memcg: do not allow to disable tcp accounting after limit is set
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include <net/tcp_memcontrol.h>
70 #include "slab.h"
71
72 #include <asm/uaccess.h>
73
74 #include <trace/events/vmscan.h>
75
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77 EXPORT_SYMBOL(memory_cgrp_subsys);
78
79 #define MEM_CGROUP_RECLAIM_RETRIES 5
80 static struct mem_cgroup *root_mem_cgroup __read_mostly;
81 struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
82
83 /* Whether the swap controller is active */
84 #ifdef CONFIG_MEMCG_SWAP
85 int do_swap_account __read_mostly;
86 #else
87 #define do_swap_account 0
88 #endif
89
90 static const char * const mem_cgroup_stat_names[] = {
91 "cache",
92 "rss",
93 "rss_huge",
94 "mapped_file",
95 "dirty",
96 "writeback",
97 "swap",
98 };
99
100 static const char * const mem_cgroup_events_names[] = {
101 "pgpgin",
102 "pgpgout",
103 "pgfault",
104 "pgmajfault",
105 };
106
107 static const char * const mem_cgroup_lru_names[] = {
108 "inactive_anon",
109 "active_anon",
110 "inactive_file",
111 "active_file",
112 "unevictable",
113 };
114
115 #define THRESHOLDS_EVENTS_TARGET 128
116 #define SOFTLIMIT_EVENTS_TARGET 1024
117 #define NUMAINFO_EVENTS_TARGET 1024
118
119 /*
120 * Cgroups above their limits are maintained in a RB-Tree, independent of
121 * their hierarchy representation
122 */
123
124 struct mem_cgroup_tree_per_zone {
125 struct rb_root rb_root;
126 spinlock_t lock;
127 };
128
129 struct mem_cgroup_tree_per_node {
130 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
131 };
132
133 struct mem_cgroup_tree {
134 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
135 };
136
137 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
138
139 /* for OOM */
140 struct mem_cgroup_eventfd_list {
141 struct list_head list;
142 struct eventfd_ctx *eventfd;
143 };
144
145 /*
146 * cgroup_event represents events which userspace want to receive.
147 */
148 struct mem_cgroup_event {
149 /*
150 * memcg which the event belongs to.
151 */
152 struct mem_cgroup *memcg;
153 /*
154 * eventfd to signal userspace about the event.
155 */
156 struct eventfd_ctx *eventfd;
157 /*
158 * Each of these stored in a list by the cgroup.
159 */
160 struct list_head list;
161 /*
162 * register_event() callback will be used to add new userspace
163 * waiter for changes related to this event. Use eventfd_signal()
164 * on eventfd to send notification to userspace.
165 */
166 int (*register_event)(struct mem_cgroup *memcg,
167 struct eventfd_ctx *eventfd, const char *args);
168 /*
169 * unregister_event() callback will be called when userspace closes
170 * the eventfd or on cgroup removing. This callback must be set,
171 * if you want provide notification functionality.
172 */
173 void (*unregister_event)(struct mem_cgroup *memcg,
174 struct eventfd_ctx *eventfd);
175 /*
176 * All fields below needed to unregister event when
177 * userspace closes eventfd.
178 */
179 poll_table pt;
180 wait_queue_head_t *wqh;
181 wait_queue_t wait;
182 struct work_struct remove;
183 };
184
185 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
186 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
187
188 /* Stuffs for move charges at task migration. */
189 /*
190 * Types of charges to be moved.
191 */
192 #define MOVE_ANON 0x1U
193 #define MOVE_FILE 0x2U
194 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
195
196 /* "mc" and its members are protected by cgroup_mutex */
197 static struct move_charge_struct {
198 spinlock_t lock; /* for from, to */
199 struct mem_cgroup *from;
200 struct mem_cgroup *to;
201 unsigned long flags;
202 unsigned long precharge;
203 unsigned long moved_charge;
204 unsigned long moved_swap;
205 struct task_struct *moving_task; /* a task moving charges */
206 wait_queue_head_t waitq; /* a waitq for other context */
207 } mc = {
208 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
209 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
210 };
211
212 /*
213 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
214 * limit reclaim to prevent infinite loops, if they ever occur.
215 */
216 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
217 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
218
219 enum charge_type {
220 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
221 MEM_CGROUP_CHARGE_TYPE_ANON,
222 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
223 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
224 NR_CHARGE_TYPE,
225 };
226
227 /* for encoding cft->private value on file */
228 enum res_type {
229 _MEM,
230 _MEMSWAP,
231 _OOM_TYPE,
232 _KMEM,
233 };
234
235 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
236 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
237 #define MEMFILE_ATTR(val) ((val) & 0xffff)
238 /* Used for OOM nofiier */
239 #define OOM_CONTROL (0)
240
241 /*
242 * The memcg_create_mutex will be held whenever a new cgroup is created.
243 * As a consequence, any change that needs to protect against new child cgroups
244 * appearing has to hold it as well.
245 */
246 static DEFINE_MUTEX(memcg_create_mutex);
247
248 /* Some nice accessors for the vmpressure. */
249 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
250 {
251 if (!memcg)
252 memcg = root_mem_cgroup;
253 return &memcg->vmpressure;
254 }
255
256 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
257 {
258 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
259 }
260
261 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
262 {
263 return (memcg == root_mem_cgroup);
264 }
265
266 /*
267 * We restrict the id in the range of [1, 65535], so it can fit into
268 * an unsigned short.
269 */
270 #define MEM_CGROUP_ID_MAX USHRT_MAX
271
272 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
273 {
274 return memcg->css.id;
275 }
276
277 /*
278 * A helper function to get mem_cgroup from ID. must be called under
279 * rcu_read_lock(). The caller is responsible for calling
280 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
281 * refcnt from swap can be called against removed memcg.)
282 */
283 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
284 {
285 struct cgroup_subsys_state *css;
286
287 css = css_from_id(id, &memory_cgrp_subsys);
288 return mem_cgroup_from_css(css);
289 }
290
291 /* Writing them here to avoid exposing memcg's inner layout */
292 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
293
294 void sock_update_memcg(struct sock *sk)
295 {
296 if (mem_cgroup_sockets_enabled) {
297 struct mem_cgroup *memcg;
298 struct cg_proto *cg_proto;
299
300 BUG_ON(!sk->sk_prot->proto_cgroup);
301
302 /* Socket cloning can throw us here with sk_cgrp already
303 * filled. It won't however, necessarily happen from
304 * process context. So the test for root memcg given
305 * the current task's memcg won't help us in this case.
306 *
307 * Respecting the original socket's memcg is a better
308 * decision in this case.
309 */
310 if (sk->sk_cgrp) {
311 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
312 css_get(&sk->sk_cgrp->memcg->css);
313 return;
314 }
315
316 rcu_read_lock();
317 memcg = mem_cgroup_from_task(current);
318 cg_proto = sk->sk_prot->proto_cgroup(memcg);
319 if (cg_proto && cg_proto->active &&
320 css_tryget_online(&memcg->css)) {
321 sk->sk_cgrp = cg_proto;
322 }
323 rcu_read_unlock();
324 }
325 }
326 EXPORT_SYMBOL(sock_update_memcg);
327
328 void sock_release_memcg(struct sock *sk)
329 {
330 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
331 struct mem_cgroup *memcg;
332 WARN_ON(!sk->sk_cgrp->memcg);
333 memcg = sk->sk_cgrp->memcg;
334 css_put(&sk->sk_cgrp->memcg->css);
335 }
336 }
337
338 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
339 {
340 if (!memcg || mem_cgroup_is_root(memcg))
341 return NULL;
342
343 return &memcg->tcp_mem;
344 }
345 EXPORT_SYMBOL(tcp_proto_cgroup);
346
347 #endif
348
349 #ifdef CONFIG_MEMCG_KMEM
350 /*
351 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
352 * The main reason for not using cgroup id for this:
353 * this works better in sparse environments, where we have a lot of memcgs,
354 * but only a few kmem-limited. Or also, if we have, for instance, 200
355 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
356 * 200 entry array for that.
357 *
358 * The current size of the caches array is stored in memcg_nr_cache_ids. It
359 * will double each time we have to increase it.
360 */
361 static DEFINE_IDA(memcg_cache_ida);
362 int memcg_nr_cache_ids;
363
364 /* Protects memcg_nr_cache_ids */
365 static DECLARE_RWSEM(memcg_cache_ids_sem);
366
367 void memcg_get_cache_ids(void)
368 {
369 down_read(&memcg_cache_ids_sem);
370 }
371
372 void memcg_put_cache_ids(void)
373 {
374 up_read(&memcg_cache_ids_sem);
375 }
376
377 /*
378 * MIN_SIZE is different than 1, because we would like to avoid going through
379 * the alloc/free process all the time. In a small machine, 4 kmem-limited
380 * cgroups is a reasonable guess. In the future, it could be a parameter or
381 * tunable, but that is strictly not necessary.
382 *
383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
384 * this constant directly from cgroup, but it is understandable that this is
385 * better kept as an internal representation in cgroup.c. In any case, the
386 * cgrp_id space is not getting any smaller, and we don't have to necessarily
387 * increase ours as well if it increases.
388 */
389 #define MEMCG_CACHES_MIN_SIZE 4
390 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391
392 /*
393 * A lot of the calls to the cache allocation functions are expected to be
394 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
395 * conditional to this static branch, we'll have to allow modules that does
396 * kmem_cache_alloc and the such to see this symbol as well
397 */
398 struct static_key memcg_kmem_enabled_key;
399 EXPORT_SYMBOL(memcg_kmem_enabled_key);
400
401 #endif /* CONFIG_MEMCG_KMEM */
402
403 static struct mem_cgroup_per_zone *
404 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
405 {
406 int nid = zone_to_nid(zone);
407 int zid = zone_idx(zone);
408
409 return &memcg->nodeinfo[nid]->zoneinfo[zid];
410 }
411
412 /**
413 * mem_cgroup_css_from_page - css of the memcg associated with a page
414 * @page: page of interest
415 *
416 * If memcg is bound to the default hierarchy, css of the memcg associated
417 * with @page is returned. The returned css remains associated with @page
418 * until it is released.
419 *
420 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
421 * is returned.
422 *
423 * XXX: The above description of behavior on the default hierarchy isn't
424 * strictly true yet as replace_page_cache_page() can modify the
425 * association before @page is released even on the default hierarchy;
426 * however, the current and planned usages don't mix the the two functions
427 * and replace_page_cache_page() will soon be updated to make the invariant
428 * actually true.
429 */
430 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
431 {
432 struct mem_cgroup *memcg;
433
434 rcu_read_lock();
435
436 memcg = page->mem_cgroup;
437
438 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
439 memcg = root_mem_cgroup;
440
441 rcu_read_unlock();
442 return &memcg->css;
443 }
444
445 /**
446 * page_cgroup_ino - return inode number of the memcg a page is charged to
447 * @page: the page
448 *
449 * Look up the closest online ancestor of the memory cgroup @page is charged to
450 * and return its inode number or 0 if @page is not charged to any cgroup. It
451 * is safe to call this function without holding a reference to @page.
452 *
453 * Note, this function is inherently racy, because there is nothing to prevent
454 * the cgroup inode from getting torn down and potentially reallocated a moment
455 * after page_cgroup_ino() returns, so it only should be used by callers that
456 * do not care (such as procfs interfaces).
457 */
458 ino_t page_cgroup_ino(struct page *page)
459 {
460 struct mem_cgroup *memcg;
461 unsigned long ino = 0;
462
463 rcu_read_lock();
464 memcg = READ_ONCE(page->mem_cgroup);
465 while (memcg && !(memcg->css.flags & CSS_ONLINE))
466 memcg = parent_mem_cgroup(memcg);
467 if (memcg)
468 ino = cgroup_ino(memcg->css.cgroup);
469 rcu_read_unlock();
470 return ino;
471 }
472
473 static struct mem_cgroup_per_zone *
474 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
475 {
476 int nid = page_to_nid(page);
477 int zid = page_zonenum(page);
478
479 return &memcg->nodeinfo[nid]->zoneinfo[zid];
480 }
481
482 static struct mem_cgroup_tree_per_zone *
483 soft_limit_tree_node_zone(int nid, int zid)
484 {
485 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
486 }
487
488 static struct mem_cgroup_tree_per_zone *
489 soft_limit_tree_from_page(struct page *page)
490 {
491 int nid = page_to_nid(page);
492 int zid = page_zonenum(page);
493
494 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
495 }
496
497 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
498 struct mem_cgroup_tree_per_zone *mctz,
499 unsigned long new_usage_in_excess)
500 {
501 struct rb_node **p = &mctz->rb_root.rb_node;
502 struct rb_node *parent = NULL;
503 struct mem_cgroup_per_zone *mz_node;
504
505 if (mz->on_tree)
506 return;
507
508 mz->usage_in_excess = new_usage_in_excess;
509 if (!mz->usage_in_excess)
510 return;
511 while (*p) {
512 parent = *p;
513 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
514 tree_node);
515 if (mz->usage_in_excess < mz_node->usage_in_excess)
516 p = &(*p)->rb_left;
517 /*
518 * We can't avoid mem cgroups that are over their soft
519 * limit by the same amount
520 */
521 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
522 p = &(*p)->rb_right;
523 }
524 rb_link_node(&mz->tree_node, parent, p);
525 rb_insert_color(&mz->tree_node, &mctz->rb_root);
526 mz->on_tree = true;
527 }
528
529 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
530 struct mem_cgroup_tree_per_zone *mctz)
531 {
532 if (!mz->on_tree)
533 return;
534 rb_erase(&mz->tree_node, &mctz->rb_root);
535 mz->on_tree = false;
536 }
537
538 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
539 struct mem_cgroup_tree_per_zone *mctz)
540 {
541 unsigned long flags;
542
543 spin_lock_irqsave(&mctz->lock, flags);
544 __mem_cgroup_remove_exceeded(mz, mctz);
545 spin_unlock_irqrestore(&mctz->lock, flags);
546 }
547
548 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
549 {
550 unsigned long nr_pages = page_counter_read(&memcg->memory);
551 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
552 unsigned long excess = 0;
553
554 if (nr_pages > soft_limit)
555 excess = nr_pages - soft_limit;
556
557 return excess;
558 }
559
560 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
561 {
562 unsigned long excess;
563 struct mem_cgroup_per_zone *mz;
564 struct mem_cgroup_tree_per_zone *mctz;
565
566 mctz = soft_limit_tree_from_page(page);
567 /*
568 * Necessary to update all ancestors when hierarchy is used.
569 * because their event counter is not touched.
570 */
571 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
572 mz = mem_cgroup_page_zoneinfo(memcg, page);
573 excess = soft_limit_excess(memcg);
574 /*
575 * We have to update the tree if mz is on RB-tree or
576 * mem is over its softlimit.
577 */
578 if (excess || mz->on_tree) {
579 unsigned long flags;
580
581 spin_lock_irqsave(&mctz->lock, flags);
582 /* if on-tree, remove it */
583 if (mz->on_tree)
584 __mem_cgroup_remove_exceeded(mz, mctz);
585 /*
586 * Insert again. mz->usage_in_excess will be updated.
587 * If excess is 0, no tree ops.
588 */
589 __mem_cgroup_insert_exceeded(mz, mctz, excess);
590 spin_unlock_irqrestore(&mctz->lock, flags);
591 }
592 }
593 }
594
595 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
596 {
597 struct mem_cgroup_tree_per_zone *mctz;
598 struct mem_cgroup_per_zone *mz;
599 int nid, zid;
600
601 for_each_node(nid) {
602 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
603 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
604 mctz = soft_limit_tree_node_zone(nid, zid);
605 mem_cgroup_remove_exceeded(mz, mctz);
606 }
607 }
608 }
609
610 static struct mem_cgroup_per_zone *
611 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
612 {
613 struct rb_node *rightmost = NULL;
614 struct mem_cgroup_per_zone *mz;
615
616 retry:
617 mz = NULL;
618 rightmost = rb_last(&mctz->rb_root);
619 if (!rightmost)
620 goto done; /* Nothing to reclaim from */
621
622 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
623 /*
624 * Remove the node now but someone else can add it back,
625 * we will to add it back at the end of reclaim to its correct
626 * position in the tree.
627 */
628 __mem_cgroup_remove_exceeded(mz, mctz);
629 if (!soft_limit_excess(mz->memcg) ||
630 !css_tryget_online(&mz->memcg->css))
631 goto retry;
632 done:
633 return mz;
634 }
635
636 static struct mem_cgroup_per_zone *
637 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
638 {
639 struct mem_cgroup_per_zone *mz;
640
641 spin_lock_irq(&mctz->lock);
642 mz = __mem_cgroup_largest_soft_limit_node(mctz);
643 spin_unlock_irq(&mctz->lock);
644 return mz;
645 }
646
647 /*
648 * Return page count for single (non recursive) @memcg.
649 *
650 * Implementation Note: reading percpu statistics for memcg.
651 *
652 * Both of vmstat[] and percpu_counter has threshold and do periodic
653 * synchronization to implement "quick" read. There are trade-off between
654 * reading cost and precision of value. Then, we may have a chance to implement
655 * a periodic synchronization of counter in memcg's counter.
656 *
657 * But this _read() function is used for user interface now. The user accounts
658 * memory usage by memory cgroup and he _always_ requires exact value because
659 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
660 * have to visit all online cpus and make sum. So, for now, unnecessary
661 * synchronization is not implemented. (just implemented for cpu hotplug)
662 *
663 * If there are kernel internal actions which can make use of some not-exact
664 * value, and reading all cpu value can be performance bottleneck in some
665 * common workload, threshold and synchronization as vmstat[] should be
666 * implemented.
667 */
668 static unsigned long
669 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
670 {
671 long val = 0;
672 int cpu;
673
674 /* Per-cpu values can be negative, use a signed accumulator */
675 for_each_possible_cpu(cpu)
676 val += per_cpu(memcg->stat->count[idx], cpu);
677 /*
678 * Summing races with updates, so val may be negative. Avoid exposing
679 * transient negative values.
680 */
681 if (val < 0)
682 val = 0;
683 return val;
684 }
685
686 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
687 enum mem_cgroup_events_index idx)
688 {
689 unsigned long val = 0;
690 int cpu;
691
692 for_each_possible_cpu(cpu)
693 val += per_cpu(memcg->stat->events[idx], cpu);
694 return val;
695 }
696
697 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
698 struct page *page,
699 int nr_pages)
700 {
701 /*
702 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
703 * counted as CACHE even if it's on ANON LRU.
704 */
705 if (PageAnon(page))
706 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
707 nr_pages);
708 else
709 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
710 nr_pages);
711
712 if (PageTransHuge(page))
713 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
714 nr_pages);
715
716 /* pagein of a big page is an event. So, ignore page size */
717 if (nr_pages > 0)
718 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
719 else {
720 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
721 nr_pages = -nr_pages; /* for event */
722 }
723
724 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
725 }
726
727 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
728 int nid,
729 unsigned int lru_mask)
730 {
731 unsigned long nr = 0;
732 int zid;
733
734 VM_BUG_ON((unsigned)nid >= nr_node_ids);
735
736 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
737 struct mem_cgroup_per_zone *mz;
738 enum lru_list lru;
739
740 for_each_lru(lru) {
741 if (!(BIT(lru) & lru_mask))
742 continue;
743 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
744 nr += mz->lru_size[lru];
745 }
746 }
747 return nr;
748 }
749
750 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
751 unsigned int lru_mask)
752 {
753 unsigned long nr = 0;
754 int nid;
755
756 for_each_node_state(nid, N_MEMORY)
757 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
758 return nr;
759 }
760
761 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
762 enum mem_cgroup_events_target target)
763 {
764 unsigned long val, next;
765
766 val = __this_cpu_read(memcg->stat->nr_page_events);
767 next = __this_cpu_read(memcg->stat->targets[target]);
768 /* from time_after() in jiffies.h */
769 if ((long)next - (long)val < 0) {
770 switch (target) {
771 case MEM_CGROUP_TARGET_THRESH:
772 next = val + THRESHOLDS_EVENTS_TARGET;
773 break;
774 case MEM_CGROUP_TARGET_SOFTLIMIT:
775 next = val + SOFTLIMIT_EVENTS_TARGET;
776 break;
777 case MEM_CGROUP_TARGET_NUMAINFO:
778 next = val + NUMAINFO_EVENTS_TARGET;
779 break;
780 default:
781 break;
782 }
783 __this_cpu_write(memcg->stat->targets[target], next);
784 return true;
785 }
786 return false;
787 }
788
789 /*
790 * Check events in order.
