Merge tag 'dmaengine-fix-4.5-rc1' of git://git.infradead.org/users/vkoul/slave-dma
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include <net/tcp_memcontrol.h>
70 #include "slab.h"
71
72 #include <asm/uaccess.h>
73
74 #include <trace/events/vmscan.h>
75
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77 EXPORT_SYMBOL(memory_cgrp_subsys);
78
79 struct mem_cgroup *root_mem_cgroup __read_mostly;
80
81 #define MEM_CGROUP_RECLAIM_RETRIES 5
82
83 /* Socket memory accounting disabled? */
84 static bool cgroup_memory_nosocket;
85
86 /* Whether the swap controller is active */
87 #ifdef CONFIG_MEMCG_SWAP
88 int do_swap_account __read_mostly;
89 #else
90 #define do_swap_account 0
91 #endif
92
93 /* Whether legacy memory+swap accounting is active */
94 static bool do_memsw_account(void)
95 {
96 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
97 }
98
99 static const char * const mem_cgroup_stat_names[] = {
100 "cache",
101 "rss",
102 "rss_huge",
103 "mapped_file",
104 "dirty",
105 "writeback",
106 "swap",
107 };
108
109 static const char * const mem_cgroup_events_names[] = {
110 "pgpgin",
111 "pgpgout",
112 "pgfault",
113 "pgmajfault",
114 };
115
116 static const char * const mem_cgroup_lru_names[] = {
117 "inactive_anon",
118 "active_anon",
119 "inactive_file",
120 "active_file",
121 "unevictable",
122 };
123
124 #define THRESHOLDS_EVENTS_TARGET 128
125 #define SOFTLIMIT_EVENTS_TARGET 1024
126 #define NUMAINFO_EVENTS_TARGET 1024
127
128 /*
129 * Cgroups above their limits are maintained in a RB-Tree, independent of
130 * their hierarchy representation
131 */
132
133 struct mem_cgroup_tree_per_zone {
134 struct rb_root rb_root;
135 spinlock_t lock;
136 };
137
138 struct mem_cgroup_tree_per_node {
139 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
140 };
141
142 struct mem_cgroup_tree {
143 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
144 };
145
146 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
147
148 /* for OOM */
149 struct mem_cgroup_eventfd_list {
150 struct list_head list;
151 struct eventfd_ctx *eventfd;
152 };
153
154 /*
155 * cgroup_event represents events which userspace want to receive.
156 */
157 struct mem_cgroup_event {
158 /*
159 * memcg which the event belongs to.
160 */
161 struct mem_cgroup *memcg;
162 /*
163 * eventfd to signal userspace about the event.
164 */
165 struct eventfd_ctx *eventfd;
166 /*
167 * Each of these stored in a list by the cgroup.
168 */
169 struct list_head list;
170 /*
171 * register_event() callback will be used to add new userspace
172 * waiter for changes related to this event. Use eventfd_signal()
173 * on eventfd to send notification to userspace.
174 */
175 int (*register_event)(struct mem_cgroup *memcg,
176 struct eventfd_ctx *eventfd, const char *args);
177 /*
178 * unregister_event() callback will be called when userspace closes
179 * the eventfd or on cgroup removing. This callback must be set,
180 * if you want provide notification functionality.
181 */
182 void (*unregister_event)(struct mem_cgroup *memcg,
183 struct eventfd_ctx *eventfd);
184 /*
185 * All fields below needed to unregister event when
186 * userspace closes eventfd.
187 */
188 poll_table pt;
189 wait_queue_head_t *wqh;
190 wait_queue_t wait;
191 struct work_struct remove;
192 };
193
194 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
195 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
196
197 /* Stuffs for move charges at task migration. */
198 /*
199 * Types of charges to be moved.
200 */
201 #define MOVE_ANON 0x1U
202 #define MOVE_FILE 0x2U
203 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
204
205 /* "mc" and its members are protected by cgroup_mutex */
206 static struct move_charge_struct {
207 spinlock_t lock; /* for from, to */
208 struct mem_cgroup *from;
209 struct mem_cgroup *to;
210 unsigned long flags;
211 unsigned long precharge;
212 unsigned long moved_charge;
213 unsigned long moved_swap;
214 struct task_struct *moving_task; /* a task moving charges */
215 wait_queue_head_t waitq; /* a waitq for other context */
216 } mc = {
217 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
218 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
219 };
220
221 /*
222 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
223 * limit reclaim to prevent infinite loops, if they ever occur.
224 */
225 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
226 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
227
228 enum charge_type {
229 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
230 MEM_CGROUP_CHARGE_TYPE_ANON,
231 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
232 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
233 NR_CHARGE_TYPE,
234 };
235
236 /* for encoding cft->private value on file */
237 enum res_type {
238 _MEM,
239 _MEMSWAP,
240 _OOM_TYPE,
241 _KMEM,
242 };
243
244 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
245 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
246 #define MEMFILE_ATTR(val) ((val) & 0xffff)
247 /* Used for OOM nofiier */
248 #define OOM_CONTROL (0)
249
250 /*
251 * The memcg_create_mutex will be held whenever a new cgroup is created.
252 * As a consequence, any change that needs to protect against new child cgroups
253 * appearing has to hold it as well.
254 */
255 static DEFINE_MUTEX(memcg_create_mutex);
256
257 /* Some nice accessors for the vmpressure. */
258 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
259 {
260 if (!memcg)
261 memcg = root_mem_cgroup;
262 return &memcg->vmpressure;
263 }
264
265 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
266 {
267 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
268 }
269
270 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
271 {
272 return (memcg == root_mem_cgroup);
273 }
274
275 /*
276 * We restrict the id in the range of [1, 65535], so it can fit into
277 * an unsigned short.
278 */
279 #define MEM_CGROUP_ID_MAX USHRT_MAX
280
281 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
282 {
283 return memcg->css.id;
284 }
285
286 /*
287 * A helper function to get mem_cgroup from ID. must be called under
288 * rcu_read_lock(). The caller is responsible for calling
289 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
290 * refcnt from swap can be called against removed memcg.)
291 */
292 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
293 {
294 struct cgroup_subsys_state *css;
295
296 css = css_from_id(id, &memory_cgrp_subsys);
297 return mem_cgroup_from_css(css);
298 }
299
300 #ifdef CONFIG_MEMCG_KMEM
301 /*
302 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
303 * The main reason for not using cgroup id for this:
304 * this works better in sparse environments, where we have a lot of memcgs,
305 * but only a few kmem-limited. Or also, if we have, for instance, 200
306 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
307 * 200 entry array for that.
308 *
309 * The current size of the caches array is stored in memcg_nr_cache_ids. It
310 * will double each time we have to increase it.
311 */
312 static DEFINE_IDA(memcg_cache_ida);
313 int memcg_nr_cache_ids;
314
315 /* Protects memcg_nr_cache_ids */
316 static DECLARE_RWSEM(memcg_cache_ids_sem);
317
318 void memcg_get_cache_ids(void)
319 {
320 down_read(&memcg_cache_ids_sem);
321 }
322
323 void memcg_put_cache_ids(void)
324 {
325 up_read(&memcg_cache_ids_sem);
326 }
327
328 /*
329 * MIN_SIZE is different than 1, because we would like to avoid going through
330 * the alloc/free process all the time. In a small machine, 4 kmem-limited
331 * cgroups is a reasonable guess. In the future, it could be a parameter or
332 * tunable, but that is strictly not necessary.
333 *
334 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
335 * this constant directly from cgroup, but it is understandable that this is
336 * better kept as an internal representation in cgroup.c. In any case, the
337 * cgrp_id space is not getting any smaller, and we don't have to necessarily
338 * increase ours as well if it increases.
339 */
340 #define MEMCG_CACHES_MIN_SIZE 4
341 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
342
343 /*
344 * A lot of the calls to the cache allocation functions are expected to be
345 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
346 * conditional to this static branch, we'll have to allow modules that does
347 * kmem_cache_alloc and the such to see this symbol as well
348 */
349 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
350 EXPORT_SYMBOL(memcg_kmem_enabled_key);
351
352 #endif /* CONFIG_MEMCG_KMEM */
353
354 static struct mem_cgroup_per_zone *
355 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
356 {
357 int nid = zone_to_nid(zone);
358 int zid = zone_idx(zone);
359
360 return &memcg->nodeinfo[nid]->zoneinfo[zid];
361 }
362
363 /**
364 * mem_cgroup_css_from_page - css of the memcg associated with a page
365 * @page: page of interest
366 *
367 * If memcg is bound to the default hierarchy, css of the memcg associated
368 * with @page is returned. The returned css remains associated with @page
369 * until it is released.
370 *
371 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
372 * is returned.
373 *
374 * XXX: The above description of behavior on the default hierarchy isn't
375 * strictly true yet as replace_page_cache_page() can modify the
376 * association before @page is released even on the default hierarchy;
377 * however, the current and planned usages don't mix the the two functions
378 * and replace_page_cache_page() will soon be updated to make the invariant
379 * actually true.
380 */
381 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
382 {
383 struct mem_cgroup *memcg;
384
385 memcg = page->mem_cgroup;
386
387 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
388 memcg = root_mem_cgroup;
389
390 return &memcg->css;
391 }
392
393 /**
394 * page_cgroup_ino - return inode number of the memcg a page is charged to
395 * @page: the page
396 *
397 * Look up the closest online ancestor of the memory cgroup @page is charged to
398 * and return its inode number or 0 if @page is not charged to any cgroup. It
399 * is safe to call this function without holding a reference to @page.
400 *
401 * Note, this function is inherently racy, because there is nothing to prevent
402 * the cgroup inode from getting torn down and potentially reallocated a moment
403 * after page_cgroup_ino() returns, so it only should be used by callers that
404 * do not care (such as procfs interfaces).
405 */
406 ino_t page_cgroup_ino(struct page *page)
407 {
408 struct mem_cgroup *memcg;
409 unsigned long ino = 0;
410
411 rcu_read_lock();
412 memcg = READ_ONCE(page->mem_cgroup);
413 while (memcg && !(memcg->css.flags & CSS_ONLINE))
414 memcg = parent_mem_cgroup(memcg);
415 if (memcg)
416 ino = cgroup_ino(memcg->css.cgroup);
417 rcu_read_unlock();
418 return ino;
419 }
420
421 static struct mem_cgroup_per_zone *
422 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
423 {
424 int nid = page_to_nid(page);
425 int zid = page_zonenum(page);
426
427 return &memcg->nodeinfo[nid]->zoneinfo[zid];
428 }
429
430 static struct mem_cgroup_tree_per_zone *
431 soft_limit_tree_node_zone(int nid, int zid)
432 {
433 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
434 }
435
436 static struct mem_cgroup_tree_per_zone *
437 soft_limit_tree_from_page(struct page *page)
438 {
439 int nid = page_to_nid(page);
440 int zid = page_zonenum(page);
441
442 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
443 }
444
445 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
446 struct mem_cgroup_tree_per_zone *mctz,
447 unsigned long new_usage_in_excess)
448 {
449 struct rb_node **p = &mctz->rb_root.rb_node;
450 struct rb_node *parent = NULL;
451 struct mem_cgroup_per_zone *mz_node;
452
453 if (mz->on_tree)
454 return;
455
456 mz->usage_in_excess = new_usage_in_excess;
457 if (!mz->usage_in_excess)
458 return;
459 while (*p) {
460 parent = *p;
461 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
462 tree_node);
463 if (mz->usage_in_excess < mz_node->usage_in_excess)
464 p = &(*p)->rb_left;
465 /*
466 * We can't avoid mem cgroups that are over their soft
467 * limit by the same amount
468 */
469 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
470 p = &(*p)->rb_right;
471 }
472 rb_link_node(&mz->tree_node, parent, p);
473 rb_insert_color(&mz->tree_node, &mctz->rb_root);
474 mz->on_tree = true;
475 }
476
477 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
478 struct mem_cgroup_tree_per_zone *mctz)
479 {
480 if (!mz->on_tree)
481 return;
482 rb_erase(&mz->tree_node, &mctz->rb_root);
483 mz->on_tree = false;
484 }
485
486 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
487 struct mem_cgroup_tree_per_zone *mctz)
488 {
489 unsigned long flags;
490
491 spin_lock_irqsave(&mctz->lock, flags);
492 __mem_cgroup_remove_exceeded(mz, mctz);
493 spin_unlock_irqrestore(&mctz->lock, flags);
494 }
495
496 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
497 {
498 unsigned long nr_pages = page_counter_read(&memcg->memory);
499 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
500 unsigned long excess = 0;
501
502 if (nr_pages > soft_limit)
503 excess = nr_pages - soft_limit;
504
505 return excess;
506 }
507
508 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
509 {
510 unsigned long excess;
511 struct mem_cgroup_per_zone *mz;
512 struct mem_cgroup_tree_per_zone *mctz;
513
514 mctz = soft_limit_tree_from_page(page);
515 /*
516 * Necessary to update all ancestors when hierarchy is used.
517 * because their event counter is not touched.
518 */
519 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
520 mz = mem_cgroup_page_zoneinfo(memcg, page);
521 excess = soft_limit_excess(memcg);
522 /*
523 * We have to update the tree if mz is on RB-tree or
524 * mem is over its softlimit.
525 */
526 if (excess || mz->on_tree) {
527 unsigned long flags;
528
529 spin_lock_irqsave(&mctz->lock, flags);
530 /* if on-tree, remove it */
531 if (mz->on_tree)
532 __mem_cgroup_remove_exceeded(mz, mctz);
533 /*
534 * Insert again. mz->usage_in_excess will be updated.
535 * If excess is 0, no tree ops.
536 */
537 __mem_cgroup_insert_exceeded(mz, mctz, excess);
538 spin_unlock_irqrestore(&mctz->lock, flags);
539 }
540 }
541 }
542
543 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
544 {
545 struct mem_cgroup_tree_per_zone *mctz;
546 struct mem_cgroup_per_zone *mz;
547 int nid, zid;
548
549 for_each_node(nid) {
550 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
551 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
552 mctz = soft_limit_tree_node_zone(nid, zid);
553 mem_cgroup_remove_exceeded(mz, mctz);
554 }
555 }
556 }
557
558 static struct mem_cgroup_per_zone *
559 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
560 {
561 struct rb_node *rightmost = NULL;
562 struct mem_cgroup_per_zone *mz;
563
564 retry:
565 mz = NULL;
566 rightmost = rb_last(&mctz->rb_root);
567 if (!rightmost)
568 goto done; /* Nothing to reclaim from */
569
570 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
571 /*
572 * Remove the node now but someone else can add it back,
573 * we will to add it back at the end of reclaim to its correct
574 * position in the tree.
575 */
576 __mem_cgroup_remove_exceeded(mz, mctz);
577 if (!soft_limit_excess(mz->memcg) ||
578 !css_tryget_online(&mz->memcg->css))
579 goto retry;
580 done:
581 return mz;
582 }
583
584 static struct mem_cgroup_per_zone *
585 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
586 {
587 struct mem_cgroup_per_zone *mz;
588
589 spin_lock_irq(&mctz->lock);
590 mz = __mem_cgroup_largest_soft_limit_node(mctz);
591 spin_unlock_irq(&mctz->lock);
592 return mz;
593 }
594
595 /*
596 * Return page count for single (non recursive) @memcg.
597 *
598 * Implementation Note: reading percpu statistics for memcg.
599 *
600 * Both of vmstat[] and percpu_counter has threshold and do periodic
601 * synchronization to implement "quick" read. There are trade-off between
602 * reading cost and precision of value. Then, we may have a chance to implement
603 * a periodic synchronization of counter in memcg's counter.
604 *
605 * But this _read() function is used for user interface now. The user accounts
606 * memory usage by memory cgroup and he _always_ requires exact value because
607 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
608 * have to visit all online cpus and make sum. So, for now, unnecessary
609 * synchronization is not implemented. (just implemented for cpu hotplug)
610 *
611 * If there are kernel internal actions which can make use of some not-exact
612 * value, and reading all cpu value can be performance bottleneck in some
613 * common workload, threshold and synchronization as vmstat[] should be
614 * implemented.
615 */
616 static unsigned long
617 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
618 {
619 long val = 0;
620 int cpu;
621
622 /* Per-cpu values can be negative, use a signed accumulator */
623 for_each_possible_cpu(cpu)
624 val += per_cpu(memcg->stat->count[idx], cpu);
625 /*
626 * Summing races with updates, so val may be negative. Avoid exposing
627 * transient negative values.
628 */
629 if (val < 0)
630 val = 0;
631 return val;
632 }
633
634 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
635 enum mem_cgroup_events_index idx)
636 {
637 unsigned long val = 0;
638 int cpu;
639
640 for_each_possible_cpu(cpu)
641 val += per_cpu(memcg->stat->events[idx], cpu);
642 return val;
643 }
644
645 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
646 struct page *page,
647 bool compound, int nr_pages)
648 {
649 /*
650 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
651 * counted as CACHE even if it's on ANON LRU.
652 */
653 if (PageAnon(page))
654 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
655 nr_pages);
656 else
657 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
658 nr_pages);
659
660 if (compound) {
661 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
662 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
663 nr_pages);
664 }
665
666 /* pagein of a big page is an event. So, ignore page size */
667 if (nr_pages > 0)
668 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
669 else {
670 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
671 nr_pages = -nr_pages; /* for event */
672 }
673
674 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
675 }
676
677 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
678 int nid,
679 unsigned int lru_mask)
680 {
681 unsigned long nr = 0;
682 int zid;
683
684 VM_BUG_ON((unsigned)nid >= nr_node_ids);
685
686 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
687 struct mem_cgroup_per_zone *mz;
688 enum lru_list lru;
689
690 for_each_lru(lru) {
691 if (!(BIT(lru) & lru_mask))
692 continue;
693 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
694 nr += mz->lru_size[lru];
695 }
696 }
697 return nr;
698 }
699
700 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
701 unsigned int lru_mask)
702 {
703 unsigned long nr = 0;
704 int nid;
705
706 for_each_node_state(nid, N_MEMORY)
707 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
708 return nr;
709 }
710
711 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
712 enum mem_cgroup_events_target target)
713 {
714 unsigned long val, next;
715
716 val = __this_cpu_read(memcg->stat->nr_page_events);
717 next = __this_cpu_read(memcg->stat->targets[target]);
718 /* from time_after() in jiffies.h */
719 if ((long)next - (long)val < 0) {
720 switch (target) {
721 case MEM_CGROUP_TARGET_THRESH:
722 next = val + THRESHOLDS_EVENTS_TARGET;
723 break;
724 case MEM_CGROUP_TARGET_SOFTLIMIT:
725 next = val + SOFTLIMIT_EVENTS_TARGET;
726 break;
727 case MEM_CGROUP_TARGET_NUMAINFO:
728 next = val + NUMAINFO_EVENTS_TARGET;
729 break;
730 default:
731 break;
732 }
733 __this_cpu_write(memcg->stat->targets[target], next);
734 return true;
735 }
736 return false;
737 }
738
739 /*
740 * Check events in order.
741 *
742 */
743 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
744 {
745 /* threshold event is triggered in finer grain than soft limit */
746 if (unlikely(mem_cgroup_event_ratelimit(memcg,
747 MEM_CGROUP_TARGET_THRESH))) {
748 bool do_softlimit;
749 bool do_numainfo __maybe_unused;
750
751 do_softlimit = mem_cgroup_event_ratelimit(memcg,
752 MEM_CGROUP_TARGET_SOFTLIMIT);
753 #if MAX_NUMNODES > 1
754 do_numainfo = mem_cgroup_event_ratelimit(memcg,
755 MEM_CGROUP_TARGET_NUMAINFO);
756 #endif
757 mem_cgroup_threshold(memcg);
758 if (unlikely(do_softlimit))
759 mem_cgroup_update_tree(memcg, page);
760 #if MAX_NUMNODES > 1
761 if (unlikely(do_numainfo))
762 atomic_inc(&memcg->numainfo_events);
763 #endif
764 }
765 }
766
767 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
768 {
769 /*
770 * mm_update_next_owner() may clear mm->owner to NULL
771 * if it races with swapoff, page migration, etc.
772 * So this can be called with p == NULL.
773 */
774 if (unlikely(!p))
775 return NULL;
776
777 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
778 }
779 EXPORT_SYMBOL(mem_cgroup_from_task);
780
781 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
782 {
783 struct mem_cgroup *memcg = NULL;
784
785 rcu_read_lock();
786 do {
787 /*
788 * Page cache insertions can happen withou an
789 * actual mm context, e.g. during disk probing
790 * on boot, loopback IO, acct() writes etc.
791 */
792 if (unlikely(!mm))
793 memcg = root_mem_cgroup;
794 else {
795 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
796 if (unlikely(!memcg))
797 memcg = root_mem_cgroup;
798 }
799 } while (!css_tryget_online(&memcg->css));
800 rcu_read_unlock();
801 return memcg;
802 }
803
804 /**
805 * mem_cgroup_iter - iterate over memory cgroup hierarchy
806 * @root: hierarchy root
807 * @prev: previously returned memcg, NULL on first invocation
808 * @reclaim: cookie for shared reclaim walks, NULL for full walks
809 *
810 * Returns references to children of the hierarchy below @root, or
811 * @root itself, or %NULL after a full round-trip.
