Merge branch 'akpm' (patches from Andrew)
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80 #define MEM_CGROUP_RECLAIM_RETRIES 5
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account 0
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "rss_huge",
105 "mapped_file",
106 "dirty",
107 "writeback",
108 "swap",
109 };
110
111 static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116 };
117
118 static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124 };
125
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
129
130 /*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135 struct mem_cgroup_tree_per_node {
136 struct rb_root rb_root;
137 spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree {
141 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
142 };
143
144 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
145
146 /* for OOM */
147 struct mem_cgroup_eventfd_list {
148 struct list_head list;
149 struct eventfd_ctx *eventfd;
150 };
151
152 /*
153 * cgroup_event represents events which userspace want to receive.
154 */
155 struct mem_cgroup_event {
156 /*
157 * memcg which the event belongs to.
158 */
159 struct mem_cgroup *memcg;
160 /*
161 * eventfd to signal userspace about the event.
162 */
163 struct eventfd_ctx *eventfd;
164 /*
165 * Each of these stored in a list by the cgroup.
166 */
167 struct list_head list;
168 /*
169 * register_event() callback will be used to add new userspace
170 * waiter for changes related to this event. Use eventfd_signal()
171 * on eventfd to send notification to userspace.
172 */
173 int (*register_event)(struct mem_cgroup *memcg,
174 struct eventfd_ctx *eventfd, const char *args);
175 /*
176 * unregister_event() callback will be called when userspace closes
177 * the eventfd or on cgroup removing. This callback must be set,
178 * if you want provide notification functionality.
179 */
180 void (*unregister_event)(struct mem_cgroup *memcg,
181 struct eventfd_ctx *eventfd);
182 /*
183 * All fields below needed to unregister event when
184 * userspace closes eventfd.
185 */
186 poll_table pt;
187 wait_queue_head_t *wqh;
188 wait_queue_t wait;
189 struct work_struct remove;
190 };
191
192 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
194
195 /* Stuffs for move charges at task migration. */
196 /*
197 * Types of charges to be moved.
198 */
199 #define MOVE_ANON 0x1U
200 #define MOVE_FILE 0x2U
201 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
202
203 /* "mc" and its members are protected by cgroup_mutex */
204 static struct move_charge_struct {
205 spinlock_t lock; /* for from, to */
206 struct mm_struct *mm;
207 struct mem_cgroup *from;
208 struct mem_cgroup *to;
209 unsigned long flags;
210 unsigned long precharge;
211 unsigned long moved_charge;
212 unsigned long moved_swap;
213 struct task_struct *moving_task; /* a task moving charges */
214 wait_queue_head_t waitq; /* a waitq for other context */
215 } mc = {
216 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
217 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
218 };
219
220 /*
221 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
222 * limit reclaim to prevent infinite loops, if they ever occur.
223 */
224 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
225 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
226
227 enum charge_type {
228 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
229 MEM_CGROUP_CHARGE_TYPE_ANON,
230 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
231 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
232 NR_CHARGE_TYPE,
233 };
234
235 /* for encoding cft->private value on file */
236 enum res_type {
237 _MEM,
238 _MEMSWAP,
239 _OOM_TYPE,
240 _KMEM,
241 _TCP,
242 };
243
244 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
245 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
246 #define MEMFILE_ATTR(val) ((val) & 0xffff)
247 /* Used for OOM nofiier */
248 #define OOM_CONTROL (0)
249
250 /* Some nice accessors for the vmpressure. */
251 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252 {
253 if (!memcg)
254 memcg = root_mem_cgroup;
255 return &memcg->vmpressure;
256 }
257
258 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259 {
260 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261 }
262
263 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
264 {
265 return (memcg == root_mem_cgroup);
266 }
267
268 #ifndef CONFIG_SLOB
269 /*
270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
271 * The main reason for not using cgroup id for this:
272 * this works better in sparse environments, where we have a lot of memcgs,
273 * but only a few kmem-limited. Or also, if we have, for instance, 200
274 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
275 * 200 entry array for that.
276 *
277 * The current size of the caches array is stored in memcg_nr_cache_ids. It
278 * will double each time we have to increase it.
279 */
280 static DEFINE_IDA(memcg_cache_ida);
281 int memcg_nr_cache_ids;
282
283 /* Protects memcg_nr_cache_ids */
284 static DECLARE_RWSEM(memcg_cache_ids_sem);
285
286 void memcg_get_cache_ids(void)
287 {
288 down_read(&memcg_cache_ids_sem);
289 }
290
291 void memcg_put_cache_ids(void)
292 {
293 up_read(&memcg_cache_ids_sem);
294 }
295
296 /*
297 * MIN_SIZE is different than 1, because we would like to avoid going through
298 * the alloc/free process all the time. In a small machine, 4 kmem-limited
299 * cgroups is a reasonable guess. In the future, it could be a parameter or
300 * tunable, but that is strictly not necessary.
301 *
302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
303 * this constant directly from cgroup, but it is understandable that this is
304 * better kept as an internal representation in cgroup.c. In any case, the
305 * cgrp_id space is not getting any smaller, and we don't have to necessarily
306 * increase ours as well if it increases.
307 */
308 #define MEMCG_CACHES_MIN_SIZE 4
309 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
310
311 /*
312 * A lot of the calls to the cache allocation functions are expected to be
313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314 * conditional to this static branch, we'll have to allow modules that does
315 * kmem_cache_alloc and the such to see this symbol as well
316 */
317 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
318 EXPORT_SYMBOL(memcg_kmem_enabled_key);
319
320 #endif /* !CONFIG_SLOB */
321
322 /**
323 * mem_cgroup_css_from_page - css of the memcg associated with a page
324 * @page: page of interest
325 *
326 * If memcg is bound to the default hierarchy, css of the memcg associated
327 * with @page is returned. The returned css remains associated with @page
328 * until it is released.
329 *
330 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
331 * is returned.
332 */
333 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
334 {
335 struct mem_cgroup *memcg;
336
337 memcg = page->mem_cgroup;
338
339 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
340 memcg = root_mem_cgroup;
341
342 return &memcg->css;
343 }
344
345 /**
346 * page_cgroup_ino - return inode number of the memcg a page is charged to
347 * @page: the page
348 *
349 * Look up the closest online ancestor of the memory cgroup @page is charged to
350 * and return its inode number or 0 if @page is not charged to any cgroup. It
351 * is safe to call this function without holding a reference to @page.
352 *
353 * Note, this function is inherently racy, because there is nothing to prevent
354 * the cgroup inode from getting torn down and potentially reallocated a moment
355 * after page_cgroup_ino() returns, so it only should be used by callers that
356 * do not care (such as procfs interfaces).
357 */
358 ino_t page_cgroup_ino(struct page *page)
359 {
360 struct mem_cgroup *memcg;
361 unsigned long ino = 0;
362
363 rcu_read_lock();
364 memcg = READ_ONCE(page->mem_cgroup);
365 while (memcg && !(memcg->css.flags & CSS_ONLINE))
366 memcg = parent_mem_cgroup(memcg);
367 if (memcg)
368 ino = cgroup_ino(memcg->css.cgroup);
369 rcu_read_unlock();
370 return ino;
371 }
372
373 static struct mem_cgroup_per_node *
374 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
375 {
376 int nid = page_to_nid(page);
377
378 return memcg->nodeinfo[nid];
379 }
380
381 static struct mem_cgroup_tree_per_node *
382 soft_limit_tree_node(int nid)
383 {
384 return soft_limit_tree.rb_tree_per_node[nid];
385 }
386
387 static struct mem_cgroup_tree_per_node *
388 soft_limit_tree_from_page(struct page *page)
389 {
390 int nid = page_to_nid(page);
391
392 return soft_limit_tree.rb_tree_per_node[nid];
393 }
394
395 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
396 struct mem_cgroup_tree_per_node *mctz,
397 unsigned long new_usage_in_excess)
398 {
399 struct rb_node **p = &mctz->rb_root.rb_node;
400 struct rb_node *parent = NULL;
401 struct mem_cgroup_per_node *mz_node;
402
403 if (mz->on_tree)
404 return;
405
406 mz->usage_in_excess = new_usage_in_excess;
407 if (!mz->usage_in_excess)
408 return;
409 while (*p) {
410 parent = *p;
411 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
412 tree_node);
413 if (mz->usage_in_excess < mz_node->usage_in_excess)
414 p = &(*p)->rb_left;
415 /*
416 * We can't avoid mem cgroups that are over their soft
417 * limit by the same amount
418 */
419 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
420 p = &(*p)->rb_right;
421 }
422 rb_link_node(&mz->tree_node, parent, p);
423 rb_insert_color(&mz->tree_node, &mctz->rb_root);
424 mz->on_tree = true;
425 }
426
427 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
428 struct mem_cgroup_tree_per_node *mctz)
429 {
430 if (!mz->on_tree)
431 return;
432 rb_erase(&mz->tree_node, &mctz->rb_root);
433 mz->on_tree = false;
434 }
435
436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 struct mem_cgroup_tree_per_node *mctz)
438 {
439 unsigned long flags;
440
441 spin_lock_irqsave(&mctz->lock, flags);
442 __mem_cgroup_remove_exceeded(mz, mctz);
443 spin_unlock_irqrestore(&mctz->lock, flags);
444 }
445
446 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447 {
448 unsigned long nr_pages = page_counter_read(&memcg->memory);
449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 unsigned long excess = 0;
451
452 if (nr_pages > soft_limit)
453 excess = nr_pages - soft_limit;
454
455 return excess;
456 }
457
458 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459 {
460 unsigned long excess;
461 struct mem_cgroup_per_node *mz;
462 struct mem_cgroup_tree_per_node *mctz;
463
464 mctz = soft_limit_tree_from_page(page);
465 /*
466 * Necessary to update all ancestors when hierarchy is used.
467 * because their event counter is not touched.
468 */
469 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
470 mz = mem_cgroup_page_nodeinfo(memcg, page);
471 excess = soft_limit_excess(memcg);
472 /*
473 * We have to update the tree if mz is on RB-tree or
474 * mem is over its softlimit.
475 */
476 if (excess || mz->on_tree) {
477 unsigned long flags;
478
479 spin_lock_irqsave(&mctz->lock, flags);
480 /* if on-tree, remove it */
481 if (mz->on_tree)
482 __mem_cgroup_remove_exceeded(mz, mctz);
483 /*
484 * Insert again. mz->usage_in_excess will be updated.
485 * If excess is 0, no tree ops.
486 */
487 __mem_cgroup_insert_exceeded(mz, mctz, excess);
488 spin_unlock_irqrestore(&mctz->lock, flags);
489 }
490 }
491 }
492
493 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
494 {
495 struct mem_cgroup_tree_per_node *mctz;
496 struct mem_cgroup_per_node *mz;
497 int nid;
498
499 for_each_node(nid) {
500 mz = mem_cgroup_nodeinfo(memcg, nid);
501 mctz = soft_limit_tree_node(nid);
502 mem_cgroup_remove_exceeded(mz, mctz);
503 }
504 }
505
506 static struct mem_cgroup_per_node *
507 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
508 {
509 struct rb_node *rightmost = NULL;
510 struct mem_cgroup_per_node *mz;
511
512 retry:
513 mz = NULL;
514 rightmost = rb_last(&mctz->rb_root);
515 if (!rightmost)
516 goto done; /* Nothing to reclaim from */
517
518 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
519 /*
520 * Remove the node now but someone else can add it back,
521 * we will to add it back at the end of reclaim to its correct
522 * position in the tree.
523 */
524 __mem_cgroup_remove_exceeded(mz, mctz);
525 if (!soft_limit_excess(mz->memcg) ||
526 !css_tryget_online(&mz->memcg->css))
527 goto retry;
528 done:
529 return mz;
530 }
531
532 static struct mem_cgroup_per_node *
533 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
534 {
535 struct mem_cgroup_per_node *mz;
536
537 spin_lock_irq(&mctz->lock);
538 mz = __mem_cgroup_largest_soft_limit_node(mctz);
539 spin_unlock_irq(&mctz->lock);
540 return mz;
541 }
542
543 /*
544 * Return page count for single (non recursive) @memcg.
545 *
546 * Implementation Note: reading percpu statistics for memcg.
547 *
548 * Both of vmstat[] and percpu_counter has threshold and do periodic
549 * synchronization to implement "quick" read. There are trade-off between
550 * reading cost and precision of value. Then, we may have a chance to implement
551 * a periodic synchronization of counter in memcg's counter.
552 *
553 * But this _read() function is used for user interface now. The user accounts
554 * memory usage by memory cgroup and he _always_ requires exact value because
555 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
556 * have to visit all online cpus and make sum. So, for now, unnecessary
557 * synchronization is not implemented. (just implemented for cpu hotplug)
558 *
559 * If there are kernel internal actions which can make use of some not-exact
560 * value, and reading all cpu value can be performance bottleneck in some
561 * common workload, threshold and synchronization as vmstat[] should be
562 * implemented.
563 */
564 static unsigned long
565 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
566 {
567 long val = 0;
568 int cpu;
569
570 /* Per-cpu values can be negative, use a signed accumulator */
571 for_each_possible_cpu(cpu)
572 val += per_cpu(memcg->stat->count[idx], cpu);
573 /*
574 * Summing races with updates, so val may be negative. Avoid exposing
575 * transient negative values.
576 */
577 if (val < 0)
578 val = 0;
579 return val;
580 }
581
582 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
583 enum mem_cgroup_events_index idx)
584 {
585 unsigned long val = 0;
586 int cpu;
587
588 for_each_possible_cpu(cpu)
589 val += per_cpu(memcg->stat->events[idx], cpu);
590 return val;
591 }
592
593 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
594 struct page *page,
595 bool compound, int nr_pages)
596 {
597 /*
598 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
599 * counted as CACHE even if it's on ANON LRU.
600 */
601 if (PageAnon(page))
602 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
603 nr_pages);
604 else
605 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
606 nr_pages);
607
608 if (compound) {
609 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
610 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
611 nr_pages);
612 }
613
614 /* pagein of a big page is an event. So, ignore page size */
615 if (nr_pages > 0)
616 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
617 else {
618 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
619 nr_pages = -nr_pages; /* for event */
620 }
621
622 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
623 }
624
625 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
626 int nid, unsigned int lru_mask)
627 {
628 unsigned long nr = 0;
629 struct mem_cgroup_per_node *mz;
630 enum lru_list lru;
631
632 VM_BUG_ON((unsigned)nid >= nr_node_ids);
633
634 for_each_lru(lru) {
635 if (!(BIT(lru) & lru_mask))
636 continue;
637 mz = mem_cgroup_nodeinfo(memcg, nid);
638 nr += mz->lru_size[lru];
639 }
640 return nr;
641 }
642
643 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
644 unsigned int lru_mask)
645 {
646 unsigned long nr = 0;
647 int nid;
648
649 for_each_node_state(nid, N_MEMORY)
650 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
651 return nr;
652 }
653
654 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
655 enum mem_cgroup_events_target target)
656 {
657 unsigned long val, next;
658
659 val = __this_cpu_read(memcg->stat->nr_page_events);
660 next = __this_cpu_read(memcg->stat->targets[target]);
661 /* from time_after() in jiffies.h */
662 if ((long)next - (long)val < 0) {
663 switch (target) {
664 case MEM_CGROUP_TARGET_THRESH:
665 next = val + THRESHOLDS_EVENTS_TARGET;
666 break;
667 case MEM_CGROUP_TARGET_SOFTLIMIT:
668 next = val + SOFTLIMIT_EVENTS_TARGET;
669 break;
670 case MEM_CGROUP_TARGET_NUMAINFO:
671 next = val + NUMAINFO_EVENTS_TARGET;
672 break;
673 default:
674 break;
675 }
676 __this_cpu_write(memcg->stat->targets[target], next);
677 return true;
678 }
679 return false;
680 }
681
682 /*
683 * Check events in order.
684 *
685 */
686 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
687 {
688 /* threshold event is triggered in finer grain than soft limit */
689 if (unlikely(mem_cgroup_event_ratelimit(memcg,
690 MEM_CGROUP_TARGET_THRESH))) {
691 bool do_softlimit;
692 bool do_numainfo __maybe_unused;
693
694 do_softlimit = mem_cgroup_event_ratelimit(memcg,
695 MEM_CGROUP_TARGET_SOFTLIMIT);
696 #if MAX_NUMNODES > 1
697 do_numainfo = mem_cgroup_event_ratelimit(memcg,
698 MEM_CGROUP_TARGET_NUMAINFO);
699 #endif
700 mem_cgroup_threshold(memcg);
701 if (unlikely(do_softlimit))
702 mem_cgroup_update_tree(memcg, page);
703 #if MAX_NUMNODES > 1
704 if (unlikely(do_numainfo))
705 atomic_inc(&memcg->numainfo_events);
706 #endif
707 }
708 }
709
710 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
711 {
712 /*
713 * mm_update_next_owner() may clear mm->owner to NULL
714 * if it races with swapoff, page migration, etc.
715 * So this can be called with p == NULL.
716 */
717 if (unlikely(!p))
718 return NULL;
719
720 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
721 }
722 EXPORT_SYMBOL(mem_cgroup_from_task);
723
724 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
725 {
726 struct mem_cgroup *memcg = NULL;
727
728 rcu_read_lock();
729 do {
730 /*
731 * Page cache insertions can happen withou an
732 * actual mm context, e.g. during disk probing
733 * on boot, loopback IO, acct() writes etc.
734 */
735 if (unlikely(!mm))
736 memcg = root_mem_cgroup;
737 else {
738 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
739 if (unlikely(!memcg))
740 memcg = root_mem_cgroup;
741 }
742 } while (!css_tryget_online(&memcg->css));
743 rcu_read_unlock();
744 return memcg;
745 }
746
747 /**
748 * mem_cgroup_iter - iterate over memory cgroup hierarchy
749 * @root: hierarchy root
750 * @prev: previously returned memcg, NULL on first invocation
751 * @reclaim: cookie for shared reclaim walks, NULL for full walks
752 *
753 * Returns references to children of the hierarchy below @root, or
754 * @root itself, or %NULL after a full round-trip.
755 *
756 * Caller must pass the return value in @prev on subsequent
757 * invocations for reference counting, or use mem_cgroup_iter_break()
758 * to cancel a hierarchy walk before the round-trip is complete.
759 *
760 * Reclaimers can specify a zone and a priority level in @reclaim to
761 * divide up the memcgs in the hierarchy among all concurrent
762 * reclaimers operating on the same zone and priority.
763 */
764 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
765 struct mem_cgroup *prev,
766 struct mem_cgroup_reclaim_cookie *reclaim)
767 {
768 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
769 struct cgroup_subsys_state *css = NULL;
770 struct mem_cgroup *memcg = NULL;
771 struct mem_cgroup *pos = NULL;
772
773 if (mem_cgroup_disabled())
774 return NULL;
775
776 if (!root)
777 root = root_mem_cgroup;
778
779 if (prev && !reclaim)
780 pos = prev;
781
782 if (!root->use_hierarchy && root != root_mem_cgroup) {
783 if (prev)
784 goto out;
785 return root;
786 }
787
788 rcu_read_lock();
789
790 if (reclaim) {
791 struct mem_cgroup_per_node *mz;
792
793 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
794 iter = &mz->iter[reclaim->priority];
795
796 if (prev && reclaim->generation != iter->generation)
797 goto out_unlock;
798
799 while (1) {
800 pos = READ_ONCE(iter->position);
801 if (!pos || css_tryget(&pos->css))
802 break;
803 /*
804 * css reference reached zero, so iter->position will
805 * be cleared by ->css_released. However, we should not
806 * rely on this happening soon, because ->css_released
807 * is called from a work queue, and by busy-waiting we
808 * might block it. So we clear iter->position right
809 * away.
810 */
811 (void)cmpxchg(&iter->position, pos, NULL);
812 }
813 }
814
815 if (pos)
816 css = &pos->css;
817
818 for (;;) {
819 css = css_next_descendant_pre(css, &root->css);
820 if (!css) {
821 /*
822 * Reclaimers share the hierarchy walk, and a
823 * new one might jump in right at the end of
824 * the hierarchy - make sure they see at least
825 * one group and restart from the beginning.
826 */
827 if (!prev)
828 continue;
829 break;
830 }
831
832 /*
833 * Verify the css and acquire a reference. The root
834 * is provided by the caller, so we know it's alive
835 * and kicking, and don't take an extra reference.
836 */
837 memcg = mem_cgroup_from_css(css);
838
839 if (css == &root->css)
840 break;
841
842 if (css_tryget(css))
843 break;
844
845 memcg = NULL;
846 }
847
848 if (reclaim) {
849 /*
850 * The position could have already been updated by a competing
851 * thread, so check that the value hasn't changed since we read
852 * it to avoid reclaiming from the same cgroup twice.
853 */
854 (void)cmpxchg(&iter->position, pos, memcg);
855
856 if (pos)
857 css_put(&pos->css);
858
859 if (!memcg)
860 iter->generation++;
861 else if (!prev)
862 reclaim->generation = iter->generation;
863 }
864
865 out_unlock:
866 rcu_read_unlock();
867 out:
868 if (prev && prev != root)
869 css_put(&prev->css);
870
871 return memcg;
872 }
873
874 /**
875 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
876 * @root: hierarchy root
877 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
878 */
879 void mem_cgroup_iter_break(struct mem_cgroup *root,
880 struct mem_cgroup *prev)
881 {
882 if (!root)
883 root = root_mem_cgroup;
884 if (prev && prev != root)
885 css_put(&prev->css);
886 }
887
888 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
889 {
890 struct mem_cgroup *memcg = dead_memcg;
891 struct mem_cgroup_reclaim_iter *iter;
892 struct mem_cgroup_per_node *mz;
893 int nid;
894 int i;
895
896 while ((memcg = parent_mem_cgroup(memcg))) {
897 for_each_node(nid) {
898 mz = mem_cgroup_nodeinfo(memcg, nid);
899 for (i = 0; i <= DEF_PRIORITY; i++) {
900 iter = &mz->iter[i];
901 cmpxchg(&iter->position,
902 dead_memcg, NULL);
903 }
904 }
905 }
906 }
907
908 /*
909 * Iteration constructs for visiting all cgroups (under a tree). If
910 * loops are exited prematurely (break), mem_cgroup_iter_break() must
911 * be used for reference counting.