791 *
792 */
793 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
794 {
795 /* threshold event is triggered in finer grain than soft limit */
796 if (unlikely(mem_cgroup_event_ratelimit(memcg,
797 MEM_CGROUP_TARGET_THRESH))) {
798 bool do_softlimit;
799 bool do_numainfo __maybe_unused;
800
801 do_softlimit = mem_cgroup_event_ratelimit(memcg,
802 MEM_CGROUP_TARGET_SOFTLIMIT);
803 #if MAX_NUMNODES > 1
804 do_numainfo = mem_cgroup_event_ratelimit(memcg,
805 MEM_CGROUP_TARGET_NUMAINFO);
806 #endif
807 mem_cgroup_threshold(memcg);
808 if (unlikely(do_softlimit))
809 mem_cgroup_update_tree(memcg, page);
810 #if MAX_NUMNODES > 1
811 if (unlikely(do_numainfo))
812 atomic_inc(&memcg->numainfo_events);
813 #endif
814 }
815 }
816
817 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
818 {
819 /*
820 * mm_update_next_owner() may clear mm->owner to NULL
821 * if it races with swapoff, page migration, etc.
822 * So this can be called with p == NULL.
823 */
824 if (unlikely(!p))
825 return NULL;
826
827 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
828 }
829 EXPORT_SYMBOL(mem_cgroup_from_task);
830
831 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
832 {
833 struct mem_cgroup *memcg = NULL;
834
835 rcu_read_lock();
836 do {
837 /*
838 * Page cache insertions can happen withou an
839 * actual mm context, e.g. during disk probing
840 * on boot, loopback IO, acct() writes etc.
841 */
842 if (unlikely(!mm))
843 memcg = root_mem_cgroup;
844 else {
845 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
846 if (unlikely(!memcg))
847 memcg = root_mem_cgroup;
848 }
849 } while (!css_tryget_online(&memcg->css));
850 rcu_read_unlock();
851 return memcg;
852 }
853
854 /**
855 * mem_cgroup_iter - iterate over memory cgroup hierarchy
856 * @root: hierarchy root
857 * @prev: previously returned memcg, NULL on first invocation
858 * @reclaim: cookie for shared reclaim walks, NULL for full walks
859 *
860 * Returns references to children of the hierarchy below @root, or
861 * @root itself, or %NULL after a full round-trip.
862 *
863 * Caller must pass the return value in @prev on subsequent
864 * invocations for reference counting, or use mem_cgroup_iter_break()
865 * to cancel a hierarchy walk before the round-trip is complete.
866 *
867 * Reclaimers can specify a zone and a priority level in @reclaim to
868 * divide up the memcgs in the hierarchy among all concurrent
869 * reclaimers operating on the same zone and priority.
870 */
871 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
872 struct mem_cgroup *prev,
873 struct mem_cgroup_reclaim_cookie *reclaim)
874 {
875 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
876 struct cgroup_subsys_state *css = NULL;
877 struct mem_cgroup *memcg = NULL;
878 struct mem_cgroup *pos = NULL;
879
880 if (mem_cgroup_disabled())
881 return NULL;
882
883 if (!root)
884 root = root_mem_cgroup;
885
886 if (prev && !reclaim)
887 pos = prev;
888
889 if (!root->use_hierarchy && root != root_mem_cgroup) {
890 if (prev)
891 goto out;
892 return root;
893 }
894
895 rcu_read_lock();
896
897 if (reclaim) {
898 struct mem_cgroup_per_zone *mz;
899
900 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
901 iter = &mz->iter[reclaim->priority];
902
903 if (prev && reclaim->generation != iter->generation)
904 goto out_unlock;
905
906 while (1) {
907 pos = READ_ONCE(iter->position);
908 if (!pos || css_tryget(&pos->css))
909 break;
910 /*
911 * css reference reached zero, so iter->position will
912 * be cleared by ->css_released. However, we should not
913 * rely on this happening soon, because ->css_released
914 * is called from a work queue, and by busy-waiting we
915 * might block it. So we clear iter->position right
916 * away.
917 */
918 (void)cmpxchg(&iter->position, pos, NULL);
919 }
920 }
921
922 if (pos)
923 css = &pos->css;
924
925 for (;;) {
926 css = css_next_descendant_pre(css, &root->css);
927 if (!css) {
928 /*
929 * Reclaimers share the hierarchy walk, and a
930 * new one might jump in right at the end of
931 * the hierarchy - make sure they see at least
932 * one group and restart from the beginning.
933 */
934 if (!prev)
935 continue;
936 break;
937 }
938
939 /*
940 * Verify the css and acquire a reference. The root
941 * is provided by the caller, so we know it's alive
942 * and kicking, and don't take an extra reference.
943 */
944 memcg = mem_cgroup_from_css(css);
945
946 if (css == &root->css)
947 break;
948
949 if (css_tryget(css)) {
950 /*
951 * Make sure the memcg is initialized:
952 * mem_cgroup_css_online() orders the the
953 * initialization against setting the flag.
954 */
955 if (smp_load_acquire(&memcg->initialized))
956 break;
957
958 css_put(css);
959 }
960
961 memcg = NULL;
962 }
963
964 if (reclaim) {
965 /*
966 * The position could have already been updated by a competing
967 * thread, so check that the value hasn't changed since we read
968 * it to avoid reclaiming from the same cgroup twice.
969 */
970 (void)cmpxchg(&iter->position, pos, memcg);
971
972 if (pos)
973 css_put(&pos->css);
974
975 if (!memcg)
976 iter->generation++;
977 else if (!prev)
978 reclaim->generation = iter->generation;
979 }
980
981 out_unlock:
982 rcu_read_unlock();
983 out:
984 if (prev && prev != root)
985 css_put(&prev->css);
986
987 return memcg;
988 }
989
990 /**
991 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
992 * @root: hierarchy root
993 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
994 */
995 void mem_cgroup_iter_break(struct mem_cgroup *root,
996 struct mem_cgroup *prev)
997 {
998 if (!root)
999 root = root_mem_cgroup;
1000 if (prev && prev != root)
1001 css_put(&prev->css);
1002 }
1003
1004 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1005 {
1006 struct mem_cgroup *memcg = dead_memcg;
1007 struct mem_cgroup_reclaim_iter *iter;
1008 struct mem_cgroup_per_zone *mz;
1009 int nid, zid;
1010 int i;
1011
1012 while ((memcg = parent_mem_cgroup(memcg))) {
1013 for_each_node(nid) {
1014 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1015 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
1016 for (i = 0; i <= DEF_PRIORITY; i++) {
1017 iter = &mz->iter[i];
1018 cmpxchg(&iter->position,
1019 dead_memcg, NULL);
1020 }
1021 }
1022 }
1023 }
1024 }
1025
1026 /*
1027 * Iteration constructs for visiting all cgroups (under a tree). If
1028 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1029 * be used for reference counting.
1030 */
1031 #define for_each_mem_cgroup_tree(iter, root) \
1032 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1033 iter != NULL; \
1034 iter = mem_cgroup_iter(root, iter, NULL))
1035
1036 #define for_each_mem_cgroup(iter) \
1037 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1038 iter != NULL; \
1039 iter = mem_cgroup_iter(NULL, iter, NULL))
1040
1041 /**
1042 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1043 * @zone: zone of the wanted lruvec
1044 * @memcg: memcg of the wanted lruvec
1045 *
1046 * Returns the lru list vector holding pages for the given @zone and
1047 * @mem. This can be the global zone lruvec, if the memory controller
1048 * is disabled.
1049 */
1050 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1051 struct mem_cgroup *memcg)
1052 {
1053 struct mem_cgroup_per_zone *mz;
1054 struct lruvec *lruvec;
1055
1056 if (mem_cgroup_disabled()) {
1057 lruvec = &zone->lruvec;
1058 goto out;
1059 }
1060
1061 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1062 lruvec = &mz->lruvec;
1063 out:
1064 /*
1065 * Since a node can be onlined after the mem_cgroup was created,
1066 * we have to be prepared to initialize lruvec->zone here;
1067 * and if offlined then reonlined, we need to reinitialize it.
1068 */
1069 if (unlikely(lruvec->zone != zone))
1070 lruvec->zone = zone;
1071 return lruvec;
1072 }
1073
1074 /**
1075 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1076 * @page: the page
1077 * @zone: zone of the page
1078 *
1079 * This function is only safe when following the LRU page isolation
1080 * and putback protocol: the LRU lock must be held, and the page must
1081 * either be PageLRU() or the caller must have isolated/allocated it.
1082 */
1083 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1084 {
1085 struct mem_cgroup_per_zone *mz;
1086 struct mem_cgroup *memcg;
1087 struct lruvec *lruvec;
1088
1089 if (mem_cgroup_disabled()) {
1090 lruvec = &zone->lruvec;
1091 goto out;
1092 }
1093
1094 memcg = page->mem_cgroup;
1095 /*
1096 * Swapcache readahead pages are added to the LRU - and
1097 * possibly migrated - before they are charged.
1098 */
1099 if (!memcg)
1100 memcg = root_mem_cgroup;
1101
1102 mz = mem_cgroup_page_zoneinfo(memcg, page);
1103 lruvec = &mz->lruvec;
1104 out:
1105 /*
1106 * Since a node can be onlined after the mem_cgroup was created,
1107 * we have to be prepared to initialize lruvec->zone here;
1108 * and if offlined then reonlined, we need to reinitialize it.
1109 */
1110 if (unlikely(lruvec->zone != zone))
1111 lruvec->zone = zone;
1112 return lruvec;
1113 }
1114
1115 /**
1116 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1117 * @lruvec: mem_cgroup per zone lru vector
1118 * @lru: index of lru list the page is sitting on
1119 * @nr_pages: positive when adding or negative when removing
1120 *
1121 * This function must be called when a page is added to or removed from an
1122 * lru list.
1123 */
1124 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1125 int nr_pages)
1126 {
1127 struct mem_cgroup_per_zone *mz;
1128 unsigned long *lru_size;
1129
1130 if (mem_cgroup_disabled())
1131 return;
1132
1133 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1134 lru_size = mz->lru_size + lru;
1135 *lru_size += nr_pages;
1136 VM_BUG_ON((long)(*lru_size) < 0);
1137 }
1138
1139 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1140 {
1141 struct mem_cgroup *task_memcg;
1142 struct task_struct *p;
1143 bool ret;
1144
1145 p = find_lock_task_mm(task);
1146 if (p) {
1147 task_memcg = get_mem_cgroup_from_mm(p->mm);
1148 task_unlock(p);
1149 } else {
1150 /*
1151 * All threads may have already detached their mm's, but the oom
1152 * killer still needs to detect if they have already been oom
1153 * killed to prevent needlessly killing additional tasks.
1154 */
1155 rcu_read_lock();
1156 task_memcg = mem_cgroup_from_task(task);
1157 css_get(&task_memcg->css);
1158 rcu_read_unlock();
1159 }
1160 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1161 css_put(&task_memcg->css);
1162 return ret;
1163 }
1164
1165 #define mem_cgroup_from_counter(counter, member) \
1166 container_of(counter, struct mem_cgroup, member)
1167
1168 /**
1169 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1170 * @memcg: the memory cgroup
1171 *
1172 * Returns the maximum amount of memory @mem can be charged with, in
1173 * pages.
1174 */
1175 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1176 {
1177 unsigned long margin = 0;
1178 unsigned long count;
1179 unsigned long limit;
1180
1181 count = page_counter_read(&memcg->memory);
1182 limit = READ_ONCE(memcg->memory.limit);
1183 if (count < limit)
1184 margin = limit - count;
1185
1186 if (do_swap_account) {
1187 count = page_counter_read(&memcg->memsw);
1188 limit = READ_ONCE(memcg->memsw.limit);
1189 if (count <= limit)
1190 margin = min(margin, limit - count);
1191 }
1192
1193 return margin;
1194 }
1195
1196 /*
1197 * A routine for checking "mem" is under move_account() or not.
1198 *
1199 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1200 * moving cgroups. This is for waiting at high-memory pressure
1201 * caused by "move".
1202 */
1203 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1204 {
1205 struct mem_cgroup *from;
1206 struct mem_cgroup *to;
1207 bool ret = false;
1208 /*
1209 * Unlike task_move routines, we access mc.to, mc.from not under
1210 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1211 */
1212 spin_lock(&mc.lock);
1213 from = mc.from;
1214 to = mc.to;
1215 if (!from)
1216 goto unlock;
1217
1218 ret = mem_cgroup_is_descendant(from, memcg) ||
1219 mem_cgroup_is_descendant(to, memcg);
1220 unlock:
1221 spin_unlock(&mc.lock);
1222 return ret;
1223 }
1224
1225 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1226 {
1227 if (mc.moving_task && current != mc.moving_task) {
1228 if (mem_cgroup_under_move(memcg)) {
1229 DEFINE_WAIT(wait);
1230 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1231 /* moving charge context might have finished. */
1232 if (mc.moving_task)
1233 schedule();
1234 finish_wait(&mc.waitq, &wait);
1235 return true;
1236 }
1237 }
1238 return false;
1239 }
1240
1241 #define K(x) ((x) << (PAGE_SHIFT-10))
1242 /**
1243 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1244 * @memcg: The memory cgroup that went over limit
1245 * @p: Task that is going to be killed
1246 *
1247 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1248 * enabled
1249 */
1250 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1251 {
1252 /* oom_info_lock ensures that parallel ooms do not interleave */
1253 static DEFINE_MUTEX(oom_info_lock);
1254 struct mem_cgroup *iter;
1255 unsigned int i;
1256
1257 mutex_lock(&oom_info_lock);
1258 rcu_read_lock();
1259
1260 if (p) {
1261 pr_info("Task in ");
1262 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1263 pr_cont(" killed as a result of limit of ");
1264 } else {
1265 pr_info("Memory limit reached of cgroup ");
1266 }
1267
1268 pr_cont_cgroup_path(memcg->css.cgroup);
1269 pr_cont("\n");
1270
1271 rcu_read_unlock();
1272
1273 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1274 K((u64)page_counter_read(&memcg->memory)),
1275 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1276 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1277 K((u64)page_counter_read(&memcg->memsw)),
1278 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1279 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1280 K((u64)page_counter_read(&memcg->kmem)),
1281 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1282
1283 for_each_mem_cgroup_tree(iter, memcg) {
1284 pr_info("Memory cgroup stats for ");
1285 pr_cont_cgroup_path(iter->css.cgroup);
1286 pr_cont(":");
1287
1288 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1289 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1290 continue;
1291 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1292 K(mem_cgroup_read_stat(iter, i)));
1293 }
1294
1295 for (i = 0; i < NR_LRU_LISTS; i++)
1296 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1297 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1298
1299 pr_cont("\n");
1300 }
1301 mutex_unlock(&oom_info_lock);
1302 }
1303
1304 /*
1305 * This function returns the number of memcg under hierarchy tree. Returns
1306 * 1(self count) if no children.
1307 */
1308 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1309 {
1310 int num = 0;
1311 struct mem_cgroup *iter;
1312
1313 for_each_mem_cgroup_tree(iter, memcg)
1314 num++;
1315 return num;
1316 }
1317
1318 /*
1319 * Return the memory (and swap, if configured) limit for a memcg.
1320 */
1321 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1322 {
1323 unsigned long limit;
1324
1325 limit = memcg->memory.limit;
1326 if (mem_cgroup_swappiness(memcg)) {
1327 unsigned long memsw_limit;
1328
1329 memsw_limit = memcg->memsw.limit;
1330 limit = min(limit + total_swap_pages, memsw_limit);
1331 }
1332 return limit;
1333 }
1334
1335 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1336 int order)
1337 {
1338 struct oom_control oc = {
1339 .zonelist = NULL,
1340 .nodemask = NULL,
1341 .gfp_mask = gfp_mask,
1342 .order = order,
1343 };
1344 struct mem_cgroup *iter;
1345 unsigned long chosen_points = 0;
1346 unsigned long totalpages;
1347 unsigned int points = 0;
1348 struct task_struct *chosen = NULL;
1349
1350 mutex_lock(&oom_lock);
1351
1352 /*
1353 * If current has a pending SIGKILL or is exiting, then automatically
1354 * select it. The goal is to allow it to allocate so that it may
1355 * quickly exit and free its memory.
1356 */
1357 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1358 mark_oom_victim(current);
1359 goto unlock;
1360 }
1361
1362 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1363 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1364 for_each_mem_cgroup_tree(iter, memcg) {
1365 struct css_task_iter it;
1366 struct task_struct *task;
1367
1368 css_task_iter_start(&iter->css, &it);
1369 while ((task = css_task_iter_next(&it))) {
1370 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1371 case OOM_SCAN_SELECT:
1372 if (chosen)
1373 put_task_struct(chosen);
1374 chosen = task;
1375 chosen_points = ULONG_MAX;
1376 get_task_struct(chosen);
1377 /* fall through */
1378 case OOM_SCAN_CONTINUE:
1379 continue;
1380 case OOM_SCAN_ABORT:
1381 css_task_iter_end(&it);
1382 mem_cgroup_iter_break(memcg, iter);
1383 if (chosen)
1384 put_task_struct(chosen);
1385 goto unlock;
1386 case OOM_SCAN_OK:
1387 break;
1388 };
1389 points = oom_badness(task, memcg, NULL, totalpages);
1390 if (!points || points < chosen_points)
1391 continue;
1392 /* Prefer thread group leaders for display purposes */
1393 if (points == chosen_points &&
1394 thread_group_leader(chosen))
1395 continue;
1396
1397 if (chosen)
1398 put_task_struct(chosen);
1399 chosen = task;
1400 chosen_points = points;
1401 get_task_struct(chosen);
1402 }
1403 css_task_iter_end(&it);
1404 }
1405
1406 if (chosen) {
1407 points = chosen_points * 1000 / totalpages;
1408 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1409 "Memory cgroup out of memory");
1410 }
1411 unlock:
1412 mutex_unlock(&oom_lock);
1413 }
1414
1415 #if MAX_NUMNODES > 1
1416
1417 /**
1418 * test_mem_cgroup_node_reclaimable
1419 * @memcg: the target memcg
1420 * @nid: the node ID to be checked.
1421 * @noswap : specify true here if the user wants flle only information.
1422 *
1423 * This function returns whether the specified memcg contains any
1424 * reclaimable pages on a node. Returns true if there are any reclaimable
1425 * pages in the node.
1426 */
1427 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1428 int nid, bool noswap)
1429 {
1430 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1431 return true;
1432 if (noswap || !total_swap_pages)
1433 return false;
1434 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1435 return true;
1436 return false;
1437
1438 }
1439
1440 /*
1441 * Always updating the nodemask is not very good - even if we have an empty
1442 * list or the wrong list here, we can start from some node and traverse all
1443 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1444 *
1445 */
1446 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1447 {
1448 int nid;
1449 /*
1450 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1451 * pagein/pageout changes since the last update.
1452 */
1453 if (!atomic_read(&memcg->numainfo_events))
1454 return;
1455 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1456 return;
1457
1458 /* make a nodemask where this memcg uses memory from */
1459 memcg->scan_nodes = node_states[N_MEMORY];
1460
1461 for_each_node_mask(nid, node_states[N_MEMORY]) {
1462
1463 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1464 node_clear(nid, memcg->scan_nodes);
1465 }
1466
1467 atomic_set(&memcg->numainfo_events, 0);
1468 atomic_set(&memcg->numainfo_updating, 0);
1469 }
1470
1471 /*
1472 * Selecting a node where we start reclaim from. Because what we need is just
1473 * reducing usage counter, start from anywhere is O,K. Considering
1474 * memory reclaim from current node, there are pros. and cons.
1475 *
1476 * Freeing memory from current node means freeing memory from a node which
1477 * we'll use or we've used. So, it may make LRU bad. And if several threads
1478 * hit limits, it will see a contention on a node. But freeing from remote
1479 * node means more costs for memory reclaim because of memory latency.
1480 *
1481 * Now, we use round-robin. Better algorithm is welcomed.
1482 */
1483 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1484 {
1485 int node;
1486
1487 mem_cgroup_may_update_nodemask(memcg);
1488 node = memcg->last_scanned_node;
1489
1490 node = next_node(node, memcg->scan_nodes);
1491 if (node == MAX_NUMNODES)
1492 node = first_node(memcg->scan_nodes);
1493 /*
1494 * We call this when we hit limit, not when pages are added to LRU.
1495 * No LRU may hold pages because all pages are UNEVICTABLE or
1496 * memcg is too small and all pages are not on LRU. In that case,
1497 * we use curret node.
