mm: memcontrol: switch to the updated jump-label API
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include <net/tcp_memcontrol.h>
70 #include "slab.h"
71
72 #include <asm/uaccess.h>
73
74 #include <trace/events/vmscan.h>
75
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77 EXPORT_SYMBOL(memory_cgrp_subsys);
78
79 struct mem_cgroup *root_mem_cgroup __read_mostly;
80
81 #define MEM_CGROUP_RECLAIM_RETRIES 5
82
83 /* Socket memory accounting disabled? */
84 static bool cgroup_memory_nosocket;
85
86 /* Whether the swap controller is active */
87 #ifdef CONFIG_MEMCG_SWAP
88 int do_swap_account __read_mostly;
89 #else
90 #define do_swap_account 0
91 #endif
92
93 /* Whether legacy memory+swap accounting is active */
94 static bool do_memsw_account(void)
95 {
96 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
97 }
98
99 static const char * const mem_cgroup_stat_names[] = {
100 "cache",
101 "rss",
102 "rss_huge",
103 "mapped_file",
104 "dirty",
105 "writeback",
106 "swap",
107 };
108
109 static const char * const mem_cgroup_events_names[] = {
110 "pgpgin",
111 "pgpgout",
112 "pgfault",
113 "pgmajfault",
114 };
115
116 static const char * const mem_cgroup_lru_names[] = {
117 "inactive_anon",
118 "active_anon",
119 "inactive_file",
120 "active_file",
121 "unevictable",
122 };
123
124 #define THRESHOLDS_EVENTS_TARGET 128
125 #define SOFTLIMIT_EVENTS_TARGET 1024
126 #define NUMAINFO_EVENTS_TARGET 1024
127
128 /*
129 * Cgroups above their limits are maintained in a RB-Tree, independent of
130 * their hierarchy representation
131 */
132
133 struct mem_cgroup_tree_per_zone {
134 struct rb_root rb_root;
135 spinlock_t lock;
136 };
137
138 struct mem_cgroup_tree_per_node {
139 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
140 };
141
142 struct mem_cgroup_tree {
143 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
144 };
145
146 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
147
148 /* for OOM */
149 struct mem_cgroup_eventfd_list {
150 struct list_head list;
151 struct eventfd_ctx *eventfd;
152 };
153
154 /*
155 * cgroup_event represents events which userspace want to receive.
156 */
157 struct mem_cgroup_event {
158 /*
159 * memcg which the event belongs to.
160 */
161 struct mem_cgroup *memcg;
162 /*
163 * eventfd to signal userspace about the event.
164 */
165 struct eventfd_ctx *eventfd;
166 /*
167 * Each of these stored in a list by the cgroup.
168 */
169 struct list_head list;
170 /*
171 * register_event() callback will be used to add new userspace
172 * waiter for changes related to this event. Use eventfd_signal()
173 * on eventfd to send notification to userspace.
174 */
175 int (*register_event)(struct mem_cgroup *memcg,
176 struct eventfd_ctx *eventfd, const char *args);
177 /*
178 * unregister_event() callback will be called when userspace closes
179 * the eventfd or on cgroup removing. This callback must be set,
180 * if you want provide notification functionality.
181 */
182 void (*unregister_event)(struct mem_cgroup *memcg,
183 struct eventfd_ctx *eventfd);
184 /*
185 * All fields below needed to unregister event when
186 * userspace closes eventfd.
187 */
188 poll_table pt;
189 wait_queue_head_t *wqh;
190 wait_queue_t wait;
191 struct work_struct remove;
192 };
193
194 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
195 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
196
197 /* Stuffs for move charges at task migration. */
198 /*
199 * Types of charges to be moved.
200 */
201 #define MOVE_ANON 0x1U
202 #define MOVE_FILE 0x2U
203 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
204
205 /* "mc" and its members are protected by cgroup_mutex */
206 static struct move_charge_struct {
207 spinlock_t lock; /* for from, to */
208 struct mem_cgroup *from;
209 struct mem_cgroup *to;
210 unsigned long flags;
211 unsigned long precharge;
212 unsigned long moved_charge;
213 unsigned long moved_swap;
214 struct task_struct *moving_task; /* a task moving charges */
215 wait_queue_head_t waitq; /* a waitq for other context */
216 } mc = {
217 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
218 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
219 };
220
221 /*
222 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
223 * limit reclaim to prevent infinite loops, if they ever occur.