912 */
913 #define for_each_mem_cgroup_tree(iter, root) \
914 for (iter = mem_cgroup_iter(root, NULL, NULL); \
915 iter != NULL; \
916 iter = mem_cgroup_iter(root, iter, NULL))
917
918 #define for_each_mem_cgroup(iter) \
919 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
920 iter != NULL; \
921 iter = mem_cgroup_iter(NULL, iter, NULL))
922
923 /**
924 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925 * @page: the page
926 * @zone: zone of the page
927 *
928 * This function is only safe when following the LRU page isolation
929 * and putback protocol: the LRU lock must be held, and the page must
930 * either be PageLRU() or the caller must have isolated/allocated it.
931 */
932 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
933 {
934 struct mem_cgroup_per_node *mz;
935 struct mem_cgroup *memcg;
936 struct lruvec *lruvec;
937
938 if (mem_cgroup_disabled()) {
939 lruvec = &pgdat->lruvec;
940 goto out;
941 }
942
943 memcg = page->mem_cgroup;
944 /*
945 * Swapcache readahead pages are added to the LRU - and
946 * possibly migrated - before they are charged.
947 */
948 if (!memcg)
949 memcg = root_mem_cgroup;
950
951 mz = mem_cgroup_page_nodeinfo(memcg, page);
952 lruvec = &mz->lruvec;
953 out:
954 /*
955 * Since a node can be onlined after the mem_cgroup was created,
956 * we have to be prepared to initialize lruvec->zone here;
957 * and if offlined then reonlined, we need to reinitialize it.
958 */
959 if (unlikely(lruvec->pgdat != pgdat))
960 lruvec->pgdat = pgdat;
961 return lruvec;
962 }
963
964 /**
965 * mem_cgroup_update_lru_size - account for adding or removing an lru page
966 * @lruvec: mem_cgroup per zone lru vector
967 * @lru: index of lru list the page is sitting on
968 * @nr_pages: positive when adding or negative when removing
969 *
970 * This function must be called under lru_lock, just before a page is added
971 * to or just after a page is removed from an lru list (that ordering being
972 * so as to allow it to check that lru_size 0 is consistent with list_empty).
973 */
974 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
975 int nr_pages)
976 {
977 struct mem_cgroup_per_node *mz;
978 unsigned long *lru_size;
979 long size;
980 bool empty;
981
982 if (mem_cgroup_disabled())
983 return;
984
985 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
986 lru_size = mz->lru_size + lru;
987 empty = list_empty(lruvec->lists + lru);
988
989 if (nr_pages < 0)
990 *lru_size += nr_pages;
991
992 size = *lru_size;
993 if (WARN_ONCE(size < 0 || empty != !size,
994 "%s(%p, %d, %d): lru_size %ld but %sempty\n",
995 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
996 VM_BUG_ON(1);
997 *lru_size = 0;
998 }
999
1000 if (nr_pages > 0)
1001 *lru_size += nr_pages;
1002 }
1003
1004 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1005 {
1006 struct mem_cgroup *task_memcg;
1007 struct task_struct *p;
1008 bool ret;
1009
1010 p = find_lock_task_mm(task);
1011 if (p) {
1012 task_memcg = get_mem_cgroup_from_mm(p->mm);
1013 task_unlock(p);
1014 } else {
1015 /*
1016 * All threads may have already detached their mm's, but the oom
1017 * killer still needs to detect if they have already been oom
1018 * killed to prevent needlessly killing additional tasks.
1019 */
1020 rcu_read_lock();
1021 task_memcg = mem_cgroup_from_task(task);
1022 css_get(&task_memcg->css);
1023 rcu_read_unlock();
1024 }
1025 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1026 css_put(&task_memcg->css);
1027 return ret;
1028 }
1029
1030 /**
1031 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1032 * @memcg: the memory cgroup
1033 *
1034 * Returns the maximum amount of memory @mem can be charged with, in
1035 * pages.
1036 */
1037 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1038 {
1039 unsigned long margin = 0;
1040 unsigned long count;
1041 unsigned long limit;
1042
1043 count = page_counter_read(&memcg->memory);
1044 limit = READ_ONCE(memcg->memory.limit);
1045 if (count < limit)
1046 margin = limit - count;
1047
1048 if (do_memsw_account()) {
1049 count = page_counter_read(&memcg->memsw);
1050 limit = READ_ONCE(memcg->memsw.limit);
1051 if (count <= limit)
1052 margin = min(margin, limit - count);
1053 else
1054 margin = 0;
1055 }
1056
1057 return margin;
1058 }
1059
1060 /*
1061 * A routine for checking "mem" is under move_account() or not.
1062 *
1063 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1064 * moving cgroups. This is for waiting at high-memory pressure
1065 * caused by "move".
1066 */
1067 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1068 {
1069 struct mem_cgroup *from;
1070 struct mem_cgroup *to;
1071 bool ret = false;
1072 /*
1073 * Unlike task_move routines, we access mc.to, mc.from not under
1074 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1075 */
1076 spin_lock(&mc.lock);
1077 from = mc.from;
1078 to = mc.to;
1079 if (!from)
1080 goto unlock;
1081
1082 ret = mem_cgroup_is_descendant(from, memcg) ||
1083 mem_cgroup_is_descendant(to, memcg);
1084 unlock:
1085 spin_unlock(&mc.lock);
1086 return ret;
1087 }
1088
1089 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1090 {
1091 if (mc.moving_task && current != mc.moving_task) {
1092 if (mem_cgroup_under_move(memcg)) {
1093 DEFINE_WAIT(wait);
1094 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1095 /* moving charge context might have finished. */
1096 if (mc.moving_task)
1097 schedule();
1098 finish_wait(&mc.waitq, &wait);
1099 return true;
1100 }
1101 }
1102 return false;
1103 }
1104
1105 #define K(x) ((x) << (PAGE_SHIFT-10))
1106 /**
1107 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1108 * @memcg: The memory cgroup that went over limit
1109 * @p: Task that is going to be killed
1110 *
1111 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1112 * enabled
1113 */
1114 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1115 {
1116 struct mem_cgroup *iter;
1117 unsigned int i;
1118
1119 rcu_read_lock();
1120
1121 if (p) {
1122 pr_info("Task in ");
1123 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1124 pr_cont(" killed as a result of limit of ");
1125 } else {
1126 pr_info("Memory limit reached of cgroup ");
1127 }
1128
1129 pr_cont_cgroup_path(memcg->css.cgroup);
1130 pr_cont("\n");
1131
1132 rcu_read_unlock();
1133
1134 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1135 K((u64)page_counter_read(&memcg->memory)),
1136 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1137 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1138 K((u64)page_counter_read(&memcg->memsw)),
1139 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1140 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1141 K((u64)page_counter_read(&memcg->kmem)),
1142 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1143
1144 for_each_mem_cgroup_tree(iter, memcg) {
1145 pr_info("Memory cgroup stats for ");
1146 pr_cont_cgroup_path(iter->css.cgroup);
1147 pr_cont(":");
1148
1149 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1150 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1151 continue;
1152 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1153 K(mem_cgroup_read_stat(iter, i)));
1154 }
1155
1156 for (i = 0; i < NR_LRU_LISTS; i++)
1157 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1158 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1159
1160 pr_cont("\n");
1161 }
1162 }
1163
1164 /*
1165 * This function returns the number of memcg under hierarchy tree. Returns
1166 * 1(self count) if no children.
1167 */
1168 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1169 {
1170 int num = 0;
1171 struct mem_cgroup *iter;
1172
1173 for_each_mem_cgroup_tree(iter, memcg)
1174 num++;
1175 return num;
1176 }
1177
1178 /*
1179 * Return the memory (and swap, if configured) limit for a memcg.
1180 */
1181 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1182 {
1183 unsigned long limit;
1184
1185 limit = memcg->memory.limit;
1186 if (mem_cgroup_swappiness(memcg)) {
1187 unsigned long memsw_limit;
1188 unsigned long swap_limit;
1189
1190 memsw_limit = memcg->memsw.limit;
1191 swap_limit = memcg->swap.limit;
1192 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1193 limit = min(limit + swap_limit, memsw_limit);
1194 }
1195 return limit;
1196 }
1197
1198 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1199 int order)
1200 {
1201 struct oom_control oc = {
1202 .zonelist = NULL,
1203 .nodemask = NULL,
1204 .memcg = memcg,
1205 .gfp_mask = gfp_mask,
1206 .order = order,
1207 };
1208 struct mem_cgroup *iter;
1209 unsigned long chosen_points = 0;
1210 unsigned long totalpages;
1211 unsigned int points = 0;
1212 struct task_struct *chosen = NULL;
1213
1214 mutex_lock(&oom_lock);
1215
1216 /*
1217 * If current has a pending SIGKILL or is exiting, then automatically
1218 * select it. The goal is to allow it to allocate so that it may
1219 * quickly exit and free its memory.
1220 */
1221 if (task_will_free_mem(current)) {
1222 mark_oom_victim(current);
1223 wake_oom_reaper(current);
1224 goto unlock;
1225 }
1226
1227 check_panic_on_oom(&oc, CONSTRAINT_MEMCG);
1228 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1229 for_each_mem_cgroup_tree(iter, memcg) {
1230 struct css_task_iter it;
1231 struct task_struct *task;
1232
1233 css_task_iter_start(&iter->css, &it);
1234 while ((task = css_task_iter_next(&it))) {
1235 switch (oom_scan_process_thread(&oc, task)) {
1236 case OOM_SCAN_SELECT:
1237 if (chosen)
1238 put_task_struct(chosen);
1239 chosen = task;
1240 chosen_points = ULONG_MAX;
1241 get_task_struct(chosen);
1242 /* fall through */
1243 case OOM_SCAN_CONTINUE:
1244 continue;
1245 case OOM_SCAN_ABORT:
1246 css_task_iter_end(&it);
1247 mem_cgroup_iter_break(memcg, iter);
1248 if (chosen)
1249 put_task_struct(chosen);
1250 /* Set a dummy value to return "true". */
1251 chosen = (void *) 1;
1252 goto unlock;
1253 case OOM_SCAN_OK:
1254 break;
1255 };
1256 points = oom_badness(task, memcg, NULL, totalpages);
1257 if (!points || points < chosen_points)
1258 continue;
1259 /* Prefer thread group leaders for display purposes */
1260 if (points == chosen_points &&
1261 thread_group_leader(chosen))
1262 continue;
1263
1264 if (chosen)
1265 put_task_struct(chosen);
1266 chosen = task;
1267 chosen_points = points;
1268 get_task_struct(chosen);
1269 }
1270 css_task_iter_end(&it);
1271 }
1272
1273 if (chosen) {
1274 points = chosen_points * 1000 / totalpages;
1275 oom_kill_process(&oc, chosen, points, totalpages,
1276 "Memory cgroup out of memory");
1277 }
1278 unlock:
1279 mutex_unlock(&oom_lock);
1280 return chosen;
1281 }
1282
1283 #if MAX_NUMNODES > 1
1284
1285 /**
1286 * test_mem_cgroup_node_reclaimable
1287 * @memcg: the target memcg
1288 * @nid: the node ID to be checked.
1289 * @noswap : specify true here if the user wants flle only information.
1290 *
1291 * This function returns whether the specified memcg contains any
1292 * reclaimable pages on a node. Returns true if there are any reclaimable
1293 * pages in the node.
1294 */
1295 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1296 int nid, bool noswap)
1297 {
1298 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1299 return true;
1300 if (noswap || !total_swap_pages)
1301 return false;
1302 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1303 return true;
1304 return false;
1305
1306 }
1307
1308 /*
1309 * Always updating the nodemask is not very good - even if we have an empty
1310 * list or the wrong list here, we can start from some node and traverse all
1311 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1312 *
1313 */
1314 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1315 {
1316 int nid;
1317 /*
1318 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1319 * pagein/pageout changes since the last update.
1320 */
1321 if (!atomic_read(&memcg->numainfo_events))
1322 return;
1323 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1324 return;
1325
1326 /* make a nodemask where this memcg uses memory from */
1327 memcg->scan_nodes = node_states[N_MEMORY];
1328
1329 for_each_node_mask(nid, node_states[N_MEMORY]) {
1330
1331 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1332 node_clear(nid, memcg->scan_nodes);
1333 }
1334
1335 atomic_set(&memcg->numainfo_events, 0);
1336 atomic_set(&memcg->numainfo_updating, 0);
1337 }
1338
1339 /*
1340 * Selecting a node where we start reclaim from. Because what we need is just
1341 * reducing usage counter, start from anywhere is O,K. Considering
1342 * memory reclaim from current node, there are pros. and cons.
1343 *
1344 * Freeing memory from current node means freeing memory from a node which
1345 * we'll use or we've used. So, it may make LRU bad. And if several threads
1346 * hit limits, it will see a contention on a node. But freeing from remote
1347 * node means more costs for memory reclaim because of memory latency.
1348 *
1349 * Now, we use round-robin. Better algorithm is welcomed.
1350 */
1351 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1352 {
1353 int node;
1354
1355 mem_cgroup_may_update_nodemask(memcg);
1356 node = memcg->last_scanned_node;
1357
1358 node = next_node_in(node, memcg->scan_nodes);
1359 /*
1360 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1361 * last time it really checked all the LRUs due to rate limiting.
1362 * Fallback to the current node in that case for simplicity.
1363 */
1364 if (unlikely(node == MAX_NUMNODES))
1365 node = numa_node_id();
1366
1367 memcg->last_scanned_node = node;
1368 return node;
1369 }
1370 #else
1371 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1372 {
1373 return 0;
1374 }
1375 #endif
1376
1377 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1378 pg_data_t *pgdat,
1379 gfp_t gfp_mask,
1380 unsigned long *total_scanned)
1381 {
1382 struct mem_cgroup *victim = NULL;
1383 int total = 0;
1384 int loop = 0;
1385 unsigned long excess;
1386 unsigned long nr_scanned;
1387 struct mem_cgroup_reclaim_cookie reclaim = {
1388 .pgdat = pgdat,
1389 .priority = 0,
1390 };
1391
1392 excess = soft_limit_excess(root_memcg);
1393
1394 while (1) {
1395 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1396 if (!victim) {
1397 loop++;
1398 if (loop >= 2) {
1399 /*
1400 * If we have not been able to reclaim
1401 * anything, it might because there are
1402 * no reclaimable pages under this hierarchy
1403 */
1404 if (!total)
1405 break;
1406 /*
1407 * We want to do more targeted reclaim.
1408 * excess >> 2 is not to excessive so as to
1409 * reclaim too much, nor too less that we keep
1410 * coming back to reclaim from this cgroup
1411 */
1412 if (total >= (excess >> 2) ||
1413 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1414 break;
1415 }
1416 continue;
1417 }
1418 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1419 pgdat, &nr_scanned);
1420 *total_scanned += nr_scanned;
1421 if (!soft_limit_excess(root_memcg))
1422 break;
1423 }
1424 mem_cgroup_iter_break(root_memcg, victim);
1425 return total;
1426 }
1427
1428 #ifdef CONFIG_LOCKDEP
1429 static struct lockdep_map memcg_oom_lock_dep_map = {
1430 .name = "memcg_oom_lock",
1431 };
1432 #endif
1433
1434 static DEFINE_SPINLOCK(memcg_oom_lock);
1435
1436 /*
1437 * Check OOM-Killer is already running under our hierarchy.
1438 * If someone is running, return false.
1439 */
1440 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1441 {
1442 struct mem_cgroup *iter, *failed = NULL;
1443
1444 spin_lock(&memcg_oom_lock);
1445
1446 for_each_mem_cgroup_tree(iter, memcg) {
1447 if (iter->oom_lock) {
1448 /*
1449 * this subtree of our hierarchy is already locked
1450 * so we cannot give a lock.
1451 */
1452 failed = iter;
1453 mem_cgroup_iter_break(memcg, iter);
1454 break;
1455 } else
1456 iter->oom_lock = true;
1457 }
1458
1459 if (failed) {
1460 /*
1461 * OK, we failed to lock the whole subtree so we have
1462 * to clean up what we set up to the failing subtree
1463 */
1464 for_each_mem_cgroup_tree(iter, memcg) {
1465 if (iter == failed) {
1466 mem_cgroup_iter_break(memcg, iter);
1467 break;
1468 }
1469 iter->oom_lock = false;
1470 }
1471 } else
1472 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1473
1474 spin_unlock(&memcg_oom_lock);
1475
1476 return !failed;
1477 }
1478
1479 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1480 {
1481 struct mem_cgroup *iter;
1482
1483 spin_lock(&memcg_oom_lock);
1484 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1485 for_each_mem_cgroup_tree(iter, memcg)
1486 iter->oom_lock = false;
1487 spin_unlock(&memcg_oom_lock);
1488 }
1489
1490 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1491 {
1492 struct mem_cgroup *iter;
1493
1494 spin_lock(&memcg_oom_lock);
1495 for_each_mem_cgroup_tree(iter, memcg)
1496 iter->under_oom++;
1497 spin_unlock(&memcg_oom_lock);
1498 }
1499
1500 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1501 {
1502 struct mem_cgroup *iter;
1503
1504 /*
1505 * When a new child is created while the hierarchy is under oom,
1506 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1507 */
1508 spin_lock(&memcg_oom_lock);
1509 for_each_mem_cgroup_tree(iter, memcg)
1510 if (iter->under_oom > 0)
1511 iter->under_oom--;
1512 spin_unlock(&memcg_oom_lock);
1513 }
1514
1515 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1516
1517 struct oom_wait_info {
1518 struct mem_cgroup *memcg;
1519 wait_queue_t wait;
1520 };
1521
1522 static int memcg_oom_wake_function(wait_queue_t *wait,
1523 unsigned mode, int sync, void *arg)
1524 {
1525 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1526 struct mem_cgroup *oom_wait_memcg;
1527 struct oom_wait_info *oom_wait_info;
1528
1529 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1530 oom_wait_memcg = oom_wait_info->memcg;
1531
1532 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1533 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1534 return 0;
1535 return autoremove_wake_function(wait, mode, sync, arg);
1536 }
1537
1538 static void memcg_oom_recover(struct mem_cgroup *memcg)
1539 {
1540 /*
1541 * For the following lockless ->under_oom test, the only required
1542 * guarantee is that it must see the state asserted by an OOM when
1543 * this function is called as a result of userland actions
1544 * triggered by the notification of the OOM. This is trivially
1545 * achieved by invoking mem_cgroup_mark_under_oom() before
1546 * triggering notification.
1547 */
1548 if (memcg && memcg->under_oom)
1549 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1550 }
1551
1552 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1553 {
1554 if (!current->memcg_may_oom)
1555 return;
1556 /*
1557 * We are in the middle of the charge context here, so we
1558 * don't want to block when potentially sitting on a callstack
1559 * that holds all kinds of filesystem and mm locks.
1560 *
1561 * Also, the caller may handle a failed allocation gracefully
1562 * (like optional page cache readahead) and so an OOM killer
1563 * invocation might not even be necessary.
1564 *
1565 * That's why we don't do anything here except remember the
1566 * OOM context and then deal with it at the end of the page
1567 * fault when the stack is unwound, the locks are released,
1568 * and when we know whether the fault was overall successful.
1569 */
1570 css_get(&memcg->css);
1571 current->memcg_in_oom = memcg;
1572 current->memcg_oom_gfp_mask = mask;
1573 current->memcg_oom_order = order;
1574 }
1575
1576 /**
1577 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1578 * @handle: actually kill/wait or just clean up the OOM state
1579 *
1580 * This has to be called at the end of a page fault if the memcg OOM
1581 * handler was enabled.
1582 *
1583 * Memcg supports userspace OOM handling where failed allocations must
1584 * sleep on a waitqueue until the userspace task resolves the
1585 * situation. Sleeping directly in the charge context with all kinds
1586 * of locks held is not a good idea, instead we remember an OOM state
1587 * in the task and mem_cgroup_oom_synchronize() has to be called at
1588 * the end of the page fault to complete the OOM handling.
1589 *
1590 * Returns %true if an ongoing memcg OOM situation was detected and
1591 * completed, %false otherwise.
1592 */
1593 bool mem_cgroup_oom_synchronize(bool handle)
1594 {
1595 struct mem_cgroup *memcg = current->memcg_in_oom;
1596 struct oom_wait_info owait;
1597 bool locked;
1598
1599 /* OOM is global, do not handle */
1600 if (!memcg)
1601 return false;
1602
1603 if (!handle || oom_killer_disabled)
1604 goto cleanup;
1605
1606 owait.memcg = memcg;
1607 owait.wait.flags = 0;
1608 owait.wait.func = memcg_oom_wake_function;
1609 owait.wait.private = current;
1610 INIT_LIST_HEAD(&owait.wait.task_list);
1611
1612 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1613 mem_cgroup_mark_under_oom(memcg);
1614
1615 locked = mem_cgroup_oom_trylock(memcg);
1616
1617 if (locked)
1618 mem_cgroup_oom_notify(memcg);
1619
1620 if (locked && !memcg->oom_kill_disable) {
1621 mem_cgroup_unmark_under_oom(memcg);
1622 finish_wait(&memcg_oom_waitq, &owait.wait);
1623 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1624 current->memcg_oom_order);
1625 } else {
1626 schedule();
1627 mem_cgroup_unmark_under_oom(memcg);
1628 finish_wait(&memcg_oom_waitq, &owait.wait);
1629 }
1630
1631 if (locked) {
1632 mem_cgroup_oom_unlock(memcg);
1633 /*
1634 * There is no guarantee that an OOM-lock contender
1635 * sees the wakeups triggered by the OOM kill
1636 * uncharges. Wake any sleepers explicitely.