812 *
813 * Caller must pass the return value in @prev on subsequent
814 * invocations for reference counting, or use mem_cgroup_iter_break()
815 * to cancel a hierarchy walk before the round-trip is complete.
816 *
817 * Reclaimers can specify a zone and a priority level in @reclaim to
818 * divide up the memcgs in the hierarchy among all concurrent
819 * reclaimers operating on the same zone and priority.
820 */
821 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
822 struct mem_cgroup *prev,
823 struct mem_cgroup_reclaim_cookie *reclaim)
824 {
825 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
826 struct cgroup_subsys_state *css = NULL;
827 struct mem_cgroup *memcg = NULL;
828 struct mem_cgroup *pos = NULL;
829
830 if (mem_cgroup_disabled())
831 return NULL;
832
833 if (!root)
834 root = root_mem_cgroup;
835
836 if (prev && !reclaim)
837 pos = prev;
838
839 if (!root->use_hierarchy && root != root_mem_cgroup) {
840 if (prev)
841 goto out;
842 return root;
843 }
844
845 rcu_read_lock();
846
847 if (reclaim) {
848 struct mem_cgroup_per_zone *mz;
849
850 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
851 iter = &mz->iter[reclaim->priority];
852
853 if (prev && reclaim->generation != iter->generation)
854 goto out_unlock;
855
856 while (1) {
857 pos = READ_ONCE(iter->position);
858 if (!pos || css_tryget(&pos->css))
859 break;
860 /*
861 * css reference reached zero, so iter->position will
862 * be cleared by ->css_released. However, we should not
863 * rely on this happening soon, because ->css_released
864 * is called from a work queue, and by busy-waiting we
865 * might block it. So we clear iter->position right
866 * away.
867 */
868 (void)cmpxchg(&iter->position, pos, NULL);
869 }
870 }
871
872 if (pos)
873 css = &pos->css;
874
875 for (;;) {
876 css = css_next_descendant_pre(css, &root->css);
877 if (!css) {
878 /*
879 * Reclaimers share the hierarchy walk, and a
880 * new one might jump in right at the end of
881 * the hierarchy - make sure they see at least
882 * one group and restart from the beginning.
883 */
884 if (!prev)
885 continue;
886 break;
887 }
888
889 /*
890 * Verify the css and acquire a reference. The root
891 * is provided by the caller, so we know it's alive
892 * and kicking, and don't take an extra reference.
893 */
894 memcg = mem_cgroup_from_css(css);
895
896 if (css == &root->css)
897 break;
898
899 if (css_tryget(css)) {
900 /*
901 * Make sure the memcg is initialized:
902 * mem_cgroup_css_online() orders the the
903 * initialization against setting the flag.
904 */
905 if (smp_load_acquire(&memcg->initialized))
906 break;
907
908 css_put(css);
909 }
910
911 memcg = NULL;
912 }
913
914 if (reclaim) {
915 /*
916 * The position could have already been updated by a competing
917 * thread, so check that the value hasn't changed since we read
918 * it to avoid reclaiming from the same cgroup twice.
919 */
920 (void)cmpxchg(&iter->position, pos, memcg);
921
922 if (pos)
923 css_put(&pos->css);
924
925 if (!memcg)
926 iter->generation++;
927 else if (!prev)
928 reclaim->generation = iter->generation;
929 }
930
931 out_unlock:
932 rcu_read_unlock();
933 out:
934 if (prev && prev != root)
935 css_put(&prev->css);
936
937 return memcg;
938 }
939
940 /**
941 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
942 * @root: hierarchy root
943 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
944 */
945 void mem_cgroup_iter_break(struct mem_cgroup *root,
946 struct mem_cgroup *prev)
947 {
948 if (!root)
949 root = root_mem_cgroup;
950 if (prev && prev != root)
951 css_put(&prev->css);
952 }
953
954 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
955 {
956 struct mem_cgroup *memcg = dead_memcg;
957 struct mem_cgroup_reclaim_iter *iter;
958 struct mem_cgroup_per_zone *mz;
959 int nid, zid;
960 int i;
961
962 while ((memcg = parent_mem_cgroup(memcg))) {
963 for_each_node(nid) {
964 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
965 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
966 for (i = 0; i <= DEF_PRIORITY; i++) {
967 iter = &mz->iter[i];
968 cmpxchg(&iter->position,
969 dead_memcg, NULL);
970 }
971 }
972 }
973 }
974 }
975
976 /*
977 * Iteration constructs for visiting all cgroups (under a tree). If
978 * loops are exited prematurely (break), mem_cgroup_iter_break() must
979 * be used for reference counting.
980 */
981 #define for_each_mem_cgroup_tree(iter, root) \
982 for (iter = mem_cgroup_iter(root, NULL, NULL); \
983 iter != NULL; \
984 iter = mem_cgroup_iter(root, iter, NULL))
985
986 #define for_each_mem_cgroup(iter) \
987 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
988 iter != NULL; \
989 iter = mem_cgroup_iter(NULL, iter, NULL))
990
991 /**
992 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
993 * @zone: zone of the wanted lruvec
994 * @memcg: memcg of the wanted lruvec
995 *
996 * Returns the lru list vector holding pages for the given @zone and
997 * @mem. This can be the global zone lruvec, if the memory controller
998 * is disabled.
999 */
1000 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1001 struct mem_cgroup *memcg)
1002 {
1003 struct mem_cgroup_per_zone *mz;
1004 struct lruvec *lruvec;
1005
1006 if (mem_cgroup_disabled()) {
1007 lruvec = &zone->lruvec;
1008 goto out;
1009 }
1010
1011 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1012 lruvec = &mz->lruvec;
1013 out:
1014 /*
1015 * Since a node can be onlined after the mem_cgroup was created,
1016 * we have to be prepared to initialize lruvec->zone here;
1017 * and if offlined then reonlined, we need to reinitialize it.
1018 */
1019 if (unlikely(lruvec->zone != zone))
1020 lruvec->zone = zone;
1021 return lruvec;
1022 }
1023
1024 /**
1025 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1026 * @page: the page
1027 * @zone: zone of the page
1028 *
1029 * This function is only safe when following the LRU page isolation
1030 * and putback protocol: the LRU lock must be held, and the page must
1031 * either be PageLRU() or the caller must have isolated/allocated it.
1032 */
1033 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1034 {
1035 struct mem_cgroup_per_zone *mz;
1036 struct mem_cgroup *memcg;
1037 struct lruvec *lruvec;
1038
1039 if (mem_cgroup_disabled()) {
1040 lruvec = &zone->lruvec;
1041 goto out;
1042 }
1043
1044 memcg = page->mem_cgroup;
1045 /*
1046 * Swapcache readahead pages are added to the LRU - and
1047 * possibly migrated - before they are charged.
1048 */
1049 if (!memcg)
1050 memcg = root_mem_cgroup;
1051
1052 mz = mem_cgroup_page_zoneinfo(memcg, page);
1053 lruvec = &mz->lruvec;
1054 out:
1055 /*
1056 * Since a node can be onlined after the mem_cgroup was created,
1057 * we have to be prepared to initialize lruvec->zone here;
1058 * and if offlined then reonlined, we need to reinitialize it.
1059 */
1060 if (unlikely(lruvec->zone != zone))
1061 lruvec->zone = zone;
1062 return lruvec;
1063 }
1064
1065 /**
1066 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1067 * @lruvec: mem_cgroup per zone lru vector
1068 * @lru: index of lru list the page is sitting on
1069 * @nr_pages: positive when adding or negative when removing
1070 *
1071 * This function must be called when a page is added to or removed from an
1072 * lru list.
1073 */
1074 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1075 int nr_pages)
1076 {
1077 struct mem_cgroup_per_zone *mz;
1078 unsigned long *lru_size;
1079
1080 if (mem_cgroup_disabled())
1081 return;
1082
1083 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1084 lru_size = mz->lru_size + lru;
1085 *lru_size += nr_pages;
1086 VM_BUG_ON((long)(*lru_size) < 0);
1087 }
1088
1089 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1090 {
1091 struct mem_cgroup *task_memcg;
1092 struct task_struct *p;
1093 bool ret;
1094
1095 p = find_lock_task_mm(task);
1096 if (p) {
1097 task_memcg = get_mem_cgroup_from_mm(p->mm);
1098 task_unlock(p);
1099 } else {
1100 /*
1101 * All threads may have already detached their mm's, but the oom
1102 * killer still needs to detect if they have already been oom
1103 * killed to prevent needlessly killing additional tasks.
1104 */
1105 rcu_read_lock();
1106 task_memcg = mem_cgroup_from_task(task);
1107 css_get(&task_memcg->css);
1108 rcu_read_unlock();
1109 }
1110 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1111 css_put(&task_memcg->css);
1112 return ret;
1113 }
1114
1115 /**
1116 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1117 * @memcg: the memory cgroup
1118 *
1119 * Returns the maximum amount of memory @mem can be charged with, in
1120 * pages.
1121 */
1122 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1123 {
1124 unsigned long margin = 0;
1125 unsigned long count;
1126 unsigned long limit;
1127
1128 count = page_counter_read(&memcg->memory);
1129 limit = READ_ONCE(memcg->memory.limit);
1130 if (count < limit)
1131 margin = limit - count;
1132
1133 if (do_memsw_account()) {
1134 count = page_counter_read(&memcg->memsw);
1135 limit = READ_ONCE(memcg->memsw.limit);
1136 if (count <= limit)
1137 margin = min(margin, limit - count);
1138 }
1139
1140 return margin;
1141 }
1142
1143 /*
1144 * A routine for checking "mem" is under move_account() or not.
1145 *
1146 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1147 * moving cgroups. This is for waiting at high-memory pressure
1148 * caused by "move".
1149 */
1150 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1151 {
1152 struct mem_cgroup *from;
1153 struct mem_cgroup *to;
1154 bool ret = false;
1155 /*
1156 * Unlike task_move routines, we access mc.to, mc.from not under
1157 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1158 */
1159 spin_lock(&mc.lock);
1160 from = mc.from;
1161 to = mc.to;
1162 if (!from)
1163 goto unlock;
1164
1165 ret = mem_cgroup_is_descendant(from, memcg) ||
1166 mem_cgroup_is_descendant(to, memcg);
1167 unlock:
1168 spin_unlock(&mc.lock);
1169 return ret;
1170 }
1171
1172 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1173 {
1174 if (mc.moving_task && current != mc.moving_task) {
1175 if (mem_cgroup_under_move(memcg)) {
1176 DEFINE_WAIT(wait);
1177 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1178 /* moving charge context might have finished. */
1179 if (mc.moving_task)
1180 schedule();
1181 finish_wait(&mc.waitq, &wait);
1182 return true;
1183 }
1184 }
1185 return false;
1186 }
1187
1188 #define K(x) ((x) << (PAGE_SHIFT-10))
1189 /**
1190 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1191 * @memcg: The memory cgroup that went over limit
1192 * @p: Task that is going to be killed
1193 *
1194 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1195 * enabled
1196 */
1197 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1198 {
1199 /* oom_info_lock ensures that parallel ooms do not interleave */
1200 static DEFINE_MUTEX(oom_info_lock);
1201 struct mem_cgroup *iter;
1202 unsigned int i;
1203
1204 mutex_lock(&oom_info_lock);
1205 rcu_read_lock();
1206
1207 if (p) {
1208 pr_info("Task in ");
1209 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1210 pr_cont(" killed as a result of limit of ");
1211 } else {
1212 pr_info("Memory limit reached of cgroup ");
1213 }
1214
1215 pr_cont_cgroup_path(memcg->css.cgroup);
1216 pr_cont("\n");
1217
1218 rcu_read_unlock();
1219
1220 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1221 K((u64)page_counter_read(&memcg->memory)),
1222 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1223 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1224 K((u64)page_counter_read(&memcg->memsw)),
1225 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1226 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1227 K((u64)page_counter_read(&memcg->kmem)),
1228 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1229
1230 for_each_mem_cgroup_tree(iter, memcg) {
1231 pr_info("Memory cgroup stats for ");
1232 pr_cont_cgroup_path(iter->css.cgroup);
1233 pr_cont(":");
1234
1235 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1236 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1237 continue;
1238 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1239 K(mem_cgroup_read_stat(iter, i)));
1240 }
1241
1242 for (i = 0; i < NR_LRU_LISTS; i++)
1243 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1244 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1245
1246 pr_cont("\n");
1247 }
1248 mutex_unlock(&oom_info_lock);
1249 }
1250
1251 /*
1252 * This function returns the number of memcg under hierarchy tree. Returns
1253 * 1(self count) if no children.
1254 */
1255 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1256 {
1257 int num = 0;
1258 struct mem_cgroup *iter;
1259
1260 for_each_mem_cgroup_tree(iter, memcg)
1261 num++;
1262 return num;
1263 }
1264
1265 /*
1266 * Return the memory (and swap, if configured) limit for a memcg.
1267 */
1268 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1269 {
1270 unsigned long limit;
1271
1272 limit = memcg->memory.limit;
1273 if (mem_cgroup_swappiness(memcg)) {
1274 unsigned long memsw_limit;
1275
1276 memsw_limit = memcg->memsw.limit;
1277 limit = min(limit + total_swap_pages, memsw_limit);
1278 }
1279 return limit;
1280 }
1281
1282 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1283 int order)
1284 {
1285 struct oom_control oc = {
1286 .zonelist = NULL,
1287 .nodemask = NULL,
1288 .gfp_mask = gfp_mask,
1289 .order = order,
1290 };
1291 struct mem_cgroup *iter;
1292 unsigned long chosen_points = 0;
1293 unsigned long totalpages;
1294 unsigned int points = 0;
1295 struct task_struct *chosen = NULL;
1296
1297 mutex_lock(&oom_lock);
1298
1299 /*
1300 * If current has a pending SIGKILL or is exiting, then automatically
1301 * select it. The goal is to allow it to allocate so that it may
1302 * quickly exit and free its memory.
1303 */
1304 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1305 mark_oom_victim(current);
1306 goto unlock;
1307 }
1308
1309 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1310 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1311 for_each_mem_cgroup_tree(iter, memcg) {
1312 struct css_task_iter it;
1313 struct task_struct *task;
1314
1315 css_task_iter_start(&iter->css, &it);
1316 while ((task = css_task_iter_next(&it))) {
1317 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1318 case OOM_SCAN_SELECT:
1319 if (chosen)
1320 put_task_struct(chosen);
1321 chosen = task;
1322 chosen_points = ULONG_MAX;
1323 get_task_struct(chosen);
1324 /* fall through */
1325 case OOM_SCAN_CONTINUE:
1326 continue;
1327 case OOM_SCAN_ABORT:
1328 css_task_iter_end(&it);
1329 mem_cgroup_iter_break(memcg, iter);
1330 if (chosen)
1331 put_task_struct(chosen);
1332 goto unlock;
1333 case OOM_SCAN_OK:
1334 break;
1335 };
1336 points = oom_badness(task, memcg, NULL, totalpages);
1337 if (!points || points < chosen_points)
1338 continue;
1339 /* Prefer thread group leaders for display purposes */
1340 if (points == chosen_points &&
1341 thread_group_leader(chosen))
1342 continue;
1343
1344 if (chosen)
1345 put_task_struct(chosen);
1346 chosen = task;
1347 chosen_points = points;
1348 get_task_struct(chosen);
1349 }
1350 css_task_iter_end(&it);
1351 }
1352
1353 if (chosen) {
1354 points = chosen_points * 1000 / totalpages;
1355 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1356 "Memory cgroup out of memory");
1357 }
1358 unlock:
1359 mutex_unlock(&oom_lock);
1360 }
1361
1362 #if MAX_NUMNODES > 1
1363
1364 /**
1365 * test_mem_cgroup_node_reclaimable
1366 * @memcg: the target memcg
1367 * @nid: the node ID to be checked.
1368 * @noswap : specify true here if the user wants flle only information.
1369 *
1370 * This function returns whether the specified memcg contains any
1371 * reclaimable pages on a node. Returns true if there are any reclaimable
1372 * pages in the node.
1373 */
1374 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1375 int nid, bool noswap)
1376 {
1377 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1378 return true;
1379 if (noswap || !total_swap_pages)
1380 return false;
1381 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1382 return true;
1383 return false;
1384
1385 }
1386
1387 /*
1388 * Always updating the nodemask is not very good - even if we have an empty
1389 * list or the wrong list here, we can start from some node and traverse all
1390 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1391 *
1392 */
1393 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1394 {
1395 int nid;
1396 /*
1397 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1398 * pagein/pageout changes since the last update.
1399 */
1400 if (!atomic_read(&memcg->numainfo_events))
1401 return;
1402 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1403 return;
1404
1405 /* make a nodemask where this memcg uses memory from */
1406 memcg->scan_nodes = node_states[N_MEMORY];
1407
1408 for_each_node_mask(nid, node_states[N_MEMORY]) {
1409
1410 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1411 node_clear(nid, memcg->scan_nodes);
1412 }
1413
1414 atomic_set(&memcg->numainfo_events, 0);
1415 atomic_set(&memcg->numainfo_updating, 0);
1416 }
1417
1418 /*
1419 * Selecting a node where we start reclaim from. Because what we need is just
1420 * reducing usage counter, start from anywhere is O,K. Considering
1421 * memory reclaim from current node, there are pros. and cons.
1422 *
1423 * Freeing memory from current node means freeing memory from a node which
1424 * we'll use or we've used. So, it may make LRU bad. And if several threads
1425 * hit limits, it will see a contention on a node. But freeing from remote
1426 * node means more costs for memory reclaim because of memory latency.
1427 *
1428 * Now, we use round-robin. Better algorithm is welcomed.
1429 */
1430 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1431 {
1432 int node;
1433
1434 mem_cgroup_may_update_nodemask(memcg);
1435 node = memcg->last_scanned_node;
1436
1437 node = next_node(node, memcg->scan_nodes);
1438 if (node == MAX_NUMNODES)
1439 node = first_node(memcg->scan_nodes);
1440 /*
1441 * We call this when we hit limit, not when pages are added to LRU.
1442 * No LRU may hold pages because all pages are UNEVICTABLE or
1443 * memcg is too small and all pages are not on LRU. In that case,
1444 * we use curret node.
1445 */
1446 if (unlikely(node == MAX_NUMNODES))
1447 node = numa_node_id();
1448
1449 memcg->last_scanned_node = node;
1450 return node;
1451 }
1452 #else
1453 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1454 {
1455 return 0;
1456 }
1457 #endif
1458
1459 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1460 struct zone *zone,
1461 gfp_t gfp_mask,
1462 unsigned long *total_scanned)
1463 {
1464 struct mem_cgroup *victim = NULL;
1465 int total = 0;
1466 int loop = 0;
1467 unsigned long excess;
1468 unsigned long nr_scanned;
1469 struct mem_cgroup_reclaim_cookie reclaim = {
1470 .zone = zone,
1471 .priority = 0,
1472 };
1473
1474 excess = soft_limit_excess(root_memcg);
1475
1476 while (1) {
1477 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1478 if (!victim) {
1479 loop++;
1480 if (loop >= 2) {
1481 /*
1482 * If we have not been able to reclaim
1483 * anything, it might because there are
1484 * no reclaimable pages under this hierarchy
1485 */
1486 if (!total)
1487 break;
1488 /*
1489 * We want to do more targeted reclaim.
1490 * excess >> 2 is not to excessive so as to
1491 * reclaim too much, nor too less that we keep
1492 * coming back to reclaim from this cgroup
1493 */
1494 if (total >= (excess >> 2) ||
1495 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1496 break;
1497 }
1498 continue;
1499 }
1500 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1501 zone, &nr_scanned);
1502 *total_scanned += nr_scanned;
1503 if (!soft_limit_excess(root_memcg))
1504 break;
1505 }
1506 mem_cgroup_iter_break(root_memcg, victim);
1507 return total;
1508 }
1509
1510 #ifdef CONFIG_LOCKDEP
1511 static struct lockdep_map memcg_oom_lock_dep_map = {
1512 .name = "memcg_oom_lock",
1513 };
1514 #endif
1515
1516 static DEFINE_SPINLOCK(memcg_oom_lock);
1517
1518 /*
1519 * Check OOM-Killer is already running under our hierarchy.
1520 * If someone is running, return false.
1521 */
1522 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1523 {
1524 struct mem_cgroup *iter, *failed = NULL;
1525
1526 spin_lock(&memcg_oom_lock);
1527
1528 for_each_mem_cgroup_tree(iter, memcg) {
1529 if (iter->oom_lock) {
1530 /*
1531 * this subtree of our hierarchy is already locked
1532 * so we cannot give a lock.