1498 */
1499 if (unlikely(node == MAX_NUMNODES))
1500 node = numa_node_id();
1501
1502 memcg->last_scanned_node = node;
1503 return node;
1504 }
1505 #else
1506 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1507 {
1508 return 0;
1509 }
1510 #endif
1511
1512 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1513 struct zone *zone,
1514 gfp_t gfp_mask,
1515 unsigned long *total_scanned)
1516 {
1517 struct mem_cgroup *victim = NULL;
1518 int total = 0;
1519 int loop = 0;
1520 unsigned long excess;
1521 unsigned long nr_scanned;
1522 struct mem_cgroup_reclaim_cookie reclaim = {
1523 .zone = zone,
1524 .priority = 0,
1525 };
1526
1527 excess = soft_limit_excess(root_memcg);
1528
1529 while (1) {
1530 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1531 if (!victim) {
1532 loop++;
1533 if (loop >= 2) {
1534 /*
1535 * If we have not been able to reclaim
1536 * anything, it might because there are
1537 * no reclaimable pages under this hierarchy
1538 */
1539 if (!total)
1540 break;
1541 /*
1542 * We want to do more targeted reclaim.
1543 * excess >> 2 is not to excessive so as to
1544 * reclaim too much, nor too less that we keep
1545 * coming back to reclaim from this cgroup
1546 */
1547 if (total >= (excess >> 2) ||
1548 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1549 break;
1550 }
1551 continue;
1552 }
1553 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1554 zone, &nr_scanned);
1555 *total_scanned += nr_scanned;
1556 if (!soft_limit_excess(root_memcg))
1557 break;
1558 }
1559 mem_cgroup_iter_break(root_memcg, victim);
1560 return total;
1561 }
1562
1563 #ifdef CONFIG_LOCKDEP
1564 static struct lockdep_map memcg_oom_lock_dep_map = {
1565 .name = "memcg_oom_lock",
1566 };
1567 #endif
1568
1569 static DEFINE_SPINLOCK(memcg_oom_lock);
1570
1571 /*
1572 * Check OOM-Killer is already running under our hierarchy.
1573 * If someone is running, return false.
1574 */
1575 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1576 {
1577 struct mem_cgroup *iter, *failed = NULL;
1578
1579 spin_lock(&memcg_oom_lock);
1580
1581 for_each_mem_cgroup_tree(iter, memcg) {
1582 if (iter->oom_lock) {
1583 /*
1584 * this subtree of our hierarchy is already locked
1585 * so we cannot give a lock.
1586 */
1587 failed = iter;
1588 mem_cgroup_iter_break(memcg, iter);
1589 break;
1590 } else
1591 iter->oom_lock = true;
1592 }
1593
1594 if (failed) {
1595 /*
1596 * OK, we failed to lock the whole subtree so we have
1597 * to clean up what we set up to the failing subtree
1598 */
1599 for_each_mem_cgroup_tree(iter, memcg) {
1600 if (iter == failed) {
1601 mem_cgroup_iter_break(memcg, iter);
1602 break;
1603 }
1604 iter->oom_lock = false;
1605 }
1606 } else
1607 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1608
1609 spin_unlock(&memcg_oom_lock);
1610
1611 return !failed;
1612 }
1613
1614 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1615 {
1616 struct mem_cgroup *iter;
1617
1618 spin_lock(&memcg_oom_lock);
1619 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1620 for_each_mem_cgroup_tree(iter, memcg)
1621 iter->oom_lock = false;
1622 spin_unlock(&memcg_oom_lock);
1623 }
1624
1625 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1626 {
1627 struct mem_cgroup *iter;
1628
1629 spin_lock(&memcg_oom_lock);
1630 for_each_mem_cgroup_tree(iter, memcg)
1631 iter->under_oom++;
1632 spin_unlock(&memcg_oom_lock);
1633 }
1634
1635 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1636 {
1637 struct mem_cgroup *iter;
1638
1639 /*
1640 * When a new child is created while the hierarchy is under oom,
1641 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1642 */
1643 spin_lock(&memcg_oom_lock);
1644 for_each_mem_cgroup_tree(iter, memcg)
1645 if (iter->under_oom > 0)
1646 iter->under_oom--;
1647 spin_unlock(&memcg_oom_lock);
1648 }
1649
1650 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1651
1652 struct oom_wait_info {
1653 struct mem_cgroup *memcg;
1654 wait_queue_t wait;
1655 };
1656
1657 static int memcg_oom_wake_function(wait_queue_t *wait,
1658 unsigned mode, int sync, void *arg)
1659 {
1660 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1661 struct mem_cgroup *oom_wait_memcg;
1662 struct oom_wait_info *oom_wait_info;
1663
1664 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1665 oom_wait_memcg = oom_wait_info->memcg;
1666
1667 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1668 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1669 return 0;
1670 return autoremove_wake_function(wait, mode, sync, arg);
1671 }
1672
1673 static void memcg_oom_recover(struct mem_cgroup *memcg)
1674 {
1675 /*
1676 * For the following lockless ->under_oom test, the only required
1677 * guarantee is that it must see the state asserted by an OOM when
1678 * this function is called as a result of userland actions
1679 * triggered by the notification of the OOM. This is trivially
1680 * achieved by invoking mem_cgroup_mark_under_oom() before
1681 * triggering notification.
1682 */
1683 if (memcg && memcg->under_oom)
1684 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1685 }
1686
1687 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1688 {
1689 if (!current->memcg_may_oom)
1690 return;
1691 /*
1692 * We are in the middle of the charge context here, so we
1693 * don't want to block when potentially sitting on a callstack
1694 * that holds all kinds of filesystem and mm locks.
1695 *
1696 * Also, the caller may handle a failed allocation gracefully
1697 * (like optional page cache readahead) and so an OOM killer
1698 * invocation might not even be necessary.
1699 *
1700 * That's why we don't do anything here except remember the
1701 * OOM context and then deal with it at the end of the page
1702 * fault when the stack is unwound, the locks are released,
1703 * and when we know whether the fault was overall successful.
1704 */
1705 css_get(&memcg->css);
1706 current->memcg_in_oom = memcg;
1707 current->memcg_oom_gfp_mask = mask;
1708 current->memcg_oom_order = order;
1709 }
1710
1711 /**
1712 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1713 * @handle: actually kill/wait or just clean up the OOM state
1714 *
1715 * This has to be called at the end of a page fault if the memcg OOM
1716 * handler was enabled.
1717 *
1718 * Memcg supports userspace OOM handling where failed allocations must
1719 * sleep on a waitqueue until the userspace task resolves the
1720 * situation. Sleeping directly in the charge context with all kinds
1721 * of locks held is not a good idea, instead we remember an OOM state
1722 * in the task and mem_cgroup_oom_synchronize() has to be called at
1723 * the end of the page fault to complete the OOM handling.
1724 *
1725 * Returns %true if an ongoing memcg OOM situation was detected and
1726 * completed, %false otherwise.
1727 */
1728 bool mem_cgroup_oom_synchronize(bool handle)
1729 {
1730 struct mem_cgroup *memcg = current->memcg_in_oom;
1731 struct oom_wait_info owait;
1732 bool locked;
1733
1734 /* OOM is global, do not handle */
1735 if (!memcg)
1736 return false;
1737
1738 if (!handle || oom_killer_disabled)
1739 goto cleanup;
1740
1741 owait.memcg = memcg;
1742 owait.wait.flags = 0;
1743 owait.wait.func = memcg_oom_wake_function;
1744 owait.wait.private = current;
1745 INIT_LIST_HEAD(&owait.wait.task_list);
1746
1747 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1748 mem_cgroup_mark_under_oom(memcg);
1749
1750 locked = mem_cgroup_oom_trylock(memcg);
1751
1752 if (locked)
1753 mem_cgroup_oom_notify(memcg);
1754
1755 if (locked && !memcg->oom_kill_disable) {
1756 mem_cgroup_unmark_under_oom(memcg);
1757 finish_wait(&memcg_oom_waitq, &owait.wait);
1758 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1759 current->memcg_oom_order);
1760 } else {
1761 schedule();
1762 mem_cgroup_unmark_under_oom(memcg);
1763 finish_wait(&memcg_oom_waitq, &owait.wait);
1764 }
1765
1766 if (locked) {
1767 mem_cgroup_oom_unlock(memcg);
1768 /*
1769 * There is no guarantee that an OOM-lock contender
1770 * sees the wakeups triggered by the OOM kill
1771 * uncharges. Wake any sleepers explicitely.
1772 */
1773 memcg_oom_recover(memcg);
1774 }
1775 cleanup:
1776 current->memcg_in_oom = NULL;
1777 css_put(&memcg->css);
1778 return true;
1779 }
1780
1781 /**
1782 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1783 * @page: page that is going to change accounted state
1784 *
1785 * This function must mark the beginning of an accounted page state
1786 * change to prevent double accounting when the page is concurrently
1787 * being moved to another memcg:
1788 *
1789 * memcg = mem_cgroup_begin_page_stat(page);
1790 * if (TestClearPageState(page))
1791 * mem_cgroup_update_page_stat(memcg, state, -1);
1792 * mem_cgroup_end_page_stat(memcg);
1793 */
1794 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1795 {
1796 struct mem_cgroup *memcg;
1797 unsigned long flags;
1798
1799 /*
1800 * The RCU lock is held throughout the transaction. The fast
1801 * path can get away without acquiring the memcg->move_lock
1802 * because page moving starts with an RCU grace period.
1803 *
1804 * The RCU lock also protects the memcg from being freed when
1805 * the page state that is going to change is the only thing
1806 * preventing the page from being uncharged.
1807 * E.g. end-writeback clearing PageWriteback(), which allows
1808 * migration to go ahead and uncharge the page before the
1809 * account transaction might be complete.
1810 */
1811 rcu_read_lock();
1812
1813 if (mem_cgroup_disabled())
1814 return NULL;
1815 again:
1816 memcg = page->mem_cgroup;
1817 if (unlikely(!memcg))
1818 return NULL;
1819
1820 if (atomic_read(&memcg->moving_account) <= 0)
1821 return memcg;
1822
1823 spin_lock_irqsave(&memcg->move_lock, flags);
1824 if (memcg != page->mem_cgroup) {
1825 spin_unlock_irqrestore(&memcg->move_lock, flags);
1826 goto again;
1827 }
1828
1829 /*
1830 * When charge migration first begins, we can have locked and
1831 * unlocked page stat updates happening concurrently. Track
1832 * the task who has the lock for mem_cgroup_end_page_stat().
1833 */
1834 memcg->move_lock_task = current;
1835 memcg->move_lock_flags = flags;
1836
1837 return memcg;
1838 }
1839 EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1840
1841 /**
1842 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1843 * @memcg: the memcg that was accounted against
1844 */
1845 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1846 {
1847 if (memcg && memcg->move_lock_task == current) {
1848 unsigned long flags = memcg->move_lock_flags;
1849
1850 memcg->move_lock_task = NULL;
1851 memcg->move_lock_flags = 0;
1852
1853 spin_unlock_irqrestore(&memcg->move_lock, flags);
1854 }
1855
1856 rcu_read_unlock();
1857 }
1858 EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1859
1860 /*
1861 * size of first charge trial. "32" comes from vmscan.c's magic value.
1862 * TODO: maybe necessary to use big numbers in big irons.
1863 */
1864 #define CHARGE_BATCH 32U
1865 struct memcg_stock_pcp {
1866 struct mem_cgroup *cached; /* this never be root cgroup */
1867 unsigned int nr_pages;
1868 struct work_struct work;
1869 unsigned long flags;
1870 #define FLUSHING_CACHED_CHARGE 0
1871 };
1872 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1873 static DEFINE_MUTEX(percpu_charge_mutex);
1874
1875 /**
1876 * consume_stock: Try to consume stocked charge on this cpu.
1877 * @memcg: memcg to consume from.
1878 * @nr_pages: how many pages to charge.
1879 *
1880 * The charges will only happen if @memcg matches the current cpu's memcg
1881 * stock, and at least @nr_pages are available in that stock. Failure to
1882 * service an allocation will refill the stock.
1883 *
1884 * returns true if successful, false otherwise.
1885 */
1886 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1887 {
1888 struct memcg_stock_pcp *stock;
1889 bool ret = false;
1890
1891 if (nr_pages > CHARGE_BATCH)
1892 return ret;
1893
1894 stock = &get_cpu_var(memcg_stock);
1895 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1896 stock->nr_pages -= nr_pages;
1897 ret = true;
1898 }
1899 put_cpu_var(memcg_stock);
1900 return ret;
1901 }
1902
1903 /*
1904 * Returns stocks cached in percpu and reset cached information.
1905 */
1906 static void drain_stock(struct memcg_stock_pcp *stock)
1907 {
1908 struct mem_cgroup *old = stock->cached;
1909
1910 if (stock->nr_pages) {
1911 page_counter_uncharge(&old->memory, stock->nr_pages);
1912 if (do_swap_account)
1913 page_counter_uncharge(&old->memsw, stock->nr_pages);
1914 css_put_many(&old->css, stock->nr_pages);
1915 stock->nr_pages = 0;
1916 }
1917 stock->cached = NULL;
1918 }
1919
1920 /*
1921 * This must be called under preempt disabled or must be called by
1922 * a thread which is pinned to local cpu.
1923 */
1924 static void drain_local_stock(struct work_struct *dummy)
1925 {
1926 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1927 drain_stock(stock);
1928 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1929 }
1930
1931 /*
1932 * Cache charges(val) to local per_cpu area.
1933 * This will be consumed by consume_stock() function, later.
1934 */
1935 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1936 {
1937 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1938
1939 if (stock->cached != memcg) { /* reset if necessary */
1940 drain_stock(stock);
1941 stock->cached = memcg;
1942 }
1943 stock->nr_pages += nr_pages;
1944 put_cpu_var(memcg_stock);
1945 }
1946
1947 /*
1948 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1949 * of the hierarchy under it.
1950 */
1951 static void drain_all_stock(struct mem_cgroup *root_memcg)
1952 {
1953 int cpu, curcpu;
1954
1955 /* If someone's already draining, avoid adding running more workers. */
1956 if (!mutex_trylock(&percpu_charge_mutex))
1957 return;
1958 /* Notify other cpus that system-wide "drain" is running */
1959 get_online_cpus();
1960 curcpu = get_cpu();
1961 for_each_online_cpu(cpu) {
1962 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1963 struct mem_cgroup *memcg;
1964
1965 memcg = stock->cached;
1966 if (!memcg || !stock->nr_pages)
1967 continue;
1968 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1969 continue;
1970 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1971 if (cpu == curcpu)
1972 drain_local_stock(&stock->work);
1973 else
1974 schedule_work_on(cpu, &stock->work);
1975 }
1976 }
1977 put_cpu();
1978 put_online_cpus();
1979 mutex_unlock(&percpu_charge_mutex);
1980 }
1981
1982 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1983 unsigned long action,
1984 void *hcpu)
1985 {
1986 int cpu = (unsigned long)hcpu;
1987 struct memcg_stock_pcp *stock;
1988
1989 if (action == CPU_ONLINE)
1990 return NOTIFY_OK;
1991
1992 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1993 return NOTIFY_OK;
1994
1995 stock = &per_cpu(memcg_stock, cpu);
1996 drain_stock(stock);
1997 return NOTIFY_OK;
1998 }
1999
2000 /*
2001 * Scheduled by try_charge() to be executed from the userland return path
2002 * and reclaims memory over the high limit.
2003 */
2004 void mem_cgroup_handle_over_high(void)
2005 {
2006 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2007 struct mem_cgroup *memcg, *pos;
2008
2009 if (likely(!nr_pages))
2010 return;
2011
2012 pos = memcg = get_mem_cgroup_from_mm(current->mm);
2013
2014 do {
2015 if (page_counter_read(&pos->memory) <= pos->high)
2016 continue;
2017 mem_cgroup_events(pos, MEMCG_HIGH, 1);
2018 try_to_free_mem_cgroup_pages(pos, nr_pages, GFP_KERNEL, true);
2019 } while ((pos = parent_mem_cgroup(pos)));
2020
2021 css_put(&memcg->css);
2022 current->memcg_nr_pages_over_high = 0;
2023 }
2024
2025 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2026 unsigned int nr_pages)
2027 {
2028 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2029 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2030 struct mem_cgroup *mem_over_limit;
2031 struct page_counter *counter;
2032 unsigned long nr_reclaimed;
2033 bool may_swap = true;
2034 bool drained = false;
2035
2036 if (mem_cgroup_is_root(memcg))
2037 return 0;
2038 retry:
2039 if (consume_stock(memcg, nr_pages))
2040 return 0;
2041
2042 if (!do_swap_account ||
2043 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2044 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2045 goto done_restock;
2046 if (do_swap_account)
2047 page_counter_uncharge(&memcg->memsw, batch);
2048 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2049 } else {
2050 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2051 may_swap = false;
2052 }
2053
2054 if (batch > nr_pages) {
2055 batch = nr_pages;
2056 goto retry;
2057 }
2058
2059 /*
2060 * Unlike in global OOM situations, memcg is not in a physical
2061 * memory shortage. Allow dying and OOM-killed tasks to
2062 * bypass the last charges so that they can exit quickly and
2063 * free their memory.
2064 */
2065 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2066 fatal_signal_pending(current) ||
2067 current->flags & PF_EXITING))
2068 goto force;
2069
2070 if (unlikely(task_in_memcg_oom(current)))
2071 goto nomem;
2072
2073 if (!gfpflags_allow_blocking(gfp_mask))
2074 goto nomem;
2075
2076 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2077
2078 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2079 gfp_mask, may_swap);
2080
2081 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2082 goto retry;
2083
2084 if (!drained) {
2085 drain_all_stock(mem_over_limit);
2086 drained = true;
2087 goto retry;
2088 }
2089
2090 if (gfp_mask & __GFP_NORETRY)
2091 goto nomem;
2092 /*
2093 * Even though the limit is exceeded at this point, reclaim
2094 * may have been able to free some pages. Retry the charge
2095 * before killing the task.
2096 *
2097 * Only for regular pages, though: huge pages are rather
2098 * unlikely to succeed so close to the limit, and we fall back
2099 * to regular pages anyway in case of failure.
2100 */
2101 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2102 goto retry;
2103 /*
2104 * At task move, charge accounts can be doubly counted. So, it's
2105 * better to wait until the end of task_move if something is going on.
2106 */
2107 if (mem_cgroup_wait_acct_move(mem_over_limit))
2108 goto retry;
2109
2110 if (nr_retries--)
2111 goto retry;
2112
2113 if (gfp_mask & __GFP_NOFAIL)
2114 goto force;
2115
2116 if (fatal_signal_pending(current))
2117 goto force;
2118
2119 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2120
2121 mem_cgroup_oom(mem_over_limit, gfp_mask,
2122 get_order(nr_pages * PAGE_SIZE));
2123 nomem:
2124 if (!(gfp_mask & __GFP_NOFAIL))
2125 return -ENOMEM;
2126 force:
2127 /*
2128 * The allocation either can't fail or will lead to more memory
2129 * being freed very soon. Allow memory usage go over the limit
2130 * temporarily by force charging it.
2131 */
2132 page_counter_charge(&memcg->memory, nr_pages);
2133 if (do_swap_account)
2134 page_counter_charge(&memcg->memsw, nr_pages);
2135 css_get_many(&memcg->css, nr_pages);
2136
2137 return 0;
2138
2139 done_restock:
2140 css_get_many(&memcg->css, batch);
2141 if (batch > nr_pages)
2142 refill_stock(memcg, batch - nr_pages);
2143
2144 /*
2145 * If the hierarchy is above the normal consumption range, schedule
2146 * reclaim on returning to userland. We can perform reclaim here
2147 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2148 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2149 * not recorded as it most likely matches current's and won't
2150 * change in the meantime. As high limit is checked again before
2151 * reclaim, the cost of mismatch is negligible.
2152 */
2153 do {
2154 if (page_counter_read(&memcg->memory) > memcg->high) {
2155 current->memcg_nr_pages_over_high += batch;
2156 set_notify_resume(current);
2157 break;
2158 }
2159 } while ((memcg = parent_mem_cgroup(memcg)));
2160
2161 return 0;
2162 }
2163
2164 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2165 {
2166 if (mem_cgroup_is_root(memcg))
2167 return;
2168
2169 page_counter_uncharge(&memcg->memory, nr_pages);
2170 if (do_swap_account)
2171 page_counter_uncharge(&memcg->memsw, nr_pages);
2172
2173 css_put_many(&memcg->css, nr_pages);
2174 }
2175
2176 static void lock_page_lru(struct page *page, int *isolated)
2177 {
2178 struct zone *zone = page_zone(page);
2179
2180 spin_lock_irq(&zone->lru_lock);
2181 if (PageLRU(page)) {
2182 struct lruvec *lruvec;
2183
2184 lruvec = mem_cgroup_page_lruvec(page, zone);
2185 ClearPageLRU(page);
2186 del_page_from_lru_list(page, lruvec, page_lru(page));
2187 *isolated = 1;
2188 } else
2189 *isolated = 0;
2190 }
2191
2192 static void unlock_page_lru(struct page *page, int isolated)
2193 {
2194 struct zone *zone = page_zone(page);
2195
2196 if (isolated) {
2197 struct lruvec *lruvec;
2198
2199 lruvec = mem_cgroup_page_lruvec(page, zone);
2200 VM_BUG_ON_PAGE(PageLRU(page), page);
2201 SetPageLRU(page);
2202 add_page_to_lru_list(page, lruvec, page_lru(page));
2203 }
2204 spin_unlock_irq(&zone->lru_lock);
2205 }
2206
2207 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2208 bool lrucare)
2209 {
2210 int isolated;
2211
2212 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2213
2214 /*
2215 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2216 * may already be on some other mem_cgroup's LRU. Take care of it.