1637 */
1638 memcg_oom_recover(memcg);
1639 }
1640 cleanup:
1641 current->memcg_in_oom = NULL;
1642 css_put(&memcg->css);
1643 return true;
1644 }
1645
1646 /**
1647 * lock_page_memcg - lock a page->mem_cgroup binding
1648 * @page: the page
1649 *
1650 * This function protects unlocked LRU pages from being moved to
1651 * another cgroup and stabilizes their page->mem_cgroup binding.
1652 */
1653 void lock_page_memcg(struct page *page)
1654 {
1655 struct mem_cgroup *memcg;
1656 unsigned long flags;
1657
1658 /*
1659 * The RCU lock is held throughout the transaction. The fast
1660 * path can get away without acquiring the memcg->move_lock
1661 * because page moving starts with an RCU grace period.
1662 */
1663 rcu_read_lock();
1664
1665 if (mem_cgroup_disabled())
1666 return;
1667 again:
1668 memcg = page->mem_cgroup;
1669 if (unlikely(!memcg))
1670 return;
1671
1672 if (atomic_read(&memcg->moving_account) <= 0)
1673 return;
1674
1675 spin_lock_irqsave(&memcg->move_lock, flags);
1676 if (memcg != page->mem_cgroup) {
1677 spin_unlock_irqrestore(&memcg->move_lock, flags);
1678 goto again;
1679 }
1680
1681 /*
1682 * When charge migration first begins, we can have locked and
1683 * unlocked page stat updates happening concurrently. Track
1684 * the task who has the lock for unlock_page_memcg().
1685 */
1686 memcg->move_lock_task = current;
1687 memcg->move_lock_flags = flags;
1688
1689 return;
1690 }
1691 EXPORT_SYMBOL(lock_page_memcg);
1692
1693 /**
1694 * unlock_page_memcg - unlock a page->mem_cgroup binding
1695 * @page: the page
1696 */
1697 void unlock_page_memcg(struct page *page)
1698 {
1699 struct mem_cgroup *memcg = page->mem_cgroup;
1700
1701 if (memcg && memcg->move_lock_task == current) {
1702 unsigned long flags = memcg->move_lock_flags;
1703
1704 memcg->move_lock_task = NULL;
1705 memcg->move_lock_flags = 0;
1706
1707 spin_unlock_irqrestore(&memcg->move_lock, flags);
1708 }
1709
1710 rcu_read_unlock();
1711 }
1712 EXPORT_SYMBOL(unlock_page_memcg);
1713
1714 /*
1715 * size of first charge trial. "32" comes from vmscan.c's magic value.
1716 * TODO: maybe necessary to use big numbers in big irons.
1717 */
1718 #define CHARGE_BATCH 32U
1719 struct memcg_stock_pcp {
1720 struct mem_cgroup *cached; /* this never be root cgroup */
1721 unsigned int nr_pages;
1722 struct work_struct work;
1723 unsigned long flags;
1724 #define FLUSHING_CACHED_CHARGE 0
1725 };
1726 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1727 static DEFINE_MUTEX(percpu_charge_mutex);
1728
1729 /**
1730 * consume_stock: Try to consume stocked charge on this cpu.
1731 * @memcg: memcg to consume from.
1732 * @nr_pages: how many pages to charge.
1733 *
1734 * The charges will only happen if @memcg matches the current cpu's memcg
1735 * stock, and at least @nr_pages are available in that stock. Failure to
1736 * service an allocation will refill the stock.
1737 *
1738 * returns true if successful, false otherwise.
1739 */
1740 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1741 {
1742 struct memcg_stock_pcp *stock;
1743 bool ret = false;
1744
1745 if (nr_pages > CHARGE_BATCH)
1746 return ret;
1747
1748 stock = &get_cpu_var(memcg_stock);
1749 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1750 stock->nr_pages -= nr_pages;
1751 ret = true;
1752 }
1753 put_cpu_var(memcg_stock);
1754 return ret;
1755 }
1756
1757 /*
1758 * Returns stocks cached in percpu and reset cached information.
1759 */
1760 static void drain_stock(struct memcg_stock_pcp *stock)
1761 {
1762 struct mem_cgroup *old = stock->cached;
1763
1764 if (stock->nr_pages) {
1765 page_counter_uncharge(&old->memory, stock->nr_pages);
1766 if (do_memsw_account())
1767 page_counter_uncharge(&old->memsw, stock->nr_pages);
1768 css_put_many(&old->css, stock->nr_pages);
1769 stock->nr_pages = 0;
1770 }
1771 stock->cached = NULL;
1772 }
1773
1774 /*
1775 * This must be called under preempt disabled or must be called by
1776 * a thread which is pinned to local cpu.
1777 */
1778 static void drain_local_stock(struct work_struct *dummy)
1779 {
1780 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1781 drain_stock(stock);
1782 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1783 }
1784
1785 /*
1786 * Cache charges(val) to local per_cpu area.
1787 * This will be consumed by consume_stock() function, later.
1788 */
1789 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1790 {
1791 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1792
1793 if (stock->cached != memcg) { /* reset if necessary */
1794 drain_stock(stock);
1795 stock->cached = memcg;
1796 }
1797 stock->nr_pages += nr_pages;
1798 put_cpu_var(memcg_stock);
1799 }
1800
1801 /*
1802 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1803 * of the hierarchy under it.
1804 */
1805 static void drain_all_stock(struct mem_cgroup *root_memcg)
1806 {
1807 int cpu, curcpu;
1808
1809 /* If someone's already draining, avoid adding running more workers. */
1810 if (!mutex_trylock(&percpu_charge_mutex))
1811 return;
1812 /* Notify other cpus that system-wide "drain" is running */
1813 get_online_cpus();
1814 curcpu = get_cpu();
1815 for_each_online_cpu(cpu) {
1816 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1817 struct mem_cgroup *memcg;
1818
1819 memcg = stock->cached;
1820 if (!memcg || !stock->nr_pages)
1821 continue;
1822 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1823 continue;
1824 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1825 if (cpu == curcpu)
1826 drain_local_stock(&stock->work);
1827 else
1828 schedule_work_on(cpu, &stock->work);
1829 }
1830 }
1831 put_cpu();
1832 put_online_cpus();
1833 mutex_unlock(&percpu_charge_mutex);
1834 }
1835
1836 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1837 unsigned long action,
1838 void *hcpu)
1839 {
1840 int cpu = (unsigned long)hcpu;
1841 struct memcg_stock_pcp *stock;
1842
1843 if (action == CPU_ONLINE)
1844 return NOTIFY_OK;
1845
1846 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1847 return NOTIFY_OK;
1848
1849 stock = &per_cpu(memcg_stock, cpu);
1850 drain_stock(stock);
1851 return NOTIFY_OK;
1852 }
1853
1854 static void reclaim_high(struct mem_cgroup *memcg,
1855 unsigned int nr_pages,
1856 gfp_t gfp_mask)
1857 {
1858 do {
1859 if (page_counter_read(&memcg->memory) <= memcg->high)
1860 continue;
1861 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1862 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1863 } while ((memcg = parent_mem_cgroup(memcg)));
1864 }
1865
1866 static void high_work_func(struct work_struct *work)
1867 {
1868 struct mem_cgroup *memcg;
1869
1870 memcg = container_of(work, struct mem_cgroup, high_work);
1871 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1872 }
1873
1874 /*
1875 * Scheduled by try_charge() to be executed from the userland return path
1876 * and reclaims memory over the high limit.
1877 */
1878 void mem_cgroup_handle_over_high(void)
1879 {
1880 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1881 struct mem_cgroup *memcg;
1882
1883 if (likely(!nr_pages))
1884 return;
1885
1886 memcg = get_mem_cgroup_from_mm(current->mm);
1887 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1888 css_put(&memcg->css);
1889 current->memcg_nr_pages_over_high = 0;
1890 }
1891
1892 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1893 unsigned int nr_pages)
1894 {
1895 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1896 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1897 struct mem_cgroup *mem_over_limit;
1898 struct page_counter *counter;
1899 unsigned long nr_reclaimed;
1900 bool may_swap = true;
1901 bool drained = false;
1902
1903 if (mem_cgroup_is_root(memcg))
1904 return 0;
1905 retry:
1906 if (consume_stock(memcg, nr_pages))
1907 return 0;
1908
1909 if (!do_memsw_account() ||
1910 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1911 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1912 goto done_restock;
1913 if (do_memsw_account())
1914 page_counter_uncharge(&memcg->memsw, batch);
1915 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1916 } else {
1917 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1918 may_swap = false;
1919 }
1920
1921 if (batch > nr_pages) {
1922 batch = nr_pages;
1923 goto retry;
1924 }
1925
1926 /*
1927 * Unlike in global OOM situations, memcg is not in a physical
1928 * memory shortage. Allow dying and OOM-killed tasks to
1929 * bypass the last charges so that they can exit quickly and
1930 * free their memory.
1931 */
1932 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1933 fatal_signal_pending(current) ||
1934 current->flags & PF_EXITING))
1935 goto force;
1936
1937 if (unlikely(task_in_memcg_oom(current)))
1938 goto nomem;
1939
1940 if (!gfpflags_allow_blocking(gfp_mask))
1941 goto nomem;
1942
1943 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1944
1945 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1946 gfp_mask, may_swap);
1947
1948 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1949 goto retry;
1950
1951 if (!drained) {
1952 drain_all_stock(mem_over_limit);
1953 drained = true;
1954 goto retry;
1955 }
1956
1957 if (gfp_mask & __GFP_NORETRY)
1958 goto nomem;
1959 /*
1960 * Even though the limit is exceeded at this point, reclaim
1961 * may have been able to free some pages. Retry the charge
1962 * before killing the task.
1963 *
1964 * Only for regular pages, though: huge pages are rather
1965 * unlikely to succeed so close to the limit, and we fall back
1966 * to regular pages anyway in case of failure.
1967 */
1968 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1969 goto retry;
1970 /*
1971 * At task move, charge accounts can be doubly counted. So, it's
1972 * better to wait until the end of task_move if something is going on.
1973 */
1974 if (mem_cgroup_wait_acct_move(mem_over_limit))
1975 goto retry;
1976
1977 if (nr_retries--)
1978 goto retry;
1979
1980 if (gfp_mask & __GFP_NOFAIL)
1981 goto force;
1982
1983 if (fatal_signal_pending(current))
1984 goto force;
1985
1986 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
1987
1988 mem_cgroup_oom(mem_over_limit, gfp_mask,
1989 get_order(nr_pages * PAGE_SIZE));
1990 nomem:
1991 if (!(gfp_mask & __GFP_NOFAIL))
1992 return -ENOMEM;
1993 force:
1994 /*
1995 * The allocation either can't fail or will lead to more memory
1996 * being freed very soon. Allow memory usage go over the limit
1997 * temporarily by force charging it.
1998 */
1999 page_counter_charge(&memcg->memory, nr_pages);
2000 if (do_memsw_account())
2001 page_counter_charge(&memcg->memsw, nr_pages);
2002 css_get_many(&memcg->css, nr_pages);
2003
2004 return 0;
2005
2006 done_restock:
2007 css_get_many(&memcg->css, batch);
2008 if (batch > nr_pages)
2009 refill_stock(memcg, batch - nr_pages);
2010
2011 /*
2012 * If the hierarchy is above the normal consumption range, schedule
2013 * reclaim on returning to userland. We can perform reclaim here
2014 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2015 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2016 * not recorded as it most likely matches current's and won't
2017 * change in the meantime. As high limit is checked again before
2018 * reclaim, the cost of mismatch is negligible.
2019 */
2020 do {
2021 if (page_counter_read(&memcg->memory) > memcg->high) {
2022 /* Don't bother a random interrupted task */
2023 if (in_interrupt()) {
2024 schedule_work(&memcg->high_work);
2025 break;
2026 }
2027 current->memcg_nr_pages_over_high += batch;
2028 set_notify_resume(current);
2029 break;
2030 }
2031 } while ((memcg = parent_mem_cgroup(memcg)));
2032
2033 return 0;
2034 }
2035
2036 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2037 {
2038 if (mem_cgroup_is_root(memcg))
2039 return;
2040
2041 page_counter_uncharge(&memcg->memory, nr_pages);
2042 if (do_memsw_account())
2043 page_counter_uncharge(&memcg->memsw, nr_pages);
2044
2045 css_put_many(&memcg->css, nr_pages);
2046 }
2047
2048 static void lock_page_lru(struct page *page, int *isolated)
2049 {
2050 struct zone *zone = page_zone(page);
2051
2052 spin_lock_irq(zone_lru_lock(zone));
2053 if (PageLRU(page)) {
2054 struct lruvec *lruvec;
2055
2056 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2057 ClearPageLRU(page);
2058 del_page_from_lru_list(page, lruvec, page_lru(page));
2059 *isolated = 1;
2060 } else
2061 *isolated = 0;
2062 }
2063
2064 static void unlock_page_lru(struct page *page, int isolated)
2065 {
2066 struct zone *zone = page_zone(page);
2067
2068 if (isolated) {
2069 struct lruvec *lruvec;
2070
2071 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2072 VM_BUG_ON_PAGE(PageLRU(page), page);
2073 SetPageLRU(page);
2074 add_page_to_lru_list(page, lruvec, page_lru(page));
2075 }
2076 spin_unlock_irq(zone_lru_lock(zone));
2077 }
2078
2079 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2080 bool lrucare)
2081 {
2082 int isolated;
2083
2084 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2085
2086 /*
2087 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2088 * may already be on some other mem_cgroup's LRU. Take care of it.
2089 */
2090 if (lrucare)
2091 lock_page_lru(page, &isolated);
2092
2093 /*
2094 * Nobody should be changing or seriously looking at
2095 * page->mem_cgroup at this point:
2096 *
2097 * - the page is uncharged
2098 *
2099 * - the page is off-LRU
2100 *
2101 * - an anonymous fault has exclusive page access, except for
2102 * a locked page table
2103 *
2104 * - a page cache insertion, a swapin fault, or a migration
2105 * have the page locked
2106 */
2107 page->mem_cgroup = memcg;
2108
2109 if (lrucare)
2110 unlock_page_lru(page, isolated);
2111 }
2112
2113 #ifndef CONFIG_SLOB
2114 static int memcg_alloc_cache_id(void)
2115 {
2116 int id, size;
2117 int err;
2118
2119 id = ida_simple_get(&memcg_cache_ida,
2120 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2121 if (id < 0)
2122 return id;
2123
2124 if (id < memcg_nr_cache_ids)
2125 return id;
2126
2127 /*
2128 * There's no space for the new id in memcg_caches arrays,
2129 * so we have to grow them.
2130 */
2131 down_write(&memcg_cache_ids_sem);
2132
2133 size = 2 * (id + 1);
2134 if (size < MEMCG_CACHES_MIN_SIZE)
2135 size = MEMCG_CACHES_MIN_SIZE;
2136 else if (size > MEMCG_CACHES_MAX_SIZE)
2137 size = MEMCG_CACHES_MAX_SIZE;
2138
2139 err = memcg_update_all_caches(size);
2140 if (!err)
2141 err = memcg_update_all_list_lrus(size);
2142 if (!err)
2143 memcg_nr_cache_ids = size;
2144
2145 up_write(&memcg_cache_ids_sem);
2146
2147 if (err) {
2148 ida_simple_remove(&memcg_cache_ida, id);
2149 return err;
2150 }
2151 return id;
2152 }
2153
2154 static void memcg_free_cache_id(int id)
2155 {
2156 ida_simple_remove(&memcg_cache_ida, id);
2157 }
2158
2159 struct memcg_kmem_cache_create_work {
2160 struct mem_cgroup *memcg;
2161 struct kmem_cache *cachep;
2162 struct work_struct work;
2163 };
2164
2165 static void memcg_kmem_cache_create_func(struct work_struct *w)
2166 {
2167 struct memcg_kmem_cache_create_work *cw =
2168 container_of(w, struct memcg_kmem_cache_create_work, work);
2169 struct mem_cgroup *memcg = cw->memcg;
2170 struct kmem_cache *cachep = cw->cachep;
2171
2172 memcg_create_kmem_cache(memcg, cachep);
2173
2174 css_put(&memcg->css);
2175 kfree(cw);
2176 }
2177
2178 /*
2179 * Enqueue the creation of a per-memcg kmem_cache.
2180 */
2181 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2182 struct kmem_cache *cachep)
2183 {
2184 struct memcg_kmem_cache_create_work *cw;
2185
2186 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2187 if (!cw)
2188 return;
2189
2190 css_get(&memcg->css);
2191
2192 cw->memcg = memcg;
2193 cw->cachep = cachep;
2194 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2195
2196 schedule_work(&cw->work);
2197 }
2198
2199 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2200 struct kmem_cache *cachep)
2201 {
2202 /*
2203 * We need to stop accounting when we kmalloc, because if the
2204 * corresponding kmalloc cache is not yet created, the first allocation
2205 * in __memcg_schedule_kmem_cache_create will recurse.
2206 *
2207 * However, it is better to enclose the whole function. Depending on
2208 * the debugging options enabled, INIT_WORK(), for instance, can
2209 * trigger an allocation. This too, will make us recurse. Because at
2210 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2211 * the safest choice is to do it like this, wrapping the whole function.
2212 */
2213 current->memcg_kmem_skip_account = 1;
2214 __memcg_schedule_kmem_cache_create(memcg, cachep);
2215 current->memcg_kmem_skip_account = 0;
2216 }
2217
2218 static inline bool memcg_kmem_bypass(void)
2219 {
2220 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2221 return true;
2222 return false;
2223 }
2224
2225 /**
2226 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2227 * @cachep: the original global kmem cache
2228 *
2229 * Return the kmem_cache we're supposed to use for a slab allocation.
2230 * We try to use the current memcg's version of the cache.
2231 *
2232 * If the cache does not exist yet, if we are the first user of it, we
2233 * create it asynchronously in a workqueue and let the current allocation
2234 * go through with the original cache.
2235 *
2236 * This function takes a reference to the cache it returns to assure it
2237 * won't get destroyed while we are working with it. Once the caller is
2238 * done with it, memcg_kmem_put_cache() must be called to release the
2239 * reference.
2240 */
2241 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2242 {
2243 struct mem_cgroup *memcg;
2244 struct kmem_cache *memcg_cachep;
2245 int kmemcg_id;
2246
2247 VM_BUG_ON(!is_root_cache(cachep));
2248
2249 if (memcg_kmem_bypass())
2250 return cachep;
2251
2252 if (current->memcg_kmem_skip_account)
2253 return cachep;
2254
2255 memcg = get_mem_cgroup_from_mm(current->mm);
2256 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2257 if (kmemcg_id < 0)
2258 goto out;
2259
2260 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2261 if (likely(memcg_cachep))
2262 return memcg_cachep;
2263
2264 /*
2265 * If we are in a safe context (can wait, and not in interrupt
2266 * context), we could be be predictable and return right away.
2267 * This would guarantee that the allocation being performed
2268 * already belongs in the new cache.
2269 *
2270 * However, there are some clashes that can arrive from locking.
2271 * For instance, because we acquire the slab_mutex while doing
2272 * memcg_create_kmem_cache, this means no further allocation
2273 * could happen with the slab_mutex held. So it's better to
2274 * defer everything.
2275 */
2276 memcg_schedule_kmem_cache_create(memcg, cachep);
2277 out:
2278 css_put(&memcg->css);
2279 return cachep;
2280 }
2281
2282 /**
2283 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2284 * @cachep: the cache returned by memcg_kmem_get_cache
2285 */
2286 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2287 {
2288 if (!is_root_cache(cachep))
2289 css_put(&cachep->memcg_params.memcg->css);
2290 }
2291
2292 /**
2293 * memcg_kmem_charge: charge a kmem page
2294 * @page: page to charge
2295 * @gfp: reclaim mode
2296 * @order: allocation order
2297 * @memcg: memory cgroup to charge
2298 *
2299 * Returns 0 on success, an error code on failure.
2300 */
2301 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2302 struct mem_cgroup *memcg)
2303 {
2304 unsigned int nr_pages = 1 << order;
2305 struct page_counter *counter;
2306 int ret;
2307
2308 ret = try_charge(memcg, gfp, nr_pages);
2309 if (ret)
2310 return ret;
2311
2312 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2313 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2314 cancel_charge(memcg, nr_pages);
2315 return -ENOMEM;
2316 }
2317
2318 page->mem_cgroup = memcg;
2319
2320 return 0;
2321 }
2322
2323 /**
2324 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2325 * @page: page to charge
2326 * @gfp: reclaim mode
2327 * @order: allocation order
2328 *
2329 * Returns 0 on success, an error code on failure.