224 */
225 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
226 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
227
228 enum charge_type {
229 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
230 MEM_CGROUP_CHARGE_TYPE_ANON,
231 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
232 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
233 NR_CHARGE_TYPE,
234 };
235
236 /* for encoding cft->private value on file */
237 enum res_type {
238 _MEM,
239 _MEMSWAP,
240 _OOM_TYPE,
241 _KMEM,
242 };
243
244 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
245 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
246 #define MEMFILE_ATTR(val) ((val) & 0xffff)
247 /* Used for OOM nofiier */
248 #define OOM_CONTROL (0)
249
250 /*
251 * The memcg_create_mutex will be held whenever a new cgroup is created.
252 * As a consequence, any change that needs to protect against new child cgroups
253 * appearing has to hold it as well.
254 */
255 static DEFINE_MUTEX(memcg_create_mutex);
256
257 /* Some nice accessors for the vmpressure. */
258 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
259 {
260 if (!memcg)
261 memcg = root_mem_cgroup;
262 return &memcg->vmpressure;
263 }
264
265 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
266 {
267 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
268 }
269
270 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
271 {
272 return (memcg == root_mem_cgroup);
273 }
274
275 /*
276 * We restrict the id in the range of [1, 65535], so it can fit into
277 * an unsigned short.
278 */
279 #define MEM_CGROUP_ID_MAX USHRT_MAX
280
281 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
282 {
283 return memcg->css.id;
284 }
285
286 /*
287 * A helper function to get mem_cgroup from ID. must be called under
288 * rcu_read_lock(). The caller is responsible for calling
289 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
290 * refcnt from swap can be called against removed memcg.)
291 */
292 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
293 {
294 struct cgroup_subsys_state *css;
295
296 css = css_from_id(id, &memory_cgrp_subsys);
297 return mem_cgroup_from_css(css);
298 }
299
300 #ifdef CONFIG_MEMCG_KMEM
301 /*
302 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
303 * The main reason for not using cgroup id for this:
304 * this works better in sparse environments, where we have a lot of memcgs,
305 * but only a few kmem-limited. Or also, if we have, for instance, 200
306 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
307 * 200 entry array for that.
308 *
309 * The current size of the caches array is stored in memcg_nr_cache_ids. It
310 * will double each time we have to increase it.
311 */
312 static DEFINE_IDA(memcg_cache_ida);
313 int memcg_nr_cache_ids;
314
315 /* Protects memcg_nr_cache_ids */
316 static DECLARE_RWSEM(memcg_cache_ids_sem);
317
318 void memcg_get_cache_ids(void)
319 {
320 down_read(&memcg_cache_ids_sem);
321 }
322
323 void memcg_put_cache_ids(void)
324 {
325 up_read(&memcg_cache_ids_sem);
326 }
327
328 /*
329 * MIN_SIZE is different than 1, because we would like to avoid going through
330 * the alloc/free process all the time. In a small machine, 4 kmem-limited
331 * cgroups is a reasonable guess. In the future, it could be a parameter or
332 * tunable, but that is strictly not necessary.
333 *
334 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
335 * this constant directly from cgroup, but it is understandable that this is
336 * better kept as an internal representation in cgroup.c. In any case, the
337 * cgrp_id space is not getting any smaller, and we don't have to necessarily
338 * increase ours as well if it increases.
339 */
340 #define MEMCG_CACHES_MIN_SIZE 4
341 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
342
343 /*
344 * A lot of the calls to the cache allocation functions are expected to be
345 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
346 * conditional to this static branch, we'll have to allow modules that does
347 * kmem_cache_alloc and the such to see this symbol as well
348 */
349 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
350 EXPORT_SYMBOL(memcg_kmem_enabled_key);
351
352 #endif /* CONFIG_MEMCG_KMEM */
353
354 static struct mem_cgroup_per_zone *
355 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
356 {
357 int nid = zone_to_nid(zone);
358 int zid = zone_idx(zone);
359
360 return &memcg->nodeinfo[nid]->zoneinfo[zid];
361 }
362
363 /**
364 * mem_cgroup_css_from_page - css of the memcg associated with a page
365 * @page: page of interest
366 *
367 * If memcg is bound to the default hierarchy, css of the memcg associated
368 * with @page is returned. The returned css remains associated with @page
369 * until it is released.
