg))) {
963 for_each_node(nid) {
964 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
965 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
966 for (i = 0; i <= DEF_PRIORITY; i++) {
967 iter = &mz->iter[i];
968 cmpxchg(&iter->position,
969 dead_memcg, NULL);
970 }
971 }
972 }
973 }
974 }
975
976 /*
977 * Iteration constructs for visiting all cgroups (under a tree). If
978 * loops are exited prematurely (break), mem_cgroup_iter_break() must
979 * be used for reference counting.
980 */
981 #define for_each_mem_cgroup_tree(iter, root) \
982 for (iter = mem_cgroup_iter(root, NULL, NULL); \
983 iter != NULL; \
984 iter = mem_cgroup_iter(root, iter, NULL))
985
986 #define for_each_mem_cgroup(iter) \
987 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
988 iter != NULL; \
989 iter = mem_cgroup_iter(NULL, iter, NULL))
990
991 /**
992 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
993 * @zone: zone of the wanted lruvec
994 * @memcg: memcg of the wanted lruvec
995 *
996 * Returns the lru list vector holding pages for the given @zone and
997 * @mem. This can be the global zone lruvec, if the memory controller
998 * is disabled.
999 */
1000 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1001 struct mem_cgroup *memcg)
1002 {
1003 struct mem_cgroup_per_zone *mz;
1004 struct lruvec *lruvec;
1005
1006 if (mem_cgroup_disabled()) {
1007 lruvec = &zone->lruvec;
1008 goto out;
1009 }
1010
1011 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1012 lruvec = &mz->lruvec;
1013 out:
1014 /*
1015 * Since a node can be onlined after the mem_cgroup was created,
1016 * we have to be prepared to initialize lruvec->zone here;
1017 * and if offlined then reonlined, we need to reinitialize it.
1018 */
1019 if (unlikely(lruvec->zone != zone))
1020 lruvec->zone = zone;
1021 return lruvec;
1022 }
1023
1024 /**
1025 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1026 * @page: the page
1027 * @zone: zone of the page
1028 *
1029 * This function is only safe when following the LRU page isolation
1030 * and putback protocol: the LRU lock must be held, and the page must
1031 * either be PageLRU() or the caller must have isolated/allocated it.
1032 */
1033 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1034 {
1035 struct mem_cgroup_per_zone *mz;
1036 struct mem_cgroup *memcg;
1037 struct lruvec *lruvec;
1038
1039 if (mem_cgroup_disabled()) {
1040 lruvec = &zone->lruvec;
1041 goto out;
1042 }
1043
1044 memcg = page->mem_cgroup;
1045 /*
1046 * Swapcache readahead pages are added to the LRU - and
1047 * possibly migrated - before they are charged.
1048 */
1049 if (!memcg)
1050 memcg = root_mem_cgroup;
1051
1052 mz = mem_cgroup_page_zoneinfo(memcg, page);
1053 lruvec = &mz->lruvec;
1054 out:
1055 /*
1056 * Since a node can be onlined after the mem_cgroup was created,
1057 * we have to be prepared to initialize lruvec->zone here;
1058 * and if offlined then reonlined, we need to reinitialize it.
1059 */
1060 if (unlikely(lruvec->zone != zone))
1061 lruvec->zone = zone;
1062 return lruvec;
1063 }
1064
1065 /**
1066 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1067 * @lruvec: mem_cgroup per zone lru vector
1068 * @lru: index of lru list the page is sitting on
1069 * @nr_pages: positive when adding or negative when removing
1070 *
1071 * This function must be called when a page is added to or removed from an
1072 * lru list.
1073 */
1074 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1075 int nr_pages)
1076 {
1077 struct mem_cgroup_per_zone *mz;
1078 unsigned long *lru_size;
1079
1080 if (mem_cgroup_disabled())
1081 return;
1082
1083 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1084 lru_size = mz->lru_size + lru;
1085 *lru_size += nr_pages;
1086 VM_BUG_ON((long)(*lru_size) < 0);
1087 }
1088
1089 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1090 {
1091 struct mem_cgroup *task_memcg;
1092 struct task_struct *p;
1093 bool ret;
1094
1095 p = find_lock_task_mm(task);
1096 if (p) {
1097 task_memcg = get_mem_cgroup_from_mm(p->mm);
1098 task_unlock(p);
1099 } else {
1100 /*
1101 * All threads may have already detached their mm's, but the oom
1102 * killer still needs to detect if they have already been oom
1103 * killed to prevent needlessly killing additional tasks.
1104 */
1105 rcu_read_lock();
1106 task_memcg = mem_cgroup_from_task(task);
1107 css_get(&task_memcg->css);
1108 rcu_read_unlock();
1109 }
1110 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1111 css_put(&task_memcg->css);
1112 return ret;
1113 }
1114
1115 /**
1116 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1117 * @memcg: the memory cgroup
1118 *
1119 * Returns the maximum amount of memory @mem can be charged with, in
1120 * pages.
1121 */
1122 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1123 {
1124 unsigned long margin = 0;
1125 unsigned long count;
1126 unsigned long limit;
1127
1128 count = page_counter_read(&memcg->memory);
1129 limit = READ_ONCE(memcg->memory.limit);
1130 if (count < limit)
1131 margin = limit - count;
1132
1133 if (do_memsw_account()) {
1134 count = page_counter_read(&memcg->memsw);
1135 limit = READ_ONCE(memcg->memsw.limit);
1136 if (count <= limit)
1137 margin = min(margin, limit - count);
1138 }
1139
1140 return margin;
1141 }
1142
1143 /*
1144 * A routine for checking "mem" is under move_account() or not.
1145 *
1146 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1147 * moving cgroups. This is for waiting at high-memory pressure
1148 * caused by "move".
1149 */
1150 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1151 {
1152 struct mem_cgroup *from;
1153 struct mem_cgroup *to;
1154 bool ret = false;
1155 /*
1156 * Unlike task_move routines, we access mc.to, mc.from not under
1157 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1158 */
1159 spin_lock(&mc.lock);
1160 from = mc.from;
1161 to = mc.to;
1162 if (!from)
1163 goto unlock;
1164
1165 ret = mem_cgroup_is_descendant(from, memcg) ||
1166 mem_cgroup_is_descendant(to, memcg);
1167 unlock:
1168 spin_unlock(&mc.lock);
1169 return ret;
1170 }
1171
1172 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1173 {
1174 if (mc.moving_task && current != mc.moving_task) {
1175 if (mem_cgroup_under_move(memcg)) {
1176 DEFINE_WAIT(wait);
1177 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1178 /* moving charge context might have finished. */
1179 if (mc.moving_task)
1180 schedule();
1181 finish_wait(&mc.waitq, &wait);
1182 return true;
1183 }
1184 }
1185 return false;
1186 }
1187
1188 #define K(x) ((x) << (PAGE_SHIFT-10))
1189 /**
1190 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1191 * @memcg: The memory cgroup that went over limit
1192 * @p: Task that is going to be killed
1193 *
1194 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1195 * enabled
1196 */
1197 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1198 {
1199 /* oom_info_lock ensures that parallel ooms do not interleave */
1200 static DEFINE_MUTEX(oom_info_lock);
1201 struct mem_cgroup *iter;
1202 unsigned int i;
1203
1204 mutex_lock(&oom_info_lock);
1205 rcu_read_lock();
1206
1207 if (p) {
1208 pr_info("Task in ");
1209 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1210 pr_cont(" killed as a result of limit of ");
1211 } else {
1212 pr_info("Memory limit reached of cgroup ");
1213 }
1214
1215 pr_cont_cgroup_path(memcg->css.cgroup);
1216 pr_cont("\n");
1217
1218 rcu_read_unlock();
1219
1220 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1221 K((u64)page_counter_read(&memcg->memory)),
1222 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1223 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1224 K((u64)page_counter_read(&memcg->memsw)),
1225 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1226 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1227 K((u64)page_counter_read(&memcg->kmem)),
1228 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1229
1230 for_each_mem_cgroup_tree(iter, memcg) {
1231 pr_info("Memory cgroup stats for ");
1232 pr_cont_cgroup_path(iter->css.cgroup);
1233 pr_cont(":");
1234
1235 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1236 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1237 continue;
1238 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1239 K(mem_cgroup_read_stat(iter, i)));
1240 }
1241
1242 for (i = 0; i < NR_LRU_LISTS; i++)
1243 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1244 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1245
1246 pr_cont("\n");
1247 }
1248 mutex_unlock(&oom_info_lock);
1249 }
1250
1251 /*
1252 * This function returns the number of memcg under hierarchy tree. Returns
1253 * 1(self count) if no children.
1254 */
1255 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1256 {
1257 int num = 0;
1258 struct mem_cgroup *iter;
1259
1260 for_each_mem_cgroup_tree(iter, memcg)
1261 num++;
1262 return num;
1263 }
1264
1265 /*
1266 * Return the memory (and swap, if configured) limit for a memcg.
1267 */
1268 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1269 {
1270 unsigned long limit;
1271
1272 limit = memcg->memory.limit;
1273 if (mem_cgroup_swappiness(memcg)) {
1274 unsigned long memsw_limit;
1275
1276 memsw_limit = memcg->memsw.limit;
1277 limit = min(limit + total_swap_pages, memsw_limit);
1278 }
1279 return limit;
1280 }
1281
1282 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1283 int order)
1284 {
1285 struct oom_control oc = {
1286 .zonelist = NULL,
1287 .nodemask = NULL,
1288 .gfp_mask = gfp_mask,
1289 .order = order,
1290 };
1291 struct mem_cgroup *iter;
1292 unsigned long chosen_points = 0;
1293 unsigned long totalpages;
1294 unsigned int points = 0;
1295 struct task_struct *chosen = NULL;
1296
1297 mutex_lock(&oom_lock);
1298
1299 /*
1300 * If current has a pending SIGKILL or is exiting, then automatically
1301 * select it. The goal is to allow it to allocate so that it may
1302 * quickly exit and free its memory.
1303 */
1304 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1305 mark_oom_victim(current);
1306 goto unlock;
1307 }
1308
1309 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1310 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1311 for_each_mem_cgroup_tree(iter, memcg) {
1312 struct css_task_iter it;
1313 struct task_struct *task;
1314
1315 css_task_iter_start(&iter->css, &it);
1316 while ((task = css_task_iter_next(&it))) {
1317 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1318 case OOM_SCAN_SELECT:
1319 if (chosen)
1320 put_task_struct(chosen);
1321 chosen = task;
1322 chosen_points = ULONG_MAX;
1323 get_task_struct(chosen);
1324 /* fall through */
1325 case OOM_SCAN_CONTINUE:
1326 continue;
1327 case OOM_SCAN_ABORT:
1328 css_task_iter_end(&it);
1329 mem_cgroup_iter_break(memcg, iter);
1330 if (chosen)
1331 put_task_struct(chosen);
1332 goto unlock;
1333 case OOM_SCAN_OK:
1334 break;
1335 };
1336 points = oom_badness(task, memcg, NULL, totalpages);
1337 if (!points || points < chosen_points)
1338 continue;
1339 /* Prefer thread group leaders for display purposes */
1340 if (points == chosen_points &&
1341 thread_group_leader(chosen))
1342 continue;
1343
1344 if (chosen)
1345 put_task_struct(chosen);
1346 chosen = task;
1347 chosen_points = points;
1348 get_task_struct(chosen);
1349 }
1350 css_task_iter_end(&it);
1351 }
1352
1353 if (chosen) {
1354 points = chosen_points * 1000 / totalpages;
1355 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1356 "Memory cgroup out of memory");
1357 }
1358 unlock:
1359 mutex_unlock(&oom_lock);
1360 }
1361
1362 #if MAX_NUMNODES > 1
1363
1364 /**
1365 * test_mem_cgroup_node_reclaimable
1366 * @memcg: the target memcg
1367 * @nid: the node ID to be checked.
1368 * @noswap : specify true here if the user wants flle only information.
1369 *
1370 * This function returns whether the specified memcg contains any
1371 * reclaimable pages on a node. Returns true if there are any reclaimable
1372 * pages in the node.
1373 */
1374 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1375 int nid, bool noswap)
1376 {
1377 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1378 return true;
1379 if (noswap || !total_swap_pages)
1380 return false;
1381 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1382 return true;
1383 return false;
1384
1385 }
1386
1387 /*
1388 * Always updating the nodemask is not very good - even if we have an empty
1389 * list or the wrong list here, we can start from some node and traverse all
1390 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1391 *
1392 */
1393 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1394 {
1395 int nid;
1396 /*
1397 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1398 * pagein/pageout changes since the last update.
1399 */
1400 if (!atomic_read(&memcg->numainfo_events))
1401 return;
1402 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1403 return;
1404
1405 /* make a nodemask where this memcg uses memory from */
1406 memcg->scan_nodes = node_states[N_MEMORY];
1407
1408 for_each_node_mask(nid, node_states[N_MEMORY]) {
1409
1410 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1411 node_clear(nid, memcg->scan_nodes);
1412 }
1413
1414 atomic_set(&memcg->numainfo_events, 0);
1415 atomic_set(&memcg->numainfo_updating, 0);
1416 }
1417
1418 /*
1419 * Selecting a node where we start reclaim from. Because what we need is just
1420 * reducing usage counter, start from anywhere is O,K. Considering
1421 * memory reclaim from current node, there are pros. and cons.
1422 *
1423 * Freeing memory from current node means freeing memory from a node which
1424 * we'll use or we've used. So, it may make LRU bad. And if several threads
1425 * hit limits, it will see a contention on a node. But freeing from remote
1426 * node means more costs for memory reclaim because of memory latency.
1427 *
1428 * Now, we use round-robin. Better algorithm is welcomed.
1429 */
1430 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1431 {
1432 int node;
1433
1434 mem_cgroup_may_update_nodemask(memcg);
1435 node = memcg->last_scanned_node;
1436
1437 node = next_node(node, memcg->scan_nodes);
1438 if (node == MAX_NUMNODES)
1439 node = first_node(memcg->scan_nodes);
1440 /*
1441 * We call this when we hit limit, not when pages are added to LRU.
1442 * No LRU may hold pages because all pages are UNEVICTABLE or
1443 * memcg is too small and all pages are not on LRU. In that case,
1444 * we use curret node.
1445 */
1446 if (unlikely(node == MAX_NUMNODES))
1447 node = numa_node_id();
1448
1449 memcg->last_scanned_node = node;
1450 return node;
1451 }
1452 #else
1453 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1454 {
1455 return 0;
1456 }
1457 #endif
1458
1459 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1460 struct zone *zone,
1461 gfp_t gfp_mask,
1462 unsigned long *total_scanned)
1463 {
1464 struct mem_cgroup *victim = NULL;
1465 int total = 0;
1466 int loop = 0;
1467 unsigned long excess;
1468 unsigned long nr_scanned;
1469 struct mem_cgroup_reclaim_cookie reclaim = {
1470 .zone = zone,
1471 .priority = 0,
1472 };
1473
1474 excess = soft_limit_excess(root_memcg);
1475
1476 while (1) {
1477 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1478 if (!victim) {
1479 loop++;
1480 if (loop >= 2) {
1481 /*
1482 * If we have not been able to reclaim
1483 * anything, it might because there are
1484 * no reclaimable pages under this hierarchy
1485 */
1486 if (!total)
1487 break;
1488 /*
1489 * We want to do more targeted reclaim.
1490 * excess >> 2 is not to excessive so as to
1491 * reclaim too much, nor too less that we keep
1492 * coming back to reclaim from this cgroup
1493 */
1494 if (total >= (excess >> 2) ||
1495 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1496 break;
1497 }
1498 continue;
1499 }
1500 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1501 zone, &nr_scanned);
1502 *total_scanned += nr_scanned;
1503 if (!soft_limit_excess(root_memcg))
1504 break;
1505 }
1506 mem_cgroup_iter_break(root_memcg, victim);
1507 return total;
1508 }
1509
1510 #ifdef CONFIG_LOCKDEP
1511 static struct lockdep_map memcg_oom_lock_dep_map = {
1512 .name = "memcg_oom_lock",
1513 };
1514 #endif
1515
1516 static DEFINE_SPINLOCK(memcg_oom_lock);
1517
1518 /*
1519 * Check OOM-Killer is already running under our hierarchy.
1520 * If someone is running, return false.
1521 */
1522 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1523 {
1524 struct mem_cgroup *iter, *failed = NULL;
1525
1526 spin_lock(&memcg_oom_lock);
1527
1528 for_each_mem_cgroup_tree(iter, memcg) {
1529 if (iter->oom_lock) {
1530 /*
1531 * this subtree of our hierarchy is already locked
1532 * so we cannot give a lock.
