mm: vmscan: do not scan anon pages if memcg swap limit is hit
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80 #define MEM_CGROUP_RECLAIM_RETRIES 5
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account 0
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "rss_huge",
105 "mapped_file",
106 "dirty",
107 "writeback",
108 "swap",
109 };
110
111 static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116 };
117
118 static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124 };
125
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
129
130 /*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135 struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142 };
143
144 struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146 };
147
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
150 /* for OOM */
151 struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154 };
155
156 /*
157 * cgroup_event represents events which userspace want to receive.
158 */
159 struct mem_cgroup_event {
160 /*
161 * memcg which the event belongs to.
162 */
163 struct mem_cgroup *memcg;
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
177 int (*register_event)(struct mem_cgroup *memcg,
178 struct eventfd_ctx *eventfd, const char *args);
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
184 void (*unregister_event)(struct mem_cgroup *memcg,
185 struct eventfd_ctx *eventfd);
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194 };
195
196 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198
199 /* Stuffs for move charges at task migration. */
200 /*
201 * Types of charges to be moved.
202 */
203 #define MOVE_ANON 0x1U
204 #define MOVE_FILE 0x2U
205 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
206
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct {
209 spinlock_t lock; /* for from, to */
210 struct mem_cgroup *from;
211 struct mem_cgroup *to;
212 unsigned long flags;
213 unsigned long precharge;
214 unsigned long moved_charge;
215 unsigned long moved_swap;
216 struct task_struct *moving_task; /* a task moving charges */
217 wait_queue_head_t waitq; /* a waitq for other context */
218 } mc = {
219 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
220 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
221 };
222
223 /*
224 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
225 * limit reclaim to prevent infinite loops, if they ever occur.
226 */
227 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
228 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
229
230 enum charge_type {
231 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
232 MEM_CGROUP_CHARGE_TYPE_ANON,
233 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
234 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
235 NR_CHARGE_TYPE,
236 };
237
238 /* for encoding cft->private value on file */
239 enum res_type {
240 _MEM,
241 _MEMSWAP,
242 _OOM_TYPE,
243 _KMEM,
244 _TCP,
245 };
246
247 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
248 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
249 #define MEMFILE_ATTR(val) ((val) & 0xffff)
250 /* Used for OOM nofiier */
251 #define OOM_CONTROL (0)
252
253 /* Some nice accessors for the vmpressure. */
254 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
255 {
256 if (!memcg)
257 memcg = root_mem_cgroup;
258 return &memcg->vmpressure;
259 }
260
261 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
262 {
263 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
264 }
265
266 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
267 {
268 return (memcg == root_mem_cgroup);
269 }
270
271 /*
272 * We restrict the id in the range of [1, 65535], so it can fit into
273 * an unsigned short.
274 */
275 #define MEM_CGROUP_ID_MAX USHRT_MAX
276
277 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
278 {
279 return memcg->css.id;
280 }
281
282 /*
283 * A helper function to get mem_cgroup from ID. must be called under
284 * rcu_read_lock(). The caller is responsible for calling
285 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
286 * refcnt from swap can be called against removed memcg.)
287 */
288 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
289 {
290 struct cgroup_subsys_state *css;
291
292 css = css_from_id(id, &memory_cgrp_subsys);
293 return mem_cgroup_from_css(css);
294 }
295
296 #ifndef CONFIG_SLOB
297 /*
298 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
299 * The main reason for not using cgroup id for this:
300 * this works better in sparse environments, where we have a lot of memcgs,
301 * but only a few kmem-limited. Or also, if we have, for instance, 200
302 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
303 * 200 entry array for that.
304 *
305 * The current size of the caches array is stored in memcg_nr_cache_ids. It
306 * will double each time we have to increase it.
307 */
308 static DEFINE_IDA(memcg_cache_ida);
309 int memcg_nr_cache_ids;
310
311 /* Protects memcg_nr_cache_ids */
312 static DECLARE_RWSEM(memcg_cache_ids_sem);
313
314 void memcg_get_cache_ids(void)
315 {
316 down_read(&memcg_cache_ids_sem);
317 }
318
319 void memcg_put_cache_ids(void)
320 {
321 up_read(&memcg_cache_ids_sem);
322 }
323
324 /*
325 * MIN_SIZE is different than 1, because we would like to avoid going through
326 * the alloc/free process all the time. In a small machine, 4 kmem-limited
327 * cgroups is a reasonable guess. In the future, it could be a parameter or
328 * tunable, but that is strictly not necessary.
329 *
330 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
331 * this constant directly from cgroup, but it is understandable that this is
332 * better kept as an internal representation in cgroup.c. In any case, the
333 * cgrp_id space is not getting any smaller, and we don't have to necessarily
334 * increase ours as well if it increases.
335 */
336 #define MEMCG_CACHES_MIN_SIZE 4
337 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
338
339 /*
340 * A lot of the calls to the cache allocation functions are expected to be
341 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
342 * conditional to this static branch, we'll have to allow modules that does
343 * kmem_cache_alloc and the such to see this symbol as well
344 */
345 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
346 EXPORT_SYMBOL(memcg_kmem_enabled_key);
347
348 #endif /* !CONFIG_SLOB */
349
350 static struct mem_cgroup_per_zone *
351 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
352 {
353 int nid = zone_to_nid(zone);
354 int zid = zone_idx(zone);
355
356 return &memcg->nodeinfo[nid]->zoneinfo[zid];
357 }
358
359 /**
360 * mem_cgroup_css_from_page - css of the memcg associated with a page
361 * @page: page of interest
362 *
363 * If memcg is bound to the default hierarchy, css of the memcg associated
364 * with @page is returned. The returned css remains associated with @page
365 * until it is released.
366 *
367 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
368 * is returned.
369 *
370 * XXX: The above description of behavior on the default hierarchy isn't
371 * strictly true yet as replace_page_cache_page() can modify the
372 * association before @page is released even on the default hierarchy;
373 * however, the current and planned usages don't mix the the two functions
374 * and replace_page_cache_page() will soon be updated to make the invariant
375 * actually true.
376 */
377 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
378 {
379 struct mem_cgroup *memcg;
380
381 memcg = page->mem_cgroup;
382
383 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
384 memcg = root_mem_cgroup;
385
386 return &memcg->css;
387 }
388
389 /**
390 * page_cgroup_ino - return inode number of the memcg a page is charged to
391 * @page: the page
392 *
393 * Look up the closest online ancestor of the memory cgroup @page is charged to
394 * and return its inode number or 0 if @page is not charged to any cgroup. It
395 * is safe to call this function without holding a reference to @page.
396 *
397 * Note, this function is inherently racy, because there is nothing to prevent
398 * the cgroup inode from getting torn down and potentially reallocated a moment
399 * after page_cgroup_ino() returns, so it only should be used by callers that
400 * do not care (such as procfs interfaces).
401 */
402 ino_t page_cgroup_ino(struct page *page)
403 {
404 struct mem_cgroup *memcg;
405 unsigned long ino = 0;
406
407 rcu_read_lock();
408 memcg = READ_ONCE(page->mem_cgroup);
409 while (memcg && !(memcg->css.flags & CSS_ONLINE))
410 memcg = parent_mem_cgroup(memcg);
411 if (memcg)
412 ino = cgroup_ino(memcg->css.cgroup);
413 rcu_read_unlock();
414 return ino;
415 }
416
417 static struct mem_cgroup_per_zone *
418 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
419 {
420 int nid = page_to_nid(page);
421 int zid = page_zonenum(page);
422
423 return &memcg->nodeinfo[nid]->zoneinfo[zid];
424 }
425
426 static struct mem_cgroup_tree_per_zone *
427 soft_limit_tree_node_zone(int nid, int zid)
428 {
429 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
430 }
431
432 static struct mem_cgroup_tree_per_zone *
433 soft_limit_tree_from_page(struct page *page)
434 {
435 int nid = page_to_nid(page);
436 int zid = page_zonenum(page);
437
438 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
439 }
440
441 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
442 struct mem_cgroup_tree_per_zone *mctz,
443 unsigned long new_usage_in_excess)
444 {
445 struct rb_node **p = &mctz->rb_root.rb_node;
446 struct rb_node *parent = NULL;
447 struct mem_cgroup_per_zone *mz_node;
448
449 if (mz->on_tree)
450 return;
451
452 mz->usage_in_excess = new_usage_in_excess;
453 if (!mz->usage_in_excess)
454 return;
455 while (*p) {
456 parent = *p;
457 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
458 tree_node);
459 if (mz->usage_in_excess < mz_node->usage_in_excess)
460 p = &(*p)->rb_left;
461 /*
462 * We can't avoid mem cgroups that are over their soft
463 * limit by the same amount
464 */
465 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
466 p = &(*p)->rb_right;
467 }
468 rb_link_node(&mz->tree_node, parent, p);
469 rb_insert_color(&mz->tree_node, &mctz->rb_root);
470 mz->on_tree = true;
471 }
472
473 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
474 struct mem_cgroup_tree_per_zone *mctz)
475 {
476 if (!mz->on_tree)
477 return;
478 rb_erase(&mz->tree_node, &mctz->rb_root);
479 mz->on_tree = false;
480 }
481
482 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
483 struct mem_cgroup_tree_per_zone *mctz)
484 {
485 unsigned long flags;
486
487 spin_lock_irqsave(&mctz->lock, flags);
488 __mem_cgroup_remove_exceeded(mz, mctz);
489 spin_unlock_irqrestore(&mctz->lock, flags);
490 }
491
492 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
493 {
494 unsigned long nr_pages = page_counter_read(&memcg->memory);
495 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
496 unsigned long excess = 0;
497
498 if (nr_pages > soft_limit)
499 excess = nr_pages - soft_limit;
500
501 return excess;
502 }
503
504 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
505 {
506 unsigned long excess;
507 struct mem_cgroup_per_zone *mz;
508 struct mem_cgroup_tree_per_zone *mctz;
509
510 mctz = soft_limit_tree_from_page(page);
511 /*
512 * Necessary to update all ancestors when hierarchy is used.
513 * because their event counter is not touched.
514 */
515 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
516 mz = mem_cgroup_page_zoneinfo(memcg, page);
517 excess = soft_limit_excess(memcg);
518 /*
519 * We have to update the tree if mz is on RB-tree or
520 * mem is over its softlimit.
521 */
522 if (excess || mz->on_tree) {
523 unsigned long flags;
524
525 spin_lock_irqsave(&mctz->lock, flags);
526 /* if on-tree, remove it */
527 if (mz->on_tree)
528 __mem_cgroup_remove_exceeded(mz, mctz);
529 /*
530 * Insert again. mz->usage_in_excess will be updated.
531 * If excess is 0, no tree ops.
532 */
533 __mem_cgroup_insert_exceeded(mz, mctz, excess);
534 spin_unlock_irqrestore(&mctz->lock, flags);
535 }
536 }
537 }
538
539 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
540 {
541 struct mem_cgroup_tree_per_zone *mctz;
542 struct mem_cgroup_per_zone *mz;
543 int nid, zid;
544
545 for_each_node(nid) {
546 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
547 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
548 mctz = soft_limit_tree_node_zone(nid, zid);
549 mem_cgroup_remove_exceeded(mz, mctz);
550 }
551 }
552 }
553
554 static struct mem_cgroup_per_zone *
555 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
556 {
557 struct rb_node *rightmost = NULL;
558 struct mem_cgroup_per_zone *mz;
559
560 retry:
561 mz = NULL;
562 rightmost = rb_last(&mctz->rb_root);
563 if (!rightmost)
564 goto done; /* Nothing to reclaim from */
565
566 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
567 /*
568 * Remove the node now but someone else can add it back,
569 * we will to add it back at the end of reclaim to its correct
570 * position in the tree.
571 */
572 __mem_cgroup_remove_exceeded(mz, mctz);
573 if (!soft_limit_excess(mz->memcg) ||
574 !css_tryget_online(&mz->memcg->css))
575 goto retry;
576 done:
577 return mz;
578 }
579
580 static struct mem_cgroup_per_zone *
581 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
582 {
583 struct mem_cgroup_per_zone *mz;
584
585 spin_lock_irq(&mctz->lock);
586 mz = __mem_cgroup_largest_soft_limit_node(mctz);
587 spin_unlock_irq(&mctz->lock);
588 return mz;
589 }
590
591 /*
592 * Return page count for single (non recursive) @memcg.
593 *
594 * Implementation Note: reading percpu statistics for memcg.
595 *
596 * Both of vmstat[] and percpu_counter has threshold and do periodic
597 * synchronization to implement "quick" read. There are trade-off between
598 * reading cost and precision of value. Then, we may have a chance to implement
599 * a periodic synchronization of counter in memcg's counter.
600 *
601 * But this _read() function is used for user interface now. The user accounts
602 * memory usage by memory cgroup and he _always_ requires exact value because
603 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
604 * have to visit all online cpus and make sum. So, for now, unnecessary
605 * synchronization is not implemented. (just implemented for cpu hotplug)
606 *
607 * If there are kernel internal actions which can make use of some not-exact
608 * value, and reading all cpu value can be performance bottleneck in some
609 * common workload, threshold and synchronization as vmstat[] should be
610 * implemented.
611 */
612 static unsigned long
613 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
614 {
615 long val = 0;
616 int cpu;
617
618 /* Per-cpu values can be negative, use a signed accumulator */
619 for_each_possible_cpu(cpu)
620 val += per_cpu(memcg->stat->count[idx], cpu);
621 /*
622 * Summing races with updates, so val may be negative. Avoid exposing
623 * transient negative values.
624 */
625 if (val < 0)
626 val = 0;
627 return val;
628 }
629
630 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
631 enum mem_cgroup_events_index idx)
632 {
633 unsigned long val = 0;
634 int cpu;
635
636 for_each_possible_cpu(cpu)
637 val += per_cpu(memcg->stat->events[idx], cpu);
638 return val;
639 }
640
641 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
642 struct page *page,
643 bool compound, int nr_pages)
644 {
645 /*
646 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
647 * counted as CACHE even if it's on ANON LRU.
648 */
649 if (PageAnon(page))
650 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
651 nr_pages);
652 else
653 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
654 nr_pages);
655
656 if (compound) {
657 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
658 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
659 nr_pages);
660 }
661
662 /* pagein of a big page is an event. So, ignore page size */
663 if (nr_pages > 0)
664 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
665 else {
666 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
667 nr_pages = -nr_pages; /* for event */
668 }
669
670 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
671 }
672
673 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
674 int nid,
675 unsigned int lru_mask)
676 {
677 unsigned long nr = 0;
678 int zid;
679
680 VM_BUG_ON((unsigned)nid >= nr_node_ids);
681
682 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
683 struct mem_cgroup_per_zone *mz;
684 enum lru_list lru;
685
686 for_each_lru(lru) {
687 if (!(BIT(lru) & lru_mask))
688 continue;
689 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
690 nr += mz->lru_size[lru];
691 }
692 }
693 return nr;
694 }
695
696 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
697 unsigned int lru_mask)
698 {
699 unsigned long nr = 0;
700 int nid;
701
702 for_each_node_state(nid, N_MEMORY)
703 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
704 return nr;
705 }
706
707 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
708 enum mem_cgroup_events_target target)
709 {
710 unsigned long val, next;
711
712 val = __this_cpu_read(memcg->stat->nr_page_events);
713 next = __this_cpu_read(memcg->stat->targets[target]);
714 /* from time_after() in jiffies.h */
715 if ((long)next - (long)val < 0) {
716 switch (target) {
717 case MEM_CGROUP_TARGET_THRESH:
718 next = val + THRESHOLDS_EVENTS_TARGET;
719 break;
720 case MEM_CGROUP_TARGET_SOFTLIMIT:
721 next = val + SOFTLIMIT_EVENTS_TARGET;
722 break;
723 case MEM_CGROUP_TARGET_NUMAINFO:
724 next = val + NUMAINFO_EVENTS_TARGET;
725 break;
726 default:
727 break;
728 }
729 __this_cpu_write(memcg->stat->targets[target], next);
730 return true;
731 }
732 return false;
733 }
734
735 /*
736 * Check events in order.
737 *
738 */
739 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
740 {
741 /* threshold event is triggered in finer grain than soft limit */
742 if (unlikely(mem_cgroup_event_ratelimit(memcg,
743 MEM_CGROUP_TARGET_THRESH))) {
744 bool do_softlimit;
745 bool do_numainfo __maybe_unused;
746
747 do_softlimit = mem_cgroup_event_ratelimit(memcg,
748 MEM_CGROUP_TARGET_SOFTLIMIT);
749 #if MAX_NUMNODES > 1
750 do_numainfo = mem_cgroup_event_ratelimit(memcg,
751 MEM_CGROUP_TARGET_NUMAINFO);
752 #endif
753 mem_cgroup_threshold(memcg);
754 if (unlikely(do_softlimit))
755 mem_cgroup_update_tree(memcg, page);
756 #if MAX_NUMNODES > 1
757 if (unlikely(do_numainfo))
758 atomic_inc(&memcg->numainfo_events);
759 #endif
760 }
761 }
762
763 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
764 {
765 /*
766 * mm_update_next_owner() may clear mm->owner to NULL
767 * if it races with swapoff, page migration, etc.
768 * So this can be called with p == NULL.
769 */
770 if (unlikely(!p))
771 return NULL;
772
773 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
774 }
775 EXPORT_SYMBOL(mem_cgroup_from_task);
776
777 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
778 {
779 struct mem_cgroup *memcg = NULL;
780
781 rcu_read_lock();
782 do {
783 /*
784 * Page cache insertions can happen withou an
785 * actual mm context, e.g. during disk probing
786 * on boot, loopback IO, acct() writes etc.
787 */
788 if (unlikely(!mm))
789 memcg = root_mem_cgroup;
790 else {
791 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
792 if (unlikely(!memcg))
793 memcg = root_mem_cgroup;
794 }
795 } while (!css_tryget_online(&memcg->css));
796 rcu_read_unlock();
797 return memcg;
798 }
799
800 /**
801 * mem_cgroup_iter - iterate over memory cgroup hierarchy
802 * @root: hierarchy root
803 * @prev: previously returned memcg, NULL on first invocation
804 * @reclaim: cookie for shared reclaim walks, NULL for full walks
805 *
806 * Returns references to children of the hierarchy below @root, or
807 * @root itself, or %NULL after a full round-trip.
808 *
809 * Caller must pass the return value in @prev on subsequent
810 * invocations for reference counting, or use mem_cgroup_iter_break()
811 * to cancel a hierarchy walk before the round-trip is complete.
812 *
813 * Reclaimers can specify a zone and a priority level in @reclaim to
814 * divide up the memcgs in the hierarchy among all concurrent
815 * reclaimers operating on the same zone and priority.
816 */
817 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
818 struct mem_cgroup *prev,
819 struct mem_cgroup_reclaim_cookie *reclaim)
820 {
821 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
822 struct cgroup_subsys_state *css = NULL;
823 struct mem_cgroup *memcg = NULL;
824 struct mem_cgroup *pos = NULL;
825
826 if (mem_cgroup_disabled())
827 return NULL;
828
829 if (!root)
830 root = root_mem_cgroup;
831
832 if (prev && !reclaim)
833 pos = prev;
834
835 if (!root->use_hierarchy && root != root_mem_cgroup) {
836 if (prev)
837 goto out;
838 return root;
839 }
840
841 rcu_read_lock();
842
843 if (reclaim) {
844 struct mem_cgroup_per_zone *mz;
845
846 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
847 iter = &mz->iter[reclaim->priority];
848
849 if (prev && reclaim->generation != iter->generation)
850 goto out_unlock;
851
852 while (1) {
853 pos = READ_ONCE(iter->position);
854 if (!pos || css_tryget(&pos->css))
855 break;
856 /*
857 * css reference reached zero, so iter->position will
858 * be cleared by ->css_released. However, we should not
859 * rely on this happening soon, because ->css_released
860 * is called from a work queue, and by busy-waiting we
861 * might block it. So we clear iter->position right
862 * away.
863 */
864 (void)cmpxchg(&iter->position, pos, NULL);
865 }
866 }
867
868 if (pos)
869 css = &pos->css;
870
871 for (;;) {
872 css = css_next_descendant_pre(css, &root->css);
873 if (!css) {
874 /*
875 * Reclaimers share the hierarchy walk, and a
876 * new one might jump in right at the end of
877 * the hierarchy - make sure they see at least
878 * one group and restart from the beginning.
879 */
880 if (!prev)
881 continue;
882 break;
883 }
884
885 /*
886 * Verify the css and acquire a reference. The root
887 * is provided by the caller, so we know it's alive
888 * and kicking, and don't take an extra reference.