370 *
371 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
372 * is returned.
373 *
374 * XXX: The above description of behavior on the default hierarchy isn't
375 * strictly true yet as replace_page_cache_page() can modify the
376 * association before @page is released even on the default hierarchy;
377 * however, the current and planned usages don't mix the the two functions
378 * and replace_page_cache_page() will soon be updated to make the invariant
379 * actually true.
380 */
381 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
382 {
383 struct mem_cgroup *memcg;
384
385 rcu_read_lock();
386
387 memcg = page->mem_cgroup;
388
389 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
390 memcg = root_mem_cgroup;
391
392 rcu_read_unlock();
393 return &memcg->css;
394 }
395
396 /**
397 * page_cgroup_ino - return inode number of the memcg a page is charged to
398 * @page: the page
399 *
400 * Look up the closest online ancestor of the memory cgroup @page is charged to
401 * and return its inode number or 0 if @page is not charged to any cgroup. It
402 * is safe to call this function without holding a reference to @page.
403 *
404 * Note, this function is inherently racy, because there is nothing to prevent
405 * the cgroup inode from getting torn down and potentially reallocated a moment
406 * after page_cgroup_ino() returns, so it only should be used by callers that
407 * do not care (such as procfs interfaces).
408 */
409 ino_t page_cgroup_ino(struct page *page)
410 {
411 struct mem_cgroup *memcg;
412 unsigned long ino = 0;
413
414 rcu_read_lock();
415 memcg = READ_ONCE(page->mem_cgroup);
416 while (memcg && !(memcg->css.flags & CSS_ONLINE))
417 memcg = parent_mem_cgroup(memcg);
418 if (memcg)
419 ino = cgroup_ino(memcg->css.cgroup);
420 rcu_read_unlock();
421 return ino;
422 }
423
424 static struct mem_cgroup_per_zone *
425 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
426 {
427 int nid = page_to_nid(page);
428 int zid = page_zonenum(page);
429
430 return &memcg->nodeinfo[nid]->zoneinfo[zid];
431 }
432
433 static struct mem_cgroup_tree_per_zone *
434 soft_limit_tree_node_zone(int nid, int zid)
435 {
436 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
437 }
438
439 static struct mem_cgroup_tree_per_zone *
440 soft_limit_tree_from_page(struct page *page)
441 {
442 int nid = page_to_nid(page);
443 int zid = page_zonenum(page);
444
445 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
446 }
447
448 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
449 struct mem_cgroup_tree_per_zone *mctz,
450 unsigned long new_usage_in_excess)
451 {
452 struct rb_node **p = &mctz->rb_root.rb_node;
453 struct rb_node *parent = NULL;
454 struct mem_cgroup_per_zone *mz_node;
455
456 if (mz->on_tree)
457 return;
458
459 mz->usage_in_excess = new_usage_in_excess;
460 if (!mz->usage_in_excess)
461 return;
462 while (*p) {
463 parent = *p;
464 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
465 tree_node);
466 if (mz->usage_in_excess < mz_node->usage_in_excess)
467 p = &(*p)->rb_left;
468 /*
469 * We can't avoid mem cgroups that are over their soft
470 * limit by the same amount
471 */
472 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
473 p = &(*p)->rb_right;
474 }
475 rb_link_node(&mz->tree_node, parent, p);
476 rb_insert_color(&mz->tree_node, &mctz->rb_root);
477 mz->on_tree = true;
478 }
479
480 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
481 struct mem_cgroup_tree_per_zone *mctz)
482 {
483 if (!mz->on_tree)
484 return;
485 rb_erase(&mz->tree_node, &mctz->rb_root);
486 mz->on_tree = false;
487 }
488
489 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
490 struct mem_cgroup_tree_per_zone *mctz)
491 {
492 unsigned long flags;
493
494 spin_lock_irqsave(&mctz->lock, flags);
495 __mem_cgroup_remove_exceeded(mz, mctz);
496 spin_unlock_irqrestore(&mctz->lock, flags);
497 }
498
499 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
500 {
501 unsigned long nr_pages = page_counter_read(&memcg->memory);
502 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
503 unsigned long excess = 0;
504
505 if (nr_pages > soft_limit)
506 excess = nr_pages - soft_limit;
507
508 return excess;
509 }
510
511 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
512 {
513 unsigned long excess;
514 struct mem_cgroup_per_zone *mz;
515 struct mem_cgroup_tree_per_zone *mctz;
516
517 mctz = soft_limit_tree_from_page(page);
518 /*
519 * Necessary to update all ancestors when hierarchy is used.