1533 */
1534 failed = iter;
1535 mem_cgroup_iter_break(memcg, iter);
1536 break;
1537 } else
1538 iter->oom_lock = true;
1539 }
1540
1541 if (failed) {
1542 /*
1543 * OK, we failed to lock the whole subtree so we have
1544 * to clean up what we set up to the failing subtree
1545 */
1546 for_each_mem_cgroup_tree(iter, memcg) {
1547 if (iter == failed) {
1548 mem_cgroup_iter_break(memcg, iter);
1549 break;
1550 }
1551 iter->oom_lock = false;
1552 }
1553 } else
1554 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1555
1556 spin_unlock(&memcg_oom_lock);
1557
1558 return !failed;
1559 }
1560
1561 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1562 {
1563 struct mem_cgroup *iter;
1564
1565 spin_lock(&memcg_oom_lock);
1566 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1567 for_each_mem_cgroup_tree(iter, memcg)
1568 iter->oom_lock = false;
1569 spin_unlock(&memcg_oom_lock);
1570 }
1571
1572 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1573 {
1574 struct mem_cgroup *iter;
1575
1576 spin_lock(&memcg_oom_lock);
1577 for_each_mem_cgroup_tree(iter, memcg)
1578 iter->under_oom++;
1579 spin_unlock(&memcg_oom_lock);
1580 }
1581
1582 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1583 {
1584 struct mem_cgroup *iter;
1585
1586 /*
1587 * When a new child is created while the hierarchy is under oom,
1588 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1589 */
1590 spin_lock(&memcg_oom_lock);
1591 for_each_mem_cgroup_tree(iter, memcg)
1592 if (iter->under_oom > 0)
1593 iter->under_oom--;
1594 spin_unlock(&memcg_oom_lock);
1595 }
1596
1597 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1598
1599 struct oom_wait_info {
1600 struct mem_cgroup *memcg;
1601 wait_queue_t wait;
1602 };
1603
1604 static int memcg_oom_wake_function(wait_queue_t *wait,
1605 unsigned mode, int sync, void *arg)
1606 {
1607 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1608 struct mem_cgroup *oom_wait_memcg;
1609 struct oom_wait_info *oom_wait_info;
1610
1611 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1612 oom_wait_memcg = oom_wait_info->memcg;
1613
1614 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1615 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1616 return 0;
1617 return autoremove_wake_function(wait, mode, sync, arg);
1618 }
1619
1620 static void memcg_oom_recover(struct mem_cgroup *memcg)
1621 {
1622 /*
1623 * For the following lockless ->under_oom test, the only required
1624 * guarantee is that it must see the state asserted by an OOM when
1625 * this function is called as a result of userland actions
1626 * triggered by the notification of the OOM. This is trivially
1627 * achieved by invoking mem_cgroup_mark_under_oom() before
1628 * triggering notification.
1629 */
1630 if (memcg && memcg->under_oom)
1631 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1632 }
1633
1634 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1635 {
1636 if (!current->memcg_may_oom)
1637 return;
1638 /*
1639 * We are in the middle of the charge context here, so we
1640 * don't want to block when potentially sitting on a callstack
1641 * that holds all kinds of filesystem and mm locks.
1642 *
1643 * Also, the caller may handle a failed allocation gracefully
1644 * (like optional page cache readahead) and so an OOM killer
1645 * invocation might not even be necessary.
1646 *
1647 * That's why we don't do anything here except remember the
1648 * OOM context and then deal with it at the end of the page
1649 * fault when the stack is unwound, the locks are released,
1650 * and when we know whether the fault was overall successful.
1651 */
1652 css_get(&memcg->css);
1653 current->memcg_in_oom = memcg;
1654 current->memcg_oom_gfp_mask = mask;
1655 current->memcg_oom_order = order;
1656 }
1657
1658 /**
1659 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1660 * @handle: actually kill/wait or just clean up the OOM state
1661 *
1662 * This has to be called at the end of a page fault if the memcg OOM
1663 * handler was enabled.
1664 *
1665 * Memcg supports userspace OOM handling where failed allocations must
1666 * sleep on a waitqueue until the userspace task resolves the
1667 * situation. Sleeping directly in the charge context with all kinds
1668 * of locks held is not a good idea, instead we remember an OOM state
1669 * in the task and mem_cgroup_oom_synchronize() has to be called at
1670 * the end of the page fault to complete the OOM handling.
1671 *
1672 * Returns %true if an ongoing memcg OOM situation was detected and
1673 * completed, %false otherwise.
1674 */
1675 bool mem_cgroup_oom_synchronize(bool handle)
1676 {
1677 struct mem_cgroup *memcg = current->memcg_in_oom;
1678 struct oom_wait_info owait;
1679 bool locked;
1680
1681 /* OOM is global, do not handle */
1682 if (!memcg)
1683 return false;
1684
1685 if (!handle || oom_killer_disabled)
1686 goto cleanup;
1687
1688 owait.memcg = memcg;
1689 owait.wait.flags = 0;
1690 owait.wait.func = memcg_oom_wake_function;
1691 owait.wait.private = current;
1692 INIT_LIST_HEAD(&owait.wait.task_list);
1693
1694 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1695 mem_cgroup_mark_under_oom(memcg);
1696
1697 locked = mem_cgroup_oom_trylock(memcg);
1698
1699 if (locked)
1700 mem_cgroup_oom_notify(memcg);
1701
1702 if (locked && !memcg->oom_kill_disable) {
1703 mem_cgroup_unmark_under_oom(memcg);
1704 finish_wait(&memcg_oom_waitq, &owait.wait);
1705 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1706 current->memcg_oom_order);
1707 } else {
1708 schedule();
1709 mem_cgroup_unmark_under_oom(memcg);
1710 finish_wait(&memcg_oom_waitq, &owait.wait);
1711 }
1712
1713 if (locked) {
1714 mem_cgroup_oom_unlock(memcg);
1715 /*
1716 * There is no guarantee that an OOM-lock contender
1717 * sees the wakeups triggered by the OOM kill
1718 * uncharges. Wake any sleepers explicitely.
1719 */
1720 memcg_oom_recover(memcg);
1721 }
1722 cleanup:
1723 current->memcg_in_oom = NULL;
1724 css_put(&memcg->css);
1725 return true;
1726 }
1727
1728 /**
1729 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1730 * @page: page that is going to change accounted state
1731 *
1732 * This function must mark the beginning of an accounted page state
1733 * change to prevent double accounting when the page is concurrently
1734 * being moved to another memcg:
1735 *
1736 * memcg = mem_cgroup_begin_page_stat(page);
1737 * if (TestClearPageState(page))
1738 * mem_cgroup_update_page_stat(memcg, state, -1);
1739 * mem_cgroup_end_page_stat(memcg);
1740 */
1741 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1742 {
1743 struct mem_cgroup *memcg;
1744 unsigned long flags;
1745
1746 /*
1747 * The RCU lock is held throughout the transaction. The fast
1748 * path can get away without acquiring the memcg->move_lock
1749 * because page moving starts with an RCU grace period.
1750 *
1751 * The RCU lock also protects the memcg from being freed when
1752 * the page state that is going to change is the only thing
1753 * preventing the page from being uncharged.
1754 * E.g. end-writeback clearing PageWriteback(), which allows
1755 * migration to go ahead and uncharge the page before the
1756 * account transaction might be complete.
1757 */
1758 rcu_read_lock();
1759
1760 if (mem_cgroup_disabled())
1761 return NULL;
1762 again:
1763 memcg = page->mem_cgroup;
1764 if (unlikely(!memcg))
1765 return NULL;
1766
1767 if (atomic_read(&memcg->moving_account) <= 0)
1768 return memcg;
1769
1770 spin_lock_irqsave(&memcg->move_lock, flags);
1771 if (memcg != page->mem_cgroup) {
1772 spin_unlock_irqrestore(&memcg->move_lock, flags);
1773 goto again;
1774 }
1775
1776 /*
1777 * When charge migration first begins, we can have locked and
1778 * unlocked page stat updates happening concurrently. Track
1779 * the task who has the lock for mem_cgroup_end_page_stat().
1780 */
1781 memcg->move_lock_task = current;
1782 memcg->move_lock_flags = flags;
1783
1784 return memcg;
1785 }
1786 EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1787
1788 /**
1789 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1790 * @memcg: the memcg that was accounted against
1791 */
1792 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1793 {
1794 if (memcg && memcg->move_lock_task == current) {
1795 unsigned long flags = memcg->move_lock_flags;
1796
1797 memcg->move_lock_task = NULL;
1798 memcg->move_lock_flags = 0;
1799
1800 spin_unlock_irqrestore(&memcg->move_lock, flags);
1801 }
1802
1803 rcu_read_unlock();
1804 }
1805 EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1806
1807 /*
1808 * size of first charge trial. "32" comes from vmscan.c's magic value.
1809 * TODO: maybe necessary to use big numbers in big irons.
1810 */
1811 #define CHARGE_BATCH 32U
1812 struct memcg_stock_pcp {
1813 struct mem_cgroup *cached; /* this never be root cgroup */
1814 unsigned int nr_pages;
1815 struct work_struct work;
1816 unsigned long flags;
1817 #define FLUSHING_CACHED_CHARGE 0
1818 };
1819 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1820 static DEFINE_MUTEX(percpu_charge_mutex);
1821
1822 /**
1823 * consume_stock: Try to consume stocked charge on this cpu.
1824 * @memcg: memcg to consume from.
1825 * @nr_pages: how many pages to charge.
1826 *
1827 * The charges will only happen if @memcg matches the current cpu's memcg
1828 * stock, and at least @nr_pages are available in that stock. Failure to
1829 * service an allocation will refill the stock.
1830 *
1831 * returns true if successful, false otherwise.
1832 */
1833 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1834 {
1835 struct memcg_stock_pcp *stock;
1836 bool ret = false;
1837
1838 if (nr_pages > CHARGE_BATCH)
1839 return ret;
1840
1841 stock = &get_cpu_var(memcg_stock);
1842 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1843 stock->nr_pages -= nr_pages;
1844 ret = true;
1845 }
1846 put_cpu_var(memcg_stock);
1847 return ret;
1848 }
1849
1850 /*
1851 * Returns stocks cached in percpu and reset cached information.
1852 */
1853 static void drain_stock(struct memcg_stock_pcp *stock)
1854 {
1855 struct mem_cgroup *old = stock->cached;
1856
1857 if (stock->nr_pages) {
1858 page_counter_uncharge(&old->memory, stock->nr_pages);
1859 if (do_memsw_account())
1860 page_counter_uncharge(&old->memsw, stock->nr_pages);
1861 css_put_many(&old->css, stock->nr_pages);
1862 stock->nr_pages = 0;
1863 }
1864 stock->cached = NULL;
1865 }
1866
1867 /*
1868 * This must be called under preempt disabled or must be called by
1869 * a thread which is pinned to local cpu.
1870 */
1871 static void drain_local_stock(struct work_struct *dummy)
1872 {
1873 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1874 drain_stock(stock);
1875 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1876 }
1877
1878 /*
1879 * Cache charges(val) to local per_cpu area.
1880 * This will be consumed by consume_stock() function, later.
1881 */
1882 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1883 {
1884 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1885
1886 if (stock->cached != memcg) { /* reset if necessary */
1887 drain_stock(stock);
1888 stock->cached = memcg;
1889 }
1890 stock->nr_pages += nr_pages;
1891 put_cpu_var(memcg_stock);
1892 }
1893
1894 /*
1895 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1896 * of the hierarchy under it.
1897 */
1898 static void drain_all_stock(struct mem_cgroup *root_memcg)
1899 {
1900 int cpu, curcpu;
1901
1902 /* If someone's already draining, avoid adding running more workers. */
1903 if (!mutex_trylock(&percpu_charge_mutex))
1904 return;
1905 /* Notify other cpus that system-wide "drain" is running */
1906 get_online_cpus();
1907 curcpu = get_cpu();
1908 for_each_online_cpu(cpu) {
1909 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1910 struct mem_cgroup *memcg;
1911
1912 memcg = stock->cached;
1913 if (!memcg || !stock->nr_pages)
1914 continue;
1915 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1916 continue;
1917 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1918 if (cpu == curcpu)
1919 drain_local_stock(&stock->work);
1920 else
1921 schedule_work_on(cpu, &stock->work);
1922 }
1923 }
1924 put_cpu();
1925 put_online_cpus();
1926 mutex_unlock(&percpu_charge_mutex);
1927 }
1928
1929 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1930 unsigned long action,
1931 void *hcpu)
1932 {
1933 int cpu = (unsigned long)hcpu;
1934 struct memcg_stock_pcp *stock;
1935
1936 if (action == CPU_ONLINE)
1937 return NOTIFY_OK;
1938
1939 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1940 return NOTIFY_OK;
1941
1942 stock = &per_cpu(memcg_stock, cpu);
1943 drain_stock(stock);
1944 return NOTIFY_OK;
1945 }
1946
1947 static void reclaim_high(struct mem_cgroup *memcg,
1948 unsigned int nr_pages,
1949 gfp_t gfp_mask)
1950 {
1951 do {
1952 if (page_counter_read(&memcg->memory) <= memcg->high)
1953 continue;
1954 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1955 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1956 } while ((memcg = parent_mem_cgroup(memcg)));
1957 }
1958
1959 static void high_work_func(struct work_struct *work)
1960 {
1961 struct mem_cgroup *memcg;
1962
1963 memcg = container_of(work, struct mem_cgroup, high_work);
1964 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1965 }
1966
1967 /*
1968 * Scheduled by try_charge() to be executed from the userland return path
1969 * and reclaims memory over the high limit.
1970 */
1971 void mem_cgroup_handle_over_high(void)
1972 {
1973 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1974 struct mem_cgroup *memcg;
1975
1976 if (likely(!nr_pages))
1977 return;
1978
1979 memcg = get_mem_cgroup_from_mm(current->mm);
1980 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1981 css_put(&memcg->css);
1982 current->memcg_nr_pages_over_high = 0;
1983 }
1984
1985 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1986 unsigned int nr_pages)
1987 {
1988 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1989 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1990 struct mem_cgroup *mem_over_limit;
1991 struct page_counter *counter;
1992 unsigned long nr_reclaimed;
1993 bool may_swap = true;
1994 bool drained = false;
1995
1996 if (mem_cgroup_is_root(memcg))
1997 return 0;
1998 retry:
1999 if (consume_stock(memcg, nr_pages))
2000 return 0;
2001
2002 if (!do_memsw_account() ||
2003 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2004 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2005 goto done_restock;
2006 if (do_memsw_account())
2007 page_counter_uncharge(&memcg->memsw, batch);
2008 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2009 } else {
2010 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2011 may_swap = false;
2012 }
2013
2014 if (batch > nr_pages) {
2015 batch = nr_pages;
2016 goto retry;
2017 }
2018
2019 /*
2020 * Unlike in global OOM situations, memcg is not in a physical
2021 * memory shortage. Allow dying and OOM-killed tasks to
2022 * bypass the last charges so that they can exit quickly and
2023 * free their memory.
2024 */
2025 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2026 fatal_signal_pending(current) ||
2027 current->flags & PF_EXITING))
2028 goto force;
2029
2030 if (unlikely(task_in_memcg_oom(current)))
2031 goto nomem;
2032
2033 if (!gfpflags_allow_blocking(gfp_mask))
2034 goto nomem;
2035
2036 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2037
2038 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2039 gfp_mask, may_swap);
2040
2041 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2042 goto retry;
2043
2044 if (!drained) {
2045 drain_all_stock(mem_over_limit);
2046 drained = true;
2047 goto retry;
2048 }
2049
2050 if (gfp_mask & __GFP_NORETRY)
2051 goto nomem;
2052 /*
2053 * Even though the limit is exceeded at this point, reclaim
2054 * may have been able to free some pages. Retry the charge
2055 * before killing the task.
2056 *
2057 * Only for regular pages, though: huge pages are rather
2058 * unlikely to succeed so close to the limit, and we fall back
2059 * to regular pages anyway in case of failure.
2060 */
2061 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2062 goto retry;
2063 /*
2064 * At task move, charge accounts can be doubly counted. So, it's
2065 * better to wait until the end of task_move if something is going on.
2066 */
2067 if (mem_cgroup_wait_acct_move(mem_over_limit))
2068 goto retry;
2069
2070 if (nr_retries--)
2071 goto retry;
2072
2073 if (gfp_mask & __GFP_NOFAIL)
2074 goto force;
2075
2076 if (fatal_signal_pending(current))
2077 goto force;
2078
2079 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2080
2081 mem_cgroup_oom(mem_over_limit, gfp_mask,
2082 get_order(nr_pages * PAGE_SIZE));
2083 nomem:
2084 if (!(gfp_mask & __GFP_NOFAIL))
2085 return -ENOMEM;
2086 force:
2087 /*
2088 * The allocation either can't fail or will lead to more memory
2089 * being freed very soon. Allow memory usage go over the limit
2090 * temporarily by force charging it.
2091 */
2092 page_counter_charge(&memcg->memory, nr_pages);
2093 if (do_memsw_account())
2094 page_counter_charge(&memcg->memsw, nr_pages);
2095 css_get_many(&memcg->css, nr_pages);
2096
2097 return 0;
2098
2099 done_restock:
2100 css_get_many(&memcg->css, batch);
2101 if (batch > nr_pages)
2102 refill_stock(memcg, batch - nr_pages);
2103
2104 /*
2105 * If the hierarchy is above the normal consumption range, schedule
2106 * reclaim on returning to userland. We can perform reclaim here
2107 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2108 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2109 * not recorded as it most likely matches current's and won't
2110 * change in the meantime. As high limit is checked again before
2111 * reclaim, the cost of mismatch is negligible.
2112 */
2113 do {
2114 if (page_counter_read(&memcg->memory) > memcg->high) {
2115 /* Don't bother a random interrupted task */
2116 if (in_interrupt()) {
2117 schedule_work(&memcg->high_work);
2118 break;
2119 }
2120 current->memcg_nr_pages_over_high += batch;
2121 set_notify_resume(current);
2122 break;
2123 }
2124 } while ((memcg = parent_mem_cgroup(memcg)));
2125
2126 return 0;
2127 }
2128
2129 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2130 {
2131 if (mem_cgroup_is_root(memcg))
2132 return;
2133
2134 page_counter_uncharge(&memcg->memory, nr_pages);
2135 if (do_memsw_account())
2136 page_counter_uncharge(&memcg->memsw, nr_pages);
2137
2138 css_put_many(&memcg->css, nr_pages);
2139 }
2140
2141 static void lock_page_lru(struct page *page, int *isolated)
2142 {
2143 struct zone *zone = page_zone(page);
2144
2145 spin_lock_irq(&zone->lru_lock);
2146 if (PageLRU(page)) {
2147 struct lruvec *lruvec;
2148
2149 lruvec = mem_cgroup_page_lruvec(page, zone);
2150 ClearPageLRU(page);
2151 del_page_from_lru_list(page, lruvec, page_lru(page));
2152 *isolated = 1;
2153 } else
2154 *isolated = 0;
2155 }
2156
2157 static void unlock_page_lru(struct page *page, int isolated)
2158 {
2159 struct zone *zone = page_zone(page);
2160
2161 if (isolated) {
2162 struct lruvec *lruvec;
2163
2164 lruvec = mem_cgroup_page_lruvec(page, zone);
2165 VM_BUG_ON_PAGE(PageLRU(page), page);
2166 SetPageLRU(page);
2167 add_page_to_lru_list(page, lruvec, page_lru(page));
2168 }
2169 spin_unlock_irq(&zone->lru_lock);
2170 }
2171
2172 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2173 bool lrucare)
2174 {
2175 int isolated;
2176
2177 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2178
2179 /*
2180 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2181 * may already be on some other mem_cgroup's LRU. Take care of it.