889 */
890 memcg = mem_cgroup_from_css(css);
891
892 if (css == &root->css)
893 break;
894
895 if (css_tryget(css))
896 break;
897
898 memcg = NULL;
899 }
900
901 if (reclaim) {
902 /*
903 * The position could have already been updated by a competing
904 * thread, so check that the value hasn't changed since we read
905 * it to avoid reclaiming from the same cgroup twice.
906 */
907 (void)cmpxchg(&iter->position, pos, memcg);
908
909 if (pos)
910 css_put(&pos->css);
911
912 if (!memcg)
913 iter->generation++;
914 else if (!prev)
915 reclaim->generation = iter->generation;
916 }
917
918 out_unlock:
919 rcu_read_unlock();
920 out:
921 if (prev && prev != root)
922 css_put(&prev->css);
923
924 return memcg;
925 }
926
927 /**
928 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
929 * @root: hierarchy root
930 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
931 */
932 void mem_cgroup_iter_break(struct mem_cgroup *root,
933 struct mem_cgroup *prev)
934 {
935 if (!root)
936 root = root_mem_cgroup;
937 if (prev && prev != root)
938 css_put(&prev->css);
939 }
940
941 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
942 {
943 struct mem_cgroup *memcg = dead_memcg;
944 struct mem_cgroup_reclaim_iter *iter;
945 struct mem_cgroup_per_zone *mz;
946 int nid, zid;
947 int i;
948
949 while ((memcg = parent_mem_cgroup(memcg))) {
950 for_each_node(nid) {
951 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
952 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
953 for (i = 0; i <= DEF_PRIORITY; i++) {
954 iter = &mz->iter[i];
955 cmpxchg(&iter->position,
956 dead_memcg, NULL);
957 }
958 }
959 }
960 }
961 }
962
963 /*
964 * Iteration constructs for visiting all cgroups (under a tree). If
965 * loops are exited prematurely (break), mem_cgroup_iter_break() must
966 * be used for reference counting.
967 */
968 #define for_each_mem_cgroup_tree(iter, root) \
969 for (iter = mem_cgroup_iter(root, NULL, NULL); \
970 iter != NULL; \
971 iter = mem_cgroup_iter(root, iter, NULL))
972
973 #define for_each_mem_cgroup(iter) \
974 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
975 iter != NULL; \
976 iter = mem_cgroup_iter(NULL, iter, NULL))
977
978 /**
979 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
980 * @zone: zone of the wanted lruvec
981 * @memcg: memcg of the wanted lruvec
982 *
983 * Returns the lru list vector holding pages for the given @zone and
984 * @mem. This can be the global zone lruvec, if the memory controller
985 * is disabled.
986 */
987 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
988 struct mem_cgroup *memcg)
989 {
990 struct mem_cgroup_per_zone *mz;
991 struct lruvec *lruvec;
992
993 if (mem_cgroup_disabled()) {
994 lruvec = &zone->lruvec;
995 goto out;
996 }
997
998 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
999 lruvec = &mz->lruvec;
1000 out:
1001 /*
1002 * Since a node can be onlined after the mem_cgroup was created,
1003 * we have to be prepared to initialize lruvec->zone here;
1004 * and if offlined then reonlined, we need to reinitialize it.
1005 */
1006 if (unlikely(lruvec->zone != zone))
1007 lruvec->zone = zone;
1008 return lruvec;
1009 }
1010
1011 /**
1012 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1013 * @page: the page
1014 * @zone: zone of the page
1015 *
1016 * This function is only safe when following the LRU page isolation
1017 * and putback protocol: the LRU lock must be held, and the page must
1018 * either be PageLRU() or the caller must have isolated/allocated it.
1019 */
1020 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1021 {
1022 struct mem_cgroup_per_zone *mz;
1023 struct mem_cgroup *memcg;
1024 struct lruvec *lruvec;
1025
1026 if (mem_cgroup_disabled()) {
1027 lruvec = &zone->lruvec;
1028 goto out;
1029 }
1030
1031 memcg = page->mem_cgroup;
1032 /*
1033 * Swapcache readahead pages are added to the LRU - and
1034 * possibly migrated - before they are charged.
1035 */
1036 if (!memcg)
1037 memcg = root_mem_cgroup;
1038
1039 mz = mem_cgroup_page_zoneinfo(memcg, page);
1040 lruvec = &mz->lruvec;
1041 out:
1042 /*
1043 * Since a node can be onlined after the mem_cgroup was created,
1044 * we have to be prepared to initialize lruvec->zone here;
1045 * and if offlined then reonlined, we need to reinitialize it.
1046 */
1047 if (unlikely(lruvec->zone != zone))
1048 lruvec->zone = zone;
1049 return lruvec;
1050 }
1051
1052 /**
1053 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1054 * @lruvec: mem_cgroup per zone lru vector
1055 * @lru: index of lru list the page is sitting on
1056 * @nr_pages: positive when adding or negative when removing
1057 *
1058 * This function must be called when a page is added to or removed from an
1059 * lru list.
1060 */
1061 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1062 int nr_pages)
1063 {
1064 struct mem_cgroup_per_zone *mz;
1065 unsigned long *lru_size;
1066
1067 if (mem_cgroup_disabled())
1068 return;
1069
1070 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1071 lru_size = mz->lru_size + lru;
1072 *lru_size += nr_pages;
1073 VM_BUG_ON((long)(*lru_size) < 0);
1074 }
1075
1076 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1077 {
1078 struct mem_cgroup *task_memcg;
1079 struct task_struct *p;
1080 bool ret;
1081
1082 p = find_lock_task_mm(task);
1083 if (p) {
1084 task_memcg = get_mem_cgroup_from_mm(p->mm);
1085 task_unlock(p);
1086 } else {
1087 /*
1088 * All threads may have already detached their mm's, but the oom
1089 * killer still needs to detect if they have already been oom
1090 * killed to prevent needlessly killing additional tasks.
1091 */
1092 rcu_read_lock();
1093 task_memcg = mem_cgroup_from_task(task);
1094 css_get(&task_memcg->css);
1095 rcu_read_unlock();
1096 }
1097 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1098 css_put(&task_memcg->css);
1099 return ret;
1100 }
1101
1102 /**
1103 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1104 * @memcg: the memory cgroup
1105 *
1106 * Returns the maximum amount of memory @mem can be charged with, in
1107 * pages.
1108 */
1109 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1110 {
1111 unsigned long margin = 0;
1112 unsigned long count;
1113 unsigned long limit;
1114
1115 count = page_counter_read(&memcg->memory);
1116 limit = READ_ONCE(memcg->memory.limit);
1117 if (count < limit)
1118 margin = limit - count;
1119
1120 if (do_memsw_account()) {
1121 count = page_counter_read(&memcg->memsw);
1122 limit = READ_ONCE(memcg->memsw.limit);
1123 if (count <= limit)
1124 margin = min(margin, limit - count);
1125 }
1126
1127 return margin;
1128 }
1129
1130 /*
1131 * A routine for checking "mem" is under move_account() or not.
1132 *
1133 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1134 * moving cgroups. This is for waiting at high-memory pressure
1135 * caused by "move".
1136 */
1137 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1138 {
1139 struct mem_cgroup *from;
1140 struct mem_cgroup *to;
1141 bool ret = false;
1142 /*
1143 * Unlike task_move routines, we access mc.to, mc.from not under
1144 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1145 */
1146 spin_lock(&mc.lock);
1147 from = mc.from;
1148 to = mc.to;
1149 if (!from)
1150 goto unlock;
1151
1152 ret = mem_cgroup_is_descendant(from, memcg) ||
1153 mem_cgroup_is_descendant(to, memcg);
1154 unlock:
1155 spin_unlock(&mc.lock);
1156 return ret;
1157 }
1158
1159 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1160 {
1161 if (mc.moving_task && current != mc.moving_task) {
1162 if (mem_cgroup_under_move(memcg)) {
1163 DEFINE_WAIT(wait);
1164 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1165 /* moving charge context might have finished. */
1166 if (mc.moving_task)
1167 schedule();
1168 finish_wait(&mc.waitq, &wait);
1169 return true;
1170 }
1171 }
1172 return false;
1173 }
1174
1175 #define K(x) ((x) << (PAGE_SHIFT-10))
1176 /**
1177 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1178 * @memcg: The memory cgroup that went over limit
1179 * @p: Task that is going to be killed
1180 *
1181 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1182 * enabled
1183 */
1184 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1185 {
1186 /* oom_info_lock ensures that parallel ooms do not interleave */
1187 static DEFINE_MUTEX(oom_info_lock);
1188 struct mem_cgroup *iter;
1189 unsigned int i;
1190
1191 mutex_lock(&oom_info_lock);
1192 rcu_read_lock();
1193
1194 if (p) {
1195 pr_info("Task in ");
1196 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1197 pr_cont(" killed as a result of limit of ");
1198 } else {
1199 pr_info("Memory limit reached of cgroup ");
1200 }
1201
1202 pr_cont_cgroup_path(memcg->css.cgroup);
1203 pr_cont("\n");
1204
1205 rcu_read_unlock();
1206
1207 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1208 K((u64)page_counter_read(&memcg->memory)),
1209 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1210 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1211 K((u64)page_counter_read(&memcg->memsw)),
1212 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1213 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1214 K((u64)page_counter_read(&memcg->kmem)),
1215 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1216
1217 for_each_mem_cgroup_tree(iter, memcg) {
1218 pr_info("Memory cgroup stats for ");
1219 pr_cont_cgroup_path(iter->css.cgroup);
1220 pr_cont(":");
1221
1222 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1223 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1224 continue;
1225 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1226 K(mem_cgroup_read_stat(iter, i)));
1227 }
1228
1229 for (i = 0; i < NR_LRU_LISTS; i++)
1230 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1231 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1232
1233 pr_cont("\n");
1234 }
1235 mutex_unlock(&oom_info_lock);
1236 }
1237
1238 /*
1239 * This function returns the number of memcg under hierarchy tree. Returns
1240 * 1(self count) if no children.
1241 */
1242 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1243 {
1244 int num = 0;
1245 struct mem_cgroup *iter;
1246
1247 for_each_mem_cgroup_tree(iter, memcg)
1248 num++;
1249 return num;
1250 }
1251
1252 /*
1253 * Return the memory (and swap, if configured) limit for a memcg.
1254 */
1255 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1256 {
1257 unsigned long limit;
1258
1259 limit = memcg->memory.limit;
1260 if (mem_cgroup_swappiness(memcg)) {
1261 unsigned long memsw_limit;
1262 unsigned long swap_limit;
1263
1264 memsw_limit = memcg->memsw.limit;
1265 swap_limit = memcg->swap.limit;
1266 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1267 limit = min(limit + swap_limit, memsw_limit);
1268 }
1269 return limit;
1270 }
1271
1272 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1273 int order)
1274 {
1275 struct oom_control oc = {
1276 .zonelist = NULL,
1277 .nodemask = NULL,
1278 .gfp_mask = gfp_mask,
1279 .order = order,
1280 };
1281 struct mem_cgroup *iter;
1282 unsigned long chosen_points = 0;
1283 unsigned long totalpages;
1284 unsigned int points = 0;
1285 struct task_struct *chosen = NULL;
1286
1287 mutex_lock(&oom_lock);
1288
1289 /*
1290 * If current has a pending SIGKILL or is exiting, then automatically
1291 * select it. The goal is to allow it to allocate so that it may
1292 * quickly exit and free its memory.
1293 */
1294 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1295 mark_oom_victim(current);
1296 goto unlock;
1297 }
1298
1299 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1300 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1301 for_each_mem_cgroup_tree(iter, memcg) {
1302 struct css_task_iter it;
1303 struct task_struct *task;
1304
1305 css_task_iter_start(&iter->css, &it);
1306 while ((task = css_task_iter_next(&it))) {
1307 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1308 case OOM_SCAN_SELECT:
1309 if (chosen)
1310 put_task_struct(chosen);
1311 chosen = task;
1312 chosen_points = ULONG_MAX;
1313 get_task_struct(chosen);
1314 /* fall through */
1315 case OOM_SCAN_CONTINUE:
1316 continue;
1317 case OOM_SCAN_ABORT:
1318 css_task_iter_end(&it);
1319 mem_cgroup_iter_break(memcg, iter);
1320 if (chosen)
1321 put_task_struct(chosen);
1322 goto unlock;
1323 case OOM_SCAN_OK:
1324 break;
1325 };
1326 points = oom_badness(task, memcg, NULL, totalpages);
1327 if (!points || points < chosen_points)
1328 continue;
1329 /* Prefer thread group leaders for display purposes */
1330 if (points == chosen_points &&
1331 thread_group_leader(chosen))
1332 continue;
1333
1334 if (chosen)
1335 put_task_struct(chosen);
1336 chosen = task;
1337 chosen_points = points;
1338 get_task_struct(chosen);
1339 }
1340 css_task_iter_end(&it);
1341 }
1342
1343 if (chosen) {
1344 points = chosen_points * 1000 / totalpages;
1345 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1346 "Memory cgroup out of memory");
1347 }
1348 unlock:
1349 mutex_unlock(&oom_lock);
1350 }
1351
1352 #if MAX_NUMNODES > 1
1353
1354 /**
1355 * test_mem_cgroup_node_reclaimable
1356 * @memcg: the target memcg
1357 * @nid: the node ID to be checked.
1358 * @noswap : specify true here if the user wants flle only information.
1359 *
1360 * This function returns whether the specified memcg contains any
1361 * reclaimable pages on a node. Returns true if there are any reclaimable
1362 * pages in the node.
1363 */
1364 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1365 int nid, bool noswap)
1366 {
1367 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1368 return true;
1369 if (noswap || !total_swap_pages)
1370 return false;
1371 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1372 return true;
1373 return false;
1374
1375 }
1376
1377 /*
1378 * Always updating the nodemask is not very good - even if we have an empty
1379 * list or the wrong list here, we can start from some node and traverse all
1380 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1381 *
1382 */
1383 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1384 {
1385 int nid;
1386 /*
1387 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1388 * pagein/pageout changes since the last update.
1389 */
1390 if (!atomic_read(&memcg->numainfo_events))
1391 return;
1392 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1393 return;
1394
1395 /* make a nodemask where this memcg uses memory from */
1396 memcg->scan_nodes = node_states[N_MEMORY];
1397
1398 for_each_node_mask(nid, node_states[N_MEMORY]) {
1399
1400 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1401 node_clear(nid, memcg->scan_nodes);
1402 }
1403
1404 atomic_set(&memcg->numainfo_events, 0);
1405 atomic_set(&memcg->numainfo_updating, 0);
1406 }
1407
1408 /*
1409 * Selecting a node where we start reclaim from. Because what we need is just
1410 * reducing usage counter, start from anywhere is O,K. Considering
1411 * memory reclaim from current node, there are pros. and cons.
1412 *
1413 * Freeing memory from current node means freeing memory from a node which
1414 * we'll use or we've used. So, it may make LRU bad. And if several threads
1415 * hit limits, it will see a contention on a node. But freeing from remote
1416 * node means more costs for memory reclaim because of memory latency.
1417 *
1418 * Now, we use round-robin. Better algorithm is welcomed.
1419 */
1420 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1421 {
1422 int node;
1423
1424 mem_cgroup_may_update_nodemask(memcg);
1425 node = memcg->last_scanned_node;
1426
1427 node = next_node(node, memcg->scan_nodes);
1428 if (node == MAX_NUMNODES)
1429 node = first_node(memcg->scan_nodes);
1430 /*
1431 * We call this when we hit limit, not when pages are added to LRU.
1432 * No LRU may hold pages because all pages are UNEVICTABLE or
1433 * memcg is too small and all pages are not on LRU. In that case,
1434 * we use curret node.
1435 */
1436 if (unlikely(node == MAX_NUMNODES))
1437 node = numa_node_id();
1438
1439 memcg->last_scanned_node = node;
1440 return node;
1441 }
1442 #else
1443 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1444 {
1445 return 0;
1446 }
1447 #endif
1448
1449 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1450 struct zone *zone,
1451 gfp_t gfp_mask,
1452 unsigned long *total_scanned)
1453 {
1454 struct mem_cgroup *victim = NULL;
1455 int total = 0;
1456 int loop = 0;
1457 unsigned long excess;
1458 unsigned long nr_scanned;
1459 struct mem_cgroup_reclaim_cookie reclaim = {
1460 .zone = zone,
1461 .priority = 0,
1462 };
1463
1464 excess = soft_limit_excess(root_memcg);
1465
1466 while (1) {
1467 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1468 if (!victim) {
1469 loop++;
1470 if (loop >= 2) {
1471 /*
1472 * If we have not been able to reclaim
1473 * anything, it might because there are
1474 * no reclaimable pages under this hierarchy
1475 */
1476 if (!total)
1477 break;
1478 /*
1479 * We want to do more targeted reclaim.
1480 * excess >> 2 is not to excessive so as to
1481 * reclaim too much, nor too less that we keep
1482 * coming back to reclaim from this cgroup
1483 */
1484 if (total >= (excess >> 2) ||
1485 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1486 break;
1487 }
1488 continue;
1489 }
1490 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1491 zone, &nr_scanned);
1492 *total_scanned += nr_scanned;
1493 if (!soft_limit_excess(root_memcg))
1494 break;
1495 }
1496 mem_cgroup_iter_break(root_memcg, victim);
1497 return total;
1498 }
1499
1500 #ifdef CONFIG_LOCKDEP
1501 static struct lockdep_map memcg_oom_lock_dep_map = {
1502 .name = "memcg_oom_lock",
1503 };
1504 #endif
1505
1506 static DEFINE_SPINLOCK(memcg_oom_lock);
1507
1508 /*
1509 * Check OOM-Killer is already running under our hierarchy.
1510 * If someone is running, return false.
1511 */
1512 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1513 {
1514 struct mem_cgroup *iter, *failed = NULL;
1515
1516 spin_lock(&memcg_oom_lock);
1517
1518 for_each_mem_cgroup_tree(iter, memcg) {
1519 if (iter->oom_lock) {
1520 /*
1521 * this subtree of our hierarchy is already locked
1522 * so we cannot give a lock.
1523 */
1524 failed = iter;
1525 mem_cgroup_iter_break(memcg, iter);
1526 break;
1527 } else
1528 iter->oom_lock = true;
1529 }
1530
1531 if (failed) {
1532 /*
1533 * OK, we failed to lock the whole subtree so we have
1534 * to clean up what we set up to the failing subtree
1535 */
1536 for_each_mem_cgroup_tree(iter, memcg) {
1537 if (iter == failed) {
1538 mem_cgroup_iter_break(memcg, iter);
1539 break;
1540 }
1541 iter->oom_lock = false;
1542 }
1543 } else
1544 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1545
1546 spin_unlock(&memcg_oom_lock);
1547
1548 return !failed;
1549 }
1550
1551 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1552 {
1553 struct mem_cgroup *iter;
1554
1555 spin_lock(&memcg_oom_lock);
1556 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1557 for_each_mem_cgroup_tree(iter, memcg)
1558 iter->oom_lock = false;
1559 spin_unlock(&memcg_oom_lock);
1560 }
1561
1562 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1563 {
1564 struct mem_cgroup *iter;
1565
1566 spin_lock(&memcg_oom_lock);
1567 for_each_mem_cgroup_tree(iter, memcg)
1568 iter->under_oom++;
1569 spin_unlock(&memcg_oom_lock);
1570 }
1571
1572 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1573 {
1574 struct mem_cgroup *iter;
1575
1576 /*
1577 * When a new child is created while the hierarchy is under oom,
1578 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1579 */
1580 spin_lock(&memcg_oom_lock);
1581 for_each_mem_cgroup_tree(iter, memcg)
1582 if (iter->under_oom > 0)
1583 iter->under_oom--;
1584 spin_unlock(&memcg_oom_lock);
1585 }
1586
1587 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1588
1589 struct oom_wait_info {
1590 struct mem_cgroup *memcg;
1591 wait_queue_t wait;
1592 };
1593
1594 static int memcg_oom_wake_function(wait_queue_t *wait,
1595 unsigned mode, int sync, void *arg)
1596 {
1597 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1598 struct mem_cgroup *oom_wait_memcg;
1599 struct oom_wait_info *oom_wait_info;
1600
1601 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1602 oom_wait_memcg = oom_wait_info->memcg;
1603
1604 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1605 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1606 return 0;
1607 return autoremove_wake_function(wait, mode, sync, arg);
1608 }
1609
1610 static void memcg_oom_recover(struct mem_cgroup *memcg)
1611 {
1612 /*
1613 * For the following lockless ->under_oom test, the only required
1614 * guarantee is that it must see the state asserted by an OOM when
1615 * this function is called as a result of userland actions
1616 * triggered by the notification of the OOM. This is trivially
1617 * achieved by invoking mem_cgroup_mark_under_oom() before
1618 * triggering notification.