520 * because their event counter is not touched.
521 */
522 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
523 mz = mem_cgroup_page_zoneinfo(memcg, page);
524 excess = soft_limit_excess(memcg);
525 /*
526 * We have to update the tree if mz is on RB-tree or
527 * mem is over its softlimit.
528 */
529 if (excess || mz->on_tree) {
530 unsigned long flags;
531
532 spin_lock_irqsave(&mctz->lock, flags);
533 /* if on-tree, remove it */
534 if (mz->on_tree)
535 __mem_cgroup_remove_exceeded(mz, mctz);
536 /*
537 * Insert again. mz->usage_in_excess will be updated.
538 * If excess is 0, no tree ops.
539 */
540 __mem_cgroup_insert_exceeded(mz, mctz, excess);
541 spin_unlock_irqrestore(&mctz->lock, flags);
542 }
543 }
544 }
545
546 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
547 {
548 struct mem_cgroup_tree_per_zone *mctz;
549 struct mem_cgroup_per_zone *mz;
550 int nid, zid;
551
552 for_each_node(nid) {
553 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
554 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
555 mctz = soft_limit_tree_node_zone(nid, zid);
556 mem_cgroup_remove_exceeded(mz, mctz);
557 }
558 }
559 }
560
561 static struct mem_cgroup_per_zone *
562 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
563 {
564 struct rb_node *rightmost = NULL;
565 struct mem_cgroup_per_zone *mz;
566
567 retry:
568 mz = NULL;
569 rightmost = rb_last(&mctz->rb_root);
570 if (!rightmost)
571 goto done; /* Nothing to reclaim from */
572
573 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
574 /*
575 * Remove the node now but someone else can add it back,
576 * we will to add it back at the end of reclaim to its correct
577 * position in the tree.
578 */
579 __mem_cgroup_remove_exceeded(mz, mctz);
580 if (!soft_limit_excess(mz->memcg) ||
581 !css_tryget_online(&mz->memcg->css))
582 goto retry;
583 done:
584 return mz;
585 }
586
587 static struct mem_cgroup_per_zone *
588 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
589 {
590 struct mem_cgroup_per_zone *mz;
591
592 spin_lock_irq(&mctz->lock);
593 mz = __mem_cgroup_largest_soft_limit_node(mctz);
594 spin_unlock_irq(&mctz->lock);
595 return mz;
596 }
597
598 /*
599 * Return page count for single (non recursive) @memcg.
600 *
601 * Implementation Note: reading percpu statistics for memcg.
602 *
603 * Both of vmstat[] and percpu_counter has threshold and do periodic
604 * synchronization to implement "quick" read. There are trade-off between
605 * reading cost and precision of value. Then, we may have a chance to implement
606 * a periodic synchronization of counter in memcg's counter.
607 *
608 * But this _read() function is used for user interface now. The user accounts
609 * memory usage by memory cgroup and he _always_ requires exact value because
610 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
611 * have to visit all online cpus and make sum. So, for now, unnecessary
612 * synchronization is not implemented. (just implemented for cpu hotplug)
613 *
614 * If there are kernel internal actions which can make use of some not-exact
615 * value, and reading all cpu value can be performance bottleneck in some
616 * common workload, threshold and synchronization as vmstat[] should be
617 * implemented.
618 */
619 static unsigned long
620 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
621 {
622 long val = 0;
623 int cpu;
624
625 /* Per-cpu values can be negative, use a signed accumulator */
626 for_each_possible_cpu(cpu)
627 val += per_cpu(memcg->stat->count[idx], cpu);
628 /*
629 * Summing races with updates, so val may be negative. Avoid exposing
630 * transient negative values.