1533 */
1534 failed = iter;
1535 mem_cgroup_iter_break(memcg, iter);
1536 break;
1537 } else
1538 iter->oom_lock = true;
1539 }
1540
1541 if (failed) {
1542 /*
1543 * OK, we failed to lock the whole subtree so we have
1544 * to clean up what we set up to the failing subtree
1545 */
1546 for_each_mem_cgroup_tree(iter, memcg) {
1547 if (iter == failed) {
1548 mem_cgroup_iter_break(memcg, iter);
1549 break;
1550 }
1551 iter->oom_lock = false;
1552 }
1553 } else
1554 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1555
1556 spin_unlock(&memcg_oom_lock);
1557
1558 return !failed;
1559 }
1560
1561 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1562 {
1563 struct mem_cgroup *iter;
1564
1565 spin_lock(&memcg_oom_lock);
1566 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1567 for_each_mem_cgroup_tree(iter, memcg)
1568 iter->oom_lock = false;
1569 spin_unlock(&memcg_oom_lock);
1570 }
1571
1572 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1573 {
1574 struct mem_cgroup *iter;
1575
1576 spin_lock(&memcg_oom_lock);
1577 for_each_mem_cgroup_tree(iter, memcg)
1578 iter->under_oom++;
1579 spin_unlock(&memcg_oom_lock);
1580 }
1581
1582 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1583 {
1584 struct mem_cgroup *iter;
1585
1586 /*
1587 * When a new child is created while the hierarchy is under oom,
1588 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1589 */
1590 spin_lock(&memcg_oom_lock);
1591 for_each_mem_cgroup_tree(iter, memcg)
1592 if (iter->under_oom > 0)
1593 iter->under_oom--;
1594 spin_unlock(&memcg_oom_lock);
1595 }
1596
1597 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1598
1599 struct oom_wait_info {
1600 struct mem_cgroup *memcg;
1601 wait_queue_t wait;
1602 };
1603
1604 static int memcg_oom_wake_function(wait_queue_t *wait,
1605 unsigned mode, int sync, void *arg)
1606 {
1607 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1608 struct mem_cgroup *oom_wait_memcg;
1609 struct oom_wait_info *oom_wait_info;
1610
1611 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1612 oom_wait_memcg = oom_wait_info->memcg;
1613
1614 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1615 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1616 return 0;
1617 return autoremove_wake_function(wait, mode, sync, arg);
1618 }
1619
1620 static void memcg_oom_recover(struct mem_cgroup *memcg)
1621 {
1622 /*
1623 * For the following lockless ->under_oom test, the only required
1624 * guarantee is that it must see the state asserted by an OOM when
1625 * this function is called as a result of userland actions
1626 * triggered by the notification of the OOM. This is trivially
1627 * achieved by invoking mem_cgroup_mark_under_oom() before
1628 * triggering notification.
1629 */
1630 if (memcg && memcg->under_oom)
1631 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1632 }
1633
1634 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1635 {
1636 if (!current->memcg_may_oom)
1637 return;
1638 /*
1639 * We are in the middle of the charge context here, so we
1640 * don't want to block when potentially sitting on a callstack
1641 * that holds all kinds of filesystem and mm locks.
1642 *
1643 * Also, the caller may handle a failed allocation gracefully
1644 * (like optional page cache readahead) and so an OOM killer
1645 * invocation might not even be necessary.
1646 *
1647 * That's why we don't do anything here except remember the
1648 * OOM context and then deal with it at the end of the page
1649 * fault when the stack is unwound, the locks are released,
1650 * and when we know whether the fault was overall successful.
1651 */
1652 css_get(&memcg->css);
1653 current->memcg_in_oom = memcg;
1654 current->memcg_oom_gfp_mask = mask;
1655 current->memcg_oom_order = order;
1656 }
1657
1658 /**
1659 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1660 * @handle: actually kill/wait or just clean up the OOM state
1661 *
1662 * This has to be called at the end of a page fault if the memcg OOM
1663 * handler was enabled.
1664 *
1665 * Memcg supports userspace OOM handling where failed allocations must
1666 * sleep on a waitqueue until the userspace task resolves the
1667 * situation. Sleeping directly in the charge context with all kinds
1668 * of locks held is not a good idea, instead we remember an OOM state
1669 * in the task and mem_cgroup_oom_synchronize() has to be called at
1670 * the end of the page fault to complete the OOM handling.
1671 *
1672 * Returns %true if an ongoing memcg OOM situation was detected and
1673 * completed, %false otherwise.
1674 */
1675 bool mem_cgroup_oom_synchronize(bool handle)
1676 {
1677 struct mem_cgroup *memcg = current->memcg_in_oom;
1678 struct oom_wait_info owait;
1679 bool locked;
1680
1681 /* OOM is global, do not handle */
1682 if (!memcg)
1683 return false;
1684
1685 if (!handle || oom_killer_disabled)
1686 goto cleanup;
1687
1688 owait.memcg = memcg;
1689 owait.wait.flags = 0;
1690 owait.wait.func = memcg_oom_wake_function;
1691 owait.wait.private = current;
1692 INIT_LIST_HEAD(&owait.wait.task_list);
1693
1694 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1695 mem_cgroup_mark_under_oom(memcg);
1696
1697 locked = mem_cgroup_oom_trylock(memcg);
1698
1699 if (locked)
1700 mem_cgroup_oom_notify(memcg);
1701
1702 if (locked && !memcg->oom_kill_disable) {
1703 mem_cgroup_unmark_under_oom(memcg);
1704 finish_wait(&memcg_oom_waitq, &owait.wait);
1705 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1706 current->memcg_oom_order);
1707 } else {
1708 schedule();
1709 mem_cgroup_unmark_under_oom(memcg);
1710 finish_wait(&memcg_oom_waitq, &owait.wait);
1711 }
1712
1713 if (locked) {
1714 mem_cgroup_oom_unlock(memcg);
1715 /*
1716 * There is no guarantee that an OOM-lock contender
1717 * sees the wakeups triggered by the OOM kill
1718 * uncharges. Wake any sleepers explicitely.
1719 */
1720 memcg_oom_recover(memcg);
1721 }
1722 cleanup:
1723 current->memcg_in_oom = NULL;
1724 css_put(&memcg->css);
1725 return true;
1726 }
1727
1728 /**
1729 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1730 * @page: page that is going to change accounted state
1731 *
1732 * This function must mark the beginning of an accounted page state
1733 * change to prevent double accounting when the page is concurrently
1734 * being moved to another memcg:
1735 *
1736 * memcg = mem_cgroup_begin_page_stat(page);
1737 * if (TestClearPageState(page))
1738 * mem_cgroup_update_page_stat(memcg, state, -1);
1739 * mem_cgroup_end_page_stat(memcg);
1740 */
1741 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1742 {
1743 struct mem_cgroup *memcg;
1744 unsigned long flags;
1745
1746 /*
1747 * The RCU lock is held throughout the transaction. The fast
1748 * path can get away without acquiring the memcg->move_lock
1749 * because page moving starts with an RCU grace period.
1750 *
1751 * The RCU lock also protects the memcg from being freed when
1752 * the page state that is going to change is the only thing
1753 * preventing the page from being uncharged.
1754 * E.g. end-writeback clearing PageWriteback(), which allows
1755 * migration to go ahead and uncharge the page before the
1756 * account transaction might be complete.
1757 */
1758 rcu_read_lock();
1759
1760 if (mem_cgroup_disabled())
1761 return NULL;
1762 again:
1763 memcg = page->mem_cgroup;
1764 if (unlikely(!memcg))
1765 return NULL;
1766
1767 if (atomic_read(&memcg->moving_account) <= 0)
1768 return memcg;
1769
1770 spin_lock_irqsave(&memcg->move_lock, flags);
1771 if (memcg != page->mem_cgroup) {
1772 spin_unlock_irqrestore(&memcg->move_lock, flags);
1773 goto again;
1774 }
1775
1776 /*
1777 * When charge migration first begins, we can have locked and
1778 * unlocked page stat updates happening concurrently. Track
1779 * the task who has the lock for mem_cgroup_end_page_stat().
1780 */
1781 memcg->move_lock_task = current;
1782 memcg->move_lock_flags = flags;
1783
1784 return memcg;
1785 }
1786 EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1787
1788 /**
1789 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1790 * @memcg: the memcg that was accounted against
1791 */
1792 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1793 {
1794 if (memcg && memcg->move_lock_task == current) {
1795 unsigned long flags = memcg->move_lock_flags;
1796
1797 memcg->move_lock_task = NULL;
1798 memcg->move_lock_flags = 0;
1799
1800 spin_unlock_irqrestore(&memcg->move_lock, flags);
1801 }
1802
1803 rcu_read_unlock();
1804 }
1805 EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1806
1807 /*
1808 * size of first charge trial. "32" comes from vmscan.c's magic value.
1809 * TODO: maybe necessary to use big numbers in big irons.
1810 */
1811 #define CHARGE_BATCH 32U
1812 struct memcg_stock_pcp {
1813 struct mem_cgroup *cached; /* this never be root cgroup */
1814 unsigned int nr_pages;
1815 struct work_struct work;
1816 unsigned long flags;
1817 #define FLUSHING_CACHED_CHARGE 0
1818 };
1819 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1820 static DEFINE_MUTEX(percpu_charge_mutex);
1821
1822 /**
1823 * consume_stock: Try to consume stocked charge on this cpu.
1824 * @memcg: memcg to consume from.
1825 * @nr_pages: how many pages to charge.
1826 *
1827 * The charges will only happen if @memcg matches the current cpu's memcg
1828 * stock, and at least @nr_pages are available in that stock. Failure to
1829 * service an allocation will refill the stock.
1830 *
1831 * returns true if successful, false otherwise.
1832 */
1833 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1834 {
1835 struct memcg_stock_pcp *stock;
1836 bool ret = false;
1837
1838 if (nr_pages > CHARGE_BATCH)
1839 return ret;
1840
1841 stock = &get_cpu_var(memcg_stock);
1842 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1843 stock->nr_pages -= nr_pages;
1844 ret = true;
1845 }
1846 put_cpu_var(memcg_stock);
1847 return ret;
1848 }
1849
1850 /*
1851 * Returns stocks cached in percpu and reset cached information.
1852 */
1853 static void drain_stock(struct memcg_stock_pcp *stock)
1854 {
1855 struct mem_cgroup *old = stock->cached;
1856
1857 if (stock->nr_pages) {
1858 page_counter_uncharge(&old->memory, stock->nr_pages);
1859 if (do_memsw_account())
1860 page_counter_uncharge(&old->memsw, stock->nr_pages);
1861 css_put_many(&old->css, stock->nr_pages);
1862 stock->nr_pages = 0;
1863 }
1864 stock->cached = NULL;
1865 }
1866
1867 /*
1868 * This must be called under preempt disabled or must be called by
1869 * a thread which is pinned to local cpu.
1870 */
1871 static void drain_local_stock(struct work_struct *dummy)
1872 {
1873 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1874 drain_stock(stock);
1875 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1876 }
1877
1878 /*
1879 * Cache charges(val) to local per_cpu area.
1880 * This will be consumed by consume_stock() function, later.
1881 */
1882 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1883 {
1884 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1885
1886 if (stock->cached != memcg) { /* reset if necessary */
1887 drain_stock(stock);
1888 stock->cached = memcg;
1889 }
1890 stock->nr_pages += nr_pages;
1891 put_cpu_var(memcg_stock);
1892 }
1893
1894 /*
1895 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1896 * of the hierarchy under it.
1897 */
1898 static void drain_all_stock(struct mem_cgroup *root_memcg)
1899 {
1900 int cpu, curcpu;
1901
1902 /* If someone's already draining, avoid adding running more workers. */
1903 if (!mutex_trylock(&percpu_charge_mutex))
1904 return;
1905 /* Notify other cpus that system-wide "drain" is running */
1906 get_online_cpus();
1907 curcpu = get_cpu();
1908 for_each_online_cpu(cpu) {
1909 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1910 struct mem_cgroup *memcg;
1911
1912 memcg = stock->cached;
1913 if (!memcg || !stock->nr_pages)
1914 continue;
1915 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1916 continue;
1917 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1918 if (cpu == curcpu)
1919 drain_local_stock(&stock->work);
1920 else
1921 schedule_work_on(cpu, &stock->work);
1922 }
1923 }
1924 put_cpu();
1925 put_online_cpus();
1926 mutex_unlock(&percpu_charge_mutex);
1927 }
1928
1929 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1930 unsigned long action,
1931 void *hcpu)
1932 {
1933 int cpu = (unsigned long)hcpu;
1934 struct memcg_stock_pcp *stock;
1935
1936 if (action == CPU_ONLINE)
1937 return NOTIFY_OK;
1938
1939 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1940 return NOTIFY_OK;
1941
1942 stock = &per_cpu(memcg_stock, cpu);
1943 drain_stock(stock);
1944 return NOTIFY_OK;
1945 }
1946
1947 static void reclaim_high(struct mem_cgroup *memcg,
1948 unsigned int nr_pages,
1949 gfp_t gfp_mask)
1950 {
1951 do {
1952 if (page_counter_read(&memcg->memory) <= memcg->high)
1953 continue;
1954 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1955 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1956 } while ((memcg = parent_mem_cgroup(memcg)));
1957 }
1958
1959 static void high_work_func(struct work_struct *work)
1960 {
1961 struct mem_cgroup *memcg;
1962
1963 memcg = container_of(work, struct mem_cgroup, high_work);
1964 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1965 }
1966
1967 /*
1968 * Scheduled by try_charge() to be executed from the userland return path
1969 * and reclaims memory over the high limit.
1970 */
1971 void mem_cgroup_handle_over_high(void)
1972 {
1973 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1974 struct mem_cgroup *memcg;
1975
1976 if (likely(!nr_pages))
1977 return;
1978
1979 memcg = get_mem_cgroup_from_mm(current->mm);
1980 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1981 css_put(&memcg->css);
1982 current->memcg_nr_pages_over_high = 0;
1983 }
1984
1985 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1986 unsigned int nr_pages)
1987 {
1988 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1989 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1990 struct mem_cgroup *mem_over_limit;
1991 struct page_counter *counter;
1992 unsigned long nr_reclaimed;
1993 bool may_swap = true;
1994 bool drained = false;
1995
1996 if (mem_cgroup_is_root(memcg))
1997 return 0;
1998 retry:
1999 if (consume_stock(memcg, nr_pages))
2000 return 0;
2001
2002 if (!do_memsw_account() ||
2003 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2004 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2005 goto done_restock;
2006 if (do_memsw_account())
2007 page_counter_uncharge(&memcg->memsw, batch);
2008 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2009 } else {
2010 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2011 may_swap = false;
2012 }
2013
2014 if (batch > nr_pages) {
2015 batch = nr_pages;
2016 goto retry;
2017 }
2018
2019 /*
2020 * Unlike in global OOM situations, memcg is not in a physical
2021 * memory shortage. Allow dying and OOM-killed tasks to
2022 * bypass the last charges so that they can exit quickly and
2023 * free their memory.
2024 */
2025 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2026 fatal_signal_pending(current) ||
2027 current->flags & PF_EXITING))
2028 goto force;
2029
2030 if (unlikely(task_in_memcg_oom(current)))
2031 goto nomem;
2032
2033 if (!gfpflags_allow_blocking(gfp_mask))
2034 goto nomem;
2035
2036 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2037
2038 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2039 gfp_mask, may_swap);
2040
2041 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2042 goto retry;
2043
2044 if (!drained) {
2045 drain_all_stock(mem_over_limit);
2046 drained = true;
2047 goto retry;
2048 }
2049
2050 if (gfp_mask & __GFP_NORETRY)
2051 goto nomem;
2052 /*
2053 * Even though the limit is exceeded at this point, reclaim
2054 * may have been able to free some pages. Retry the charge
2055 * before killing the task.
2056 *
2057 * Only for regular pages, though: huge pages are rather
2058 * unlikely to succeed so close to the limit, and we fall back
2059 * to regular pages anyway in case of failure.
2060 */
2061 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2062 goto retry;
2063 /*
2064 * At task move, charge accounts can be doubly counted. So, it's
2065 * better to wait until the end of task_move if something is going on.
2066 */
2067 if (mem_cgroup_wait_acct_move(mem_over_limit))
2068 goto retry;
2069
2070 if (nr_retries--)
2071 goto retry;
2072
2073 if (gfp_mask & __GFP_NOFAIL)
2074 goto force;
2075
2076 if (fatal_signal_pending(current))
2077 goto force;
2078
2079 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2080
2081 mem_cgroup_oom(mem_over_limit, gfp_mask,
2082 get_order(nr_pages * PAGE_SIZE));
2083 nomem:
2084 if (!(gfp_mask & __GFP_NOFAIL))
2085 return -ENOMEM;
2086 force:
2087 /*
2088 * The allocation either can't fail or will lead to more memory
2089 * being freed very soon. Allow memory usage go over the limit
2090 * temporarily by force charging it.
2091 */
2092 page_counter_charge(&memcg->memory, nr_pages);
2093 if (do_memsw_account())
2094 page_counter_charge(&memcg->memsw, nr_pages);
2095 css_get_many(&memcg->css, nr_pages);
2096
2097 return 0;
2098
2099 done_restock:
2100 css_get_many(&memcg->css, batch);
2101 if (batch > nr_pages)
2102 refill_stock(memcg, batch - nr_pages);
2103
2104 /*
2105 * If the hierarchy is above the normal consumption range, schedule
2106 * reclaim on returning to userland. We can perform reclaim here
2107 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2108 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2109 * not recorded as it most likely matches current's and won't
2110 * change in the meantime. As high limit is checked again before
2111 * reclaim, the cost of mismatch is negligible.
2112 */
2113 do {
2114 if (page_counter_read(&memcg->memory) > memcg->high) {
2115 /* Don't bother a random interrupted task */
2116 if (in_interrupt()) {
2117 schedule_work(&memcg->high_work);
2118 break;
2119 }
2120 current->memcg_nr_pages_over_high += batch;
2121 set_notify_resume(current);
2122 break;
2123 }
2124 } while ((memcg = parent_mem_cgroup(memcg)));
2125
2126 return 0;
2127 }
2128
2129 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2130 {
2131 if (mem_cgroup_is_root(memcg))
2132 return;
2133
2134 page_counter_uncharge(&memcg->memory, nr_pages);
2135 if (do_memsw_account())
2136 page_counter_uncharge(&memcg->memsw, nr_pages);
2137
2138 css_put_many(&memcg->css, nr_pages);
2139 }
2140
2141 static void lock_page_lru(struct page *page, int *isolated)
2142 {
2143 struct zone *zone = page_zone(page);
2144
2145 spin_lock_irq(&zone->lru_lock);
2146 if (PageLRU(page)) {
2147 struct lruvec *lruvec;
2148
2149 lruvec = mem_cgroup_page_lruvec(page, zone);
2150 ClearPageLRU(page);
2151 del_page_from_lru_list(page, lruvec, page_lru(page));
2152 *isolated = 1;
2153 } else
2154 *isolated = 0;
2155 }
2156
2157 static void unlock_page_lru(struct page *page, int isolated)
2158 {
2159 struct zone *zone = page_zone(page);
2160
2161 if (isolated) {
2162 struct lruvec *lruvec;
2163
2164 lruvec = mem_cgroup_page_lruvec(page, zone);
2165 VM_BUG_ON_PAGE(PageLRU(page), page);
2166 SetPageLRU(page);
2167 add_page_to_lru_list(page, lruvec, page_lru(page));
2168 }
2169 spin_unlock_irq(&zone->lru_lock);
2170 }
2171
2172 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2173 bool lrucare)
2174 {
2175 int isolated;
2176
2177 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2178
2179 /*
2180 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2181 * may already be on some other mem_cgroup's LRU. Take care of it.
2182 */
2183 if (lrucare)
2184 lock_page_lru(page, &isolated);
2185
2186 /*
2187 * Nobody should be changing or seriously looking at
2188 * page->mem_cgroup at this point:
2189 *
2190 * - the page is uncharged
2191 *
2192 * - the page is off-LRU
2193 *
2194 * - an anonymous fault has exclusive page access, except for
2195 * a locked page table
2196 *
2197 * - a page cache insertion, a swapin fault, or a migration
2198 * have the page locked
2199 */
2200 page->mem_cgroup = memcg;
2201
2202 if (lrucare)
2203 unlock_page_lru(page, isolated);
2204 }
2205
2206 #ifdef CONFIG_MEMCG_KMEM
2207 static int memcg_alloc_cache_id(void)
2208 {
2209 int id, size;
2210 int err;
2211
2212 id = ida_simple_get(&memcg_cache_ida,
2213 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2214 if (id < 0)
2215 return id;
2216
2217 if (id < memcg_nr_cache_ids)
2218 return id;
2219
2220 /*
2221 * There's no space for the new id in memcg_caches arrays,
2222 * so we have to grow them.