1619 */
1620 if (memcg && memcg->under_oom)
1621 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1622 }
1623
1624 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1625 {
1626 if (!current->memcg_may_oom)
1627 return;
1628 /*
1629 * We are in the middle of the charge context here, so we
1630 * don't want to block when potentially sitting on a callstack
1631 * that holds all kinds of filesystem and mm locks.
1632 *
1633 * Also, the caller may handle a failed allocation gracefully
1634 * (like optional page cache readahead) and so an OOM killer
1635 * invocation might not even be necessary.
1636 *
1637 * That's why we don't do anything here except remember the
1638 * OOM context and then deal with it at the end of the page
1639 * fault when the stack is unwound, the locks are released,
1640 * and when we know whether the fault was overall successful.
1641 */
1642 css_get(&memcg->css);
1643 current->memcg_in_oom = memcg;
1644 current->memcg_oom_gfp_mask = mask;
1645 current->memcg_oom_order = order;
1646 }
1647
1648 /**
1649 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1650 * @handle: actually kill/wait or just clean up the OOM state
1651 *
1652 * This has to be called at the end of a page fault if the memcg OOM
1653 * handler was enabled.
1654 *
1655 * Memcg supports userspace OOM handling where failed allocations must
1656 * sleep on a waitqueue until the userspace task resolves the
1657 * situation. Sleeping directly in the charge context with all kinds
1658 * of locks held is not a good idea, instead we remember an OOM state
1659 * in the task and mem_cgroup_oom_synchronize() has to be called at
1660 * the end of the page fault to complete the OOM handling.
1661 *
1662 * Returns %true if an ongoing memcg OOM situation was detected and
1663 * completed, %false otherwise.
1664 */
1665 bool mem_cgroup_oom_synchronize(bool handle)
1666 {
1667 struct mem_cgroup *memcg = current->memcg_in_oom;
1668 struct oom_wait_info owait;
1669 bool locked;
1670
1671 /* OOM is global, do not handle */
1672 if (!memcg)
1673 return false;
1674
1675 if (!handle || oom_killer_disabled)
1676 goto cleanup;
1677
1678 owait.memcg = memcg;
1679 owait.wait.flags = 0;
1680 owait.wait.func = memcg_oom_wake_function;
1681 owait.wait.private = current;
1682 INIT_LIST_HEAD(&owait.wait.task_list);
1683
1684 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1685 mem_cgroup_mark_under_oom(memcg);
1686
1687 locked = mem_cgroup_oom_trylock(memcg);
1688
1689 if (locked)
1690 mem_cgroup_oom_notify(memcg);
1691
1692 if (locked && !memcg->oom_kill_disable) {
1693 mem_cgroup_unmark_under_oom(memcg);
1694 finish_wait(&memcg_oom_waitq, &owait.wait);
1695 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1696 current->memcg_oom_order);
1697 } else {
1698 schedule();
1699 mem_cgroup_unmark_under_oom(memcg);
1700 finish_wait(&memcg_oom_waitq, &owait.wait);
1701 }
1702
1703 if (locked) {
1704 mem_cgroup_oom_unlock(memcg);
1705 /*
1706 * There is no guarantee that an OOM-lock contender
1707 * sees the wakeups triggered by the OOM kill
1708 * uncharges. Wake any sleepers explicitely.
1709 */
1710 memcg_oom_recover(memcg);
1711 }
1712 cleanup:
1713 current->memcg_in_oom = NULL;
1714 css_put(&memcg->css);
1715 return true;
1716 }
1717
1718 /**
1719 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1720 * @page: page that is going to change accounted state
1721 *
1722 * This function must mark the beginning of an accounted page state
1723 * change to prevent double accounting when the page is concurrently
1724 * being moved to another memcg:
1725 *
1726 * memcg = mem_cgroup_begin_page_stat(page);
1727 * if (TestClearPageState(page))
1728 * mem_cgroup_update_page_stat(memcg, state, -1);
1729 * mem_cgroup_end_page_stat(memcg);
1730 */
1731 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1732 {
1733 struct mem_cgroup *memcg;
1734 unsigned long flags;
1735
1736 /*
1737 * The RCU lock is held throughout the transaction. The fast
1738 * path can get away without acquiring the memcg->move_lock
1739 * because page moving starts with an RCU grace period.
1740 *
1741 * The RCU lock also protects the memcg from being freed when
1742 * the page state that is going to change is the only thing
1743 * preventing the page from being uncharged.
1744 * E.g. end-writeback clearing PageWriteback(), which allows
1745 * migration to go ahead and uncharge the page before the
1746 * account transaction might be complete.
1747 */
1748 rcu_read_lock();
1749
1750 if (mem_cgroup_disabled())
1751 return NULL;
1752 again:
1753 memcg = page->mem_cgroup;
1754 if (unlikely(!memcg))
1755 return NULL;
1756
1757 if (atomic_read(&memcg->moving_account) <= 0)
1758 return memcg;
1759
1760 spin_lock_irqsave(&memcg->move_lock, flags);
1761 if (memcg != page->mem_cgroup) {
1762 spin_unlock_irqrestore(&memcg->move_lock, flags);
1763 goto again;
1764 }
1765
1766 /*
1767 * When charge migration first begins, we can have locked and
1768 * unlocked page stat updates happening concurrently. Track
1769 * the task who has the lock for mem_cgroup_end_page_stat().
1770 */
1771 memcg->move_lock_task = current;
1772 memcg->move_lock_flags = flags;
1773
1774 return memcg;
1775 }
1776 EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1777
1778 /**
1779 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1780 * @memcg: the memcg that was accounted against
1781 */
1782 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1783 {
1784 if (memcg && memcg->move_lock_task == current) {
1785 unsigned long flags = memcg->move_lock_flags;
1786
1787 memcg->move_lock_task = NULL;
1788 memcg->move_lock_flags = 0;
1789
1790 spin_unlock_irqrestore(&memcg->move_lock, flags);
1791 }
1792
1793 rcu_read_unlock();
1794 }
1795 EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1796
1797 /*
1798 * size of first charge trial. "32" comes from vmscan.c's magic value.
1799 * TODO: maybe necessary to use big numbers in big irons.
1800 */
1801 #define CHARGE_BATCH 32U
1802 struct memcg_stock_pcp {
1803 struct mem_cgroup *cached; /* this never be root cgroup */
1804 unsigned int nr_pages;
1805 struct work_struct work;
1806 unsigned long flags;
1807 #define FLUSHING_CACHED_CHARGE 0
1808 };
1809 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1810 static DEFINE_MUTEX(percpu_charge_mutex);
1811
1812 /**
1813 * consume_stock: Try to consume stocked charge on this cpu.
1814 * @memcg: memcg to consume from.
1815 * @nr_pages: how many pages to charge.
1816 *
1817 * The charges will only happen if @memcg matches the current cpu's memcg
1818 * stock, and at least @nr_pages are available in that stock. Failure to
1819 * service an allocation will refill the stock.
1820 *
1821 * returns true if successful, false otherwise.
1822 */
1823 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1824 {
1825 struct memcg_stock_pcp *stock;
1826 bool ret = false;
1827
1828 if (nr_pages > CHARGE_BATCH)
1829 return ret;
1830
1831 stock = &get_cpu_var(memcg_stock);
1832 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1833 stock->nr_pages -= nr_pages;
1834 ret = true;
1835 }
1836 put_cpu_var(memcg_stock);
1837 return ret;
1838 }
1839
1840 /*
1841 * Returns stocks cached in percpu and reset cached information.
1842 */
1843 static void drain_stock(struct memcg_stock_pcp *stock)
1844 {
1845 struct mem_cgroup *old = stock->cached;
1846
1847 if (stock->nr_pages) {
1848 page_counter_uncharge(&old->memory, stock->nr_pages);
1849 if (do_memsw_account())
1850 page_counter_uncharge(&old->memsw, stock->nr_pages);
1851 css_put_many(&old->css, stock->nr_pages);
1852 stock->nr_pages = 0;
1853 }
1854 stock->cached = NULL;
1855 }
1856
1857 /*
1858 * This must be called under preempt disabled or must be called by
1859 * a thread which is pinned to local cpu.
1860 */
1861 static void drain_local_stock(struct work_struct *dummy)
1862 {
1863 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1864 drain_stock(stock);
1865 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1866 }
1867
1868 /*
1869 * Cache charges(val) to local per_cpu area.
1870 * This will be consumed by consume_stock() function, later.
1871 */
1872 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1873 {
1874 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1875
1876 if (stock->cached != memcg) { /* reset if necessary */
1877 drain_stock(stock);
1878 stock->cached = memcg;
1879 }
1880 stock->nr_pages += nr_pages;
1881 put_cpu_var(memcg_stock);
1882 }
1883
1884 /*
1885 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1886 * of the hierarchy under it.
1887 */
1888 static void drain_all_stock(struct mem_cgroup *root_memcg)
1889 {
1890 int cpu, curcpu;
1891
1892 /* If someone's already draining, avoid adding running more workers. */
1893 if (!mutex_trylock(&percpu_charge_mutex))
1894 return;
1895 /* Notify other cpus that system-wide "drain" is running */
1896 get_online_cpus();
1897 curcpu = get_cpu();
1898 for_each_online_cpu(cpu) {
1899 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1900 struct mem_cgroup *memcg;
1901
1902 memcg = stock->cached;
1903 if (!memcg || !stock->nr_pages)
1904 continue;
1905 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1906 continue;
1907 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1908 if (cpu == curcpu)
1909 drain_local_stock(&stock->work);
1910 else
1911 schedule_work_on(cpu, &stock->work);
1912 }
1913 }
1914 put_cpu();
1915 put_online_cpus();
1916 mutex_unlock(&percpu_charge_mutex);
1917 }
1918
1919 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1920 unsigned long action,
1921 void *hcpu)
1922 {
1923 int cpu = (unsigned long)hcpu;
1924 struct memcg_stock_pcp *stock;
1925
1926 if (action == CPU_ONLINE)
1927 return NOTIFY_OK;
1928
1929 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1930 return NOTIFY_OK;
1931
1932 stock = &per_cpu(memcg_stock, cpu);
1933 drain_stock(stock);
1934 return NOTIFY_OK;
1935 }
1936
1937 static void reclaim_high(struct mem_cgroup *memcg,
1938 unsigned int nr_pages,
1939 gfp_t gfp_mask)
1940 {
1941 do {
1942 if (page_counter_read(&memcg->memory) <= memcg->high)
1943 continue;
1944 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1945 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1946 } while ((memcg = parent_mem_cgroup(memcg)));
1947 }
1948
1949 static void high_work_func(struct work_struct *work)
1950 {
1951 struct mem_cgroup *memcg;
1952
1953 memcg = container_of(work, struct mem_cgroup, high_work);
1954 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1955 }
1956
1957 /*
1958 * Scheduled by try_charge() to be executed from the userland return path
1959 * and reclaims memory over the high limit.
1960 */
1961 void mem_cgroup_handle_over_high(void)
1962 {
1963 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1964 struct mem_cgroup *memcg;
1965
1966 if (likely(!nr_pages))
1967 return;
1968
1969 memcg = get_mem_cgroup_from_mm(current->mm);
1970 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1971 css_put(&memcg->css);
1972 current->memcg_nr_pages_over_high = 0;
1973 }
1974
1975 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1976 unsigned int nr_pages)
1977 {
1978 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1979 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1980 struct mem_cgroup *mem_over_limit;
1981 struct page_counter *counter;
1982 unsigned long nr_reclaimed;
1983 bool may_swap = true;
1984 bool drained = false;
1985
1986 if (mem_cgroup_is_root(memcg))
1987 return 0;
1988 retry:
1989 if (consume_stock(memcg, nr_pages))
1990 return 0;
1991
1992 if (!do_memsw_account() ||
1993 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1994 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1995 goto done_restock;
1996 if (do_memsw_account())
1997 page_counter_uncharge(&memcg->memsw, batch);
1998 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1999 } else {
2000 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2001 may_swap = false;
2002 }
2003
2004 if (batch > nr_pages) {
2005 batch = nr_pages;
2006 goto retry;
2007 }
2008
2009 /*
2010 * Unlike in global OOM situations, memcg is not in a physical
2011 * memory shortage. Allow dying and OOM-killed tasks to
2012 * bypass the last charges so that they can exit quickly and
2013 * free their memory.
2014 */
2015 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2016 fatal_signal_pending(current) ||
2017 current->flags & PF_EXITING))
2018 goto force;
2019
2020 if (unlikely(task_in_memcg_oom(current)))
2021 goto nomem;
2022
2023 if (!gfpflags_allow_blocking(gfp_mask))
2024 goto nomem;
2025
2026 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2027
2028 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2029 gfp_mask, may_swap);
2030
2031 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2032 goto retry;
2033
2034 if (!drained) {
2035 drain_all_stock(mem_over_limit);
2036 drained = true;
2037 goto retry;
2038 }
2039
2040 if (gfp_mask & __GFP_NORETRY)
2041 goto nomem;
2042 /*
2043 * Even though the limit is exceeded at this point, reclaim
2044 * may have been able to free some pages. Retry the charge
2045 * before killing the task.
2046 *
2047 * Only for regular pages, though: huge pages are rather
2048 * unlikely to succeed so close to the limit, and we fall back
2049 * to regular pages anyway in case of failure.
2050 */
2051 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2052 goto retry;
2053 /*
2054 * At task move, charge accounts can be doubly counted. So, it's
2055 * better to wait until the end of task_move if something is going on.
2056 */
2057 if (mem_cgroup_wait_acct_move(mem_over_limit))
2058 goto retry;
2059
2060 if (nr_retries--)
2061 goto retry;
2062
2063 if (gfp_mask & __GFP_NOFAIL)
2064 goto force;
2065
2066 if (fatal_signal_pending(current))
2067 goto force;
2068
2069 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2070
2071 mem_cgroup_oom(mem_over_limit, gfp_mask,
2072 get_order(nr_pages * PAGE_SIZE));
2073 nomem:
2074 if (!(gfp_mask & __GFP_NOFAIL))
2075 return -ENOMEM;
2076 force:
2077 /*
2078 * The allocation either can't fail or will lead to more memory
2079 * being freed very soon. Allow memory usage go over the limit
2080 * temporarily by force charging it.
2081 */
2082 page_counter_charge(&memcg->memory, nr_pages);
2083 if (do_memsw_account())
2084 page_counter_charge(&memcg->memsw, nr_pages);
2085 css_get_many(&memcg->css, nr_pages);
2086
2087 return 0;
2088
2089 done_restock:
2090 css_get_many(&memcg->css, batch);
2091 if (batch > nr_pages)
2092 refill_stock(memcg, batch - nr_pages);
2093
2094 /*
2095 * If the hierarchy is above the normal consumption range, schedule
2096 * reclaim on returning to userland. We can perform reclaim here
2097 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2098 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2099 * not recorded as it most likely matches current's and won't
2100 * change in the meantime. As high limit is checked again before
2101 * reclaim, the cost of mismatch is negligible.
2102 */
2103 do {
2104 if (page_counter_read(&memcg->memory) > memcg->high) {
2105 /* Don't bother a random interrupted task */
2106 if (in_interrupt()) {
2107 schedule_work(&memcg->high_work);
2108 break;
2109 }
2110 current->memcg_nr_pages_over_high += batch;
2111 set_notify_resume(current);
2112 break;
2113 }
2114 } while ((memcg = parent_mem_cgroup(memcg)));
2115
2116 return 0;
2117 }
2118
2119 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2120 {
2121 if (mem_cgroup_is_root(memcg))
2122 return;
2123
2124 page_counter_uncharge(&memcg->memory, nr_pages);
2125 if (do_memsw_account())
2126 page_counter_uncharge(&memcg->memsw, nr_pages);
2127
2128 css_put_many(&memcg->css, nr_pages);
2129 }
2130
2131 static void lock_page_lru(struct page *page, int *isolated)
2132 {
2133 struct zone *zone = page_zone(page);
2134
2135 spin_lock_irq(&zone->lru_lock);
2136 if (PageLRU(page)) {
2137 struct lruvec *lruvec;
2138
2139 lruvec = mem_cgroup_page_lruvec(page, zone);
2140 ClearPageLRU(page);
2141 del_page_from_lru_list(page, lruvec, page_lru(page));
2142 *isolated = 1;
2143 } else
2144 *isolated = 0;
2145 }
2146
2147 static void unlock_page_lru(struct page *page, int isolated)
2148 {
2149 struct zone *zone = page_zone(page);
2150
2151 if (isolated) {
2152 struct lruvec *lruvec;
2153
2154 lruvec = mem_cgroup_page_lruvec(page, zone);
2155 VM_BUG_ON_PAGE(PageLRU(page), page);
2156 SetPageLRU(page);
2157 add_page_to_lru_list(page, lruvec, page_lru(page));
2158 }
2159 spin_unlock_irq(&zone->lru_lock);
2160 }
2161
2162 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2163 bool lrucare)
2164 {
2165 int isolated;
2166
2167 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2168
2169 /*
2170 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2171 * may already be on some other mem_cgroup's LRU. Take care of it.
2172 */
2173 if (lrucare)
2174 lock_page_lru(page, &isolated);
2175
2176 /*
2177 * Nobody should be changing or seriously looking at
2178 * page->mem_cgroup at this point:
2179 *
2180 * - the page is uncharged
2181 *
2182 * - the page is off-LRU
2183 *
2184 * - an anonymous fault has exclusive page access, except for
2185 * a locked page table
2186 *
2187 * - a page cache insertion, a swapin fault, or a migration
2188 * have the page locked
2189 */
2190 page->mem_cgroup = memcg;
2191
2192 if (lrucare)
2193 unlock_page_lru(page, isolated);
2194 }
2195
2196 #ifndef CONFIG_SLOB
2197 static int memcg_alloc_cache_id(void)
2198 {
2199 int id, size;
2200 int err;
2201
2202 id = ida_simple_get(&memcg_cache_ida,
2203 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2204 if (id < 0)
2205 return id;
2206
2207 if (id < memcg_nr_cache_ids)
2208 return id;
2209
2210 /*
2211 * There's no space for the new id in memcg_caches arrays,
2212 * so we have to grow them.
2213 */
2214 down_write(&memcg_cache_ids_sem);
2215
2216 size = 2 * (id + 1);
2217 if (size < MEMCG_CACHES_MIN_SIZE)
2218 size = MEMCG_CACHES_MIN_SIZE;
2219 else if (size > MEMCG_CACHES_MAX_SIZE)
2220 size = MEMCG_CACHES_MAX_SIZE;
2221
2222 err = memcg_update_all_caches(size);
2223 if (!err)
2224 err = memcg_update_all_list_lrus(size);
2225 if (!err)
2226 memcg_nr_cache_ids = size;
2227
2228 up_write(&memcg_cache_ids_sem);
2229
2230 if (err) {
2231 ida_simple_remove(&memcg_cache_ida, id);
2232 return err;
2233 }
2234 return id;
2235 }
2236
2237 static void memcg_free_cache_id(int id)
2238 {
2239 ida_simple_remove(&memcg_cache_ida, id);
2240 }
2241
2242 struct memcg_kmem_cache_create_work {
2243 struct mem_cgroup *memcg;
2244 struct kmem_cache *cachep;
2245 struct work_struct work;
2246 };
2247
2248 static void memcg_kmem_cache_create_func(struct work_struct *w)
2249 {
2250 struct memcg_kmem_cache_create_work *cw =
2251 container_of(w, struct memcg_kmem_cache_create_work, work);
2252 struct mem_cgroup *memcg = cw->memcg;
2253 struct kmem_cache *cachep = cw->cachep;
2254
2255 memcg_create_kmem_cache(memcg, cachep);
2256
2257 css_put(&memcg->css);
2258 kfree(cw);
2259 }
2260
2261 /*
2262 * Enqueue the creation of a per-memcg kmem_cache.
2263 */
2264 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2265 struct kmem_cache *cachep)
2266 {
2267 struct memcg_kmem_cache_create_work *cw;
2268
2269 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2270 if (!cw)
2271 return;
2272
2273 css_get(&memcg->css);
2274
2275 cw->memcg = memcg;
2276 cw->cachep = cachep;
2277 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2278
2279 schedule_work(&cw->work);
2280 }
2281
2282 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2283 struct kmem_cache *cachep)
2284 {
2285 /*
2286 * We need to stop accounting when we kmalloc, because if the
2287 * corresponding kmalloc cache is not yet created, the first allocation
2288 * in __memcg_schedule_kmem_cache_create will recurse.
2289 *
2290 * However, it is better to enclose the whole function. Depending on
2291 * the debugging options enabled, INIT_WORK(), for instance, can
2292 * trigger an allocation. This too, will make us recurse. Because at
2293 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2294 * the safest choice is to do it like this, wrapping the whole function.
2295 */
2296 current->memcg_kmem_skip_account = 1;
2297 __memcg_schedule_kmem_cache_create(memcg, cachep);
2298 current->memcg_kmem_skip_account = 0;
2299 }
2300
2301 /*
2302 * Return the kmem_cache we're supposed to use for a slab allocation.