2182 */
2183 if (lrucare)
2184 lock_page_lru(page, &isolated);
2185
2186 /*
2187 * Nobody should be changing or seriously looking at
2188 * page->mem_cgroup at this point:
2189 *
2190 * - the page is uncharged
2191 *
2192 * - the page is off-LRU
2193 *
2194 * - an anonymous fault has exclusive page access, except for
2195 * a locked page table
2196 *
2197 * - a page cache insertion, a swapin fault, or a migration
2198 * have the page locked
2199 */
2200 page->mem_cgroup = memcg;
2201
2202 if (lrucare)
2203 unlock_page_lru(page, isolated);
2204 }
2205
2206 #ifdef CONFIG_MEMCG_KMEM
2207 static int memcg_alloc_cache_id(void)
2208 {
2209 int id, size;
2210 int err;
2211
2212 id = ida_simple_get(&memcg_cache_ida,
2213 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2214 if (id < 0)
2215 return id;
2216
2217 if (id < memcg_nr_cache_ids)
2218 return id;
2219
2220 /*
2221 * There's no space for the new id in memcg_caches arrays,
2222 * so we have to grow them.
2223 */
2224 down_write(&memcg_cache_ids_sem);
2225
2226 size = 2 * (id + 1);
2227 if (size < MEMCG_CACHES_MIN_SIZE)
2228 size = MEMCG_CACHES_MIN_SIZE;
2229 else if (size > MEMCG_CACHES_MAX_SIZE)
2230 size = MEMCG_CACHES_MAX_SIZE;
2231
2232 err = memcg_update_all_caches(size);
2233 if (!err)
2234 err = memcg_update_all_list_lrus(size);
2235 if (!err)
2236 memcg_nr_cache_ids = size;
2237
2238 up_write(&memcg_cache_ids_sem);
2239
2240 if (err) {
2241 ida_simple_remove(&memcg_cache_ida, id);
2242 return err;
2243 }
2244 return id;
2245 }
2246
2247 static void memcg_free_cache_id(int id)
2248 {
2249 ida_simple_remove(&memcg_cache_ida, id);
2250 }
2251
2252 struct memcg_kmem_cache_create_work {
2253 struct mem_cgroup *memcg;
2254 struct kmem_cache *cachep;
2255 struct work_struct work;
2256 };
2257
2258 static void memcg_kmem_cache_create_func(struct work_struct *w)
2259 {
2260 struct memcg_kmem_cache_create_work *cw =
2261 container_of(w, struct memcg_kmem_cache_create_work, work);
2262 struct mem_cgroup *memcg = cw->memcg;
2263 struct kmem_cache *cachep = cw->cachep;
2264
2265 memcg_create_kmem_cache(memcg, cachep);
2266
2267 css_put(&memcg->css);
2268 kfree(cw);
2269 }
2270
2271 /*
2272 * Enqueue the creation of a per-memcg kmem_cache.
2273 */
2274 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2275 struct kmem_cache *cachep)
2276 {
2277 struct memcg_kmem_cache_create_work *cw;
2278
2279 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2280 if (!cw)
2281 return;
2282
2283 css_get(&memcg->css);
2284
2285 cw->memcg = memcg;
2286 cw->cachep = cachep;
2287 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2288
2289 schedule_work(&cw->work);
2290 }
2291
2292 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2293 struct kmem_cache *cachep)
2294 {
2295 /*
2296 * We need to stop accounting when we kmalloc, because if the
2297 * corresponding kmalloc cache is not yet created, the first allocation
2298 * in __memcg_schedule_kmem_cache_create will recurse.
2299 *
2300 * However, it is better to enclose the whole function. Depending on
2301 * the debugging options enabled, INIT_WORK(), for instance, can
2302 * trigger an allocation. This too, will make us recurse. Because at
2303 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2304 * the safest choice is to do it like this, wrapping the whole function.
2305 */
2306 current->memcg_kmem_skip_account = 1;
2307 __memcg_schedule_kmem_cache_create(memcg, cachep);
2308 current->memcg_kmem_skip_account = 0;
2309 }
2310
2311 /*
2312 * Return the kmem_cache we're supposed to use for a slab allocation.
2313 * We try to use the current memcg's version of the cache.
2314 *
2315 * If the cache does not exist yet, if we are the first user of it,
2316 * we either create it immediately, if possible, or create it asynchronously
2317 * in a workqueue.
2318 * In the latter case, we will let the current allocation go through with
2319 * the original cache.
2320 *
2321 * Can't be called in interrupt context or from kernel threads.
2322 * This function needs to be called with rcu_read_lock() held.
2323 */
2324 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2325 {
2326 struct mem_cgroup *memcg;
2327 struct kmem_cache *memcg_cachep;
2328 int kmemcg_id;
2329
2330 VM_BUG_ON(!is_root_cache(cachep));
2331
2332 if (cachep->flags & SLAB_ACCOUNT)
2333 gfp |= __GFP_ACCOUNT;
2334
2335 if (!(gfp & __GFP_ACCOUNT))
2336 return cachep;
2337
2338 if (current->memcg_kmem_skip_account)
2339 return cachep;
2340
2341 memcg = get_mem_cgroup_from_mm(current->mm);
2342 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2343 if (kmemcg_id < 0)
2344 goto out;
2345
2346 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2347 if (likely(memcg_cachep))
2348 return memcg_cachep;
2349
2350 /*
2351 * If we are in a safe context (can wait, and not in interrupt
2352 * context), we could be be predictable and return right away.
2353 * This would guarantee that the allocation being performed
2354 * already belongs in the new cache.
2355 *
2356 * However, there are some clashes that can arrive from locking.
2357 * For instance, because we acquire the slab_mutex while doing
2358 * memcg_create_kmem_cache, this means no further allocation
2359 * could happen with the slab_mutex held. So it's better to
2360 * defer everything.
2361 */
2362 memcg_schedule_kmem_cache_create(memcg, cachep);
2363 out:
2364 css_put(&memcg->css);
2365 return cachep;
2366 }
2367
2368 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2369 {
2370 if (!is_root_cache(cachep))
2371 css_put(&cachep->memcg_params.memcg->css);
2372 }
2373
2374 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2375 struct mem_cgroup *memcg)
2376 {
2377 unsigned int nr_pages = 1 << order;
2378 struct page_counter *counter;
2379 int ret;
2380
2381 if (!memcg_kmem_online(memcg))
2382 return 0;
2383
2384 if (!page_counter_try_charge(&memcg->kmem, nr_pages, &counter))
2385 return -ENOMEM;
2386
2387 ret = try_charge(memcg, gfp, nr_pages);
2388 if (ret) {
2389 page_counter_uncharge(&memcg->kmem, nr_pages);
2390 return ret;
2391 }
2392
2393 page->mem_cgroup = memcg;
2394
2395 return 0;
2396 }
2397
2398 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2399 {
2400 struct mem_cgroup *memcg;
2401 int ret;
2402
2403 memcg = get_mem_cgroup_from_mm(current->mm);
2404 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2405 css_put(&memcg->css);
2406 return ret;
2407 }
2408
2409 void __memcg_kmem_uncharge(struct page *page, int order)
2410 {
2411 struct mem_cgroup *memcg = page->mem_cgroup;
2412 unsigned int nr_pages = 1 << order;
2413
2414 if (!memcg)
2415 return;
2416
2417 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2418
2419 page_counter_uncharge(&memcg->kmem, nr_pages);
2420 page_counter_uncharge(&memcg->memory, nr_pages);
2421 if (do_memsw_account())
2422 page_counter_uncharge(&memcg->memsw, nr_pages);
2423
2424 page->mem_cgroup = NULL;
2425 css_put_many(&memcg->css, nr_pages);
2426 }
2427 #endif /* CONFIG_MEMCG_KMEM */
2428
2429 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2430
2431 /*
2432 * Because tail pages are not marked as "used", set it. We're under
2433 * zone->lru_lock and migration entries setup in all page mappings.
2434 */
2435 void mem_cgroup_split_huge_fixup(struct page *head)
2436 {
2437 int i;
2438
2439 if (mem_cgroup_disabled())
2440 return;
2441
2442 for (i = 1; i < HPAGE_PMD_NR; i++)
2443 head[i].mem_cgroup = head->mem_cgroup;
2444
2445 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2446 HPAGE_PMD_NR);
2447 }
2448 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2449
2450 #ifdef CONFIG_MEMCG_SWAP
2451 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2452 bool charge)
2453 {
2454 int val = (charge) ? 1 : -1;
2455 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2456 }
2457
2458 /**
2459 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2460 * @entry: swap entry to be moved
2461 * @from: mem_cgroup which the entry is moved from
2462 * @to: mem_cgroup which the entry is moved to
2463 *
2464 * It succeeds only when the swap_cgroup's record for this entry is the same
2465 * as the mem_cgroup's id of @from.
2466 *
2467 * Returns 0 on success, -EINVAL on failure.
2468 *
2469 * The caller must have charged to @to, IOW, called page_counter_charge() about
2470 * both res and memsw, and called css_get().
2471 */
2472 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2473 struct mem_cgroup *from, struct mem_cgroup *to)
2474 {
2475 unsigned short old_id, new_id;
2476
2477 old_id = mem_cgroup_id(from);
2478 new_id = mem_cgroup_id(to);
2479
2480 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2481 mem_cgroup_swap_statistics(from, false);
2482 mem_cgroup_swap_statistics(to, true);
2483 return 0;
2484 }
2485 return -EINVAL;
2486 }
2487 #else
2488 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2489 struct mem_cgroup *from, struct mem_cgroup *to)
2490 {
2491 return -EINVAL;
2492 }
2493 #endif
2494
2495 static DEFINE_MUTEX(memcg_limit_mutex);
2496
2497 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2498 unsigned long limit)
2499 {
2500 unsigned long curusage;
2501 unsigned long oldusage;
2502 bool enlarge = false;
2503 int retry_count;
2504 int ret;
2505
2506 /*
2507 * For keeping hierarchical_reclaim simple, how long we should retry
2508 * is depends on callers. We set our retry-count to be function
2509 * of # of children which we should visit in this loop.
2510 */
2511 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2512 mem_cgroup_count_children(memcg);
2513
2514 oldusage = page_counter_read(&memcg->memory);
2515
2516 do {
2517 if (signal_pending(current)) {
2518 ret = -EINTR;
2519 break;
2520 }
2521
2522 mutex_lock(&memcg_limit_mutex);
2523 if (limit > memcg->memsw.limit) {
2524 mutex_unlock(&memcg_limit_mutex);
2525 ret = -EINVAL;
2526 break;
2527 }
2528 if (limit > memcg->memory.limit)
2529 enlarge = true;
2530 ret = page_counter_limit(&memcg->memory, limit);
2531 mutex_unlock(&memcg_limit_mutex);
2532
2533 if (!ret)
2534 break;
2535
2536 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2537
2538 curusage = page_counter_read(&memcg->memory);
2539 /* Usage is reduced ? */
2540 if (curusage >= oldusage)
2541 retry_count--;
2542 else
2543 oldusage = curusage;
2544 } while (retry_count);
2545
2546 if (!ret && enlarge)
2547 memcg_oom_recover(memcg);
2548
2549 return ret;
2550 }
2551
2552 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2553 unsigned long limit)
2554 {
2555 unsigned long curusage;
2556 unsigned long oldusage;
2557 bool enlarge = false;
2558 int retry_count;
2559 int ret;
2560
2561 /* see mem_cgroup_resize_res_limit */
2562 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2563 mem_cgroup_count_children(memcg);
2564
2565 oldusage = page_counter_read(&memcg->memsw);
2566
2567 do {
2568 if (signal_pending(current)) {
2569 ret = -EINTR;
2570 break;
2571 }
2572
2573 mutex_lock(&memcg_limit_mutex);
2574 if (limit < memcg->memory.limit) {
2575 mutex_unlock(&memcg_limit_mutex);
2576 ret = -EINVAL;
2577 break;
2578 }
2579 if (limit > memcg->memsw.limit)
2580 enlarge = true;
2581 ret = page_counter_limit(&memcg->memsw, limit);
2582 mutex_unlock(&memcg_limit_mutex);
2583
2584 if (!ret)
2585 break;
2586
2587 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2588
2589 curusage = page_counter_read(&memcg->memsw);
2590 /* Usage is reduced ? */
2591 if (curusage >= oldusage)
2592 retry_count--;
2593 else
2594 oldusage = curusage;
2595 } while (retry_count);
2596
2597 if (!ret && enlarge)
2598 memcg_oom_recover(memcg);
2599
2600 return ret;
2601 }
2602
2603 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2604 gfp_t gfp_mask,
2605 unsigned long *total_scanned)
2606 {
2607 unsigned long nr_reclaimed = 0;
2608 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2609 unsigned long reclaimed;
2610 int loop = 0;
2611 struct mem_cgroup_tree_per_zone *mctz;
2612 unsigned long excess;
2613 unsigned long nr_scanned;
2614
2615 if (order > 0)
2616 return 0;
2617
2618 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2619 /*
2620 * This loop can run a while, specially if mem_cgroup's continuously
2621 * keep exceeding their soft limit and putting the system under
2622 * pressure
2623 */
2624 do {
2625 if (next_mz)
2626 mz = next_mz;
2627 else
2628 mz = mem_cgroup_largest_soft_limit_node(mctz);
2629 if (!mz)
2630 break;
2631
2632 nr_scanned = 0;
2633 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2634 gfp_mask, &nr_scanned);
2635 nr_reclaimed += reclaimed;
2636 *total_scanned += nr_scanned;
2637 spin_lock_irq(&mctz->lock);
2638 __mem_cgroup_remove_exceeded(mz, mctz);
2639
2640 /*
2641 * If we failed to reclaim anything from this memory cgroup
2642 * it is time to move on to the next cgroup
2643 */
2644 next_mz = NULL;
2645 if (!reclaimed)
2646 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2647
2648 excess = soft_limit_excess(mz->memcg);
2649 /*
2650 * One school of thought says that we should not add
2651 * back the node to the tree if reclaim returns 0.
2652 * But our reclaim could return 0, simply because due
2653 * to priority we are exposing a smaller subset of
2654 * memory to reclaim from. Consider this as a longer
2655 * term TODO.
2656 */
2657 /* If excess == 0, no tree ops */
2658 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2659 spin_unlock_irq(&mctz->lock);
2660 css_put(&mz->memcg->css);
2661 loop++;
2662 /*
2663 * Could not reclaim anything and there are no more
2664 * mem cgroups to try or we seem to be looping without
2665 * reclaiming anything.
2666 */
2667 if (!nr_reclaimed &&
2668 (next_mz == NULL ||
2669 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2670 break;
2671 } while (!nr_reclaimed);
2672 if (next_mz)
2673 css_put(&next_mz->memcg->css);
2674 return nr_reclaimed;
2675 }
2676
2677 /*
2678 * Test whether @memcg has children, dead or alive. Note that this
2679 * function doesn't care whether @memcg has use_hierarchy enabled and
2680 * returns %true if there are child csses according to the cgroup
2681 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2682 */
2683 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2684 {
2685 bool ret;
2686
2687 /*
2688 * The lock does not prevent addition or deletion of children, but
2689 * it prevents a new child from being initialized based on this
2690 * parent in css_online(), so it's enough to decide whether
2691 * hierarchically inherited attributes can still be changed or not.
2692 */
2693 lockdep_assert_held(&memcg_create_mutex);
2694
2695 rcu_read_lock();
2696 ret = css_next_child(NULL, &memcg->css);
2697 rcu_read_unlock();
2698 return ret;
2699 }
2700
2701 /*
2702 * Reclaims as many pages from the given memcg as possible and moves
2703 * the rest to the parent.
2704 *
2705 * Caller is responsible for holding css reference for memcg.
2706 */
2707 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2708 {
2709 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2710
2711 /* we call try-to-free pages for make this cgroup empty */
2712 lru_add_drain_all();
2713 /* try to free all pages in this cgroup */
2714 while (nr_retries && page_counter_read(&memcg->memory)) {
2715 int progress;
2716
2717 if (signal_pending(current))
2718 return -EINTR;
2719
2720 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2721 GFP_KERNEL, true);
2722 if (!progress) {
2723 nr_retries--;
2724 /* maybe some writeback is necessary */
2725 congestion_wait(BLK_RW_ASYNC, HZ/10);
2726 }
2727
2728 }
2729
2730 return 0;
2731 }
2732
2733 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2734 char *buf, size_t nbytes,
2735 loff_t off)
2736 {
2737 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2738
2739 if (mem_cgroup_is_root(memcg))
2740 return -EINVAL;
2741 return mem_cgroup_force_empty(memcg) ?: nbytes;
2742 }
2743
2744 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2745 struct cftype *cft)
2746 {
2747 return mem_cgroup_from_css(css)->use_hierarchy;
2748 }
2749
2750 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2751 struct cftype *cft, u64 val)
2752 {
2753 int retval = 0;
2754 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2755 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2756
2757 mutex_lock(&memcg_create_mutex);
2758
2759 if (memcg->use_hierarchy == val)
2760 goto out;
2761
2762 /*
2763 * If parent's use_hierarchy is set, we can't make any modifications
2764 * in the child subtrees. If it is unset, then the change can
2765 * occur, provided the current cgroup has no children.