2330 */
2331 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2332 {
2333 struct mem_cgroup *memcg;
2334 int ret = 0;
2335
2336 if (memcg_kmem_bypass())
2337 return 0;
2338
2339 memcg = get_mem_cgroup_from_mm(current->mm);
2340 if (!mem_cgroup_is_root(memcg))
2341 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2342 css_put(&memcg->css);
2343 return ret;
2344 }
2345 /**
2346 * memcg_kmem_uncharge: uncharge a kmem page
2347 * @page: page to uncharge
2348 * @order: allocation order
2349 */
2350 void memcg_kmem_uncharge(struct page *page, int order)
2351 {
2352 struct mem_cgroup *memcg = page->mem_cgroup;
2353 unsigned int nr_pages = 1 << order;
2354
2355 if (!memcg)
2356 return;
2357
2358 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2359
2360 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2361 page_counter_uncharge(&memcg->kmem, nr_pages);
2362
2363 page_counter_uncharge(&memcg->memory, nr_pages);
2364 if (do_memsw_account())
2365 page_counter_uncharge(&memcg->memsw, nr_pages);
2366
2367 page->mem_cgroup = NULL;
2368 css_put_many(&memcg->css, nr_pages);
2369 }
2370 #endif /* !CONFIG_SLOB */
2371
2372 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2373
2374 /*
2375 * Because tail pages are not marked as "used", set it. We're under
2376 * zone_lru_lock and migration entries setup in all page mappings.
2377 */
2378 void mem_cgroup_split_huge_fixup(struct page *head)
2379 {
2380 int i;
2381
2382 if (mem_cgroup_disabled())
2383 return;
2384
2385 for (i = 1; i < HPAGE_PMD_NR; i++)
2386 head[i].mem_cgroup = head->mem_cgroup;
2387
2388 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2389 HPAGE_PMD_NR);
2390 }
2391 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2392
2393 #ifdef CONFIG_MEMCG_SWAP
2394 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2395 bool charge)
2396 {
2397 int val = (charge) ? 1 : -1;
2398 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2399 }
2400
2401 /**
2402 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2403 * @entry: swap entry to be moved
2404 * @from: mem_cgroup which the entry is moved from
2405 * @to: mem_cgroup which the entry is moved to
2406 *
2407 * It succeeds only when the swap_cgroup's record for this entry is the same
2408 * as the mem_cgroup's id of @from.
2409 *
2410 * Returns 0 on success, -EINVAL on failure.
2411 *
2412 * The caller must have charged to @to, IOW, called page_counter_charge() about
2413 * both res and memsw, and called css_get().
2414 */
2415 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2416 struct mem_cgroup *from, struct mem_cgroup *to)
2417 {
2418 unsigned short old_id, new_id;
2419
2420 old_id = mem_cgroup_id(from);
2421 new_id = mem_cgroup_id(to);
2422
2423 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2424 mem_cgroup_swap_statistics(from, false);
2425 mem_cgroup_swap_statistics(to, true);
2426 return 0;
2427 }
2428 return -EINVAL;
2429 }
2430 #else
2431 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2432 struct mem_cgroup *from, struct mem_cgroup *to)
2433 {
2434 return -EINVAL;
2435 }
2436 #endif
2437
2438 static DEFINE_MUTEX(memcg_limit_mutex);
2439
2440 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2441 unsigned long limit)
2442 {
2443 unsigned long curusage;
2444 unsigned long oldusage;
2445 bool enlarge = false;
2446 int retry_count;
2447 int ret;
2448
2449 /*
2450 * For keeping hierarchical_reclaim simple, how long we should retry
2451 * is depends on callers. We set our retry-count to be function
2452 * of # of children which we should visit in this loop.
2453 */
2454 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2455 mem_cgroup_count_children(memcg);
2456
2457 oldusage = page_counter_read(&memcg->memory);
2458
2459 do {
2460 if (signal_pending(current)) {
2461 ret = -EINTR;
2462 break;
2463 }
2464
2465 mutex_lock(&memcg_limit_mutex);
2466 if (limit > memcg->memsw.limit) {
2467 mutex_unlock(&memcg_limit_mutex);
2468 ret = -EINVAL;
2469 break;
2470 }
2471 if (limit > memcg->memory.limit)
2472 enlarge = true;
2473 ret = page_counter_limit(&memcg->memory, limit);
2474 mutex_unlock(&memcg_limit_mutex);
2475
2476 if (!ret)
2477 break;
2478
2479 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2480
2481 curusage = page_counter_read(&memcg->memory);
2482 /* Usage is reduced ? */
2483 if (curusage >= oldusage)
2484 retry_count--;
2485 else
2486 oldusage = curusage;
2487 } while (retry_count);
2488
2489 if (!ret && enlarge)
2490 memcg_oom_recover(memcg);
2491
2492 return ret;
2493 }
2494
2495 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2496 unsigned long limit)
2497 {
2498 unsigned long curusage;
2499 unsigned long oldusage;
2500 bool enlarge = false;
2501 int retry_count;
2502 int ret;
2503
2504 /* see mem_cgroup_resize_res_limit */
2505 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2506 mem_cgroup_count_children(memcg);
2507
2508 oldusage = page_counter_read(&memcg->memsw);
2509
2510 do {
2511 if (signal_pending(current)) {
2512 ret = -EINTR;
2513 break;
2514 }
2515
2516 mutex_lock(&memcg_limit_mutex);
2517 if (limit < memcg->memory.limit) {
2518 mutex_unlock(&memcg_limit_mutex);
2519 ret = -EINVAL;
2520 break;
2521 }
2522 if (limit > memcg->memsw.limit)
2523 enlarge = true;
2524 ret = page_counter_limit(&memcg->memsw, limit);
2525 mutex_unlock(&memcg_limit_mutex);
2526
2527 if (!ret)
2528 break;
2529
2530 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2531
2532 curusage = page_counter_read(&memcg->memsw);
2533 /* Usage is reduced ? */
2534 if (curusage >= oldusage)
2535 retry_count--;
2536 else
2537 oldusage = curusage;
2538 } while (retry_count);
2539
2540 if (!ret && enlarge)
2541 memcg_oom_recover(memcg);
2542
2543 return ret;
2544 }
2545
2546 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2547 gfp_t gfp_mask,
2548 unsigned long *total_scanned)
2549 {
2550 unsigned long nr_reclaimed = 0;
2551 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2552 unsigned long reclaimed;
2553 int loop = 0;
2554 struct mem_cgroup_tree_per_node *mctz;
2555 unsigned long excess;
2556 unsigned long nr_scanned;
2557
2558 if (order > 0)
2559 return 0;
2560
2561 mctz = soft_limit_tree_node(pgdat->node_id);
2562
2563 /*
2564 * Do not even bother to check the largest node if the root
2565 * is empty. Do it lockless to prevent lock bouncing. Races
2566 * are acceptable as soft limit is best effort anyway.
2567 */
2568 if (RB_EMPTY_ROOT(&mctz->rb_root))
2569 return 0;
2570
2571 /*
2572 * This loop can run a while, specially if mem_cgroup's continuously
2573 * keep exceeding their soft limit and putting the system under
2574 * pressure
2575 */
2576 do {
2577 if (next_mz)
2578 mz = next_mz;
2579 else
2580 mz = mem_cgroup_largest_soft_limit_node(mctz);
2581 if (!mz)
2582 break;
2583
2584 nr_scanned = 0;
2585 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2586 gfp_mask, &nr_scanned);
2587 nr_reclaimed += reclaimed;
2588 *total_scanned += nr_scanned;
2589 spin_lock_irq(&mctz->lock);
2590 __mem_cgroup_remove_exceeded(mz, mctz);
2591
2592 /*
2593 * If we failed to reclaim anything from this memory cgroup
2594 * it is time to move on to the next cgroup
2595 */
2596 next_mz = NULL;
2597 if (!reclaimed)
2598 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2599
2600 excess = soft_limit_excess(mz->memcg);
2601 /*
2602 * One school of thought says that we should not add
2603 * back the node to the tree if reclaim returns 0.
2604 * But our reclaim could return 0, simply because due
2605 * to priority we are exposing a smaller subset of
2606 * memory to reclaim from. Consider this as a longer
2607 * term TODO.
2608 */
2609 /* If excess == 0, no tree ops */
2610 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2611 spin_unlock_irq(&mctz->lock);
2612 css_put(&mz->memcg->css);
2613 loop++;
2614 /*
2615 * Could not reclaim anything and there are no more
2616 * mem cgroups to try or we seem to be looping without
2617 * reclaiming anything.
2618 */
2619 if (!nr_reclaimed &&
2620 (next_mz == NULL ||
2621 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2622 break;
2623 } while (!nr_reclaimed);
2624 if (next_mz)
2625 css_put(&next_mz->memcg->css);
2626 return nr_reclaimed;
2627 }
2628
2629 /*
2630 * Test whether @memcg has children, dead or alive. Note that this
2631 * function doesn't care whether @memcg has use_hierarchy enabled and
2632 * returns %true if there are child csses according to the cgroup
2633 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2634 */
2635 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2636 {
2637 bool ret;
2638
2639 rcu_read_lock();
2640 ret = css_next_child(NULL, &memcg->css);
2641 rcu_read_unlock();
2642 return ret;
2643 }
2644
2645 /*
2646 * Reclaims as many pages from the given memcg as possible.
2647 *
2648 * Caller is responsible for holding css reference for memcg.
2649 */
2650 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2651 {
2652 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2653
2654 /* we call try-to-free pages for make this cgroup empty */
2655 lru_add_drain_all();
2656 /* try to free all pages in this cgroup */
2657 while (nr_retries && page_counter_read(&memcg->memory)) {
2658 int progress;
2659
2660 if (signal_pending(current))
2661 return -EINTR;
2662
2663 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2664 GFP_KERNEL, true);
2665 if (!progress) {
2666 nr_retries--;
2667 /* maybe some writeback is necessary */
2668 congestion_wait(BLK_RW_ASYNC, HZ/10);
2669 }
2670
2671 }
2672
2673 return 0;
2674 }
2675
2676 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2677 char *buf, size_t nbytes,
2678 loff_t off)
2679 {
2680 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2681
2682 if (mem_cgroup_is_root(memcg))
2683 return -EINVAL;
2684 return mem_cgroup_force_empty(memcg) ?: nbytes;
2685 }
2686
2687 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2688 struct cftype *cft)
2689 {
2690 return mem_cgroup_from_css(css)->use_hierarchy;
2691 }
2692
2693 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2694 struct cftype *cft, u64 val)
2695 {
2696 int retval = 0;
2697 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2698 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2699
2700 if (memcg->use_hierarchy == val)
2701 return 0;
2702
2703 /*
2704 * If parent's use_hierarchy is set, we can't make any modifications
2705 * in the child subtrees. If it is unset, then the change can
2706 * occur, provided the current cgroup has no children.
2707 *
2708 * For the root cgroup, parent_mem is NULL, we allow value to be
2709 * set if there are no children.
2710 */
2711 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2712 (val == 1 || val == 0)) {
2713 if (!memcg_has_children(memcg))
2714 memcg->use_hierarchy = val;
2715 else
2716 retval = -EBUSY;
2717 } else
2718 retval = -EINVAL;
2719
2720 return retval;
2721 }
2722
2723 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2724 {
2725 struct mem_cgroup *iter;
2726 int i;
2727
2728 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2729
2730 for_each_mem_cgroup_tree(iter, memcg) {
2731 for (i = 0; i < MEMCG_NR_STAT; i++)
2732 stat[i] += mem_cgroup_read_stat(iter, i);
2733 }
2734 }
2735
2736 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2737 {
2738 struct mem_cgroup *iter;
2739 int i;
2740
2741 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2742
2743 for_each_mem_cgroup_tree(iter, memcg) {
2744 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2745 events[i] += mem_cgroup_read_events(iter, i);
2746 }
2747 }
2748
2749 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2750 {
2751 unsigned long val = 0;
2752
2753 if (mem_cgroup_is_root(memcg)) {
2754 struct mem_cgroup *iter;
2755
2756 for_each_mem_cgroup_tree(iter, memcg) {
2757 val += mem_cgroup_read_stat(iter,
2758 MEM_CGROUP_STAT_CACHE);
2759 val += mem_cgroup_read_stat(iter,
2760 MEM_CGROUP_STAT_RSS);
2761 if (swap)
2762 val += mem_cgroup_read_stat(iter,
2763 MEM_CGROUP_STAT_SWAP);
2764 }
2765 } else {
2766 if (!swap)
2767 val = page_counter_read(&memcg->memory);
2768 else
2769 val = page_counter_read(&memcg->memsw);
2770 }
2771 return val;
2772 }
2773
2774 enum {
2775 RES_USAGE,
2776 RES_LIMIT,
2777 RES_MAX_USAGE,
2778 RES_FAILCNT,
2779 RES_SOFT_LIMIT,
2780 };
2781
2782 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2783 struct cftype *cft)
2784 {
2785 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2786 struct page_counter *counter;
2787
2788 switch (MEMFILE_TYPE(cft->private)) {
2789 case _MEM:
2790 counter = &memcg->memory;
2791 break;
2792 case _MEMSWAP:
2793 counter = &memcg->memsw;
2794 break;
2795 case _KMEM:
2796 counter = &memcg->kmem;
2797 break;
2798 case _TCP:
2799 counter = &memcg->tcpmem;
2800 break;
2801 default:
2802 BUG();
2803 }
2804
2805 switch (MEMFILE_ATTR(cft->private)) {
2806 case RES_USAGE:
2807 if (counter == &memcg->memory)
2808 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2809 if (counter == &memcg->memsw)
2810 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2811 return (u64)page_counter_read(counter) * PAGE_SIZE;
2812 case RES_LIMIT:
2813 return (u64)counter->limit * PAGE_SIZE;
2814 case RES_MAX_USAGE:
2815 return (u64)counter->watermark * PAGE_SIZE;
2816 case RES_FAILCNT:
2817 return counter->failcnt;
2818 case RES_SOFT_LIMIT:
2819 return (u64)memcg->soft_limit * PAGE_SIZE;
2820 default:
2821 BUG();
2822 }
2823 }
2824
2825 #ifndef CONFIG_SLOB
2826 static int memcg_online_kmem(struct mem_cgroup *memcg)
2827 {
2828 int memcg_id;
2829
2830 if (cgroup_memory_nokmem)
2831 return 0;
2832
2833 BUG_ON(memcg->kmemcg_id >= 0);
2834 BUG_ON(memcg->kmem_state);
2835
2836 memcg_id = memcg_alloc_cache_id();
2837 if (memcg_id < 0)
2838 return memcg_id;
2839
2840 static_branch_inc(&memcg_kmem_enabled_key);
2841 /*
2842 * A memory cgroup is considered kmem-online as soon as it gets
2843 * kmemcg_id. Setting the id after enabling static branching will
2844 * guarantee no one starts accounting before all call sites are
2845 * patched.
2846 */
2847 memcg->kmemcg_id = memcg_id;
2848 memcg->kmem_state = KMEM_ONLINE;
2849
2850 return 0;
2851 }
2852
2853 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2854 {
2855 struct cgroup_subsys_state *css;
2856 struct mem_cgroup *parent, *child;
2857 int kmemcg_id;
2858
2859 if (memcg->kmem_state != KMEM_ONLINE)
2860 return;
2861 /*
2862 * Clear the online state before clearing memcg_caches array
2863 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2864 * guarantees that no cache will be created for this cgroup
2865 * after we are done (see memcg_create_kmem_cache()).
2866 */
2867 memcg->kmem_state = KMEM_ALLOCATED;
2868
2869 memcg_deactivate_kmem_caches(memcg);
2870
2871 kmemcg_id = memcg->kmemcg_id;
2872 BUG_ON(kmemcg_id < 0);
2873
2874 parent = parent_mem_cgroup(memcg);
2875 if (!parent)
2876 parent = root_mem_cgroup;
2877
2878 /*
2879 * Change kmemcg_id of this cgroup and all its descendants to the
2880 * parent's id, and then move all entries from this cgroup's list_lrus
2881 * to ones of the parent. After we have finished, all list_lrus
2882 * corresponding to this cgroup are guaranteed to remain empty. The
2883 * ordering is imposed by list_lru_node->lock taken by
2884 * memcg_drain_all_list_lrus().
2885 */
2886 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2887 css_for_each_descendant_pre(css, &memcg->css) {
2888 child = mem_cgroup_from_css(css);
2889 BUG_ON(child->kmemcg_id != kmemcg_id);
2890 child->kmemcg_id = parent->kmemcg_id;
2891 if (!memcg->use_hierarchy)
2892 break;
2893 }
2894 rcu_read_unlock();
2895
2896 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2897
2898 memcg_free_cache_id(kmemcg_id);
2899 }
2900
2901 static void memcg_free_kmem(struct mem_cgroup *memcg)
2902 {
2903 /* css_alloc() failed, offlining didn't happen */
2904 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2905 memcg_offline_kmem(memcg);
2906
2907 if (memcg->kmem_state == KMEM_ALLOCATED) {
2908 memcg_destroy_kmem_caches(memcg);
2909 static_branch_dec(&memcg_kmem_enabled_key);
2910 WARN_ON(page_counter_read(&memcg->kmem));
2911 }
2912 }
2913 #else
2914 static int memcg_online_kmem(struct mem_cgroup *memcg)
2915 {
2916 return 0;
2917 }
2918 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2919 {
2920 }
2921 static void memcg_free_kmem(struct mem_cgroup *memcg)
2922 {
2923 }
2924 #endif /* !CONFIG_SLOB */
2925
2926 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2927 unsigned long limit)
2928 {
2929 int ret;
2930
2931 mutex_lock(&memcg_limit_mutex);
2932 ret = page_counter_limit(&memcg->kmem, limit);
2933 mutex_unlock(&memcg_limit_mutex);
2934 return ret;
2935 }
2936
2937 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2938 {
2939 int ret;
2940
2941 mutex_lock(&memcg_limit_mutex);
2942
2943 ret = page_counter_limit(&memcg->tcpmem, limit);
2944 if (ret)
2945 goto out;
2946
2947 if (!memcg->tcpmem_active) {
2948 /*
2949 * The active flag needs to be written after the static_key
2950 * update. This is what guarantees that the socket activation
2951 * function is the last one to run. See sock_update_memcg() for
2952 * details, and note that we don't mark any socket as belonging
2953 * to this memcg until that flag is up.
2954 *
2955 * We need to do this, because static_keys will span multiple
2956 * sites, but we can't control their order. If we mark a socket
2957 * as accounted, but the accounting functions are not patched in
2958 * yet, we'll lose accounting.
2959 *
2960 * We never race with the readers in sock_update_memcg(),
2961 * because when this value change, the code to process it is not
2962 * patched in yet.
2963 */
2964 static_branch_inc(&memcg_sockets_enabled_key);
2965 memcg->tcpmem_active = true;
2966 }
2967 out:
2968 mutex_unlock(&memcg_limit_mutex);
2969 return ret;
2970 }
2971
2972 /*
2973 * The user of this function is...
2974 * RES_LIMIT.
2975 */
2976 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2977 char *buf, size_t nbytes, loff_t off)
2978 {
2979 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2980 unsigned long nr_pages;
2981 int ret;
2982
2983 buf = strstrip(buf);
2984 ret = page_counter_memparse(buf, "-1", &nr_pages);
2985 if (ret)
2986 return ret;
2987
2988 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2989 case RES_LIMIT:
2990 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2991 ret = -EINVAL;
2992 break;
2993 }
2994 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2995 case _MEM:
2996 ret = mem_cgroup_resize_limit(memcg, nr_pages);
2997 break;
2998 case _MEMSWAP:
2999 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3000 break;
3001 case _KMEM:
3002 ret = memcg_update_kmem_limit(memcg, nr_pages);
3003 break;
3004 case _TCP:
3005 ret = memcg_update_tcp_limit(memcg, nr_pages);
3006 break;
3007 }
3008 break;
3009 case RES_SOFT_LIMIT:
3010 memcg->soft_limit = nr_pages;
3011 ret = 0;
3012 break;
3013 }
3014 return ret ?: nbytes;
3015 }
3016
3017 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3018 size_t nbytes, loff_t off)
3019 {
3020 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3021 struct page_counter *counter;
3022
3023 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3024 case _MEM:
3025 counter = &memcg->memory;
3026 break;
3027 case _MEMSWAP:
3028 counter = &memcg->memsw;
3029 break;
3030 case _KMEM:
3031 counter = &memcg->kmem;
3032 break;
3033 case _TCP:
3034 counter = &memcg->tcpmem;
3035 break;
3036 default:
3037 BUG();
3038 }
3039
3040 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3041 case RES_MAX_USAGE:
3042 page_counter_reset_watermark(counter);
3043 break;
3044 case RES_FAILCNT:
3045 counter->failcnt = 0;
3046 break;
3047 default:
3048 BUG();
3049 }
3050
3051 return nbytes;
3052 }
3053
3054 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3055 struct cftype *cft)
3056 {
3057 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3058 }
3059
3060 #ifdef CONFIG_MMU
3061 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3062 struct cftype *cft, u64 val)
3063 {
3064 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3065
3066 if (val & ~MOVE_MASK)
3067 return -EINVAL;
3068
3069 /*
3070 * No kind of locking is needed in here, because ->can_attach() will
3071 * check this value once in the beginning of the process, and then carry
3072 * on with stale data. This means that changes to this value will only
3073 * affect task migrations starting after the change.