2303 * We try to use the current memcg's version of the cache.
2304 *
2305 * If the cache does not exist yet, if we are the first user of it,
2306 * we either create it immediately, if possible, or create it asynchronously
2307 * in a workqueue.
2308 * In the latter case, we will let the current allocation go through with
2309 * the original cache.
2310 *
2311 * Can't be called in interrupt context or from kernel threads.
2312 * This function needs to be called with rcu_read_lock() held.
2313 */
2314 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2315 {
2316 struct mem_cgroup *memcg;
2317 struct kmem_cache *memcg_cachep;
2318 int kmemcg_id;
2319
2320 VM_BUG_ON(!is_root_cache(cachep));
2321
2322 if (cachep->flags & SLAB_ACCOUNT)
2323 gfp |= __GFP_ACCOUNT;
2324
2325 if (!(gfp & __GFP_ACCOUNT))
2326 return cachep;
2327
2328 if (current->memcg_kmem_skip_account)
2329 return cachep;
2330
2331 memcg = get_mem_cgroup_from_mm(current->mm);
2332 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2333 if (kmemcg_id < 0)
2334 goto out;
2335
2336 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2337 if (likely(memcg_cachep))
2338 return memcg_cachep;
2339
2340 /*
2341 * If we are in a safe context (can wait, and not in interrupt
2342 * context), we could be be predictable and return right away.
2343 * This would guarantee that the allocation being performed
2344 * already belongs in the new cache.
2345 *
2346 * However, there are some clashes that can arrive from locking.
2347 * For instance, because we acquire the slab_mutex while doing
2348 * memcg_create_kmem_cache, this means no further allocation
2349 * could happen with the slab_mutex held. So it's better to
2350 * defer everything.
2351 */
2352 memcg_schedule_kmem_cache_create(memcg, cachep);
2353 out:
2354 css_put(&memcg->css);
2355 return cachep;
2356 }
2357
2358 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2359 {
2360 if (!is_root_cache(cachep))
2361 css_put(&cachep->memcg_params.memcg->css);
2362 }
2363
2364 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2365 struct mem_cgroup *memcg)
2366 {
2367 unsigned int nr_pages = 1 << order;
2368 struct page_counter *counter;
2369 int ret;
2370
2371 if (!memcg_kmem_online(memcg))
2372 return 0;
2373
2374 ret = try_charge(memcg, gfp, nr_pages);
2375 if (ret)
2376 return ret;
2377
2378 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2379 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2380 cancel_charge(memcg, nr_pages);
2381 return -ENOMEM;
2382 }
2383
2384 page->mem_cgroup = memcg;
2385
2386 return 0;
2387 }
2388
2389 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2390 {
2391 struct mem_cgroup *memcg;
2392 int ret;
2393
2394 memcg = get_mem_cgroup_from_mm(current->mm);
2395 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2396 css_put(&memcg->css);
2397 return ret;
2398 }
2399
2400 void __memcg_kmem_uncharge(struct page *page, int order)
2401 {
2402 struct mem_cgroup *memcg = page->mem_cgroup;
2403 unsigned int nr_pages = 1 << order;
2404
2405 if (!memcg)
2406 return;
2407
2408 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2409
2410 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2411 page_counter_uncharge(&memcg->kmem, nr_pages);
2412
2413 page_counter_uncharge(&memcg->memory, nr_pages);
2414 if (do_memsw_account())
2415 page_counter_uncharge(&memcg->memsw, nr_pages);
2416
2417 page->mem_cgroup = NULL;
2418 css_put_many(&memcg->css, nr_pages);
2419 }
2420 #endif /* !CONFIG_SLOB */
2421
2422 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2423
2424 /*
2425 * Because tail pages are not marked as "used", set it. We're under
2426 * zone->lru_lock and migration entries setup in all page mappings.
2427 */
2428 void mem_cgroup_split_huge_fixup(struct page *head)
2429 {
2430 int i;
2431
2432 if (mem_cgroup_disabled())
2433 return;
2434
2435 for (i = 1; i < HPAGE_PMD_NR; i++)
2436 head[i].mem_cgroup = head->mem_cgroup;
2437
2438 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2439 HPAGE_PMD_NR);
2440 }
2441 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2442
2443 #ifdef CONFIG_MEMCG_SWAP
2444 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2445 bool charge)
2446 {
2447 int val = (charge) ? 1 : -1;
2448 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2449 }
2450
2451 /**
2452 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2453 * @entry: swap entry to be moved
2454 * @from: mem_cgroup which the entry is moved from
2455 * @to: mem_cgroup which the entry is moved to
2456 *
2457 * It succeeds only when the swap_cgroup's record for this entry is the same
2458 * as the mem_cgroup's id of @from.
2459 *
2460 * Returns 0 on success, -EINVAL on failure.
2461 *
2462 * The caller must have charged to @to, IOW, called page_counter_charge() about
2463 * both res and memsw, and called css_get().
2464 */
2465 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2466 struct mem_cgroup *from, struct mem_cgroup *to)
2467 {
2468 unsigned short old_id, new_id;
2469
2470 old_id = mem_cgroup_id(from);
2471 new_id = mem_cgroup_id(to);
2472
2473 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2474 mem_cgroup_swap_statistics(from, false);
2475 mem_cgroup_swap_statistics(to, true);
2476 return 0;
2477 }
2478 return -EINVAL;
2479 }
2480 #else
2481 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2482 struct mem_cgroup *from, struct mem_cgroup *to)
2483 {
2484 return -EINVAL;
2485 }
2486 #endif
2487
2488 static DEFINE_MUTEX(memcg_limit_mutex);
2489
2490 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2491 unsigned long limit)
2492 {
2493 unsigned long curusage;
2494 unsigned long oldusage;
2495 bool enlarge = false;
2496 int retry_count;
2497 int ret;
2498
2499 /*
2500 * For keeping hierarchical_reclaim simple, how long we should retry
2501 * is depends on callers. We set our retry-count to be function
2502 * of # of children which we should visit in this loop.
2503 */
2504 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2505 mem_cgroup_count_children(memcg);
2506
2507 oldusage = page_counter_read(&memcg->memory);
2508
2509 do {
2510 if (signal_pending(current)) {
2511 ret = -EINTR;
2512 break;
2513 }
2514
2515 mutex_lock(&memcg_limit_mutex);
2516 if (limit > memcg->memsw.limit) {
2517 mutex_unlock(&memcg_limit_mutex);
2518 ret = -EINVAL;
2519 break;
2520 }
2521 if (limit > memcg->memory.limit)
2522 enlarge = true;
2523 ret = page_counter_limit(&memcg->memory, limit);
2524 mutex_unlock(&memcg_limit_mutex);
2525
2526 if (!ret)
2527 break;
2528
2529 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2530
2531 curusage = page_counter_read(&memcg->memory);
2532 /* Usage is reduced ? */
2533 if (curusage >= oldusage)
2534 retry_count--;
2535 else
2536 oldusage = curusage;
2537 } while (retry_count);
2538
2539 if (!ret && enlarge)
2540 memcg_oom_recover(memcg);
2541
2542 return ret;
2543 }
2544
2545 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2546 unsigned long limit)
2547 {
2548 unsigned long curusage;
2549 unsigned long oldusage;
2550 bool enlarge = false;
2551 int retry_count;
2552 int ret;
2553
2554 /* see mem_cgroup_resize_res_limit */
2555 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2556 mem_cgroup_count_children(memcg);
2557
2558 oldusage = page_counter_read(&memcg->memsw);
2559
2560 do {
2561 if (signal_pending(current)) {
2562 ret = -EINTR;
2563 break;
2564 }
2565
2566 mutex_lock(&memcg_limit_mutex);
2567 if (limit < memcg->memory.limit) {
2568 mutex_unlock(&memcg_limit_mutex);
2569 ret = -EINVAL;
2570 break;
2571 }
2572 if (limit > memcg->memsw.limit)
2573 enlarge = true;
2574 ret = page_counter_limit(&memcg->memsw, limit);
2575 mutex_unlock(&memcg_limit_mutex);
2576
2577 if (!ret)
2578 break;
2579
2580 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2581
2582 curusage = page_counter_read(&memcg->memsw);
2583 /* Usage is reduced ? */
2584 if (curusage >= oldusage)
2585 retry_count--;
2586 else
2587 oldusage = curusage;
2588 } while (retry_count);
2589
2590 if (!ret && enlarge)
2591 memcg_oom_recover(memcg);
2592
2593 return ret;
2594 }
2595
2596 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2597 gfp_t gfp_mask,
2598 unsigned long *total_scanned)
2599 {
2600 unsigned long nr_reclaimed = 0;
2601 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2602 unsigned long reclaimed;
2603 int loop = 0;
2604 struct mem_cgroup_tree_per_zone *mctz;
2605 unsigned long excess;
2606 unsigned long nr_scanned;
2607
2608 if (order > 0)
2609 return 0;
2610
2611 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2612 /*
2613 * This loop can run a while, specially if mem_cgroup's continuously
2614 * keep exceeding their soft limit and putting the system under
2615 * pressure
2616 */
2617 do {
2618 if (next_mz)
2619 mz = next_mz;
2620 else
2621 mz = mem_cgroup_largest_soft_limit_node(mctz);
2622 if (!mz)
2623 break;
2624
2625 nr_scanned = 0;
2626 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2627 gfp_mask, &nr_scanned);
2628 nr_reclaimed += reclaimed;
2629 *total_scanned += nr_scanned;
2630 spin_lock_irq(&mctz->lock);
2631 __mem_cgroup_remove_exceeded(mz, mctz);
2632
2633 /*
2634 * If we failed to reclaim anything from this memory cgroup
2635 * it is time to move on to the next cgroup
2636 */
2637 next_mz = NULL;
2638 if (!reclaimed)
2639 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2640
2641 excess = soft_limit_excess(mz->memcg);
2642 /*
2643 * One school of thought says that we should not add
2644 * back the node to the tree if reclaim returns 0.
2645 * But our reclaim could return 0, simply because due
2646 * to priority we are exposing a smaller subset of
2647 * memory to reclaim from. Consider this as a longer
2648 * term TODO.
2649 */
2650 /* If excess == 0, no tree ops */
2651 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2652 spin_unlock_irq(&mctz->lock);
2653 css_put(&mz->memcg->css);
2654 loop++;
2655 /*
2656 * Could not reclaim anything and there are no more
2657 * mem cgroups to try or we seem to be looping without
2658 * reclaiming anything.
2659 */
2660 if (!nr_reclaimed &&
2661 (next_mz == NULL ||
2662 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2663 break;
2664 } while (!nr_reclaimed);
2665 if (next_mz)
2666 css_put(&next_mz->memcg->css);
2667 return nr_reclaimed;
2668 }
2669
2670 /*
2671 * Test whether @memcg has children, dead or alive. Note that this
2672 * function doesn't care whether @memcg has use_hierarchy enabled and
2673 * returns %true if there are child csses according to the cgroup
2674 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2675 */
2676 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2677 {
2678 bool ret;
2679
2680 rcu_read_lock();
2681 ret = css_next_child(NULL, &memcg->css);
2682 rcu_read_unlock();
2683 return ret;
2684 }
2685
2686 /*
2687 * Reclaims as many pages from the given memcg as possible and moves
2688 * the rest to the parent.
2689 *
2690 * Caller is responsible for holding css reference for memcg.
2691 */
2692 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2693 {
2694 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2695
2696 /* we call try-to-free pages for make this cgroup empty */
2697 lru_add_drain_all();
2698 /* try to free all pages in this cgroup */
2699 while (nr_retries && page_counter_read(&memcg->memory)) {
2700 int progress;
2701
2702 if (signal_pending(current))
2703 return -EINTR;
2704
2705 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2706 GFP_KERNEL, true);
2707 if (!progress) {
2708 nr_retries--;
2709 /* maybe some writeback is necessary */
2710 congestion_wait(BLK_RW_ASYNC, HZ/10);
2711 }
2712
2713 }
2714
2715 return 0;
2716 }
2717
2718 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2719 char *buf, size_t nbytes,
2720 loff_t off)
2721 {
2722 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2723
2724 if (mem_cgroup_is_root(memcg))
2725 return -EINVAL;
2726 return mem_cgroup_force_empty(memcg) ?: nbytes;
2727 }
2728
2729 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2730 struct cftype *cft)
2731 {
2732 return mem_cgroup_from_css(css)->use_hierarchy;
2733 }
2734
2735 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2736 struct cftype *cft, u64 val)
2737 {
2738 int retval = 0;
2739 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2740 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2741
2742 if (memcg->use_hierarchy == val)
2743 return 0;
2744
2745 /*
2746 * If parent's use_hierarchy is set, we can't make any modifications
2747 * in the child subtrees. If it is unset, then the change can
2748 * occur, provided the current cgroup has no children.
2749 *
2750 * For the root cgroup, parent_mem is NULL, we allow value to be
2751 * set if there are no children.
2752 */
2753 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2754 (val == 1 || val == 0)) {
2755 if (!memcg_has_children(memcg))
2756 memcg->use_hierarchy = val;
2757 else
2758 retval = -EBUSY;
2759 } else
2760 retval = -EINVAL;
2761
2762 return retval;
2763 }
2764
2765 static unsigned long tree_stat(struct mem_cgroup *memcg,
2766 enum mem_cgroup_stat_index idx)
2767 {
2768 struct mem_cgroup *iter;
2769 unsigned long val = 0;
2770
2771 for_each_mem_cgroup_tree(iter, memcg)
2772 val += mem_cgroup_read_stat(iter, idx);
2773
2774 return val;
2775 }
2776
2777 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2778 {
2779 unsigned long val;
2780
2781 if (mem_cgroup_is_root(memcg)) {
2782 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2783 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2784 if (swap)
2785 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2786 } else {
2787 if (!swap)
2788 val = page_counter_read(&memcg->memory);
2789 else
2790 val = page_counter_read(&memcg->memsw);
2791 }
2792 return val;
2793 }
2794
2795 enum {
2796 RES_USAGE,
2797 RES_LIMIT,
2798 RES_MAX_USAGE,
2799 RES_FAILCNT,
2800 RES_SOFT_LIMIT,
2801 };
2802
2803 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2804 struct cftype *cft)
2805 {
2806 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2807 struct page_counter *counter;
2808
2809 switch (MEMFILE_TYPE(cft->private)) {
2810 case _MEM:
2811 counter = &memcg->memory;
2812 break;
2813 case _MEMSWAP:
2814 counter = &memcg->memsw;
2815 break;
2816 case _KMEM:
2817 counter = &memcg->kmem;
2818 break;
2819 case _TCP:
2820 counter = &memcg->tcpmem;
2821 break;
2822 default:
2823 BUG();
2824 }
2825
2826 switch (MEMFILE_ATTR(cft->private)) {
2827 case RES_USAGE:
2828 if (counter == &memcg->memory)
2829 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2830 if (counter == &memcg->memsw)
2831 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2832 return (u64)page_counter_read(counter) * PAGE_SIZE;
2833 case RES_LIMIT:
2834 return (u64)counter->limit * PAGE_SIZE;
2835 case RES_MAX_USAGE:
2836 return (u64)counter->watermark * PAGE_SIZE;
2837 case RES_FAILCNT:
2838 return counter->failcnt;
2839 case RES_SOFT_LIMIT:
2840 return (u64)memcg->soft_limit * PAGE_SIZE;
2841 default:
2842 BUG();
2843 }
2844 }
2845
2846 #ifndef CONFIG_SLOB
2847 static int memcg_online_kmem(struct mem_cgroup *memcg)
2848 {
2849 int memcg_id;
2850
2851 BUG_ON(memcg->kmemcg_id >= 0);
2852 BUG_ON(memcg->kmem_state);
2853
2854 memcg_id = memcg_alloc_cache_id();
2855 if (memcg_id < 0)
2856 return memcg_id;
2857
2858 static_branch_inc(&memcg_kmem_enabled_key);
2859 /*
2860 * A memory cgroup is considered kmem-online as soon as it gets
2861 * kmemcg_id. Setting the id after enabling static branching will
2862 * guarantee no one starts accounting before all call sites are
2863 * patched.
2864 */
2865 memcg->kmemcg_id = memcg_id;
2866 memcg->kmem_state = KMEM_ONLINE;
2867
2868 return 0;
2869 }
2870
2871 static int memcg_propagate_kmem(struct mem_cgroup *parent,
2872 struct mem_cgroup *memcg)
2873 {
2874 int ret = 0;
2875
2876 mutex_lock(&memcg_limit_mutex);
2877 /*
2878 * If the parent cgroup is not kmem-online now, it cannot be
2879 * onlined after this point, because it has at least one child
2880 * already.
2881 */
2882 if (memcg_kmem_online(parent) ||
2883 (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nokmem))
2884 ret = memcg_online_kmem(memcg);
2885 mutex_unlock(&memcg_limit_mutex);
2886 return ret;
2887 }
2888
2889 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2890 {
2891 struct cgroup_subsys_state *css;
2892 struct mem_cgroup *parent, *child;
2893 int kmemcg_id;
2894
2895 if (memcg->kmem_state != KMEM_ONLINE)
2896 return;
2897 /*
2898 * Clear the online state before clearing memcg_caches array
2899 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2900 * guarantees that no cache will be created for this cgroup
2901 * after we are done (see memcg_create_kmem_cache()).
2902 */
2903 memcg->kmem_state = KMEM_ALLOCATED;
2904
2905 memcg_deactivate_kmem_caches(memcg);
2906
2907 kmemcg_id = memcg->kmemcg_id;
2908 BUG_ON(kmemcg_id < 0);
2909
2910 parent = parent_mem_cgroup(memcg);
2911 if (!parent)
2912 parent = root_mem_cgroup;
2913
2914 /*
2915 * Change kmemcg_id of this cgroup and all its descendants to the
2916 * parent's id, and then move all entries from this cgroup's list_lrus
2917 * to ones of the parent. After we have finished, all list_lrus
2918 * corresponding to this cgroup are guaranteed to remain empty. The
2919 * ordering is imposed by list_lru_node->lock taken by
2920 * memcg_drain_all_list_lrus().
2921 */
2922 css_for_each_descendant_pre(css, &memcg->css) {
2923 child = mem_cgroup_from_css(css);
2924 BUG_ON(child->kmemcg_id != kmemcg_id);
2925 child->kmemcg_id = parent->kmemcg_id;
2926 if (!memcg->use_hierarchy)
2927 break;
2928 }
2929 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2930
2931 memcg_free_cache_id(kmemcg_id);
2932 }
2933
2934 static void memcg_free_kmem(struct mem_cgroup *memcg)
2935 {
2936 /* css_alloc() failed, offlining didn't happen */
2937 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2938 memcg_offline_kmem(memcg);
2939
2940 if (memcg->kmem_state == KMEM_ALLOCATED) {
2941 memcg_destroy_kmem_caches(memcg);
2942 static_branch_dec(&memcg_kmem_enabled_key);
2943 WARN_ON(page_counter_read(&memcg->kmem));
2944 }
2945 }
2946 #else
2947 static int memcg_propagate_kmem(struct mem_cgroup *parent, struct mem_cgroup *memcg)
2948 {
2949 return 0;
2950 }
2951 static int memcg_online_kmem(struct mem_cgroup *memcg)
2952 {
2953 return 0;
2954 }
2955 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2956 {
2957 }
2958 static void memcg_free_kmem(struct mem_cgroup *memcg)
2959 {
2960 }
2961 #endif /* !CONFIG_SLOB */
2962
2963 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2964 unsigned long limit)
2965 {
2966 int ret = 0;
2967
2968 mutex_lock(&memcg_limit_mutex);
2969 /* Top-level cgroup doesn't propagate from root */
2970 if (!memcg_kmem_online(memcg)) {
2971 if (cgroup_is_populated(memcg->css.cgroup) ||
2972 (memcg->use_hierarchy && memcg_has_children(memcg)))
2973 ret = -EBUSY;
2974 if (ret)
2975 goto out;
2976 ret = memcg_online_kmem(memcg);
2977 if (ret)
2978 goto out;
2979 }
2980 ret = page_counter_limit(&memcg->kmem, limit);
2981 out:
2982 mutex_unlock(&memcg_limit_mutex);
2983 return ret;
2984 }
2985
2986 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2987 {
2988 int ret;
2989
2990 mutex_lock(&memcg_limit_mutex);
2991
2992 ret = page_counter_limit(&memcg->tcpmem, limit);
2993 if (ret)
2994 goto out;
2995
2996 if (!memcg->tcpmem_active) {
2997 /*
2998 * The active flag needs to be written after the static_key
2999 * update. This is what guarantees that the socket activation
3000 * function is the last one to run. See sock_update_memcg() for
3001 * details, and note that we don't mark any socket as belonging
3002 * to this memcg until that flag is up.