631 */
632 if (val < 0)
633 val = 0;
634 return val;
635 }
636
637 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
638 enum mem_cgroup_events_index idx)
639 {
640 unsigned long val = 0;
641 int cpu;
642
643 for_each_possible_cpu(cpu)
644 val += per_cpu(memcg->stat->events[idx], cpu);
645 return val;
646 }
647
648 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
649 struct page *page,
650 int nr_pages)
651 {
652 /*
653 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
654 * counted as CACHE even if it's on ANON LRU.
655 */
656 if (PageAnon(page))
657 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
658 nr_pages);
659 else
660 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
661 nr_pages);
662
663 if (PageTransHuge(page))
664 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
665 nr_pages);
666
667 /* pagein of a big page is an event. So, ignore page size */
668 if (nr_pages > 0)
669 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
670 else {
671 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
672 nr_pages = -nr_pages; /* for event */
673 }
674
675 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
676 }
677
678 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
679 int nid,
680 unsigned int lru_mask)
681 {
682 unsigned long nr = 0;
683 int zid;
684
685 VM_BUG_ON((unsigned)nid >= nr_node_ids);
686
687 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
688 struct mem_cgroup_per_zone *mz;
689 enum lru_list lru;
690
691 for_each_lru(lru) {
692 if (!(BIT(lru) & lru_mask))
693 continue;
694 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
695 nr += mz->lru_size[lru];
696 }
697 }
698 return nr;
699 }
700
701 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
702 unsigned int lru_mask)
703 {
704 unsigned long nr = 0;
705 int nid;
706
707 for_each_node_state(nid, N_MEMORY)
708 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
709 return nr;
710 }
711
712 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
713 enum mem_cgroup_events_target target)
714 {
715 unsigned long val, next;
716
717 val = __this_cpu_read(memcg->stat->nr_page_events);
718 next = __this_cpu_read(memcg->stat->targets[target]);
719 /* from time_after() in jiffies.h */
720 if ((long)next - (long)val < 0) {
721 switch (target) {
722 case MEM_CGROUP_TARGET_THRESH:
723 next = val + THRESHOLDS_EVENTS_TARGET;
724 break;
725 case MEM_CGROUP_TARGET_SOFTLIMIT:
726 next = val + SOFTLIMIT_EVENTS_TARGET;
727 break;
728 case MEM_CGROUP_TARGET_NUMAINFO:
729 next = val + NUMAINFO_EVENTS_TARGET;
730 break;
731 default:
732 break;
733 }
734 __this_cpu_write(memcg->stat->targets[target], next);
735 return true;
736 }
737 return false;
738 }
739
740 /*
741 * Check events in order.
742 *
743 */
744 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
745 {
746 /* threshold event is triggered in finer grain than soft limit */
747 if (unlikely(mem_cgroup_event_ratelimit(memcg,
748 MEM_CGROUP_TARGET_THRESH))) {
749 bool do_softlimit;
750 bool do_numainfo __maybe_unused;
751
752 do_softlimit = mem_cgroup_event_ratelimit(memcg,
753 MEM_CGROUP_TARGET_SOFTLIMIT);
754 #if MAX_NUMNODES > 1
755 do_numainfo = mem_cgroup_event_ratelimit(memcg,
756 MEM_CGROUP_TARGET_NUMAINFO);
757 #endif
758 mem_cgroup_threshold(memcg);
759 if (unlikely(do_softlimit))
760 mem_cgroup_update_tree(memcg, page);
761 #if MAX_NUMNODES > 1
762 if (unlikely(do_numainfo))
763 atomic_inc(&memcg->numainfo_events);
764 #endif
765 }
766 }
767
768 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
769 {
770 /*
771 * mm_update_next_owner() may clear mm->owner to NULL
772 * if it races with swapoff, page migration, etc.
773 * So this can be called with p == NULL.
774 */
775 if (unlikely(!p))
776 return NULL;
777
778 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
779 }
780 EXPORT_SYMBOL(mem_cgroup_from_task);
781
782 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
783 {
784 struct mem_cgroup *memcg = NULL;
785
786 rcu_read_lock();
787 do {
788 /*
789 * Page cache insertions can happen withou an
790 * actual mm context, e.g. during disk probing
791 * on boot, loopback IO, acct() writes etc.