2766 *
2767 * For the root cgroup, parent_mem is NULL, we allow value to be
2768 * set if there are no children.
2769 */
2770 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2771 (val == 1 || val == 0)) {
2772 if (!memcg_has_children(memcg))
2773 memcg->use_hierarchy = val;
2774 else
2775 retval = -EBUSY;
2776 } else
2777 retval = -EINVAL;
2778
2779 out:
2780 mutex_unlock(&memcg_create_mutex);
2781
2782 return retval;
2783 }
2784
2785 static unsigned long tree_stat(struct mem_cgroup *memcg,
2786 enum mem_cgroup_stat_index idx)
2787 {
2788 struct mem_cgroup *iter;
2789 unsigned long val = 0;
2790
2791 for_each_mem_cgroup_tree(iter, memcg)
2792 val += mem_cgroup_read_stat(iter, idx);
2793
2794 return val;
2795 }
2796
2797 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2798 {
2799 unsigned long val;
2800
2801 if (mem_cgroup_is_root(memcg)) {
2802 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2803 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2804 if (swap)
2805 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2806 } else {
2807 if (!swap)
2808 val = page_counter_read(&memcg->memory);
2809 else
2810 val = page_counter_read(&memcg->memsw);
2811 }
2812 return val;
2813 }
2814
2815 enum {
2816 RES_USAGE,
2817 RES_LIMIT,
2818 RES_MAX_USAGE,
2819 RES_FAILCNT,
2820 RES_SOFT_LIMIT,
2821 };
2822
2823 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2824 struct cftype *cft)
2825 {
2826 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2827 struct page_counter *counter;
2828
2829 switch (MEMFILE_TYPE(cft->private)) {
2830 case _MEM:
2831 counter = &memcg->memory;
2832 break;
2833 case _MEMSWAP:
2834 counter = &memcg->memsw;
2835 break;
2836 case _KMEM:
2837 counter = &memcg->kmem;
2838 break;
2839 default:
2840 BUG();
2841 }
2842
2843 switch (MEMFILE_ATTR(cft->private)) {
2844 case RES_USAGE:
2845 if (counter == &memcg->memory)
2846 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2847 if (counter == &memcg->memsw)
2848 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2849 return (u64)page_counter_read(counter) * PAGE_SIZE;
2850 case RES_LIMIT:
2851 return (u64)counter->limit * PAGE_SIZE;
2852 case RES_MAX_USAGE:
2853 return (u64)counter->watermark * PAGE_SIZE;
2854 case RES_FAILCNT:
2855 return counter->failcnt;
2856 case RES_SOFT_LIMIT:
2857 return (u64)memcg->soft_limit * PAGE_SIZE;
2858 default:
2859 BUG();
2860 }
2861 }
2862
2863 #ifdef CONFIG_MEMCG_KMEM
2864 static int memcg_online_kmem(struct mem_cgroup *memcg)
2865 {
2866 int err = 0;
2867 int memcg_id;
2868
2869 BUG_ON(memcg->kmemcg_id >= 0);
2870 BUG_ON(memcg->kmem_state);
2871
2872 /*
2873 * For simplicity, we won't allow this to be disabled. It also can't
2874 * be changed if the cgroup has children already, or if tasks had
2875 * already joined.
2876 *
2877 * If tasks join before we set the limit, a person looking at
2878 * kmem.usage_in_bytes will have no way to determine when it took
2879 * place, which makes the value quite meaningless.
2880 *
2881 * After it first became limited, changes in the value of the limit are
2882 * of course permitted.
2883 */
2884 mutex_lock(&memcg_create_mutex);
2885 if (cgroup_is_populated(memcg->css.cgroup) ||
2886 (memcg->use_hierarchy && memcg_has_children(memcg)))
2887 err = -EBUSY;
2888 mutex_unlock(&memcg_create_mutex);
2889 if (err)
2890 goto out;
2891
2892 memcg_id = memcg_alloc_cache_id();
2893 if (memcg_id < 0) {
2894 err = memcg_id;
2895 goto out;
2896 }
2897
2898 static_branch_inc(&memcg_kmem_enabled_key);
2899 /*
2900 * A memory cgroup is considered kmem-online as soon as it gets
2901 * kmemcg_id. Setting the id after enabling static branching will
2902 * guarantee no one starts accounting before all call sites are
2903 * patched.
2904 */
2905 memcg->kmemcg_id = memcg_id;
2906 memcg->kmem_state = KMEM_ONLINE;
2907 out:
2908 return err;
2909 }
2910
2911 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2912 unsigned long limit)
2913 {
2914 int ret;
2915
2916 mutex_lock(&memcg_limit_mutex);
2917 /* Top-level cgroup doesn't propagate from root */
2918 if (!memcg_kmem_online(memcg)) {
2919 ret = memcg_online_kmem(memcg);
2920 if (ret)
2921 goto out;
2922 }
2923 ret = page_counter_limit(&memcg->kmem, limit);
2924 out:
2925 mutex_unlock(&memcg_limit_mutex);
2926 return ret;
2927 }
2928
2929 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2930 {
2931 int ret = 0;
2932 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2933
2934 if (!parent)
2935 return 0;
2936
2937 mutex_lock(&memcg_limit_mutex);
2938 /*
2939 * If the parent cgroup is not kmem-online now, it cannot be
2940 * onlined after this point, because it has at least one child
2941 * already.
2942 */
2943 if (memcg_kmem_online(parent))
2944 ret = memcg_online_kmem(memcg);
2945 mutex_unlock(&memcg_limit_mutex);
2946 return ret;
2947 }
2948 #else
2949 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2950 unsigned long limit)
2951 {
2952 return -EINVAL;
2953 }
2954 #endif /* CONFIG_MEMCG_KMEM */
2955
2956 /*
2957 * The user of this function is...
2958 * RES_LIMIT.
2959 */
2960 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2961 char *buf, size_t nbytes, loff_t off)
2962 {
2963 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2964 unsigned long nr_pages;
2965 int ret;
2966
2967 buf = strstrip(buf);
2968 ret = page_counter_memparse(buf, "-1", &nr_pages);
2969 if (ret)
2970 return ret;
2971
2972 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2973 case RES_LIMIT:
2974 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2975 ret = -EINVAL;
2976 break;
2977 }
2978 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2979 case _MEM:
2980 ret = mem_cgroup_resize_limit(memcg, nr_pages);
2981 break;
2982 case _MEMSWAP:
2983 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2984 break;
2985 case _KMEM:
2986 ret = memcg_update_kmem_limit(memcg, nr_pages);
2987 break;
2988 }
2989 break;
2990 case RES_SOFT_LIMIT:
2991 memcg->soft_limit = nr_pages;
2992 ret = 0;
2993 break;
2994 }
2995 return ret ?: nbytes;
2996 }
2997
2998 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
2999 size_t nbytes, loff_t off)
3000 {
3001 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3002 struct page_counter *counter;
3003
3004 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3005 case _MEM:
3006 counter = &memcg->memory;
3007 break;
3008 case _MEMSWAP:
3009 counter = &memcg->memsw;
3010 break;
3011 case _KMEM:
3012 counter = &memcg->kmem;
3013 break;
3014 default:
3015 BUG();
3016 }
3017
3018 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3019 case RES_MAX_USAGE:
3020 page_counter_reset_watermark(counter);
3021 break;
3022 case RES_FAILCNT:
3023 counter->failcnt = 0;
3024 break;
3025 default:
3026 BUG();
3027 }
3028
3029 return nbytes;
3030 }
3031
3032 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3033 struct cftype *cft)
3034 {
3035 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3036 }
3037
3038 #ifdef CONFIG_MMU
3039 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3040 struct cftype *cft, u64 val)
3041 {
3042 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3043
3044 if (val & ~MOVE_MASK)
3045 return -EINVAL;
3046
3047 /*
3048 * No kind of locking is needed in here, because ->can_attach() will
3049 * check this value once in the beginning of the process, and then carry
3050 * on with stale data. This means that changes to this value will only
3051 * affect task migrations starting after the change.
3052 */
3053 memcg->move_charge_at_immigrate = val;
3054 return 0;
3055 }
3056 #else
3057 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3058 struct cftype *cft, u64 val)
3059 {
3060 return -ENOSYS;
3061 }
3062 #endif
3063
3064 #ifdef CONFIG_NUMA
3065 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3066 {
3067 struct numa_stat {
3068 const char *name;
3069 unsigned int lru_mask;
3070 };
3071
3072 static const struct numa_stat stats[] = {
3073 { "total", LRU_ALL },
3074 { "file", LRU_ALL_FILE },
3075 { "anon", LRU_ALL_ANON },
3076 { "unevictable", BIT(LRU_UNEVICTABLE) },
3077 };
3078 const struct numa_stat *stat;
3079 int nid;
3080 unsigned long nr;
3081 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3082
3083 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3084 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3085 seq_printf(m, "%s=%lu", stat->name, nr);
3086 for_each_node_state(nid, N_MEMORY) {
3087 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3088 stat->lru_mask);
3089 seq_printf(m, " N%d=%lu", nid, nr);
3090 }
3091 seq_putc(m, '\n');
3092 }
3093
3094 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3095 struct mem_cgroup *iter;
3096
3097 nr = 0;
3098 for_each_mem_cgroup_tree(iter, memcg)
3099 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3100 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3101 for_each_node_state(nid, N_MEMORY) {
3102 nr = 0;
3103 for_each_mem_cgroup_tree(iter, memcg)
3104 nr += mem_cgroup_node_nr_lru_pages(
3105 iter, nid, stat->lru_mask);
3106 seq_printf(m, " N%d=%lu", nid, nr);
3107 }
3108 seq_putc(m, '\n');
3109 }
3110
3111 return 0;
3112 }
3113 #endif /* CONFIG_NUMA */
3114
3115 static int memcg_stat_show(struct seq_file *m, void *v)
3116 {
3117 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3118 unsigned long memory, memsw;
3119 struct mem_cgroup *mi;
3120 unsigned int i;
3121
3122 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3123 MEM_CGROUP_STAT_NSTATS);
3124 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3125 MEM_CGROUP_EVENTS_NSTATS);
3126 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3127
3128 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3129 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3130 continue;
3131 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3132 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3133 }
3134
3135 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3136 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3137 mem_cgroup_read_events(memcg, i));
3138
3139 for (i = 0; i < NR_LRU_LISTS; i++)
3140 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3141 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3142
3143 /* Hierarchical information */
3144 memory = memsw = PAGE_COUNTER_MAX;
3145 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3146 memory = min(memory, mi->memory.limit);
3147 memsw = min(memsw, mi->memsw.limit);
3148 }
3149 seq_printf(m, "hierarchical_memory_limit %llu\n",
3150 (u64)memory * PAGE_SIZE);
3151 if (do_memsw_account())
3152 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3153 (u64)memsw * PAGE_SIZE);
3154
3155 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3156 unsigned long long val = 0;
3157
3158 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3159 continue;
3160 for_each_mem_cgroup_tree(mi, memcg)
3161 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3162 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3163 }
3164
3165 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3166 unsigned long long val = 0;
3167
3168 for_each_mem_cgroup_tree(mi, memcg)
3169 val += mem_cgroup_read_events(mi, i);
3170 seq_printf(m, "total_%s %llu\n",
3171 mem_cgroup_events_names[i], val);
3172 }
3173
3174 for (i = 0; i < NR_LRU_LISTS; i++) {
3175 unsigned long long val = 0;
3176
3177 for_each_mem_cgroup_tree(mi, memcg)
3178 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3179 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3180 }
3181
3182 #ifdef CONFIG_DEBUG_VM
3183 {
3184 int nid, zid;
3185 struct mem_cgroup_per_zone *mz;
3186 struct zone_reclaim_stat *rstat;
3187 unsigned long recent_rotated[2] = {0, 0};
3188 unsigned long recent_scanned[2] = {0, 0};
3189
3190 for_each_online_node(nid)
3191 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3192 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3193 rstat = &mz->lruvec.reclaim_stat;
3194
3195 recent_rotated[0] += rstat->recent_rotated[0];
3196 recent_rotated[1] += rstat->recent_rotated[1];
3197 recent_scanned[0] += rstat->recent_scanned[0];
3198 recent_scanned[1] += rstat->recent_scanned[1];
3199 }
3200 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3201 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3202 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3203 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3204 }
3205 #endif
3206
3207 return 0;
3208 }
3209
3210 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3211 struct cftype *cft)
3212 {
3213 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3214
3215 return mem_cgroup_swappiness(memcg);
3216 }
3217
3218 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3219 struct cftype *cft, u64 val)
3220 {
3221 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3222
3223 if (val > 100)
3224 return -EINVAL;
3225
3226 if (css->parent)
3227 memcg->swappiness = val;
3228 else
3229 vm_swappiness = val;
3230
3231 return 0;
3232 }
3233
3234 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3235 {
3236 struct mem_cgroup_threshold_ary *t;
3237 unsigned long usage;
3238 int i;
3239
3240 rcu_read_lock();
3241 if (!swap)
3242 t = rcu_dereference(memcg->thresholds.primary);
3243 else
3244 t = rcu_dereference(memcg->memsw_thresholds.primary);
3245
3246 if (!t)
3247 goto unlock;
3248
3249 usage = mem_cgroup_usage(memcg, swap);
3250
3251 /*
3252 * current_threshold points to threshold just below or equal to usage.
3253 * If it's not true, a threshold was crossed after last
3254 * call of __mem_cgroup_threshold().
3255 */
3256 i = t->current_threshold;
3257
3258 /*
3259 * Iterate backward over array of thresholds starting from
3260 * current_threshold and check if a threshold is crossed.
3261 * If none of thresholds below usage is crossed, we read
3262 * only one element of the array here.
3263 */
3264 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3265 eventfd_signal(t->entries[i].eventfd, 1);
3266
3267 /* i = current_threshold + 1 */
3268 i++;
3269
3270 /*
3271 * Iterate forward over array of thresholds starting from
3272 * current_threshold+1 and check if a threshold is crossed.
3273 * If none of thresholds above usage is crossed, we read
3274 * only one element of the array here.
3275 */
3276 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3277 eventfd_signal(t->entries[i].eventfd, 1);
3278
3279 /* Update current_threshold */
3280 t->current_threshold = i - 1;
3281 unlock:
3282 rcu_read_unlock();
3283 }
3284
3285 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3286 {
3287 while (memcg) {
3288 __mem_cgroup_threshold(memcg, false);
3289 if (do_memsw_account())
3290 __mem_cgroup_threshold(memcg, true);
3291
3292 memcg = parent_mem_cgroup(memcg);
3293 }
3294 }
3295
3296 static int compare_thresholds(const void *a, const void *b)
3297 {
3298 const struct mem_cgroup_threshold *_a = a;
3299 const struct mem_cgroup_threshold *_b = b;
3300
3301 if (_a->threshold > _b->threshold)
3302 return 1;
3303
3304 if (_a->threshold < _b->threshold)
3305 return -1;
3306
3307 return 0;
3308 }
3309
3310 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3311 {
3312 struct mem_cgroup_eventfd_list *ev;
3313
3314 spin_lock(&memcg_oom_lock);
3315
3316 list_for_each_entry(ev, &memcg->oom_notify, list)
3317 eventfd_signal(ev->eventfd, 1);
3318
3319 spin_unlock(&memcg_oom_lock);
3320 return 0;
3321 }
3322
3323 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3324 {
3325 struct mem_cgroup *iter;
3326
3327 for_each_mem_cgroup_tree(iter, memcg)
3328 mem_cgroup_oom_notify_cb(iter);
3329 }
3330
3331 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3332 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3333 {
3334 struct mem_cgroup_thresholds *thresholds;
3335 struct mem_cgroup_threshold_ary *new;
3336 unsigned long threshold;
3337 unsigned long usage;
3338 int i, size, ret;
3339
3340 ret = page_counter_memparse(args, "-1", &threshold);
3341 if (ret)
3342 return ret;
3343
3344 mutex_lock(&memcg->thresholds_lock);
3345
3346 if (type == _MEM) {
3347 thresholds = &memcg->thresholds;
3348 usage = mem_cgroup_usage(memcg, false);
3349 } else if (type == _MEMSWAP) {
3350 thresholds = &memcg->memsw_thresholds;
3351 usage = mem_cgroup_usage(memcg, true);
3352 } else
3353 BUG();
3354
3355 /* Check if a threshold crossed before adding a new one */
3356 if (thresholds->primary)
3357 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3358
3359 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3360
3361 /* Allocate memory for new array of thresholds */
3362 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3363 GFP_KERNEL);
3364 if (!new) {
3365 ret = -ENOMEM;
3366 goto unlock;
3367 }
3368 new->size = size;
3369
3370 /* Copy thresholds (if any) to new array */
3371 if (thresholds->primary) {
3372 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3373 sizeof(struct mem_cgroup_threshold));
3374 }
3375
3376 /* Add new threshold */
3377 new->entries[size - 1].eventfd = eventfd;
3378 new->entries[size - 1].threshold = threshold;
3379
3380 /* Sort thresholds. Registering of new threshold isn't time-critical */
3381 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3382 compare_thresholds, NULL);
3383
3384 /* Find current threshold */
3385 new->current_threshold = -1;
3386 for (i = 0; i < size; i++) {
3387 if (new->entries[i].threshold <= usage) {
3388 /*
3389 * new->current_threshold will not be used until
3390 * rcu_assign_pointer(), so it's safe to increment
3391 * it here.