3003 *
3004 * We need to do this, because static_keys will span multiple
3005 * sites, but we can't control their order. If we mark a socket
3006 * as accounted, but the accounting functions are not patched in
3007 * yet, we'll lose accounting.
3008 *
3009 * We never race with the readers in sock_update_memcg(),
3010 * because when this value change, the code to process it is not
3011 * patched in yet.
3012 */
3013 static_branch_inc(&memcg_sockets_enabled_key);
3014 memcg->tcpmem_active = true;
3015 }
3016 out:
3017 mutex_unlock(&memcg_limit_mutex);
3018 return ret;
3019 }
3020
3021 /*
3022 * The user of this function is...
3023 * RES_LIMIT.
3024 */
3025 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3026 char *buf, size_t nbytes, loff_t off)
3027 {
3028 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3029 unsigned long nr_pages;
3030 int ret;
3031
3032 buf = strstrip(buf);
3033 ret = page_counter_memparse(buf, "-1", &nr_pages);
3034 if (ret)
3035 return ret;
3036
3037 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3038 case RES_LIMIT:
3039 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3040 ret = -EINVAL;
3041 break;
3042 }
3043 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3044 case _MEM:
3045 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3046 break;
3047 case _MEMSWAP:
3048 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3049 break;
3050 case _KMEM:
3051 ret = memcg_update_kmem_limit(memcg, nr_pages);
3052 break;
3053 case _TCP:
3054 ret = memcg_update_tcp_limit(memcg, nr_pages);
3055 break;
3056 }
3057 break;
3058 case RES_SOFT_LIMIT:
3059 memcg->soft_limit = nr_pages;
3060 ret = 0;
3061 break;
3062 }
3063 return ret ?: nbytes;
3064 }
3065
3066 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3067 size_t nbytes, loff_t off)
3068 {
3069 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3070 struct page_counter *counter;
3071
3072 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3073 case _MEM:
3074 counter = &memcg->memory;
3075 break;
3076 case _MEMSWAP:
3077 counter = &memcg->memsw;
3078 break;
3079 case _KMEM:
3080 counter = &memcg->kmem;
3081 break;
3082 case _TCP:
3083 counter = &memcg->tcpmem;
3084 break;
3085 default:
3086 BUG();
3087 }
3088
3089 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3090 case RES_MAX_USAGE:
3091 page_counter_reset_watermark(counter);
3092 break;
3093 case RES_FAILCNT:
3094 counter->failcnt = 0;
3095 break;
3096 default:
3097 BUG();
3098 }
3099
3100 return nbytes;
3101 }
3102
3103 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3104 struct cftype *cft)
3105 {
3106 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3107 }
3108
3109 #ifdef CONFIG_MMU
3110 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3111 struct cftype *cft, u64 val)
3112 {
3113 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3114
3115 if (val & ~MOVE_MASK)
3116 return -EINVAL;
3117
3118 /*
3119 * No kind of locking is needed in here, because ->can_attach() will
3120 * check this value once in the beginning of the process, and then carry
3121 * on with stale data. This means that changes to this value will only
3122 * affect task migrations starting after the change.
3123 */
3124 memcg->move_charge_at_immigrate = val;
3125 return 0;
3126 }
3127 #else
3128 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3129 struct cftype *cft, u64 val)
3130 {
3131 return -ENOSYS;
3132 }
3133 #endif
3134
3135 #ifdef CONFIG_NUMA
3136 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3137 {
3138 struct numa_stat {
3139 const char *name;
3140 unsigned int lru_mask;
3141 };
3142
3143 static const struct numa_stat stats[] = {
3144 { "total", LRU_ALL },
3145 { "file", LRU_ALL_FILE },
3146 { "anon", LRU_ALL_ANON },
3147 { "unevictable", BIT(LRU_UNEVICTABLE) },
3148 };
3149 const struct numa_stat *stat;
3150 int nid;
3151 unsigned long nr;
3152 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3153
3154 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3155 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3156 seq_printf(m, "%s=%lu", stat->name, nr);
3157 for_each_node_state(nid, N_MEMORY) {
3158 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3159 stat->lru_mask);
3160 seq_printf(m, " N%d=%lu", nid, nr);
3161 }
3162 seq_putc(m, '\n');
3163 }
3164
3165 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3166 struct mem_cgroup *iter;
3167
3168 nr = 0;
3169 for_each_mem_cgroup_tree(iter, memcg)
3170 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3171 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3172 for_each_node_state(nid, N_MEMORY) {
3173 nr = 0;
3174 for_each_mem_cgroup_tree(iter, memcg)
3175 nr += mem_cgroup_node_nr_lru_pages(
3176 iter, nid, stat->lru_mask);
3177 seq_printf(m, " N%d=%lu", nid, nr);
3178 }
3179 seq_putc(m, '\n');
3180 }
3181
3182 return 0;
3183 }
3184 #endif /* CONFIG_NUMA */
3185
3186 static int memcg_stat_show(struct seq_file *m, void *v)
3187 {
3188 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3189 unsigned long memory, memsw;
3190 struct mem_cgroup *mi;
3191 unsigned int i;
3192
3193 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3194 MEM_CGROUP_STAT_NSTATS);
3195 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3196 MEM_CGROUP_EVENTS_NSTATS);
3197 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3198
3199 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3200 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3201 continue;
3202 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3203 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3204 }
3205
3206 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3207 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3208 mem_cgroup_read_events(memcg, i));
3209
3210 for (i = 0; i < NR_LRU_LISTS; i++)
3211 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3212 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3213
3214 /* Hierarchical information */
3215 memory = memsw = PAGE_COUNTER_MAX;
3216 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3217 memory = min(memory, mi->memory.limit);
3218 memsw = min(memsw, mi->memsw.limit);
3219 }
3220 seq_printf(m, "hierarchical_memory_limit %llu\n",
3221 (u64)memory * PAGE_SIZE);
3222 if (do_memsw_account())
3223 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3224 (u64)memsw * PAGE_SIZE);
3225
3226 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3227 unsigned long long val = 0;
3228
3229 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3230 continue;
3231 for_each_mem_cgroup_tree(mi, memcg)
3232 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3233 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3234 }
3235
3236 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3237 unsigned long long val = 0;
3238
3239 for_each_mem_cgroup_tree(mi, memcg)
3240 val += mem_cgroup_read_events(mi, i);
3241 seq_printf(m, "total_%s %llu\n",
3242 mem_cgroup_events_names[i], val);
3243 }
3244
3245 for (i = 0; i < NR_LRU_LISTS; i++) {
3246 unsigned long long val = 0;
3247
3248 for_each_mem_cgroup_tree(mi, memcg)
3249 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3250 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3251 }
3252
3253 #ifdef CONFIG_DEBUG_VM
3254 {
3255 int nid, zid;
3256 struct mem_cgroup_per_zone *mz;
3257 struct zone_reclaim_stat *rstat;
3258 unsigned long recent_rotated[2] = {0, 0};
3259 unsigned long recent_scanned[2] = {0, 0};
3260
3261 for_each_online_node(nid)
3262 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3263 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3264 rstat = &mz->lruvec.reclaim_stat;
3265
3266 recent_rotated[0] += rstat->recent_rotated[0];
3267 recent_rotated[1] += rstat->recent_rotated[1];
3268 recent_scanned[0] += rstat->recent_scanned[0];
3269 recent_scanned[1] += rstat->recent_scanned[1];
3270 }
3271 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3272 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3273 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3274 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3275 }
3276 #endif
3277
3278 return 0;
3279 }
3280
3281 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3282 struct cftype *cft)
3283 {
3284 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3285
3286 return mem_cgroup_swappiness(memcg);
3287 }
3288
3289 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3290 struct cftype *cft, u64 val)
3291 {
3292 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3293
3294 if (val > 100)
3295 return -EINVAL;
3296
3297 if (css->parent)
3298 memcg->swappiness = val;
3299 else
3300 vm_swappiness = val;
3301
3302 return 0;
3303 }
3304
3305 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3306 {
3307 struct mem_cgroup_threshold_ary *t;
3308 unsigned long usage;
3309 int i;
3310
3311 rcu_read_lock();
3312 if (!swap)
3313 t = rcu_dereference(memcg->thresholds.primary);
3314 else
3315 t = rcu_dereference(memcg->memsw_thresholds.primary);
3316
3317 if (!t)
3318 goto unlock;
3319
3320 usage = mem_cgroup_usage(memcg, swap);
3321
3322 /*
3323 * current_threshold points to threshold just below or equal to usage.
3324 * If it's not true, a threshold was crossed after last
3325 * call of __mem_cgroup_threshold().
3326 */
3327 i = t->current_threshold;
3328
3329 /*
3330 * Iterate backward over array of thresholds starting from
3331 * current_threshold and check if a threshold is crossed.
3332 * If none of thresholds below usage is crossed, we read
3333 * only one element of the array here.
3334 */
3335 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3336 eventfd_signal(t->entries[i].eventfd, 1);
3337
3338 /* i = current_threshold + 1 */
3339 i++;
3340
3341 /*
3342 * Iterate forward over array of thresholds starting from
3343 * current_threshold+1 and check if a threshold is crossed.
3344 * If none of thresholds above usage is crossed, we read
3345 * only one element of the array here.
3346 */
3347 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3348 eventfd_signal(t->entries[i].eventfd, 1);
3349
3350 /* Update current_threshold */
3351 t->current_threshold = i - 1;
3352 unlock:
3353 rcu_read_unlock();
3354 }
3355
3356 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3357 {
3358 while (memcg) {
3359 __mem_cgroup_threshold(memcg, false);
3360 if (do_memsw_account())
3361 __mem_cgroup_threshold(memcg, true);
3362
3363 memcg = parent_mem_cgroup(memcg);
3364 }
3365 }
3366
3367 static int compare_thresholds(const void *a, const void *b)
3368 {
3369 const struct mem_cgroup_threshold *_a = a;
3370 const struct mem_cgroup_threshold *_b = b;
3371
3372 if (_a->threshold > _b->threshold)
3373 return 1;
3374
3375 if (_a->threshold < _b->threshold)
3376 return -1;
3377
3378 return 0;
3379 }
3380
3381 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3382 {
3383 struct mem_cgroup_eventfd_list *ev;
3384
3385 spin_lock(&memcg_oom_lock);
3386
3387 list_for_each_entry(ev, &memcg->oom_notify, list)
3388 eventfd_signal(ev->eventfd, 1);
3389
3390 spin_unlock(&memcg_oom_lock);
3391 return 0;
3392 }
3393
3394 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3395 {
3396 struct mem_cgroup *iter;
3397
3398 for_each_mem_cgroup_tree(iter, memcg)
3399 mem_cgroup_oom_notify_cb(iter);
3400 }
3401
3402 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3403 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3404 {
3405 struct mem_cgroup_thresholds *thresholds;
3406 struct mem_cgroup_threshold_ary *new;
3407 unsigned long threshold;
3408 unsigned long usage;
3409 int i, size, ret;
3410
3411 ret = page_counter_memparse(args, "-1", &threshold);
3412 if (ret)
3413 return ret;
3414
3415 mutex_lock(&memcg->thresholds_lock);
3416
3417 if (type == _MEM) {
3418 thresholds = &memcg->thresholds;
3419 usage = mem_cgroup_usage(memcg, false);
3420 } else if (type == _MEMSWAP) {
3421 thresholds = &memcg->memsw_thresholds;
3422 usage = mem_cgroup_usage(memcg, true);
3423 } else
3424 BUG();
3425
3426 /* Check if a threshold crossed before adding a new one */
3427 if (thresholds->primary)
3428 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3429
3430 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3431
3432 /* Allocate memory for new array of thresholds */
3433 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3434 GFP_KERNEL);
3435 if (!new) {
3436 ret = -ENOMEM;
3437 goto unlock;
3438 }
3439 new->size = size;
3440
3441 /* Copy thresholds (if any) to new array */
3442 if (thresholds->primary) {
3443 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3444 sizeof(struct mem_cgroup_threshold));
3445 }
3446
3447 /* Add new threshold */
3448 new->entries[size - 1].eventfd = eventfd;
3449 new->entries[size - 1].threshold = threshold;
3450
3451 /* Sort thresholds. Registering of new threshold isn't time-critical */
3452 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3453 compare_thresholds, NULL);
3454
3455 /* Find current threshold */
3456 new->current_threshold = -1;
3457 for (i = 0; i < size; i++) {
3458 if (new->entries[i].threshold <= usage) {
3459 /*
3460 * new->current_threshold will not be used until
3461 * rcu_assign_pointer(), so it's safe to increment
3462 * it here.
3463 */
3464 ++new->current_threshold;
3465 } else
3466 break;
3467 }
3468
3469 /* Free old spare buffer and save old primary buffer as spare */
3470 kfree(thresholds->spare);
3471 thresholds->spare = thresholds->primary;
3472
3473 rcu_assign_pointer(thresholds->primary, new);
3474
3475 /* To be sure that nobody uses thresholds */
3476 synchronize_rcu();
3477
3478 unlock:
3479 mutex_unlock(&memcg->thresholds_lock);
3480
3481 return ret;
3482 }
3483
3484 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3485 struct eventfd_ctx *eventfd, const char *args)
3486 {
3487 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3488 }
3489
3490 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3491 struct eventfd_ctx *eventfd, const char *args)
3492 {
3493 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3494 }
3495
3496 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3497 struct eventfd_ctx *eventfd, enum res_type type)
3498 {
3499 struct mem_cgroup_thresholds *thresholds;
3500 struct mem_cgroup_threshold_ary *new;
3501 unsigned long usage;
3502 int i, j, size;
3503
3504 mutex_lock(&memcg->thresholds_lock);
3505
3506 if (type == _MEM) {
3507 thresholds = &memcg->thresholds;
3508 usage = mem_cgroup_usage(memcg, false);
3509 } else if (type == _MEMSWAP) {
3510 thresholds = &memcg->memsw_thresholds;
3511 usage = mem_cgroup_usage(memcg, true);
3512 } else
3513 BUG();
3514
3515 if (!thresholds->primary)
3516 goto unlock;
3517
3518 /* Check if a threshold crossed before removing */
3519 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3520
3521 /* Calculate new number of threshold */
3522 size = 0;
3523 for (i = 0; i < thresholds->primary->size; i++) {
3524 if (thresholds->primary->entries[i].eventfd != eventfd)
3525 size++;
3526 }
3527
3528 new = thresholds->spare;
3529
3530 /* Set thresholds array to NULL if we don't have thresholds */
3531 if (!size) {
3532 kfree(new);
3533 new = NULL;
3534 goto swap_buffers;
3535 }
3536
3537 new->size = size;
3538
3539 /* Copy thresholds and find current threshold */
3540 new->current_threshold = -1;
3541 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3542 if (thresholds->primary->entries[i].eventfd == eventfd)
3543 continue;
3544
3545 new->entries[j] = thresholds->primary->entries[i];
3546 if (new->entries[j].threshold <= usage) {
3547 /*
3548 * new->current_threshold will not be used
3549 * until rcu_assign_pointer(), so it's safe to increment
3550 * it here.
3551 */
3552 ++new->current_threshold;
3553 }
3554 j++;
3555 }
3556
3557 swap_buffers:
3558 /* Swap primary and spare array */
3559 thresholds->spare = thresholds->primary;
3560
3561 rcu_assign_pointer(thresholds->primary, new);
3562
3563 /* To be sure that nobody uses thresholds */
3564 synchronize_rcu();
3565
3566 /* If all events are unregistered, free the spare array */
3567 if (!new) {
3568 kfree(thresholds->spare);
3569 thresholds->spare = NULL;
3570 }
3571 unlock:
3572 mutex_unlock(&memcg->thresholds_lock);
3573 }
3574
3575 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3576 struct eventfd_ctx *eventfd)
3577 {
3578 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3579 }
3580
3581 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3582 struct eventfd_ctx *eventfd)
3583 {
3584 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3585 }
3586
3587 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3588 struct eventfd_ctx *eventfd, const char *args)
3589 {
3590 struct mem_cgroup_eventfd_list *event;
3591
3592 event = kmalloc(sizeof(*event), GFP_KERNEL);
3593 if (!event)
3594 return -ENOMEM;
3595
3596 spin_lock(&memcg_oom_lock);
3597
3598 event->eventfd = eventfd;
3599 list_add(&event->list, &memcg->oom_notify);
3600
3601 /* already in OOM ? */
3602 if (memcg->under_oom)
3603 eventfd_signal(eventfd, 1);
3604 spin_unlock(&memcg_oom_lock);
3605
3606 return 0;
3607 }
3608
3609 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3610 struct eventfd_ctx *eventfd)
3611 {
3612 struct mem_cgroup_eventfd_list *ev, *tmp;
3613
3614 spin_lock(&memcg_oom_lock);
3615
3616 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3617 if (ev->eventfd == eventfd) {
3618 list_del(&ev->list);
3619 kfree(ev);
3620 }
3621 }
3622
3623 spin_unlock(&memcg_oom_lock);
3624 }
3625
3626 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3627 {
3628 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3629
3630 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3631 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3632 return 0;
3633 }
3634
3635 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3636 struct cftype *cft, u64 val)
3637 {
3638 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3639
3640 /* cannot set to root cgroup and only 0 and 1 are allowed */
3641 if (!css->parent || !((val == 0) || (val == 1)))
3642 return -EINVAL;
3643
3644 memcg->oom_kill_disable = val;
3645 if (!val)
3646 memcg_oom_recover(memcg);
3647
3648 return 0;
3649 }
3650
3651 #ifdef CONFIG_CGROUP_WRITEBACK
3652
3653 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3654 {
3655 return &memcg->cgwb_list;
3656 }
3657
3658 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3659 {
3660 return wb_domain_init(&memcg->cgwb_domain, gfp);
3661 }
3662
3663 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3664 {
3665 wb_domain_exit(&memcg->cgwb_domain);
3666 }
3667
3668 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3669 {
3670 wb_domain_size_changed(&memcg->cgwb_domain);
3671 }
3672
3673 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3674 {
3675 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3676
3677 if (!memcg->css.parent)
3678 return NULL;
3679
3680 return &memcg->cgwb_domain;
3681 }
3682
3683 /**
3684 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3685 * @wb: bdi_writeback in question
3686 * @pfilepages: out parameter for number of file pages
3687 * @pheadroom: out parameter for number of allocatable pages according to memcg
3688 * @pdirty: out parameter for number of dirty pages
3689 * @pwriteback: out parameter for number of pages under writeback
3690 *
3691 * Determine the numbers of file, headroom, dirty, and writeback pages in
3692 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3693 * is a bit more involved.
3694 *
3695 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3696 * headroom is calculated as the lowest headroom of itself and the
3697 * ancestors. Note that this doesn't consider the actual amount of
3698 * available memory in the system. The caller should further cap
3699 * *@pheadroom accordingly.
3700 */
3701 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3702 unsigned long *pheadroom, unsigned long *pdirty,
3703 unsigned long *pwriteback)
3704 {
3705 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3706 struct mem_cgroup *parent;
3707
3708 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3709
3710 /* this should eventually include NR_UNSTABLE_NFS */
3711 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3712 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3713 (1 << LRU_ACTIVE_FILE));
3714 *pheadroom = PAGE_COUNTER_MAX;
3715
3716 while ((parent = parent_mem_cgroup(memcg))) {
3717 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3718 unsigned long used = page_counter_read(&memcg->memory);
3719
3720 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3721 memcg = parent;
3722 }
3723 }
3724
3725 #else /* CONFIG_CGROUP_WRITEBACK */
3726
3727 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3728 {
3729 return 0;
3730 }
3731
3732 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3733 {
3734 }
3735
3736 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3737 {
3738 }
3739
3740 #endif /* CONFIG_CGROUP_WRITEBACK */
3741
3742 /*
3743 * DO NOT USE IN NEW FILES.
3744 *
3745 * "cgroup.event_control" implementation.
3746 *
3747 * This is way over-engineered. It tries to support fully configurable
3748 * events for each user. Such level of flexibility is completely
3749 * unnecessary especially in the light of the planned unified hierarchy.
3750 *
3751 * Please deprecate this and replace with something simpler if at all
3752 * possible.
3753 */
3754
3755 /*
3756 * Unregister event and free resources.
3757 *
3758 * Gets called from workqueue.
3759 */
3760 static void memcg_event_remove(struct work_struct *work)
3761 {
3762 struct mem_cgroup_event *event =
3763 container_of(work, struct mem_cgroup_event, remove);
3764 struct mem_cgroup *memcg = event->memcg;
3765
3766 remove_wait_queue(event->wqh, &event->wait);
3767
3768 event->unregister_event(memcg, event->eventfd);
3769
3770 /* Notify userspace the event is going away. */
3771 eventfd_signal(event->eventfd, 1);
3772
3773 eventfd_ctx_put(event->eventfd);
3774 kfree(event);
3775 css_put(&memcg->css);
3776 }
3777
3778 /*
3779 * Gets called on POLLHUP on eventfd when user closes it.