792 */
793 if (unlikely(!mm))
794 memcg = root_mem_cgroup;
795 else {
796 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
797 if (unlikely(!memcg))
798 memcg = root_mem_cgroup;
799 }
800 } while (!css_tryget_online(&memcg->css));
801 rcu_read_unlock();
802 return memcg;
803 }
804
805 /**
806 * mem_cgroup_iter - iterate over memory cgroup hierarchy
807 * @root: hierarchy root
808 * @prev: previously returned memcg, NULL on first invocation
809 * @reclaim: cookie for shared reclaim walks, NULL for full walks
810 *
811 * Returns references to children of the hierarchy below @root, or
812 * @root itself, or %NULL after a full round-trip.
813 *
814 * Caller must pass the return value in @prev on subsequent
815 * invocations for reference counting, or use mem_cgroup_iter_break()
816 * to cancel a hierarchy walk before the round-trip is complete.
817 *
818 * Reclaimers can specify a zone and a priority level in @reclaim to
819 * divide up the memcgs in the hierarchy among all concurrent
820 * reclaimers operating on the same zone and priority.
821 */
822 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
823 struct mem_cgroup *prev,
824 struct mem_cgroup_reclaim_cookie *reclaim)
825 {
826 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
827 struct cgroup_subsys_state *css = NULL;
828 struct mem_cgroup *memcg = NULL;
829 struct mem_cgroup *pos = NULL;
830
831 if (mem_cgroup_disabled())
832 return NULL;
833
834 if (!root)
835 root = root_mem_cgroup;
836
837 if (prev && !reclaim)
838 pos = prev;
839
840 if (!root->use_hierarchy && root != root_mem_cgroup) {
841 if (prev)
842 goto out;
843 return root;
844 }
845
846 rcu_read_lock();
847
848 if (reclaim) {
849 struct mem_cgroup_per_zone *mz;
850
851 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
852 iter = &mz->iter[reclaim->priority];
853
854 if (prev && reclaim->generation != iter->generation)
855 goto out_unlock;
856
857 while (1) {
858 pos = READ_ONCE(iter->position);
859 if (!pos || css_tryget(&pos->css))
860 break;
861 /*
862 * css reference reached zero, so iter->position will
863 * be cleared by ->css_released. However, we should not
864 * rely on this happening soon, because ->css_released
865 * is called from a work queue, and by busy-waiting we
866 * might block it. So we clear iter->position right
867 * away.
868 */
869 (void)cmpxchg(&iter->position, pos, NULL);
870 }
871 }
872
873 if (pos)
874 css = &pos->css;
875
876 for (;;) {
877 css = css_next_descendant_pre(css, &root->css);
878 if (!css) {
879 /*
880 * Reclaimers share the hierarchy walk, and a
881 * new one might jump in right at the end of
882 * the hierarchy - make sure they see at least
883 * one group and restart from the beginning.
884 */
885 if (!prev)
886 continue;
887 break;
888 }
889
890 /*
891 * Verify the css and acquire a reference. The root
892 * is provided by the caller, so we know it's alive
893 * and kicking, and don't take an extra reference.
894 */
895 memcg = mem_cgroup_from_css(css);
896
897 if (css == &root->css)
898 break;
899
900 if (css_tryget(css)) {
901 /*
902 * Make sure the memcg is initialized:
903 * mem_cgroup_css_online() orders the the
904 * initialization against setting the flag.
905 */
906 if (smp_load_acquire(&memcg->initialized))
907 break;
908
909 css_put(css);
910 }
911
912 memcg = NULL;
913 }
914
915 if (reclaim) {
916 /*
917 * The position could have already been updated by a competing
918 * thread, so check that the value hasn't changed since we read
919 * it to avoid reclaiming from the same cgroup twice.