3392 */
3393 ++new->current_threshold;
3394 } else
3395 break;
3396 }
3397
3398 /* Free old spare buffer and save old primary buffer as spare */
3399 kfree(thresholds->spare);
3400 thresholds->spare = thresholds->primary;
3401
3402 rcu_assign_pointer(thresholds->primary, new);
3403
3404 /* To be sure that nobody uses thresholds */
3405 synchronize_rcu();
3406
3407 unlock:
3408 mutex_unlock(&memcg->thresholds_lock);
3409
3410 return ret;
3411 }
3412
3413 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3414 struct eventfd_ctx *eventfd, const char *args)
3415 {
3416 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3417 }
3418
3419 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3420 struct eventfd_ctx *eventfd, const char *args)
3421 {
3422 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3423 }
3424
3425 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3426 struct eventfd_ctx *eventfd, enum res_type type)
3427 {
3428 struct mem_cgroup_thresholds *thresholds;
3429 struct mem_cgroup_threshold_ary *new;
3430 unsigned long usage;
3431 int i, j, size;
3432
3433 mutex_lock(&memcg->thresholds_lock);
3434
3435 if (type == _MEM) {
3436 thresholds = &memcg->thresholds;
3437 usage = mem_cgroup_usage(memcg, false);
3438 } else if (type == _MEMSWAP) {
3439 thresholds = &memcg->memsw_thresholds;
3440 usage = mem_cgroup_usage(memcg, true);
3441 } else
3442 BUG();
3443
3444 if (!thresholds->primary)
3445 goto unlock;
3446
3447 /* Check if a threshold crossed before removing */
3448 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3449
3450 /* Calculate new number of threshold */
3451 size = 0;
3452 for (i = 0; i < thresholds->primary->size; i++) {
3453 if (thresholds->primary->entries[i].eventfd != eventfd)
3454 size++;
3455 }
3456
3457 new = thresholds->spare;
3458
3459 /* Set thresholds array to NULL if we don't have thresholds */
3460 if (!size) {
3461 kfree(new);
3462 new = NULL;
3463 goto swap_buffers;
3464 }
3465
3466 new->size = size;
3467
3468 /* Copy thresholds and find current threshold */
3469 new->current_threshold = -1;
3470 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3471 if (thresholds->primary->entries[i].eventfd == eventfd)
3472 continue;
3473
3474 new->entries[j] = thresholds->primary->entries[i];
3475 if (new->entries[j].threshold <= usage) {
3476 /*
3477 * new->current_threshold will not be used
3478 * until rcu_assign_pointer(), so it's safe to increment
3479 * it here.
3480 */
3481 ++new->current_threshold;
3482 }
3483 j++;
3484 }
3485
3486 swap_buffers:
3487 /* Swap primary and spare array */
3488 thresholds->spare = thresholds->primary;
3489
3490 rcu_assign_pointer(thresholds->primary, new);
3491
3492 /* To be sure that nobody uses thresholds */
3493 synchronize_rcu();
3494
3495 /* If all events are unregistered, free the spare array */
3496 if (!new) {
3497 kfree(thresholds->spare);
3498 thresholds->spare = NULL;
3499 }
3500 unlock:
3501 mutex_unlock(&memcg->thresholds_lock);
3502 }
3503
3504 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3505 struct eventfd_ctx *eventfd)
3506 {
3507 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3508 }
3509
3510 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3511 struct eventfd_ctx *eventfd)
3512 {
3513 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3514 }
3515
3516 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3517 struct eventfd_ctx *eventfd, const char *args)
3518 {
3519 struct mem_cgroup_eventfd_list *event;
3520
3521 event = kmalloc(sizeof(*event), GFP_KERNEL);
3522 if (!event)
3523 return -ENOMEM;
3524
3525 spin_lock(&memcg_oom_lock);
3526
3527 event->eventfd = eventfd;
3528 list_add(&event->list, &memcg->oom_notify);
3529
3530 /* already in OOM ? */
3531 if (memcg->under_oom)
3532 eventfd_signal(eventfd, 1);
3533 spin_unlock(&memcg_oom_lock);
3534
3535 return 0;
3536 }
3537
3538 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3539 struct eventfd_ctx *eventfd)
3540 {
3541 struct mem_cgroup_eventfd_list *ev, *tmp;
3542
3543 spin_lock(&memcg_oom_lock);
3544
3545 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3546 if (ev->eventfd == eventfd) {
3547 list_del(&ev->list);
3548 kfree(ev);
3549 }
3550 }
3551
3552 spin_unlock(&memcg_oom_lock);
3553 }
3554
3555 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3556 {
3557 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3558
3559 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3560 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3561 return 0;
3562 }
3563
3564 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3565 struct cftype *cft, u64 val)
3566 {
3567 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3568
3569 /* cannot set to root cgroup and only 0 and 1 are allowed */
3570 if (!css->parent || !((val == 0) || (val == 1)))
3571 return -EINVAL;
3572
3573 memcg->oom_kill_disable = val;
3574 if (!val)
3575 memcg_oom_recover(memcg);
3576
3577 return 0;
3578 }
3579
3580 #ifdef CONFIG_MEMCG_KMEM
3581 static int memcg_init_kmem(struct mem_cgroup *memcg)
3582 {
3583 int ret;
3584
3585 ret = memcg_propagate_kmem(memcg);
3586 if (ret)
3587 return ret;
3588
3589 return tcp_init_cgroup(memcg);
3590 }
3591
3592 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3593 {
3594 struct cgroup_subsys_state *css;
3595 struct mem_cgroup *parent, *child;
3596 int kmemcg_id;
3597
3598 if (memcg->kmem_state != KMEM_ONLINE)
3599 return;
3600 /*
3601 * Clear the online state before clearing memcg_caches array
3602 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3603 * guarantees that no cache will be created for this cgroup
3604 * after we are done (see memcg_create_kmem_cache()).
3605 */
3606 memcg->kmem_state = KMEM_ALLOCATED;
3607
3608 memcg_deactivate_kmem_caches(memcg);
3609
3610 kmemcg_id = memcg->kmemcg_id;
3611 BUG_ON(kmemcg_id < 0);
3612
3613 parent = parent_mem_cgroup(memcg);
3614 if (!parent)
3615 parent = root_mem_cgroup;
3616
3617 /*
3618 * Change kmemcg_id of this cgroup and all its descendants to the
3619 * parent's id, and then move all entries from this cgroup's list_lrus
3620 * to ones of the parent. After we have finished, all list_lrus
3621 * corresponding to this cgroup are guaranteed to remain empty. The
3622 * ordering is imposed by list_lru_node->lock taken by
3623 * memcg_drain_all_list_lrus().
3624 */
3625 css_for_each_descendant_pre(css, &memcg->css) {
3626 child = mem_cgroup_from_css(css);
3627 BUG_ON(child->kmemcg_id != kmemcg_id);
3628 child->kmemcg_id = parent->kmemcg_id;
3629 if (!memcg->use_hierarchy)
3630 break;
3631 }
3632 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3633
3634 memcg_free_cache_id(kmemcg_id);
3635 }
3636
3637 static void memcg_free_kmem(struct mem_cgroup *memcg)
3638 {
3639 if (memcg->kmem_state == KMEM_ALLOCATED) {
3640 memcg_destroy_kmem_caches(memcg);
3641 static_branch_dec(&memcg_kmem_enabled_key);
3642 WARN_ON(page_counter_read(&memcg->kmem));
3643 }
3644 tcp_destroy_cgroup(memcg);
3645 }
3646 #else
3647 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3648 {
3649 return 0;
3650 }
3651
3652 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3653 {
3654 }
3655
3656 static void memcg_free_kmem(struct mem_cgroup *memcg)
3657 {
3658 }
3659 #endif
3660
3661 #ifdef CONFIG_CGROUP_WRITEBACK
3662
3663 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3664 {
3665 return &memcg->cgwb_list;
3666 }
3667
3668 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3669 {
3670 return wb_domain_init(&memcg->cgwb_domain, gfp);
3671 }
3672
3673 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3674 {
3675 wb_domain_exit(&memcg->cgwb_domain);
3676 }
3677
3678 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3679 {
3680 wb_domain_size_changed(&memcg->cgwb_domain);
3681 }
3682
3683 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3684 {
3685 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3686
3687 if (!memcg->css.parent)
3688 return NULL;
3689
3690 return &memcg->cgwb_domain;
3691 }
3692
3693 /**
3694 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3695 * @wb: bdi_writeback in question
3696 * @pfilepages: out parameter for number of file pages
3697 * @pheadroom: out parameter for number of allocatable pages according to memcg
3698 * @pdirty: out parameter for number of dirty pages
3699 * @pwriteback: out parameter for number of pages under writeback
3700 *
3701 * Determine the numbers of file, headroom, dirty, and writeback pages in
3702 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3703 * is a bit more involved.
3704 *
3705 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3706 * headroom is calculated as the lowest headroom of itself and the
3707 * ancestors. Note that this doesn't consider the actual amount of
3708 * available memory in the system. The caller should further cap
3709 * *@pheadroom accordingly.
3710 */
3711 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3712 unsigned long *pheadroom, unsigned long *pdirty,
3713 unsigned long *pwriteback)
3714 {
3715 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3716 struct mem_cgroup *parent;
3717
3718 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3719
3720 /* this should eventually include NR_UNSTABLE_NFS */
3721 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3722 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3723 (1 << LRU_ACTIVE_FILE));
3724 *pheadroom = PAGE_COUNTER_MAX;
3725
3726 while ((parent = parent_mem_cgroup(memcg))) {
3727 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3728 unsigned long used = page_counter_read(&memcg->memory);
3729
3730 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3731 memcg = parent;
3732 }
3733 }
3734
3735 #else /* CONFIG_CGROUP_WRITEBACK */
3736
3737 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3738 {
3739 return 0;
3740 }
3741
3742 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3743 {
3744 }
3745
3746 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3747 {
3748 }
3749
3750 #endif /* CONFIG_CGROUP_WRITEBACK */
3751
3752 /*
3753 * DO NOT USE IN NEW FILES.
3754 *
3755 * "cgroup.event_control" implementation.
3756 *
3757 * This is way over-engineered. It tries to support fully configurable
3758 * events for each user. Such level of flexibility is completely
3759 * unnecessary especially in the light of the planned unified hierarchy.
3760 *
3761 * Please deprecate this and replace with something simpler if at all
3762 * possible.
3763 */
3764
3765 /*
3766 * Unregister event and free resources.
3767 *
3768 * Gets called from workqueue.
3769 */
3770 static void memcg_event_remove(struct work_struct *work)
3771 {
3772 struct mem_cgroup_event *event =
3773 container_of(work, struct mem_cgroup_event, remove);
3774 struct mem_cgroup *memcg = event->memcg;
3775
3776 remove_wait_queue(event->wqh, &event->wait);
3777
3778 event->unregister_event(memcg, event->eventfd);
3779
3780 /* Notify userspace the event is going away. */
3781 eventfd_signal(event->eventfd, 1);
3782
3783 eventfd_ctx_put(event->eventfd);
3784 kfree(event);
3785 css_put(&memcg->css);
3786 }
3787
3788 /*
3789 * Gets called on POLLHUP on eventfd when user closes it.
3790 *
3791 * Called with wqh->lock held and interrupts disabled.
3792 */
3793 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3794 int sync, void *key)
3795 {
3796 struct mem_cgroup_event *event =
3797 container_of(wait, struct mem_cgroup_event, wait);
3798 struct mem_cgroup *memcg = event->memcg;
3799 unsigned long flags = (unsigned long)key;
3800
3801 if (flags & POLLHUP) {
3802 /*
3803 * If the event has been detached at cgroup removal, we
3804 * can simply return knowing the other side will cleanup
3805 * for us.
3806 *
3807 * We can't race against event freeing since the other
3808 * side will require wqh->lock via remove_wait_queue(),
3809 * which we hold.
3810 */
3811 spin_lock(&memcg->event_list_lock);
3812 if (!list_empty(&event->list)) {
3813 list_del_init(&event->list);
3814 /*
3815 * We are in atomic context, but cgroup_event_remove()
3816 * may sleep, so we have to call it in workqueue.
3817 */
3818 schedule_work(&event->remove);
3819 }
3820 spin_unlock(&memcg->event_list_lock);
3821 }
3822
3823 return 0;
3824 }
3825
3826 static void memcg_event_ptable_queue_proc(struct file *file,
3827 wait_queue_head_t *wqh, poll_table *pt)
3828 {
3829 struct mem_cgroup_event *event =
3830 container_of(pt, struct mem_cgroup_event, pt);
3831
3832 event->wqh = wqh;
3833 add_wait_queue(wqh, &event->wait);
3834 }
3835
3836 /*
3837 * DO NOT USE IN NEW FILES.
3838 *
3839 * Parse input and register new cgroup event handler.
3840 *
3841 * Input must be in format '<event_fd> <control_fd> <args>'.
3842 * Interpretation of args is defined by control file implementation.
3843 */
3844 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3845 char *buf, size_t nbytes, loff_t off)
3846 {
3847 struct cgroup_subsys_state *css = of_css(of);
3848 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3849 struct mem_cgroup_event *event;
3850 struct cgroup_subsys_state *cfile_css;
3851 unsigned int efd, cfd;
3852 struct fd efile;
3853 struct fd cfile;
3854 const char *name;
3855 char *endp;
3856 int ret;
3857
3858 buf = strstrip(buf);
3859
3860 efd = simple_strtoul(buf, &endp, 10);
3861 if (*endp != ' ')
3862 return -EINVAL;
3863 buf = endp + 1;
3864
3865 cfd = simple_strtoul(buf, &endp, 10);
3866 if ((*endp != ' ') && (*endp != '\0'))
3867 return -EINVAL;
3868 buf = endp + 1;
3869
3870 event = kzalloc(sizeof(*event), GFP_KERNEL);
3871 if (!event)
3872 return -ENOMEM;
3873
3874 event->memcg = memcg;
3875 INIT_LIST_HEAD(&event->list);
3876 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3877 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3878 INIT_WORK(&event->remove, memcg_event_remove);
3879
3880 efile = fdget(efd);
3881 if (!efile.file) {
3882 ret = -EBADF;
3883 goto out_kfree;
3884 }
3885
3886 event->eventfd = eventfd_ctx_fileget(efile.file);
3887 if (IS_ERR(event->eventfd)) {
3888 ret = PTR_ERR(event->eventfd);
3889 goto out_put_efile;
3890 }
3891
3892 cfile = fdget(cfd);
3893 if (!cfile.file) {
3894 ret = -EBADF;
3895 goto out_put_eventfd;
3896 }
3897
3898 /* the process need read permission on control file */
3899 /* AV: shouldn't we check that it's been opened for read instead? */
3900 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3901 if (ret < 0)
3902 goto out_put_cfile;
3903
3904 /*
3905 * Determine the event callbacks and set them in @event. This used
3906 * to be done via struct cftype but cgroup core no longer knows
3907 * about these events. The following is crude but the whole thing
3908 * is for compatibility anyway.
3909 *
3910 * DO NOT ADD NEW FILES.
3911 */
3912 name = cfile.file->f_path.dentry->d_name.name;
3913
3914 if (!strcmp(name, "memory.usage_in_bytes")) {
3915 event->register_event = mem_cgroup_usage_register_event;
3916 event->unregister_event = mem_cgroup_usage_unregister_event;
3917 } else if (!strcmp(name, "memory.oom_control")) {
3918 event->register_event = mem_cgroup_oom_register_event;
3919 event->unregister_event = mem_cgroup_oom_unregister_event;
3920 } else if (!strcmp(name, "memory.pressure_level")) {
3921 event->register_event = vmpressure_register_event;
3922 event->unregister_event = vmpressure_unregister_event;
3923 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3924 event->register_event = memsw_cgroup_usage_register_event;
3925 event->unregister_event = memsw_cgroup_usage_unregister_event;
3926 } else {
3927 ret = -EINVAL;
3928 goto out_put_cfile;
3929 }
3930
3931 /*
3932 * Verify @cfile should belong to @css. Also, remaining events are
3933 * automatically removed on cgroup destruction but the removal is
3934 * asynchronous, so take an extra ref on @css.