3780 *
3781 * Called with wqh->lock held and interrupts disabled.
3782 */
3783 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3784 int sync, void *key)
3785 {
3786 struct mem_cgroup_event *event =
3787 container_of(wait, struct mem_cgroup_event, wait);
3788 struct mem_cgroup *memcg = event->memcg;
3789 unsigned long flags = (unsigned long)key;
3790
3791 if (flags & POLLHUP) {
3792 /*
3793 * If the event has been detached at cgroup removal, we
3794 * can simply return knowing the other side will cleanup
3795 * for us.
3796 *
3797 * We can't race against event freeing since the other
3798 * side will require wqh->lock via remove_wait_queue(),
3799 * which we hold.
3800 */
3801 spin_lock(&memcg->event_list_lock);
3802 if (!list_empty(&event->list)) {
3803 list_del_init(&event->list);
3804 /*
3805 * We are in atomic context, but cgroup_event_remove()
3806 * may sleep, so we have to call it in workqueue.
3807 */
3808 schedule_work(&event->remove);
3809 }
3810 spin_unlock(&memcg->event_list_lock);
3811 }
3812
3813 return 0;
3814 }
3815
3816 static void memcg_event_ptable_queue_proc(struct file *file,
3817 wait_queue_head_t *wqh, poll_table *pt)
3818 {
3819 struct mem_cgroup_event *event =
3820 container_of(pt, struct mem_cgroup_event, pt);
3821
3822 event->wqh = wqh;
3823 add_wait_queue(wqh, &event->wait);
3824 }
3825
3826 /*
3827 * DO NOT USE IN NEW FILES.
3828 *
3829 * Parse input and register new cgroup event handler.
3830 *
3831 * Input must be in format '<event_fd> <control_fd> <args>'.
3832 * Interpretation of args is defined by control file implementation.
3833 */
3834 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3835 char *buf, size_t nbytes, loff_t off)
3836 {
3837 struct cgroup_subsys_state *css = of_css(of);
3838 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3839 struct mem_cgroup_event *event;
3840 struct cgroup_subsys_state *cfile_css;
3841 unsigned int efd, cfd;
3842 struct fd efile;
3843 struct fd cfile;
3844 const char *name;
3845 char *endp;
3846 int ret;
3847
3848 buf = strstrip(buf);
3849
3850 efd = simple_strtoul(buf, &endp, 10);
3851 if (*endp != ' ')
3852 return -EINVAL;
3853 buf = endp + 1;
3854
3855 cfd = simple_strtoul(buf, &endp, 10);
3856 if ((*endp != ' ') && (*endp != '\0'))
3857 return -EINVAL;
3858 buf = endp + 1;
3859
3860 event = kzalloc(sizeof(*event), GFP_KERNEL);
3861 if (!event)
3862 return -ENOMEM;
3863
3864 event->memcg = memcg;
3865 INIT_LIST_HEAD(&event->list);
3866 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3867 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3868 INIT_WORK(&event->remove, memcg_event_remove);
3869
3870 efile = fdget(efd);
3871 if (!efile.file) {
3872 ret = -EBADF;
3873 goto out_kfree;
3874 }
3875
3876 event->eventfd = eventfd_ctx_fileget(efile.file);
3877 if (IS_ERR(event->eventfd)) {
3878 ret = PTR_ERR(event->eventfd);
3879 goto out_put_efile;
3880 }
3881
3882 cfile = fdget(cfd);
3883 if (!cfile.file) {
3884 ret = -EBADF;
3885 goto out_put_eventfd;
3886 }
3887
3888 /* the process need read permission on control file */
3889 /* AV: shouldn't we check that it's been opened for read instead? */
3890 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3891 if (ret < 0)
3892 goto out_put_cfile;
3893
3894 /*
3895 * Determine the event callbacks and set them in @event. This used
3896 * to be done via struct cftype but cgroup core no longer knows
3897 * about these events. The following is crude but the whole thing
3898 * is for compatibility anyway.
3899 *
3900 * DO NOT ADD NEW FILES.
3901 */
3902 name = cfile.file->f_path.dentry->d_name.name;
3903
3904 if (!strcmp(name, "memory.usage_in_bytes")) {
3905 event->register_event = mem_cgroup_usage_register_event;
3906 event->unregister_event = mem_cgroup_usage_unregister_event;
3907 } else if (!strcmp(name, "memory.oom_control")) {
3908 event->register_event = mem_cgroup_oom_register_event;
3909 event->unregister_event = mem_cgroup_oom_unregister_event;
3910 } else if (!strcmp(name, "memory.pressure_level")) {
3911 event->register_event = vmpressure_register_event;
3912 event->unregister_event = vmpressure_unregister_event;
3913 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3914 event->register_event = memsw_cgroup_usage_register_event;
3915 event->unregister_event = memsw_cgroup_usage_unregister_event;
3916 } else {
3917 ret = -EINVAL;
3918 goto out_put_cfile;
3919 }
3920
3921 /*
3922 * Verify @cfile should belong to @css. Also, remaining events are
3923 * automatically removed on cgroup destruction but the removal is
3924 * asynchronous, so take an extra ref on @css.
3925 */
3926 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3927 &memory_cgrp_subsys);
3928 ret = -EINVAL;
3929 if (IS_ERR(cfile_css))
3930 goto out_put_cfile;
3931 if (cfile_css != css) {
3932 css_put(cfile_css);
3933 goto out_put_cfile;
3934 }
3935
3936 ret = event->register_event(memcg, event->eventfd, buf);
3937 if (ret)
3938 goto out_put_css;
3939
3940 efile.file->f_op->poll(efile.file, &event->pt);
3941
3942 spin_lock(&memcg->event_list_lock);
3943 list_add(&event->list, &memcg->event_list);
3944 spin_unlock(&memcg->event_list_lock);
3945
3946 fdput(cfile);
3947 fdput(efile);
3948
3949 return nbytes;
3950
3951 out_put_css:
3952 css_put(css);
3953 out_put_cfile:
3954 fdput(cfile);
3955 out_put_eventfd:
3956 eventfd_ctx_put(event->eventfd);
3957 out_put_efile:
3958 fdput(efile);
3959 out_kfree:
3960 kfree(event);
3961
3962 return ret;
3963 }
3964
3965 static struct cftype mem_cgroup_legacy_files[] = {
3966 {
3967 .name = "usage_in_bytes",
3968 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3969 .read_u64 = mem_cgroup_read_u64,
3970 },
3971 {
3972 .name = "max_usage_in_bytes",
3973 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3974 .write = mem_cgroup_reset,
3975 .read_u64 = mem_cgroup_read_u64,
3976 },
3977 {
3978 .name = "limit_in_bytes",
3979 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3980 .write = mem_cgroup_write,
3981 .read_u64 = mem_cgroup_read_u64,
3982 },
3983 {
3984 .name = "soft_limit_in_bytes",
3985 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3986 .write = mem_cgroup_write,
3987 .read_u64 = mem_cgroup_read_u64,
3988 },
3989 {
3990 .name = "failcnt",
3991 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3992 .write = mem_cgroup_reset,
3993 .read_u64 = mem_cgroup_read_u64,
3994 },
3995 {
3996 .name = "stat",
3997 .seq_show = memcg_stat_show,
3998 },
3999 {
4000 .name = "force_empty",
4001 .write = mem_cgroup_force_empty_write,
4002 },
4003 {
4004 .name = "use_hierarchy",
4005 .write_u64 = mem_cgroup_hierarchy_write,
4006 .read_u64 = mem_cgroup_hierarchy_read,
4007 },
4008 {
4009 .name = "cgroup.event_control", /* XXX: for compat */
4010 .write = memcg_write_event_control,
4011 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4012 },
4013 {
4014 .name = "swappiness",
4015 .read_u64 = mem_cgroup_swappiness_read,
4016 .write_u64 = mem_cgroup_swappiness_write,
4017 },
4018 {
4019 .name = "move_charge_at_immigrate",
4020 .read_u64 = mem_cgroup_move_charge_read,
4021 .write_u64 = mem_cgroup_move_charge_write,
4022 },
4023 {
4024 .name = "oom_control",
4025 .seq_show = mem_cgroup_oom_control_read,
4026 .write_u64 = mem_cgroup_oom_control_write,
4027 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4028 },
4029 {
4030 .name = "pressure_level",
4031 },
4032 #ifdef CONFIG_NUMA
4033 {
4034 .name = "numa_stat",
4035 .seq_show = memcg_numa_stat_show,
4036 },
4037 #endif
4038 {
4039 .name = "kmem.limit_in_bytes",
4040 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4041 .write = mem_cgroup_write,
4042 .read_u64 = mem_cgroup_read_u64,
4043 },
4044 {
4045 .name = "kmem.usage_in_bytes",
4046 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4047 .read_u64 = mem_cgroup_read_u64,
4048 },
4049 {
4050 .name = "kmem.failcnt",
4051 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4052 .write = mem_cgroup_reset,
4053 .read_u64 = mem_cgroup_read_u64,
4054 },
4055 {
4056 .name = "kmem.max_usage_in_bytes",
4057 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4058 .write = mem_cgroup_reset,
4059 .read_u64 = mem_cgroup_read_u64,
4060 },
4061 #ifdef CONFIG_SLABINFO
4062 {
4063 .name = "kmem.slabinfo",
4064 .seq_start = slab_start,
4065 .seq_next = slab_next,
4066 .seq_stop = slab_stop,
4067 .seq_show = memcg_slab_show,
4068 },
4069 #endif
4070 {
4071 .name = "kmem.tcp.limit_in_bytes",
4072 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4073 .write = mem_cgroup_write,
4074 .read_u64 = mem_cgroup_read_u64,
4075 },
4076 {
4077 .name = "kmem.tcp.usage_in_bytes",
4078 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4079 .read_u64 = mem_cgroup_read_u64,
4080 },
4081 {
4082 .name = "kmem.tcp.failcnt",
4083 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4084 .write = mem_cgroup_reset,
4085 .read_u64 = mem_cgroup_read_u64,
4086 },
4087 {
4088 .name = "kmem.tcp.max_usage_in_bytes",
4089 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4090 .write = mem_cgroup_reset,
4091 .read_u64 = mem_cgroup_read_u64,
4092 },
4093 { }, /* terminate */
4094 };
4095
4096 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4097 {
4098 struct mem_cgroup_per_node *pn;
4099 struct mem_cgroup_per_zone *mz;
4100 int zone, tmp = node;
4101 /*
4102 * This routine is called against possible nodes.
4103 * But it's BUG to call kmalloc() against offline node.
4104 *
4105 * TODO: this routine can waste much memory for nodes which will
4106 * never be onlined. It's better to use memory hotplug callback
4107 * function.
4108 */
4109 if (!node_state(node, N_NORMAL_MEMORY))
4110 tmp = -1;
4111 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4112 if (!pn)
4113 return 1;
4114
4115 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4116 mz = &pn->zoneinfo[zone];
4117 lruvec_init(&mz->lruvec);
4118 mz->usage_in_excess = 0;
4119 mz->on_tree = false;
4120 mz->memcg = memcg;
4121 }
4122 memcg->nodeinfo[node] = pn;
4123 return 0;
4124 }
4125
4126 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4127 {
4128 kfree(memcg->nodeinfo[node]);
4129 }
4130
4131 static void mem_cgroup_free(struct mem_cgroup *memcg)
4132 {
4133 int node;
4134
4135 memcg_wb_domain_exit(memcg);
4136 for_each_node(node)
4137 free_mem_cgroup_per_zone_info(memcg, node);
4138 free_percpu(memcg->stat);
4139 kfree(memcg);
4140 }
4141
4142 static struct mem_cgroup *mem_cgroup_alloc(void)
4143 {
4144 struct mem_cgroup *memcg;
4145 size_t size;
4146 int node;
4147
4148 size = sizeof(struct mem_cgroup);
4149 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4150
4151 memcg = kzalloc(size, GFP_KERNEL);
4152 if (!memcg)
4153 return NULL;
4154
4155 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4156 if (!memcg->stat)
4157 goto fail;
4158
4159 for_each_node(node)
4160 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4161 goto fail;
4162
4163 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4164 goto fail;
4165
4166 INIT_WORK(&memcg->high_work, high_work_func);
4167 memcg->last_scanned_node = MAX_NUMNODES;
4168 INIT_LIST_HEAD(&memcg->oom_notify);
4169 mutex_init(&memcg->thresholds_lock);
4170 spin_lock_init(&memcg->move_lock);
4171 vmpressure_init(&memcg->vmpressure);
4172 INIT_LIST_HEAD(&memcg->event_list);
4173 spin_lock_init(&memcg->event_list_lock);
4174 memcg->socket_pressure = jiffies;
4175 #ifndef CONFIG_SLOB
4176 memcg->kmemcg_id = -1;
4177 #endif
4178 #ifdef CONFIG_CGROUP_WRITEBACK
4179 INIT_LIST_HEAD(&memcg->cgwb_list);
4180 #endif
4181 return memcg;
4182 fail:
4183 mem_cgroup_free(memcg);
4184 return NULL;
4185 }
4186
4187 static struct cgroup_subsys_state * __ref
4188 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4189 {
4190 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4191 struct mem_cgroup *memcg;
4192 long error = -ENOMEM;
4193
4194 memcg = mem_cgroup_alloc();
4195 if (!memcg)
4196 return ERR_PTR(error);
4197
4198 memcg->high = PAGE_COUNTER_MAX;
4199 memcg->soft_limit = PAGE_COUNTER_MAX;
4200 if (parent) {
4201 memcg->swappiness = mem_cgroup_swappiness(parent);
4202 memcg->oom_kill_disable = parent->oom_kill_disable;
4203 }
4204 if (parent && parent->use_hierarchy) {
4205 memcg->use_hierarchy = true;
4206 page_counter_init(&memcg->memory, &parent->memory);
4207 page_counter_init(&memcg->swap, &parent->swap);
4208 page_counter_init(&memcg->memsw, &parent->memsw);
4209 page_counter_init(&memcg->kmem, &parent->kmem);
4210 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4211 } else {
4212 page_counter_init(&memcg->memory, NULL);
4213 page_counter_init(&memcg->swap, NULL);
4214 page_counter_init(&memcg->memsw, NULL);
4215 page_counter_init(&memcg->kmem, NULL);
4216 page_counter_init(&memcg->tcpmem, NULL);
4217 /*
4218 * Deeper hierachy with use_hierarchy == false doesn't make
4219 * much sense so let cgroup subsystem know about this
4220 * unfortunate state in our controller.
4221 */
4222 if (parent != root_mem_cgroup)
4223 memory_cgrp_subsys.broken_hierarchy = true;
4224 }
4225
4226 /* The following stuff does not apply to the root */
4227 if (!parent) {
4228 root_mem_cgroup = memcg;
4229 return &memcg->css;
4230 }
4231
4232 error = memcg_propagate_kmem(parent, memcg);
4233 if (error)
4234 goto fail;
4235
4236 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4237 static_branch_inc(&memcg_sockets_enabled_key);
4238
4239 return &memcg->css;
4240 fail:
4241 mem_cgroup_free(memcg);
4242 return NULL;
4243 }
4244
4245 static int
4246 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4247 {
4248 if (css->id > MEM_CGROUP_ID_MAX)
4249 return -ENOSPC;
4250
4251 return 0;
4252 }
4253
4254 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4255 {
4256 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4257 struct mem_cgroup_event *event, *tmp;
4258
4259 /*
4260 * Unregister events and notify userspace.
4261 * Notify userspace about cgroup removing only after rmdir of cgroup
4262 * directory to avoid race between userspace and kernelspace.
4263 */
4264 spin_lock(&memcg->event_list_lock);
4265 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4266 list_del_init(&event->list);
4267 schedule_work(&event->remove);
4268 }
4269 spin_unlock(&memcg->event_list_lock);
4270
4271 memcg_offline_kmem(memcg);
4272 wb_memcg_offline(memcg);
4273 }
4274
4275 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4276 {
4277 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4278
4279 invalidate_reclaim_iterators(memcg);
4280 }
4281
4282 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4283 {
4284 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4285
4286 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4287 static_branch_dec(&memcg_sockets_enabled_key);
4288
4289 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4290 static_branch_dec(&memcg_sockets_enabled_key);
4291
4292 vmpressure_cleanup(&memcg->vmpressure);
4293 cancel_work_sync(&memcg->high_work);
4294 mem_cgroup_remove_from_trees(memcg);
4295 memcg_free_kmem(memcg);
4296 mem_cgroup_free(memcg);
4297 }
4298
4299 /**
4300 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4301 * @css: the target css
4302 *
4303 * Reset the states of the mem_cgroup associated with @css. This is
4304 * invoked when the userland requests disabling on the default hierarchy
4305 * but the memcg is pinned through dependency. The memcg should stop
4306 * applying policies and should revert to the vanilla state as it may be
4307 * made visible again.
4308 *
4309 * The current implementation only resets the essential configurations.
4310 * This needs to be expanded to cover all the visible parts.
4311 */
4312 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4313 {
4314 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4315
4316 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4317 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4318 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4319 memcg->low = 0;
4320 memcg->high = PAGE_COUNTER_MAX;
4321 memcg->soft_limit = PAGE_COUNTER_MAX;
4322 memcg_wb_domain_size_changed(memcg);
4323 }
4324
4325 #ifdef CONFIG_MMU
4326 /* Handlers for move charge at task migration. */
4327 static int mem_cgroup_do_precharge(unsigned long count)
4328 {
4329 int ret;
4330
4331 /* Try a single bulk charge without reclaim first, kswapd may wake */
4332 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4333 if (!ret) {
4334 mc.precharge += count;
4335 return ret;
4336 }
4337
4338 /* Try charges one by one with reclaim */
4339 while (count--) {
4340 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4341 if (ret)
4342 return ret;
4343 mc.precharge++;
4344 cond_resched();
4345 }
4346 return 0;
4347 }
4348
4349 /**
4350 * get_mctgt_type - get target type of moving charge
4351 * @vma: the vma the pte to be checked belongs
4352 * @addr: the address corresponding to the pte to be checked
4353 * @ptent: the pte to be checked
4354 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4355 *
4356 * Returns
4357 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4358 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4359 * move charge. if @target is not NULL, the page is stored in target->page
4360 * with extra refcnt got(Callers should handle it).
4361 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4362 * target for charge migration. if @target is not NULL, the entry is stored
4363 * in target->ent.
4364 *
4365 * Called with pte lock held.
4366 */
4367 union mc_target {
4368 struct page *page;
4369 swp_entry_t ent;
4370 };
4371
4372 enum mc_target_type {
4373 MC_TARGET_NONE = 0,
4374 MC_TARGET_PAGE,
4375 MC_TARGET_SWAP,
4376 };
4377
4378 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4379 unsigned long addr, pte_t ptent)
4380 {
4381 struct page *page = vm_normal_page(vma, addr, ptent);
4382
4383 if (!page || !page_mapped(page))
4384 return NULL;
4385 if (PageAnon(page)) {
4386 if (!(mc.flags & MOVE_ANON))
4387 return NULL;
4388 } else {
4389 if (!(mc.flags & MOVE_FILE))
4390 return NULL;
4391 }
4392 if (!get_page_unless_zero(page))
4393 return NULL;
4394
4395 return page;
4396 }
4397
4398 #ifdef CONFIG_SWAP
4399 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4400 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4401 {
4402 struct page *page = NULL;
4403 swp_entry_t ent = pte_to_swp_entry(ptent);
4404
4405 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4406 return NULL;
4407 /*
4408 * Because lookup_swap_cache() updates some statistics counter,
4409 * we call find_get_page() with swapper_space directly.
4410 */
4411 page = find_get_page(swap_address_space(ent), ent.val);
4412 if (do_memsw_account())
4413 entry->val = ent.val;
4414
4415 return page;
4416 }
4417 #else
4418 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4419 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4420 {
4421 return NULL;
4422 }
4423 #endif
4424
4425 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4426 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4427 {
4428 struct page *page = NULL;
4429 struct address_space *mapping;
4430 pgoff_t pgoff;
4431
4432 if (!vma->vm_file) /* anonymous vma */
4433 return NULL;
4434 if (!(mc.flags & MOVE_FILE))
4435 return NULL;
4436
4437 mapping = vma->vm_file->f_mapping;
4438 pgoff = linear_page_index(vma, addr);
4439
4440 /* page is moved even if it's not RSS of this task(page-faulted). */
4441 #ifdef CONFIG_SWAP
4442 /* shmem/tmpfs may report page out on swap: account for that too. */
4443 if (shmem_mapping(mapping)) {
4444 page = find_get_entry(mapping, pgoff);
4445 if (radix_tree_exceptional_entry(page)) {
4446 swp_entry_t swp = radix_to_swp_entry(page);
4447 if (do_memsw_account())
4448 *entry = swp;
4449 page = find_get_page(swap_address_space(swp), swp.val);
4450 }
4451 } else
4452 page = find_get_page(mapping, pgoff);
4453 #else
4454 page = find_get_page(mapping, pgoff);
4455 #endif
4456 return page;
4457 }
4458
4459 /**
4460 * mem_cgroup_move_account - move account of the page
4461 * @page: the page
4462 * @nr_pages: number of regular pages (>1 for huge pages)
4463 * @from: mem_cgroup which the page is moved from.