2217 */
2218 if (lrucare)
2219 lock_page_lru(page, &isolated);
2220
2221 /*
2222 * Nobody should be changing or seriously looking at
2223 * page->mem_cgroup at this point:
2224 *
2225 * - the page is uncharged
2226 *
2227 * - the page is off-LRU
2228 *
2229 * - an anonymous fault has exclusive page access, except for
2230 * a locked page table
2231 *
2232 * - a page cache insertion, a swapin fault, or a migration
2233 * have the page locked
2234 */
2235 page->mem_cgroup = memcg;
2236
2237 if (lrucare)
2238 unlock_page_lru(page, isolated);
2239 }
2240
2241 #ifdef CONFIG_MEMCG_KMEM
2242 static int memcg_alloc_cache_id(void)
2243 {
2244 int id, size;
2245 int err;
2246
2247 id = ida_simple_get(&memcg_cache_ida,
2248 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2249 if (id < 0)
2250 return id;
2251
2252 if (id < memcg_nr_cache_ids)
2253 return id;
2254
2255 /*
2256 * There's no space for the new id in memcg_caches arrays,
2257 * so we have to grow them.
2258 */
2259 down_write(&memcg_cache_ids_sem);
2260
2261 size = 2 * (id + 1);
2262 if (size < MEMCG_CACHES_MIN_SIZE)
2263 size = MEMCG_CACHES_MIN_SIZE;
2264 else if (size > MEMCG_CACHES_MAX_SIZE)
2265 size = MEMCG_CACHES_MAX_SIZE;
2266
2267 err = memcg_update_all_caches(size);
2268 if (!err)
2269 err = memcg_update_all_list_lrus(size);
2270 if (!err)
2271 memcg_nr_cache_ids = size;
2272
2273 up_write(&memcg_cache_ids_sem);
2274
2275 if (err) {
2276 ida_simple_remove(&memcg_cache_ida, id);
2277 return err;
2278 }
2279 return id;
2280 }
2281
2282 static void memcg_free_cache_id(int id)
2283 {
2284 ida_simple_remove(&memcg_cache_ida, id);
2285 }
2286
2287 struct memcg_kmem_cache_create_work {
2288 struct mem_cgroup *memcg;
2289 struct kmem_cache *cachep;
2290 struct work_struct work;
2291 };
2292
2293 static void memcg_kmem_cache_create_func(struct work_struct *w)
2294 {
2295 struct memcg_kmem_cache_create_work *cw =
2296 container_of(w, struct memcg_kmem_cache_create_work, work);
2297 struct mem_cgroup *memcg = cw->memcg;
2298 struct kmem_cache *cachep = cw->cachep;
2299
2300 memcg_create_kmem_cache(memcg, cachep);
2301
2302 css_put(&memcg->css);
2303 kfree(cw);
2304 }
2305
2306 /*
2307 * Enqueue the creation of a per-memcg kmem_cache.
2308 */
2309 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2310 struct kmem_cache *cachep)
2311 {
2312 struct memcg_kmem_cache_create_work *cw;
2313
2314 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2315 if (!cw)
2316 return;
2317
2318 css_get(&memcg->css);
2319
2320 cw->memcg = memcg;
2321 cw->cachep = cachep;
2322 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2323
2324 schedule_work(&cw->work);
2325 }
2326
2327 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2328 struct kmem_cache *cachep)
2329 {
2330 /*
2331 * We need to stop accounting when we kmalloc, because if the
2332 * corresponding kmalloc cache is not yet created, the first allocation
2333 * in __memcg_schedule_kmem_cache_create will recurse.
2334 *
2335 * However, it is better to enclose the whole function. Depending on
2336 * the debugging options enabled, INIT_WORK(), for instance, can
2337 * trigger an allocation. This too, will make us recurse. Because at
2338 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2339 * the safest choice is to do it like this, wrapping the whole function.
2340 */
2341 current->memcg_kmem_skip_account = 1;
2342 __memcg_schedule_kmem_cache_create(memcg, cachep);
2343 current->memcg_kmem_skip_account = 0;
2344 }
2345
2346 /*
2347 * Return the kmem_cache we're supposed to use for a slab allocation.
2348 * We try to use the current memcg's version of the cache.
2349 *
2350 * If the cache does not exist yet, if we are the first user of it,
2351 * we either create it immediately, if possible, or create it asynchronously
2352 * in a workqueue.
2353 * In the latter case, we will let the current allocation go through with
2354 * the original cache.
2355 *
2356 * Can't be called in interrupt context or from kernel threads.
2357 * This function needs to be called with rcu_read_lock() held.
2358 */
2359 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2360 {
2361 struct mem_cgroup *memcg;
2362 struct kmem_cache *memcg_cachep;
2363 int kmemcg_id;
2364
2365 VM_BUG_ON(!is_root_cache(cachep));
2366
2367 if (cachep->flags & SLAB_ACCOUNT)
2368 gfp |= __GFP_ACCOUNT;
2369
2370 if (!(gfp & __GFP_ACCOUNT))
2371 return cachep;
2372
2373 if (current->memcg_kmem_skip_account)
2374 return cachep;
2375
2376 memcg = get_mem_cgroup_from_mm(current->mm);
2377 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2378 if (kmemcg_id < 0)
2379 goto out;
2380
2381 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2382 if (likely(memcg_cachep))
2383 return memcg_cachep;
2384
2385 /*
2386 * If we are in a safe context (can wait, and not in interrupt
2387 * context), we could be be predictable and return right away.
2388 * This would guarantee that the allocation being performed
2389 * already belongs in the new cache.
2390 *
2391 * However, there are some clashes that can arrive from locking.
2392 * For instance, because we acquire the slab_mutex while doing
2393 * memcg_create_kmem_cache, this means no further allocation
2394 * could happen with the slab_mutex held. So it's better to
2395 * defer everything.
2396 */
2397 memcg_schedule_kmem_cache_create(memcg, cachep);
2398 out:
2399 css_put(&memcg->css);
2400 return cachep;
2401 }
2402
2403 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2404 {
2405 if (!is_root_cache(cachep))
2406 css_put(&cachep->memcg_params.memcg->css);
2407 }
2408
2409 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2410 struct mem_cgroup *memcg)
2411 {
2412 unsigned int nr_pages = 1 << order;
2413 struct page_counter *counter;
2414 int ret;
2415
2416 if (!memcg_kmem_is_active(memcg))
2417 return 0;
2418
2419 if (!page_counter_try_charge(&memcg->kmem, nr_pages, &counter))
2420 return -ENOMEM;
2421
2422 ret = try_charge(memcg, gfp, nr_pages);
2423 if (ret) {
2424 page_counter_uncharge(&memcg->kmem, nr_pages);
2425 return ret;
2426 }
2427
2428 page->mem_cgroup = memcg;
2429
2430 return 0;
2431 }
2432
2433 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2434 {
2435 struct mem_cgroup *memcg;
2436 int ret;
2437
2438 memcg = get_mem_cgroup_from_mm(current->mm);
2439 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2440 css_put(&memcg->css);
2441 return ret;
2442 }
2443
2444 void __memcg_kmem_uncharge(struct page *page, int order)
2445 {
2446 struct mem_cgroup *memcg = page->mem_cgroup;
2447 unsigned int nr_pages = 1 << order;
2448
2449 if (!memcg)
2450 return;
2451
2452 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2453
2454 page_counter_uncharge(&memcg->kmem, nr_pages);
2455 page_counter_uncharge(&memcg->memory, nr_pages);
2456 if (do_swap_account)
2457 page_counter_uncharge(&memcg->memsw, nr_pages);
2458
2459 page->mem_cgroup = NULL;
2460 css_put_many(&memcg->css, nr_pages);
2461 }
2462 #endif /* CONFIG_MEMCG_KMEM */
2463
2464 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2465
2466 /*
2467 * Because tail pages are not marked as "used", set it. We're under
2468 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2469 * charge/uncharge will be never happen and move_account() is done under
2470 * compound_lock(), so we don't have to take care of races.
2471 */
2472 void mem_cgroup_split_huge_fixup(struct page *head)
2473 {
2474 int i;
2475
2476 if (mem_cgroup_disabled())
2477 return;
2478
2479 for (i = 1; i < HPAGE_PMD_NR; i++)
2480 head[i].mem_cgroup = head->mem_cgroup;
2481
2482 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2483 HPAGE_PMD_NR);
2484 }
2485 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2486
2487 #ifdef CONFIG_MEMCG_SWAP
2488 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2489 bool charge)
2490 {
2491 int val = (charge) ? 1 : -1;
2492 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2493 }
2494
2495 /**
2496 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2497 * @entry: swap entry to be moved
2498 * @from: mem_cgroup which the entry is moved from
2499 * @to: mem_cgroup which the entry is moved to
2500 *
2501 * It succeeds only when the swap_cgroup's record for this entry is the same
2502 * as the mem_cgroup's id of @from.
2503 *
2504 * Returns 0 on success, -EINVAL on failure.
2505 *
2506 * The caller must have charged to @to, IOW, called page_counter_charge() about
2507 * both res and memsw, and called css_get().
2508 */
2509 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2510 struct mem_cgroup *from, struct mem_cgroup *to)
2511 {
2512 unsigned short old_id, new_id;
2513
2514 old_id = mem_cgroup_id(from);
2515 new_id = mem_cgroup_id(to);
2516
2517 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2518 mem_cgroup_swap_statistics(from, false);
2519 mem_cgroup_swap_statistics(to, true);
2520 return 0;
2521 }
2522 return -EINVAL;
2523 }
2524 #else
2525 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2526 struct mem_cgroup *from, struct mem_cgroup *to)
2527 {
2528 return -EINVAL;
2529 }
2530 #endif
2531
2532 static DEFINE_MUTEX(memcg_limit_mutex);
2533
2534 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2535 unsigned long limit)
2536 {
2537 unsigned long curusage;
2538 unsigned long oldusage;
2539 bool enlarge = false;
2540 int retry_count;
2541 int ret;
2542
2543 /*
2544 * For keeping hierarchical_reclaim simple, how long we should retry
2545 * is depends on callers. We set our retry-count to be function
2546 * of # of children which we should visit in this loop.
2547 */
2548 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2549 mem_cgroup_count_children(memcg);
2550
2551 oldusage = page_counter_read(&memcg->memory);
2552
2553 do {
2554 if (signal_pending(current)) {
2555 ret = -EINTR;
2556 break;
2557 }
2558
2559 mutex_lock(&memcg_limit_mutex);
2560 if (limit > memcg->memsw.limit) {
2561 mutex_unlock(&memcg_limit_mutex);
2562 ret = -EINVAL;
2563 break;
2564 }
2565 if (limit > memcg->memory.limit)
2566 enlarge = true;
2567 ret = page_counter_limit(&memcg->memory, limit);
2568 mutex_unlock(&memcg_limit_mutex);
2569
2570 if (!ret)
2571 break;
2572
2573 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2574
2575 curusage = page_counter_read(&memcg->memory);
2576 /* Usage is reduced ? */
2577 if (curusage >= oldusage)
2578 retry_count--;
2579 else
2580 oldusage = curusage;
2581 } while (retry_count);
2582
2583 if (!ret && enlarge)
2584 memcg_oom_recover(memcg);
2585
2586 return ret;
2587 }
2588
2589 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2590 unsigned long limit)
2591 {
2592 unsigned long curusage;
2593 unsigned long oldusage;
2594 bool enlarge = false;
2595 int retry_count;
2596 int ret;
2597
2598 /* see mem_cgroup_resize_res_limit */
2599 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2600 mem_cgroup_count_children(memcg);
2601
2602 oldusage = page_counter_read(&memcg->memsw);
2603
2604 do {
2605 if (signal_pending(current)) {
2606 ret = -EINTR;
2607 break;
2608 }
2609
2610 mutex_lock(&memcg_limit_mutex);
2611 if (limit < memcg->memory.limit) {
2612 mutex_unlock(&memcg_limit_mutex);
2613 ret = -EINVAL;
2614 break;
2615 }
2616 if (limit > memcg->memsw.limit)
2617 enlarge = true;
2618 ret = page_counter_limit(&memcg->memsw, limit);
2619 mutex_unlock(&memcg_limit_mutex);
2620
2621 if (!ret)
2622 break;
2623
2624 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2625
2626 curusage = page_counter_read(&memcg->memsw);
2627 /* Usage is reduced ? */
2628 if (curusage >= oldusage)
2629 retry_count--;
2630 else
2631 oldusage = curusage;
2632 } while (retry_count);
2633
2634 if (!ret && enlarge)
2635 memcg_oom_recover(memcg);
2636
2637 return ret;
2638 }
2639
2640 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2641 gfp_t gfp_mask,
2642 unsigned long *total_scanned)
2643 {
2644 unsigned long nr_reclaimed = 0;
2645 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2646 unsigned long reclaimed;
2647 int loop = 0;
2648 struct mem_cgroup_tree_per_zone *mctz;
2649 unsigned long excess;
2650 unsigned long nr_scanned;
2651
2652 if (order > 0)
2653 return 0;
2654
2655 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2656 /*
2657 * This loop can run a while, specially if mem_cgroup's continuously
2658 * keep exceeding their soft limit and putting the system under
2659 * pressure
2660 */
2661 do {
2662 if (next_mz)
2663 mz = next_mz;
2664 else
2665 mz = mem_cgroup_largest_soft_limit_node(mctz);
2666 if (!mz)
2667 break;
2668
2669 nr_scanned = 0;
2670 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2671 gfp_mask, &nr_scanned);
2672 nr_reclaimed += reclaimed;
2673 *total_scanned += nr_scanned;
2674 spin_lock_irq(&mctz->lock);
2675 __mem_cgroup_remove_exceeded(mz, mctz);
2676
2677 /*
2678 * If we failed to reclaim anything from this memory cgroup
2679 * it is time to move on to the next cgroup
2680 */
2681 next_mz = NULL;
2682 if (!reclaimed)
2683 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2684
2685 excess = soft_limit_excess(mz->memcg);
2686 /*
2687 * One school of thought says that we should not add
2688 * back the node to the tree if reclaim returns 0.
2689 * But our reclaim could return 0, simply because due
2690 * to priority we are exposing a smaller subset of
2691 * memory to reclaim from. Consider this as a longer
2692 * term TODO.
2693 */
2694 /* If excess == 0, no tree ops */
2695 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2696 spin_unlock_irq(&mctz->lock);
2697 css_put(&mz->memcg->css);
2698 loop++;
2699 /*
2700 * Could not reclaim anything and there are no more
2701 * mem cgroups to try or we seem to be looping without
2702 * reclaiming anything.
2703 */
2704 if (!nr_reclaimed &&
2705 (next_mz == NULL ||
2706 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2707 break;
2708 } while (!nr_reclaimed);
2709 if (next_mz)
2710 css_put(&next_mz->memcg->css);
2711 return nr_reclaimed;
2712 }
2713
2714 /*
2715 * Test whether @memcg has children, dead or alive. Note that this
2716 * function doesn't care whether @memcg has use_hierarchy enabled and
2717 * returns %true if there are child csses according to the cgroup
2718 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2719 */
2720 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2721 {
2722 bool ret;
2723
2724 /*
2725 * The lock does not prevent addition or deletion of children, but
2726 * it prevents a new child from being initialized based on this
2727 * parent in css_online(), so it's enough to decide whether
2728 * hierarchically inherited attributes can still be changed or not.
2729 */
2730 lockdep_assert_held(&memcg_create_mutex);
2731
2732 rcu_read_lock();
2733 ret = css_next_child(NULL, &memcg->css);
2734 rcu_read_unlock();
2735 return ret;
2736 }
2737
2738 /*
2739 * Reclaims as many pages from the given memcg as possible and moves
2740 * the rest to the parent.
2741 *
2742 * Caller is responsible for holding css reference for memcg.
2743 */
2744 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2745 {
2746 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2747
2748 /* we call try-to-free pages for make this cgroup empty */
2749 lru_add_drain_all();
2750 /* try to free all pages in this cgroup */
2751 while (nr_retries && page_counter_read(&memcg->memory)) {
2752 int progress;
2753
2754 if (signal_pending(current))
2755 return -EINTR;
2756
2757 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2758 GFP_KERNEL, true);
2759 if (!progress) {
2760 nr_retries--;
2761 /* maybe some writeback is necessary */
2762 congestion_wait(BLK_RW_ASYNC, HZ/10);
2763 }
2764
2765 }
2766
2767 return 0;
2768 }
2769
2770 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2771 char *buf, size_t nbytes,
2772 loff_t off)
2773 {
2774 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2775
2776 if (mem_cgroup_is_root(memcg))
2777 return -EINVAL;
2778 return mem_cgroup_force_empty(memcg) ?: nbytes;
2779 }
2780
2781 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2782 struct cftype *cft)
2783 {
2784 return mem_cgroup_from_css(css)->use_hierarchy;
2785 }
2786
2787 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2788 struct cftype *cft, u64 val)
2789 {
2790 int retval = 0;
2791 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2792 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2793
2794 mutex_lock(&memcg_create_mutex);
2795
2796 if (memcg->use_hierarchy == val)
2797 goto out;
2798
2799 /*
2800 * If parent's use_hierarchy is set, we can't make any modifications
2801 * in the child subtrees. If it is unset, then the change can
2802 * occur, provided the current cgroup has no children.
2803 *
2804 * For the root cgroup, parent_mem is NULL, we allow value to be
2805 * set if there are no children.
2806 */
2807 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2808 (val == 1 || val == 0)) {
2809 if (!memcg_has_children(memcg))
2810 memcg->use_hierarchy = val;
2811 else
2812 retval = -EBUSY;
2813 } else
2814 retval = -EINVAL;
2815
2816 out:
2817 mutex_unlock(&memcg_create_mutex);
2818
2819 return retval;
2820 }
2821
2822 static unsigned long tree_stat(struct mem_cgroup *memcg,
2823 enum mem_cgroup_stat_index idx)
2824 {
2825 struct mem_cgroup *iter;
2826 unsigned long val = 0;
2827
2828 for_each_mem_cgroup_tree(iter, memcg)
2829 val += mem_cgroup_read_stat(iter, idx);
2830
2831 return val;
2832 }
2833
2834 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2835 {
2836 unsigned long val;
2837
2838 if (mem_cgroup_is_root(memcg)) {
2839 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2840 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2841 if (swap)
2842 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2843 } else {
2844 if (!swap)
2845 val = page_counter_read(&memcg->memory);
2846 else
2847 val = page_counter_read(&memcg->memsw);
2848 }
2849 return val;
2850 }
2851
2852 enum {
2853 RES_USAGE,
2854 RES_LIMIT,
2855 RES_MAX_USAGE,
2856 RES_FAILCNT,
2857 RES_SOFT_LIMIT,
2858 };
2859
2860 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2861 struct cftype *cft)
2862 {
2863 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2864 struct page_counter *counter;
2865
2866 switch (MEMFILE_TYPE(cft->private)) {
2867 case _MEM:
2868 counter = &memcg->memory;
2869 break;
2870 case _MEMSWAP:
2871 counter = &memcg->memsw;
2872 break;
2873 case _KMEM:
2874 counter = &memcg->kmem;
2875 break;
2876 default:
2877 BUG();
2878 }
2879
2880 switch (MEMFILE_ATTR(cft->private)) {
2881 case RES_USAGE:
2882 if (counter == &memcg->memory)
2883 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2884 if (counter == &memcg->memsw)
2885 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2886 return (u64)page_counter_read(counter) * PAGE_SIZE;
2887 case RES_LIMIT:
2888 return (u64)counter->limit * PAGE_SIZE;
2889 case RES_MAX_USAGE:
2890 return (u64)counter->watermark * PAGE_SIZE;
2891 case RES_FAILCNT:
2892 return counter->failcnt;
2893 case RES_SOFT_LIMIT:
2894 return (u64)memcg->soft_limit * PAGE_SIZE;
2895 default:
2896 BUG();
2897 }
2898 }
2899
2900 #ifdef CONFIG_MEMCG_KMEM
2901 static int memcg_activate_kmem(struct mem_cgroup *memcg,
2902 unsigned long nr_pages)
2903 {
2904 int err = 0;
2905 int memcg_id;
2906
2907 BUG_ON(memcg->kmemcg_id >= 0);
2908 BUG_ON(memcg->kmem_acct_activated);
2909 BUG_ON(memcg->kmem_acct_active);
2910
2911 /*
2912 * For simplicity, we won't allow this to be disabled. It also can't
2913 * be changed if the cgroup has children already, or if tasks had
2914 * already joined.