3074 */
3075 memcg->move_charge_at_immigrate = val;
3076 return 0;
3077 }
3078 #else
3079 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3080 struct cftype *cft, u64 val)
3081 {
3082 return -ENOSYS;
3083 }
3084 #endif
3085
3086 #ifdef CONFIG_NUMA
3087 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3088 {
3089 struct numa_stat {
3090 const char *name;
3091 unsigned int lru_mask;
3092 };
3093
3094 static const struct numa_stat stats[] = {
3095 { "total", LRU_ALL },
3096 { "file", LRU_ALL_FILE },
3097 { "anon", LRU_ALL_ANON },
3098 { "unevictable", BIT(LRU_UNEVICTABLE) },
3099 };
3100 const struct numa_stat *stat;
3101 int nid;
3102 unsigned long nr;
3103 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3104
3105 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3106 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3107 seq_printf(m, "%s=%lu", stat->name, nr);
3108 for_each_node_state(nid, N_MEMORY) {
3109 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3110 stat->lru_mask);
3111 seq_printf(m, " N%d=%lu", nid, nr);
3112 }
3113 seq_putc(m, '\n');
3114 }
3115
3116 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3117 struct mem_cgroup *iter;
3118
3119 nr = 0;
3120 for_each_mem_cgroup_tree(iter, memcg)
3121 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3122 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3123 for_each_node_state(nid, N_MEMORY) {
3124 nr = 0;
3125 for_each_mem_cgroup_tree(iter, memcg)
3126 nr += mem_cgroup_node_nr_lru_pages(
3127 iter, nid, stat->lru_mask);
3128 seq_printf(m, " N%d=%lu", nid, nr);
3129 }
3130 seq_putc(m, '\n');
3131 }
3132
3133 return 0;
3134 }
3135 #endif /* CONFIG_NUMA */
3136
3137 static int memcg_stat_show(struct seq_file *m, void *v)
3138 {
3139 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3140 unsigned long memory, memsw;
3141 struct mem_cgroup *mi;
3142 unsigned int i;
3143
3144 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3145 MEM_CGROUP_STAT_NSTATS);
3146 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3147 MEM_CGROUP_EVENTS_NSTATS);
3148 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3149
3150 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3151 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3152 continue;
3153 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3154 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3155 }
3156
3157 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3158 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3159 mem_cgroup_read_events(memcg, i));
3160
3161 for (i = 0; i < NR_LRU_LISTS; i++)
3162 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3163 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3164
3165 /* Hierarchical information */
3166 memory = memsw = PAGE_COUNTER_MAX;
3167 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3168 memory = min(memory, mi->memory.limit);
3169 memsw = min(memsw, mi->memsw.limit);
3170 }
3171 seq_printf(m, "hierarchical_memory_limit %llu\n",
3172 (u64)memory * PAGE_SIZE);
3173 if (do_memsw_account())
3174 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3175 (u64)memsw * PAGE_SIZE);
3176
3177 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3178 unsigned long long val = 0;
3179
3180 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3181 continue;
3182 for_each_mem_cgroup_tree(mi, memcg)
3183 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3184 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3185 }
3186
3187 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3188 unsigned long long val = 0;
3189
3190 for_each_mem_cgroup_tree(mi, memcg)
3191 val += mem_cgroup_read_events(mi, i);
3192 seq_printf(m, "total_%s %llu\n",
3193 mem_cgroup_events_names[i], val);
3194 }
3195
3196 for (i = 0; i < NR_LRU_LISTS; i++) {
3197 unsigned long long val = 0;
3198
3199 for_each_mem_cgroup_tree(mi, memcg)
3200 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3201 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3202 }
3203
3204 #ifdef CONFIG_DEBUG_VM
3205 {
3206 pg_data_t *pgdat;
3207 struct mem_cgroup_per_node *mz;
3208 struct zone_reclaim_stat *rstat;
3209 unsigned long recent_rotated[2] = {0, 0};
3210 unsigned long recent_scanned[2] = {0, 0};
3211
3212 for_each_online_pgdat(pgdat) {
3213 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3214 rstat = &mz->lruvec.reclaim_stat;
3215
3216 recent_rotated[0] += rstat->recent_rotated[0];
3217 recent_rotated[1] += rstat->recent_rotated[1];
3218 recent_scanned[0] += rstat->recent_scanned[0];
3219 recent_scanned[1] += rstat->recent_scanned[1];
3220 }
3221 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3222 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3223 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3224 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3225 }
3226 #endif
3227
3228 return 0;
3229 }
3230
3231 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3232 struct cftype *cft)
3233 {
3234 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3235
3236 return mem_cgroup_swappiness(memcg);
3237 }
3238
3239 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3240 struct cftype *cft, u64 val)
3241 {
3242 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3243
3244 if (val > 100)
3245 return -EINVAL;
3246
3247 if (css->parent)
3248 memcg->swappiness = val;
3249 else
3250 vm_swappiness = val;
3251
3252 return 0;
3253 }
3254
3255 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3256 {
3257 struct mem_cgroup_threshold_ary *t;
3258 unsigned long usage;
3259 int i;
3260
3261 rcu_read_lock();
3262 if (!swap)
3263 t = rcu_dereference(memcg->thresholds.primary);
3264 else
3265 t = rcu_dereference(memcg->memsw_thresholds.primary);
3266
3267 if (!t)
3268 goto unlock;
3269
3270 usage = mem_cgroup_usage(memcg, swap);
3271
3272 /*
3273 * current_threshold points to threshold just below or equal to usage.
3274 * If it's not true, a threshold was crossed after last
3275 * call of __mem_cgroup_threshold().
3276 */
3277 i = t->current_threshold;
3278
3279 /*
3280 * Iterate backward over array of thresholds starting from
3281 * current_threshold and check if a threshold is crossed.
3282 * If none of thresholds below usage is crossed, we read
3283 * only one element of the array here.
3284 */
3285 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3286 eventfd_signal(t->entries[i].eventfd, 1);
3287
3288 /* i = current_threshold + 1 */
3289 i++;
3290
3291 /*
3292 * Iterate forward over array of thresholds starting from
3293 * current_threshold+1 and check if a threshold is crossed.
3294 * If none of thresholds above usage is crossed, we read
3295 * only one element of the array here.
3296 */
3297 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3298 eventfd_signal(t->entries[i].eventfd, 1);
3299
3300 /* Update current_threshold */
3301 t->current_threshold = i - 1;
3302 unlock:
3303 rcu_read_unlock();
3304 }
3305
3306 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3307 {
3308 while (memcg) {
3309 __mem_cgroup_threshold(memcg, false);
3310 if (do_memsw_account())
3311 __mem_cgroup_threshold(memcg, true);
3312
3313 memcg = parent_mem_cgroup(memcg);
3314 }
3315 }
3316
3317 static int compare_thresholds(const void *a, const void *b)
3318 {
3319 const struct mem_cgroup_threshold *_a = a;
3320 const struct mem_cgroup_threshold *_b = b;
3321
3322 if (_a->threshold > _b->threshold)
3323 return 1;
3324
3325 if (_a->threshold < _b->threshold)
3326 return -1;
3327
3328 return 0;
3329 }
3330
3331 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3332 {
3333 struct mem_cgroup_eventfd_list *ev;
3334
3335 spin_lock(&memcg_oom_lock);
3336
3337 list_for_each_entry(ev, &memcg->oom_notify, list)
3338 eventfd_signal(ev->eventfd, 1);
3339
3340 spin_unlock(&memcg_oom_lock);
3341 return 0;
3342 }
3343
3344 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3345 {
3346 struct mem_cgroup *iter;
3347
3348 for_each_mem_cgroup_tree(iter, memcg)
3349 mem_cgroup_oom_notify_cb(iter);
3350 }
3351
3352 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3353 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3354 {
3355 struct mem_cgroup_thresholds *thresholds;
3356 struct mem_cgroup_threshold_ary *new;
3357 unsigned long threshold;
3358 unsigned long usage;
3359 int i, size, ret;
3360
3361 ret = page_counter_memparse(args, "-1", &threshold);
3362 if (ret)
3363 return ret;
3364
3365 mutex_lock(&memcg->thresholds_lock);
3366
3367 if (type == _MEM) {
3368 thresholds = &memcg->thresholds;
3369 usage = mem_cgroup_usage(memcg, false);
3370 } else if (type == _MEMSWAP) {
3371 thresholds = &memcg->memsw_thresholds;
3372 usage = mem_cgroup_usage(memcg, true);
3373 } else
3374 BUG();
3375
3376 /* Check if a threshold crossed before adding a new one */
3377 if (thresholds->primary)
3378 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3379
3380 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3381
3382 /* Allocate memory for new array of thresholds */
3383 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3384 GFP_KERNEL);
3385 if (!new) {
3386 ret = -ENOMEM;
3387 goto unlock;
3388 }
3389 new->size = size;
3390
3391 /* Copy thresholds (if any) to new array */
3392 if (thresholds->primary) {
3393 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3394 sizeof(struct mem_cgroup_threshold));
3395 }
3396
3397 /* Add new threshold */
3398 new->entries[size - 1].eventfd = eventfd;
3399 new->entries[size - 1].threshold = threshold;
3400
3401 /* Sort thresholds. Registering of new threshold isn't time-critical */
3402 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3403 compare_thresholds, NULL);
3404
3405 /* Find current threshold */
3406 new->current_threshold = -1;
3407 for (i = 0; i < size; i++) {
3408 if (new->entries[i].threshold <= usage) {
3409 /*
3410 * new->current_threshold will not be used until
3411 * rcu_assign_pointer(), so it's safe to increment
3412 * it here.
3413 */
3414 ++new->current_threshold;
3415 } else
3416 break;
3417 }
3418
3419 /* Free old spare buffer and save old primary buffer as spare */
3420 kfree(thresholds->spare);
3421 thresholds->spare = thresholds->primary;
3422
3423 rcu_assign_pointer(thresholds->primary, new);
3424
3425 /* To be sure that nobody uses thresholds */
3426 synchronize_rcu();
3427
3428 unlock:
3429 mutex_unlock(&memcg->thresholds_lock);
3430
3431 return ret;
3432 }
3433
3434 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3435 struct eventfd_ctx *eventfd, const char *args)
3436 {
3437 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3438 }
3439
3440 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3441 struct eventfd_ctx *eventfd, const char *args)
3442 {
3443 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3444 }
3445
3446 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3447 struct eventfd_ctx *eventfd, enum res_type type)
3448 {
3449 struct mem_cgroup_thresholds *thresholds;
3450 struct mem_cgroup_threshold_ary *new;
3451 unsigned long usage;
3452 int i, j, size;
3453
3454 mutex_lock(&memcg->thresholds_lock);
3455
3456 if (type == _MEM) {
3457 thresholds = &memcg->thresholds;
3458 usage = mem_cgroup_usage(memcg, false);
3459 } else if (type == _MEMSWAP) {
3460 thresholds = &memcg->memsw_thresholds;
3461 usage = mem_cgroup_usage(memcg, true);
3462 } else
3463 BUG();
3464
3465 if (!thresholds->primary)
3466 goto unlock;
3467
3468 /* Check if a threshold crossed before removing */
3469 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3470
3471 /* Calculate new number of threshold */
3472 size = 0;
3473 for (i = 0; i < thresholds->primary->size; i++) {
3474 if (thresholds->primary->entries[i].eventfd != eventfd)
3475 size++;
3476 }
3477
3478 new = thresholds->spare;
3479
3480 /* Set thresholds array to NULL if we don't have thresholds */
3481 if (!size) {
3482 kfree(new);
3483 new = NULL;
3484 goto swap_buffers;
3485 }
3486
3487 new->size = size;
3488
3489 /* Copy thresholds and find current threshold */
3490 new->current_threshold = -1;
3491 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3492 if (thresholds->primary->entries[i].eventfd == eventfd)
3493 continue;
3494
3495 new->entries[j] = thresholds->primary->entries[i];
3496 if (new->entries[j].threshold <= usage) {
3497 /*
3498 * new->current_threshold will not be used
3499 * until rcu_assign_pointer(), so it's safe to increment
3500 * it here.
3501 */
3502 ++new->current_threshold;
3503 }
3504 j++;
3505 }
3506
3507 swap_buffers:
3508 /* Swap primary and spare array */
3509 thresholds->spare = thresholds->primary;
3510
3511 rcu_assign_pointer(thresholds->primary, new);
3512
3513 /* To be sure that nobody uses thresholds */
3514 synchronize_rcu();
3515
3516 /* If all events are unregistered, free the spare array */
3517 if (!new) {
3518 kfree(thresholds->spare);
3519 thresholds->spare = NULL;
3520 }
3521 unlock:
3522 mutex_unlock(&memcg->thresholds_lock);
3523 }
3524
3525 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3526 struct eventfd_ctx *eventfd)
3527 {
3528 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3529 }
3530
3531 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3532 struct eventfd_ctx *eventfd)
3533 {
3534 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3535 }
3536
3537 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3538 struct eventfd_ctx *eventfd, const char *args)
3539 {
3540 struct mem_cgroup_eventfd_list *event;
3541
3542 event = kmalloc(sizeof(*event), GFP_KERNEL);
3543 if (!event)
3544 return -ENOMEM;
3545
3546 spin_lock(&memcg_oom_lock);
3547
3548 event->eventfd = eventfd;
3549 list_add(&event->list, &memcg->oom_notify);
3550
3551 /* already in OOM ? */
3552 if (memcg->under_oom)
3553 eventfd_signal(eventfd, 1);
3554 spin_unlock(&memcg_oom_lock);
3555
3556 return 0;
3557 }
3558
3559 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3560 struct eventfd_ctx *eventfd)
3561 {
3562 struct mem_cgroup_eventfd_list *ev, *tmp;
3563
3564 spin_lock(&memcg_oom_lock);
3565
3566 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3567 if (ev->eventfd == eventfd) {
3568 list_del(&ev->list);
3569 kfree(ev);
3570 }
3571 }
3572
3573 spin_unlock(&memcg_oom_lock);
3574 }
3575
3576 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3577 {
3578 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3579
3580 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3581 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3582 return 0;
3583 }
3584
3585 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3586 struct cftype *cft, u64 val)
3587 {
3588 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3589
3590 /* cannot set to root cgroup and only 0 and 1 are allowed */
3591 if (!css->parent || !((val == 0) || (val == 1)))
3592 return -EINVAL;
3593
3594 memcg->oom_kill_disable = val;
3595 if (!val)
3596 memcg_oom_recover(memcg);
3597
3598 return 0;
3599 }
3600
3601 #ifdef CONFIG_CGROUP_WRITEBACK
3602
3603 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3604 {
3605 return &memcg->cgwb_list;
3606 }
3607
3608 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3609 {
3610 return wb_domain_init(&memcg->cgwb_domain, gfp);
3611 }
3612
3613 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3614 {
3615 wb_domain_exit(&memcg->cgwb_domain);
3616 }
3617
3618 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3619 {
3620 wb_domain_size_changed(&memcg->cgwb_domain);
3621 }
3622
3623 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3624 {
3625 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3626
3627 if (!memcg->css.parent)
3628 return NULL;
3629
3630 return &memcg->cgwb_domain;
3631 }
3632
3633 /**
3634 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3635 * @wb: bdi_writeback in question
3636 * @pfilepages: out parameter for number of file pages
3637 * @pheadroom: out parameter for number of allocatable pages according to memcg
3638 * @pdirty: out parameter for number of dirty pages
3639 * @pwriteback: out parameter for number of pages under writeback
3640 *
3641 * Determine the numbers of file, headroom, dirty, and writeback pages in
3642 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3643 * is a bit more involved.
3644 *
3645 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3646 * headroom is calculated as the lowest headroom of itself and the
3647 * ancestors. Note that this doesn't consider the actual amount of
3648 * available memory in the system. The caller should further cap
3649 * *@pheadroom accordingly.
3650 */
3651 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3652 unsigned long *pheadroom, unsigned long *pdirty,
3653 unsigned long *pwriteback)
3654 {
3655 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3656 struct mem_cgroup *parent;
3657
3658 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3659
3660 /* this should eventually include NR_UNSTABLE_NFS */
3661 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3662 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3663 (1 << LRU_ACTIVE_FILE));
3664 *pheadroom = PAGE_COUNTER_MAX;
3665
3666 while ((parent = parent_mem_cgroup(memcg))) {
3667 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3668 unsigned long used = page_counter_read(&memcg->memory);
3669
3670 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3671 memcg = parent;
3672 }
3673 }
3674
3675 #else /* CONFIG_CGROUP_WRITEBACK */
3676
3677 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3678 {
3679 return 0;
3680 }
3681
3682 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3683 {
3684 }
3685
3686 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3687 {
3688 }
3689
3690 #endif /* CONFIG_CGROUP_WRITEBACK */
3691
3692 /*
3693 * DO NOT USE IN NEW FILES.
3694 *
3695 * "cgroup.event_control" implementation.
3696 *
3697 * This is way over-engineered. It tries to support fully configurable
3698 * events for each user. Such level of flexibility is completely
3699 * unnecessary especially in the light of the planned unified hierarchy.
3700 *
3701 * Please deprecate this and replace with something simpler if at all
3702 * possible.
3703 */
3704
3705 /*
3706 * Unregister event and free resources.
3707 *
3708 * Gets called from workqueue.
3709 */
3710 static void memcg_event_remove(struct work_struct *work)
3711 {
3712 struct mem_cgroup_event *event =
3713 container_of(work, struct mem_cgroup_event, remove);
3714 struct mem_cgroup *memcg = event->memcg;
3715
3716 remove_wait_queue(event->wqh, &event->wait);
3717
3718 event->unregister_event(memcg, event->eventfd);
3719
3720 /* Notify userspace the event is going away. */
3721 eventfd_signal(event->eventfd, 1);
3722
3723 eventfd_ctx_put(event->eventfd);
3724 kfree(event);
3725 css_put(&memcg->css);
3726 }
3727
3728 /*
3729 * Gets called on POLLHUP on eventfd when user closes it.
3730 *
3731 * Called with wqh->lock held and interrupts disabled.
3732 */
3733 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3734 int sync, void *key)
3735 {
3736 struct mem_cgroup_event *event =
3737 container_of(wait, struct mem_cgroup_event, wait);
3738 struct mem_cgroup *memcg = event->memcg;
3739 unsigned long flags = (unsigned long)key;
3740
3741 if (flags & POLLHUP) {
3742 /*
3743 * If the event has been detached at cgroup removal, we
3744 * can simply return knowing the other side will cleanup
3745 * for us.
3746 *
3747 * We can't race against event freeing since the other
3748 * side will require wqh->lock via remove_wait_queue(),
3749 * which we hold.
3750 */
3751 spin_lock(&memcg->event_list_lock);
3752 if (!list_empty(&event->list)) {
3753 list_del_init(&event->list);
3754 /*
3755 * We are in atomic context, but cgroup_event_remove()
3756 * may sleep, so we have to call it in workqueue.
3757 */
3758 schedule_work(&event->remove);
3759 }
3760 spin_unlock(&memcg->event_list_lock);
3761 }
3762
3763 return 0;
3764 }
3765
3766 static void memcg_event_ptable_queue_proc(struct file *file,
3767 wait_queue_head_t *wqh, poll_table *pt)
3768 {
3769 struct mem_cgroup_event *event =
3770 container_of(pt, struct mem_cgroup_event, pt);
3771
3772 event->wqh = wqh;
3773 add_wait_queue(wqh, &event->wait);
3774 }
3775
3776 /*
3777 * DO NOT USE IN NEW FILES.
3778 *
3779 * Parse input and register new cgroup event handler.
3780 *
3781 * Input must be in format '<event_fd> <control_fd> <args>'.
3782 * Interpretation of args is defined by control file implementation.
3783 */
3784 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3785 char *buf, size_t nbytes, loff_t off)
3786 {
3787 struct cgroup_subsys_state *css = of_css(of);
3788 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3789 struct mem_cgroup_event *event;
3790 struct cgroup_subsys_state *cfile_css;
3791 unsigned int efd, cfd;
3792 struct fd efile;
3793 struct fd cfile;
3794 const char *name;
3795 char *endp;
3796 int ret;
3797
3798 buf = strstrip(buf);
3799
3800 efd = simple_strtoul(buf, &endp, 10);
3801 if (*endp != ' ')
3802 return -EINVAL;
3803 buf = endp + 1;
3804
3805 cfd = simple_strtoul(buf, &endp, 10);
3806 if ((*endp != ' ') && (*endp != '\0'))
3807 return -EINVAL;
3808 buf = endp + 1;
3809
3810 event = kzalloc(sizeof(*event), GFP_KERNEL);
3811 if (!event)
3812 return -ENOMEM;
3813
3814 event->memcg = memcg;
3815 INIT_LIST_HEAD(&event->list);
3816 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3817 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3818 INIT_WORK(&event->remove, memcg_event_remove);
3819
3820 efile = fdget(efd);
3821 if (!efile.file) {
3822 ret = -EBADF;
3823 goto out_kfree;
3824 }
3825
3826 event->eventfd = eventfd_ctx_fileget(efile.file);
3827 if (IS_ERR(event->eventfd)) {
3828 ret = PTR_ERR(event->eventfd);
3829 goto out_put_efile;
3830 }
3831
3832 cfile = fdget(cfd);
3833 if (!cfile.file) {
3834 ret = -EBADF;
3835 goto out_put_eventfd;
3836 }
3837
3838 /* the process need read permission on control file */
3839 /* AV: shouldn't we check that it's been opened for read instead? */
3840 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3841 if (ret < 0)
3842 goto out_put_cfile;
3843
3844 /*
3845 * Determine the event callbacks and set them in @event. This used
3846 * to be done via struct cftype but cgroup core no longer knows
3847 * about these events. The following is crude but the whole thing
3848 * is for compatibility anyway.
3849 *
3850 * DO NOT ADD NEW FILES.