2223 */
2224 down_write(&memcg_cache_ids_sem);
2225
2226 size = 2 * (id + 1);
2227 if (size < MEMCG_CACHES_MIN_SIZE)
2228 size = MEMCG_CACHES_MIN_SIZE;
2229 else if (size > MEMCG_CACHES_MAX_SIZE)
2230 size = MEMCG_CACHES_MAX_SIZE;
2231
2232 err = memcg_update_all_caches(size);
2233 if (!err)
2234 err = memcg_update_all_list_lrus(size);
2235 if (!err)
2236 memcg_nr_cache_ids = size;
2237
2238 up_write(&memcg_cache_ids_sem);
2239
2240 if (err) {
2241 ida_simple_remove(&memcg_cache_ida, id);
2242 return err;
2243 }
2244 return id;
2245 }
2246
2247 static void memcg_free_cache_id(int id)
2248 {
2249 ida_simple_remove(&memcg_cache_ida, id);
2250 }
2251
2252 struct memcg_kmem_cache_create_work {
2253 struct mem_cgroup *memcg;
2254 struct kmem_cache *cachep;
2255 struct work_struct work;
2256 };
2257
2258 static void memcg_kmem_cache_create_func(struct work_struct *w)
2259 {
2260 struct memcg_kmem_cache_create_work *cw =
2261 container_of(w, struct memcg_kmem_cache_create_work, work);
2262 struct mem_cgroup *memcg = cw->memcg;
2263 struct kmem_cache *cachep = cw->cachep;
2264
2265 memcg_create_kmem_cache(memcg, cachep);
2266
2267 css_put(&memcg->css);
2268 kfree(cw);
2269 }
2270
2271 /*
2272 * Enqueue the creation of a per-memcg kmem_cache.
2273 */
2274 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2275 struct kmem_cache *cachep)
2276 {
2277 struct memcg_kmem_cache_create_work *cw;
2278
2279 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2280 if (!cw)
2281 return;
2282
2283 css_get(&memcg->css);
2284
2285 cw->memcg = memcg;
2286 cw->cachep = cachep;
2287 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2288
2289 schedule_work(&cw->work);
2290 }
2291
2292 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2293 struct kmem_cache *cachep)
2294 {
2295 /*
2296 * We need to stop accounting when we kmalloc, because if the
2297 * corresponding kmalloc cache is not yet created, the first allocation
2298 * in __memcg_schedule_kmem_cache_create will recurse.
2299 *
2300 * However, it is better to enclose the whole function. Depending on
2301 * the debugging options enabled, INIT_WORK(), for instance, can
2302 * trigger an allocation. This too, will make us recurse. Because at
2303 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2304 * the safest choice is to do it like this, wrapping the whole function.
2305 */
2306 current->memcg_kmem_skip_account = 1;
2307 __memcg_schedule_kmem_cache_create(memcg, cachep);
2308 current->memcg_kmem_skip_account = 0;
2309 }
2310
2311 /*
2312 * Return the kmem_cache we're supposed to use for a slab allocation.
2313 * We try to use the current memcg's version of the cache.
2314 *
2315 * If the cache does not exist yet, if we are the first user of it,
2316 * we either create it immediately, if possible, or create it asynchronously
2317 * in a workqueue.
2318 * In the latter case, we will let the current allocation go through with
2319 * the original cache.
2320 *
2321 * Can't be called in interrupt context or from kernel threads.
2322 * This function needs to be called with rcu_read_lock() held.
2323 */
2324 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2325 {
2326 struct mem_cgroup *memcg;
2327 struct kmem_cache *memcg_cachep;
2328 int kmemcg_id;
2329
2330 VM_BUG_ON(!is_root_cache(cachep));
2331
2332 if (cachep->flags & SLAB_ACCOUNT)
2333 gfp |= __GFP_ACCOUNT;
2334
2335 if (!(gfp & __GFP_ACCOUNT))
2336 return cachep;
2337
2338 if (current->memcg_kmem_skip_account)
2339 return cachep;
2340
2341 memcg = get_mem_cgroup_from_mm(current->mm);
2342 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2343 if (kmemcg_id < 0)
2344 goto out;
2345
2346 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2347 if (likely(memcg_cachep))
2348 return memcg_cachep;
2349
2350 /*
2351 * If we are in a safe context (can wait, and not in interrupt
2352 * context), we could be be predictable and return right away.
2353 * This would guarantee that the allocation being performed
2354 * already belongs in the new cache.
2355 *
2356 * However, there are some clashes that can arrive from locking.
2357 * For instance, because we acquire the slab_mutex while doing
2358 * memcg_create_kmem_cache, this means no further allocation
2359 * could happen with the slab_mutex held. So it's better to
2360 * defer everything.
2361 */
2362 memcg_schedule_kmem_cache_create(memcg, cachep);
2363 out:
2364 css_put(&memcg->css);
2365 return cachep;
2366 }
2367
2368 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2369 {
2370 if (!is_root_cache(cachep))
2371 css_put(&cachep->memcg_params.memcg->css);
2372 }
2373
2374 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2375 struct mem_cgroup *memcg)
2376 {
2377 unsigned int nr_pages = 1 << order;
2378 struct page_counter *counter;
2379 int ret;
2380
2381 if (!memcg_kmem_is_active(memcg))
2382 return 0;
2383
2384 if (!page_counter_try_charge(&memcg->kmem, nr_pages, &counter))
2385 return -ENOMEM;
2386
2387 ret = try_charge(memcg, gfp, nr_pages);
2388 if (ret) {
2389 page_counter_uncharge(&memcg->kmem, nr_pages);
2390 return ret;
2391 }
2392
2393 page->mem_cgroup = memcg;
2394
2395 return 0;
2396 }
2397
2398 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2399 {
2400 struct mem_cgroup *memcg;
2401 int ret;
2402
2403 memcg = get_mem_cgroup_from_mm(current->mm);
2404 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2405 css_put(&memcg->css);
2406 return ret;
2407 }
2408
2409 void __memcg_kmem_uncharge(struct page *page, int order)
2410 {
2411 struct mem_cgroup *memcg = page->mem_cgroup;
2412 unsigned int nr_pages = 1 << order;
2413
2414 if (!memcg)
2415 return;
2416
2417 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2418
2419 page_counter_uncharge(&memcg->kmem, nr_pages);
2420 page_counter_uncharge(&memcg->memory, nr_pages);
2421 if (do_memsw_account())
2422 page_counter_uncharge(&memcg->memsw, nr_pages);
2423
2424 page->mem_cgroup = NULL;
2425 css_put_many(&memcg->css, nr_pages);
2426 }
2427 #endif /* CONFIG_MEMCG_KMEM */
2428
2429 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2430
2431 /*
2432 * Because tail pages are not marked as "used", set it. We're under
2433 * zone->lru_lock and migration entries setup in all page mappings.
2434 */
2435 void mem_cgroup_split_huge_fixup(struct page *head)
2436 {
2437 int i;
2438
2439 if (mem_cgroup_disabled())
2440 return;
2441
2442 for (i = 1; i < HPAGE_PMD_NR; i++)
2443 head[i].mem_cgroup = head->mem_cgroup;
2444
2445 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2446 HPAGE_PMD_NR);
2447 }
2448 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2449
2450 #ifdef CONFIG_MEMCG_SWAP
2451 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2452 bool charge)
2453 {
2454 int val = (charge) ? 1 : -1;
2455 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2456 }
2457
2458 /**
2459 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2460 * @entry: swap entry to be moved
2461 * @from: mem_cgroup which the entry is moved from
2462 * @to: mem_cgroup which the entry is moved to
2463 *
2464 * It succeeds only when the swap_cgroup's record for this entry is the same
2465 * as the mem_cgroup's id of @from.
2466 *
2467 * Returns 0 on success, -EINVAL on failure.
2468 *
2469 * The caller must have charged to @to, IOW, called page_counter_charge() about
2470 * both res and memsw, and called css_get().
2471 */
2472 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2473 struct mem_cgroup *from, struct mem_cgroup *to)
2474 {
2475 unsigned short old_id, new_id;
2476
2477 old_id = mem_cgroup_id(from);
2478 new_id = mem_cgroup_id(to);
2479
2480 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2481 mem_cgroup_swap_statistics(from, false);
2482 mem_cgroup_swap_statistics(to, true);
2483 return 0;
2484 }
2485 return -EINVAL;
2486 }
2487 #else
2488 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2489 struct mem_cgroup *from, struct mem_cgroup *to)
2490 {
2491 return -EINVAL;
2492 }
2493 #endif
2494
2495 static DEFINE_MUTEX(memcg_limit_mutex);
2496
2497 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2498 unsigned long limit)
2499 {
2500 unsigned long curusage;
2501 unsigned long oldusage;
2502 bool enlarge = false;
2503 int retry_count;
2504 int ret;
2505
2506 /*
2507 * For keeping hierarchical_reclaim simple, how long we should retry
2508 * is depends on callers. We set our retry-count to be function
2509 * of # of children which we should visit in this loop.
2510 */
2511 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2512 mem_cgroup_count_children(memcg);
2513
2514 oldusage = page_counter_read(&memcg->memory);
2515
2516 do {
2517 if (signal_pending(current)) {
2518 ret = -EINTR;
2519 break;
2520 }
2521
2522 mutex_lock(&memcg_limit_mutex);
2523 if (limit > memcg->memsw.limit) {
2524 mutex_unlock(&memcg_limit_mutex);
2525 ret = -EINVAL;
2526 break;
2527 }
2528 if (limit > memcg->memory.limit)
2529 enlarge = true;
2530 ret = page_counter_limit(&memcg->memory, limit);
2531 mutex_unlock(&memcg_limit_mutex);
2532
2533 if (!ret)
2534 break;
2535
2536 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2537
2538 curusage = page_counter_read(&memcg->memory);
2539 /* Usage is reduced ? */
2540 if (curusage >= oldusage)
2541 retry_count--;
2542 else
2543 oldusage = curusage;
2544 } while (retry_count);
2545
2546 if (!ret && enlarge)
2547 memcg_oom_recover(memcg);
2548
2549 return ret;
2550 }
2551
2552 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2553 unsigned long limit)
2554 {
2555 unsigned long curusage;
2556 unsigned long oldusage;
2557 bool enlarge = false;
2558 int retry_count;
2559 int ret;
2560
2561 /* see mem_cgroup_resize_res_limit */
2562 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2563 mem_cgroup_count_children(memcg);
2564
2565 oldusage = page_counter_read(&memcg->memsw);
2566
2567 do {
2568 if (signal_pending(current)) {
2569 ret = -EINTR;
2570 break;
2571 }
2572
2573 mutex_lock(&memcg_limit_mutex);
2574 if (limit < memcg->memory.limit) {
2575 mutex_unlock(&memcg_limit_mutex);
2576 ret = -EINVAL;
2577 break;
2578 }
2579 if (limit > memcg->memsw.limit)
2580 enlarge = true;
2581 ret = page_counter_limit(&memcg->memsw, limit);
2582 mutex_unlock(&memcg_limit_mutex);
2583
2584 if (!ret)
2585 break;
2586
2587 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2588
2589 curusage = page_counter_read(&memcg->memsw);
2590 /* Usage is reduced ? */
2591 if (curusage >= oldusage)
2592 retry_count--;
2593 else
2594 oldusage = curusage;
2595 } while (retry_count);
2596
2597 if (!ret && enlarge)
2598 memcg_oom_recover(memcg);
2599
2600 return ret;
2601 }
2602
2603 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2604 gfp_t gfp_mask,
2605 unsigned long *total_scanned)
2606 {
2607 unsigned long nr_reclaimed = 0;
2608 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2609 unsigned long reclaimed;
2610 int loop = 0;
2611 struct mem_cgroup_tree_per_zone *mctz;
2612 unsigned long excess;
2613 unsigned long nr_scanned;
2614
2615 if (order > 0)
2616 return 0;
2617
2618 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2619 /*
2620 * This loop can run a while, specially if mem_cgroup's continuously
2621 * keep exceeding their soft limit and putting the system under
2622 * pressure
2623 */
2624 do {
2625 if (next_mz)
2626 mz = next_mz;
2627 else
2628 mz = mem_cgroup_largest_soft_limit_node(mctz);
2629 if (!mz)
2630 break;
2631
2632 nr_scanned = 0;
2633 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2634 gfp_mask, &nr_scanned);
2635 nr_reclaimed += reclaimed;
2636 *total_scanned += nr_scanned;
2637 spin_lock_irq(&mctz->lock);
2638 __mem_cgroup_remove_exceeded(mz, mctz);
2639
2640 /*
2641 * If we failed to reclaim anything from this memory cgroup
2642 * it is time to move on to the next cgroup
2643 */
2644 next_mz = NULL;
2645 if (!reclaimed)
2646 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2647
2648 excess = soft_limit_excess(mz->memcg);
2649 /*
2650 * One school of thought says that we should not add
2651 * back the node to the tree if reclaim returns 0.
2652 * But our reclaim could return 0, simply because due
2653 * to priority we are exposing a smaller subset of
2654 * memory to reclaim from. Consider this as a longer
2655 * term TODO.
2656 */
2657 /* If excess == 0, no tree ops */
2658 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2659 spin_unlock_irq(&mctz->lock);
2660 css_put(&mz->memcg->css);
2661 loop++;
2662 /*
2663 * Could not reclaim anything and there are no more
2664 * mem cgroups to try or we seem to be looping without
2665 * reclaiming anything.
2666 */
2667 if (!nr_reclaimed &&
2668 (next_mz == NULL ||
2669 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2670 break;
2671 } while (!nr_reclaimed);
2672 if (next_mz)
2673 css_put(&next_mz->memcg->css);
2674 return nr_reclaimed;
2675 }
2676
2677 /*
2678 * Test whether @memcg has children, dead or alive. Note that this
2679 * function doesn't care whether @memcg has use_hierarchy enabled and
2680 * returns %true if there are child csses according to the cgroup
2681 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2682 */
2683 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2684 {
2685 bool ret;
2686
2687 /*
2688 * The lock does not prevent addition or deletion of children, but
2689 * it prevents a new child from being initialized based on this
2690 * parent in css_online(), so it's enough to decide whether
2691 * hierarchically inherited attributes can still be changed or not.
2692 */
2693 lockdep_assert_held(&memcg_create_mutex);
2694
2695 rcu_read_lock();
2696 ret = css_next_child(NULL, &memcg->css);
2697 rcu_read_unlock();
2698 return ret;
2699 }
2700
2701 /*
2702 * Reclaims as many pages from the given memcg as possible and moves
2703 * the rest to the parent.
2704 *
2705 * Caller is responsible for holding css reference for memcg.
2706 */
2707 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2708 {
2709 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2710
2711 /* we call try-to-free pages for make this cgroup empty */
2712 lru_add_drain_all();
2713 /* try to free all pages in this cgroup */
2714 while (nr_retries && page_counter_read(&memcg->memory)) {
2715 int progress;
2716
2717 if (signal_pending(current))
2718 return -EINTR;
2719
2720 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2721 GFP_KERNEL, true);
2722 if (!progress) {
2723 nr_retries--;
2724 /* maybe some writeback is necessary */
2725 congestion_wait(BLK_RW_ASYNC, HZ/10);
2726 }
2727
2728 }
2729
2730 return 0;
2731 }
2732
2733 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2734 char *buf, size_t nbytes,
2735 loff_t off)
2736 {
2737 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2738
2739 if (mem_cgroup_is_root(memcg))
2740 return -EINVAL;
2741 return mem_cgroup_force_empty(memcg) ?: nbytes;
2742 }
2743
2744 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2745 struct cftype *cft)
2746 {
2747 return mem_cgroup_from_css(css)->use_hierarchy;
2748 }
2749
2750 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2751 struct cftype *cft, u64 val)
2752 {
2753 int retval = 0;
2754 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2755 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2756
2757 mutex_lock(&memcg_create_mutex);
2758
2759 if (memcg->use_hierarchy == val)
2760 goto out;
2761
2762 /*
2763 * If parent's use_hierarchy is set, we can't make any modifications
2764 * in the child subtrees. If it is unset, then the change can
2765 * occur, provided the current cgroup has no children.
2766 *
2767 * For the root cgroup, parent_mem is NULL, we allow value to be
2768 * set if there are no children.
2769 */
2770 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2771 (val == 1 || val == 0)) {
2772 if (!memcg_has_children(memcg))
2773 memcg->use_hierarchy = val;
2774 else
2775 retval = -EBUSY;
2776 } else
2777 retval = -EINVAL;
2778
2779 out:
2780 mutex_unlock(&memcg_create_mutex);
2781
2782 return retval;
2783 }
2784
2785 static unsigned long tree_stat(struct mem_cgroup *memcg,
2786 enum mem_cgroup_stat_index idx)
2787 {
2788 struct mem_cgroup *iter;
2789 unsigned long val = 0;
2790
2791 for_each_mem_cgroup_tree(iter, memcg)
2792 val += mem_cgroup_read_stat(iter, idx);
2793
2794 return val;
2795 }
2796
2797 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2798 {
2799 unsigned long val;
2800
2801 if (mem_cgroup_is_root(memcg)) {
2802 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2803 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2804 if (swap)
2805 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2806 } else {
2807 if (!swap)
2808 val = page_counter_read(&memcg->memory);
2809 else
2810 val = page_counter_read(&memcg->memsw);
2811 }
2812 return val;
2813 }
2814
2815 enum {
2816 RES_USAGE,
2817 RES_LIMIT,
2818 RES_MAX_USAGE,
2819 RES_FAILCNT,
2820 RES_SOFT_LIMIT,
2821 };
2822
2823 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2824 struct cftype *cft)
2825 {
2826 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2827 struct page_counter *counter;
2828
2829 switch (MEMFILE_TYPE(cft->private)) {
2830 case _MEM:
2831 counter = &memcg->memory;
2832 break;
2833 case _MEMSWAP:
2834 counter = &memcg->memsw;
2835 break;
2836 case _KMEM:
2837 counter = &memcg->kmem;
2838 break;
2839 default:
2840 BUG();
2841 }
2842
2843 switch (MEMFILE_ATTR(cft->private)) {
2844 case RES_USAGE:
2845 if (counter == &memcg->memory)
2846 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2847 if (counter == &memcg->memsw)
2848 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2849 return (u64)page_counter_read(counter) * PAGE_SIZE;
2850 case RES_LIMIT:
2851 return (u64)counter->limit * PAGE_SIZE;
2852 case RES_MAX_USAGE:
2853 return (u64)counter->watermark * PAGE_SIZE;
2854 case RES_FAILCNT:
2855 return counter->failcnt;
2856 case RES_SOFT_LIMIT:
2857 return (u64)memcg->soft_limit * PAGE_SIZE;
2858 default:
2859 BUG();
2860 }
2861 }
2862
2863 #ifdef CONFIG_MEMCG_KMEM
2864 static int memcg_activate_kmem(struct mem_cgroup *memcg,
2865 unsigned long nr_pages)
2866 {
2867 int err = 0;
2868 int memcg_id;
2869
2870 BUG_ON(memcg->kmemcg_id >= 0);
2871 BUG_ON(memcg->kmem_acct_activated);
2872 BUG_ON(memcg->kmem_acct_active);
2873
2874 /*
2875 * For simplicity, we won't allow this to be disabled. It also can't
2876 * be changed if the cgroup has children already, or if tasks had
2877 * already joined.
2878 *
2879 * If tasks join before we set the limit, a person looking at
2880 * kmem.usage_in_bytes will have no way to determine when it took
2881 * place, which makes the value quite meaningless.
2882 *
2883 * After it first became limited, changes in the value of the limit are
2884 * of course permitted.
2885 */
2886 mutex_lock(&memcg_create_mutex);
2887 if (cgroup_is_populated(memcg->css.cgroup) ||
2888 (memcg->use_hierarchy && memcg_has_children(memcg)))
2889 err = -EBUSY;
2890 mutex_unlock(&memcg_create_mutex);
2891 if (err)
2892 goto out;
2893
2894 memcg_id = memcg_alloc_cache_id();
2895 if (memcg_id < 0) {
2896 err = memcg_id;
2897 goto out;
2898 }
2899
2900 /*
2901 * We couldn't have accounted to this cgroup, because it hasn't got
2902 * activated yet, so this should succeed.
2903 */
2904 err = page_counter_limit(&memcg->kmem, nr_pages);
2905 VM_BUG_ON(err);
2906
2907 static_branch_inc(&memcg_kmem_enabled_key);
2908 /*
2909 * A memory cgroup is considered kmem-active as soon as it gets
2910 * kmemcg_id. Setting the id after enabling static branching will
2911 * guarantee no one starts accounting before all call sites are
2912 * patched.