2915 *
2916 * If tasks join before we set the limit, a person looking at
2917 * kmem.usage_in_bytes will have no way to determine when it took
2918 * place, which makes the value quite meaningless.
2919 *
2920 * After it first became limited, changes in the value of the limit are
2921 * of course permitted.
2922 */
2923 mutex_lock(&memcg_create_mutex);
2924 if (cgroup_is_populated(memcg->css.cgroup) ||
2925 (memcg->use_hierarchy && memcg_has_children(memcg)))
2926 err = -EBUSY;
2927 mutex_unlock(&memcg_create_mutex);
2928 if (err)
2929 goto out;
2930
2931 memcg_id = memcg_alloc_cache_id();
2932 if (memcg_id < 0) {
2933 err = memcg_id;
2934 goto out;
2935 }
2936
2937 /*
2938 * We couldn't have accounted to this cgroup, because it hasn't got
2939 * activated yet, so this should succeed.
2940 */
2941 err = page_counter_limit(&memcg->kmem, nr_pages);
2942 VM_BUG_ON(err);
2943
2944 static_key_slow_inc(&memcg_kmem_enabled_key);
2945 /*
2946 * A memory cgroup is considered kmem-active as soon as it gets
2947 * kmemcg_id. Setting the id after enabling static branching will
2948 * guarantee no one starts accounting before all call sites are
2949 * patched.
2950 */
2951 memcg->kmemcg_id = memcg_id;
2952 memcg->kmem_acct_activated = true;
2953 memcg->kmem_acct_active = true;
2954 out:
2955 return err;
2956 }
2957
2958 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2959 unsigned long limit)
2960 {
2961 int ret;
2962
2963 mutex_lock(&memcg_limit_mutex);
2964 if (!memcg_kmem_is_active(memcg))
2965 ret = memcg_activate_kmem(memcg, limit);
2966 else
2967 ret = page_counter_limit(&memcg->kmem, limit);
2968 mutex_unlock(&memcg_limit_mutex);
2969 return ret;
2970 }
2971
2972 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2973 {
2974 int ret = 0;
2975 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2976
2977 if (!parent)
2978 return 0;
2979
2980 mutex_lock(&memcg_limit_mutex);
2981 /*
2982 * If the parent cgroup is not kmem-active now, it cannot be activated
2983 * after this point, because it has at least one child already.
2984 */
2985 if (memcg_kmem_is_active(parent))
2986 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
2987 mutex_unlock(&memcg_limit_mutex);
2988 return ret;
2989 }
2990 #else
2991 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2992 unsigned long limit)
2993 {
2994 return -EINVAL;
2995 }
2996 #endif /* CONFIG_MEMCG_KMEM */
2997
2998 /*
2999 * The user of this function is...
3000 * RES_LIMIT.
3001 */
3002 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3003 char *buf, size_t nbytes, loff_t off)
3004 {
3005 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3006 unsigned long nr_pages;
3007 int ret;
3008
3009 buf = strstrip(buf);
3010 ret = page_counter_memparse(buf, "-1", &nr_pages);
3011 if (ret)
3012 return ret;
3013
3014 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3015 case RES_LIMIT:
3016 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3017 ret = -EINVAL;
3018 break;
3019 }
3020 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3021 case _MEM:
3022 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3023 break;
3024 case _MEMSWAP:
3025 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3026 break;
3027 case _KMEM:
3028 ret = memcg_update_kmem_limit(memcg, nr_pages);
3029 break;
3030 }
3031 break;
3032 case RES_SOFT_LIMIT:
3033 memcg->soft_limit = nr_pages;
3034 ret = 0;
3035 break;
3036 }
3037 return ret ?: nbytes;
3038 }
3039
3040 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3041 size_t nbytes, loff_t off)
3042 {
3043 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3044 struct page_counter *counter;
3045
3046 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3047 case _MEM:
3048 counter = &memcg->memory;
3049 break;
3050 case _MEMSWAP:
3051 counter = &memcg->memsw;
3052 break;
3053 case _KMEM:
3054 counter = &memcg->kmem;
3055 break;
3056 default:
3057 BUG();
3058 }
3059
3060 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3061 case RES_MAX_USAGE:
3062 page_counter_reset_watermark(counter);
3063 break;
3064 case RES_FAILCNT:
3065 counter->failcnt = 0;
3066 break;
3067 default:
3068 BUG();
3069 }
3070
3071 return nbytes;
3072 }
3073
3074 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3075 struct cftype *cft)
3076 {
3077 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3078 }
3079
3080 #ifdef CONFIG_MMU
3081 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3082 struct cftype *cft, u64 val)
3083 {
3084 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3085
3086 if (val & ~MOVE_MASK)
3087 return -EINVAL;
3088
3089 /*
3090 * No kind of locking is needed in here, because ->can_attach() will
3091 * check this value once in the beginning of the process, and then carry
3092 * on with stale data. This means that changes to this value will only
3093 * affect task migrations starting after the change.
3094 */
3095 memcg->move_charge_at_immigrate = val;
3096 return 0;
3097 }
3098 #else
3099 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3100 struct cftype *cft, u64 val)
3101 {
3102 return -ENOSYS;
3103 }
3104 #endif
3105
3106 #ifdef CONFIG_NUMA
3107 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3108 {
3109 struct numa_stat {
3110 const char *name;
3111 unsigned int lru_mask;
3112 };
3113
3114 static const struct numa_stat stats[] = {
3115 { "total", LRU_ALL },
3116 { "file", LRU_ALL_FILE },
3117 { "anon", LRU_ALL_ANON },
3118 { "unevictable", BIT(LRU_UNEVICTABLE) },
3119 };
3120 const struct numa_stat *stat;
3121 int nid;
3122 unsigned long nr;
3123 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3124
3125 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3126 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3127 seq_printf(m, "%s=%lu", stat->name, nr);
3128 for_each_node_state(nid, N_MEMORY) {
3129 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3130 stat->lru_mask);
3131 seq_printf(m, " N%d=%lu", nid, nr);
3132 }
3133 seq_putc(m, '\n');
3134 }
3135
3136 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3137 struct mem_cgroup *iter;
3138
3139 nr = 0;
3140 for_each_mem_cgroup_tree(iter, memcg)
3141 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3142 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3143 for_each_node_state(nid, N_MEMORY) {
3144 nr = 0;
3145 for_each_mem_cgroup_tree(iter, memcg)
3146 nr += mem_cgroup_node_nr_lru_pages(
3147 iter, nid, stat->lru_mask);
3148 seq_printf(m, " N%d=%lu", nid, nr);
3149 }
3150 seq_putc(m, '\n');
3151 }
3152
3153 return 0;
3154 }
3155 #endif /* CONFIG_NUMA */
3156
3157 static int memcg_stat_show(struct seq_file *m, void *v)
3158 {
3159 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3160 unsigned long memory, memsw;
3161 struct mem_cgroup *mi;
3162 unsigned int i;
3163
3164 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3165 MEM_CGROUP_STAT_NSTATS);
3166 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3167 MEM_CGROUP_EVENTS_NSTATS);
3168 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3169
3170 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3171 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3172 continue;
3173 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3174 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3175 }
3176
3177 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3178 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3179 mem_cgroup_read_events(memcg, i));
3180
3181 for (i = 0; i < NR_LRU_LISTS; i++)
3182 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3183 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3184
3185 /* Hierarchical information */
3186 memory = memsw = PAGE_COUNTER_MAX;
3187 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3188 memory = min(memory, mi->memory.limit);
3189 memsw = min(memsw, mi->memsw.limit);
3190 }
3191 seq_printf(m, "hierarchical_memory_limit %llu\n",
3192 (u64)memory * PAGE_SIZE);
3193 if (do_swap_account)
3194 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3195 (u64)memsw * PAGE_SIZE);
3196
3197 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3198 unsigned long long val = 0;
3199
3200 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3201 continue;
3202 for_each_mem_cgroup_tree(mi, memcg)
3203 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3204 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3205 }
3206
3207 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3208 unsigned long long val = 0;
3209
3210 for_each_mem_cgroup_tree(mi, memcg)
3211 val += mem_cgroup_read_events(mi, i);
3212 seq_printf(m, "total_%s %llu\n",
3213 mem_cgroup_events_names[i], val);
3214 }
3215
3216 for (i = 0; i < NR_LRU_LISTS; i++) {
3217 unsigned long long val = 0;
3218
3219 for_each_mem_cgroup_tree(mi, memcg)
3220 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3221 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3222 }
3223
3224 #ifdef CONFIG_DEBUG_VM
3225 {
3226 int nid, zid;
3227 struct mem_cgroup_per_zone *mz;
3228 struct zone_reclaim_stat *rstat;
3229 unsigned long recent_rotated[2] = {0, 0};
3230 unsigned long recent_scanned[2] = {0, 0};
3231
3232 for_each_online_node(nid)
3233 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3234 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3235 rstat = &mz->lruvec.reclaim_stat;
3236
3237 recent_rotated[0] += rstat->recent_rotated[0];
3238 recent_rotated[1] += rstat->recent_rotated[1];
3239 recent_scanned[0] += rstat->recent_scanned[0];
3240 recent_scanned[1] += rstat->recent_scanned[1];
3241 }
3242 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3243 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3244 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3245 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3246 }
3247 #endif
3248
3249 return 0;
3250 }
3251
3252 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3253 struct cftype *cft)
3254 {
3255 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3256
3257 return mem_cgroup_swappiness(memcg);
3258 }
3259
3260 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3261 struct cftype *cft, u64 val)
3262 {
3263 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3264
3265 if (val > 100)
3266 return -EINVAL;
3267
3268 if (css->parent)
3269 memcg->swappiness = val;
3270 else
3271 vm_swappiness = val;
3272
3273 return 0;
3274 }
3275
3276 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3277 {
3278 struct mem_cgroup_threshold_ary *t;
3279 unsigned long usage;
3280 int i;
3281
3282 rcu_read_lock();
3283 if (!swap)
3284 t = rcu_dereference(memcg->thresholds.primary);
3285 else
3286 t = rcu_dereference(memcg->memsw_thresholds.primary);
3287
3288 if (!t)
3289 goto unlock;
3290
3291 usage = mem_cgroup_usage(memcg, swap);
3292
3293 /*
3294 * current_threshold points to threshold just below or equal to usage.
3295 * If it's not true, a threshold was crossed after last
3296 * call of __mem_cgroup_threshold().
3297 */
3298 i = t->current_threshold;
3299
3300 /*
3301 * Iterate backward over array of thresholds starting from
3302 * current_threshold and check if a threshold is crossed.
3303 * If none of thresholds below usage is crossed, we read
3304 * only one element of the array here.
3305 */
3306 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3307 eventfd_signal(t->entries[i].eventfd, 1);
3308
3309 /* i = current_threshold + 1 */
3310 i++;
3311
3312 /*
3313 * Iterate forward over array of thresholds starting from
3314 * current_threshold+1 and check if a threshold is crossed.
3315 * If none of thresholds above usage is crossed, we read
3316 * only one element of the array here.
3317 */
3318 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3319 eventfd_signal(t->entries[i].eventfd, 1);
3320
3321 /* Update current_threshold */
3322 t->current_threshold = i - 1;
3323 unlock:
3324 rcu_read_unlock();
3325 }
3326
3327 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3328 {
3329 while (memcg) {
3330 __mem_cgroup_threshold(memcg, false);
3331 if (do_swap_account)
3332 __mem_cgroup_threshold(memcg, true);
3333
3334 memcg = parent_mem_cgroup(memcg);
3335 }
3336 }
3337
3338 static int compare_thresholds(const void *a, const void *b)
3339 {
3340 const struct mem_cgroup_threshold *_a = a;
3341 const struct mem_cgroup_threshold *_b = b;
3342
3343 if (_a->threshold > _b->threshold)
3344 return 1;
3345
3346 if (_a->threshold < _b->threshold)
3347 return -1;
3348
3349 return 0;
3350 }
3351
3352 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3353 {
3354 struct mem_cgroup_eventfd_list *ev;
3355
3356 spin_lock(&memcg_oom_lock);
3357
3358 list_for_each_entry(ev, &memcg->oom_notify, list)
3359 eventfd_signal(ev->eventfd, 1);
3360
3361 spin_unlock(&memcg_oom_lock);
3362 return 0;
3363 }
3364
3365 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3366 {
3367 struct mem_cgroup *iter;
3368
3369 for_each_mem_cgroup_tree(iter, memcg)
3370 mem_cgroup_oom_notify_cb(iter);
3371 }
3372
3373 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3374 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3375 {
3376 struct mem_cgroup_thresholds *thresholds;
3377 struct mem_cgroup_threshold_ary *new;
3378 unsigned long threshold;
3379 unsigned long usage;
3380 int i, size, ret;
3381
3382 ret = page_counter_memparse(args, "-1", &threshold);
3383 if (ret)
3384 return ret;
3385
3386 mutex_lock(&memcg->thresholds_lock);
3387
3388 if (type == _MEM) {
3389 thresholds = &memcg->thresholds;
3390 usage = mem_cgroup_usage(memcg, false);
3391 } else if (type == _MEMSWAP) {
3392 thresholds = &memcg->memsw_thresholds;
3393 usage = mem_cgroup_usage(memcg, true);
3394 } else
3395 BUG();
3396
3397 /* Check if a threshold crossed before adding a new one */
3398 if (thresholds->primary)
3399 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3400
3401 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3402
3403 /* Allocate memory for new array of thresholds */
3404 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3405 GFP_KERNEL);
3406 if (!new) {
3407 ret = -ENOMEM;
3408 goto unlock;
3409 }
3410 new->size = size;
3411
3412 /* Copy thresholds (if any) to new array */
3413 if (thresholds->primary) {
3414 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3415 sizeof(struct mem_cgroup_threshold));
3416 }
3417
3418 /* Add new threshold */
3419 new->entries[size - 1].eventfd = eventfd;
3420 new->entries[size - 1].threshold = threshold;
3421
3422 /* Sort thresholds. Registering of new threshold isn't time-critical */
3423 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3424 compare_thresholds, NULL);
3425
3426 /* Find current threshold */
3427 new->current_threshold = -1;
3428 for (i = 0; i < size; i++) {
3429 if (new->entries[i].threshold <= usage) {
3430 /*
3431 * new->current_threshold will not be used until
3432 * rcu_assign_pointer(), so it's safe to increment
3433 * it here.
3434 */
3435 ++new->current_threshold;
3436 } else
3437 break;
3438 }
3439
3440 /* Free old spare buffer and save old primary buffer as spare */
3441 kfree(thresholds->spare);
3442 thresholds->spare = thresholds->primary;
3443
3444 rcu_assign_pointer(thresholds->primary, new);
3445
3446 /* To be sure that nobody uses thresholds */
3447 synchronize_rcu();
3448
3449 unlock:
3450 mutex_unlock(&memcg->thresholds_lock);
3451
3452 return ret;
3453 }
3454
3455 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3456 struct eventfd_ctx *eventfd, const char *args)
3457 {
3458 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3459 }
3460
3461 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3462 struct eventfd_ctx *eventfd, const char *args)
3463 {
3464 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3465 }
3466
3467 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3468 struct eventfd_ctx *eventfd, enum res_type type)
3469 {
3470 struct mem_cgroup_thresholds *thresholds;
3471 struct mem_cgroup_threshold_ary *new;
3472 unsigned long usage;
3473 int i, j, size;
3474
3475 mutex_lock(&memcg->thresholds_lock);
3476
3477 if (type == _MEM) {
3478 thresholds = &memcg->thresholds;
3479 usage = mem_cgroup_usage(memcg, false);
3480 } else if (type == _MEMSWAP) {
3481 thresholds = &memcg->memsw_thresholds;
3482 usage = mem_cgroup_usage(memcg, true);
3483 } else
3484 BUG();
3485
3486 if (!thresholds->primary)
3487 goto unlock;
3488
3489 /* Check if a threshold crossed before removing */
3490 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3491
3492 /* Calculate new number of threshold */
3493 size = 0;
3494 for (i = 0; i < thresholds->primary->size; i++) {
3495 if (thresholds->primary->entries[i].eventfd != eventfd)
3496 size++;
3497 }
3498
3499 new = thresholds->spare;
3500
3501 /* Set thresholds array to NULL if we don't have thresholds */
3502 if (!size) {
3503 kfree(new);
3504 new = NULL;
3505 goto swap_buffers;
3506 }
3507
3508 new->size = size;
3509
3510 /* Copy thresholds and find current threshold */
3511 new->current_threshold = -1;
3512 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3513 if (thresholds->primary->entries[i].eventfd == eventfd)
3514 continue;
3515
3516 new->entries[j] = thresholds->primary->entries[i];
3517 if (new->entries[j].threshold <= usage) {
3518 /*
3519 * new->current_threshold will not be used
3520 * until rcu_assign_pointer(), so it's safe to increment
3521 * it here.
3522 */
3523 ++new->current_threshold;
3524 }
3525 j++;
3526 }
3527
3528 swap_buffers:
3529 /* Swap primary and spare array */
3530 thresholds->spare = thresholds->primary;
3531 /* If all events are unregistered, free the spare array */
3532 if (!new) {
3533 kfree(thresholds->spare);
3534 thresholds->spare = NULL;
3535 }
3536
3537 rcu_assign_pointer(thresholds->primary, new);
3538
3539 /* To be sure that nobody uses thresholds */
3540 synchronize_rcu();
3541 unlock:
3542 mutex_unlock(&memcg->thresholds_lock);
3543 }
3544
3545 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3546 struct eventfd_ctx *eventfd)
3547 {
3548 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3549 }
3550
3551 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3552 struct eventfd_ctx *eventfd)
3553 {
3554 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3555 }
3556
3557 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3558 struct eventfd_ctx *eventfd, const char *args)
3559 {
3560 struct mem_cgroup_eventfd_list *event;
3561
3562 event = kmalloc(sizeof(*event), GFP_KERNEL);
3563 if (!event)
3564 return -ENOMEM;
3565
3566 spin_lock(&memcg_oom_lock);
3567
3568 event->eventfd = eventfd;
3569 list_add(&event->list, &memcg->oom_notify);
3570
3571 /* already in OOM ? */
3572 if (memcg->under_oom)
3573 eventfd_signal(eventfd, 1);
3574 spin_unlock(&memcg_oom_lock);
3575
3576 return 0;
3577 }
3578
3579 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3580 struct eventfd_ctx *eventfd)
3581 {
3582 struct mem_cgroup_eventfd_list *ev, *tmp;
3583
3584 spin_lock(&memcg_oom_lock);
3585
3586 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3587 if (ev->eventfd == eventfd) {
3588 list_del(&ev->list);
3589 kfree(ev);
3590 }
3591 }
3592
3593 spin_unlock(&memcg_oom_lock);
3594 }
3595
3596 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3597 {
3598 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3599
3600 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3601 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3602 return 0;
3603 }
3604
3605 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3606 struct cftype *cft, u64 val)
3607 {
3608 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3609
3610 /* cannot set to root cgroup and only 0 and 1 are allowed */
3611 if (!css->parent || !((val == 0) || (val == 1)))
3612 return -EINVAL;
3613
3614 memcg->oom_kill_disable = val;
3615 if (!val)
3616 memcg_oom_recover(memcg);
3617
3618 return 0;
3619 }
3620
3621 #ifdef CONFIG_MEMCG_KMEM
3622 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3623 {
3624 int ret;
3625
3626 ret = memcg_propagate_kmem(memcg);
3627 if (ret)
3628 return ret;
3629
3630 return mem_cgroup_sockets_init(memcg, ss);
3631 }
3632
3633 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3634 {
3635 struct cgroup_subsys_state *css;
3636 struct mem_cgroup *parent, *child;
3637 int kmemcg_id;
3638
3639 if (!memcg->kmem_acct_active)
3640 return;
3641
3642 /*
3643 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3644 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3645 * guarantees no cache will be created for this cgroup after we are
3646 * done (see memcg_create_kmem_cache()).
3647 */
3648 memcg->kmem_acct_active = false;
3649
3650 memcg_deactivate_kmem_caches(memcg);
3651
3652 kmemcg_id = memcg->kmemcg_id;
3653 BUG_ON(kmemcg_id < 0);
3654
3655 parent = parent_mem_cgroup(memcg);
3656 if (!parent)
3657 parent = root_mem_cgroup;
3658
3659 /*
3660 * Change kmemcg_id of this cgroup and all its descendants to the
3661 * parent's id, and then move all entries from this cgroup's list_lrus
3662 * to ones of the parent. After we have finished, all list_lrus
3663 * corresponding to this cgroup are guaranteed to remain empty. The
3664 * ordering is imposed by list_lru_node->lock taken by
3665 * memcg_drain_all_list_lrus().