3851 */
3852 name = cfile.file->f_path.dentry->d_name.name;
3853
3854 if (!strcmp(name, "memory.usage_in_bytes")) {
3855 event->register_event = mem_cgroup_usage_register_event;
3856 event->unregister_event = mem_cgroup_usage_unregister_event;
3857 } else if (!strcmp(name, "memory.oom_control")) {
3858 event->register_event = mem_cgroup_oom_register_event;
3859 event->unregister_event = mem_cgroup_oom_unregister_event;
3860 } else if (!strcmp(name, "memory.pressure_level")) {
3861 event->register_event = vmpressure_register_event;
3862 event->unregister_event = vmpressure_unregister_event;
3863 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3864 event->register_event = memsw_cgroup_usage_register_event;
3865 event->unregister_event = memsw_cgroup_usage_unregister_event;
3866 } else {
3867 ret = -EINVAL;
3868 goto out_put_cfile;
3869 }
3870
3871 /*
3872 * Verify @cfile should belong to @css. Also, remaining events are
3873 * automatically removed on cgroup destruction but the removal is
3874 * asynchronous, so take an extra ref on @css.
3875 */
3876 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3877 &memory_cgrp_subsys);
3878 ret = -EINVAL;
3879 if (IS_ERR(cfile_css))
3880 goto out_put_cfile;
3881 if (cfile_css != css) {
3882 css_put(cfile_css);
3883 goto out_put_cfile;
3884 }
3885
3886 ret = event->register_event(memcg, event->eventfd, buf);
3887 if (ret)
3888 goto out_put_css;
3889
3890 efile.file->f_op->poll(efile.file, &event->pt);
3891
3892 spin_lock(&memcg->event_list_lock);
3893 list_add(&event->list, &memcg->event_list);
3894 spin_unlock(&memcg->event_list_lock);
3895
3896 fdput(cfile);
3897 fdput(efile);
3898
3899 return nbytes;
3900
3901 out_put_css:
3902 css_put(css);
3903 out_put_cfile:
3904 fdput(cfile);
3905 out_put_eventfd:
3906 eventfd_ctx_put(event->eventfd);
3907 out_put_efile:
3908 fdput(efile);
3909 out_kfree:
3910 kfree(event);
3911
3912 return ret;
3913 }
3914
3915 static struct cftype mem_cgroup_legacy_files[] = {
3916 {
3917 .name = "usage_in_bytes",
3918 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3919 .read_u64 = mem_cgroup_read_u64,
3920 },
3921 {
3922 .name = "max_usage_in_bytes",
3923 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3924 .write = mem_cgroup_reset,
3925 .read_u64 = mem_cgroup_read_u64,
3926 },
3927 {
3928 .name = "limit_in_bytes",
3929 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3930 .write = mem_cgroup_write,
3931 .read_u64 = mem_cgroup_read_u64,
3932 },
3933 {
3934 .name = "soft_limit_in_bytes",
3935 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3936 .write = mem_cgroup_write,
3937 .read_u64 = mem_cgroup_read_u64,
3938 },
3939 {
3940 .name = "failcnt",
3941 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3942 .write = mem_cgroup_reset,
3943 .read_u64 = mem_cgroup_read_u64,
3944 },
3945 {
3946 .name = "stat",
3947 .seq_show = memcg_stat_show,
3948 },
3949 {
3950 .name = "force_empty",
3951 .write = mem_cgroup_force_empty_write,
3952 },
3953 {
3954 .name = "use_hierarchy",
3955 .write_u64 = mem_cgroup_hierarchy_write,
3956 .read_u64 = mem_cgroup_hierarchy_read,
3957 },
3958 {
3959 .name = "cgroup.event_control", /* XXX: for compat */
3960 .write = memcg_write_event_control,
3961 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3962 },
3963 {
3964 .name = "swappiness",
3965 .read_u64 = mem_cgroup_swappiness_read,
3966 .write_u64 = mem_cgroup_swappiness_write,
3967 },
3968 {
3969 .name = "move_charge_at_immigrate",
3970 .read_u64 = mem_cgroup_move_charge_read,
3971 .write_u64 = mem_cgroup_move_charge_write,
3972 },
3973 {
3974 .name = "oom_control",
3975 .seq_show = mem_cgroup_oom_control_read,
3976 .write_u64 = mem_cgroup_oom_control_write,
3977 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3978 },
3979 {
3980 .name = "pressure_level",
3981 },
3982 #ifdef CONFIG_NUMA
3983 {
3984 .name = "numa_stat",
3985 .seq_show = memcg_numa_stat_show,
3986 },
3987 #endif
3988 {
3989 .name = "kmem.limit_in_bytes",
3990 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3991 .write = mem_cgroup_write,
3992 .read_u64 = mem_cgroup_read_u64,
3993 },
3994 {
3995 .name = "kmem.usage_in_bytes",
3996 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3997 .read_u64 = mem_cgroup_read_u64,
3998 },
3999 {
4000 .name = "kmem.failcnt",
4001 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4002 .write = mem_cgroup_reset,
4003 .read_u64 = mem_cgroup_read_u64,
4004 },
4005 {
4006 .name = "kmem.max_usage_in_bytes",
4007 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4008 .write = mem_cgroup_reset,
4009 .read_u64 = mem_cgroup_read_u64,
4010 },
4011 #ifdef CONFIG_SLABINFO
4012 {
4013 .name = "kmem.slabinfo",
4014 .seq_start = slab_start,
4015 .seq_next = slab_next,
4016 .seq_stop = slab_stop,
4017 .seq_show = memcg_slab_show,
4018 },
4019 #endif
4020 {
4021 .name = "kmem.tcp.limit_in_bytes",
4022 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4023 .write = mem_cgroup_write,
4024 .read_u64 = mem_cgroup_read_u64,
4025 },
4026 {
4027 .name = "kmem.tcp.usage_in_bytes",
4028 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4029 .read_u64 = mem_cgroup_read_u64,
4030 },
4031 {
4032 .name = "kmem.tcp.failcnt",
4033 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4034 .write = mem_cgroup_reset,
4035 .read_u64 = mem_cgroup_read_u64,
4036 },
4037 {
4038 .name = "kmem.tcp.max_usage_in_bytes",
4039 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4040 .write = mem_cgroup_reset,
4041 .read_u64 = mem_cgroup_read_u64,
4042 },
4043 { }, /* terminate */
4044 };
4045
4046 /*
4047 * Private memory cgroup IDR
4048 *
4049 * Swap-out records and page cache shadow entries need to store memcg
4050 * references in constrained space, so we maintain an ID space that is
4051 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4052 * memory-controlled cgroups to 64k.
4053 *
4054 * However, there usually are many references to the oflline CSS after
4055 * the cgroup has been destroyed, such as page cache or reclaimable
4056 * slab objects, that don't need to hang on to the ID. We want to keep
4057 * those dead CSS from occupying IDs, or we might quickly exhaust the
4058 * relatively small ID space and prevent the creation of new cgroups
4059 * even when there are much fewer than 64k cgroups - possibly none.
4060 *
4061 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4062 * be freed and recycled when it's no longer needed, which is usually
4063 * when the CSS is offlined.
4064 *
4065 * The only exception to that are records of swapped out tmpfs/shmem
4066 * pages that need to be attributed to live ancestors on swapin. But
4067 * those references are manageable from userspace.
4068 */
4069
4070 static DEFINE_IDR(mem_cgroup_idr);
4071
4072 static void mem_cgroup_id_get(struct mem_cgroup *memcg)
4073 {
4074 atomic_inc(&memcg->id.ref);
4075 }
4076
4077 static void mem_cgroup_id_put(struct mem_cgroup *memcg)
4078 {
4079 if (atomic_dec_and_test(&memcg->id.ref)) {
4080 idr_remove(&mem_cgroup_idr, memcg->id.id);
4081 memcg->id.id = 0;
4082
4083 /* Memcg ID pins CSS */
4084 css_put(&memcg->css);
4085 }
4086 }
4087
4088 /**
4089 * mem_cgroup_from_id - look up a memcg from a memcg id
4090 * @id: the memcg id to look up
4091 *
4092 * Caller must hold rcu_read_lock().
4093 */
4094 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4095 {
4096 WARN_ON_ONCE(!rcu_read_lock_held());
4097 return idr_find(&mem_cgroup_idr, id);
4098 }
4099
4100 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4101 {
4102 struct mem_cgroup_per_node *pn;
4103 int tmp = node;
4104 /*
4105 * This routine is called against possible nodes.
4106 * But it's BUG to call kmalloc() against offline node.
4107 *
4108 * TODO: this routine can waste much memory for nodes which will
4109 * never be onlined. It's better to use memory hotplug callback
4110 * function.
4111 */
4112 if (!node_state(node, N_NORMAL_MEMORY))
4113 tmp = -1;
4114 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4115 if (!pn)
4116 return 1;
4117
4118 lruvec_init(&pn->lruvec);
4119 pn->usage_in_excess = 0;
4120 pn->on_tree = false;
4121 pn->memcg = memcg;
4122
4123 memcg->nodeinfo[node] = pn;
4124 return 0;
4125 }
4126
4127 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4128 {
4129 kfree(memcg->nodeinfo[node]);
4130 }
4131
4132 static void mem_cgroup_free(struct mem_cgroup *memcg)
4133 {
4134 int node;
4135
4136 memcg_wb_domain_exit(memcg);
4137 for_each_node(node)
4138 free_mem_cgroup_per_node_info(memcg, node);
4139 free_percpu(memcg->stat);
4140 kfree(memcg);
4141 }
4142
4143 static struct mem_cgroup *mem_cgroup_alloc(void)
4144 {
4145 struct mem_cgroup *memcg;
4146 size_t size;
4147 int node;
4148
4149 size = sizeof(struct mem_cgroup);
4150 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4151
4152 memcg = kzalloc(size, GFP_KERNEL);
4153 if (!memcg)
4154 return NULL;
4155
4156 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4157 1, MEM_CGROUP_ID_MAX,
4158 GFP_KERNEL);
4159 if (memcg->id.id < 0)
4160 goto fail;
4161
4162 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4163 if (!memcg->stat)
4164 goto fail;
4165
4166 for_each_node(node)
4167 if (alloc_mem_cgroup_per_node_info(memcg, node))
4168 goto fail;
4169
4170 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4171 goto fail;
4172
4173 INIT_WORK(&memcg->high_work, high_work_func);
4174 memcg->last_scanned_node = MAX_NUMNODES;
4175 INIT_LIST_HEAD(&memcg->oom_notify);
4176 mutex_init(&memcg->thresholds_lock);
4177 spin_lock_init(&memcg->move_lock);
4178 vmpressure_init(&memcg->vmpressure);
4179 INIT_LIST_HEAD(&memcg->event_list);
4180 spin_lock_init(&memcg->event_list_lock);
4181 memcg->socket_pressure = jiffies;
4182 #ifndef CONFIG_SLOB
4183 memcg->kmemcg_id = -1;
4184 #endif
4185 #ifdef CONFIG_CGROUP_WRITEBACK
4186 INIT_LIST_HEAD(&memcg->cgwb_list);
4187 #endif
4188 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4189 return memcg;
4190 fail:
4191 if (memcg->id.id > 0)
4192 idr_remove(&mem_cgroup_idr, memcg->id.id);
4193 mem_cgroup_free(memcg);
4194 return NULL;
4195 }
4196
4197 static struct cgroup_subsys_state * __ref
4198 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4199 {
4200 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4201 struct mem_cgroup *memcg;
4202 long error = -ENOMEM;
4203
4204 memcg = mem_cgroup_alloc();
4205 if (!memcg)
4206 return ERR_PTR(error);
4207
4208 memcg->high = PAGE_COUNTER_MAX;
4209 memcg->soft_limit = PAGE_COUNTER_MAX;
4210 if (parent) {
4211 memcg->swappiness = mem_cgroup_swappiness(parent);
4212 memcg->oom_kill_disable = parent->oom_kill_disable;
4213 }
4214 if (parent && parent->use_hierarchy) {
4215 memcg->use_hierarchy = true;
4216 page_counter_init(&memcg->memory, &parent->memory);
4217 page_counter_init(&memcg->swap, &parent->swap);
4218 page_counter_init(&memcg->memsw, &parent->memsw);
4219 page_counter_init(&memcg->kmem, &parent->kmem);
4220 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4221 } else {
4222 page_counter_init(&memcg->memory, NULL);
4223 page_counter_init(&memcg->swap, NULL);
4224 page_counter_init(&memcg->memsw, NULL);
4225 page_counter_init(&memcg->kmem, NULL);
4226 page_counter_init(&memcg->tcpmem, NULL);
4227 /*
4228 * Deeper hierachy with use_hierarchy == false doesn't make
4229 * much sense so let cgroup subsystem know about this
4230 * unfortunate state in our controller.
4231 */
4232 if (parent != root_mem_cgroup)
4233 memory_cgrp_subsys.broken_hierarchy = true;
4234 }
4235
4236 /* The following stuff does not apply to the root */
4237 if (!parent) {
4238 root_mem_cgroup = memcg;
4239 return &memcg->css;
4240 }
4241
4242 error = memcg_online_kmem(memcg);
4243 if (error)
4244 goto fail;
4245
4246 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4247 static_branch_inc(&memcg_sockets_enabled_key);
4248
4249 return &memcg->css;
4250 fail:
4251 mem_cgroup_free(memcg);
4252 return ERR_PTR(-ENOMEM);
4253 }
4254
4255 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4256 {
4257 /* Online state pins memcg ID, memcg ID pins CSS */
4258 mem_cgroup_id_get(mem_cgroup_from_css(css));
4259 css_get(css);
4260 return 0;
4261 }
4262
4263 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4264 {
4265 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4266 struct mem_cgroup_event *event, *tmp;
4267
4268 /*
4269 * Unregister events and notify userspace.
4270 * Notify userspace about cgroup removing only after rmdir of cgroup
4271 * directory to avoid race between userspace and kernelspace.
4272 */
4273 spin_lock(&memcg->event_list_lock);
4274 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4275 list_del_init(&event->list);
4276 schedule_work(&event->remove);
4277 }
4278 spin_unlock(&memcg->event_list_lock);
4279
4280 memcg_offline_kmem(memcg);
4281 wb_memcg_offline(memcg);
4282
4283 mem_cgroup_id_put(memcg);
4284 }
4285
4286 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4287 {
4288 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4289
4290 invalidate_reclaim_iterators(memcg);
4291 }
4292
4293 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4294 {
4295 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4296
4297 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4298 static_branch_dec(&memcg_sockets_enabled_key);
4299
4300 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4301 static_branch_dec(&memcg_sockets_enabled_key);
4302
4303 vmpressure_cleanup(&memcg->vmpressure);
4304 cancel_work_sync(&memcg->high_work);
4305 mem_cgroup_remove_from_trees(memcg);
4306 memcg_free_kmem(memcg);
4307 mem_cgroup_free(memcg);
4308 }
4309
4310 /**
4311 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4312 * @css: the target css
4313 *
4314 * Reset the states of the mem_cgroup associated with @css. This is
4315 * invoked when the userland requests disabling on the default hierarchy
4316 * but the memcg is pinned through dependency. The memcg should stop
4317 * applying policies and should revert to the vanilla state as it may be
4318 * made visible again.
4319 *
4320 * The current implementation only resets the essential configurations.
4321 * This needs to be expanded to cover all the visible parts.
4322 */
4323 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4324 {
4325 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4326
4327 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4328 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4329 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4330 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4331 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4332 memcg->low = 0;
4333 memcg->high = PAGE_COUNTER_MAX;
4334 memcg->soft_limit = PAGE_COUNTER_MAX;
4335 memcg_wb_domain_size_changed(memcg);
4336 }
4337
4338 #ifdef CONFIG_MMU
4339 /* Handlers for move charge at task migration. */
4340 static int mem_cgroup_do_precharge(unsigned long count)
4341 {
4342 int ret;
4343
4344 /* Try a single bulk charge without reclaim first, kswapd may wake */
4345 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4346 if (!ret) {
4347 mc.precharge += count;
4348 return ret;
4349 }
4350
4351 /* Try charges one by one with reclaim */
4352 while (count--) {
4353 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4354 if (ret)
4355 return ret;
4356 mc.precharge++;
4357 cond_resched();
4358 }
4359 return 0;
4360 }
4361
4362 union mc_target {
4363 struct page *page;
4364 swp_entry_t ent;
4365 };
4366
4367 enum mc_target_type {
4368 MC_TARGET_NONE = 0,
4369 MC_TARGET_PAGE,
4370 MC_TARGET_SWAP,
4371 };
4372
4373 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4374 unsigned long addr, pte_t ptent)
4375 {
4376 struct page *page = vm_normal_page(vma, addr, ptent);
4377
4378 if (!page || !page_mapped(page))
4379 return NULL;
4380 if (PageAnon(page)) {
4381 if (!(mc.flags & MOVE_ANON))
4382 return NULL;
4383 } else {
4384 if (!(mc.flags & MOVE_FILE))
4385 return NULL;
4386 }
4387 if (!get_page_unless_zero(page))
4388 return NULL;
4389
4390 return page;
4391 }
4392
4393 #ifdef CONFIG_SWAP
4394 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4395 pte_t ptent, swp_entry_t *entry)
4396 {
4397 struct page *page = NULL;
4398 swp_entry_t ent = pte_to_swp_entry(ptent);
4399
4400 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4401 return NULL;
4402 /*
4403 * Because lookup_swap_cache() updates some statistics counter,
4404 * we call find_get_page() with swapper_space directly.
4405 */
4406 page = find_get_page(swap_address_space(ent), ent.val);
4407 if (do_memsw_account())
4408 entry->val = ent.val;
4409
4410 return page;
4411 }
4412 #else
4413 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4414 pte_t ptent, swp_entry_t *entry)
4415 {
4416 return NULL;
4417 }
4418 #endif
4419
4420 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4421 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4422 {
4423 struct page *page = NULL;
4424 struct address_space *mapping;
4425 pgoff_t pgoff;
4426
4427 if (!vma->vm_file) /* anonymous vma */
4428 return NULL;
4429 if (!(mc.flags & MOVE_FILE))
4430 return NULL;
4431
4432 mapping = vma->vm_file->f_mapping;
4433 pgoff = linear_page_index(vma, addr);
4434
4435 /* page is moved even if it's not RSS of this task(page-faulted). */
4436 #ifdef CONFIG_SWAP
4437 /* shmem/tmpfs may report page out on swap: account for that too. */
4438 if (shmem_mapping(mapping)) {
4439 page = find_get_entry(mapping, pgoff);
4440 if (radix_tree_exceptional_entry(page)) {
4441 swp_entry_t swp = radix_to_swp_entry(page);
4442 if (do_memsw_account())
4443 *entry = swp;
4444 page = find_get_page(swap_address_space(swp), swp.val);
4445 }
4446 } else
4447 page = find_get_page(mapping, pgoff);
4448 #else
4449 page = find_get_page(mapping, pgoff);
4450 #endif
4451 return page;
4452 }
4453
4454 /**
4455 * mem_cgroup_move_account - move account of the page
4456 * @page: the page
4457 * @compound: charge the page as compound or small page
4458 * @from: mem_cgroup which the page is moved from.
4459 * @to: mem_cgroup which the page is moved to. @from != @to.
4460 *
4461 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4462 *
4463 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4464 * from old cgroup.
4465 */
4466 static int mem_cgroup_move_account(struct page *page,
4467 bool compound,
4468 struct mem_cgroup *from,
4469 struct mem_cgroup *to)
4470 {
4471 unsigned long flags;
4472 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4473 int ret;
4474 bool anon;
4475
4476 VM_BUG_ON(from == to);
4477 VM_BUG_ON_PAGE(PageLRU(page), page);
4478 VM_BUG_ON(compound && !PageTransHuge(page));
4479
4480 /*
4481 * Prevent mem_cgroup_migrate() from looking at
4482 * page->mem_cgroup of its source page while we change it.
4483 */
4484 ret = -EBUSY;
4485 if (!trylock_page(page))
4486 goto out;
4487
4488 ret = -EINVAL;
4489 if (page->mem_cgroup != from)
4490 goto out_unlock;
4491
4492 anon = PageAnon(page);
4493
4494 spin_lock_irqsave(&from->move_lock, flags);
4495
4496 if (!anon && page_mapped(page)) {
4497 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4498 nr_pages);
4499 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4500 nr_pages);
4501 }
4502
4503 /*
4504 * move_lock grabbed above and caller set from->moving_account, so
4505 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4506 * So mapping should be stable for dirty pages.
4507 */
4508 if (!anon && PageDirty(page)) {
4509 struct address_space *mapping = page_mapping(page);
4510
4511 if (mapping_cap_account_dirty(mapping)) {
4512 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4513 nr_pages);
4514 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4515 nr_pages);
4516 }
4517 }
4518
4519 if (PageWriteback(page)) {
4520 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4521 nr_pages);
4522 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4523 nr_pages);
4524 }
4525
4526 /*
4527 * It is safe to change page->mem_cgroup here because the page
4528 * is referenced, charged, and isolated - we can't race with
4529 * uncharging, charging, migration, or LRU putback.
4530 */
4531
4532 /* caller should have done css_get */
4533 page->mem_cgroup = to;
4534 spin_unlock_irqrestore(&from->move_lock, flags);
4535
4536 ret = 0;
4537
4538 local_irq_disable();
4539 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4540 memcg_check_events(to, page);
4541 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4542 memcg_check_events(from, page);
4543 local_irq_enable();
4544 out_unlock:
4545 unlock_page(page);
4546 out:
4547 return ret;
4548 }
4549
4550 /**
4551 * get_mctgt_type - get target type of moving charge
4552 * @vma: the vma the pte to be checked belongs
4553 * @addr: the address corresponding to the pte to be checked
4554 * @ptent: the pte to be checked
4555 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4556 *
4557 * Returns
4558 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4559 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4560 * move charge. if @target is not NULL, the page is stored in target->page
4561 * with extra refcnt got(Callers should handle it).