3935 */
3936 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3937 &memory_cgrp_subsys);
3938 ret = -EINVAL;
3939 if (IS_ERR(cfile_css))
3940 goto out_put_cfile;
3941 if (cfile_css != css) {
3942 css_put(cfile_css);
3943 goto out_put_cfile;
3944 }
3945
3946 ret = event->register_event(memcg, event->eventfd, buf);
3947 if (ret)
3948 goto out_put_css;
3949
3950 efile.file->f_op->poll(efile.file, &event->pt);
3951
3952 spin_lock(&memcg->event_list_lock);
3953 list_add(&event->list, &memcg->event_list);
3954 spin_unlock(&memcg->event_list_lock);
3955
3956 fdput(cfile);
3957 fdput(efile);
3958
3959 return nbytes;
3960
3961 out_put_css:
3962 css_put(css);
3963 out_put_cfile:
3964 fdput(cfile);
3965 out_put_eventfd:
3966 eventfd_ctx_put(event->eventfd);
3967 out_put_efile:
3968 fdput(efile);
3969 out_kfree:
3970 kfree(event);
3971
3972 return ret;
3973 }
3974
3975 static struct cftype mem_cgroup_legacy_files[] = {
3976 {
3977 .name = "usage_in_bytes",
3978 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3979 .read_u64 = mem_cgroup_read_u64,
3980 },
3981 {
3982 .name = "max_usage_in_bytes",
3983 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3984 .write = mem_cgroup_reset,
3985 .read_u64 = mem_cgroup_read_u64,
3986 },
3987 {
3988 .name = "limit_in_bytes",
3989 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3990 .write = mem_cgroup_write,
3991 .read_u64 = mem_cgroup_read_u64,
3992 },
3993 {
3994 .name = "soft_limit_in_bytes",
3995 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3996 .write = mem_cgroup_write,
3997 .read_u64 = mem_cgroup_read_u64,
3998 },
3999 {
4000 .name = "failcnt",
4001 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4002 .write = mem_cgroup_reset,
4003 .read_u64 = mem_cgroup_read_u64,
4004 },
4005 {
4006 .name = "stat",
4007 .seq_show = memcg_stat_show,
4008 },
4009 {
4010 .name = "force_empty",
4011 .write = mem_cgroup_force_empty_write,
4012 },
4013 {
4014 .name = "use_hierarchy",
4015 .write_u64 = mem_cgroup_hierarchy_write,
4016 .read_u64 = mem_cgroup_hierarchy_read,
4017 },
4018 {
4019 .name = "cgroup.event_control", /* XXX: for compat */
4020 .write = memcg_write_event_control,
4021 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4022 },
4023 {
4024 .name = "swappiness",
4025 .read_u64 = mem_cgroup_swappiness_read,
4026 .write_u64 = mem_cgroup_swappiness_write,
4027 },
4028 {
4029 .name = "move_charge_at_immigrate",
4030 .read_u64 = mem_cgroup_move_charge_read,
4031 .write_u64 = mem_cgroup_move_charge_write,
4032 },
4033 {
4034 .name = "oom_control",
4035 .seq_show = mem_cgroup_oom_control_read,
4036 .write_u64 = mem_cgroup_oom_control_write,
4037 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4038 },
4039 {
4040 .name = "pressure_level",
4041 },
4042 #ifdef CONFIG_NUMA
4043 {
4044 .name = "numa_stat",
4045 .seq_show = memcg_numa_stat_show,
4046 },
4047 #endif
4048 #ifdef CONFIG_MEMCG_KMEM
4049 {
4050 .name = "kmem.limit_in_bytes",
4051 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4052 .write = mem_cgroup_write,
4053 .read_u64 = mem_cgroup_read_u64,
4054 },
4055 {
4056 .name = "kmem.usage_in_bytes",
4057 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4058 .read_u64 = mem_cgroup_read_u64,
4059 },
4060 {
4061 .name = "kmem.failcnt",
4062 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4063 .write = mem_cgroup_reset,
4064 .read_u64 = mem_cgroup_read_u64,
4065 },
4066 {
4067 .name = "kmem.max_usage_in_bytes",
4068 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4069 .write = mem_cgroup_reset,
4070 .read_u64 = mem_cgroup_read_u64,
4071 },
4072 #ifdef CONFIG_SLABINFO
4073 {
4074 .name = "kmem.slabinfo",
4075 .seq_start = slab_start,
4076 .seq_next = slab_next,
4077 .seq_stop = slab_stop,
4078 .seq_show = memcg_slab_show,
4079 },
4080 #endif
4081 #endif
4082 { }, /* terminate */
4083 };
4084
4085 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4086 {
4087 struct mem_cgroup_per_node *pn;
4088 struct mem_cgroup_per_zone *mz;
4089 int zone, tmp = node;
4090 /*
4091 * This routine is called against possible nodes.
4092 * But it's BUG to call kmalloc() against offline node.
4093 *
4094 * TODO: this routine can waste much memory for nodes which will
4095 * never be onlined. It's better to use memory hotplug callback
4096 * function.
4097 */
4098 if (!node_state(node, N_NORMAL_MEMORY))
4099 tmp = -1;
4100 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4101 if (!pn)
4102 return 1;
4103
4104 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4105 mz = &pn->zoneinfo[zone];
4106 lruvec_init(&mz->lruvec);
4107 mz->usage_in_excess = 0;
4108 mz->on_tree = false;
4109 mz->memcg = memcg;
4110 }
4111 memcg->nodeinfo[node] = pn;
4112 return 0;
4113 }
4114
4115 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4116 {
4117 kfree(memcg->nodeinfo[node]);
4118 }
4119
4120 static struct mem_cgroup *mem_cgroup_alloc(void)
4121 {
4122 struct mem_cgroup *memcg;
4123 size_t size;
4124
4125 size = sizeof(struct mem_cgroup);
4126 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4127
4128 memcg = kzalloc(size, GFP_KERNEL);
4129 if (!memcg)
4130 return NULL;
4131
4132 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4133 if (!memcg->stat)
4134 goto out_free;
4135
4136 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4137 goto out_free_stat;
4138
4139 return memcg;
4140
4141 out_free_stat:
4142 free_percpu(memcg->stat);
4143 out_free:
4144 kfree(memcg);
4145 return NULL;
4146 }
4147
4148 /*
4149 * At destroying mem_cgroup, references from swap_cgroup can remain.
4150 * (scanning all at force_empty is too costly...)
4151 *
4152 * Instead of clearing all references at force_empty, we remember
4153 * the number of reference from swap_cgroup and free mem_cgroup when
4154 * it goes down to 0.
4155 *
4156 * Removal of cgroup itself succeeds regardless of refs from swap.
4157 */
4158
4159 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4160 {
4161 int node;
4162
4163 cancel_work_sync(&memcg->high_work);
4164
4165 mem_cgroup_remove_from_trees(memcg);
4166
4167 for_each_node(node)
4168 free_mem_cgroup_per_zone_info(memcg, node);
4169
4170 free_percpu(memcg->stat);
4171 memcg_wb_domain_exit(memcg);
4172 kfree(memcg);
4173 }
4174
4175 static struct cgroup_subsys_state * __ref
4176 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4177 {
4178 struct mem_cgroup *memcg;
4179 long error = -ENOMEM;
4180 int node;
4181
4182 memcg = mem_cgroup_alloc();
4183 if (!memcg)
4184 return ERR_PTR(error);
4185
4186 for_each_node(node)
4187 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4188 goto free_out;
4189
4190 /* root ? */
4191 if (parent_css == NULL) {
4192 root_mem_cgroup = memcg;
4193 page_counter_init(&memcg->memory, NULL);
4194 memcg->high = PAGE_COUNTER_MAX;
4195 memcg->soft_limit = PAGE_COUNTER_MAX;
4196 page_counter_init(&memcg->memsw, NULL);
4197 page_counter_init(&memcg->kmem, NULL);
4198 }
4199
4200 INIT_WORK(&memcg->high_work, high_work_func);
4201 memcg->last_scanned_node = MAX_NUMNODES;
4202 INIT_LIST_HEAD(&memcg->oom_notify);
4203 memcg->move_charge_at_immigrate = 0;
4204 mutex_init(&memcg->thresholds_lock);
4205 spin_lock_init(&memcg->move_lock);
4206 vmpressure_init(&memcg->vmpressure);
4207 INIT_LIST_HEAD(&memcg->event_list);
4208 spin_lock_init(&memcg->event_list_lock);
4209 #ifdef CONFIG_MEMCG_KMEM
4210 memcg->kmemcg_id = -1;
4211 #endif
4212 #ifdef CONFIG_CGROUP_WRITEBACK
4213 INIT_LIST_HEAD(&memcg->cgwb_list);
4214 #endif
4215 #ifdef CONFIG_INET
4216 memcg->socket_pressure = jiffies;
4217 #endif
4218 return &memcg->css;
4219
4220 free_out:
4221 __mem_cgroup_free(memcg);
4222 return ERR_PTR(error);
4223 }
4224
4225 static int
4226 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4227 {
4228 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4229 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4230 int ret;
4231
4232 if (css->id > MEM_CGROUP_ID_MAX)
4233 return -ENOSPC;
4234
4235 if (!parent)
4236 return 0;
4237
4238 mutex_lock(&memcg_create_mutex);
4239
4240 memcg->use_hierarchy = parent->use_hierarchy;
4241 memcg->oom_kill_disable = parent->oom_kill_disable;
4242 memcg->swappiness = mem_cgroup_swappiness(parent);
4243
4244 if (parent->use_hierarchy) {
4245 page_counter_init(&memcg->memory, &parent->memory);
4246 memcg->high = PAGE_COUNTER_MAX;
4247 memcg->soft_limit = PAGE_COUNTER_MAX;
4248 page_counter_init(&memcg->memsw, &parent->memsw);
4249 page_counter_init(&memcg->kmem, &parent->kmem);
4250
4251 /*
4252 * No need to take a reference to the parent because cgroup
4253 * core guarantees its existence.
4254 */
4255 } else {
4256 page_counter_init(&memcg->memory, NULL);
4257 memcg->high = PAGE_COUNTER_MAX;
4258 memcg->soft_limit = PAGE_COUNTER_MAX;
4259 page_counter_init(&memcg->memsw, NULL);
4260 page_counter_init(&memcg->kmem, NULL);
4261 /*
4262 * Deeper hierachy with use_hierarchy == false doesn't make
4263 * much sense so let cgroup subsystem know about this
4264 * unfortunate state in our controller.
4265 */
4266 if (parent != root_mem_cgroup)
4267 memory_cgrp_subsys.broken_hierarchy = true;
4268 }
4269 mutex_unlock(&memcg_create_mutex);
4270
4271 ret = memcg_init_kmem(memcg);
4272 if (ret)
4273 return ret;
4274
4275 #ifdef CONFIG_INET
4276 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4277 static_branch_inc(&memcg_sockets_enabled_key);
4278 #endif
4279
4280 /*
4281 * Make sure the memcg is initialized: mem_cgroup_iter()
4282 * orders reading memcg->initialized against its callers
4283 * reading the memcg members.
4284 */
4285 smp_store_release(&memcg->initialized, 1);
4286
4287 return 0;
4288 }
4289
4290 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4291 {
4292 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4293 struct mem_cgroup_event *event, *tmp;
4294
4295 /*
4296 * Unregister events and notify userspace.
4297 * Notify userspace about cgroup removing only after rmdir of cgroup
4298 * directory to avoid race between userspace and kernelspace.
4299 */
4300 spin_lock(&memcg->event_list_lock);
4301 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4302 list_del_init(&event->list);
4303 schedule_work(&event->remove);
4304 }
4305 spin_unlock(&memcg->event_list_lock);
4306
4307 vmpressure_cleanup(&memcg->vmpressure);
4308
4309 memcg_offline_kmem(memcg);
4310
4311 wb_memcg_offline(memcg);
4312 }
4313
4314 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4315 {
4316 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4317
4318 invalidate_reclaim_iterators(memcg);
4319 }
4320
4321 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4322 {
4323 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4324
4325 memcg_free_kmem(memcg);
4326 #ifdef CONFIG_INET
4327 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4328 static_branch_dec(&memcg_sockets_enabled_key);
4329 #endif
4330 __mem_cgroup_free(memcg);
4331 }
4332
4333 /**
4334 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4335 * @css: the target css
4336 *
4337 * Reset the states of the mem_cgroup associated with @css. This is
4338 * invoked when the userland requests disabling on the default hierarchy
4339 * but the memcg is pinned through dependency. The memcg should stop
4340 * applying policies and should revert to the vanilla state as it may be
4341 * made visible again.
4342 *
4343 * The current implementation only resets the essential configurations.
4344 * This needs to be expanded to cover all the visible parts.
4345 */
4346 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4347 {
4348 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4349
4350 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4351 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4352 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4353 memcg->low = 0;
4354 memcg->high = PAGE_COUNTER_MAX;
4355 memcg->soft_limit = PAGE_COUNTER_MAX;
4356 memcg_wb_domain_size_changed(memcg);
4357 }
4358
4359 #ifdef CONFIG_MMU
4360 /* Handlers for move charge at task migration. */
4361 static int mem_cgroup_do_precharge(unsigned long count)
4362 {
4363 int ret;
4364
4365 /* Try a single bulk charge without reclaim first, kswapd may wake */
4366 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4367 if (!ret) {
4368 mc.precharge += count;
4369 return ret;
4370 }
4371
4372 /* Try charges one by one with reclaim */
4373 while (count--) {
4374 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4375 if (ret)
4376 return ret;
4377 mc.precharge++;
4378 cond_resched();
4379 }
4380 return 0;
4381 }
4382
4383 /**
4384 * get_mctgt_type - get target type of moving charge
4385 * @vma: the vma the pte to be checked belongs
4386 * @addr: the address corresponding to the pte to be checked
4387 * @ptent: the pte to be checked
4388 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4389 *
4390 * Returns
4391 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4392 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4393 * move charge. if @target is not NULL, the page is stored in target->page
4394 * with extra refcnt got(Callers should handle it).
4395 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4396 * target for charge migration. if @target is not NULL, the entry is stored
4397 * in target->ent.
4398 *
4399 * Called with pte lock held.
4400 */
4401 union mc_target {
4402 struct page *page;
4403 swp_entry_t ent;
4404 };
4405
4406 enum mc_target_type {
4407 MC_TARGET_NONE = 0,
4408 MC_TARGET_PAGE,
4409 MC_TARGET_SWAP,
4410 };
4411
4412 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4413 unsigned long addr, pte_t ptent)
4414 {
4415 struct page *page = vm_normal_page(vma, addr, ptent);
4416
4417 if (!page || !page_mapped(page))
4418 return NULL;
4419 if (PageAnon(page)) {
4420 if (!(mc.flags & MOVE_ANON))
4421 return NULL;
4422 } else {
4423 if (!(mc.flags & MOVE_FILE))
4424 return NULL;
4425 }
4426 if (!get_page_unless_zero(page))
4427 return NULL;
4428
4429 return page;
4430 }
4431
4432 #ifdef CONFIG_SWAP
4433 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4434 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4435 {
4436 struct page *page = NULL;
4437 swp_entry_t ent = pte_to_swp_entry(ptent);
4438
4439 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4440 return NULL;
4441 /*
4442 * Because lookup_swap_cache() updates some statistics counter,
4443 * we call find_get_page() with swapper_space directly.
4444 */
4445 page = find_get_page(swap_address_space(ent), ent.val);
4446 if (do_memsw_account())
4447 entry->val = ent.val;
4448
4449 return page;
4450 }
4451 #else
4452 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4453 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4454 {
4455 return NULL;
4456 }
4457 #endif
4458
4459 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4460 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4461 {
4462 struct page *page = NULL;
4463 struct address_space *mapping;
4464 pgoff_t pgoff;
4465
4466 if (!vma->vm_file) /* anonymous vma */
4467 return NULL;
4468 if (!(mc.flags & MOVE_FILE))
4469 return NULL;
4470
4471 mapping = vma->vm_file->f_mapping;
4472 pgoff = linear_page_index(vma, addr);
4473
4474 /* page is moved even if it's not RSS of this task(page-faulted). */
4475 #ifdef CONFIG_SWAP
4476 /* shmem/tmpfs may report page out on swap: account for that too. */
4477 if (shmem_mapping(mapping)) {
4478 page = find_get_entry(mapping, pgoff);
4479 if (radix_tree_exceptional_entry(page)) {
4480 swp_entry_t swp = radix_to_swp_entry(page);
4481 if (do_memsw_account())
4482 *entry = swp;
4483 page = find_get_page(swap_address_space(swp), swp.val);
4484 }
4485 } else
4486 page = find_get_page(mapping, pgoff);
4487 #else
4488 page = find_get_page(mapping, pgoff);
4489 #endif
4490 return page;
4491 }
4492
4493 /**
4494 * mem_cgroup_move_account - move account of the page
4495 * @page: the page
4496 * @nr_pages: number of regular pages (>1 for huge pages)
4497 * @from: mem_cgroup which the page is moved from.
4498 * @to: mem_cgroup which the page is moved to. @from != @to.
4499 *
4500 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4501 *
4502 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4503 * from old cgroup.
4504 */
4505 static int mem_cgroup_move_account(struct page *page,
4506 bool compound,
4507 struct mem_cgroup *from,
4508 struct mem_cgroup *to)
4509 {
4510 unsigned long flags;
4511 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4512 int ret;
4513 bool anon;
4514
4515 VM_BUG_ON(from == to);
4516 VM_BUG_ON_PAGE(PageLRU(page), page);
4517 VM_BUG_ON(compound && !PageTransHuge(page));
4518
4519 /*
4520 * Prevent mem_cgroup_replace_page() from looking at
4521 * page->mem_cgroup of its source page while we change it.
4522 */
4523 ret = -EBUSY;
4524 if (!trylock_page(page))
4525 goto out;
4526
4527 ret = -EINVAL;
4528 if (page->mem_cgroup != from)
4529 goto out_unlock;
4530
4531 anon = PageAnon(page);
4532
4533 spin_lock_irqsave(&from->move_lock, flags);
4534
4535 if (!anon && page_mapped(page)) {
4536 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4537 nr_pages);
4538 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4539 nr_pages);
4540 }
4541
4542 /*
4543 * move_lock grabbed above and caller set from->moving_account, so
4544 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4545 * So mapping should be stable for dirty pages.
4546 */
4547 if (!anon && PageDirty(page)) {
4548 struct address_space *mapping = page_mapping(page);
4549
4550 if (mapping_cap_account_dirty(mapping)) {
4551 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4552 nr_pages);
4553 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4554 nr_pages);
4555 }
4556 }
4557
4558 if (PageWriteback(page)) {
4559 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4560 nr_pages);
4561 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4562 nr_pages);
4563 }
4564
4565 /*
4566 * It is safe to change page->mem_cgroup here because the page
4567 * is referenced, charged, and isolated - we can't race with
4568 * uncharging, charging, migration, or LRU putback.
4569 */
4570
4571 /* caller should have done css_get */
4572 page->mem_cgroup = to;
4573 spin_unlock_irqrestore(&from->move_lock, flags);
4574
4575 ret = 0;
4576
4577 local_irq_disable();
4578 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4579 memcg_check_events(to, page);
4580 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4581 memcg_check_events(from, page);
4582 local_irq_enable();
4583 out_unlock:
4584 unlock_page(page);
4585 out:
4586 return ret;
4587 }
4588
4589 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4590 unsigned long addr, pte_t ptent, union mc_target *target)
4591 {
4592 struct page *page = NULL;
4593 enum mc_target_type ret = MC_TARGET_NONE;
4594 swp_entry_t ent = { .val = 0 };
4595
4596 if (pte_present(ptent))
4597 page = mc_handle_present_pte(vma, addr, ptent);
4598 else if (is_swap_pte(ptent))
4599 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4600 else if (pte_none(ptent))
4601 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4602
4603 if (!page && !ent.val)
4604 return ret;
4605 if (page) {
4606 /*
4607 * Do only loose check w/o serialization.