2913 */
2914 memcg->kmemcg_id = memcg_id;
2915 memcg->kmem_acct_activated = true;
2916 memcg->kmem_acct_active = true;
2917 out:
2918 return err;
2919 }
2920
2921 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2922 unsigned long limit)
2923 {
2924 int ret;
2925
2926 mutex_lock(&memcg_limit_mutex);
2927 if (!memcg_kmem_is_active(memcg))
2928 ret = memcg_activate_kmem(memcg, limit);
2929 else
2930 ret = page_counter_limit(&memcg->kmem, limit);
2931 mutex_unlock(&memcg_limit_mutex);
2932 return ret;
2933 }
2934
2935 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2936 {
2937 int ret = 0;
2938 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2939
2940 if (!parent)
2941 return 0;
2942
2943 mutex_lock(&memcg_limit_mutex);
2944 /*
2945 * If the parent cgroup is not kmem-active now, it cannot be activated
2946 * after this point, because it has at least one child already.
2947 */
2948 if (memcg_kmem_is_active(parent))
2949 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
2950 mutex_unlock(&memcg_limit_mutex);
2951 return ret;
2952 }
2953 #else
2954 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2955 unsigned long limit)
2956 {
2957 return -EINVAL;
2958 }
2959 #endif /* CONFIG_MEMCG_KMEM */
2960
2961 /*
2962 * The user of this function is...
2963 * RES_LIMIT.
2964 */
2965 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2966 char *buf, size_t nbytes, loff_t off)
2967 {
2968 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2969 unsigned long nr_pages;
2970 int ret;
2971
2972 buf = strstrip(buf);
2973 ret = page_counter_memparse(buf, "-1", &nr_pages);
2974 if (ret)
2975 return ret;
2976
2977 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2978 case RES_LIMIT:
2979 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2980 ret = -EINVAL;
2981 break;
2982 }
2983 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2984 case _MEM:
2985 ret = mem_cgroup_resize_limit(memcg, nr_pages);
2986 break;
2987 case _MEMSWAP:
2988 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2989 break;
2990 case _KMEM:
2991 ret = memcg_update_kmem_limit(memcg, nr_pages);
2992 break;
2993 }
2994 break;
2995 case RES_SOFT_LIMIT:
2996 memcg->soft_limit = nr_pages;
2997 ret = 0;
2998 break;
2999 }
3000 return ret ?: nbytes;
3001 }
3002
3003 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3004 size_t nbytes, loff_t off)
3005 {
3006 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3007 struct page_counter *counter;
3008
3009 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3010 case _MEM:
3011 counter = &memcg->memory;
3012 break;
3013 case _MEMSWAP:
3014 counter = &memcg->memsw;
3015 break;
3016 case _KMEM:
3017 counter = &memcg->kmem;
3018 break;
3019 default:
3020 BUG();
3021 }
3022
3023 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3024 case RES_MAX_USAGE:
3025 page_counter_reset_watermark(counter);
3026 break;
3027 case RES_FAILCNT:
3028 counter->failcnt = 0;
3029 break;
3030 default:
3031 BUG();
3032 }
3033
3034 return nbytes;
3035 }
3036
3037 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3038 struct cftype *cft)
3039 {
3040 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3041 }
3042
3043 #ifdef CONFIG_MMU
3044 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3045 struct cftype *cft, u64 val)
3046 {
3047 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3048
3049 if (val & ~MOVE_MASK)
3050 return -EINVAL;
3051
3052 /*
3053 * No kind of locking is needed in here, because ->can_attach() will
3054 * check this value once in the beginning of the process, and then carry
3055 * on with stale data. This means that changes to this value will only
3056 * affect task migrations starting after the change.
3057 */
3058 memcg->move_charge_at_immigrate = val;
3059 return 0;
3060 }
3061 #else
3062 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3063 struct cftype *cft, u64 val)
3064 {
3065 return -ENOSYS;
3066 }
3067 #endif
3068
3069 #ifdef CONFIG_NUMA
3070 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3071 {
3072 struct numa_stat {
3073 const char *name;
3074 unsigned int lru_mask;
3075 };
3076
3077 static const struct numa_stat stats[] = {
3078 { "total", LRU_ALL },
3079 { "file", LRU_ALL_FILE },
3080 { "anon", LRU_ALL_ANON },
3081 { "unevictable", BIT(LRU_UNEVICTABLE) },
3082 };
3083 const struct numa_stat *stat;
3084 int nid;
3085 unsigned long nr;
3086 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3087
3088 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3089 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3090 seq_printf(m, "%s=%lu", stat->name, nr);
3091 for_each_node_state(nid, N_MEMORY) {
3092 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3093 stat->lru_mask);
3094 seq_printf(m, " N%d=%lu", nid, nr);
3095 }
3096 seq_putc(m, '\n');
3097 }
3098
3099 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3100 struct mem_cgroup *iter;
3101
3102 nr = 0;
3103 for_each_mem_cgroup_tree(iter, memcg)
3104 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3105 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3106 for_each_node_state(nid, N_MEMORY) {
3107 nr = 0;
3108 for_each_mem_cgroup_tree(iter, memcg)
3109 nr += mem_cgroup_node_nr_lru_pages(
3110 iter, nid, stat->lru_mask);
3111 seq_printf(m, " N%d=%lu", nid, nr);
3112 }
3113 seq_putc(m, '\n');
3114 }
3115
3116 return 0;
3117 }
3118 #endif /* CONFIG_NUMA */
3119
3120 static int memcg_stat_show(struct seq_file *m, void *v)
3121 {
3122 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3123 unsigned long memory, memsw;
3124 struct mem_cgroup *mi;
3125 unsigned int i;
3126
3127 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3128 MEM_CGROUP_STAT_NSTATS);
3129 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3130 MEM_CGROUP_EVENTS_NSTATS);
3131 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3132
3133 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3134 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3135 continue;
3136 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3137 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3138 }
3139
3140 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3141 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3142 mem_cgroup_read_events(memcg, i));
3143
3144 for (i = 0; i < NR_LRU_LISTS; i++)
3145 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3146 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3147
3148 /* Hierarchical information */
3149 memory = memsw = PAGE_COUNTER_MAX;
3150 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3151 memory = min(memory, mi->memory.limit);
3152 memsw = min(memsw, mi->memsw.limit);
3153 }
3154 seq_printf(m, "hierarchical_memory_limit %llu\n",
3155 (u64)memory * PAGE_SIZE);
3156 if (do_memsw_account())
3157 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3158 (u64)memsw * PAGE_SIZE);
3159
3160 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3161 unsigned long long val = 0;
3162
3163 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3164 continue;
3165 for_each_mem_cgroup_tree(mi, memcg)
3166 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3167 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3168 }
3169
3170 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3171 unsigned long long val = 0;
3172
3173 for_each_mem_cgroup_tree(mi, memcg)
3174 val += mem_cgroup_read_events(mi, i);
3175 seq_printf(m, "total_%s %llu\n",
3176 mem_cgroup_events_names[i], val);
3177 }
3178
3179 for (i = 0; i < NR_LRU_LISTS; i++) {
3180 unsigned long long val = 0;
3181
3182 for_each_mem_cgroup_tree(mi, memcg)
3183 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3184 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3185 }
3186
3187 #ifdef CONFIG_DEBUG_VM
3188 {
3189 int nid, zid;
3190 struct mem_cgroup_per_zone *mz;
3191 struct zone_reclaim_stat *rstat;
3192 unsigned long recent_rotated[2] = {0, 0};
3193 unsigned long recent_scanned[2] = {0, 0};
3194
3195 for_each_online_node(nid)
3196 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3197 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3198 rstat = &mz->lruvec.reclaim_stat;
3199
3200 recent_rotated[0] += rstat->recent_rotated[0];
3201 recent_rotated[1] += rstat->recent_rotated[1];
3202 recent_scanned[0] += rstat->recent_scanned[0];
3203 recent_scanned[1] += rstat->recent_scanned[1];
3204 }
3205 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3206 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3207 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3208 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3209 }
3210 #endif
3211
3212 return 0;
3213 }
3214
3215 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3216 struct cftype *cft)
3217 {
3218 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3219
3220 return mem_cgroup_swappiness(memcg);
3221 }
3222
3223 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3224 struct cftype *cft, u64 val)
3225 {
3226 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3227
3228 if (val > 100)
3229 return -EINVAL;
3230
3231 if (css->parent)
3232 memcg->swappiness = val;
3233 else
3234 vm_swappiness = val;
3235
3236 return 0;
3237 }
3238
3239 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3240 {
3241 struct mem_cgroup_threshold_ary *t;
3242 unsigned long usage;
3243 int i;
3244
3245 rcu_read_lock();
3246 if (!swap)
3247 t = rcu_dereference(memcg->thresholds.primary);
3248 else
3249 t = rcu_dereference(memcg->memsw_thresholds.primary);
3250
3251 if (!t)
3252 goto unlock;
3253
3254 usage = mem_cgroup_usage(memcg, swap);
3255
3256 /*
3257 * current_threshold points to threshold just below or equal to usage.
3258 * If it's not true, a threshold was crossed after last
3259 * call of __mem_cgroup_threshold().
3260 */
3261 i = t->current_threshold;
3262
3263 /*
3264 * Iterate backward over array of thresholds starting from
3265 * current_threshold and check if a threshold is crossed.
3266 * If none of thresholds below usage is crossed, we read
3267 * only one element of the array here.
3268 */
3269 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3270 eventfd_signal(t->entries[i].eventfd, 1);
3271
3272 /* i = current_threshold + 1 */
3273 i++;
3274
3275 /*
3276 * Iterate forward over array of thresholds starting from
3277 * current_threshold+1 and check if a threshold is crossed.
3278 * If none of thresholds above usage is crossed, we read
3279 * only one element of the array here.
3280 */
3281 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3282 eventfd_signal(t->entries[i].eventfd, 1);
3283
3284 /* Update current_threshold */
3285 t->current_threshold = i - 1;
3286 unlock:
3287 rcu_read_unlock();
3288 }
3289
3290 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3291 {
3292 while (memcg) {
3293 __mem_cgroup_threshold(memcg, false);
3294 if (do_memsw_account())
3295 __mem_cgroup_threshold(memcg, true);
3296
3297 memcg = parent_mem_cgroup(memcg);
3298 }
3299 }
3300
3301 static int compare_thresholds(const void *a, const void *b)
3302 {
3303 const struct mem_cgroup_threshold *_a = a;
3304 const struct mem_cgroup_threshold *_b = b;
3305
3306 if (_a->threshold > _b->threshold)
3307 return 1;
3308
3309 if (_a->threshold < _b->threshold)
3310 return -1;
3311
3312 return 0;
3313 }
3314
3315 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3316 {
3317 struct mem_cgroup_eventfd_list *ev;
3318
3319 spin_lock(&memcg_oom_lock);
3320
3321 list_for_each_entry(ev, &memcg->oom_notify, list)
3322 eventfd_signal(ev->eventfd, 1);
3323
3324 spin_unlock(&memcg_oom_lock);
3325 return 0;
3326 }
3327
3328 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3329 {
3330 struct mem_cgroup *iter;
3331
3332 for_each_mem_cgroup_tree(iter, memcg)
3333 mem_cgroup_oom_notify_cb(iter);
3334 }
3335
3336 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3337 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3338 {
3339 struct mem_cgroup_thresholds *thresholds;
3340 struct mem_cgroup_threshold_ary *new;
3341 unsigned long threshold;
3342 unsigned long usage;
3343 int i, size, ret;
3344
3345 ret = page_counter_memparse(args, "-1", &threshold);
3346 if (ret)
3347 return ret;
3348
3349 mutex_lock(&memcg->thresholds_lock);
3350
3351 if (type == _MEM) {
3352 thresholds = &memcg->thresholds;
3353 usage = mem_cgroup_usage(memcg, false);
3354 } else if (type == _MEMSWAP) {
3355 thresholds = &memcg->memsw_thresholds;
3356 usage = mem_cgroup_usage(memcg, true);
3357 } else
3358 BUG();
3359
3360 /* Check if a threshold crossed before adding a new one */
3361 if (thresholds->primary)
3362 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3363
3364 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3365
3366 /* Allocate memory for new array of thresholds */
3367 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3368 GFP_KERNEL);
3369 if (!new) {
3370 ret = -ENOMEM;
3371 goto unlock;
3372 }
3373 new->size = size;
3374
3375 /* Copy thresholds (if any) to new array */
3376 if (thresholds->primary) {
3377 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3378 sizeof(struct mem_cgroup_threshold));
3379 }
3380
3381 /* Add new threshold */
3382 new->entries[size - 1].eventfd = eventfd;
3383 new->entries[size - 1].threshold = threshold;
3384
3385 /* Sort thresholds. Registering of new threshold isn't time-critical */
3386 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3387 compare_thresholds, NULL);
3388
3389 /* Find current threshold */
3390 new->current_threshold = -1;
3391 for (i = 0; i < size; i++) {
3392 if (new->entries[i].threshold <= usage) {
3393 /*
3394 * new->current_threshold will not be used until
3395 * rcu_assign_pointer(), so it's safe to increment
3396 * it here.
3397 */
3398 ++new->current_threshold;
3399 } else
3400 break;
3401 }
3402
3403 /* Free old spare buffer and save old primary buffer as spare */
3404 kfree(thresholds->spare);
3405 thresholds->spare = thresholds->primary;
3406
3407 rcu_assign_pointer(thresholds->primary, new);
3408
3409 /* To be sure that nobody uses thresholds */
3410 synchronize_rcu();
3411
3412 unlock:
3413 mutex_unlock(&memcg->thresholds_lock);
3414
3415 return ret;
3416 }
3417
3418 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3419 struct eventfd_ctx *eventfd, const char *args)
3420 {
3421 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3422 }
3423
3424 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3425 struct eventfd_ctx *eventfd, const char *args)
3426 {
3427 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3428 }
3429
3430 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3431 struct eventfd_ctx *eventfd, enum res_type type)
3432 {
3433 struct mem_cgroup_thresholds *thresholds;
3434 struct mem_cgroup_threshold_ary *new;
3435 unsigned long usage;
3436 int i, j, size;
3437
3438 mutex_lock(&memcg->thresholds_lock);
3439
3440 if (type == _MEM) {
3441 thresholds = &memcg->thresholds;
3442 usage = mem_cgroup_usage(memcg, false);
3443 } else if (type == _MEMSWAP) {
3444 thresholds = &memcg->memsw_thresholds;
3445 usage = mem_cgroup_usage(memcg, true);
3446 } else
3447 BUG();
3448
3449 if (!thresholds->primary)
3450 goto unlock;
3451
3452 /* Check if a threshold crossed before removing */
3453 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3454
3455 /* Calculate new number of threshold */
3456 size = 0;
3457 for (i = 0; i < thresholds->primary->size; i++) {
3458 if (thresholds->primary->entries[i].eventfd != eventfd)
3459 size++;
3460 }
3461
3462 new = thresholds->spare;
3463
3464 /* Set thresholds array to NULL if we don't have thresholds */
3465 if (!size) {
3466 kfree(new);
3467 new = NULL;
3468 goto swap_buffers;
3469 }
3470
3471 new->size = size;
3472
3473 /* Copy thresholds and find current threshold */
3474 new->current_threshold = -1;
3475 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3476 if (thresholds->primary->entries[i].eventfd == eventfd)
3477 continue;
3478
3479 new->entries[j] = thresholds->primary->entries[i];
3480 if (new->entries[j].threshold <= usage) {
3481 /*
3482 * new->current_threshold will not be used
3483 * until rcu_assign_pointer(), so it's safe to increment
3484 * it here.
3485 */
3486 ++new->current_threshold;
3487 }
3488 j++;
3489 }
3490
3491 swap_buffers:
3492 /* Swap primary and spare array */
3493 thresholds->spare = thresholds->primary;
3494
3495 rcu_assign_pointer(thresholds->primary, new);
3496
3497 /* To be sure that nobody uses thresholds */
3498 synchronize_rcu();
3499
3500 /* If all events are unregistered, free the spare array */
3501 if (!new) {
3502 kfree(thresholds->spare);
3503 thresholds->spare = NULL;
3504 }
3505 unlock:
3506 mutex_unlock(&memcg->thresholds_lock);
3507 }
3508
3509 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3510 struct eventfd_ctx *eventfd)
3511 {
3512 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3513 }
3514
3515 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3516 struct eventfd_ctx *eventfd)
3517 {
3518 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3519 }
3520
3521 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3522 struct eventfd_ctx *eventfd, const char *args)
3523 {
3524 struct mem_cgroup_eventfd_list *event;
3525
3526 event = kmalloc(sizeof(*event), GFP_KERNEL);
3527 if (!event)
3528 return -ENOMEM;
3529
3530 spin_lock(&memcg_oom_lock);
3531
3532 event->eventfd = eventfd;
3533 list_add(&event->list, &memcg->oom_notify);
3534
3535 /* already in OOM ? */
3536 if (memcg->under_oom)
3537 eventfd_signal(eventfd, 1);
3538 spin_unlock(&memcg_oom_lock);
3539
3540 return 0;
3541 }
3542
3543 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3544 struct eventfd_ctx *eventfd)
3545 {
3546 struct mem_cgroup_eventfd_list *ev, *tmp;
3547
3548 spin_lock(&memcg_oom_lock);
3549
3550 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3551 if (ev->eventfd == eventfd) {
3552 list_del(&ev->list);
3553 kfree(ev);
3554 }
3555 }
3556
3557 spin_unlock(&memcg_oom_lock);
3558 }
3559
3560 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3561 {
3562 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3563
3564 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3565 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3566 return 0;
3567 }
3568
3569 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3570 struct cftype *cft, u64 val)
3571 {
3572 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3573
3574 /* cannot set to root cgroup and only 0 and 1 are allowed */
3575 if (!css->parent || !((val == 0) || (val == 1)))
3576 return -EINVAL;
3577
3578 memcg->oom_kill_disable = val;
3579 if (!val)
3580 memcg_oom_recover(memcg);
3581
3582 return 0;
3583 }
3584
3585 #ifdef CONFIG_MEMCG_KMEM
3586 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3587 {
3588 int ret;
3589
3590 ret = memcg_propagate_kmem(memcg);
3591 if (ret)
3592 return ret;
3593
3594 return tcp_init_cgroup(memcg, ss);
3595 }
3596
3597 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3598 {
3599 struct cgroup_subsys_state *css;
3600 struct mem_cgroup *parent, *child;
3601 int kmemcg_id;
3602
3603 if (!memcg->kmem_acct_active)
3604 return;
3605
3606 /*
3607 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3608 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3609 * guarantees no cache will be created for this cgroup after we are
3610 * done (see memcg_create_kmem_cache()).
3611 */
3612 memcg->kmem_acct_active = false;
3613
3614 memcg_deactivate_kmem_caches(memcg);
3615
3616 kmemcg_id = memcg->kmemcg_id;
3617 BUG_ON(kmemcg_id < 0);
3618
3619 parent = parent_mem_cgroup(memcg);
3620 if (!parent)
3621 parent = root_mem_cgroup;
3622
3623 /*
3624 * Change kmemcg_id of this cgroup and all its descendants to the
3625 * parent's id, and then move all entries from this cgroup's list_lrus
3626 * to ones of the parent. After we have finished, all list_lrus
3627 * corresponding to this cgroup are guaranteed to remain empty. The
3628 * ordering is imposed by list_lru_node->lock taken by
3629 * memcg_drain_all_list_lrus().
3630 */
3631 css_for_each_descendant_pre(css, &memcg->css) {
3632 child = mem_cgroup_from_css(css);
3633 BUG_ON(child->kmemcg_id != kmemcg_id);
3634 child->kmemcg_id = parent->kmemcg_id;
3635 if (!memcg->use_hierarchy)
3636 break;
3637 }
3638 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3639
3640 memcg_free_cache_id(kmemcg_id);
3641 }
3642
3643 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3644 {
3645 if (memcg->kmem_acct_activated) {
3646 memcg_destroy_kmem_caches(memcg);
3647 static_branch_dec(&memcg_kmem_enabled_key);
3648 WARN_ON(page_counter_read(&memcg->kmem));
3649 }
3650 tcp_destroy_cgroup(memcg);
3651 }
3652 #else
3653 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3654 {
3655 return 0;
3656 }
3657
3658 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3659 {
3660 }
3661
3662 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3663 {
3664 }
3665 #endif
3666
3667 #ifdef CONFIG_CGROUP_WRITEBACK
3668
3669 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3670 {
3671 return &memcg->cgwb_list;
3672 }
3673
3674 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3675 {
3676 return wb_domain_init(&memcg->cgwb_domain, gfp);
3677 }
3678
3679 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3680 {
3681 wb_domain_exit(&memcg->cgwb_domain);
3682 }
3683
3684 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3685 {
3686 wb_domain_size_changed(&memcg->cgwb_domain);
3687 }
3688
3689 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3690 {
3691 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3692
3693 if (!memcg->css.parent)
3694 return NULL;
3695
3696 return &memcg->cgwb_domain;
3697 }
3698
3699 /**
3700 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3701 * @wb: bdi_writeback in question
3702 * @pfilepages: out parameter for number of file pages
3703 * @pheadroom: out parameter for number of allocatable pages according to memcg
3704 * @pdirty: out parameter for number of dirty pages
3705 * @pwriteback: out parameter for number of pages under writeback
3706 *
3707 * Determine the numbers of file, headroom, dirty, and writeback pages in
3708 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3709 * is a bit more involved.