4562 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4563 * target for charge migration. if @target is not NULL, the entry is stored
4564 * in target->ent.
4565 *
4566 * Called with pte lock held.
4567 */
4568
4569 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4570 unsigned long addr, pte_t ptent, union mc_target *target)
4571 {
4572 struct page *page = NULL;
4573 enum mc_target_type ret = MC_TARGET_NONE;
4574 swp_entry_t ent = { .val = 0 };
4575
4576 if (pte_present(ptent))
4577 page = mc_handle_present_pte(vma, addr, ptent);
4578 else if (is_swap_pte(ptent))
4579 page = mc_handle_swap_pte(vma, ptent, &ent);
4580 else if (pte_none(ptent))
4581 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4582
4583 if (!page && !ent.val)
4584 return ret;
4585 if (page) {
4586 /*
4587 * Do only loose check w/o serialization.
4588 * mem_cgroup_move_account() checks the page is valid or
4589 * not under LRU exclusion.
4590 */
4591 if (page->mem_cgroup == mc.from) {
4592 ret = MC_TARGET_PAGE;
4593 if (target)
4594 target->page = page;
4595 }
4596 if (!ret || !target)
4597 put_page(page);
4598 }
4599 /* There is a swap entry and a page doesn't exist or isn't charged */
4600 if (ent.val && !ret &&
4601 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4602 ret = MC_TARGET_SWAP;
4603 if (target)
4604 target->ent = ent;
4605 }
4606 return ret;
4607 }
4608
4609 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4610 /*
4611 * We don't consider swapping or file mapped pages because THP does not
4612 * support them for now.
4613 * Caller should make sure that pmd_trans_huge(pmd) is true.
4614 */
4615 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4616 unsigned long addr, pmd_t pmd, union mc_target *target)
4617 {
4618 struct page *page = NULL;
4619 enum mc_target_type ret = MC_TARGET_NONE;
4620
4621 page = pmd_page(pmd);
4622 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4623 if (!(mc.flags & MOVE_ANON))
4624 return ret;
4625 if (page->mem_cgroup == mc.from) {
4626 ret = MC_TARGET_PAGE;
4627 if (target) {
4628 get_page(page);
4629 target->page = page;
4630 }
4631 }
4632 return ret;
4633 }
4634 #else
4635 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4636 unsigned long addr, pmd_t pmd, union mc_target *target)
4637 {
4638 return MC_TARGET_NONE;
4639 }
4640 #endif
4641
4642 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4643 unsigned long addr, unsigned long end,
4644 struct mm_walk *walk)
4645 {
4646 struct vm_area_struct *vma = walk->vma;
4647 pte_t *pte;
4648 spinlock_t *ptl;
4649
4650 ptl = pmd_trans_huge_lock(pmd, vma);
4651 if (ptl) {
4652 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4653 mc.precharge += HPAGE_PMD_NR;
4654 spin_unlock(ptl);
4655 return 0;
4656 }
4657
4658 if (pmd_trans_unstable(pmd))
4659 return 0;
4660 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4661 for (; addr != end; pte++, addr += PAGE_SIZE)
4662 if (get_mctgt_type(vma, addr, *pte, NULL))
4663 mc.precharge++; /* increment precharge temporarily */
4664 pte_unmap_unlock(pte - 1, ptl);
4665 cond_resched();
4666
4667 return 0;
4668 }
4669
4670 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4671 {
4672 unsigned long precharge;
4673
4674 struct mm_walk mem_cgroup_count_precharge_walk = {
4675 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4676 .mm = mm,
4677 };
4678 down_read(&mm->mmap_sem);
4679 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4680 up_read(&mm->mmap_sem);
4681
4682 precharge = mc.precharge;
4683 mc.precharge = 0;
4684
4685 return precharge;
4686 }
4687
4688 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4689 {
4690 unsigned long precharge = mem_cgroup_count_precharge(mm);
4691
4692 VM_BUG_ON(mc.moving_task);
4693 mc.moving_task = current;
4694 return mem_cgroup_do_precharge(precharge);
4695 }
4696
4697 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4698 static void __mem_cgroup_clear_mc(void)
4699 {
4700 struct mem_cgroup *from = mc.from;
4701 struct mem_cgroup *to = mc.to;
4702
4703 /* we must uncharge all the leftover precharges from mc.to */
4704 if (mc.precharge) {
4705 cancel_charge(mc.to, mc.precharge);
4706 mc.precharge = 0;
4707 }
4708 /*
4709 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4710 * we must uncharge here.
4711 */
4712 if (mc.moved_charge) {
4713 cancel_charge(mc.from, mc.moved_charge);
4714 mc.moved_charge = 0;
4715 }
4716 /* we must fixup refcnts and charges */
4717 if (mc.moved_swap) {
4718 /* uncharge swap account from the old cgroup */
4719 if (!mem_cgroup_is_root(mc.from))
4720 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4721
4722 /*
4723 * we charged both to->memory and to->memsw, so we
4724 * should uncharge to->memory.
4725 */
4726 if (!mem_cgroup_is_root(mc.to))
4727 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4728
4729 css_put_many(&mc.from->css, mc.moved_swap);
4730
4731 /* we've already done css_get(mc.to) */
4732 mc.moved_swap = 0;
4733 }
4734 memcg_oom_recover(from);
4735 memcg_oom_recover(to);
4736 wake_up_all(&mc.waitq);
4737 }
4738
4739 static void mem_cgroup_clear_mc(void)
4740 {
4741 struct mm_struct *mm = mc.mm;
4742
4743 /*
4744 * we must clear moving_task before waking up waiters at the end of
4745 * task migration.
4746 */
4747 mc.moving_task = NULL;
4748 __mem_cgroup_clear_mc();
4749 spin_lock(&mc.lock);
4750 mc.from = NULL;
4751 mc.to = NULL;
4752 mc.mm = NULL;
4753 spin_unlock(&mc.lock);
4754
4755 mmput(mm);
4756 }
4757
4758 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4759 {
4760 struct cgroup_subsys_state *css;
4761 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4762 struct mem_cgroup *from;
4763 struct task_struct *leader, *p;
4764 struct mm_struct *mm;
4765 unsigned long move_flags;
4766 int ret = 0;
4767
4768 /* charge immigration isn't supported on the default hierarchy */
4769 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4770 return 0;
4771
4772 /*
4773 * Multi-process migrations only happen on the default hierarchy
4774 * where charge immigration is not used. Perform charge
4775 * immigration if @tset contains a leader and whine if there are
4776 * multiple.
4777 */
4778 p = NULL;
4779 cgroup_taskset_for_each_leader(leader, css, tset) {
4780 WARN_ON_ONCE(p);
4781 p = leader;
4782 memcg = mem_cgroup_from_css(css);
4783 }
4784 if (!p)
4785 return 0;
4786
4787 /*
4788 * We are now commited to this value whatever it is. Changes in this
4789 * tunable will only affect upcoming migrations, not the current one.
4790 * So we need to save it, and keep it going.
4791 */
4792 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4793 if (!move_flags)
4794 return 0;
4795
4796 from = mem_cgroup_from_task(p);
4797
4798 VM_BUG_ON(from == memcg);
4799
4800 mm = get_task_mm(p);
4801 if (!mm)
4802 return 0;
4803 /* We move charges only when we move a owner of the mm */
4804 if (mm->owner == p) {
4805 VM_BUG_ON(mc.from);
4806 VM_BUG_ON(mc.to);
4807 VM_BUG_ON(mc.precharge);
4808 VM_BUG_ON(mc.moved_charge);
4809 VM_BUG_ON(mc.moved_swap);
4810
4811 spin_lock(&mc.lock);
4812 mc.mm = mm;
4813 mc.from = from;
4814 mc.to = memcg;
4815 mc.flags = move_flags;
4816 spin_unlock(&mc.lock);
4817 /* We set mc.moving_task later */
4818
4819 ret = mem_cgroup_precharge_mc(mm);
4820 if (ret)
4821 mem_cgroup_clear_mc();
4822 } else {
4823 mmput(mm);
4824 }
4825 return ret;
4826 }
4827
4828 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4829 {
4830 if (mc.to)
4831 mem_cgroup_clear_mc();
4832 }
4833
4834 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4835 unsigned long addr, unsigned long end,
4836 struct mm_walk *walk)
4837 {
4838 int ret = 0;
4839 struct vm_area_struct *vma = walk->vma;
4840 pte_t *pte;
4841 spinlock_t *ptl;
4842 enum mc_target_type target_type;
4843 union mc_target target;
4844 struct page *page;
4845
4846 ptl = pmd_trans_huge_lock(pmd, vma);
4847 if (ptl) {
4848 if (mc.precharge < HPAGE_PMD_NR) {
4849 spin_unlock(ptl);
4850 return 0;
4851 }
4852 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4853 if (target_type == MC_TARGET_PAGE) {
4854 page = target.page;
4855 if (!isolate_lru_page(page)) {
4856 if (!mem_cgroup_move_account(page, true,
4857 mc.from, mc.to)) {
4858 mc.precharge -= HPAGE_PMD_NR;
4859 mc.moved_charge += HPAGE_PMD_NR;
4860 }
4861 putback_lru_page(page);
4862 }
4863 put_page(page);
4864 }
4865 spin_unlock(ptl);
4866 return 0;
4867 }
4868
4869 if (pmd_trans_unstable(pmd))
4870 return 0;
4871 retry:
4872 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4873 for (; addr != end; addr += PAGE_SIZE) {
4874 pte_t ptent = *(pte++);
4875 swp_entry_t ent;
4876
4877 if (!mc.precharge)
4878 break;
4879
4880 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4881 case MC_TARGET_PAGE:
4882 page = target.page;
4883 /*
4884 * We can have a part of the split pmd here. Moving it
4885 * can be done but it would be too convoluted so simply
4886 * ignore such a partial THP and keep it in original
4887 * memcg. There should be somebody mapping the head.
4888 */
4889 if (PageTransCompound(page))
4890 goto put;
4891 if (isolate_lru_page(page))
4892 goto put;
4893 if (!mem_cgroup_move_account(page, false,
4894 mc.from, mc.to)) {
4895 mc.precharge--;
4896 /* we uncharge from mc.from later. */
4897 mc.moved_charge++;
4898 }
4899 putback_lru_page(page);
4900 put: /* get_mctgt_type() gets the page */
4901 put_page(page);
4902 break;
4903 case MC_TARGET_SWAP:
4904 ent = target.ent;
4905 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4906 mc.precharge--;
4907 /* we fixup refcnts and charges later. */
4908 mc.moved_swap++;
4909 }
4910 break;
4911 default:
4912 break;
4913 }
4914 }
4915 pte_unmap_unlock(pte - 1, ptl);
4916 cond_resched();
4917
4918 if (addr != end) {
4919 /*
4920 * We have consumed all precharges we got in can_attach().
4921 * We try charge one by one, but don't do any additional
4922 * charges to mc.to if we have failed in charge once in attach()
4923 * phase.
4924 */
4925 ret = mem_cgroup_do_precharge(1);
4926 if (!ret)
4927 goto retry;
4928 }
4929
4930 return ret;
4931 }
4932
4933 static void mem_cgroup_move_charge(void)
4934 {
4935 struct mm_walk mem_cgroup_move_charge_walk = {
4936 .pmd_entry = mem_cgroup_move_charge_pte_range,
4937 .mm = mc.mm,
4938 };
4939
4940 lru_add_drain_all();
4941 /*
4942 * Signal lock_page_memcg() to take the memcg's move_lock
4943 * while we're moving its pages to another memcg. Then wait
4944 * for already started RCU-only updates to finish.
4945 */
4946 atomic_inc(&mc.from->moving_account);
4947 synchronize_rcu();
4948 retry:
4949 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4950 /*
4951 * Someone who are holding the mmap_sem might be waiting in
4952 * waitq. So we cancel all extra charges, wake up all waiters,
4953 * and retry. Because we cancel precharges, we might not be able
4954 * to move enough charges, but moving charge is a best-effort
4955 * feature anyway, so it wouldn't be a big problem.
4956 */
4957 __mem_cgroup_clear_mc();
4958 cond_resched();
4959 goto retry;
4960 }
4961 /*
4962 * When we have consumed all precharges and failed in doing
4963 * additional charge, the page walk just aborts.
4964 */
4965 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4966 up_read(&mc.mm->mmap_sem);
4967 atomic_dec(&mc.from->moving_account);
4968 }
4969
4970 static void mem_cgroup_move_task(void)
4971 {
4972 if (mc.to) {
4973 mem_cgroup_move_charge();
4974 mem_cgroup_clear_mc();
4975 }
4976 }
4977 #else /* !CONFIG_MMU */
4978 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4979 {
4980 return 0;
4981 }
4982 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4983 {
4984 }
4985 static void mem_cgroup_move_task(void)
4986 {
4987 }
4988 #endif
4989
4990 /*
4991 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4992 * to verify whether we're attached to the default hierarchy on each mount
4993 * attempt.
4994 */
4995 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4996 {
4997 /*
4998 * use_hierarchy is forced on the default hierarchy. cgroup core
4999 * guarantees that @root doesn't have any children, so turning it
5000 * on for the root memcg is enough.
5001 */
5002 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5003 root_mem_cgroup->use_hierarchy = true;
5004 else
5005 root_mem_cgroup->use_hierarchy = false;
5006 }
5007
5008 static u64 memory_current_read(struct cgroup_subsys_state *css,
5009 struct cftype *cft)
5010 {
5011 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5012
5013 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5014 }
5015
5016 static int memory_low_show(struct seq_file *m, void *v)
5017 {
5018 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5019 unsigned long low = READ_ONCE(memcg->low);
5020
5021 if (low == PAGE_COUNTER_MAX)
5022 seq_puts(m, "max\n");
5023 else
5024 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5025
5026 return 0;
5027 }
5028
5029 static ssize_t memory_low_write(struct kernfs_open_file *of,
5030 char *buf, size_t nbytes, loff_t off)
5031 {
5032 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5033 unsigned long low;
5034 int err;
5035
5036 buf = strstrip(buf);
5037 err = page_counter_memparse(buf, "max", &low);
5038 if (err)
5039 return err;
5040
5041 memcg->low = low;
5042
5043 return nbytes;
5044 }
5045
5046 static int memory_high_show(struct seq_file *m, void *v)
5047 {
5048 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5049 unsigned long high = READ_ONCE(memcg->high);
5050
5051 if (high == PAGE_COUNTER_MAX)
5052 seq_puts(m, "max\n");
5053 else
5054 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5055
5056 return 0;
5057 }
5058
5059 static ssize_t memory_high_write(struct kernfs_open_file *of,
5060 char *buf, size_t nbytes, loff_t off)
5061 {
5062 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5063 unsigned long nr_pages;
5064 unsigned long high;
5065 int err;
5066
5067 buf = strstrip(buf);
5068 err = page_counter_memparse(buf, "max", &high);
5069 if (err)
5070 return err;
5071
5072 memcg->high = high;
5073
5074 nr_pages = page_counter_read(&memcg->memory);
5075 if (nr_pages > high)
5076 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5077 GFP_KERNEL, true);
5078
5079 memcg_wb_domain_size_changed(memcg);
5080 return nbytes;
5081 }
5082
5083 static int memory_max_show(struct seq_file *m, void *v)
5084 {
5085 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5086 unsigned long max = READ_ONCE(memcg->memory.limit);
5087
5088 if (max == PAGE_COUNTER_MAX)
5089 seq_puts(m, "max\n");
5090 else
5091 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5092
5093 return 0;
5094 }
5095
5096 static ssize_t memory_max_write(struct kernfs_open_file *of,
5097 char *buf, size_t nbytes, loff_t off)
5098 {
5099 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5100 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5101 bool drained = false;
5102 unsigned long max;
5103 int err;
5104
5105 buf = strstrip(buf);
5106 err = page_counter_memparse(buf, "max", &max);
5107 if (err)
5108 return err;
5109
5110 xchg(&memcg->memory.limit, max);
5111
5112 for (;;) {
5113 unsigned long nr_pages = page_counter_read(&memcg->memory);
5114
5115 if (nr_pages <= max)
5116 break;
5117
5118 if (signal_pending(current)) {
5119 err = -EINTR;
5120 break;
5121 }
5122
5123 if (!drained) {
5124 drain_all_stock(memcg);
5125 drained = true;
5126 continue;
5127 }
5128
5129 if (nr_reclaims) {
5130 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5131 GFP_KERNEL, true))
5132 nr_reclaims--;
5133 continue;
5134 }
5135
5136 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5137 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5138 break;
5139 }
5140
5141 memcg_wb_domain_size_changed(memcg);
5142 return nbytes;
5143 }
5144
5145 static int memory_events_show(struct seq_file *m, void *v)
5146 {
5147 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5148
5149 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5150 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5151 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5152 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5153
5154 return 0;
5155 }
5156
5157 static int memory_stat_show(struct seq_file *m, void *v)
5158 {
5159 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5160 unsigned long stat[MEMCG_NR_STAT];
5161 unsigned long events[MEMCG_NR_EVENTS];
5162 int i;
5163
5164 /*
5165 * Provide statistics on the state of the memory subsystem as
5166 * well as cumulative event counters that show past behavior.
5167 *
5168 * This list is ordered following a combination of these gradients:
5169 * 1) generic big picture -> specifics and details
5170 * 2) reflecting userspace activity -> reflecting kernel heuristics
5171 *
5172 * Current memory state:
5173 */
5174
5175 tree_stat(memcg, stat);
5176 tree_events(memcg, events);
5177
5178 seq_printf(m, "anon %llu\n",
5179 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5180 seq_printf(m, "file %llu\n",
5181 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5182 seq_printf(m, "kernel_stack %llu\n",
5183 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5184 seq_printf(m, "slab %llu\n",
5185 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5186 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5187 seq_printf(m, "sock %llu\n",
5188 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5189
5190 seq_printf(m, "file_mapped %llu\n",
5191 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5192 seq_printf(m, "file_dirty %llu\n",
5193 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5194 seq_printf(m, "file_writeback %llu\n",
5195 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5196
5197 for (i = 0; i < NR_LRU_LISTS; i++) {
5198 struct mem_cgroup *mi;
5199 unsigned long val = 0;
5200
5201 for_each_mem_cgroup_tree(mi, memcg)
5202 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5203 seq_printf(m, "%s %llu\n",
5204 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5205 }
5206
5207 seq_printf(m, "slab_reclaimable %llu\n",
5208 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5209 seq_printf(m, "slab_unreclaimable %llu\n",
5210 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5211
5212 /* Accumulated memory events */
5213
5214 seq_printf(m, "pgfault %lu\n",
5215 events[MEM_CGROUP_EVENTS_PGFAULT]);
5216 seq_printf(m, "pgmajfault %lu\n",
5217 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5218
5219 return 0;
5220 }
5221
5222 static struct cftype memory_files[] = {
5223 {
5224 .name = "current",
5225 .flags = CFTYPE_NOT_ON_ROOT,
5226 .read_u64 = memory_current_read,
5227 },
5228 {
5229 .name = "low",
5230 .flags = CFTYPE_NOT_ON_ROOT,
5231 .seq_show = memory_low_show,
5232 .write = memory_low_write,
5233 },
5234 {
5235 .name = "high",
5236 .flags = CFTYPE_NOT_ON_ROOT,
5237 .seq_show = memory_high_show,
5238 .write = memory_high_write,
5239 },
5240 {
5241 .name = "max",
5242 .flags = CFTYPE_NOT_ON_ROOT,
5243 .seq_show = memory_max_show,
5244 .write = memory_max_write,
5245 },
5246 {
5247 .name = "events",
5248 .flags = CFTYPE_NOT_ON_ROOT,
5249 .file_offset = offsetof(struct mem_cgroup, events_file),
5250 .seq_show = memory_events_show,
5251 },
5252 {
5253 .name = "stat",
5254 .flags = CFTYPE_NOT_ON_ROOT,
5255 .seq_show = memory_stat_show,
5256 },
5257 { } /* terminate */
5258 };
5259
5260 struct cgroup_subsys memory_cgrp_subsys = {
5261 .css_alloc = mem_cgroup_css_alloc,
5262 .css_online = mem_cgroup_css_online,
5263 .css_offline = mem_cgroup_css_offline,
5264 .css_released = mem_cgroup_css_released,
5265 .css_free = mem_cgroup_css_free,
5266 .css_reset = mem_cgroup_css_reset,
5267 .can_attach = mem_cgroup_can_attach,
5268 .cancel_attach = mem_cgroup_cancel_attach,
5269 .post_attach = mem_cgroup_move_task,
5270 .bind = mem_cgroup_bind,
5271 .dfl_cftypes = memory_files,
5272 .legacy_cftypes = mem_cgroup_legacy_files,
5273 .early_init = 0,
5274 };
5275
5276 /**
5277 * mem_cgroup_low - check if memory consumption is below the normal range
5278 * @root: the highest ancestor to consider
5279 * @memcg: the memory cgroup to check
5280 *
5281 * Returns %true if memory consumption of @memcg, and that of all
5282 * configurable ancestors up to @root, is below the normal range.
5283 */
5284 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5285 {
5286 if (mem_cgroup_disabled())
5287 return false;
5288
5289 /*
5290 * The toplevel group doesn't have a configurable range, so
5291 * it's never low when looked at directly, and it is not
5292 * considered an ancestor when assessing the hierarchy.