4608 * mem_cgroup_move_account() checks the page is valid or
4609 * not under LRU exclusion.
4610 */
4611 if (page->mem_cgroup == mc.from) {
4612 ret = MC_TARGET_PAGE;
4613 if (target)
4614 target->page = page;
4615 }
4616 if (!ret || !target)
4617 put_page(page);
4618 }
4619 /* There is a swap entry and a page doesn't exist or isn't charged */
4620 if (ent.val && !ret &&
4621 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4622 ret = MC_TARGET_SWAP;
4623 if (target)
4624 target->ent = ent;
4625 }
4626 return ret;
4627 }
4628
4629 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4630 /*
4631 * We don't consider swapping or file mapped pages because THP does not
4632 * support them for now.
4633 * Caller should make sure that pmd_trans_huge(pmd) is true.
4634 */
4635 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4636 unsigned long addr, pmd_t pmd, union mc_target *target)
4637 {
4638 struct page *page = NULL;
4639 enum mc_target_type ret = MC_TARGET_NONE;
4640
4641 page = pmd_page(pmd);
4642 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4643 if (!(mc.flags & MOVE_ANON))
4644 return ret;
4645 if (page->mem_cgroup == mc.from) {
4646 ret = MC_TARGET_PAGE;
4647 if (target) {
4648 get_page(page);
4649 target->page = page;
4650 }
4651 }
4652 return ret;
4653 }
4654 #else
4655 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4656 unsigned long addr, pmd_t pmd, union mc_target *target)
4657 {
4658 return MC_TARGET_NONE;
4659 }
4660 #endif
4661
4662 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4663 unsigned long addr, unsigned long end,
4664 struct mm_walk *walk)
4665 {
4666 struct vm_area_struct *vma = walk->vma;
4667 pte_t *pte;
4668 spinlock_t *ptl;
4669
4670 if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
4671 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4672 mc.precharge += HPAGE_PMD_NR;
4673 spin_unlock(ptl);
4674 return 0;
4675 }
4676
4677 if (pmd_trans_unstable(pmd))
4678 return 0;
4679 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4680 for (; addr != end; pte++, addr += PAGE_SIZE)
4681 if (get_mctgt_type(vma, addr, *pte, NULL))
4682 mc.precharge++; /* increment precharge temporarily */
4683 pte_unmap_unlock(pte - 1, ptl);
4684 cond_resched();
4685
4686 return 0;
4687 }
4688
4689 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4690 {
4691 unsigned long precharge;
4692
4693 struct mm_walk mem_cgroup_count_precharge_walk = {
4694 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4695 .mm = mm,
4696 };
4697 down_read(&mm->mmap_sem);
4698 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4699 up_read(&mm->mmap_sem);
4700
4701 precharge = mc.precharge;
4702 mc.precharge = 0;
4703
4704 return precharge;
4705 }
4706
4707 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4708 {
4709 unsigned long precharge = mem_cgroup_count_precharge(mm);
4710
4711 VM_BUG_ON(mc.moving_task);
4712 mc.moving_task = current;
4713 return mem_cgroup_do_precharge(precharge);
4714 }
4715
4716 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4717 static void __mem_cgroup_clear_mc(void)
4718 {
4719 struct mem_cgroup *from = mc.from;
4720 struct mem_cgroup *to = mc.to;
4721
4722 /* we must uncharge all the leftover precharges from mc.to */
4723 if (mc.precharge) {
4724 cancel_charge(mc.to, mc.precharge);
4725 mc.precharge = 0;
4726 }
4727 /*
4728 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4729 * we must uncharge here.
4730 */
4731 if (mc.moved_charge) {
4732 cancel_charge(mc.from, mc.moved_charge);
4733 mc.moved_charge = 0;
4734 }
4735 /* we must fixup refcnts and charges */
4736 if (mc.moved_swap) {
4737 /* uncharge swap account from the old cgroup */
4738 if (!mem_cgroup_is_root(mc.from))
4739 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4740
4741 /*
4742 * we charged both to->memory and to->memsw, so we
4743 * should uncharge to->memory.
4744 */
4745 if (!mem_cgroup_is_root(mc.to))
4746 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4747
4748 css_put_many(&mc.from->css, mc.moved_swap);
4749
4750 /* we've already done css_get(mc.to) */
4751 mc.moved_swap = 0;
4752 }
4753 memcg_oom_recover(from);
4754 memcg_oom_recover(to);
4755 wake_up_all(&mc.waitq);
4756 }
4757
4758 static void mem_cgroup_clear_mc(void)
4759 {
4760 /*
4761 * we must clear moving_task before waking up waiters at the end of
4762 * task migration.
4763 */
4764 mc.moving_task = NULL;
4765 __mem_cgroup_clear_mc();
4766 spin_lock(&mc.lock);
4767 mc.from = NULL;
4768 mc.to = NULL;
4769 spin_unlock(&mc.lock);
4770 }
4771
4772 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4773 {
4774 struct cgroup_subsys_state *css;
4775 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4776 struct mem_cgroup *from;
4777 struct task_struct *leader, *p;
4778 struct mm_struct *mm;
4779 unsigned long move_flags;
4780 int ret = 0;
4781
4782 /* charge immigration isn't supported on the default hierarchy */
4783 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4784 return 0;
4785
4786 /*
4787 * Multi-process migrations only happen on the default hierarchy
4788 * where charge immigration is not used. Perform charge
4789 * immigration if @tset contains a leader and whine if there are
4790 * multiple.
4791 */
4792 p = NULL;
4793 cgroup_taskset_for_each_leader(leader, css, tset) {
4794 WARN_ON_ONCE(p);
4795 p = leader;
4796 memcg = mem_cgroup_from_css(css);
4797 }
4798 if (!p)
4799 return 0;
4800
4801 /*
4802 * We are now commited to this value whatever it is. Changes in this
4803 * tunable will only affect upcoming migrations, not the current one.
4804 * So we need to save it, and keep it going.
4805 */
4806 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4807 if (!move_flags)
4808 return 0;
4809
4810 from = mem_cgroup_from_task(p);
4811
4812 VM_BUG_ON(from == memcg);
4813
4814 mm = get_task_mm(p);
4815 if (!mm)
4816 return 0;
4817 /* We move charges only when we move a owner of the mm */
4818 if (mm->owner == p) {
4819 VM_BUG_ON(mc.from);
4820 VM_BUG_ON(mc.to);
4821 VM_BUG_ON(mc.precharge);
4822 VM_BUG_ON(mc.moved_charge);
4823 VM_BUG_ON(mc.moved_swap);
4824
4825 spin_lock(&mc.lock);
4826 mc.from = from;
4827 mc.to = memcg;
4828 mc.flags = move_flags;
4829 spin_unlock(&mc.lock);
4830 /* We set mc.moving_task later */
4831
4832 ret = mem_cgroup_precharge_mc(mm);
4833 if (ret)
4834 mem_cgroup_clear_mc();
4835 }
4836 mmput(mm);
4837 return ret;
4838 }
4839
4840 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4841 {
4842 if (mc.to)
4843 mem_cgroup_clear_mc();
4844 }
4845
4846 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4847 unsigned long addr, unsigned long end,
4848 struct mm_walk *walk)
4849 {
4850 int ret = 0;
4851 struct vm_area_struct *vma = walk->vma;
4852 pte_t *pte;
4853 spinlock_t *ptl;
4854 enum mc_target_type target_type;
4855 union mc_target target;
4856 struct page *page;
4857
4858 if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
4859 if (mc.precharge < HPAGE_PMD_NR) {
4860 spin_unlock(ptl);
4861 return 0;
4862 }
4863 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4864 if (target_type == MC_TARGET_PAGE) {
4865 page = target.page;
4866 if (!isolate_lru_page(page)) {
4867 if (!mem_cgroup_move_account(page, true,
4868 mc.from, mc.to)) {
4869 mc.precharge -= HPAGE_PMD_NR;
4870 mc.moved_charge += HPAGE_PMD_NR;
4871 }
4872 putback_lru_page(page);
4873 }
4874 put_page(page);
4875 }
4876 spin_unlock(ptl);
4877 return 0;
4878 }
4879
4880 if (pmd_trans_unstable(pmd))
4881 return 0;
4882 retry:
4883 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4884 for (; addr != end; addr += PAGE_SIZE) {
4885 pte_t ptent = *(pte++);
4886 swp_entry_t ent;
4887
4888 if (!mc.precharge)
4889 break;
4890
4891 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4892 case MC_TARGET_PAGE:
4893 page = target.page;
4894 /*
4895 * We can have a part of the split pmd here. Moving it
4896 * can be done but it would be too convoluted so simply
4897 * ignore such a partial THP and keep it in original
4898 * memcg. There should be somebody mapping the head.
4899 */
4900 if (PageTransCompound(page))
4901 goto put;
4902 if (isolate_lru_page(page))
4903 goto put;
4904 if (!mem_cgroup_move_account(page, false,
4905 mc.from, mc.to)) {
4906 mc.precharge--;
4907 /* we uncharge from mc.from later. */
4908 mc.moved_charge++;
4909 }
4910 putback_lru_page(page);
4911 put: /* get_mctgt_type() gets the page */
4912 put_page(page);
4913 break;
4914 case MC_TARGET_SWAP:
4915 ent = target.ent;
4916 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4917 mc.precharge--;
4918 /* we fixup refcnts and charges later. */
4919 mc.moved_swap++;
4920 }
4921 break;
4922 default:
4923 break;
4924 }
4925 }
4926 pte_unmap_unlock(pte - 1, ptl);
4927 cond_resched();
4928
4929 if (addr != end) {
4930 /*
4931 * We have consumed all precharges we got in can_attach().
4932 * We try charge one by one, but don't do any additional
4933 * charges to mc.to if we have failed in charge once in attach()
4934 * phase.
4935 */
4936 ret = mem_cgroup_do_precharge(1);
4937 if (!ret)
4938 goto retry;
4939 }
4940
4941 return ret;
4942 }
4943
4944 static void mem_cgroup_move_charge(struct mm_struct *mm)
4945 {
4946 struct mm_walk mem_cgroup_move_charge_walk = {
4947 .pmd_entry = mem_cgroup_move_charge_pte_range,
4948 .mm = mm,
4949 };
4950
4951 lru_add_drain_all();
4952 /*
4953 * Signal mem_cgroup_begin_page_stat() to take the memcg's
4954 * move_lock while we're moving its pages to another memcg.
4955 * Then wait for already started RCU-only updates to finish.
4956 */
4957 atomic_inc(&mc.from->moving_account);
4958 synchronize_rcu();
4959 retry:
4960 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4961 /*
4962 * Someone who are holding the mmap_sem might be waiting in
4963 * waitq. So we cancel all extra charges, wake up all waiters,
4964 * and retry. Because we cancel precharges, we might not be able
4965 * to move enough charges, but moving charge is a best-effort
4966 * feature anyway, so it wouldn't be a big problem.
4967 */
4968 __mem_cgroup_clear_mc();
4969 cond_resched();
4970 goto retry;
4971 }
4972 /*
4973 * When we have consumed all precharges and failed in doing
4974 * additional charge, the page walk just aborts.
4975 */
4976 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4977 up_read(&mm->mmap_sem);
4978 atomic_dec(&mc.from->moving_account);
4979 }
4980
4981 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4982 {
4983 struct cgroup_subsys_state *css;
4984 struct task_struct *p = cgroup_taskset_first(tset, &css);
4985 struct mm_struct *mm = get_task_mm(p);
4986
4987 if (mm) {
4988 if (mc.to)
4989 mem_cgroup_move_charge(mm);
4990 mmput(mm);
4991 }
4992 if (mc.to)
4993 mem_cgroup_clear_mc();
4994 }
4995 #else /* !CONFIG_MMU */
4996 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4997 {
4998 return 0;
4999 }
5000 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5001 {
5002 }
5003 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5004 {
5005 }
5006 #endif
5007
5008 /*
5009 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5010 * to verify whether we're attached to the default hierarchy on each mount
5011 * attempt.
5012 */
5013 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5014 {
5015 /*
5016 * use_hierarchy is forced on the default hierarchy. cgroup core
5017 * guarantees that @root doesn't have any children, so turning it
5018 * on for the root memcg is enough.
5019 */
5020 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5021 root_mem_cgroup->use_hierarchy = true;
5022 else
5023 root_mem_cgroup->use_hierarchy = false;
5024 }
5025
5026 static u64 memory_current_read(struct cgroup_subsys_state *css,
5027 struct cftype *cft)
5028 {
5029 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5030
5031 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5032 }
5033
5034 static int memory_low_show(struct seq_file *m, void *v)
5035 {
5036 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5037 unsigned long low = READ_ONCE(memcg->low);
5038
5039 if (low == PAGE_COUNTER_MAX)
5040 seq_puts(m, "max\n");
5041 else
5042 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5043
5044 return 0;
5045 }
5046
5047 static ssize_t memory_low_write(struct kernfs_open_file *of,
5048 char *buf, size_t nbytes, loff_t off)
5049 {
5050 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5051 unsigned long low;
5052 int err;
5053
5054 buf = strstrip(buf);
5055 err = page_counter_memparse(buf, "max", &low);
5056 if (err)
5057 return err;
5058
5059 memcg->low = low;
5060
5061 return nbytes;
5062 }
5063
5064 static int memory_high_show(struct seq_file *m, void *v)
5065 {
5066 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5067 unsigned long high = READ_ONCE(memcg->high);
5068
5069 if (high == PAGE_COUNTER_MAX)
5070 seq_puts(m, "max\n");
5071 else
5072 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5073
5074 return 0;
5075 }
5076
5077 static ssize_t memory_high_write(struct kernfs_open_file *of,
5078 char *buf, size_t nbytes, loff_t off)
5079 {
5080 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5081 unsigned long high;
5082 int err;
5083
5084 buf = strstrip(buf);
5085 err = page_counter_memparse(buf, "max", &high);
5086 if (err)
5087 return err;
5088
5089 memcg->high = high;
5090
5091 memcg_wb_domain_size_changed(memcg);
5092 return nbytes;
5093 }
5094
5095 static int memory_max_show(struct seq_file *m, void *v)
5096 {
5097 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5098 unsigned long max = READ_ONCE(memcg->memory.limit);
5099
5100 if (max == PAGE_COUNTER_MAX)
5101 seq_puts(m, "max\n");
5102 else
5103 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5104
5105 return 0;
5106 }
5107
5108 static ssize_t memory_max_write(struct kernfs_open_file *of,
5109 char *buf, size_t nbytes, loff_t off)
5110 {
5111 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5112 unsigned long max;
5113 int err;
5114
5115 buf = strstrip(buf);
5116 err = page_counter_memparse(buf, "max", &max);
5117 if (err)
5118 return err;
5119
5120 err = mem_cgroup_resize_limit(memcg, max);
5121 if (err)
5122 return err;
5123
5124 memcg_wb_domain_size_changed(memcg);
5125 return nbytes;
5126 }
5127
5128 static int memory_events_show(struct seq_file *m, void *v)
5129 {
5130 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5131
5132 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5133 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5134 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5135 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5136
5137 return 0;
5138 }
5139
5140 static struct cftype memory_files[] = {
5141 {
5142 .name = "current",
5143 .flags = CFTYPE_NOT_ON_ROOT,
5144 .read_u64 = memory_current_read,
5145 },
5146 {
5147 .name = "low",
5148 .flags = CFTYPE_NOT_ON_ROOT,
5149 .seq_show = memory_low_show,
5150 .write = memory_low_write,
5151 },
5152 {
5153 .name = "high",
5154 .flags = CFTYPE_NOT_ON_ROOT,
5155 .seq_show = memory_high_show,
5156 .write = memory_high_write,
5157 },
5158 {
5159 .name = "max",
5160 .flags = CFTYPE_NOT_ON_ROOT,
5161 .seq_show = memory_max_show,
5162 .write = memory_max_write,
5163 },
5164 {
5165 .name = "events",
5166 .flags = CFTYPE_NOT_ON_ROOT,
5167 .file_offset = offsetof(struct mem_cgroup, events_file),
5168 .seq_show = memory_events_show,
5169 },
5170 { } /* terminate */
5171 };
5172
5173 struct cgroup_subsys memory_cgrp_subsys = {
5174 .css_alloc = mem_cgroup_css_alloc,
5175 .css_online = mem_cgroup_css_online,
5176 .css_offline = mem_cgroup_css_offline,
5177 .css_released = mem_cgroup_css_released,
5178 .css_free = mem_cgroup_css_free,
5179 .css_reset = mem_cgroup_css_reset,
5180 .can_attach = mem_cgroup_can_attach,
5181 .cancel_attach = mem_cgroup_cancel_attach,
5182 .attach = mem_cgroup_move_task,
5183 .bind = mem_cgroup_bind,
5184 .dfl_cftypes = memory_files,
5185 .legacy_cftypes = mem_cgroup_legacy_files,
5186 .early_init = 0,
5187 };
5188
5189 /**
5190 * mem_cgroup_low - check if memory consumption is below the normal range
5191 * @root: the highest ancestor to consider
5192 * @memcg: the memory cgroup to check
5193 *
5194 * Returns %true if memory consumption of @memcg, and that of all
5195 * configurable ancestors up to @root, is below the normal range.
5196 */
5197 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5198 {
5199 if (mem_cgroup_disabled())
5200 return false;
5201
5202 /*
5203 * The toplevel group doesn't have a configurable range, so
5204 * it's never low when looked at directly, and it is not
5205 * considered an ancestor when assessing the hierarchy.