3710 *
3711 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3712 * headroom is calculated as the lowest headroom of itself and the
3713 * ancestors. Note that this doesn't consider the actual amount of
3714 * available memory in the system. The caller should further cap
3715 * *@pheadroom accordingly.
3716 */
3717 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3718 unsigned long *pheadroom, unsigned long *pdirty,
3719 unsigned long *pwriteback)
3720 {
3721 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3722 struct mem_cgroup *parent;
3723
3724 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3725
3726 /* this should eventually include NR_UNSTABLE_NFS */
3727 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3728 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3729 (1 << LRU_ACTIVE_FILE));
3730 *pheadroom = PAGE_COUNTER_MAX;
3731
3732 while ((parent = parent_mem_cgroup(memcg))) {
3733 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3734 unsigned long used = page_counter_read(&memcg->memory);
3735
3736 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3737 memcg = parent;
3738 }
3739 }
3740
3741 #else /* CONFIG_CGROUP_WRITEBACK */
3742
3743 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3744 {
3745 return 0;
3746 }
3747
3748 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3749 {
3750 }
3751
3752 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3753 {
3754 }
3755
3756 #endif /* CONFIG_CGROUP_WRITEBACK */
3757
3758 /*
3759 * DO NOT USE IN NEW FILES.
3760 *
3761 * "cgroup.event_control" implementation.
3762 *
3763 * This is way over-engineered. It tries to support fully configurable
3764 * events for each user. Such level of flexibility is completely
3765 * unnecessary especially in the light of the planned unified hierarchy.
3766 *
3767 * Please deprecate this and replace with something simpler if at all
3768 * possible.
3769 */
3770
3771 /*
3772 * Unregister event and free resources.
3773 *
3774 * Gets called from workqueue.
3775 */
3776 static void memcg_event_remove(struct work_struct *work)
3777 {
3778 struct mem_cgroup_event *event =
3779 container_of(work, struct mem_cgroup_event, remove);
3780 struct mem_cgroup *memcg = event->memcg;
3781
3782 remove_wait_queue(event->wqh, &event->wait);
3783
3784 event->unregister_event(memcg, event->eventfd);
3785
3786 /* Notify userspace the event is going away. */
3787 eventfd_signal(event->eventfd, 1);
3788
3789 eventfd_ctx_put(event->eventfd);
3790 kfree(event);
3791 css_put(&memcg->css);
3792 }
3793
3794 /*
3795 * Gets called on POLLHUP on eventfd when user closes it.
3796 *
3797 * Called with wqh->lock held and interrupts disabled.
3798 */
3799 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3800 int sync, void *key)
3801 {
3802 struct mem_cgroup_event *event =
3803 container_of(wait, struct mem_cgroup_event, wait);
3804 struct mem_cgroup *memcg = event->memcg;
3805 unsigned long flags = (unsigned long)key;
3806
3807 if (flags & POLLHUP) {
3808 /*
3809 * If the event has been detached at cgroup removal, we
3810 * can simply return knowing the other side will cleanup
3811 * for us.
3812 *
3813 * We can't race against event freeing since the other
3814 * side will require wqh->lock via remove_wait_queue(),
3815 * which we hold.
3816 */
3817 spin_lock(&memcg->event_list_lock);
3818 if (!list_empty(&event->list)) {
3819 list_del_init(&event->list);
3820 /*
3821 * We are in atomic context, but cgroup_event_remove()
3822 * may sleep, so we have to call it in workqueue.
3823 */
3824 schedule_work(&event->remove);
3825 }
3826 spin_unlock(&memcg->event_list_lock);
3827 }
3828
3829 return 0;
3830 }
3831
3832 static void memcg_event_ptable_queue_proc(struct file *file,
3833 wait_queue_head_t *wqh, poll_table *pt)
3834 {
3835 struct mem_cgroup_event *event =
3836 container_of(pt, struct mem_cgroup_event, pt);
3837
3838 event->wqh = wqh;
3839 add_wait_queue(wqh, &event->wait);
3840 }
3841
3842 /*
3843 * DO NOT USE IN NEW FILES.
3844 *
3845 * Parse input and register new cgroup event handler.
3846 *
3847 * Input must be in format '<event_fd> <control_fd> <args>'.
3848 * Interpretation of args is defined by control file implementation.
3849 */
3850 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3851 char *buf, size_t nbytes, loff_t off)
3852 {
3853 struct cgroup_subsys_state *css = of_css(of);
3854 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3855 struct mem_cgroup_event *event;
3856 struct cgroup_subsys_state *cfile_css;
3857 unsigned int efd, cfd;
3858 struct fd efile;
3859 struct fd cfile;
3860 const char *name;
3861 char *endp;
3862 int ret;
3863
3864 buf = strstrip(buf);
3865
3866 efd = simple_strtoul(buf, &endp, 10);
3867 if (*endp != ' ')
3868 return -EINVAL;
3869 buf = endp + 1;
3870
3871 cfd = simple_strtoul(buf, &endp, 10);
3872 if ((*endp != ' ') && (*endp != '\0'))
3873 return -EINVAL;
3874 buf = endp + 1;
3875
3876 event = kzalloc(sizeof(*event), GFP_KERNEL);
3877 if (!event)
3878 return -ENOMEM;
3879
3880 event->memcg = memcg;
3881 INIT_LIST_HEAD(&event->list);
3882 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3883 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3884 INIT_WORK(&event->remove, memcg_event_remove);
3885
3886 efile = fdget(efd);
3887 if (!efile.file) {
3888 ret = -EBADF;
3889 goto out_kfree;
3890 }
3891
3892 event->eventfd = eventfd_ctx_fileget(efile.file);
3893 if (IS_ERR(event->eventfd)) {
3894 ret = PTR_ERR(event->eventfd);
3895 goto out_put_efile;
3896 }
3897
3898 cfile = fdget(cfd);
3899 if (!cfile.file) {
3900 ret = -EBADF;
3901 goto out_put_eventfd;
3902 }
3903
3904 /* the process need read permission on control file */
3905 /* AV: shouldn't we check that it's been opened for read instead? */
3906 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3907 if (ret < 0)
3908 goto out_put_cfile;
3909
3910 /*
3911 * Determine the event callbacks and set them in @event. This used
3912 * to be done via struct cftype but cgroup core no longer knows
3913 * about these events. The following is crude but the whole thing
3914 * is for compatibility anyway.
3915 *
3916 * DO NOT ADD NEW FILES.
3917 */
3918 name = cfile.file->f_path.dentry->d_name.name;
3919
3920 if (!strcmp(name, "memory.usage_in_bytes")) {
3921 event->register_event = mem_cgroup_usage_register_event;
3922 event->unregister_event = mem_cgroup_usage_unregister_event;
3923 } else if (!strcmp(name, "memory.oom_control")) {
3924 event->register_event = mem_cgroup_oom_register_event;
3925 event->unregister_event = mem_cgroup_oom_unregister_event;
3926 } else if (!strcmp(name, "memory.pressure_level")) {
3927 event->register_event = vmpressure_register_event;
3928 event->unregister_event = vmpressure_unregister_event;
3929 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3930 event->register_event = memsw_cgroup_usage_register_event;
3931 event->unregister_event = memsw_cgroup_usage_unregister_event;
3932 } else {
3933 ret = -EINVAL;
3934 goto out_put_cfile;
3935 }
3936
3937 /*
3938 * Verify @cfile should belong to @css. Also, remaining events are
3939 * automatically removed on cgroup destruction but the removal is
3940 * asynchronous, so take an extra ref on @css.
3941 */
3942 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3943 &memory_cgrp_subsys);
3944 ret = -EINVAL;
3945 if (IS_ERR(cfile_css))
3946 goto out_put_cfile;
3947 if (cfile_css != css) {
3948 css_put(cfile_css);
3949 goto out_put_cfile;
3950 }
3951
3952 ret = event->register_event(memcg, event->eventfd, buf);
3953 if (ret)
3954 goto out_put_css;
3955
3956 efile.file->f_op->poll(efile.file, &event->pt);
3957
3958 spin_lock(&memcg->event_list_lock);
3959 list_add(&event->list, &memcg->event_list);
3960 spin_unlock(&memcg->event_list_lock);
3961
3962 fdput(cfile);
3963 fdput(efile);
3964
3965 return nbytes;
3966
3967 out_put_css:
3968 css_put(css);
3969 out_put_cfile:
3970 fdput(cfile);
3971 out_put_eventfd:
3972 eventfd_ctx_put(event->eventfd);
3973 out_put_efile:
3974 fdput(efile);
3975 out_kfree:
3976 kfree(event);
3977
3978 return ret;
3979 }
3980
3981 static struct cftype mem_cgroup_legacy_files[] = {
3982 {
3983 .name = "usage_in_bytes",
3984 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3985 .read_u64 = mem_cgroup_read_u64,
3986 },
3987 {
3988 .name = "max_usage_in_bytes",
3989 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3990 .write = mem_cgroup_reset,
3991 .read_u64 = mem_cgroup_read_u64,
3992 },
3993 {
3994 .name = "limit_in_bytes",
3995 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3996 .write = mem_cgroup_write,
3997 .read_u64 = mem_cgroup_read_u64,
3998 },
3999 {
4000 .name = "soft_limit_in_bytes",
4001 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4002 .write = mem_cgroup_write,
4003 .read_u64 = mem_cgroup_read_u64,
4004 },
4005 {
4006 .name = "failcnt",
4007 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4008 .write = mem_cgroup_reset,
4009 .read_u64 = mem_cgroup_read_u64,
4010 },
4011 {
4012 .name = "stat",
4013 .seq_show = memcg_stat_show,
4014 },
4015 {
4016 .name = "force_empty",
4017 .write = mem_cgroup_force_empty_write,
4018 },
4019 {
4020 .name = "use_hierarchy",
4021 .write_u64 = mem_cgroup_hierarchy_write,
4022 .read_u64 = mem_cgroup_hierarchy_read,
4023 },
4024 {
4025 .name = "cgroup.event_control", /* XXX: for compat */
4026 .write = memcg_write_event_control,
4027 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4028 },
4029 {
4030 .name = "swappiness",
4031 .read_u64 = mem_cgroup_swappiness_read,
4032 .write_u64 = mem_cgroup_swappiness_write,
4033 },
4034 {
4035 .name = "move_charge_at_immigrate",
4036 .read_u64 = mem_cgroup_move_charge_read,
4037 .write_u64 = mem_cgroup_move_charge_write,
4038 },
4039 {
4040 .name = "oom_control",
4041 .seq_show = mem_cgroup_oom_control_read,
4042 .write_u64 = mem_cgroup_oom_control_write,
4043 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4044 },
4045 {
4046 .name = "pressure_level",
4047 },
4048 #ifdef CONFIG_NUMA
4049 {
4050 .name = "numa_stat",
4051 .seq_show = memcg_numa_stat_show,
4052 },
4053 #endif
4054 #ifdef CONFIG_MEMCG_KMEM
4055 {
4056 .name = "kmem.limit_in_bytes",
4057 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4058 .write = mem_cgroup_write,
4059 .read_u64 = mem_cgroup_read_u64,
4060 },
4061 {
4062 .name = "kmem.usage_in_bytes",
4063 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4064 .read_u64 = mem_cgroup_read_u64,
4065 },
4066 {
4067 .name = "kmem.failcnt",
4068 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4069 .write = mem_cgroup_reset,
4070 .read_u64 = mem_cgroup_read_u64,
4071 },
4072 {
4073 .name = "kmem.max_usage_in_bytes",
4074 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4075 .write = mem_cgroup_reset,
4076 .read_u64 = mem_cgroup_read_u64,
4077 },
4078 #ifdef CONFIG_SLABINFO
4079 {
4080 .name = "kmem.slabinfo",
4081 .seq_start = slab_start,
4082 .seq_next = slab_next,
4083 .seq_stop = slab_stop,
4084 .seq_show = memcg_slab_show,
4085 },
4086 #endif
4087 #endif
4088 { }, /* terminate */
4089 };
4090
4091 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4092 {
4093 struct mem_cgroup_per_node *pn;
4094 struct mem_cgroup_per_zone *mz;
4095 int zone, tmp = node;
4096 /*
4097 * This routine is called against possible nodes.
4098 * But it's BUG to call kmalloc() against offline node.
4099 *
4100 * TODO: this routine can waste much memory for nodes which will
4101 * never be onlined. It's better to use memory hotplug callback
4102 * function.
4103 */
4104 if (!node_state(node, N_NORMAL_MEMORY))
4105 tmp = -1;
4106 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4107 if (!pn)
4108 return 1;
4109
4110 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4111 mz = &pn->zoneinfo[zone];
4112 lruvec_init(&mz->lruvec);
4113 mz->usage_in_excess = 0;
4114 mz->on_tree = false;
4115 mz->memcg = memcg;
4116 }
4117 memcg->nodeinfo[node] = pn;
4118 return 0;
4119 }
4120
4121 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4122 {
4123 kfree(memcg->nodeinfo[node]);
4124 }
4125
4126 static struct mem_cgroup *mem_cgroup_alloc(void)
4127 {
4128 struct mem_cgroup *memcg;
4129 size_t size;
4130
4131 size = sizeof(struct mem_cgroup);
4132 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4133
4134 memcg = kzalloc(size, GFP_KERNEL);
4135 if (!memcg)
4136 return NULL;
4137
4138 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4139 if (!memcg->stat)
4140 goto out_free;
4141
4142 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4143 goto out_free_stat;
4144
4145 return memcg;
4146
4147 out_free_stat:
4148 free_percpu(memcg->stat);
4149 out_free:
4150 kfree(memcg);
4151 return NULL;
4152 }
4153
4154 /*
4155 * At destroying mem_cgroup, references from swap_cgroup can remain.
4156 * (scanning all at force_empty is too costly...)
4157 *
4158 * Instead of clearing all references at force_empty, we remember
4159 * the number of reference from swap_cgroup and free mem_cgroup when
4160 * it goes down to 0.
4161 *
4162 * Removal of cgroup itself succeeds regardless of refs from swap.
4163 */
4164
4165 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4166 {
4167 int node;
4168
4169 cancel_work_sync(&memcg->high_work);
4170
4171 mem_cgroup_remove_from_trees(memcg);
4172
4173 for_each_node(node)
4174 free_mem_cgroup_per_zone_info(memcg, node);
4175
4176 free_percpu(memcg->stat);
4177 memcg_wb_domain_exit(memcg);
4178 kfree(memcg);
4179 }
4180
4181 static struct cgroup_subsys_state * __ref
4182 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4183 {
4184 struct mem_cgroup *memcg;
4185 long error = -ENOMEM;
4186 int node;
4187
4188 memcg = mem_cgroup_alloc();
4189 if (!memcg)
4190 return ERR_PTR(error);
4191
4192 for_each_node(node)
4193 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4194 goto free_out;
4195
4196 /* root ? */
4197 if (parent_css == NULL) {
4198 root_mem_cgroup = memcg;
4199 page_counter_init(&memcg->memory, NULL);
4200 memcg->high = PAGE_COUNTER_MAX;
4201 memcg->soft_limit = PAGE_COUNTER_MAX;
4202 page_counter_init(&memcg->memsw, NULL);
4203 page_counter_init(&memcg->kmem, NULL);
4204 }
4205
4206 INIT_WORK(&memcg->high_work, high_work_func);
4207 memcg->last_scanned_node = MAX_NUMNODES;
4208 INIT_LIST_HEAD(&memcg->oom_notify);
4209 memcg->move_charge_at_immigrate = 0;
4210 mutex_init(&memcg->thresholds_lock);
4211 spin_lock_init(&memcg->move_lock);
4212 vmpressure_init(&memcg->vmpressure);
4213 INIT_LIST_HEAD(&memcg->event_list);
4214 spin_lock_init(&memcg->event_list_lock);
4215 #ifdef CONFIG_MEMCG_KMEM
4216 memcg->kmemcg_id = -1;
4217 #endif
4218 #ifdef CONFIG_CGROUP_WRITEBACK
4219 INIT_LIST_HEAD(&memcg->cgwb_list);
4220 #endif
4221 #ifdef CONFIG_INET
4222 memcg->socket_pressure = jiffies;
4223 #endif
4224 return &memcg->css;
4225
4226 free_out:
4227 __mem_cgroup_free(memcg);
4228 return ERR_PTR(error);
4229 }
4230
4231 static int
4232 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4233 {
4234 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4235 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4236 int ret;
4237
4238 if (css->id > MEM_CGROUP_ID_MAX)
4239 return -ENOSPC;
4240
4241 if (!parent)
4242 return 0;
4243
4244 mutex_lock(&memcg_create_mutex);
4245
4246 memcg->use_hierarchy = parent->use_hierarchy;
4247 memcg->oom_kill_disable = parent->oom_kill_disable;
4248 memcg->swappiness = mem_cgroup_swappiness(parent);
4249
4250 if (parent->use_hierarchy) {
4251 page_counter_init(&memcg->memory, &parent->memory);
4252 memcg->high = PAGE_COUNTER_MAX;
4253 memcg->soft_limit = PAGE_COUNTER_MAX;
4254 page_counter_init(&memcg->memsw, &parent->memsw);
4255 page_counter_init(&memcg->kmem, &parent->kmem);
4256
4257 /*
4258 * No need to take a reference to the parent because cgroup
4259 * core guarantees its existence.
4260 */
4261 } else {
4262 page_counter_init(&memcg->memory, NULL);
4263 memcg->high = PAGE_COUNTER_MAX;
4264 memcg->soft_limit = PAGE_COUNTER_MAX;
4265 page_counter_init(&memcg->memsw, NULL);
4266 page_counter_init(&memcg->kmem, NULL);
4267 /*
4268 * Deeper hierachy with use_hierarchy == false doesn't make
4269 * much sense so let cgroup subsystem know about this
4270 * unfortunate state in our controller.
4271 */
4272 if (parent != root_mem_cgroup)
4273 memory_cgrp_subsys.broken_hierarchy = true;
4274 }
4275 mutex_unlock(&memcg_create_mutex);
4276
4277 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4278 if (ret)
4279 return ret;
4280
4281 #ifdef CONFIG_INET
4282 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4283 static_branch_inc(&memcg_sockets_enabled_key);
4284 #endif
4285
4286 /*
4287 * Make sure the memcg is initialized: mem_cgroup_iter()
4288 * orders reading memcg->initialized against its callers
4289 * reading the memcg members.
4290 */
4291 smp_store_release(&memcg->initialized, 1);
4292
4293 return 0;
4294 }
4295
4296 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4297 {
4298 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4299 struct mem_cgroup_event *event, *tmp;
4300
4301 /*
4302 * Unregister events and notify userspace.
4303 * Notify userspace about cgroup removing only after rmdir of cgroup
4304 * directory to avoid race between userspace and kernelspace.
4305 */
4306 spin_lock(&memcg->event_list_lock);
4307 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4308 list_del_init(&event->list);
4309 schedule_work(&event->remove);
4310 }
4311 spin_unlock(&memcg->event_list_lock);
4312
4313 vmpressure_cleanup(&memcg->vmpressure);
4314
4315 memcg_deactivate_kmem(memcg);
4316
4317 wb_memcg_offline(memcg);
4318 }
4319
4320 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4321 {
4322 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4323
4324 invalidate_reclaim_iterators(memcg);
4325 }
4326
4327 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4328 {
4329 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4330
4331 memcg_destroy_kmem(memcg);
4332 #ifdef CONFIG_INET
4333 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4334 static_branch_dec(&memcg_sockets_enabled_key);
4335 #endif
4336 __mem_cgroup_free(memcg);
4337 }
4338
4339 /**
4340 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4341 * @css: the target css
4342 *
4343 * Reset the states of the mem_cgroup associated with @css. This is
4344 * invoked when the userland requests disabling on the default hierarchy
4345 * but the memcg is pinned through dependency. The memcg should stop
4346 * applying policies and should revert to the vanilla state as it may be
4347 * made visible again.
4348 *
4349 * The current implementation only resets the essential configurations.
4350 * This needs to be expanded to cover all the visible parts.
4351 */
4352 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4353 {
4354 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4355
4356 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4357 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4358 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4359 memcg->low = 0;
4360 memcg->high = PAGE_COUNTER_MAX;
4361 memcg->soft_limit = PAGE_COUNTER_MAX;
4362 memcg_wb_domain_size_changed(memcg);
4363 }
4364
4365 #ifdef CONFIG_MMU
4366 /* Handlers for move charge at task migration. */
4367 static int mem_cgroup_do_precharge(unsigned long count)
4368 {
4369 int ret;
4370
4371 /* Try a single bulk charge without reclaim first, kswapd may wake */
4372 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4373 if (!ret) {
4374 mc.precharge += count;
4375 return ret;
4376 }
4377
4378 /* Try charges one by one with reclaim */
4379 while (count--) {
4380 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4381 if (ret)
4382 return ret;
4383 mc.precharge++;
4384 cond_resched();
4385 }
4386 return 0;
4387 }
4388
4389 /**
4390 * get_mctgt_type - get target type of moving charge
4391 * @vma: the vma the pte to be checked belongs
4392 * @addr: the address corresponding to the pte to be checked
4393 * @ptent: the pte to be checked
4394 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4395 *
4396 * Returns
4397 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4398 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4399 * move charge. if @target is not NULL, the page is stored in target->page
4400 * with extra refcnt got(Callers should handle it).