5293 */
5294
5295 if (memcg == root_mem_cgroup)
5296 return false;
5297
5298 if (page_counter_read(&memcg->memory) >= memcg->low)
5299 return false;
5300
5301 while (memcg != root) {
5302 memcg = parent_mem_cgroup(memcg);
5303
5304 if (memcg == root_mem_cgroup)
5305 break;
5306
5307 if (page_counter_read(&memcg->memory) >= memcg->low)
5308 return false;
5309 }
5310 return true;
5311 }
5312
5313 /**
5314 * mem_cgroup_try_charge - try charging a page
5315 * @page: page to charge
5316 * @mm: mm context of the victim
5317 * @gfp_mask: reclaim mode
5318 * @memcgp: charged memcg return
5319 * @compound: charge the page as compound or small page
5320 *
5321 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5322 * pages according to @gfp_mask if necessary.
5323 *
5324 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5325 * Otherwise, an error code is returned.
5326 *
5327 * After page->mapping has been set up, the caller must finalize the
5328 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5329 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5330 */
5331 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5332 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5333 bool compound)
5334 {
5335 struct mem_cgroup *memcg = NULL;
5336 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5337 int ret = 0;
5338
5339 if (mem_cgroup_disabled())
5340 goto out;
5341
5342 if (PageSwapCache(page)) {
5343 /*
5344 * Every swap fault against a single page tries to charge the
5345 * page, bail as early as possible. shmem_unuse() encounters
5346 * already charged pages, too. The USED bit is protected by
5347 * the page lock, which serializes swap cache removal, which
5348 * in turn serializes uncharging.
5349 */
5350 VM_BUG_ON_PAGE(!PageLocked(page), page);
5351 if (page->mem_cgroup)
5352 goto out;
5353
5354 if (do_swap_account) {
5355 swp_entry_t ent = { .val = page_private(page), };
5356 unsigned short id = lookup_swap_cgroup_id(ent);
5357
5358 rcu_read_lock();
5359 memcg = mem_cgroup_from_id(id);
5360 if (memcg && !css_tryget_online(&memcg->css))
5361 memcg = NULL;
5362 rcu_read_unlock();
5363 }
5364 }
5365
5366 if (!memcg)
5367 memcg = get_mem_cgroup_from_mm(mm);
5368
5369 ret = try_charge(memcg, gfp_mask, nr_pages);
5370
5371 css_put(&memcg->css);
5372 out:
5373 *memcgp = memcg;
5374 return ret;
5375 }
5376
5377 /**
5378 * mem_cgroup_commit_charge - commit a page charge
5379 * @page: page to charge
5380 * @memcg: memcg to charge the page to
5381 * @lrucare: page might be on LRU already
5382 * @compound: charge the page as compound or small page
5383 *
5384 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5385 * after page->mapping has been set up. This must happen atomically
5386 * as part of the page instantiation, i.e. under the page table lock
5387 * for anonymous pages, under the page lock for page and swap cache.
5388 *
5389 * In addition, the page must not be on the LRU during the commit, to
5390 * prevent racing with task migration. If it might be, use @lrucare.
5391 *
5392 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5393 */
5394 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5395 bool lrucare, bool compound)
5396 {
5397 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5398
5399 VM_BUG_ON_PAGE(!page->mapping, page);
5400 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5401
5402 if (mem_cgroup_disabled())
5403 return;
5404 /*
5405 * Swap faults will attempt to charge the same page multiple
5406 * times. But reuse_swap_page() might have removed the page
5407 * from swapcache already, so we can't check PageSwapCache().
5408 */
5409 if (!memcg)
5410 return;
5411
5412 commit_charge(page, memcg, lrucare);
5413
5414 local_irq_disable();
5415 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5416 memcg_check_events(memcg, page);
5417 local_irq_enable();
5418
5419 if (do_memsw_account() && PageSwapCache(page)) {
5420 swp_entry_t entry = { .val = page_private(page) };
5421 /*
5422 * The swap entry might not get freed for a long time,
5423 * let's not wait for it. The page already received a
5424 * memory+swap charge, drop the swap entry duplicate.
5425 */
5426 mem_cgroup_uncharge_swap(entry);
5427 }
5428 }
5429
5430 /**
5431 * mem_cgroup_cancel_charge - cancel a page charge
5432 * @page: page to charge
5433 * @memcg: memcg to charge the page to
5434 * @compound: charge the page as compound or small page
5435 *
5436 * Cancel a charge transaction started by mem_cgroup_try_charge().
5437 */
5438 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5439 bool compound)
5440 {
5441 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5442
5443 if (mem_cgroup_disabled())
5444 return;
5445 /*
5446 * Swap faults will attempt to charge the same page multiple
5447 * times. But reuse_swap_page() might have removed the page
5448 * from swapcache already, so we can't check PageSwapCache().
5449 */
5450 if (!memcg)
5451 return;
5452
5453 cancel_charge(memcg, nr_pages);
5454 }
5455
5456 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5457 unsigned long nr_anon, unsigned long nr_file,
5458 unsigned long nr_huge, unsigned long nr_kmem,
5459 struct page *dummy_page)
5460 {
5461 unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5462 unsigned long flags;
5463
5464 if (!mem_cgroup_is_root(memcg)) {
5465 page_counter_uncharge(&memcg->memory, nr_pages);
5466 if (do_memsw_account())
5467 page_counter_uncharge(&memcg->memsw, nr_pages);
5468 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5469 page_counter_uncharge(&memcg->kmem, nr_kmem);
5470 memcg_oom_recover(memcg);
5471 }
5472
5473 local_irq_save(flags);
5474 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5475 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5476 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5477 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5478 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5479 memcg_check_events(memcg, dummy_page);
5480 local_irq_restore(flags);
5481
5482 if (!mem_cgroup_is_root(memcg))
5483 css_put_many(&memcg->css, nr_pages);
5484 }
5485
5486 static void uncharge_list(struct list_head *page_list)
5487 {
5488 struct mem_cgroup *memcg = NULL;
5489 unsigned long nr_anon = 0;
5490 unsigned long nr_file = 0;
5491 unsigned long nr_huge = 0;
5492 unsigned long nr_kmem = 0;
5493 unsigned long pgpgout = 0;
5494 struct list_head *next;
5495 struct page *page;
5496
5497 /*
5498 * Note that the list can be a single page->lru; hence the
5499 * do-while loop instead of a simple list_for_each_entry().
5500 */
5501 next = page_list->next;
5502 do {
5503 page = list_entry(next, struct page, lru);
5504 next = page->lru.next;
5505
5506 VM_BUG_ON_PAGE(PageLRU(page), page);
5507 VM_BUG_ON_PAGE(page_count(page), page);
5508
5509 if (!page->mem_cgroup)
5510 continue;
5511
5512 /*
5513 * Nobody should be changing or seriously looking at
5514 * page->mem_cgroup at this point, we have fully
5515 * exclusive access to the page.
5516 */
5517
5518 if (memcg != page->mem_cgroup) {
5519 if (memcg) {
5520 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5521 nr_huge, nr_kmem, page);
5522 pgpgout = nr_anon = nr_file =
5523 nr_huge = nr_kmem = 0;
5524 }
5525 memcg = page->mem_cgroup;
5526 }
5527
5528 if (!PageKmemcg(page)) {
5529 unsigned int nr_pages = 1;
5530
5531 if (PageTransHuge(page)) {
5532 nr_pages <<= compound_order(page);
5533 nr_huge += nr_pages;
5534 }
5535 if (PageAnon(page))
5536 nr_anon += nr_pages;
5537 else
5538 nr_file += nr_pages;
5539 pgpgout++;
5540 } else
5541 nr_kmem += 1 << compound_order(page);
5542
5543 page->mem_cgroup = NULL;
5544 } while (next != page_list);
5545
5546 if (memcg)
5547 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5548 nr_huge, nr_kmem, page);
5549 }
5550
5551 /**
5552 * mem_cgroup_uncharge - uncharge a page
5553 * @page: page to uncharge
5554 *
5555 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5556 * mem_cgroup_commit_charge().
5557 */
5558 void mem_cgroup_uncharge(struct page *page)
5559 {
5560 if (mem_cgroup_disabled())
5561 return;
5562
5563 /* Don't touch page->lru of any random page, pre-check: */
5564 if (!page->mem_cgroup)
5565 return;
5566
5567 INIT_LIST_HEAD(&page->lru);
5568 uncharge_list(&page->lru);
5569 }
5570
5571 /**
5572 * mem_cgroup_uncharge_list - uncharge a list of page
5573 * @page_list: list of pages to uncharge
5574 *
5575 * Uncharge a list of pages previously charged with
5576 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5577 */
5578 void mem_cgroup_uncharge_list(struct list_head *page_list)
5579 {
5580 if (mem_cgroup_disabled())
5581 return;
5582
5583 if (!list_empty(page_list))
5584 uncharge_list(page_list);
5585 }
5586
5587 /**
5588 * mem_cgroup_migrate - charge a page's replacement
5589 * @oldpage: currently circulating page
5590 * @newpage: replacement page
5591 *
5592 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5593 * be uncharged upon free.
5594 *
5595 * Both pages must be locked, @newpage->mapping must be set up.
5596 */
5597 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5598 {
5599 struct mem_cgroup *memcg;
5600 unsigned int nr_pages;
5601 bool compound;
5602 unsigned long flags;
5603
5604 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5605 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5606 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5607 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5608 newpage);
5609
5610 if (mem_cgroup_disabled())
5611 return;
5612
5613 /* Page cache replacement: new page already charged? */
5614 if (newpage->mem_cgroup)
5615 return;
5616
5617 /* Swapcache readahead pages can get replaced before being charged */
5618 memcg = oldpage->mem_cgroup;
5619 if (!memcg)
5620 return;
5621
5622 /* Force-charge the new page. The old one will be freed soon */
5623 compound = PageTransHuge(newpage);
5624 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5625
5626 page_counter_charge(&memcg->memory, nr_pages);
5627 if (do_memsw_account())
5628 page_counter_charge(&memcg->memsw, nr_pages);
5629 css_get_many(&memcg->css, nr_pages);
5630
5631 commit_charge(newpage, memcg, false);
5632
5633 local_irq_save(flags);
5634 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5635 memcg_check_events(memcg, newpage);
5636 local_irq_restore(flags);
5637 }
5638
5639 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5640 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5641
5642 void sock_update_memcg(struct sock *sk)
5643 {
5644 struct mem_cgroup *memcg;
5645
5646 /* Socket cloning can throw us here with sk_cgrp already
5647 * filled. It won't however, necessarily happen from
5648 * process context. So the test for root memcg given
5649 * the current task's memcg won't help us in this case.
5650 *
5651 * Respecting the original socket's memcg is a better
5652 * decision in this case.
5653 */
5654 if (sk->sk_memcg) {
5655 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5656 css_get(&sk->sk_memcg->css);
5657 return;
5658 }
5659
5660 rcu_read_lock();
5661 memcg = mem_cgroup_from_task(current);
5662 if (memcg == root_mem_cgroup)
5663 goto out;
5664 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5665 goto out;
5666 if (css_tryget_online(&memcg->css))
5667 sk->sk_memcg = memcg;
5668 out:
5669 rcu_read_unlock();
5670 }
5671 EXPORT_SYMBOL(sock_update_memcg);
5672
5673 void sock_release_memcg(struct sock *sk)
5674 {
5675 WARN_ON(!sk->sk_memcg);
5676 css_put(&sk->sk_memcg->css);
5677 }
5678
5679 /**
5680 * mem_cgroup_charge_skmem - charge socket memory
5681 * @memcg: memcg to charge
5682 * @nr_pages: number of pages to charge
5683 *
5684 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5685 * @memcg's configured limit, %false if the charge had to be forced.
5686 */
5687 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5688 {
5689 gfp_t gfp_mask = GFP_KERNEL;
5690
5691 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5692 struct page_counter *fail;
5693
5694 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5695 memcg->tcpmem_pressure = 0;
5696 return true;
5697 }
5698 page_counter_charge(&memcg->tcpmem, nr_pages);
5699 memcg->tcpmem_pressure = 1;
5700 return false;
5701 }
5702
5703 /* Don't block in the packet receive path */
5704 if (in_softirq())
5705 gfp_mask = GFP_NOWAIT;
5706
5707 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5708
5709 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5710 return true;
5711
5712 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5713 return false;
5714 }
5715
5716 /**
5717 * mem_cgroup_uncharge_skmem - uncharge socket memory
5718 * @memcg - memcg to uncharge
5719 * @nr_pages - number of pages to uncharge
5720 */
5721 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5722 {
5723 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5724 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5725 return;
5726 }
5727
5728 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5729
5730 page_counter_uncharge(&memcg->memory, nr_pages);
5731 css_put_many(&memcg->css, nr_pages);
5732 }
5733
5734 static int __init cgroup_memory(char *s)
5735 {
5736 char *token;
5737
5738 while ((token = strsep(&s, ",")) != NULL) {
5739 if (!*token)
5740 continue;
5741 if (!strcmp(token, "nosocket"))
5742 cgroup_memory_nosocket = true;
5743 if (!strcmp(token, "nokmem"))
5744 cgroup_memory_nokmem = true;
5745 }
5746 return 0;
5747 }
5748 __setup("cgroup.memory=", cgroup_memory);
5749
5750 /*
5751 * subsys_initcall() for memory controller.
5752 *
5753 * Some parts like hotcpu_notifier() have to be initialized from this context
5754 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5755 * everything that doesn't depend on a specific mem_cgroup structure should
5756 * be initialized from here.
5757 */
5758 static int __init mem_cgroup_init(void)
5759 {
5760 int cpu, node;
5761
5762 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5763
5764 for_each_possible_cpu(cpu)
5765 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5766 drain_local_stock);
5767
5768 for_each_node(node) {
5769 struct mem_cgroup_tree_per_node *rtpn;
5770
5771 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5772 node_online(node) ? node : NUMA_NO_NODE);
5773
5774 rtpn->rb_root = RB_ROOT;
5775 spin_lock_init(&rtpn->lock);
5776 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5777 }
5778
5779 return 0;
5780 }
5781 subsys_initcall(mem_cgroup_init);
5782
5783 #ifdef CONFIG_MEMCG_SWAP
5784 /**
5785 * mem_cgroup_swapout - transfer a memsw charge to swap
5786 * @page: page whose memsw charge to transfer
5787 * @entry: swap entry to move the charge to
5788 *
5789 * Transfer the memsw charge of @page to @entry.
5790 */
5791 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5792 {
5793 struct mem_cgroup *memcg;
5794 unsigned short oldid;
5795
5796 VM_BUG_ON_PAGE(PageLRU(page), page);
5797 VM_BUG_ON_PAGE(page_count(page), page);
5798
5799 if (!do_memsw_account())
5800 return;
5801
5802 memcg = page->mem_cgroup;
5803
5804 /* Readahead page, never charged */
5805 if (!memcg)
5806 return;
5807
5808 mem_cgroup_id_get(memcg);
5809 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5810 VM_BUG_ON_PAGE(oldid, page);
5811 mem_cgroup_swap_statistics(memcg, true);
5812
5813 page->mem_cgroup = NULL;
5814
5815 if (!mem_cgroup_is_root(memcg))
5816 page_counter_uncharge(&memcg->memory, 1);
5817
5818 /*
5819 * Interrupts should be disabled here because the caller holds the
5820 * mapping->tree_lock lock which is taken with interrupts-off. It is
5821 * important here to have the interrupts disabled because it is the
5822 * only synchronisation we have for udpating the per-CPU variables.
5823 */
5824 VM_BUG_ON(!irqs_disabled());
5825 mem_cgroup_charge_statistics(memcg, page, false, -1);
5826 memcg_check_events(memcg, page);
5827
5828 if (!mem_cgroup_is_root(memcg))
5829 css_put(&memcg->css);
5830 }
5831
5832 /*
5833 * mem_cgroup_try_charge_swap - try charging a swap entry
5834 * @page: page being added to swap
5835 * @entry: swap entry to charge
5836 *
5837 * Try to charge @entry to the memcg that @page belongs to.
5838 *
5839 * Returns 0 on success, -ENOMEM on failure.
5840 */
5841 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5842 {
5843 struct mem_cgroup *memcg;
5844 struct page_counter *counter;
5845 unsigned short oldid;
5846
5847 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5848 return 0;
5849
5850 memcg = page->mem_cgroup;
5851
5852 /* Readahead page, never charged */
5853 if (!memcg)
5854 return 0;
5855
5856 if (!mem_cgroup_is_root(memcg) &&
5857 !page_counter_try_charge(&memcg->swap, 1, &counter))
5858 return -ENOMEM;
5859
5860 mem_cgroup_id_get(memcg);
5861 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5862 VM_BUG_ON_PAGE(oldid, page);
5863 mem_cgroup_swap_statistics(memcg, true);
5864
5865 return 0;
5866 }
5867
5868 /**
5869 * mem_cgroup_uncharge_swap - uncharge a swap entry
5870 * @entry: swap entry to uncharge
5871 *
5872 * Drop the swap charge associated with @entry.
5873 */
5874 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5875 {
5876 struct mem_cgroup *memcg;
5877 unsigned short id;
5878
5879 if (!do_swap_account)
5880 return;
5881
5882 id = swap_cgroup_record(entry, 0);
5883 rcu_read_lock();
5884 memcg = mem_cgroup_from_id(id);
5885 if (memcg) {
5886 if (!mem_cgroup_is_root(memcg)) {
5887 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5888 page_counter_uncharge(&memcg->swap, 1);
5889 else
5890 page_counter_uncharge(&memcg->memsw, 1);
5891 }
5892 mem_cgroup_swap_statistics(memcg, false);
5893 mem_cgroup_id_put(memcg);
5894 }
5895 rcu_read_unlock();
5896 }
5897
5898 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5899 {
5900 long nr_swap_pages = get_nr_swap_pages();
5901
5902 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5903 return nr_swap_pages;
5904 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5905 nr_swap_pages = min_t(long, nr_swap_pages,
5906 READ_ONCE(memcg->swap.limit) -
5907 page_counter_read(&memcg->swap));
5908 return nr_swap_pages;
5909 }
5910
5911 bool mem_cgroup_swap_full(struct page *page)
5912 {
5913 struct mem_cgroup *memcg;
5914
5915 VM_BUG_ON_PAGE(!PageLocked(page), page);
5916
5917 if (vm_swap_full())
5918 return true;
5919 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5920 return false;
5921
5922 memcg = page->mem_cgroup;
5923 if (!memcg)
5924 return false;
5925
5926 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5927 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5928 return true;
5929
5930 return false;
5931 }
5932
5933 /* for remember boot option*/
5934 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5935 static int really_do_swap_account __initdata = 1;
5936 #else
5937 static int really_do_swap_account __initdata;
5938 #endif
5939
5940 static int __init enable_swap_account(char *s)
5941 {
5942 if (!strcmp(s, "1"))
5943 really_do_swap_account = 1;
5944 else if (!strcmp(s, "0"))
5945 really_do_swap_account = 0;
5946 return 1;
5947 }
5948 __setup("swapaccount=", enable_swap_account);
5949
5950 static u64 swap_current_read(struct cgroup_subsys_state *css,
5951 struct cftype *cft)
5952 {
5953 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5954
5955 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5956 }
5957
5958 static int swap_max_show(struct seq_file *m, void *v)
5959 {
5960 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5961 unsigned long max = READ_ONCE(memcg->swap.limit);
5962
5963 if (max == PAGE_COUNTER_MAX)
5964 seq_puts(m, "max\n");
5965 else
5966 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5967
5968 return 0;
5969 }
5970
5971 static ssize_t swap_max_write(struct kernfs_open_file *of,
5972 char *buf, size_t nbytes, loff_t off)
5973 {
5974 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5975 unsigned long max;
5976 int err;
5977
5978 buf = strstrip(buf);
5979 err = page_counter_memparse(buf, "max", &max);
5980 if (err)
5981 return err;
5982
5983 mutex_lock(&memcg_limit_mutex);
5984 err = page_counter_limit(&memcg->swap, max);
5985 mutex_unlock(&memcg_limit_mutex);
5986 if (err)
5987 return err;
5988
5989 return nbytes;
5990 }
5991
5992 static struct cftype swap_files[] = {
5993 {
5994 .name = "swap.current",
5995 .flags = CFTYPE_NOT_ON_ROOT,
5996 .read_u64 = swap_current_read,
5997 },
5998 {
5999 .name = "swap.max",
6000 .flags = CFTYPE_NOT_ON_ROOT,
6001 .seq_show = swap_max_show,
6002 .write = swap_max_write,
6003 },
6004 { } /* terminate */
6005 };
6006
6007 static struct cftype memsw_cgroup_files[] = {
6008 {
6009 .name = "memsw.usage_in_bytes",
6010 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6011 .read_u64 = mem_cgroup_read_u64,
6012 },
6013 {
6014 .name = "memsw.max_usage_in_bytes",
6015 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6016 .write = mem_cgroup_reset,
6017 .read_u64 = mem_cgroup_read_u64,
6018 },
6019 {
6020 .name = "memsw.limit_in_bytes",
6021 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6022 .write = mem_cgroup_write,
6023 .read_u64 = mem_cgroup_read_u64,
6024 },
6025 {
6026 .name = "memsw.failcnt",
6027 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6028 .write = mem_cgroup_reset,
6029 .read_u64 = mem_cgroup_read_u64,
6030 },
6031 { }, /* terminate */
6032 };
6033
6034 static int __init mem_cgroup_swap_init(void)
6035 {
6036 if (!mem_cgroup_disabled() && really_do_swap_account) {
6037 do_swap_account = 1;
6038 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6039 swap_files));
6040 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6041 memsw_cgroup_files));
6042 }
6043 return 0;
6044 }
6045 subsys_initcall(mem_cgroup_swap_init);
6046
6047 #endif /* CONFIG_MEMCG_SWAP */
This page took 0.142656 seconds and 6 git commands to generate.