920 */
921 (void)cmpxchg(&iter->position, pos, memcg);
922
923 if (pos)
924 css_put(&pos->css);
925
926 if (!memcg)
927 iter->generation++;
928 else if (!prev)
929 reclaim->generation = iter->generation;
930 }
931
932 out_unlock:
933 rcu_read_unlock();
934 out:
935 if (prev && prev != root)
936 css_put(&prev->css);
937
938 return memcg;
939 }
940
941 /**
942 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
943 * @root: hierarchy root
944 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
945 */
946 void mem_cgroup_iter_break(struct mem_cgroup *root,
947 struct mem_cgroup *prev)
948 {
949 if (!root)
950 root = root_mem_cgroup;
951 if (prev && prev != root)
952 css_put(&prev->css);
953 }
954
955 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
956 {
957 struct mem_cgroup *memcg = dead_memcg;
958 struct mem_cgroup_reclaim_iter *iter;
959 struct mem_cgroup_per_zone *mz;
960 int nid, zid;
961 int i;
962
963 while ((memcg = parent_mem_cgroup(memcg))) {
964 for_each_node(nid) {
965 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
966 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
967 for (i = 0; i <= DEF_PRIORITY; i++) {
968 iter = &mz->iter[i];
969 cmpxchg(&iter->position,
970 dead_memcg, NULL);
971 }
972 }
973 }
974 }
975 }
976
977 /*
978 * Iteration constructs for visiting all cgroups (under a tree). If
979 * loops are exited prematurely (break), mem_cgroup_iter_break() must
980 * be used for reference counting.
981 */
982 #define for_each_mem_cgroup_tree(iter, root) \
983 for (iter = mem_cgroup_iter(root, NULL, NULL); \
984 iter != NULL; \
985 iter = mem_cgroup_iter(root, iter, NULL))
986
987 #define for_each_mem_cgroup(iter) \
988 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
989 iter != NULL; \
990 iter = mem_cgroup_iter(NULL, iter, NULL))
991
992 /**
993 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
994 * @zone: zone of the wanted lruvec
995 * @memcg: memcg of the wanted lruvec
996 *
997 * Returns the lru list vector holding pages for the given @zone and
998 * @mem. This can be the global zone lruvec, if the memory controller
999 * is disabled.
1000 */
1001 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1002 struct mem_cgroup *memcg)
1003 {
1004 struct mem_cgroup_per_zone *mz;
1005 struct lruvec *lruvec;
1006
1007 if (mem_cgroup_disabled()) {
1008 lruvec = &zone->lruvec;
1009 goto out;
1010 }
1011
1012 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1013 lruvec = &mz->lruvec;
1014 out:
1015 /*
1016 * Since a node can be onlined after the mem_cgroup was created,
1017 * we have to be prepared to initialize lruvec->zone here;
1018 * and if offlined then reonlined, we need to reinitialize it.
1019 */
1020 if (unlikely(lruvec->zone != zone))
1021 lruvec->zone = zone;
1022 return lruvec;
1023 }
1024
1025 /**
1026 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1027 * @page: the page
1028 * @zone: zone of the page
1029 *
1030 * This function is only safe when following the LRU page isolation
1031 * and putback protocol: the LRU lock must be held, and the page must
1032 * either be PageLRU() or the caller must have isolated/allocated it.
1033 */
1034 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1035 {
1036 struct mem_cgroup_per_zone *mz;
1037 struct mem_cgroup *memcg;
1038 struct lruvec *lruvec;
1039
1040 if (mem_cgroup_disabled()) {
1041 lruvec = &zone->lruvec;
1042 goto out;
1043 }
1044
1045 memcg = page->mem_cgroup;
1046 /*
1047 * Swapcache readahead pages are added to the LRU - and
1048 * possibly migrated - before they are charged.
1049 */
1050 if (!memcg)
1051 memcg = root_mem_cgroup;
1052
1053 mz = mem_cgroup_page_zoneinfo(memcg, page);
1054 lruvec = &mz->lruvec;
1055 out:
1056 /*
1057 * Since a node can be onlined after the mem_cgroup was created,
1058 * we have to be prepared to initialize lruvec->zone here;
1059 * and if offlined then reonlined, we need to reinitialize it.
1060 */
1061 if (unlikely(lruvec->zone != zone))
1062 lruvec->zone = zone;
1063 return lruvec;
1064 }
1065
1066 /**
1067 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1068 * @lruvec: mem_cgroup per zone lru vector
1069 * @lru: index of lru list the page is sitting on
1070 * @nr_pages: positive when adding or negative when removing
1071 *
1072 * This function must be called when a page is added to or removed from an
1073 * lru list.