4401 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4402 * target for charge migration. if @target is not NULL, the entry is stored
4403 * in target->ent.
4404 *
4405 * Called with pte lock held.
4406 */
4407 union mc_target {
4408 struct page *page;
4409 swp_entry_t ent;
4410 };
4411
4412 enum mc_target_type {
4413 MC_TARGET_NONE = 0,
4414 MC_TARGET_PAGE,
4415 MC_TARGET_SWAP,
4416 };
4417
4418 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4419 unsigned long addr, pte_t ptent)
4420 {
4421 struct page *page = vm_normal_page(vma, addr, ptent);
4422
4423 if (!page || !page_mapped(page))
4424 return NULL;
4425 if (PageAnon(page)) {
4426 if (!(mc.flags & MOVE_ANON))
4427 return NULL;
4428 } else {
4429 if (!(mc.flags & MOVE_FILE))
4430 return NULL;
4431 }
4432 if (!get_page_unless_zero(page))
4433 return NULL;
4434
4435 return page;
4436 }
4437
4438 #ifdef CONFIG_SWAP
4439 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4440 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4441 {
4442 struct page *page = NULL;
4443 swp_entry_t ent = pte_to_swp_entry(ptent);
4444
4445 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4446 return NULL;
4447 /*
4448 * Because lookup_swap_cache() updates some statistics counter,
4449 * we call find_get_page() with swapper_space directly.
4450 */
4451 page = find_get_page(swap_address_space(ent), ent.val);
4452 if (do_memsw_account())
4453 entry->val = ent.val;
4454
4455 return page;
4456 }
4457 #else
4458 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4459 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4460 {
4461 return NULL;
4462 }
4463 #endif
4464
4465 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4466 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4467 {
4468 struct page *page = NULL;
4469 struct address_space *mapping;
4470 pgoff_t pgoff;
4471
4472 if (!vma->vm_file) /* anonymous vma */
4473 return NULL;
4474 if (!(mc.flags & MOVE_FILE))
4475 return NULL;
4476
4477 mapping = vma->vm_file->f_mapping;
4478 pgoff = linear_page_index(vma, addr);
4479
4480 /* page is moved even if it's not RSS of this task(page-faulted). */
4481 #ifdef CONFIG_SWAP
4482 /* shmem/tmpfs may report page out on swap: account for that too. */
4483 if (shmem_mapping(mapping)) {
4484 page = find_get_entry(mapping, pgoff);
4485 if (radix_tree_exceptional_entry(page)) {
4486 swp_entry_t swp = radix_to_swp_entry(page);
4487 if (do_memsw_account())
4488 *entry = swp;
4489 page = find_get_page(swap_address_space(swp), swp.val);
4490 }
4491 } else
4492 page = find_get_page(mapping, pgoff);
4493 #else
4494 page = find_get_page(mapping, pgoff);
4495 #endif
4496 return page;
4497 }
4498
4499 /**
4500 * mem_cgroup_move_account - move account of the page
4501 * @page: the page
4502 * @nr_pages: number of regular pages (>1 for huge pages)
4503 * @from: mem_cgroup which the page is moved from.
4504 * @to: mem_cgroup which the page is moved to. @from != @to.
4505 *
4506 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4507 *
4508 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4509 * from old cgroup.
4510 */
4511 static int mem_cgroup_move_account(struct page *page,
4512 bool compound,
4513 struct mem_cgroup *from,
4514 struct mem_cgroup *to)
4515 {
4516 unsigned long flags;
4517 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4518 int ret;
4519 bool anon;
4520
4521 VM_BUG_ON(from == to);
4522 VM_BUG_ON_PAGE(PageLRU(page), page);
4523 VM_BUG_ON(compound && !PageTransHuge(page));
4524
4525 /*
4526 * Prevent mem_cgroup_replace_page() from looking at
4527 * page->mem_cgroup of its source page while we change it.
4528 */
4529 ret = -EBUSY;
4530 if (!trylock_page(page))
4531 goto out;
4532
4533 ret = -EINVAL;
4534 if (page->mem_cgroup != from)
4535 goto out_unlock;
4536
4537 anon = PageAnon(page);
4538
4539 spin_lock_irqsave(&from->move_lock, flags);
4540
4541 if (!anon && page_mapped(page)) {
4542 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4543 nr_pages);
4544 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4545 nr_pages);
4546 }
4547
4548 /*
4549 * move_lock grabbed above and caller set from->moving_account, so
4550 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4551 * So mapping should be stable for dirty pages.
4552 */
4553 if (!anon && PageDirty(page)) {
4554 struct address_space *mapping = page_mapping(page);
4555
4556 if (mapping_cap_account_dirty(mapping)) {
4557 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4558 nr_pages);
4559 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4560 nr_pages);
4561 }
4562 }
4563
4564 if (PageWriteback(page)) {
4565 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4566 nr_pages);
4567 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4568 nr_pages);
4569 }
4570
4571 /*
4572 * It is safe to change page->mem_cgroup here because the page
4573 * is referenced, charged, and isolated - we can't race with
4574 * uncharging, charging, migration, or LRU putback.
4575 */
4576
4577 /* caller should have done css_get */
4578 page->mem_cgroup = to;
4579 spin_unlock_irqrestore(&from->move_lock, flags);
4580
4581 ret = 0;
4582
4583 local_irq_disable();
4584 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4585 memcg_check_events(to, page);
4586 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4587 memcg_check_events(from, page);
4588 local_irq_enable();
4589 out_unlock:
4590 unlock_page(page);
4591 out:
4592 return ret;
4593 }
4594
4595 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4596 unsigned long addr, pte_t ptent, union mc_target *target)
4597 {
4598 struct page *page = NULL;
4599 enum mc_target_type ret = MC_TARGET_NONE;
4600 swp_entry_t ent = { .val = 0 };
4601
4602 if (pte_present(ptent))
4603 page = mc_handle_present_pte(vma, addr, ptent);
4604 else if (is_swap_pte(ptent))
4605 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4606 else if (pte_none(ptent))
4607 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4608
4609 if (!page && !ent.val)
4610 return ret;
4611 if (page) {
4612 /*
4613 * Do only loose check w/o serialization.
4614 * mem_cgroup_move_account() checks the page is valid or
4615 * not under LRU exclusion.
4616 */
4617 if (page->mem_cgroup == mc.from) {
4618 ret = MC_TARGET_PAGE;
4619 if (target)
4620 target->page = page;
4621 }
4622 if (!ret || !target)
4623 put_page(page);
4624 }
4625 /* There is a swap entry and a page doesn't exist or isn't charged */
4626 if (ent.val && !ret &&
4627 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4628 ret = MC_TARGET_SWAP;
4629 if (target)
4630 target->ent = ent;
4631 }
4632 return ret;
4633 }
4634
4635 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4636 /*
4637 * We don't consider swapping or file mapped pages because THP does not
4638 * support them for now.
4639 * Caller should make sure that pmd_trans_huge(pmd) is true.
4640 */
4641 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4642 unsigned long addr, pmd_t pmd, union mc_target *target)
4643 {
4644 struct page *page = NULL;
4645 enum mc_target_type ret = MC_TARGET_NONE;
4646
4647 page = pmd_page(pmd);
4648 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4649 if (!(mc.flags & MOVE_ANON))
4650 return ret;
4651 if (page->mem_cgroup == mc.from) {
4652 ret = MC_TARGET_PAGE;
4653 if (target) {
4654 get_page(page);
4655 target->page = page;
4656 }
4657 }
4658 return ret;
4659 }
4660 #else
4661 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4662 unsigned long addr, pmd_t pmd, union mc_target *target)
4663 {
4664 return MC_TARGET_NONE;
4665 }
4666 #endif
4667
4668 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4669 unsigned long addr, unsigned long end,
4670 struct mm_walk *walk)
4671 {
4672 struct vm_area_struct *vma = walk->vma;
4673 pte_t *pte;
4674 spinlock_t *ptl;
4675
4676 if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
4677 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4678 mc.precharge += HPAGE_PMD_NR;
4679 spin_unlock(ptl);
4680 return 0;
4681 }
4682
4683 if (pmd_trans_unstable(pmd))
4684 return 0;
4685 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4686 for (; addr != end; pte++, addr += PAGE_SIZE)
4687 if (get_mctgt_type(vma, addr, *pte, NULL))
4688 mc.precharge++; /* increment precharge temporarily */
4689 pte_unmap_unlock(pte - 1, ptl);
4690 cond_resched();
4691
4692 return 0;
4693 }
4694
4695 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4696 {
4697 unsigned long precharge;
4698
4699 struct mm_walk mem_cgroup_count_precharge_walk = {
4700 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4701 .mm = mm,
4702 };
4703 down_read(&mm->mmap_sem);
4704 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4705 up_read(&mm->mmap_sem);
4706
4707 precharge = mc.precharge;
4708 mc.precharge = 0;
4709
4710 return precharge;
4711 }
4712
4713 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4714 {
4715 unsigned long precharge = mem_cgroup_count_precharge(mm);
4716
4717 VM_BUG_ON(mc.moving_task);
4718 mc.moving_task = current;
4719 return mem_cgroup_do_precharge(precharge);
4720 }
4721
4722 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4723 static void __mem_cgroup_clear_mc(void)
4724 {
4725 struct mem_cgroup *from = mc.from;
4726 struct mem_cgroup *to = mc.to;
4727
4728 /* we must uncharge all the leftover precharges from mc.to */
4729 if (mc.precharge) {
4730 cancel_charge(mc.to, mc.precharge);
4731 mc.precharge = 0;
4732 }
4733 /*
4734 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4735 * we must uncharge here.
4736 */
4737 if (mc.moved_charge) {
4738 cancel_charge(mc.from, mc.moved_charge);
4739 mc.moved_charge = 0;
4740 }
4741 /* we must fixup refcnts and charges */
4742 if (mc.moved_swap) {
4743 /* uncharge swap account from the old cgroup */
4744 if (!mem_cgroup_is_root(mc.from))
4745 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4746
4747 /*
4748 * we charged both to->memory and to->memsw, so we
4749 * should uncharge to->memory.
4750 */
4751 if (!mem_cgroup_is_root(mc.to))
4752 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4753
4754 css_put_many(&mc.from->css, mc.moved_swap);
4755
4756 /* we've already done css_get(mc.to) */
4757 mc.moved_swap = 0;
4758 }
4759 memcg_oom_recover(from);
4760 memcg_oom_recover(to);
4761 wake_up_all(&mc.waitq);
4762 }
4763
4764 static void mem_cgroup_clear_mc(void)
4765 {
4766 /*
4767 * we must clear moving_task before waking up waiters at the end of
4768 * task migration.
4769 */
4770 mc.moving_task = NULL;
4771 __mem_cgroup_clear_mc();
4772 spin_lock(&mc.lock);
4773 mc.from = NULL;
4774 mc.to = NULL;
4775 spin_unlock(&mc.lock);
4776 }
4777
4778 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4779 {
4780 struct cgroup_subsys_state *css;
4781 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4782 struct mem_cgroup *from;
4783 struct task_struct *leader, *p;
4784 struct mm_struct *mm;
4785 unsigned long move_flags;
4786 int ret = 0;
4787
4788 /* charge immigration isn't supported on the default hierarchy */
4789 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4790 return 0;
4791
4792 /*
4793 * Multi-process migrations only happen on the default hierarchy
4794 * where charge immigration is not used. Perform charge
4795 * immigration if @tset contains a leader and whine if there are
4796 * multiple.
4797 */
4798 p = NULL;
4799 cgroup_taskset_for_each_leader(leader, css, tset) {
4800 WARN_ON_ONCE(p);
4801 p = leader;
4802 memcg = mem_cgroup_from_css(css);
4803 }
4804 if (!p)
4805 return 0;
4806
4807 /*
4808 * We are now commited to this value whatever it is. Changes in this
4809 * tunable will only affect upcoming migrations, not the current one.
4810 * So we need to save it, and keep it going.
4811 */
4812 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4813 if (!move_flags)
4814 return 0;
4815
4816 from = mem_cgroup_from_task(p);
4817
4818 VM_BUG_ON(from == memcg);
4819
4820 mm = get_task_mm(p);
4821 if (!mm)
4822 return 0;
4823 /* We move charges only when we move a owner of the mm */
4824 if (mm->owner == p) {
4825 VM_BUG_ON(mc.from);
4826 VM_BUG_ON(mc.to);
4827 VM_BUG_ON(mc.precharge);
4828 VM_BUG_ON(mc.moved_charge);
4829 VM_BUG_ON(mc.moved_swap);
4830
4831 spin_lock(&mc.lock);
4832 mc.from = from;
4833 mc.to = memcg;
4834 mc.flags = move_flags;
4835 spin_unlock(&mc.lock);
4836 /* We set mc.moving_task later */
4837
4838 ret = mem_cgroup_precharge_mc(mm);
4839 if (ret)
4840 mem_cgroup_clear_mc();
4841 }
4842 mmput(mm);
4843 return ret;
4844 }
4845
4846 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4847 {
4848 if (mc.to)
4849 mem_cgroup_clear_mc();
4850 }
4851
4852 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4853 unsigned long addr, unsigned long end,
4854 struct mm_walk *walk)
4855 {
4856 int ret = 0;
4857 struct vm_area_struct *vma = walk->vma;
4858 pte_t *pte;
4859 spinlock_t *ptl;
4860 enum mc_target_type target_type;
4861 union mc_target target;
4862 struct page *page;
4863
4864 if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
4865 if (mc.precharge < HPAGE_PMD_NR) {
4866 spin_unlock(ptl);
4867 return 0;
4868 }
4869 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4870 if (target_type == MC_TARGET_PAGE) {
4871 page = target.page;
4872 if (!isolate_lru_page(page)) {
4873 if (!mem_cgroup_move_account(page, true,
4874 mc.from, mc.to)) {
4875 mc.precharge -= HPAGE_PMD_NR;
4876 mc.moved_charge += HPAGE_PMD_NR;
4877 }
4878 putback_lru_page(page);
4879 }
4880 put_page(page);
4881 }
4882 spin_unlock(ptl);
4883 return 0;
4884 }
4885
4886 if (pmd_trans_unstable(pmd))
4887 return 0;
4888 retry:
4889 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4890 for (; addr != end; addr += PAGE_SIZE) {
4891 pte_t ptent = *(pte++);
4892 swp_entry_t ent;
4893
4894 if (!mc.precharge)
4895 break;
4896
4897 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4898 case MC_TARGET_PAGE:
4899 page = target.page;
4900 /*
4901 * We can have a part of the split pmd here. Moving it
4902 * can be done but it would be too convoluted so simply
4903 * ignore such a partial THP and keep it in original
4904 * memcg. There should be somebody mapping the head.
4905 */
4906 if (PageTransCompound(page))
4907 goto put;
4908 if (isolate_lru_page(page))
4909 goto put;
4910 if (!mem_cgroup_move_account(page, false,
4911 mc.from, mc.to)) {
4912 mc.precharge--;
4913 /* we uncharge from mc.from later. */
4914 mc.moved_charge++;
4915 }
4916 putback_lru_page(page);
4917 put: /* get_mctgt_type() gets the page */
4918 put_page(page);
4919 break;
4920 case MC_TARGET_SWAP:
4921 ent = target.ent;
4922 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4923 mc.precharge--;
4924 /* we fixup refcnts and charges later. */
4925 mc.moved_swap++;
4926 }
4927 break;
4928 default:
4929 break;
4930 }
4931 }
4932 pte_unmap_unlock(pte - 1, ptl);
4933 cond_resched();
4934
4935 if (addr != end) {
4936 /*
4937 * We have consumed all precharges we got in can_attach().
4938 * We try charge one by one, but don't do any additional
4939 * charges to mc.to if we have failed in charge once in attach()
4940 * phase.
4941 */
4942 ret = mem_cgroup_do_precharge(1);
4943 if (!ret)
4944 goto retry;
4945 }
4946
4947 return ret;
4948 }
4949
4950 static void mem_cgroup_move_charge(struct mm_struct *mm)
4951 {
4952 struct mm_walk mem_cgroup_move_charge_walk = {
4953 .pmd_entry = mem_cgroup_move_charge_pte_range,
4954 .mm = mm,
4955 };
4956
4957 lru_add_drain_all();
4958 /*
4959 * Signal mem_cgroup_begin_page_stat() to take the memcg's
4960 * move_lock while we're moving its pages to another memcg.
4961 * Then wait for already started RCU-only updates to finish.
4962 */
4963 atomic_inc(&mc.from->moving_account);
4964 synchronize_rcu();
4965 retry:
4966 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4967 /*
4968 * Someone who are holding the mmap_sem might be waiting in
4969 * waitq. So we cancel all extra charges, wake up all waiters,
4970 * and retry. Because we cancel precharges, we might not be able
4971 * to move enough charges, but moving charge is a best-effort
4972 * feature anyway, so it wouldn't be a big problem.
4973 */
4974 __mem_cgroup_clear_mc();
4975 cond_resched();
4976 goto retry;
4977 }
4978 /*
4979 * When we have consumed all precharges and failed in doing
4980 * additional charge, the page walk just aborts.
4981 */
4982 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4983 up_read(&mm->mmap_sem);
4984 atomic_dec(&mc.from->moving_account);
4985 }
4986
4987 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4988 {
4989 struct cgroup_subsys_state *css;
4990 struct task_struct *p = cgroup_taskset_first(tset, &css);
4991 struct mm_struct *mm = get_task_mm(p);
4992
4993 if (mm) {
4994 if (mc.to)
4995 mem_cgroup_move_charge(mm);
4996 mmput(mm);
4997 }
4998 if (mc.to)
4999 mem_cgroup_clear_mc();
5000 }
5001 #else /* !CONFIG_MMU */
5002 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5003 {
5004 return 0;
5005 }
5006 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5007 {
5008 }
5009 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5010 {
5011 }
5012 #endif
5013
5014 /*
5015 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5016 * to verify whether we're attached to the default hierarchy on each mount
5017 * attempt.
5018 */
5019 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5020 {
5021 /*
5022 * use_hierarchy is forced on the default hierarchy. cgroup core
5023 * guarantees that @root doesn't have any children, so turning it
5024 * on for the root memcg is enough.