3666 */
3667 css_for_each_descendant_pre(css, &memcg->css) {
3668 child = mem_cgroup_from_css(css);
3669 BUG_ON(child->kmemcg_id != kmemcg_id);
3670 child->kmemcg_id = parent->kmemcg_id;
3671 if (!memcg->use_hierarchy)
3672 break;
3673 }
3674 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3675
3676 memcg_free_cache_id(kmemcg_id);
3677 }
3678
3679 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3680 {
3681 if (memcg->kmem_acct_activated) {
3682 memcg_destroy_kmem_caches(memcg);
3683 static_key_slow_dec(&memcg_kmem_enabled_key);
3684 WARN_ON(page_counter_read(&memcg->kmem));
3685 }
3686 mem_cgroup_sockets_destroy(memcg);
3687 }
3688 #else
3689 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3690 {
3691 return 0;
3692 }
3693
3694 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3695 {
3696 }
3697
3698 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3699 {
3700 }
3701 #endif
3702
3703 #ifdef CONFIG_CGROUP_WRITEBACK
3704
3705 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3706 {
3707 return &memcg->cgwb_list;
3708 }
3709
3710 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3711 {
3712 return wb_domain_init(&memcg->cgwb_domain, gfp);
3713 }
3714
3715 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3716 {
3717 wb_domain_exit(&memcg->cgwb_domain);
3718 }
3719
3720 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3721 {
3722 wb_domain_size_changed(&memcg->cgwb_domain);
3723 }
3724
3725 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3726 {
3727 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3728
3729 if (!memcg->css.parent)
3730 return NULL;
3731
3732 return &memcg->cgwb_domain;
3733 }
3734
3735 /**
3736 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3737 * @wb: bdi_writeback in question
3738 * @pfilepages: out parameter for number of file pages
3739 * @pheadroom: out parameter for number of allocatable pages according to memcg
3740 * @pdirty: out parameter for number of dirty pages
3741 * @pwriteback: out parameter for number of pages under writeback
3742 *
3743 * Determine the numbers of file, headroom, dirty, and writeback pages in
3744 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3745 * is a bit more involved.
3746 *
3747 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3748 * headroom is calculated as the lowest headroom of itself and the
3749 * ancestors. Note that this doesn't consider the actual amount of
3750 * available memory in the system. The caller should further cap
3751 * *@pheadroom accordingly.
3752 */
3753 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3754 unsigned long *pheadroom, unsigned long *pdirty,
3755 unsigned long *pwriteback)
3756 {
3757 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3758 struct mem_cgroup *parent;
3759
3760 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3761
3762 /* this should eventually include NR_UNSTABLE_NFS */
3763 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3764 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3765 (1 << LRU_ACTIVE_FILE));
3766 *pheadroom = PAGE_COUNTER_MAX;
3767
3768 while ((parent = parent_mem_cgroup(memcg))) {
3769 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3770 unsigned long used = page_counter_read(&memcg->memory);
3771
3772 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3773 memcg = parent;
3774 }
3775 }
3776
3777 #else /* CONFIG_CGROUP_WRITEBACK */
3778
3779 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3780 {
3781 return 0;
3782 }
3783
3784 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3785 {
3786 }
3787
3788 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3789 {
3790 }
3791
3792 #endif /* CONFIG_CGROUP_WRITEBACK */
3793
3794 /*
3795 * DO NOT USE IN NEW FILES.
3796 *
3797 * "cgroup.event_control" implementation.
3798 *
3799 * This is way over-engineered. It tries to support fully configurable
3800 * events for each user. Such level of flexibility is completely
3801 * unnecessary especially in the light of the planned unified hierarchy.
3802 *
3803 * Please deprecate this and replace with something simpler if at all
3804 * possible.
3805 */
3806
3807 /*
3808 * Unregister event and free resources.
3809 *
3810 * Gets called from workqueue.
3811 */
3812 static void memcg_event_remove(struct work_struct *work)
3813 {
3814 struct mem_cgroup_event *event =
3815 container_of(work, struct mem_cgroup_event, remove);
3816 struct mem_cgroup *memcg = event->memcg;
3817
3818 remove_wait_queue(event->wqh, &event->wait);
3819
3820 event->unregister_event(memcg, event->eventfd);
3821
3822 /* Notify userspace the event is going away. */
3823 eventfd_signal(event->eventfd, 1);
3824
3825 eventfd_ctx_put(event->eventfd);
3826 kfree(event);
3827 css_put(&memcg->css);
3828 }
3829
3830 /*
3831 * Gets called on POLLHUP on eventfd when user closes it.
3832 *
3833 * Called with wqh->lock held and interrupts disabled.
3834 */
3835 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3836 int sync, void *key)
3837 {
3838 struct mem_cgroup_event *event =
3839 container_of(wait, struct mem_cgroup_event, wait);
3840 struct mem_cgroup *memcg = event->memcg;
3841 unsigned long flags = (unsigned long)key;
3842
3843 if (flags & POLLHUP) {
3844 /*
3845 * If the event has been detached at cgroup removal, we
3846 * can simply return knowing the other side will cleanup
3847 * for us.
3848 *
3849 * We can't race against event freeing since the other
3850 * side will require wqh->lock via remove_wait_queue(),
3851 * which we hold.
3852 */
3853 spin_lock(&memcg->event_list_lock);
3854 if (!list_empty(&event->list)) {
3855 list_del_init(&event->list);
3856 /*
3857 * We are in atomic context, but cgroup_event_remove()
3858 * may sleep, so we have to call it in workqueue.
3859 */
3860 schedule_work(&event->remove);
3861 }
3862 spin_unlock(&memcg->event_list_lock);
3863 }
3864
3865 return 0;
3866 }
3867
3868 static void memcg_event_ptable_queue_proc(struct file *file,
3869 wait_queue_head_t *wqh, poll_table *pt)
3870 {
3871 struct mem_cgroup_event *event =
3872 container_of(pt, struct mem_cgroup_event, pt);
3873
3874 event->wqh = wqh;
3875 add_wait_queue(wqh, &event->wait);
3876 }
3877
3878 /*
3879 * DO NOT USE IN NEW FILES.
3880 *
3881 * Parse input and register new cgroup event handler.
3882 *
3883 * Input must be in format '<event_fd> <control_fd> <args>'.
3884 * Interpretation of args is defined by control file implementation.
3885 */
3886 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3887 char *buf, size_t nbytes, loff_t off)
3888 {
3889 struct cgroup_subsys_state *css = of_css(of);
3890 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3891 struct mem_cgroup_event *event;
3892 struct cgroup_subsys_state *cfile_css;
3893 unsigned int efd, cfd;
3894 struct fd efile;
3895 struct fd cfile;
3896 const char *name;
3897 char *endp;
3898 int ret;
3899
3900 buf = strstrip(buf);
3901
3902 efd = simple_strtoul(buf, &endp, 10);
3903 if (*endp != ' ')
3904 return -EINVAL;
3905 buf = endp + 1;
3906
3907 cfd = simple_strtoul(buf, &endp, 10);
3908 if ((*endp != ' ') && (*endp != '\0'))
3909 return -EINVAL;
3910 buf = endp + 1;
3911
3912 event = kzalloc(sizeof(*event), GFP_KERNEL);
3913 if (!event)
3914 return -ENOMEM;
3915
3916 event->memcg = memcg;
3917 INIT_LIST_HEAD(&event->list);
3918 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3919 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3920 INIT_WORK(&event->remove, memcg_event_remove);
3921
3922 efile = fdget(efd);
3923 if (!efile.file) {
3924 ret = -EBADF;
3925 goto out_kfree;
3926 }
3927
3928 event->eventfd = eventfd_ctx_fileget(efile.file);
3929 if (IS_ERR(event->eventfd)) {
3930 ret = PTR_ERR(event->eventfd);
3931 goto out_put_efile;
3932 }
3933
3934 cfile = fdget(cfd);
3935 if (!cfile.file) {
3936 ret = -EBADF;
3937 goto out_put_eventfd;
3938 }
3939
3940 /* the process need read permission on control file */
3941 /* AV: shouldn't we check that it's been opened for read instead? */
3942 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3943 if (ret < 0)
3944 goto out_put_cfile;
3945
3946 /*
3947 * Determine the event callbacks and set them in @event. This used
3948 * to be done via struct cftype but cgroup core no longer knows
3949 * about these events. The following is crude but the whole thing
3950 * is for compatibility anyway.
3951 *
3952 * DO NOT ADD NEW FILES.
3953 */
3954 name = cfile.file->f_path.dentry->d_name.name;
3955
3956 if (!strcmp(name, "memory.usage_in_bytes")) {
3957 event->register_event = mem_cgroup_usage_register_event;
3958 event->unregister_event = mem_cgroup_usage_unregister_event;
3959 } else if (!strcmp(name, "memory.oom_control")) {
3960 event->register_event = mem_cgroup_oom_register_event;
3961 event->unregister_event = mem_cgroup_oom_unregister_event;
3962 } else if (!strcmp(name, "memory.pressure_level")) {
3963 event->register_event = vmpressure_register_event;
3964 event->unregister_event = vmpressure_unregister_event;
3965 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3966 event->register_event = memsw_cgroup_usage_register_event;
3967 event->unregister_event = memsw_cgroup_usage_unregister_event;
3968 } else {
3969 ret = -EINVAL;
3970 goto out_put_cfile;
3971 }
3972
3973 /*
3974 * Verify @cfile should belong to @css. Also, remaining events are
3975 * automatically removed on cgroup destruction but the removal is
3976 * asynchronous, so take an extra ref on @css.
3977 */
3978 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3979 &memory_cgrp_subsys);
3980 ret = -EINVAL;
3981 if (IS_ERR(cfile_css))
3982 goto out_put_cfile;
3983 if (cfile_css != css) {
3984 css_put(cfile_css);
3985 goto out_put_cfile;
3986 }
3987
3988 ret = event->register_event(memcg, event->eventfd, buf);
3989 if (ret)
3990 goto out_put_css;
3991
3992 efile.file->f_op->poll(efile.file, &event->pt);
3993
3994 spin_lock(&memcg->event_list_lock);
3995 list_add(&event->list, &memcg->event_list);
3996 spin_unlock(&memcg->event_list_lock);
3997
3998 fdput(cfile);
3999 fdput(efile);
4000
4001 return nbytes;
4002
4003 out_put_css:
4004 css_put(css);
4005 out_put_cfile:
4006 fdput(cfile);
4007 out_put_eventfd:
4008 eventfd_ctx_put(event->eventfd);
4009 out_put_efile:
4010 fdput(efile);
4011 out_kfree:
4012 kfree(event);
4013
4014 return ret;
4015 }
4016
4017 static struct cftype mem_cgroup_legacy_files[] = {
4018 {
4019 .name = "usage_in_bytes",
4020 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4021 .read_u64 = mem_cgroup_read_u64,
4022 },
4023 {
4024 .name = "max_usage_in_bytes",
4025 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4026 .write = mem_cgroup_reset,
4027 .read_u64 = mem_cgroup_read_u64,
4028 },
4029 {
4030 .name = "limit_in_bytes",
4031 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4032 .write = mem_cgroup_write,
4033 .read_u64 = mem_cgroup_read_u64,
4034 },
4035 {
4036 .name = "soft_limit_in_bytes",
4037 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4038 .write = mem_cgroup_write,
4039 .read_u64 = mem_cgroup_read_u64,
4040 },
4041 {
4042 .name = "failcnt",
4043 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4044 .write = mem_cgroup_reset,
4045 .read_u64 = mem_cgroup_read_u64,
4046 },
4047 {
4048 .name = "stat",
4049 .seq_show = memcg_stat_show,
4050 },
4051 {
4052 .name = "force_empty",
4053 .write = mem_cgroup_force_empty_write,
4054 },
4055 {
4056 .name = "use_hierarchy",
4057 .write_u64 = mem_cgroup_hierarchy_write,
4058 .read_u64 = mem_cgroup_hierarchy_read,
4059 },
4060 {
4061 .name = "cgroup.event_control", /* XXX: for compat */
4062 .write = memcg_write_event_control,
4063 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4064 },
4065 {
4066 .name = "swappiness",
4067 .read_u64 = mem_cgroup_swappiness_read,
4068 .write_u64 = mem_cgroup_swappiness_write,
4069 },
4070 {
4071 .name = "move_charge_at_immigrate",
4072 .read_u64 = mem_cgroup_move_charge_read,
4073 .write_u64 = mem_cgroup_move_charge_write,
4074 },
4075 {
4076 .name = "oom_control",
4077 .seq_show = mem_cgroup_oom_control_read,
4078 .write_u64 = mem_cgroup_oom_control_write,
4079 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4080 },
4081 {
4082 .name = "pressure_level",
4083 },
4084 #ifdef CONFIG_NUMA
4085 {
4086 .name = "numa_stat",
4087 .seq_show = memcg_numa_stat_show,
4088 },
4089 #endif
4090 #ifdef CONFIG_MEMCG_KMEM
4091 {
4092 .name = "kmem.limit_in_bytes",
4093 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4094 .write = mem_cgroup_write,
4095 .read_u64 = mem_cgroup_read_u64,
4096 },
4097 {
4098 .name = "kmem.usage_in_bytes",
4099 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4100 .read_u64 = mem_cgroup_read_u64,
4101 },
4102 {
4103 .name = "kmem.failcnt",
4104 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4105 .write = mem_cgroup_reset,
4106 .read_u64 = mem_cgroup_read_u64,
4107 },
4108 {
4109 .name = "kmem.max_usage_in_bytes",
4110 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4111 .write = mem_cgroup_reset,
4112 .read_u64 = mem_cgroup_read_u64,
4113 },
4114 #ifdef CONFIG_SLABINFO
4115 {
4116 .name = "kmem.slabinfo",
4117 .seq_start = slab_start,
4118 .seq_next = slab_next,
4119 .seq_stop = slab_stop,
4120 .seq_show = memcg_slab_show,
4121 },
4122 #endif
4123 #endif
4124 { }, /* terminate */
4125 };
4126
4127 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4128 {
4129 struct mem_cgroup_per_node *pn;
4130 struct mem_cgroup_per_zone *mz;
4131 int zone, tmp = node;
4132 /*
4133 * This routine is called against possible nodes.
4134 * But it's BUG to call kmalloc() against offline node.
4135 *
4136 * TODO: this routine can waste much memory for nodes which will
4137 * never be onlined. It's better to use memory hotplug callback
4138 * function.
4139 */
4140 if (!node_state(node, N_NORMAL_MEMORY))
4141 tmp = -1;
4142 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4143 if (!pn)
4144 return 1;
4145
4146 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4147 mz = &pn->zoneinfo[zone];
4148 lruvec_init(&mz->lruvec);
4149 mz->usage_in_excess = 0;
4150 mz->on_tree = false;
4151 mz->memcg = memcg;
4152 }
4153 memcg->nodeinfo[node] = pn;
4154 return 0;
4155 }
4156
4157 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4158 {
4159 kfree(memcg->nodeinfo[node]);
4160 }
4161
4162 static struct mem_cgroup *mem_cgroup_alloc(void)
4163 {
4164 struct mem_cgroup *memcg;
4165 size_t size;
4166
4167 size = sizeof(struct mem_cgroup);
4168 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4169
4170 memcg = kzalloc(size, GFP_KERNEL);
4171 if (!memcg)
4172 return NULL;
4173
4174 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4175 if (!memcg->stat)
4176 goto out_free;
4177
4178 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4179 goto out_free_stat;
4180
4181 return memcg;
4182
4183 out_free_stat:
4184 free_percpu(memcg->stat);
4185 out_free:
4186 kfree(memcg);
4187 return NULL;
4188 }
4189
4190 /*
4191 * At destroying mem_cgroup, references from swap_cgroup can remain.
4192 * (scanning all at force_empty is too costly...)
4193 *
4194 * Instead of clearing all references at force_empty, we remember
4195 * the number of reference from swap_cgroup and free mem_cgroup when
4196 * it goes down to 0.
4197 *
4198 * Removal of cgroup itself succeeds regardless of refs from swap.
4199 */
4200
4201 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4202 {
4203 int node;
4204
4205 mem_cgroup_remove_from_trees(memcg);
4206
4207 for_each_node(node)
4208 free_mem_cgroup_per_zone_info(memcg, node);
4209
4210 free_percpu(memcg->stat);
4211 memcg_wb_domain_exit(memcg);
4212 kfree(memcg);
4213 }
4214
4215 /*
4216 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4217 */
4218 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4219 {
4220 if (!memcg->memory.parent)
4221 return NULL;
4222 return mem_cgroup_from_counter(memcg->memory.parent, memory);
4223 }
4224 EXPORT_SYMBOL(parent_mem_cgroup);
4225
4226 static struct cgroup_subsys_state * __ref
4227 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4228 {
4229 struct mem_cgroup *memcg;
4230 long error = -ENOMEM;
4231 int node;
4232
4233 memcg = mem_cgroup_alloc();
4234 if (!memcg)
4235 return ERR_PTR(error);
4236
4237 for_each_node(node)
4238 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4239 goto free_out;
4240
4241 /* root ? */
4242 if (parent_css == NULL) {
4243 root_mem_cgroup = memcg;
4244 mem_cgroup_root_css = &memcg->css;
4245 page_counter_init(&memcg->memory, NULL);
4246 memcg->high = PAGE_COUNTER_MAX;
4247 memcg->soft_limit = PAGE_COUNTER_MAX;
4248 page_counter_init(&memcg->memsw, NULL);
4249 page_counter_init(&memcg->kmem, NULL);
4250 }
4251
4252 memcg->last_scanned_node = MAX_NUMNODES;
4253 INIT_LIST_HEAD(&memcg->oom_notify);
4254 memcg->move_charge_at_immigrate = 0;
4255 mutex_init(&memcg->thresholds_lock);
4256 spin_lock_init(&memcg->move_lock);
4257 vmpressure_init(&memcg->vmpressure);
4258 INIT_LIST_HEAD(&memcg->event_list);
4259 spin_lock_init(&memcg->event_list_lock);
4260 #ifdef CONFIG_MEMCG_KMEM
4261 memcg->kmemcg_id = -1;
4262 #endif
4263 #ifdef CONFIG_CGROUP_WRITEBACK
4264 INIT_LIST_HEAD(&memcg->cgwb_list);
4265 #endif
4266 return &memcg->css;
4267
4268 free_out:
4269 __mem_cgroup_free(memcg);
4270 return ERR_PTR(error);
4271 }
4272
4273 static int
4274 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4275 {
4276 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4277 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4278 int ret;
4279
4280 if (css->id > MEM_CGROUP_ID_MAX)
4281 return -ENOSPC;
4282
4283 if (!parent)
4284 return 0;
4285
4286 mutex_lock(&memcg_create_mutex);
4287
4288 memcg->use_hierarchy = parent->use_hierarchy;
4289 memcg->oom_kill_disable = parent->oom_kill_disable;
4290 memcg->swappiness = mem_cgroup_swappiness(parent);
4291
4292 if (parent->use_hierarchy) {
4293 page_counter_init(&memcg->memory, &parent->memory);
4294 memcg->high = PAGE_COUNTER_MAX;
4295 memcg->soft_limit = PAGE_COUNTER_MAX;
4296 page_counter_init(&memcg->memsw, &parent->memsw);
4297 page_counter_init(&memcg->kmem, &parent->kmem);
4298
4299 /*
4300 * No need to take a reference to the parent because cgroup
4301 * core guarantees its existence.
4302 */
4303 } else {
4304 page_counter_init(&memcg->memory, NULL);
4305 memcg->high = PAGE_COUNTER_MAX;
4306 memcg->soft_limit = PAGE_COUNTER_MAX;
4307 page_counter_init(&memcg->memsw, NULL);
4308 page_counter_init(&memcg->kmem, NULL);
4309 /*
4310 * Deeper hierachy with use_hierarchy == false doesn't make
4311 * much sense so let cgroup subsystem know about this
4312 * unfortunate state in our controller.
4313 */
4314 if (parent != root_mem_cgroup)
4315 memory_cgrp_subsys.broken_hierarchy = true;
4316 }
4317 mutex_unlock(&memcg_create_mutex);
4318
4319 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4320 if (ret)
4321 return ret;
4322
4323 /*
4324 * Make sure the memcg is initialized: mem_cgroup_iter()
4325 * orders reading memcg->initialized against its callers
4326 * reading the memcg members.
4327 */
4328 smp_store_release(&memcg->initialized, 1);
4329
4330 return 0;
4331 }
4332
4333 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4334 {
4335 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4336 struct mem_cgroup_event *event, *tmp;
4337
4338 /*
4339 * Unregister events and notify userspace.