5206 */
5207
5208 if (memcg == root_mem_cgroup)
5209 return false;
5210
5211 if (page_counter_read(&memcg->memory) >= memcg->low)
5212 return false;
5213
5214 while (memcg != root) {
5215 memcg = parent_mem_cgroup(memcg);
5216
5217 if (memcg == root_mem_cgroup)
5218 break;
5219
5220 if (page_counter_read(&memcg->memory) >= memcg->low)
5221 return false;
5222 }
5223 return true;
5224 }
5225
5226 /**
5227 * mem_cgroup_try_charge - try charging a page
5228 * @page: page to charge
5229 * @mm: mm context of the victim
5230 * @gfp_mask: reclaim mode
5231 * @memcgp: charged memcg return
5232 *
5233 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5234 * pages according to @gfp_mask if necessary.
5235 *
5236 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5237 * Otherwise, an error code is returned.
5238 *
5239 * After page->mapping has been set up, the caller must finalize the
5240 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5241 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5242 */
5243 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5244 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5245 bool compound)
5246 {
5247 struct mem_cgroup *memcg = NULL;
5248 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5249 int ret = 0;
5250
5251 if (mem_cgroup_disabled())
5252 goto out;
5253
5254 if (PageSwapCache(page)) {
5255 /*
5256 * Every swap fault against a single page tries to charge the
5257 * page, bail as early as possible. shmem_unuse() encounters
5258 * already charged pages, too. The USED bit is protected by
5259 * the page lock, which serializes swap cache removal, which
5260 * in turn serializes uncharging.
5261 */
5262 VM_BUG_ON_PAGE(!PageLocked(page), page);
5263 if (page->mem_cgroup)
5264 goto out;
5265
5266 if (do_memsw_account()) {
5267 swp_entry_t ent = { .val = page_private(page), };
5268 unsigned short id = lookup_swap_cgroup_id(ent);
5269
5270 rcu_read_lock();
5271 memcg = mem_cgroup_from_id(id);
5272 if (memcg && !css_tryget_online(&memcg->css))
5273 memcg = NULL;
5274 rcu_read_unlock();
5275 }
5276 }
5277
5278 if (!memcg)
5279 memcg = get_mem_cgroup_from_mm(mm);
5280
5281 ret = try_charge(memcg, gfp_mask, nr_pages);
5282
5283 css_put(&memcg->css);
5284 out:
5285 *memcgp = memcg;
5286 return ret;
5287 }
5288
5289 /**
5290 * mem_cgroup_commit_charge - commit a page charge
5291 * @page: page to charge
5292 * @memcg: memcg to charge the page to
5293 * @lrucare: page might be on LRU already
5294 *
5295 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5296 * after page->mapping has been set up. This must happen atomically
5297 * as part of the page instantiation, i.e. under the page table lock
5298 * for anonymous pages, under the page lock for page and swap cache.
5299 *
5300 * In addition, the page must not be on the LRU during the commit, to
5301 * prevent racing with task migration. If it might be, use @lrucare.
5302 *
5303 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5304 */
5305 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5306 bool lrucare, bool compound)
5307 {
5308 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5309
5310 VM_BUG_ON_PAGE(!page->mapping, page);
5311 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5312
5313 if (mem_cgroup_disabled())
5314 return;
5315 /*
5316 * Swap faults will attempt to charge the same page multiple
5317 * times. But reuse_swap_page() might have removed the page
5318 * from swapcache already, so we can't check PageSwapCache().
5319 */
5320 if (!memcg)
5321 return;
5322
5323 commit_charge(page, memcg, lrucare);
5324
5325 local_irq_disable();
5326 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5327 memcg_check_events(memcg, page);
5328 local_irq_enable();
5329
5330 if (do_memsw_account() && PageSwapCache(page)) {
5331 swp_entry_t entry = { .val = page_private(page) };
5332 /*
5333 * The swap entry might not get freed for a long time,
5334 * let's not wait for it. The page already received a
5335 * memory+swap charge, drop the swap entry duplicate.
5336 */
5337 mem_cgroup_uncharge_swap(entry);
5338 }
5339 }
5340
5341 /**
5342 * mem_cgroup_cancel_charge - cancel a page charge
5343 * @page: page to charge
5344 * @memcg: memcg to charge the page to
5345 *
5346 * Cancel a charge transaction started by mem_cgroup_try_charge().
5347 */
5348 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5349 bool compound)
5350 {
5351 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5352
5353 if (mem_cgroup_disabled())
5354 return;
5355 /*
5356 * Swap faults will attempt to charge the same page multiple
5357 * times. But reuse_swap_page() might have removed the page
5358 * from swapcache already, so we can't check PageSwapCache().
5359 */
5360 if (!memcg)
5361 return;
5362
5363 cancel_charge(memcg, nr_pages);
5364 }
5365
5366 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5367 unsigned long nr_anon, unsigned long nr_file,
5368 unsigned long nr_huge, struct page *dummy_page)
5369 {
5370 unsigned long nr_pages = nr_anon + nr_file;
5371 unsigned long flags;
5372
5373 if (!mem_cgroup_is_root(memcg)) {
5374 page_counter_uncharge(&memcg->memory, nr_pages);
5375 if (do_memsw_account())
5376 page_counter_uncharge(&memcg->memsw, nr_pages);
5377 memcg_oom_recover(memcg);
5378 }
5379
5380 local_irq_save(flags);
5381 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5382 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5383 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5384 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5385 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5386 memcg_check_events(memcg, dummy_page);
5387 local_irq_restore(flags);
5388
5389 if (!mem_cgroup_is_root(memcg))
5390 css_put_many(&memcg->css, nr_pages);
5391 }
5392
5393 static void uncharge_list(struct list_head *page_list)
5394 {
5395 struct mem_cgroup *memcg = NULL;
5396 unsigned long nr_anon = 0;
5397 unsigned long nr_file = 0;
5398 unsigned long nr_huge = 0;
5399 unsigned long pgpgout = 0;
5400 struct list_head *next;
5401 struct page *page;
5402
5403 next = page_list->next;
5404 do {
5405 unsigned int nr_pages = 1;
5406
5407 page = list_entry(next, struct page, lru);
5408 next = page->lru.next;
5409
5410 VM_BUG_ON_PAGE(PageLRU(page), page);
5411 VM_BUG_ON_PAGE(page_count(page), page);
5412
5413 if (!page->mem_cgroup)
5414 continue;
5415
5416 /*
5417 * Nobody should be changing or seriously looking at
5418 * page->mem_cgroup at this point, we have fully
5419 * exclusive access to the page.
5420 */
5421
5422 if (memcg != page->mem_cgroup) {
5423 if (memcg) {
5424 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5425 nr_huge, page);
5426 pgpgout = nr_anon = nr_file = nr_huge = 0;
5427 }
5428 memcg = page->mem_cgroup;
5429 }
5430
5431 if (PageTransHuge(page)) {
5432 nr_pages <<= compound_order(page);
5433 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5434 nr_huge += nr_pages;
5435 }
5436
5437 if (PageAnon(page))
5438 nr_anon += nr_pages;
5439 else
5440 nr_file += nr_pages;
5441
5442 page->mem_cgroup = NULL;
5443
5444 pgpgout++;
5445 } while (next != page_list);
5446
5447 if (memcg)
5448 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5449 nr_huge, page);
5450 }
5451
5452 /**
5453 * mem_cgroup_uncharge - uncharge a page
5454 * @page: page to uncharge
5455 *
5456 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5457 * mem_cgroup_commit_charge().
5458 */
5459 void mem_cgroup_uncharge(struct page *page)
5460 {
5461 if (mem_cgroup_disabled())
5462 return;
5463
5464 /* Don't touch page->lru of any random page, pre-check: */
5465 if (!page->mem_cgroup)
5466 return;
5467
5468 INIT_LIST_HEAD(&page->lru);
5469 uncharge_list(&page->lru);
5470 }
5471
5472 /**
5473 * mem_cgroup_uncharge_list - uncharge a list of page
5474 * @page_list: list of pages to uncharge
5475 *
5476 * Uncharge a list of pages previously charged with
5477 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5478 */
5479 void mem_cgroup_uncharge_list(struct list_head *page_list)
5480 {
5481 if (mem_cgroup_disabled())
5482 return;
5483
5484 if (!list_empty(page_list))
5485 uncharge_list(page_list);
5486 }
5487
5488 /**
5489 * mem_cgroup_replace_page - migrate a charge to another page
5490 * @oldpage: currently charged page
5491 * @newpage: page to transfer the charge to
5492 *
5493 * Migrate the charge from @oldpage to @newpage.
5494 *
5495 * Both pages must be locked, @newpage->mapping must be set up.
5496 * Either or both pages might be on the LRU already.
5497 */
5498 void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
5499 {
5500 struct mem_cgroup *memcg;
5501 int isolated;
5502
5503 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5504 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5505 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5506 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5507 newpage);
5508
5509 if (mem_cgroup_disabled())
5510 return;
5511
5512 /* Page cache replacement: new page already charged? */
5513 if (newpage->mem_cgroup)
5514 return;
5515
5516 /* Swapcache readahead pages can get replaced before being charged */
5517 memcg = oldpage->mem_cgroup;
5518 if (!memcg)
5519 return;
5520
5521 lock_page_lru(oldpage, &isolated);
5522 oldpage->mem_cgroup = NULL;
5523 unlock_page_lru(oldpage, isolated);
5524
5525 commit_charge(newpage, memcg, true);
5526 }
5527
5528 #ifdef CONFIG_INET
5529
5530 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5531 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5532
5533 void sock_update_memcg(struct sock *sk)
5534 {
5535 struct mem_cgroup *memcg;
5536
5537 /* Socket cloning can throw us here with sk_cgrp already
5538 * filled. It won't however, necessarily happen from
5539 * process context. So the test for root memcg given
5540 * the current task's memcg won't help us in this case.
5541 *
5542 * Respecting the original socket's memcg is a better
5543 * decision in this case.
5544 */
5545 if (sk->sk_memcg) {
5546 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5547 css_get(&sk->sk_memcg->css);
5548 return;
5549 }
5550
5551 rcu_read_lock();
5552 memcg = mem_cgroup_from_task(current);
5553 if (memcg == root_mem_cgroup)
5554 goto out;
5555 #ifdef CONFIG_MEMCG_KMEM
5556 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcp_mem.active)
5557 goto out;
5558 #endif
5559 if (css_tryget_online(&memcg->css))
5560 sk->sk_memcg = memcg;
5561 out:
5562 rcu_read_unlock();
5563 }
5564 EXPORT_SYMBOL(sock_update_memcg);
5565
5566 void sock_release_memcg(struct sock *sk)
5567 {
5568 WARN_ON(!sk->sk_memcg);
5569 css_put(&sk->sk_memcg->css);
5570 }
5571
5572 /**
5573 * mem_cgroup_charge_skmem - charge socket memory
5574 * @memcg: memcg to charge
5575 * @nr_pages: number of pages to charge
5576 *
5577 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5578 * @memcg's configured limit, %false if the charge had to be forced.
5579 */
5580 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5581 {
5582 gfp_t gfp_mask = GFP_KERNEL;
5583
5584 #ifdef CONFIG_MEMCG_KMEM
5585 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5586 struct page_counter *counter;
5587
5588 if (page_counter_try_charge(&memcg->tcp_mem.memory_allocated,
5589 nr_pages, &counter)) {
5590 memcg->tcp_mem.memory_pressure = 0;
5591 return true;
5592 }
5593 page_counter_charge(&memcg->tcp_mem.memory_allocated, nr_pages);
5594 memcg->tcp_mem.memory_pressure = 1;
5595 return false;
5596 }
5597 #endif
5598 /* Don't block in the packet receive path */
5599 if (in_softirq())
5600 gfp_mask = GFP_NOWAIT;
5601
5602 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5603 return true;
5604
5605 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5606 return false;
5607 }
5608
5609 /**
5610 * mem_cgroup_uncharge_skmem - uncharge socket memory
5611 * @memcg - memcg to uncharge
5612 * @nr_pages - number of pages to uncharge
5613 */
5614 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5615 {
5616 #ifdef CONFIG_MEMCG_KMEM
5617 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5618 page_counter_uncharge(&memcg->tcp_mem.memory_allocated,
5619 nr_pages);
5620 return;
5621 }
5622 #endif
5623 page_counter_uncharge(&memcg->memory, nr_pages);
5624 css_put_many(&memcg->css, nr_pages);
5625 }
5626
5627 #endif /* CONFIG_INET */
5628
5629 static int __init cgroup_memory(char *s)
5630 {
5631 char *token;
5632
5633 while ((token = strsep(&s, ",")) != NULL) {
5634 if (!*token)
5635 continue;
5636 if (!strcmp(token, "nosocket"))
5637 cgroup_memory_nosocket = true;
5638 }
5639 return 0;
5640 }
5641 __setup("cgroup.memory=", cgroup_memory);
5642
5643 /*
5644 * subsys_initcall() for memory controller.
5645 *
5646 * Some parts like hotcpu_notifier() have to be initialized from this context
5647 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5648 * everything that doesn't depend on a specific mem_cgroup structure should
5649 * be initialized from here.
5650 */
5651 static int __init mem_cgroup_init(void)
5652 {
5653 int cpu, node;
5654
5655 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5656
5657 for_each_possible_cpu(cpu)
5658 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5659 drain_local_stock);
5660
5661 for_each_node(node) {
5662 struct mem_cgroup_tree_per_node *rtpn;
5663 int zone;
5664
5665 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5666 node_online(node) ? node : NUMA_NO_NODE);
5667
5668 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5669 struct mem_cgroup_tree_per_zone *rtpz;
5670
5671 rtpz = &rtpn->rb_tree_per_zone[zone];
5672 rtpz->rb_root = RB_ROOT;
5673 spin_lock_init(&rtpz->lock);
5674 }
5675 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5676 }
5677
5678 return 0;
5679 }
5680 subsys_initcall(mem_cgroup_init);
5681
5682 #ifdef CONFIG_MEMCG_SWAP
5683 /**
5684 * mem_cgroup_swapout - transfer a memsw charge to swap
5685 * @page: page whose memsw charge to transfer
5686 * @entry: swap entry to move the charge to
5687 *
5688 * Transfer the memsw charge of @page to @entry.
5689 */
5690 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5691 {
5692 struct mem_cgroup *memcg;
5693 unsigned short oldid;
5694
5695 VM_BUG_ON_PAGE(PageLRU(page), page);
5696 VM_BUG_ON_PAGE(page_count(page), page);
5697
5698 if (!do_memsw_account())
5699 return;
5700
5701 memcg = page->mem_cgroup;
5702
5703 /* Readahead page, never charged */
5704 if (!memcg)
5705 return;
5706
5707 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5708 VM_BUG_ON_PAGE(oldid, page);
5709 mem_cgroup_swap_statistics(memcg, true);
5710
5711 page->mem_cgroup = NULL;
5712
5713 if (!mem_cgroup_is_root(memcg))
5714 page_counter_uncharge(&memcg->memory, 1);
5715
5716 /*
5717 * Interrupts should be disabled here because the caller holds the
5718 * mapping->tree_lock lock which is taken with interrupts-off. It is
5719 * important here to have the interrupts disabled because it is the
5720 * only synchronisation we have for udpating the per-CPU variables.
5721 */
5722 VM_BUG_ON(!irqs_disabled());
5723 mem_cgroup_charge_statistics(memcg, page, false, -1);
5724 memcg_check_events(memcg, page);
5725 }
5726
5727 /**
5728 * mem_cgroup_uncharge_swap - uncharge a swap entry
5729 * @entry: swap entry to uncharge
5730 *
5731 * Drop the memsw charge associated with @entry.
5732 */
5733 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5734 {
5735 struct mem_cgroup *memcg;
5736 unsigned short id;
5737
5738 if (!do_memsw_account())
5739 return;
5740
5741 id = swap_cgroup_record(entry, 0);
5742 rcu_read_lock();
5743 memcg = mem_cgroup_from_id(id);
5744 if (memcg) {
5745 if (!mem_cgroup_is_root(memcg))
5746 page_counter_uncharge(&memcg->memsw, 1);
5747 mem_cgroup_swap_statistics(memcg, false);
5748 css_put(&memcg->css);
5749 }
5750 rcu_read_unlock();
5751 }
5752
5753 /* for remember boot option*/
5754 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5755 static int really_do_swap_account __initdata = 1;
5756 #else
5757 static int really_do_swap_account __initdata;
5758 #endif
5759
5760 static int __init enable_swap_account(char *s)
5761 {
5762 if (!strcmp(s, "1"))
5763 really_do_swap_account = 1;
5764 else if (!strcmp(s, "0"))
5765 really_do_swap_account = 0;
5766 return 1;
5767 }
5768 __setup("swapaccount=", enable_swap_account);
5769
5770 static struct cftype memsw_cgroup_files[] = {
5771 {
5772 .name = "memsw.usage_in_bytes",
5773 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5774 .read_u64 = mem_cgroup_read_u64,
5775 },
5776 {
5777 .name = "memsw.max_usage_in_bytes",
5778 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5779 .write = mem_cgroup_reset,
5780 .read_u64 = mem_cgroup_read_u64,
5781 },
5782 {
5783 .name = "memsw.limit_in_bytes",
5784 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5785 .write = mem_cgroup_write,
5786 .read_u64 = mem_cgroup_read_u64,
5787 },
5788 {
5789 .name = "memsw.failcnt",
5790 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5791 .write = mem_cgroup_reset,
5792 .read_u64 = mem_cgroup_read_u64,
5793 },
5794 { }, /* terminate */
5795 };
5796
5797 static int __init mem_cgroup_swap_init(void)
5798 {
5799 if (!mem_cgroup_disabled() && really_do_swap_account) {
5800 do_swap_account = 1;
5801 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5802 memsw_cgroup_files));
5803 }
5804 return 0;
5805 }
5806 subsys_initcall(mem_cgroup_swap_init);
5807
5808 #endif /* CONFIG_MEMCG_SWAP */
This page took 0.145459 seconds and 6 git commands to generate.