4464 * @to: mem_cgroup which the page is moved to. @from != @to.
4465 *
4466 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4467 *
4468 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4469 * from old cgroup.
4470 */
4471 static int mem_cgroup_move_account(struct page *page,
4472 bool compound,
4473 struct mem_cgroup *from,
4474 struct mem_cgroup *to)
4475 {
4476 unsigned long flags;
4477 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4478 int ret;
4479 bool anon;
4480
4481 VM_BUG_ON(from == to);
4482 VM_BUG_ON_PAGE(PageLRU(page), page);
4483 VM_BUG_ON(compound && !PageTransHuge(page));
4484
4485 /*
4486 * Prevent mem_cgroup_replace_page() from looking at
4487 * page->mem_cgroup of its source page while we change it.
4488 */
4489 ret = -EBUSY;
4490 if (!trylock_page(page))
4491 goto out;
4492
4493 ret = -EINVAL;
4494 if (page->mem_cgroup != from)
4495 goto out_unlock;
4496
4497 anon = PageAnon(page);
4498
4499 spin_lock_irqsave(&from->move_lock, flags);
4500
4501 if (!anon && page_mapped(page)) {
4502 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4503 nr_pages);
4504 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4505 nr_pages);
4506 }
4507
4508 /*
4509 * move_lock grabbed above and caller set from->moving_account, so
4510 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4511 * So mapping should be stable for dirty pages.
4512 */
4513 if (!anon && PageDirty(page)) {
4514 struct address_space *mapping = page_mapping(page);
4515
4516 if (mapping_cap_account_dirty(mapping)) {
4517 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4518 nr_pages);
4519 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4520 nr_pages);
4521 }
4522 }
4523
4524 if (PageWriteback(page)) {
4525 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4526 nr_pages);
4527 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4528 nr_pages);
4529 }
4530
4531 /*
4532 * It is safe to change page->mem_cgroup here because the page
4533 * is referenced, charged, and isolated - we can't race with
4534 * uncharging, charging, migration, or LRU putback.
4535 */
4536
4537 /* caller should have done css_get */
4538 page->mem_cgroup = to;
4539 spin_unlock_irqrestore(&from->move_lock, flags);
4540
4541 ret = 0;
4542
4543 local_irq_disable();
4544 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4545 memcg_check_events(to, page);
4546 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4547 memcg_check_events(from, page);
4548 local_irq_enable();
4549 out_unlock:
4550 unlock_page(page);
4551 out:
4552 return ret;
4553 }
4554
4555 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4556 unsigned long addr, pte_t ptent, union mc_target *target)
4557 {
4558 struct page *page = NULL;
4559 enum mc_target_type ret = MC_TARGET_NONE;
4560 swp_entry_t ent = { .val = 0 };
4561
4562 if (pte_present(ptent))
4563 page = mc_handle_present_pte(vma, addr, ptent);
4564 else if (is_swap_pte(ptent))
4565 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4566 else if (pte_none(ptent))
4567 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4568
4569 if (!page && !ent.val)
4570 return ret;
4571 if (page) {
4572 /*
4573 * Do only loose check w/o serialization.
4574 * mem_cgroup_move_account() checks the page is valid or
4575 * not under LRU exclusion.
4576 */
4577 if (page->mem_cgroup == mc.from) {
4578 ret = MC_TARGET_PAGE;
4579 if (target)
4580 target->page = page;
4581 }
4582 if (!ret || !target)
4583 put_page(page);
4584 }
4585 /* There is a swap entry and a page doesn't exist or isn't charged */
4586 if (ent.val && !ret &&
4587 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4588 ret = MC_TARGET_SWAP;
4589 if (target)
4590 target->ent = ent;
4591 }
4592 return ret;
4593 }
4594
4595 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4596 /*
4597 * We don't consider swapping or file mapped pages because THP does not
4598 * support them for now.
4599 * Caller should make sure that pmd_trans_huge(pmd) is true.
4600 */
4601 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4602 unsigned long addr, pmd_t pmd, union mc_target *target)
4603 {
4604 struct page *page = NULL;
4605 enum mc_target_type ret = MC_TARGET_NONE;
4606
4607 page = pmd_page(pmd);
4608 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4609 if (!(mc.flags & MOVE_ANON))
4610 return ret;
4611 if (page->mem_cgroup == mc.from) {
4612 ret = MC_TARGET_PAGE;
4613 if (target) {
4614 get_page(page);
4615 target->page = page;
4616 }
4617 }
4618 return ret;
4619 }
4620 #else
4621 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4622 unsigned long addr, pmd_t pmd, union mc_target *target)
4623 {
4624 return MC_TARGET_NONE;
4625 }
4626 #endif
4627
4628 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4629 unsigned long addr, unsigned long end,
4630 struct mm_walk *walk)
4631 {
4632 struct vm_area_struct *vma = walk->vma;
4633 pte_t *pte;
4634 spinlock_t *ptl;
4635
4636 if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
4637 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4638 mc.precharge += HPAGE_PMD_NR;
4639 spin_unlock(ptl);
4640 return 0;
4641 }
4642
4643 if (pmd_trans_unstable(pmd))
4644 return 0;
4645 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4646 for (; addr != end; pte++, addr += PAGE_SIZE)
4647 if (get_mctgt_type(vma, addr, *pte, NULL))
4648 mc.precharge++; /* increment precharge temporarily */
4649 pte_unmap_unlock(pte - 1, ptl);
4650 cond_resched();
4651
4652 return 0;
4653 }
4654
4655 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4656 {
4657 unsigned long precharge;
4658
4659 struct mm_walk mem_cgroup_count_precharge_walk = {
4660 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4661 .mm = mm,
4662 };
4663 down_read(&mm->mmap_sem);
4664 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4665 up_read(&mm->mmap_sem);
4666
4667 precharge = mc.precharge;
4668 mc.precharge = 0;
4669
4670 return precharge;
4671 }
4672
4673 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4674 {
4675 unsigned long precharge = mem_cgroup_count_precharge(mm);
4676
4677 VM_BUG_ON(mc.moving_task);
4678 mc.moving_task = current;
4679 return mem_cgroup_do_precharge(precharge);
4680 }
4681
4682 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4683 static void __mem_cgroup_clear_mc(void)
4684 {
4685 struct mem_cgroup *from = mc.from;
4686 struct mem_cgroup *to = mc.to;
4687
4688 /* we must uncharge all the leftover precharges from mc.to */
4689 if (mc.precharge) {
4690 cancel_charge(mc.to, mc.precharge);
4691 mc.precharge = 0;
4692 }
4693 /*
4694 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4695 * we must uncharge here.
4696 */
4697 if (mc.moved_charge) {
4698 cancel_charge(mc.from, mc.moved_charge);
4699 mc.moved_charge = 0;
4700 }
4701 /* we must fixup refcnts and charges */
4702 if (mc.moved_swap) {
4703 /* uncharge swap account from the old cgroup */
4704 if (!mem_cgroup_is_root(mc.from))
4705 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4706
4707 /*
4708 * we charged both to->memory and to->memsw, so we
4709 * should uncharge to->memory.
4710 */
4711 if (!mem_cgroup_is_root(mc.to))
4712 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4713
4714 css_put_many(&mc.from->css, mc.moved_swap);
4715
4716 /* we've already done css_get(mc.to) */
4717 mc.moved_swap = 0;
4718 }
4719 memcg_oom_recover(from);
4720 memcg_oom_recover(to);
4721 wake_up_all(&mc.waitq);
4722 }
4723
4724 static void mem_cgroup_clear_mc(void)
4725 {
4726 /*
4727 * we must clear moving_task before waking up waiters at the end of
4728 * task migration.
4729 */
4730 mc.moving_task = NULL;
4731 __mem_cgroup_clear_mc();
4732 spin_lock(&mc.lock);
4733 mc.from = NULL;
4734 mc.to = NULL;
4735 spin_unlock(&mc.lock);
4736 }
4737
4738 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4739 {
4740 struct cgroup_subsys_state *css;
4741 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4742 struct mem_cgroup *from;
4743 struct task_struct *leader, *p;
4744 struct mm_struct *mm;
4745 unsigned long move_flags;
4746 int ret = 0;
4747
4748 /* charge immigration isn't supported on the default hierarchy */
4749 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4750 return 0;
4751
4752 /*
4753 * Multi-process migrations only happen on the default hierarchy
4754 * where charge immigration is not used. Perform charge
4755 * immigration if @tset contains a leader and whine if there are
4756 * multiple.
4757 */
4758 p = NULL;
4759 cgroup_taskset_for_each_leader(leader, css, tset) {
4760 WARN_ON_ONCE(p);
4761 p = leader;
4762 memcg = mem_cgroup_from_css(css);
4763 }
4764 if (!p)
4765 return 0;
4766
4767 /*
4768 * We are now commited to this value whatever it is. Changes in this
4769 * tunable will only affect upcoming migrations, not the current one.
4770 * So we need to save it, and keep it going.
4771 */
4772 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4773 if (!move_flags)
4774 return 0;
4775
4776 from = mem_cgroup_from_task(p);
4777
4778 VM_BUG_ON(from == memcg);
4779
4780 mm = get_task_mm(p);
4781 if (!mm)
4782 return 0;
4783 /* We move charges only when we move a owner of the mm */
4784 if (mm->owner == p) {
4785 VM_BUG_ON(mc.from);
4786 VM_BUG_ON(mc.to);
4787 VM_BUG_ON(mc.precharge);
4788 VM_BUG_ON(mc.moved_charge);
4789 VM_BUG_ON(mc.moved_swap);
4790
4791 spin_lock(&mc.lock);
4792 mc.from = from;
4793 mc.to = memcg;
4794 mc.flags = move_flags;
4795 spin_unlock(&mc.lock);
4796 /* We set mc.moving_task later */
4797
4798 ret = mem_cgroup_precharge_mc(mm);
4799 if (ret)
4800 mem_cgroup_clear_mc();
4801 }
4802 mmput(mm);
4803 return ret;
4804 }
4805
4806 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4807 {
4808 if (mc.to)
4809 mem_cgroup_clear_mc();
4810 }
4811
4812 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4813 unsigned long addr, unsigned long end,
4814 struct mm_walk *walk)
4815 {
4816 int ret = 0;
4817 struct vm_area_struct *vma = walk->vma;
4818 pte_t *pte;
4819 spinlock_t *ptl;
4820 enum mc_target_type target_type;
4821 union mc_target target;
4822 struct page *page;
4823
4824 if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
4825 if (mc.precharge < HPAGE_PMD_NR) {
4826 spin_unlock(ptl);
4827 return 0;
4828 }
4829 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4830 if (target_type == MC_TARGET_PAGE) {
4831 page = target.page;
4832 if (!isolate_lru_page(page)) {
4833 if (!mem_cgroup_move_account(page, true,
4834 mc.from, mc.to)) {
4835 mc.precharge -= HPAGE_PMD_NR;
4836 mc.moved_charge += HPAGE_PMD_NR;
4837 }
4838 putback_lru_page(page);
4839 }
4840 put_page(page);
4841 }
4842 spin_unlock(ptl);
4843 return 0;
4844 }
4845
4846 if (pmd_trans_unstable(pmd))
4847 return 0;
4848 retry:
4849 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4850 for (; addr != end; addr += PAGE_SIZE) {
4851 pte_t ptent = *(pte++);
4852 swp_entry_t ent;
4853
4854 if (!mc.precharge)
4855 break;
4856
4857 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4858 case MC_TARGET_PAGE:
4859 page = target.page;
4860 /*
4861 * We can have a part of the split pmd here. Moving it
4862 * can be done but it would be too convoluted so simply
4863 * ignore such a partial THP and keep it in original
4864 * memcg. There should be somebody mapping the head.
4865 */
4866 if (PageTransCompound(page))
4867 goto put;
4868 if (isolate_lru_page(page))
4869 goto put;
4870 if (!mem_cgroup_move_account(page, false,
4871 mc.from, mc.to)) {
4872 mc.precharge--;
4873 /* we uncharge from mc.from later. */
4874 mc.moved_charge++;
4875 }
4876 putback_lru_page(page);
4877 put: /* get_mctgt_type() gets the page */
4878 put_page(page);
4879 break;
4880 case MC_TARGET_SWAP:
4881 ent = target.ent;
4882 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4883 mc.precharge--;
4884 /* we fixup refcnts and charges later. */
4885 mc.moved_swap++;
4886 }
4887 break;
4888 default:
4889 break;
4890 }
4891 }
4892 pte_unmap_unlock(pte - 1, ptl);
4893 cond_resched();
4894
4895 if (addr != end) {
4896 /*
4897 * We have consumed all precharges we got in can_attach().
4898 * We try charge one by one, but don't do any additional
4899 * charges to mc.to if we have failed in charge once in attach()
4900 * phase.
4901 */
4902 ret = mem_cgroup_do_precharge(1);
4903 if (!ret)
4904 goto retry;
4905 }
4906
4907 return ret;
4908 }
4909
4910 static void mem_cgroup_move_charge(struct mm_struct *mm)
4911 {
4912 struct mm_walk mem_cgroup_move_charge_walk = {
4913 .pmd_entry = mem_cgroup_move_charge_pte_range,
4914 .mm = mm,
4915 };
4916
4917 lru_add_drain_all();
4918 /*
4919 * Signal mem_cgroup_begin_page_stat() to take the memcg's
4920 * move_lock while we're moving its pages to another memcg.
4921 * Then wait for already started RCU-only updates to finish.
4922 */
4923 atomic_inc(&mc.from->moving_account);
4924 synchronize_rcu();
4925 retry:
4926 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4927 /*
4928 * Someone who are holding the mmap_sem might be waiting in
4929 * waitq. So we cancel all extra charges, wake up all waiters,
4930 * and retry. Because we cancel precharges, we might not be able
4931 * to move enough charges, but moving charge is a best-effort
4932 * feature anyway, so it wouldn't be a big problem.
4933 */
4934 __mem_cgroup_clear_mc();
4935 cond_resched();
4936 goto retry;
4937 }
4938 /*
4939 * When we have consumed all precharges and failed in doing
4940 * additional charge, the page walk just aborts.
4941 */
4942 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4943 up_read(&mm->mmap_sem);
4944 atomic_dec(&mc.from->moving_account);
4945 }
4946
4947 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4948 {
4949 struct cgroup_subsys_state *css;
4950 struct task_struct *p = cgroup_taskset_first(tset, &css);
4951 struct mm_struct *mm = get_task_mm(p);
4952
4953 if (mm) {
4954 if (mc.to)
4955 mem_cgroup_move_charge(mm);
4956 mmput(mm);
4957 }
4958 if (mc.to)
4959 mem_cgroup_clear_mc();
4960 }
4961 #else /* !CONFIG_MMU */
4962 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4963 {
4964 return 0;
4965 }
4966 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4967 {
4968 }
4969 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4970 {
4971 }
4972 #endif
4973
4974 /*
4975 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4976 * to verify whether we're attached to the default hierarchy on each mount
4977 * attempt.
4978 */
4979 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4980 {
4981 /*
4982 * use_hierarchy is forced on the default hierarchy. cgroup core
4983 * guarantees that @root doesn't have any children, so turning it
4984 * on for the root memcg is enough.
4985 */
4986 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4987 root_mem_cgroup->use_hierarchy = true;
4988 else
4989 root_mem_cgroup->use_hierarchy = false;
4990 }
4991
4992 static u64 memory_current_read(struct cgroup_subsys_state *css,
4993 struct cftype *cft)
4994 {
4995 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4996
4997 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4998 }
4999
5000 static int memory_low_show(struct seq_file *m, void *v)
5001 {
5002 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5003 unsigned long low = READ_ONCE(memcg->low);
5004
5005 if (low == PAGE_COUNTER_MAX)
5006 seq_puts(m, "max\n");
5007 else
5008 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5009
5010 return 0;
5011 }
5012
5013 static ssize_t memory_low_write(struct kernfs_open_file *of,
5014 char *buf, size_t nbytes, loff_t off)
5015 {
5016 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5017 unsigned long low;
5018 int err;
5019
5020 buf = strstrip(buf);
5021 err = page_counter_memparse(buf, "max", &low);
5022 if (err)
5023 return err;
5024
5025 memcg->low = low;
5026
5027 return nbytes;
5028 }
5029
5030 static int memory_high_show(struct seq_file *m, void *v)
5031 {
5032 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5033 unsigned long high = READ_ONCE(memcg->high);
5034
5035 if (high == PAGE_COUNTER_MAX)
5036 seq_puts(m, "max\n");
5037 else
5038 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5039
5040 return 0;
5041 }
5042
5043 static ssize_t memory_high_write(struct kernfs_open_file *of,
5044 char *buf, size_t nbytes, loff_t off)
5045 {
5046 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5047 unsigned long high;
5048 int err;
5049
5050 buf = strstrip(buf);
5051 err = page_counter_memparse(buf, "max", &high);
5052 if (err)
5053 return err;
5054
5055 memcg->high = high;
5056
5057 memcg_wb_domain_size_changed(memcg);
5058 return nbytes;
5059 }
5060
5061 static int memory_max_show(struct seq_file *m, void *v)
5062 {
5063 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5064 unsigned long max = READ_ONCE(memcg->memory.limit);
5065
5066 if (max == PAGE_COUNTER_MAX)
5067 seq_puts(m, "max\n");
5068 else
5069 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5070
5071 return 0;
5072 }
5073
5074 static ssize_t memory_max_write(struct kernfs_open_file *of,
5075 char *buf, size_t nbytes, loff_t off)
5076 {
5077 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5078 unsigned long max;
5079 int err;
5080
5081 buf = strstrip(buf);
5082 err = page_counter_memparse(buf, "max", &max);
5083 if (err)
5084 return err;
5085
5086 err = mem_cgroup_resize_limit(memcg, max);
5087 if (err)
5088 return err;
5089
5090 memcg_wb_domain_size_changed(memcg);
5091 return nbytes;
5092 }
5093
5094 static int memory_events_show(struct seq_file *m, void *v)
5095 {
5096 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5097
5098 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5099 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5100 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5101 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5102
5103 return 0;
5104 }
5105
5106 static struct cftype memory_files[] = {
5107 {
5108 .name = "current",
5109 .flags = CFTYPE_NOT_ON_ROOT,
5110 .read_u64 = memory_current_read,
5111 },
5112 {
5113 .name = "low",
5114 .flags = CFTYPE_NOT_ON_ROOT,
5115 .seq_show = memory_low_show,
5116 .write = memory_low_write,
5117 },
5118 {
5119 .name = "high",
5120 .flags = CFTYPE_NOT_ON_ROOT,
5121 .seq_show = memory_high_show,
5122 .write = memory_high_write,
5123 },
5124 {
5125 .name = "max",
5126 .flags = CFTYPE_NOT_ON_ROOT,
5127 .seq_show = memory_max_show,
5128 .write = memory_max_write,
5129 },
5130 {
5131 .name = "events",
5132 .flags = CFTYPE_NOT_ON_ROOT,
5133 .file_offset = offsetof(struct mem_cgroup, events_file),
5134 .seq_show = memory_events_show,
5135 },
5136 { } /* terminate */
5137 };
5138
5139 struct cgroup_subsys memory_cgrp_subsys = {
5140 .css_alloc = mem_cgroup_css_alloc,
5141 .css_online = mem_cgroup_css_online,
5142 .css_offline = mem_cgroup_css_offline,
5143 .css_released = mem_cgroup_css_released,
5144 .css_free = mem_cgroup_css_free,
5145 .css_reset = mem_cgroup_css_reset,
5146 .can_attach = mem_cgroup_can_attach,
5147 .cancel_attach = mem_cgroup_cancel_attach,
5148 .attach = mem_cgroup_move_task,
5149 .bind = mem_cgroup_bind,
5150 .dfl_cftypes = memory_files,
5151 .legacy_cftypes = mem_cgroup_legacy_files,
5152 .early_init = 0,
5153 };
5154
5155 /**
5156 * mem_cgroup_low - check if memory consumption is below the normal range
5157 * @root: the highest ancestor to consider
5158 * @memcg: the memory cgroup to check
5159 *
5160 * Returns %true if memory consumption of @memcg, and that of all
5161 * configurable ancestors up to @root, is below the normal range.