4340 * Notify userspace about cgroup removing only after rmdir of cgroup
4341 * directory to avoid race between userspace and kernelspace.
4342 */
4343 spin_lock(&memcg->event_list_lock);
4344 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4345 list_del_init(&event->list);
4346 schedule_work(&event->remove);
4347 }
4348 spin_unlock(&memcg->event_list_lock);
4349
4350 vmpressure_cleanup(&memcg->vmpressure);
4351
4352 memcg_deactivate_kmem(memcg);
4353
4354 wb_memcg_offline(memcg);
4355 }
4356
4357 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4358 {
4359 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4360
4361 invalidate_reclaim_iterators(memcg);
4362 }
4363
4364 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4365 {
4366 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4367
4368 memcg_destroy_kmem(memcg);
4369 __mem_cgroup_free(memcg);
4370 }
4371
4372 /**
4373 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4374 * @css: the target css
4375 *
4376 * Reset the states of the mem_cgroup associated with @css. This is
4377 * invoked when the userland requests disabling on the default hierarchy
4378 * but the memcg is pinned through dependency. The memcg should stop
4379 * applying policies and should revert to the vanilla state as it may be
4380 * made visible again.
4381 *
4382 * The current implementation only resets the essential configurations.
4383 * This needs to be expanded to cover all the visible parts.
4384 */
4385 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4386 {
4387 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4388
4389 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4390 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4391 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4392 memcg->low = 0;
4393 memcg->high = PAGE_COUNTER_MAX;
4394 memcg->soft_limit = PAGE_COUNTER_MAX;
4395 memcg_wb_domain_size_changed(memcg);
4396 }
4397
4398 #ifdef CONFIG_MMU
4399 /* Handlers for move charge at task migration. */
4400 static int mem_cgroup_do_precharge(unsigned long count)
4401 {
4402 int ret;
4403
4404 /* Try a single bulk charge without reclaim first, kswapd may wake */
4405 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4406 if (!ret) {
4407 mc.precharge += count;
4408 return ret;
4409 }
4410
4411 /* Try charges one by one with reclaim */
4412 while (count--) {
4413 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4414 if (ret)
4415 return ret;
4416 mc.precharge++;
4417 cond_resched();
4418 }
4419 return 0;
4420 }
4421
4422 /**
4423 * get_mctgt_type - get target type of moving charge
4424 * @vma: the vma the pte to be checked belongs
4425 * @addr: the address corresponding to the pte to be checked
4426 * @ptent: the pte to be checked
4427 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4428 *
4429 * Returns
4430 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4431 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4432 * move charge. if @target is not NULL, the page is stored in target->page
4433 * with extra refcnt got(Callers should handle it).
4434 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4435 * target for charge migration. if @target is not NULL, the entry is stored
4436 * in target->ent.
4437 *
4438 * Called with pte lock held.
4439 */
4440 union mc_target {
4441 struct page *page;
4442 swp_entry_t ent;
4443 };
4444
4445 enum mc_target_type {
4446 MC_TARGET_NONE = 0,
4447 MC_TARGET_PAGE,
4448 MC_TARGET_SWAP,
4449 };
4450
4451 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4452 unsigned long addr, pte_t ptent)
4453 {
4454 struct page *page = vm_normal_page(vma, addr, ptent);
4455
4456 if (!page || !page_mapped(page))
4457 return NULL;
4458 if (PageAnon(page)) {
4459 if (!(mc.flags & MOVE_ANON))
4460 return NULL;
4461 } else {
4462 if (!(mc.flags & MOVE_FILE))
4463 return NULL;
4464 }
4465 if (!get_page_unless_zero(page))
4466 return NULL;
4467
4468 return page;
4469 }
4470
4471 #ifdef CONFIG_SWAP
4472 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4473 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4474 {
4475 struct page *page = NULL;
4476 swp_entry_t ent = pte_to_swp_entry(ptent);
4477
4478 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4479 return NULL;
4480 /*
4481 * Because lookup_swap_cache() updates some statistics counter,
4482 * we call find_get_page() with swapper_space directly.
4483 */
4484 page = find_get_page(swap_address_space(ent), ent.val);
4485 if (do_swap_account)
4486 entry->val = ent.val;
4487
4488 return page;
4489 }
4490 #else
4491 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4492 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4493 {
4494 return NULL;
4495 }
4496 #endif
4497
4498 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4499 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4500 {
4501 struct page *page = NULL;
4502 struct address_space *mapping;
4503 pgoff_t pgoff;
4504
4505 if (!vma->vm_file) /* anonymous vma */
4506 return NULL;
4507 if (!(mc.flags & MOVE_FILE))
4508 return NULL;
4509
4510 mapping = vma->vm_file->f_mapping;
4511 pgoff = linear_page_index(vma, addr);
4512
4513 /* page is moved even if it's not RSS of this task(page-faulted). */
4514 #ifdef CONFIG_SWAP
4515 /* shmem/tmpfs may report page out on swap: account for that too. */
4516 if (shmem_mapping(mapping)) {
4517 page = find_get_entry(mapping, pgoff);
4518 if (radix_tree_exceptional_entry(page)) {
4519 swp_entry_t swp = radix_to_swp_entry(page);
4520 if (do_swap_account)
4521 *entry = swp;
4522 page = find_get_page(swap_address_space(swp), swp.val);
4523 }
4524 } else
4525 page = find_get_page(mapping, pgoff);
4526 #else
4527 page = find_get_page(mapping, pgoff);
4528 #endif
4529 return page;
4530 }
4531
4532 /**
4533 * mem_cgroup_move_account - move account of the page
4534 * @page: the page
4535 * @nr_pages: number of regular pages (>1 for huge pages)
4536 * @from: mem_cgroup which the page is moved from.
4537 * @to: mem_cgroup which the page is moved to. @from != @to.
4538 *
4539 * The caller must confirm following.
4540 * - page is not on LRU (isolate_page() is useful.)
4541 * - compound_lock is held when nr_pages > 1
4542 *
4543 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4544 * from old cgroup.
4545 */
4546 static int mem_cgroup_move_account(struct page *page,
4547 unsigned int nr_pages,
4548 struct mem_cgroup *from,
4549 struct mem_cgroup *to)
4550 {
4551 unsigned long flags;
4552 int ret;
4553 bool anon;
4554
4555 VM_BUG_ON(from == to);
4556 VM_BUG_ON_PAGE(PageLRU(page), page);
4557 /*
4558 * The page is isolated from LRU. So, collapse function
4559 * will not handle this page. But page splitting can happen.
4560 * Do this check under compound_page_lock(). The caller should
4561 * hold it.
4562 */
4563 ret = -EBUSY;
4564 if (nr_pages > 1 && !PageTransHuge(page))
4565 goto out;
4566
4567 /*
4568 * Prevent mem_cgroup_replace_page() from looking at
4569 * page->mem_cgroup of its source page while we change it.
4570 */
4571 if (!trylock_page(page))
4572 goto out;
4573
4574 ret = -EINVAL;
4575 if (page->mem_cgroup != from)
4576 goto out_unlock;
4577
4578 anon = PageAnon(page);
4579
4580 spin_lock_irqsave(&from->move_lock, flags);
4581
4582 if (!anon && page_mapped(page)) {
4583 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4584 nr_pages);
4585 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4586 nr_pages);
4587 }
4588
4589 /*
4590 * move_lock grabbed above and caller set from->moving_account, so
4591 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4592 * So mapping should be stable for dirty pages.
4593 */
4594 if (!anon && PageDirty(page)) {
4595 struct address_space *mapping = page_mapping(page);
4596
4597 if (mapping_cap_account_dirty(mapping)) {
4598 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4599 nr_pages);
4600 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4601 nr_pages);
4602 }
4603 }
4604
4605 if (PageWriteback(page)) {
4606 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4607 nr_pages);
4608 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4609 nr_pages);
4610 }
4611
4612 /*
4613 * It is safe to change page->mem_cgroup here because the page
4614 * is referenced, charged, and isolated - we can't race with
4615 * uncharging, charging, migration, or LRU putback.
4616 */
4617
4618 /* caller should have done css_get */
4619 page->mem_cgroup = to;
4620 spin_unlock_irqrestore(&from->move_lock, flags);
4621
4622 ret = 0;
4623
4624 local_irq_disable();
4625 mem_cgroup_charge_statistics(to, page, nr_pages);
4626 memcg_check_events(to, page);
4627 mem_cgroup_charge_statistics(from, page, -nr_pages);
4628 memcg_check_events(from, page);
4629 local_irq_enable();
4630 out_unlock:
4631 unlock_page(page);
4632 out:
4633 return ret;
4634 }
4635
4636 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4637 unsigned long addr, pte_t ptent, union mc_target *target)
4638 {
4639 struct page *page = NULL;
4640 enum mc_target_type ret = MC_TARGET_NONE;
4641 swp_entry_t ent = { .val = 0 };
4642
4643 if (pte_present(ptent))
4644 page = mc_handle_present_pte(vma, addr, ptent);
4645 else if (is_swap_pte(ptent))
4646 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4647 else if (pte_none(ptent))
4648 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4649
4650 if (!page && !ent.val)
4651 return ret;
4652 if (page) {
4653 /*
4654 * Do only loose check w/o serialization.
4655 * mem_cgroup_move_account() checks the page is valid or
4656 * not under LRU exclusion.
4657 */
4658 if (page->mem_cgroup == mc.from) {
4659 ret = MC_TARGET_PAGE;
4660 if (target)
4661 target->page = page;
4662 }
4663 if (!ret || !target)
4664 put_page(page);
4665 }
4666 /* There is a swap entry and a page doesn't exist or isn't charged */
4667 if (ent.val && !ret &&
4668 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4669 ret = MC_TARGET_SWAP;
4670 if (target)
4671 target->ent = ent;
4672 }
4673 return ret;
4674 }
4675
4676 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4677 /*
4678 * We don't consider swapping or file mapped pages because THP does not
4679 * support them for now.
4680 * Caller should make sure that pmd_trans_huge(pmd) is true.
4681 */
4682 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4683 unsigned long addr, pmd_t pmd, union mc_target *target)
4684 {
4685 struct page *page = NULL;
4686 enum mc_target_type ret = MC_TARGET_NONE;
4687
4688 page = pmd_page(pmd);
4689 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4690 if (!(mc.flags & MOVE_ANON))
4691 return ret;
4692 if (page->mem_cgroup == mc.from) {
4693 ret = MC_TARGET_PAGE;
4694 if (target) {
4695 get_page(page);
4696 target->page = page;
4697 }
4698 }
4699 return ret;
4700 }
4701 #else
4702 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4703 unsigned long addr, pmd_t pmd, union mc_target *target)
4704 {
4705 return MC_TARGET_NONE;
4706 }
4707 #endif
4708
4709 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4710 unsigned long addr, unsigned long end,
4711 struct mm_walk *walk)
4712 {
4713 struct vm_area_struct *vma = walk->vma;
4714 pte_t *pte;
4715 spinlock_t *ptl;
4716
4717 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4718 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4719 mc.precharge += HPAGE_PMD_NR;
4720 spin_unlock(ptl);
4721 return 0;
4722 }
4723
4724 if (pmd_trans_unstable(pmd))
4725 return 0;
4726 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4727 for (; addr != end; pte++, addr += PAGE_SIZE)
4728 if (get_mctgt_type(vma, addr, *pte, NULL))
4729 mc.precharge++; /* increment precharge temporarily */
4730 pte_unmap_unlock(pte - 1, ptl);
4731 cond_resched();
4732
4733 return 0;
4734 }
4735
4736 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4737 {
4738 unsigned long precharge;
4739
4740 struct mm_walk mem_cgroup_count_precharge_walk = {
4741 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4742 .mm = mm,
4743 };
4744 down_read(&mm->mmap_sem);
4745 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4746 up_read(&mm->mmap_sem);
4747
4748 precharge = mc.precharge;
4749 mc.precharge = 0;
4750
4751 return precharge;
4752 }
4753
4754 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4755 {
4756 unsigned long precharge = mem_cgroup_count_precharge(mm);
4757
4758 VM_BUG_ON(mc.moving_task);
4759 mc.moving_task = current;
4760 return mem_cgroup_do_precharge(precharge);
4761 }
4762
4763 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4764 static void __mem_cgroup_clear_mc(void)
4765 {
4766 struct mem_cgroup *from = mc.from;
4767 struct mem_cgroup *to = mc.to;
4768
4769 /* we must uncharge all the leftover precharges from mc.to */
4770 if (mc.precharge) {
4771 cancel_charge(mc.to, mc.precharge);
4772 mc.precharge = 0;
4773 }
4774 /*
4775 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4776 * we must uncharge here.
4777 */
4778 if (mc.moved_charge) {
4779 cancel_charge(mc.from, mc.moved_charge);
4780 mc.moved_charge = 0;
4781 }
4782 /* we must fixup refcnts and charges */
4783 if (mc.moved_swap) {
4784 /* uncharge swap account from the old cgroup */
4785 if (!mem_cgroup_is_root(mc.from))
4786 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4787
4788 /*
4789 * we charged both to->memory and to->memsw, so we
4790 * should uncharge to->memory.
4791 */
4792 if (!mem_cgroup_is_root(mc.to))
4793 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4794
4795 css_put_many(&mc.from->css, mc.moved_swap);
4796
4797 /* we've already done css_get(mc.to) */
4798 mc.moved_swap = 0;
4799 }
4800 memcg_oom_recover(from);
4801 memcg_oom_recover(to);
4802 wake_up_all(&mc.waitq);
4803 }
4804
4805 static void mem_cgroup_clear_mc(void)
4806 {
4807 /*
4808 * we must clear moving_task before waking up waiters at the end of
4809 * task migration.
4810 */
4811 mc.moving_task = NULL;
4812 __mem_cgroup_clear_mc();
4813 spin_lock(&mc.lock);
4814 mc.from = NULL;
4815 mc.to = NULL;
4816 spin_unlock(&mc.lock);
4817 }
4818
4819 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4820 {
4821 struct cgroup_subsys_state *css;
4822 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4823 struct mem_cgroup *from;
4824 struct task_struct *leader, *p;
4825 struct mm_struct *mm;
4826 unsigned long move_flags;
4827 int ret = 0;
4828
4829 /* charge immigration isn't supported on the default hierarchy */
4830 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4831 return 0;
4832
4833 /*
4834 * Multi-process migrations only happen on the default hierarchy
4835 * where charge immigration is not used. Perform charge
4836 * immigration if @tset contains a leader and whine if there are
4837 * multiple.
4838 */
4839 p = NULL;
4840 cgroup_taskset_for_each_leader(leader, css, tset) {
4841 WARN_ON_ONCE(p);
4842 p = leader;
4843 memcg = mem_cgroup_from_css(css);
4844 }
4845 if (!p)
4846 return 0;
4847
4848 /*
4849 * We are now commited to this value whatever it is. Changes in this
4850 * tunable will only affect upcoming migrations, not the current one.
4851 * So we need to save it, and keep it going.
4852 */
4853 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4854 if (!move_flags)
4855 return 0;
4856
4857 from = mem_cgroup_from_task(p);
4858
4859 VM_BUG_ON(from == memcg);
4860
4861 mm = get_task_mm(p);
4862 if (!mm)
4863 return 0;
4864 /* We move charges only when we move a owner of the mm */
4865 if (mm->owner == p) {
4866 VM_BUG_ON(mc.from);
4867 VM_BUG_ON(mc.to);
4868 VM_BUG_ON(mc.precharge);
4869 VM_BUG_ON(mc.moved_charge);
4870 VM_BUG_ON(mc.moved_swap);
4871
4872 spin_lock(&mc.lock);
4873 mc.from = from;
4874 mc.to = memcg;
4875 mc.flags = move_flags;
4876 spin_unlock(&mc.lock);
4877 /* We set mc.moving_task later */
4878
4879 ret = mem_cgroup_precharge_mc(mm);
4880 if (ret)
4881 mem_cgroup_clear_mc();
4882 }
4883 mmput(mm);
4884 return ret;
4885 }
4886
4887 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4888 {
4889 if (mc.to)
4890 mem_cgroup_clear_mc();
4891 }
4892
4893 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4894 unsigned long addr, unsigned long end,
4895 struct mm_walk *walk)
4896 {
4897 int ret = 0;
4898 struct vm_area_struct *vma = walk->vma;
4899 pte_t *pte;
4900 spinlock_t *ptl;
4901 enum mc_target_type target_type;
4902 union mc_target target;
4903 struct page *page;
4904
4905 /*
4906 * We don't take compound_lock() here but no race with splitting thp
4907 * happens because:
4908 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
4909 * under splitting, which means there's no concurrent thp split,
4910 * - if another thread runs into split_huge_page() just after we
4911 * entered this if-block, the thread must wait for page table lock
4912 * to be unlocked in __split_huge_page_splitting(), where the main
4913 * part of thp split is not executed yet.
4914 */
4915 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4916 if (mc.precharge < HPAGE_PMD_NR) {
4917 spin_unlock(ptl);
4918 return 0;
4919 }
4920 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4921 if (target_type == MC_TARGET_PAGE) {
4922 page = target.page;
4923 if (!isolate_lru_page(page)) {
4924 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
4925 mc.from, mc.to)) {
4926 mc.precharge -= HPAGE_PMD_NR;
4927 mc.moved_charge += HPAGE_PMD_NR;
4928 }
4929 putback_lru_page(page);
4930 }
4931 put_page(page);
4932 }
4933 spin_unlock(ptl);
4934 return 0;
4935 }
4936
4937 if (pmd_trans_unstable(pmd))
4938 return 0;
4939 retry:
4940 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4941 for (; addr != end; addr += PAGE_SIZE) {
4942 pte_t ptent = *(pte++);
4943 swp_entry_t ent;
4944
4945 if (!mc.precharge)
4946 break;
4947
4948 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4949 case MC_TARGET_PAGE:
4950 page = target.page;
4951 if (isolate_lru_page(page))
4952 goto put;
4953 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4954 mc.precharge--;
4955 /* we uncharge from mc.from later. */
4956 mc.moved_charge++;
4957 }
4958 putback_lru_page(page);
4959 put: /* get_mctgt_type() gets the page */
4960 put_page(page);
4961 break;
4962 case MC_TARGET_SWAP:
4963 ent = target.ent;
4964 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4965 mc.precharge--;
4966 /* we fixup refcnts and charges later. */
4967 mc.moved_swap++;
4968 }
4969 break;
4970 default:
4971 break;
4972 }
4973 }
4974 pte_unmap_unlock(pte - 1, ptl);
4975 cond_resched();
4976
4977 if (addr != end) {
4978 /*
4979 * We have consumed all precharges we got in can_attach().
4980 * We try charge one by one, but don't do any additional
4981 * charges to mc.to if we have failed in charge once in attach()
4982 * phase.
4983 */
4984 ret = mem_cgroup_do_precharge(1);
4985 if (!ret)
4986 goto retry;
4987 }
4988
4989 return ret;
4990 }
4991
4992 static void mem_cgroup_move_charge(struct mm_struct *mm)
4993 {
4994 struct mm_walk mem_cgroup_move_charge_walk = {
4995 .pmd_entry = mem_cgroup_move_charge_pte_range,
4996 .mm = mm,
4997 };
4998
4999 lru_add_drain_all();
5000 /*
5001 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5002 * move_lock while we're moving its pages to another memcg.
5003 * Then wait for already started RCU-only updates to finish.
5004 */
5005 atomic_inc(&mc.from->moving_account);
5006 synchronize_rcu();
5007 retry:
5008 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5009 /*
5010 * Someone who are holding the mmap_sem might be waiting in
5011 * waitq. So we cancel all extra charges, wake up all waiters,
5012 * and retry. Because we cancel precharges, we might not be able
5013 * to move enough charges, but moving charge is a best-effort
5014 * feature anyway, so it wouldn't be a big problem.
5015 */
5016 __mem_cgroup_clear_mc();
5017 cond_resched();
5018 goto retry;
5019 }
5020 /*
5021 * When we have consumed all precharges and failed in doing
5022 * additional charge, the page walk just aborts.
5023 */
5024 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5025 up_read(&mm->mmap_sem);
5026 atomic_dec(&mc.from->moving_account);
5027 }
5028
5029 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5030 {
5031 struct cgroup_subsys_state *css;
5032 struct task_struct *p = cgroup_taskset_first(tset, &css);
5033 struct mm_struct *mm = get_task_mm(p);
5034
5035 if (mm) {
5036 if (mc.to)
5037 mem_cgroup_move_charge(mm);
5038 mmput(mm);
5039 }
5040 if (mc.to)
5041 mem_cgroup_clear_mc();
5042 }
5043 #else /* !CONFIG_MMU */
5044 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5045 {
5046 return 0;
5047 }
5048 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5049 {
5050 }
5051 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5052 {
5053 }
5054 #endif
5055
5056 /*
5057 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5058 * to verify whether we're attached to the default hierarchy on each mount
5059 * attempt.