5025 */
5026 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5027 root_mem_cgroup->use_hierarchy = true;
5028 else
5029 root_mem_cgroup->use_hierarchy = false;
5030 }
5031
5032 static u64 memory_current_read(struct cgroup_subsys_state *css,
5033 struct cftype *cft)
5034 {
5035 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5036
5037 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5038 }
5039
5040 static int memory_low_show(struct seq_file *m, void *v)
5041 {
5042 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5043 unsigned long low = READ_ONCE(memcg->low);
5044
5045 if (low == PAGE_COUNTER_MAX)
5046 seq_puts(m, "max\n");
5047 else
5048 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5049
5050 return 0;
5051 }
5052
5053 static ssize_t memory_low_write(struct kernfs_open_file *of,
5054 char *buf, size_t nbytes, loff_t off)
5055 {
5056 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5057 unsigned long low;
5058 int err;
5059
5060 buf = strstrip(buf);
5061 err = page_counter_memparse(buf, "max", &low);
5062 if (err)
5063 return err;
5064
5065 memcg->low = low;
5066
5067 return nbytes;
5068 }
5069
5070 static int memory_high_show(struct seq_file *m, void *v)
5071 {
5072 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5073 unsigned long high = READ_ONCE(memcg->high);
5074
5075 if (high == PAGE_COUNTER_MAX)
5076 seq_puts(m, "max\n");
5077 else
5078 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5079
5080 return 0;
5081 }
5082
5083 static ssize_t memory_high_write(struct kernfs_open_file *of,
5084 char *buf, size_t nbytes, loff_t off)
5085 {
5086 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5087 unsigned long high;
5088 int err;
5089
5090 buf = strstrip(buf);
5091 err = page_counter_memparse(buf, "max", &high);
5092 if (err)
5093 return err;
5094
5095 memcg->high = high;
5096
5097 memcg_wb_domain_size_changed(memcg);
5098 return nbytes;
5099 }
5100
5101 static int memory_max_show(struct seq_file *m, void *v)
5102 {
5103 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5104 unsigned long max = READ_ONCE(memcg->memory.limit);
5105
5106 if (max == PAGE_COUNTER_MAX)
5107 seq_puts(m, "max\n");
5108 else
5109 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5110
5111 return 0;
5112 }
5113
5114 static ssize_t memory_max_write(struct kernfs_open_file *of,
5115 char *buf, size_t nbytes, loff_t off)
5116 {
5117 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5118 unsigned long max;
5119 int err;
5120
5121 buf = strstrip(buf);
5122 err = page_counter_memparse(buf, "max", &max);
5123 if (err)
5124 return err;
5125
5126 err = mem_cgroup_resize_limit(memcg, max);
5127 if (err)
5128 return err;
5129
5130 memcg_wb_domain_size_changed(memcg);
5131 return nbytes;
5132 }
5133
5134 static int memory_events_show(struct seq_file *m, void *v)
5135 {
5136 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5137
5138 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5139 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5140 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5141 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5142
5143 return 0;
5144 }
5145
5146 static struct cftype memory_files[] = {
5147 {
5148 .name = "current",
5149 .flags = CFTYPE_NOT_ON_ROOT,
5150 .read_u64 = memory_current_read,
5151 },
5152 {
5153 .name = "low",
5154 .flags = CFTYPE_NOT_ON_ROOT,
5155 .seq_show = memory_low_show,
5156 .write = memory_low_write,
5157 },
5158 {
5159 .name = "high",
5160 .flags = CFTYPE_NOT_ON_ROOT,
5161 .seq_show = memory_high_show,
5162 .write = memory_high_write,
5163 },
5164 {
5165 .name = "max",
5166 .flags = CFTYPE_NOT_ON_ROOT,
5167 .seq_show = memory_max_show,
5168 .write = memory_max_write,
5169 },
5170 {
5171 .name = "events",
5172 .flags = CFTYPE_NOT_ON_ROOT,
5173 .file_offset = offsetof(struct mem_cgroup, events_file),
5174 .seq_show = memory_events_show,
5175 },
5176 { } /* terminate */
5177 };
5178
5179 struct cgroup_subsys memory_cgrp_subsys = {
5180 .css_alloc = mem_cgroup_css_alloc,
5181 .css_online = mem_cgroup_css_online,
5182 .css_offline = mem_cgroup_css_offline,
5183 .css_released = mem_cgroup_css_released,
5184 .css_free = mem_cgroup_css_free,
5185 .css_reset = mem_cgroup_css_reset,
5186 .can_attach = mem_cgroup_can_attach,
5187 .cancel_attach = mem_cgroup_cancel_attach,
5188 .attach = mem_cgroup_move_task,
5189 .bind = mem_cgroup_bind,
5190 .dfl_cftypes = memory_files,
5191 .legacy_cftypes = mem_cgroup_legacy_files,
5192 .early_init = 0,
5193 };
5194
5195 /**
5196 * mem_cgroup_low - check if memory consumption is below the normal range
5197 * @root: the highest ancestor to consider
5198 * @memcg: the memory cgroup to check
5199 *
5200 * Returns %true if memory consumption of @memcg, and that of all
5201 * configurable ancestors up to @root, is below the normal range.
5202 */
5203 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5204 {
5205 if (mem_cgroup_disabled())
5206 return false;
5207
5208 /*
5209 * The toplevel group doesn't have a configurable range, so
5210 * it's never low when looked at directly, and it is not
5211 * considered an ancestor when assessing the hierarchy.
5212 */
5213
5214 if (memcg == root_mem_cgroup)
5215 return false;
5216
5217 if (page_counter_read(&memcg->memory) >= memcg->low)
5218 return false;
5219
5220 while (memcg != root) {
5221 memcg = parent_mem_cgroup(memcg);
5222
5223 if (memcg == root_mem_cgroup)
5224 break;
5225
5226 if (page_counter_read(&memcg->memory) >= memcg->low)
5227 return false;
5228 }
5229 return true;
5230 }
5231
5232 /**
5233 * mem_cgroup_try_charge - try charging a page
5234 * @page: page to charge
5235 * @mm: mm context of the victim
5236 * @gfp_mask: reclaim mode
5237 * @memcgp: charged memcg return
5238 *
5239 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5240 * pages according to @gfp_mask if necessary.
5241 *
5242 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5243 * Otherwise, an error code is returned.
5244 *
5245 * After page->mapping has been set up, the caller must finalize the
5246 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5247 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5248 */
5249 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5250 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5251 bool compound)
5252 {
5253 struct mem_cgroup *memcg = NULL;
5254 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5255 int ret = 0;
5256
5257 if (mem_cgroup_disabled())
5258 goto out;
5259
5260 if (PageSwapCache(page)) {
5261 /*
5262 * Every swap fault against a single page tries to charge the
5263 * page, bail as early as possible. shmem_unuse() encounters
5264 * already charged pages, too. The USED bit is protected by
5265 * the page lock, which serializes swap cache removal, which
5266 * in turn serializes uncharging.
5267 */
5268 VM_BUG_ON_PAGE(!PageLocked(page), page);
5269 if (page->mem_cgroup)
5270 goto out;
5271
5272 if (do_memsw_account()) {
5273 swp_entry_t ent = { .val = page_private(page), };
5274 unsigned short id = lookup_swap_cgroup_id(ent);
5275
5276 rcu_read_lock();
5277 memcg = mem_cgroup_from_id(id);
5278 if (memcg && !css_tryget_online(&memcg->css))
5279 memcg = NULL;
5280 rcu_read_unlock();
5281 }
5282 }
5283
5284 if (!memcg)
5285 memcg = get_mem_cgroup_from_mm(mm);
5286
5287 ret = try_charge(memcg, gfp_mask, nr_pages);
5288
5289 css_put(&memcg->css);
5290 out:
5291 *memcgp = memcg;
5292 return ret;
5293 }
5294
5295 /**
5296 * mem_cgroup_commit_charge - commit a page charge
5297 * @page: page to charge
5298 * @memcg: memcg to charge the page to
5299 * @lrucare: page might be on LRU already
5300 *
5301 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5302 * after page->mapping has been set up. This must happen atomically
5303 * as part of the page instantiation, i.e. under the page table lock
5304 * for anonymous pages, under the page lock for page and swap cache.
5305 *
5306 * In addition, the page must not be on the LRU during the commit, to
5307 * prevent racing with task migration. If it might be, use @lrucare.
5308 *
5309 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5310 */
5311 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5312 bool lrucare, bool compound)
5313 {
5314 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5315
5316 VM_BUG_ON_PAGE(!page->mapping, page);
5317 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5318
5319 if (mem_cgroup_disabled())
5320 return;
5321 /*
5322 * Swap faults will attempt to charge the same page multiple
5323 * times. But reuse_swap_page() might have removed the page
5324 * from swapcache already, so we can't check PageSwapCache().
5325 */
5326 if (!memcg)
5327 return;
5328
5329 commit_charge(page, memcg, lrucare);
5330
5331 local_irq_disable();
5332 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5333 memcg_check_events(memcg, page);
5334 local_irq_enable();
5335
5336 if (do_memsw_account() && PageSwapCache(page)) {
5337 swp_entry_t entry = { .val = page_private(page) };
5338 /*
5339 * The swap entry might not get freed for a long time,
5340 * let's not wait for it. The page already received a
5341 * memory+swap charge, drop the swap entry duplicate.
5342 */
5343 mem_cgroup_uncharge_swap(entry);
5344 }
5345 }
5346
5347 /**
5348 * mem_cgroup_cancel_charge - cancel a page charge
5349 * @page: page to charge
5350 * @memcg: memcg to charge the page to
5351 *
5352 * Cancel a charge transaction started by mem_cgroup_try_charge().
5353 */
5354 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5355 bool compound)
5356 {
5357 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5358
5359 if (mem_cgroup_disabled())
5360 return;
5361 /*
5362 * Swap faults will attempt to charge the same page multiple
5363 * times. But reuse_swap_page() might have removed the page
5364 * from swapcache already, so we can't check PageSwapCache().
5365 */
5366 if (!memcg)
5367 return;
5368
5369 cancel_charge(memcg, nr_pages);
5370 }
5371
5372 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5373 unsigned long nr_anon, unsigned long nr_file,
5374 unsigned long nr_huge, struct page *dummy_page)
5375 {
5376 unsigned long nr_pages = nr_anon + nr_file;
5377 unsigned long flags;
5378
5379 if (!mem_cgroup_is_root(memcg)) {
5380 page_counter_uncharge(&memcg->memory, nr_pages);
5381 if (do_memsw_account())
5382 page_counter_uncharge(&memcg->memsw, nr_pages);
5383 memcg_oom_recover(memcg);
5384 }
5385
5386 local_irq_save(flags);
5387 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5388 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5389 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5390 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5391 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5392 memcg_check_events(memcg, dummy_page);
5393 local_irq_restore(flags);
5394
5395 if (!mem_cgroup_is_root(memcg))
5396 css_put_many(&memcg->css, nr_pages);
5397 }
5398
5399 static void uncharge_list(struct list_head *page_list)
5400 {
5401 struct mem_cgroup *memcg = NULL;
5402 unsigned long nr_anon = 0;
5403 unsigned long nr_file = 0;
5404 unsigned long nr_huge = 0;
5405 unsigned long pgpgout = 0;
5406 struct list_head *next;
5407 struct page *page;
5408
5409 next = page_list->next;
5410 do {
5411 unsigned int nr_pages = 1;
5412
5413 page = list_entry(next, struct page, lru);
5414 next = page->lru.next;
5415
5416 VM_BUG_ON_PAGE(PageLRU(page), page);
5417 VM_BUG_ON_PAGE(page_count(page), page);
5418
5419 if (!page->mem_cgroup)
5420 continue;
5421
5422 /*
5423 * Nobody should be changing or seriously looking at
5424 * page->mem_cgroup at this point, we have fully
5425 * exclusive access to the page.
5426 */
5427
5428 if (memcg != page->mem_cgroup) {
5429 if (memcg) {
5430 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5431 nr_huge, page);
5432 pgpgout = nr_anon = nr_file = nr_huge = 0;
5433 }
5434 memcg = page->mem_cgroup;
5435 }
5436
5437 if (PageTransHuge(page)) {
5438 nr_pages <<= compound_order(page);
5439 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5440 nr_huge += nr_pages;
5441 }
5442
5443 if (PageAnon(page))
5444 nr_anon += nr_pages;
5445 else
5446 nr_file += nr_pages;
5447
5448 page->mem_cgroup = NULL;
5449
5450 pgpgout++;
5451 } while (next != page_list);
5452
5453 if (memcg)
5454 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5455 nr_huge, page);
5456 }
5457
5458 /**
5459 * mem_cgroup_uncharge - uncharge a page
5460 * @page: page to uncharge
5461 *
5462 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5463 * mem_cgroup_commit_charge().
5464 */
5465 void mem_cgroup_uncharge(struct page *page)
5466 {
5467 if (mem_cgroup_disabled())
5468 return;
5469
5470 /* Don't touch page->lru of any random page, pre-check: */
5471 if (!page->mem_cgroup)
5472 return;
5473
5474 INIT_LIST_HEAD(&page->lru);
5475 uncharge_list(&page->lru);
5476 }
5477
5478 /**
5479 * mem_cgroup_uncharge_list - uncharge a list of page
5480 * @page_list: list of pages to uncharge
5481 *
5482 * Uncharge a list of pages previously charged with
5483 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5484 */
5485 void mem_cgroup_uncharge_list(struct list_head *page_list)
5486 {
5487 if (mem_cgroup_disabled())
5488 return;
5489
5490 if (!list_empty(page_list))
5491 uncharge_list(page_list);
5492 }
5493
5494 /**
5495 * mem_cgroup_replace_page - migrate a charge to another page
5496 * @oldpage: currently charged page
5497 * @newpage: page to transfer the charge to
5498 *
5499 * Migrate the charge from @oldpage to @newpage.
5500 *
5501 * Both pages must be locked, @newpage->mapping must be set up.
5502 * Either or both pages might be on the LRU already.
5503 */
5504 void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
5505 {
5506 struct mem_cgroup *memcg;
5507 int isolated;
5508
5509 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5510 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5511 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5512 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5513 newpage);
5514
5515 if (mem_cgroup_disabled())
5516 return;
5517
5518 /* Page cache replacement: new page already charged? */
5519 if (newpage->mem_cgroup)
5520 return;
5521
5522 /* Swapcache readahead pages can get replaced before being charged */
5523 memcg = oldpage->mem_cgroup;
5524 if (!memcg)
5525 return;
5526
5527 lock_page_lru(oldpage, &isolated);
5528 oldpage->mem_cgroup = NULL;
5529 unlock_page_lru(oldpage, isolated);
5530
5531 commit_charge(newpage, memcg, true);
5532 }
5533
5534 #ifdef CONFIG_INET
5535
5536 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5537 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5538
5539 void sock_update_memcg(struct sock *sk)
5540 {
5541 struct mem_cgroup *memcg;
5542
5543 /* Socket cloning can throw us here with sk_cgrp already
5544 * filled. It won't however, necessarily happen from
5545 * process context. So the test for root memcg given
5546 * the current task's memcg won't help us in this case.
5547 *
5548 * Respecting the original socket's memcg is a better
5549 * decision in this case.
5550 */
5551 if (sk->sk_memcg) {
5552 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5553 css_get(&sk->sk_memcg->css);
5554 return;
5555 }
5556
5557 rcu_read_lock();
5558 memcg = mem_cgroup_from_task(current);
5559 if (memcg == root_mem_cgroup)
5560 goto out;
5561 #ifdef CONFIG_MEMCG_KMEM
5562 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcp_mem.active)
5563 goto out;
5564 #endif
5565 if (css_tryget_online(&memcg->css))
5566 sk->sk_memcg = memcg;
5567 out:
5568 rcu_read_unlock();
5569 }
5570 EXPORT_SYMBOL(sock_update_memcg);
5571
5572 void sock_release_memcg(struct sock *sk)
5573 {
5574 WARN_ON(!sk->sk_memcg);
5575 css_put(&sk->sk_memcg->css);
5576 }
5577
5578 /**
5579 * mem_cgroup_charge_skmem - charge socket memory
5580 * @memcg: memcg to charge
5581 * @nr_pages: number of pages to charge
5582 *
5583 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5584 * @memcg's configured limit, %false if the charge had to be forced.
5585 */
5586 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5587 {
5588 gfp_t gfp_mask = GFP_KERNEL;
5589
5590 #ifdef CONFIG_MEMCG_KMEM
5591 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5592 struct page_counter *counter;
5593
5594 if (page_counter_try_charge(&memcg->tcp_mem.memory_allocated,
5595 nr_pages, &counter)) {
5596 memcg->tcp_mem.memory_pressure = 0;
5597 return true;
5598 }
5599 page_counter_charge(&memcg->tcp_mem.memory_allocated, nr_pages);
5600 memcg->tcp_mem.memory_pressure = 1;
5601 return false;
5602 }
5603 #endif
5604 /* Don't block in the packet receive path */
5605 if (in_softirq())
5606 gfp_mask = GFP_NOWAIT;
5607
5608 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5609 return true;
5610
5611 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5612 return false;
5613 }
5614
5615 /**
5616 * mem_cgroup_uncharge_skmem - uncharge socket memory
5617 * @memcg - memcg to uncharge
5618 * @nr_pages - number of pages to uncharge
5619 */
5620 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5621 {
5622 #ifdef CONFIG_MEMCG_KMEM
5623 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5624 page_counter_uncharge(&memcg->tcp_mem.memory_allocated,
5625 nr_pages);
5626 return;
5627 }
5628 #endif
5629 page_counter_uncharge(&memcg->memory, nr_pages);
5630 css_put_many(&memcg->css, nr_pages);
5631 }
5632
5633 #endif /* CONFIG_INET */
5634
5635 static int __init cgroup_memory(char *s)
5636 {
5637 char *token;
5638
5639 while ((token = strsep(&s, ",")) != NULL) {
5640 if (!*token)
5641 continue;
5642 if (!strcmp(token, "nosocket"))
5643 cgroup_memory_nosocket = true;
5644 }
5645 return 0;
5646 }
5647 __setup("cgroup.memory=", cgroup_memory);
5648
5649 /*
5650 * subsys_initcall() for memory controller.
5651 *
5652 * Some parts like hotcpu_notifier() have to be initialized from this context
5653 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5654 * everything that doesn't depend on a specific mem_cgroup structure should
5655 * be initialized from here.
5656 */
5657 static int __init mem_cgroup_init(void)
5658 {
5659 int cpu, node;
5660
5661 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5662
5663 for_each_possible_cpu(cpu)
5664 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5665 drain_local_stock);
5666
5667 for_each_node(node) {
5668 struct mem_cgroup_tree_per_node *rtpn;
5669 int zone;
5670
5671 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5672 node_online(node) ? node : NUMA_NO_NODE);
5673
5674 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5675 struct mem_cgroup_tree_per_zone *rtpz;
5676
5677 rtpz = &rtpn->rb_tree_per_zone[zone];
5678 rtpz->rb_root = RB_ROOT;
5679 spin_lock_init(&rtpz->lock);
5680 }
5681 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5682 }
5683
5684 return 0;
5685 }
5686 subsys_initcall(mem_cgroup_init);
5687
5688 #ifdef CONFIG_MEMCG_SWAP
5689 /**
5690 * mem_cgroup_swapout - transfer a memsw charge to swap
5691 * @page: page whose memsw charge to transfer
5692 * @entry: swap entry to move the charge to
5693 *
5694 * Transfer the memsw charge of @page to @entry.
5695 */
5696 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5697 {
5698 struct mem_cgroup *memcg;
5699 unsigned short oldid;
5700
5701 VM_BUG_ON_PAGE(PageLRU(page), page);
5702 VM_BUG_ON_PAGE(page_count(page), page);
5703
5704 if (!do_memsw_account())
5705 return;
5706
5707 memcg = page->mem_cgroup;
5708
5709 /* Readahead page, never charged */
5710 if (!memcg)
5711 return;
5712
5713 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5714 VM_BUG_ON_PAGE(oldid, page);
5715 mem_cgroup_swap_statistics(memcg, true);
5716
5717 page->mem_cgroup = NULL;
5718
5719 if (!mem_cgroup_is_root(memcg))
5720 page_counter_uncharge(&memcg->memory, 1);
5721
5722 /*
5723 * Interrupts should be disabled here because the caller holds the
5724 * mapping->tree_lock lock which is taken with interrupts-off. It is
5725 * important here to have the interrupts disabled because it is the
5726 * only synchronisation we have for udpating the per-CPU variables.
5727 */
5728 VM_BUG_ON(!irqs_disabled());
5729 mem_cgroup_charge_statistics(memcg, page, false, -1);
5730 memcg_check_events(memcg, page);
5731 }
5732
5733 /**
5734 * mem_cgroup_uncharge_swap - uncharge a swap entry
5735 * @entry: swap entry to uncharge
5736 *
5737 * Drop the memsw charge associated with @entry.
5738 */
5739 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5740 {
5741 struct mem_cgroup *memcg;
5742 unsigned short id;
5743
5744 if (!do_memsw_account())
5745 return;
5746
5747 id = swap_cgroup_record(entry, 0);
5748 rcu_read_lock();
5749 memcg = mem_cgroup_from_id(id);
5750 if (memcg) {
5751 if (!mem_cgroup_is_root(memcg))
5752 page_counter_uncharge(&memcg->memsw, 1);
5753 mem_cgroup_swap_statistics(memcg, false);
5754 css_put(&memcg->css);
5755 }
5756 rcu_read_unlock();
5757 }
5758
5759 /* for remember boot option*/
5760 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5761 static int really_do_swap_account __initdata = 1;
5762 #else
5763 static int really_do_swap_account __initdata;
5764 #endif
5765
5766 static int __init enable_swap_account(char *s)
5767 {
5768 if (!strcmp(s, "1"))
5769 really_do_swap_account = 1;
5770 else if (!strcmp(s, "0"))
5771 really_do_swap_account = 0;
5772 return 1;
5773 }
5774 __setup("swapaccount=", enable_swap_account);
5775
5776 static struct cftype memsw_cgroup_files[] = {
5777 {
5778 .name = "memsw.usage_in_bytes",
5779 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5780 .read_u64 = mem_cgroup_read_u64,
5781 },
5782 {
5783 .name = "memsw.max_usage_in_bytes",
5784 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5785 .write = mem_cgroup_reset,
5786 .read_u64 = mem_cgroup_read_u64,
5787 },
5788 {
5789 .name = "memsw.limit_in_bytes",
5790 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5791 .write = mem_cgroup_write,
5792 .read_u64 = mem_cgroup_read_u64,
5793 },
5794 {
5795 .name = "memsw.failcnt",
5796 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5797 .write = mem_cgroup_reset,
5798 .read_u64 = mem_cgroup_read_u64,
5799 },
5800 { }, /* terminate */
5801 };
5802
5803 static int __init mem_cgroup_swap_init(void)
5804 {
5805 if (!mem_cgroup_disabled() && really_do_swap_account) {
5806 do_swap_account = 1;
5807 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5808 memsw_cgroup_files));
5809 }
5810 return 0;
5811 }
5812 subsys_initcall(mem_cgroup_swap_init);
5813
5814 #endif /* CONFIG_MEMCG_SWAP */
This page took 0.139059 seconds and 6 git commands to generate.