5162 */
5163 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5164 {
5165 if (mem_cgroup_disabled())
5166 return false;
5167
5168 /*
5169 * The toplevel group doesn't have a configurable range, so
5170 * it's never low when looked at directly, and it is not
5171 * considered an ancestor when assessing the hierarchy.
5172 */
5173
5174 if (memcg == root_mem_cgroup)
5175 return false;
5176
5177 if (page_counter_read(&memcg->memory) >= memcg->low)
5178 return false;
5179
5180 while (memcg != root) {
5181 memcg = parent_mem_cgroup(memcg);
5182
5183 if (memcg == root_mem_cgroup)
5184 break;
5185
5186 if (page_counter_read(&memcg->memory) >= memcg->low)
5187 return false;
5188 }
5189 return true;
5190 }
5191
5192 /**
5193 * mem_cgroup_try_charge - try charging a page
5194 * @page: page to charge
5195 * @mm: mm context of the victim
5196 * @gfp_mask: reclaim mode
5197 * @memcgp: charged memcg return
5198 *
5199 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5200 * pages according to @gfp_mask if necessary.
5201 *
5202 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5203 * Otherwise, an error code is returned.
5204 *
5205 * After page->mapping has been set up, the caller must finalize the
5206 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5207 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5208 */
5209 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5210 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5211 bool compound)
5212 {
5213 struct mem_cgroup *memcg = NULL;
5214 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5215 int ret = 0;
5216
5217 if (mem_cgroup_disabled())
5218 goto out;
5219
5220 if (PageSwapCache(page)) {
5221 /*
5222 * Every swap fault against a single page tries to charge the
5223 * page, bail as early as possible. shmem_unuse() encounters
5224 * already charged pages, too. The USED bit is protected by
5225 * the page lock, which serializes swap cache removal, which
5226 * in turn serializes uncharging.
5227 */
5228 VM_BUG_ON_PAGE(!PageLocked(page), page);
5229 if (page->mem_cgroup)
5230 goto out;
5231
5232 if (do_swap_account) {
5233 swp_entry_t ent = { .val = page_private(page), };
5234 unsigned short id = lookup_swap_cgroup_id(ent);
5235
5236 rcu_read_lock();
5237 memcg = mem_cgroup_from_id(id);
5238 if (memcg && !css_tryget_online(&memcg->css))
5239 memcg = NULL;
5240 rcu_read_unlock();
5241 }
5242 }
5243
5244 if (!memcg)
5245 memcg = get_mem_cgroup_from_mm(mm);
5246
5247 ret = try_charge(memcg, gfp_mask, nr_pages);
5248
5249 css_put(&memcg->css);
5250 out:
5251 *memcgp = memcg;
5252 return ret;
5253 }
5254
5255 /**
5256 * mem_cgroup_commit_charge - commit a page charge
5257 * @page: page to charge
5258 * @memcg: memcg to charge the page to
5259 * @lrucare: page might be on LRU already
5260 *
5261 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5262 * after page->mapping has been set up. This must happen atomically
5263 * as part of the page instantiation, i.e. under the page table lock
5264 * for anonymous pages, under the page lock for page and swap cache.
5265 *
5266 * In addition, the page must not be on the LRU during the commit, to
5267 * prevent racing with task migration. If it might be, use @lrucare.
5268 *
5269 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5270 */
5271 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5272 bool lrucare, bool compound)
5273 {
5274 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5275
5276 VM_BUG_ON_PAGE(!page->mapping, page);
5277 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5278
5279 if (mem_cgroup_disabled())
5280 return;
5281 /*
5282 * Swap faults will attempt to charge the same page multiple
5283 * times. But reuse_swap_page() might have removed the page
5284 * from swapcache already, so we can't check PageSwapCache().
5285 */
5286 if (!memcg)
5287 return;
5288
5289 commit_charge(page, memcg, lrucare);
5290
5291 local_irq_disable();
5292 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5293 memcg_check_events(memcg, page);
5294 local_irq_enable();
5295
5296 if (do_memsw_account() && PageSwapCache(page)) {
5297 swp_entry_t entry = { .val = page_private(page) };
5298 /*
5299 * The swap entry might not get freed for a long time,
5300 * let's not wait for it. The page already received a
5301 * memory+swap charge, drop the swap entry duplicate.
5302 */
5303 mem_cgroup_uncharge_swap(entry);
5304 }
5305 }
5306
5307 /**
5308 * mem_cgroup_cancel_charge - cancel a page charge
5309 * @page: page to charge
5310 * @memcg: memcg to charge the page to
5311 *
5312 * Cancel a charge transaction started by mem_cgroup_try_charge().
5313 */
5314 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5315 bool compound)
5316 {
5317 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5318
5319 if (mem_cgroup_disabled())
5320 return;
5321 /*
5322 * Swap faults will attempt to charge the same page multiple
5323 * times. But reuse_swap_page() might have removed the page
5324 * from swapcache already, so we can't check PageSwapCache().
5325 */
5326 if (!memcg)
5327 return;
5328
5329 cancel_charge(memcg, nr_pages);
5330 }
5331
5332 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5333 unsigned long nr_anon, unsigned long nr_file,
5334 unsigned long nr_huge, struct page *dummy_page)
5335 {
5336 unsigned long nr_pages = nr_anon + nr_file;
5337 unsigned long flags;
5338
5339 if (!mem_cgroup_is_root(memcg)) {
5340 page_counter_uncharge(&memcg->memory, nr_pages);
5341 if (do_memsw_account())
5342 page_counter_uncharge(&memcg->memsw, nr_pages);
5343 memcg_oom_recover(memcg);
5344 }
5345
5346 local_irq_save(flags);
5347 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5348 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5349 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5350 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5351 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5352 memcg_check_events(memcg, dummy_page);
5353 local_irq_restore(flags);
5354
5355 if (!mem_cgroup_is_root(memcg))
5356 css_put_many(&memcg->css, nr_pages);
5357 }
5358
5359 static void uncharge_list(struct list_head *page_list)
5360 {
5361 struct mem_cgroup *memcg = NULL;
5362 unsigned long nr_anon = 0;
5363 unsigned long nr_file = 0;
5364 unsigned long nr_huge = 0;
5365 unsigned long pgpgout = 0;
5366 struct list_head *next;
5367 struct page *page;
5368
5369 next = page_list->next;
5370 do {
5371 unsigned int nr_pages = 1;
5372
5373 page = list_entry(next, struct page, lru);
5374 next = page->lru.next;
5375
5376 VM_BUG_ON_PAGE(PageLRU(page), page);
5377 VM_BUG_ON_PAGE(page_count(page), page);
5378
5379 if (!page->mem_cgroup)
5380 continue;
5381
5382 /*
5383 * Nobody should be changing or seriously looking at
5384 * page->mem_cgroup at this point, we have fully
5385 * exclusive access to the page.
5386 */
5387
5388 if (memcg != page->mem_cgroup) {
5389 if (memcg) {
5390 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5391 nr_huge, page);
5392 pgpgout = nr_anon = nr_file = nr_huge = 0;
5393 }
5394 memcg = page->mem_cgroup;
5395 }
5396
5397 if (PageTransHuge(page)) {
5398 nr_pages <<= compound_order(page);
5399 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5400 nr_huge += nr_pages;
5401 }
5402
5403 if (PageAnon(page))
5404 nr_anon += nr_pages;
5405 else
5406 nr_file += nr_pages;
5407
5408 page->mem_cgroup = NULL;
5409
5410 pgpgout++;
5411 } while (next != page_list);
5412
5413 if (memcg)
5414 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5415 nr_huge, page);
5416 }
5417
5418 /**
5419 * mem_cgroup_uncharge - uncharge a page
5420 * @page: page to uncharge
5421 *
5422 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5423 * mem_cgroup_commit_charge().
5424 */
5425 void mem_cgroup_uncharge(struct page *page)
5426 {
5427 if (mem_cgroup_disabled())
5428 return;
5429
5430 /* Don't touch page->lru of any random page, pre-check: */
5431 if (!page->mem_cgroup)
5432 return;
5433
5434 INIT_LIST_HEAD(&page->lru);
5435 uncharge_list(&page->lru);
5436 }
5437
5438 /**
5439 * mem_cgroup_uncharge_list - uncharge a list of page
5440 * @page_list: list of pages to uncharge
5441 *
5442 * Uncharge a list of pages previously charged with
5443 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5444 */
5445 void mem_cgroup_uncharge_list(struct list_head *page_list)
5446 {
5447 if (mem_cgroup_disabled())
5448 return;
5449
5450 if (!list_empty(page_list))
5451 uncharge_list(page_list);
5452 }
5453
5454 /**
5455 * mem_cgroup_replace_page - migrate a charge to another page
5456 * @oldpage: currently charged page
5457 * @newpage: page to transfer the charge to
5458 *
5459 * Migrate the charge from @oldpage to @newpage.
5460 *
5461 * Both pages must be locked, @newpage->mapping must be set up.
5462 * Either or both pages might be on the LRU already.
5463 */
5464 void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
5465 {
5466 struct mem_cgroup *memcg;
5467 int isolated;
5468
5469 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5470 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5471 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5472 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5473 newpage);
5474
5475 if (mem_cgroup_disabled())
5476 return;
5477
5478 /* Page cache replacement: new page already charged? */
5479 if (newpage->mem_cgroup)
5480 return;
5481
5482 /* Swapcache readahead pages can get replaced before being charged */
5483 memcg = oldpage->mem_cgroup;
5484 if (!memcg)
5485 return;
5486
5487 lock_page_lru(oldpage, &isolated);
5488 oldpage->mem_cgroup = NULL;
5489 unlock_page_lru(oldpage, isolated);
5490
5491 commit_charge(newpage, memcg, true);
5492 }
5493
5494 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5495 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5496
5497 void sock_update_memcg(struct sock *sk)
5498 {
5499 struct mem_cgroup *memcg;
5500
5501 /* Socket cloning can throw us here with sk_cgrp already
5502 * filled. It won't however, necessarily happen from
5503 * process context. So the test for root memcg given
5504 * the current task's memcg won't help us in this case.
5505 *
5506 * Respecting the original socket's memcg is a better
5507 * decision in this case.
5508 */
5509 if (sk->sk_memcg) {
5510 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5511 css_get(&sk->sk_memcg->css);
5512 return;
5513 }
5514
5515 rcu_read_lock();
5516 memcg = mem_cgroup_from_task(current);
5517 if (memcg == root_mem_cgroup)
5518 goto out;
5519 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5520 goto out;
5521 if (css_tryget_online(&memcg->css))
5522 sk->sk_memcg = memcg;
5523 out:
5524 rcu_read_unlock();
5525 }
5526 EXPORT_SYMBOL(sock_update_memcg);
5527
5528 void sock_release_memcg(struct sock *sk)
5529 {
5530 WARN_ON(!sk->sk_memcg);
5531 css_put(&sk->sk_memcg->css);
5532 }
5533
5534 /**
5535 * mem_cgroup_charge_skmem - charge socket memory
5536 * @memcg: memcg to charge
5537 * @nr_pages: number of pages to charge
5538 *
5539 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5540 * @memcg's configured limit, %false if the charge had to be forced.
5541 */
5542 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5543 {
5544 gfp_t gfp_mask = GFP_KERNEL;
5545
5546 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5547 struct page_counter *fail;
5548
5549 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5550 memcg->tcpmem_pressure = 0;
5551 return true;
5552 }
5553 page_counter_charge(&memcg->tcpmem, nr_pages);
5554 memcg->tcpmem_pressure = 1;
5555 return false;
5556 }
5557
5558 /* Don't block in the packet receive path */
5559 if (in_softirq())
5560 gfp_mask = GFP_NOWAIT;
5561
5562 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5563 return true;
5564
5565 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5566 return false;
5567 }
5568
5569 /**
5570 * mem_cgroup_uncharge_skmem - uncharge socket memory
5571 * @memcg - memcg to uncharge
5572 * @nr_pages - number of pages to uncharge
5573 */
5574 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5575 {
5576 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5577 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5578 return;
5579 }
5580
5581 page_counter_uncharge(&memcg->memory, nr_pages);
5582 css_put_many(&memcg->css, nr_pages);
5583 }
5584
5585 static int __init cgroup_memory(char *s)
5586 {
5587 char *token;
5588
5589 while ((token = strsep(&s, ",")) != NULL) {
5590 if (!*token)
5591 continue;
5592 if (!strcmp(token, "nosocket"))
5593 cgroup_memory_nosocket = true;
5594 if (!strcmp(token, "nokmem"))
5595 cgroup_memory_nokmem = true;
5596 }
5597 return 0;
5598 }
5599 __setup("cgroup.memory=", cgroup_memory);
5600
5601 /*
5602 * subsys_initcall() for memory controller.
5603 *
5604 * Some parts like hotcpu_notifier() have to be initialized from this context
5605 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5606 * everything that doesn't depend on a specific mem_cgroup structure should
5607 * be initialized from here.
5608 */
5609 static int __init mem_cgroup_init(void)
5610 {
5611 int cpu, node;
5612
5613 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5614
5615 for_each_possible_cpu(cpu)
5616 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5617 drain_local_stock);
5618
5619 for_each_node(node) {
5620 struct mem_cgroup_tree_per_node *rtpn;
5621 int zone;
5622
5623 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5624 node_online(node) ? node : NUMA_NO_NODE);
5625
5626 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5627 struct mem_cgroup_tree_per_zone *rtpz;
5628
5629 rtpz = &rtpn->rb_tree_per_zone[zone];
5630 rtpz->rb_root = RB_ROOT;
5631 spin_lock_init(&rtpz->lock);
5632 }
5633 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5634 }
5635
5636 return 0;
5637 }
5638 subsys_initcall(mem_cgroup_init);
5639
5640 #ifdef CONFIG_MEMCG_SWAP
5641 /**
5642 * mem_cgroup_swapout - transfer a memsw charge to swap
5643 * @page: page whose memsw charge to transfer
5644 * @entry: swap entry to move the charge to
5645 *
5646 * Transfer the memsw charge of @page to @entry.
5647 */
5648 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5649 {
5650 struct mem_cgroup *memcg;
5651 unsigned short oldid;
5652
5653 VM_BUG_ON_PAGE(PageLRU(page), page);
5654 VM_BUG_ON_PAGE(page_count(page), page);
5655
5656 if (!do_memsw_account())
5657 return;
5658
5659 memcg = page->mem_cgroup;
5660
5661 /* Readahead page, never charged */
5662 if (!memcg)
5663 return;
5664
5665 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5666 VM_BUG_ON_PAGE(oldid, page);
5667 mem_cgroup_swap_statistics(memcg, true);
5668
5669 page->mem_cgroup = NULL;
5670
5671 if (!mem_cgroup_is_root(memcg))
5672 page_counter_uncharge(&memcg->memory, 1);
5673
5674 /*
5675 * Interrupts should be disabled here because the caller holds the
5676 * mapping->tree_lock lock which is taken with interrupts-off. It is
5677 * important here to have the interrupts disabled because it is the
5678 * only synchronisation we have for udpating the per-CPU variables.
5679 */
5680 VM_BUG_ON(!irqs_disabled());
5681 mem_cgroup_charge_statistics(memcg, page, false, -1);
5682 memcg_check_events(memcg, page);
5683 }
5684
5685 /*
5686 * mem_cgroup_try_charge_swap - try charging a swap entry
5687 * @page: page being added to swap
5688 * @entry: swap entry to charge
5689 *
5690 * Try to charge @entry to the memcg that @page belongs to.
5691 *
5692 * Returns 0 on success, -ENOMEM on failure.
5693 */
5694 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5695 {
5696 struct mem_cgroup *memcg;
5697 struct page_counter *counter;
5698 unsigned short oldid;
5699
5700 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5701 return 0;
5702
5703 memcg = page->mem_cgroup;
5704
5705 /* Readahead page, never charged */
5706 if (!memcg)
5707 return 0;
5708
5709 if (!mem_cgroup_is_root(memcg) &&
5710 !page_counter_try_charge(&memcg->swap, 1, &counter))
5711 return -ENOMEM;
5712
5713 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5714 VM_BUG_ON_PAGE(oldid, page);
5715 mem_cgroup_swap_statistics(memcg, true);
5716
5717 css_get(&memcg->css);
5718 return 0;
5719 }
5720
5721 /**
5722 * mem_cgroup_uncharge_swap - uncharge a swap entry
5723 * @entry: swap entry to uncharge
5724 *
5725 * Drop the swap charge associated with @entry.
5726 */
5727 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5728 {
5729 struct mem_cgroup *memcg;
5730 unsigned short id;
5731
5732 if (!do_swap_account)
5733 return;
5734
5735 id = swap_cgroup_record(entry, 0);
5736 rcu_read_lock();
5737 memcg = mem_cgroup_from_id(id);
5738 if (memcg) {
5739 if (!mem_cgroup_is_root(memcg)) {
5740 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5741 page_counter_uncharge(&memcg->swap, 1);
5742 else
5743 page_counter_uncharge(&memcg->memsw, 1);
5744 }
5745 mem_cgroup_swap_statistics(memcg, false);
5746 css_put(&memcg->css);
5747 }
5748 rcu_read_unlock();
5749 }
5750
5751 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5752 {
5753 long nr_swap_pages = get_nr_swap_pages();
5754
5755 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5756 return nr_swap_pages;
5757 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5758 nr_swap_pages = min_t(long, nr_swap_pages,
5759 READ_ONCE(memcg->swap.limit) -
5760 page_counter_read(&memcg->swap));
5761 return nr_swap_pages;
5762 }
5763
5764 /* for remember boot option*/
5765 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5766 static int really_do_swap_account __initdata = 1;
5767 #else
5768 static int really_do_swap_account __initdata;
5769 #endif
5770
5771 static int __init enable_swap_account(char *s)
5772 {
5773 if (!strcmp(s, "1"))
5774 really_do_swap_account = 1;
5775 else if (!strcmp(s, "0"))
5776 really_do_swap_account = 0;
5777 return 1;
5778 }
5779 __setup("swapaccount=", enable_swap_account);
5780
5781 static u64 swap_current_read(struct cgroup_subsys_state *css,
5782 struct cftype *cft)
5783 {
5784 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5785
5786 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5787 }
5788
5789 static int swap_max_show(struct seq_file *m, void *v)
5790 {
5791 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5792 unsigned long max = READ_ONCE(memcg->swap.limit);
5793
5794 if (max == PAGE_COUNTER_MAX)
5795 seq_puts(m, "max\n");
5796 else
5797 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5798
5799 return 0;
5800 }
5801
5802 static ssize_t swap_max_write(struct kernfs_open_file *of,
5803 char *buf, size_t nbytes, loff_t off)
5804 {
5805 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5806 unsigned long max;
5807 int err;
5808
5809 buf = strstrip(buf);
5810 err = page_counter_memparse(buf, "max", &max);
5811 if (err)
5812 return err;
5813
5814 mutex_lock(&memcg_limit_mutex);
5815 err = page_counter_limit(&memcg->swap, max);
5816 mutex_unlock(&memcg_limit_mutex);
5817 if (err)
5818 return err;
5819
5820 return nbytes;
5821 }
5822
5823 static struct cftype swap_files[] = {
5824 {
5825 .name = "swap.current",
5826 .flags = CFTYPE_NOT_ON_ROOT,
5827 .read_u64 = swap_current_read,
5828 },
5829 {
5830 .name = "swap.max",
5831 .flags = CFTYPE_NOT_ON_ROOT,
5832 .seq_show = swap_max_show,
5833 .write = swap_max_write,
5834 },
5835 { } /* terminate */
5836 };
5837
5838 static struct cftype memsw_cgroup_files[] = {
5839 {
5840 .name = "memsw.usage_in_bytes",
5841 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5842 .read_u64 = mem_cgroup_read_u64,
5843 },
5844 {
5845 .name = "memsw.max_usage_in_bytes",
5846 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5847 .write = mem_cgroup_reset,
5848 .read_u64 = mem_cgroup_read_u64,
5849 },
5850 {
5851 .name = "memsw.limit_in_bytes",
5852 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5853 .write = mem_cgroup_write,
5854 .read_u64 = mem_cgroup_read_u64,
5855 },
5856 {
5857 .name = "memsw.failcnt",
5858 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5859 .write = mem_cgroup_reset,
5860 .read_u64 = mem_cgroup_read_u64,
5861 },
5862 { }, /* terminate */
5863 };
5864
5865 static int __init mem_cgroup_swap_init(void)
5866 {
5867 if (!mem_cgroup_disabled() && really_do_swap_account) {
5868 do_swap_account = 1;
5869 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5870 swap_files));
5871 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5872 memsw_cgroup_files));
5873 }
5874 return 0;
5875 }
5876 subsys_initcall(mem_cgroup_swap_init);
5877
5878 #endif /* CONFIG_MEMCG_SWAP */
This page took 0.145903 seconds and 6 git commands to generate.