5060 */
5061 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5062 {
5063 /*
5064 * use_hierarchy is forced on the default hierarchy. cgroup core
5065 * guarantees that @root doesn't have any children, so turning it
5066 * on for the root memcg is enough.
5067 */
5068 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5069 root_mem_cgroup->use_hierarchy = true;
5070 else
5071 root_mem_cgroup->use_hierarchy = false;
5072 }
5073
5074 static u64 memory_current_read(struct cgroup_subsys_state *css,
5075 struct cftype *cft)
5076 {
5077 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5078
5079 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5080 }
5081
5082 static int memory_low_show(struct seq_file *m, void *v)
5083 {
5084 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5085 unsigned long low = READ_ONCE(memcg->low);
5086
5087 if (low == PAGE_COUNTER_MAX)
5088 seq_puts(m, "max\n");
5089 else
5090 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5091
5092 return 0;
5093 }
5094
5095 static ssize_t memory_low_write(struct kernfs_open_file *of,
5096 char *buf, size_t nbytes, loff_t off)
5097 {
5098 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5099 unsigned long low;
5100 int err;
5101
5102 buf = strstrip(buf);
5103 err = page_counter_memparse(buf, "max", &low);
5104 if (err)
5105 return err;
5106
5107 memcg->low = low;
5108
5109 return nbytes;
5110 }
5111
5112 static int memory_high_show(struct seq_file *m, void *v)
5113 {
5114 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5115 unsigned long high = READ_ONCE(memcg->high);
5116
5117 if (high == PAGE_COUNTER_MAX)
5118 seq_puts(m, "max\n");
5119 else
5120 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5121
5122 return 0;
5123 }
5124
5125 static ssize_t memory_high_write(struct kernfs_open_file *of,
5126 char *buf, size_t nbytes, loff_t off)
5127 {
5128 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5129 unsigned long high;
5130 int err;
5131
5132 buf = strstrip(buf);
5133 err = page_counter_memparse(buf, "max", &high);
5134 if (err)
5135 return err;
5136
5137 memcg->high = high;
5138
5139 memcg_wb_domain_size_changed(memcg);
5140 return nbytes;
5141 }
5142
5143 static int memory_max_show(struct seq_file *m, void *v)
5144 {
5145 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5146 unsigned long max = READ_ONCE(memcg->memory.limit);
5147
5148 if (max == PAGE_COUNTER_MAX)
5149 seq_puts(m, "max\n");
5150 else
5151 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5152
5153 return 0;
5154 }
5155
5156 static ssize_t memory_max_write(struct kernfs_open_file *of,
5157 char *buf, size_t nbytes, loff_t off)
5158 {
5159 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5160 unsigned long max;
5161 int err;
5162
5163 buf = strstrip(buf);
5164 err = page_counter_memparse(buf, "max", &max);
5165 if (err)
5166 return err;
5167
5168 err = mem_cgroup_resize_limit(memcg, max);
5169 if (err)
5170 return err;
5171
5172 memcg_wb_domain_size_changed(memcg);
5173 return nbytes;
5174 }
5175
5176 static int memory_events_show(struct seq_file *m, void *v)
5177 {
5178 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5179
5180 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5181 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5182 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5183 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5184
5185 return 0;
5186 }
5187
5188 static struct cftype memory_files[] = {
5189 {
5190 .name = "current",
5191 .flags = CFTYPE_NOT_ON_ROOT,
5192 .read_u64 = memory_current_read,
5193 },
5194 {
5195 .name = "low",
5196 .flags = CFTYPE_NOT_ON_ROOT,
5197 .seq_show = memory_low_show,
5198 .write = memory_low_write,
5199 },
5200 {
5201 .name = "high",
5202 .flags = CFTYPE_NOT_ON_ROOT,
5203 .seq_show = memory_high_show,
5204 .write = memory_high_write,
5205 },
5206 {
5207 .name = "max",
5208 .flags = CFTYPE_NOT_ON_ROOT,
5209 .seq_show = memory_max_show,
5210 .write = memory_max_write,
5211 },
5212 {
5213 .name = "events",
5214 .flags = CFTYPE_NOT_ON_ROOT,
5215 .file_offset = offsetof(struct mem_cgroup, events_file),
5216 .seq_show = memory_events_show,
5217 },
5218 { } /* terminate */
5219 };
5220
5221 struct cgroup_subsys memory_cgrp_subsys = {
5222 .css_alloc = mem_cgroup_css_alloc,
5223 .css_online = mem_cgroup_css_online,
5224 .css_offline = mem_cgroup_css_offline,
5225 .css_released = mem_cgroup_css_released,
5226 .css_free = mem_cgroup_css_free,
5227 .css_reset = mem_cgroup_css_reset,
5228 .can_attach = mem_cgroup_can_attach,
5229 .cancel_attach = mem_cgroup_cancel_attach,
5230 .attach = mem_cgroup_move_task,
5231 .bind = mem_cgroup_bind,
5232 .dfl_cftypes = memory_files,
5233 .legacy_cftypes = mem_cgroup_legacy_files,
5234 .early_init = 0,
5235 };
5236
5237 /**
5238 * mem_cgroup_low - check if memory consumption is below the normal range
5239 * @root: the highest ancestor to consider
5240 * @memcg: the memory cgroup to check
5241 *
5242 * Returns %true if memory consumption of @memcg, and that of all
5243 * configurable ancestors up to @root, is below the normal range.
5244 */
5245 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5246 {
5247 if (mem_cgroup_disabled())
5248 return false;
5249
5250 /*
5251 * The toplevel group doesn't have a configurable range, so
5252 * it's never low when looked at directly, and it is not
5253 * considered an ancestor when assessing the hierarchy.
5254 */
5255
5256 if (memcg == root_mem_cgroup)
5257 return false;
5258
5259 if (page_counter_read(&memcg->memory) >= memcg->low)
5260 return false;
5261
5262 while (memcg != root) {
5263 memcg = parent_mem_cgroup(memcg);
5264
5265 if (memcg == root_mem_cgroup)
5266 break;
5267
5268 if (page_counter_read(&memcg->memory) >= memcg->low)
5269 return false;
5270 }
5271 return true;
5272 }
5273
5274 /**
5275 * mem_cgroup_try_charge - try charging a page
5276 * @page: page to charge
5277 * @mm: mm context of the victim
5278 * @gfp_mask: reclaim mode
5279 * @memcgp: charged memcg return
5280 *
5281 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5282 * pages according to @gfp_mask if necessary.
5283 *
5284 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5285 * Otherwise, an error code is returned.
5286 *
5287 * After page->mapping has been set up, the caller must finalize the
5288 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5289 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5290 */
5291 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5292 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5293 {
5294 struct mem_cgroup *memcg = NULL;
5295 unsigned int nr_pages = 1;
5296 int ret = 0;
5297
5298 if (mem_cgroup_disabled())
5299 goto out;
5300
5301 if (PageSwapCache(page)) {
5302 /*
5303 * Every swap fault against a single page tries to charge the
5304 * page, bail as early as possible. shmem_unuse() encounters
5305 * already charged pages, too. The USED bit is protected by
5306 * the page lock, which serializes swap cache removal, which
5307 * in turn serializes uncharging.
5308 */
5309 VM_BUG_ON_PAGE(!PageLocked(page), page);
5310 if (page->mem_cgroup)
5311 goto out;
5312
5313 if (do_swap_account) {
5314 swp_entry_t ent = { .val = page_private(page), };
5315 unsigned short id = lookup_swap_cgroup_id(ent);
5316
5317 rcu_read_lock();
5318 memcg = mem_cgroup_from_id(id);
5319 if (memcg && !css_tryget_online(&memcg->css))
5320 memcg = NULL;
5321 rcu_read_unlock();
5322 }
5323 }
5324
5325 if (PageTransHuge(page)) {
5326 nr_pages <<= compound_order(page);
5327 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5328 }
5329
5330 if (!memcg)
5331 memcg = get_mem_cgroup_from_mm(mm);
5332
5333 ret = try_charge(memcg, gfp_mask, nr_pages);
5334
5335 css_put(&memcg->css);
5336 out:
5337 *memcgp = memcg;
5338 return ret;
5339 }
5340
5341 /**
5342 * mem_cgroup_commit_charge - commit a page charge
5343 * @page: page to charge
5344 * @memcg: memcg to charge the page to
5345 * @lrucare: page might be on LRU already
5346 *
5347 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5348 * after page->mapping has been set up. This must happen atomically
5349 * as part of the page instantiation, i.e. under the page table lock
5350 * for anonymous pages, under the page lock for page and swap cache.
5351 *
5352 * In addition, the page must not be on the LRU during the commit, to
5353 * prevent racing with task migration. If it might be, use @lrucare.
5354 *
5355 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5356 */
5357 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5358 bool lrucare)
5359 {
5360 unsigned int nr_pages = 1;
5361
5362 VM_BUG_ON_PAGE(!page->mapping, page);
5363 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5364
5365 if (mem_cgroup_disabled())
5366 return;
5367 /*
5368 * Swap faults will attempt to charge the same page multiple
5369 * times. But reuse_swap_page() might have removed the page
5370 * from swapcache already, so we can't check PageSwapCache().
5371 */
5372 if (!memcg)
5373 return;
5374
5375 commit_charge(page, memcg, lrucare);
5376
5377 if (PageTransHuge(page)) {
5378 nr_pages <<= compound_order(page);
5379 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5380 }
5381
5382 local_irq_disable();
5383 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5384 memcg_check_events(memcg, page);
5385 local_irq_enable();
5386
5387 if (do_swap_account && PageSwapCache(page)) {
5388 swp_entry_t entry = { .val = page_private(page) };
5389 /*
5390 * The swap entry might not get freed for a long time,
5391 * let's not wait for it. The page already received a
5392 * memory+swap charge, drop the swap entry duplicate.
5393 */
5394 mem_cgroup_uncharge_swap(entry);
5395 }
5396 }
5397
5398 /**
5399 * mem_cgroup_cancel_charge - cancel a page charge
5400 * @page: page to charge
5401 * @memcg: memcg to charge the page to
5402 *
5403 * Cancel a charge transaction started by mem_cgroup_try_charge().
5404 */
5405 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5406 {
5407 unsigned int nr_pages = 1;
5408
5409 if (mem_cgroup_disabled())
5410 return;
5411 /*
5412 * Swap faults will attempt to charge the same page multiple
5413 * times. But reuse_swap_page() might have removed the page
5414 * from swapcache already, so we can't check PageSwapCache().
5415 */
5416 if (!memcg)
5417 return;
5418
5419 if (PageTransHuge(page)) {
5420 nr_pages <<= compound_order(page);
5421 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5422 }
5423
5424 cancel_charge(memcg, nr_pages);
5425 }
5426
5427 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5428 unsigned long nr_anon, unsigned long nr_file,
5429 unsigned long nr_huge, struct page *dummy_page)
5430 {
5431 unsigned long nr_pages = nr_anon + nr_file;
5432 unsigned long flags;
5433
5434 if (!mem_cgroup_is_root(memcg)) {
5435 page_counter_uncharge(&memcg->memory, nr_pages);
5436 if (do_swap_account)
5437 page_counter_uncharge(&memcg->memsw, nr_pages);
5438 memcg_oom_recover(memcg);
5439 }
5440
5441 local_irq_save(flags);
5442 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5443 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5444 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5445 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5446 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5447 memcg_check_events(memcg, dummy_page);
5448 local_irq_restore(flags);
5449
5450 if (!mem_cgroup_is_root(memcg))
5451 css_put_many(&memcg->css, nr_pages);
5452 }
5453
5454 static void uncharge_list(struct list_head *page_list)
5455 {
5456 struct mem_cgroup *memcg = NULL;
5457 unsigned long nr_anon = 0;
5458 unsigned long nr_file = 0;
5459 unsigned long nr_huge = 0;
5460 unsigned long pgpgout = 0;
5461 struct list_head *next;
5462 struct page *page;
5463
5464 next = page_list->next;
5465 do {
5466 unsigned int nr_pages = 1;
5467
5468 page = list_entry(next, struct page, lru);
5469 next = page->lru.next;
5470
5471 VM_BUG_ON_PAGE(PageLRU(page), page);
5472 VM_BUG_ON_PAGE(page_count(page), page);
5473
5474 if (!page->mem_cgroup)
5475 continue;
5476
5477 /*
5478 * Nobody should be changing or seriously looking at
5479 * page->mem_cgroup at this point, we have fully
5480 * exclusive access to the page.
5481 */
5482
5483 if (memcg != page->mem_cgroup) {
5484 if (memcg) {
5485 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5486 nr_huge, page);
5487 pgpgout = nr_anon = nr_file = nr_huge = 0;
5488 }
5489 memcg = page->mem_cgroup;
5490 }
5491
5492 if (PageTransHuge(page)) {
5493 nr_pages <<= compound_order(page);
5494 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5495 nr_huge += nr_pages;
5496 }
5497
5498 if (PageAnon(page))
5499 nr_anon += nr_pages;
5500 else
5501 nr_file += nr_pages;
5502
5503 page->mem_cgroup = NULL;
5504
5505 pgpgout++;
5506 } while (next != page_list);
5507
5508 if (memcg)
5509 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5510 nr_huge, page);
5511 }
5512
5513 /**
5514 * mem_cgroup_uncharge - uncharge a page
5515 * @page: page to uncharge
5516 *
5517 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5518 * mem_cgroup_commit_charge().
5519 */
5520 void mem_cgroup_uncharge(struct page *page)
5521 {
5522 if (mem_cgroup_disabled())
5523 return;
5524
5525 /* Don't touch page->lru of any random page, pre-check: */
5526 if (!page->mem_cgroup)
5527 return;
5528
5529 INIT_LIST_HEAD(&page->lru);
5530 uncharge_list(&page->lru);
5531 }
5532
5533 /**
5534 * mem_cgroup_uncharge_list - uncharge a list of page
5535 * @page_list: list of pages to uncharge
5536 *
5537 * Uncharge a list of pages previously charged with
5538 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5539 */
5540 void mem_cgroup_uncharge_list(struct list_head *page_list)
5541 {
5542 if (mem_cgroup_disabled())
5543 return;
5544
5545 if (!list_empty(page_list))
5546 uncharge_list(page_list);
5547 }
5548
5549 /**
5550 * mem_cgroup_replace_page - migrate a charge to another page
5551 * @oldpage: currently charged page
5552 * @newpage: page to transfer the charge to
5553 *
5554 * Migrate the charge from @oldpage to @newpage.
5555 *
5556 * Both pages must be locked, @newpage->mapping must be set up.
5557 * Either or both pages might be on the LRU already.
5558 */
5559 void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
5560 {
5561 struct mem_cgroup *memcg;
5562 int isolated;
5563
5564 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5565 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5566 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5567 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5568 newpage);
5569
5570 if (mem_cgroup_disabled())
5571 return;
5572
5573 /* Page cache replacement: new page already charged? */
5574 if (newpage->mem_cgroup)
5575 return;
5576
5577 /* Swapcache readahead pages can get replaced before being charged */
5578 memcg = oldpage->mem_cgroup;
5579 if (!memcg)
5580 return;
5581
5582 lock_page_lru(oldpage, &isolated);
5583 oldpage->mem_cgroup = NULL;
5584 unlock_page_lru(oldpage, isolated);
5585
5586 commit_charge(newpage, memcg, true);
5587 }
5588
5589 /*
5590 * subsys_initcall() for memory controller.
5591 *
5592 * Some parts like hotcpu_notifier() have to be initialized from this context
5593 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5594 * everything that doesn't depend on a specific mem_cgroup structure should
5595 * be initialized from here.
5596 */
5597 static int __init mem_cgroup_init(void)
5598 {
5599 int cpu, node;
5600
5601 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5602
5603 for_each_possible_cpu(cpu)
5604 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5605 drain_local_stock);
5606
5607 for_each_node(node) {
5608 struct mem_cgroup_tree_per_node *rtpn;
5609 int zone;
5610
5611 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5612 node_online(node) ? node : NUMA_NO_NODE);
5613
5614 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5615 struct mem_cgroup_tree_per_zone *rtpz;
5616
5617 rtpz = &rtpn->rb_tree_per_zone[zone];
5618 rtpz->rb_root = RB_ROOT;
5619 spin_lock_init(&rtpz->lock);
5620 }
5621 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5622 }
5623
5624 return 0;
5625 }
5626 subsys_initcall(mem_cgroup_init);
5627
5628 #ifdef CONFIG_MEMCG_SWAP
5629 /**
5630 * mem_cgroup_swapout - transfer a memsw charge to swap
5631 * @page: page whose memsw charge to transfer
5632 * @entry: swap entry to move the charge to
5633 *
5634 * Transfer the memsw charge of @page to @entry.
5635 */
5636 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5637 {
5638 struct mem_cgroup *memcg;
5639 unsigned short oldid;
5640
5641 VM_BUG_ON_PAGE(PageLRU(page), page);
5642 VM_BUG_ON_PAGE(page_count(page), page);
5643
5644 if (!do_swap_account)
5645 return;
5646
5647 memcg = page->mem_cgroup;
5648
5649 /* Readahead page, never charged */
5650 if (!memcg)
5651 return;
5652
5653 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5654 VM_BUG_ON_PAGE(oldid, page);
5655 mem_cgroup_swap_statistics(memcg, true);
5656
5657 page->mem_cgroup = NULL;
5658
5659 if (!mem_cgroup_is_root(memcg))
5660 page_counter_uncharge(&memcg->memory, 1);
5661
5662 /*
5663 * Interrupts should be disabled here because the caller holds the
5664 * mapping->tree_lock lock which is taken with interrupts-off. It is
5665 * important here to have the interrupts disabled because it is the
5666 * only synchronisation we have for udpating the per-CPU variables.
5667 */
5668 VM_BUG_ON(!irqs_disabled());
5669 mem_cgroup_charge_statistics(memcg, page, -1);
5670 memcg_check_events(memcg, page);
5671 }
5672
5673 /**
5674 * mem_cgroup_uncharge_swap - uncharge a swap entry
5675 * @entry: swap entry to uncharge
5676 *
5677 * Drop the memsw charge associated with @entry.
5678 */
5679 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5680 {
5681 struct mem_cgroup *memcg;
5682 unsigned short id;
5683
5684 if (!do_swap_account)
5685 return;
5686
5687 id = swap_cgroup_record(entry, 0);
5688 rcu_read_lock();
5689 memcg = mem_cgroup_from_id(id);
5690 if (memcg) {
5691 if (!mem_cgroup_is_root(memcg))
5692 page_counter_uncharge(&memcg->memsw, 1);
5693 mem_cgroup_swap_statistics(memcg, false);
5694 css_put(&memcg->css);
5695 }
5696 rcu_read_unlock();
5697 }
5698
5699 /* for remember boot option*/
5700 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5701 static int really_do_swap_account __initdata = 1;
5702 #else
5703 static int really_do_swap_account __initdata;
5704 #endif
5705
5706 static int __init enable_swap_account(char *s)
5707 {
5708 if (!strcmp(s, "1"))
5709 really_do_swap_account = 1;
5710 else if (!strcmp(s, "0"))
5711 really_do_swap_account = 0;
5712 return 1;
5713 }
5714 __setup("swapaccount=", enable_swap_account);
5715
5716 static struct cftype memsw_cgroup_files[] = {
5717 {
5718 .name = "memsw.usage_in_bytes",
5719 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5720 .read_u64 = mem_cgroup_read_u64,
5721 },
5722 {
5723 .name = "memsw.max_usage_in_bytes",
5724 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5725 .write = mem_cgroup_reset,
5726 .read_u64 = mem_cgroup_read_u64,
5727 },
5728 {
5729 .name = "memsw.limit_in_bytes",
5730 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5731 .write = mem_cgroup_write,
5732 .read_u64 = mem_cgroup_read_u64,
5733 },
5734 {
5735 .name = "memsw.failcnt",
5736 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5737 .write = mem_cgroup_reset,
5738 .read_u64 = mem_cgroup_read_u64,
5739 },
5740 { }, /* terminate */
5741 };
5742
5743 static int __init mem_cgroup_swap_init(void)
5744 {
5745 if (!mem_cgroup_disabled() && really_do_swap_account) {
5746 do_swap_account = 1;
5747 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5748 memsw_cgroup_files));
5749 }
5750 return 0;
5751 }
5752 subsys_initcall(mem_cgroup_swap_init);
5753
5754 #endif /* CONFIG_MEMCG_SWAP */
This page took 0.146751 seconds and 6 git commands to generate.