1074 */
1075 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1076 int nr_pages)
1077 {
1078 struct mem_cgroup_per_zone *mz;
1079 unsigned long *lru_size;
1080
1081 if (mem_cgroup_disabled())
1082 return;
1083
1084 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1085 lru_size = mz->lru_size + lru;
1086 *lru_size += nr_pages;
1087 VM_BUG_ON((long)(*lru_size) < 0);
1088 }
1089
1090 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1091 {
1092 struct mem_cgroup *task_memcg;
1093 struct task_struct *p;
1094 bool ret;
1095
1096 p = find_lock_task_mm(task);
1097 if (p) {
1098 task_memcg = get_mem_cgroup_from_mm(p->mm);
1099 task_unlock(p);
1100 } else {
1101 /*
1102 * All threads may have already detached their mm's, but the oom
1103 * killer still needs to detect if they have already been oom
1104 * killed to prevent needlessly killing additional tasks.
1105 */
1106 rcu_read_lock();
1107 task_memcg = mem_cgroup_from_task(task);
1108 css_get(&task_memcg->css);
1109 rcu_read_unlock();
1110 }
1111 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1112 css_put(&task_memcg->css);
1113 return ret;
1114 }
1115
1116 /**
1117 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1118 * @memcg: the memory cgroup
1119 *
1120 * Returns the maximum amount of memory @mem can be charged with, in
1121 * pages.
1122 */
1123 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1124 {
1125 unsigned long margin = 0;
1126 unsigned long count;
1127 unsigned long limit;
1128
1129 count = page_counter_read(&memcg->memory);
1130 limit = READ_ONCE(memcg->memory.limit);
1131 if (count < limit)
1132 margin = limit - count;
1133
1134 if (do_memsw_account()) {
1135 count = page_counter_read(&memcg->memsw);
1136 limit = READ_ONCE(memcg->memsw.limit);
1137 if (count <= limit)
1138 margin = min(margin, limit - count);
1139 }
1140
1141 return margin;
1142 }
1143
1144 /*
1145 * A routine for checking "mem" is under move_account() or not.
1146 *
1147 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1148 * moving cgroups. This is for waiting at high-memory pressure
1149 * caused by "move".
1150 */
1151 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1152 {
1153 struct mem_cgroup *from;
1154 struct mem_cgroup *to;
1155 bool ret = false;
1156 /*
1157 * Unlike task_move routines, we access mc.to, mc.from not under
1158 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1159 */
1160 spin_lock(&mc.lock);
1161 from = mc.from;
1162 to = mc.to;
1163 if (!from)
1164 goto unlock;
1165
1166 ret = mem_cgroup_is_descendant(from, memcg) ||
1167 mem_cgroup_is_descendant(to, memcg);
1168 unlock:
1169 spin_unlock(&mc.lock);
1170 return ret;
1171 }
1172
1173 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1174 {
1175 if (mc.moving_task && current != mc.moving_task) {
1176 if (mem_cgroup_under_move(memcg)) {
1177 DEFINE_WAIT(wait);
1178 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1179 /* moving charge context might have finished. */
1180 if (mc.moving_task)
1181 schedule();
1182 finish_wait(&mc.waitq, &wait);
1183 return true;
1184 }
1185 }
1186 return false;
1187 }
1188
1189 #define K(x) ((x) << (PAGE_SHIFT-10))
1190 /**
1191 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1192 * @memcg: The memory cgroup that went over limit
1193 * @p: Task that is going to be killed
1194 *
1195 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1196 * enabled
1197 */
1198 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1199 {
1200 /* oom_info_lock ensures that parallel ooms do not interleave */
1201 static DEFINE_MUTEX(oom_info_lock);
1202 struct mem_cgroup *iter;
1203 unsigned int i;
1204
1205 mutex_lock(&oom_info_lock);
1206 rcu_read_lock();
1207
1208 if (p) {
1209 pr_info("Task in ");
1210 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1211 pr_cont(" killed as a result of limit of ");
1212 } else {
1213 pr_info("Memory limit reached of cgroup ");
1214 }
1215
1216 pr_cont_cgroup_path(memcg->css.cgroup);
1217 pr_cont("\n");
1218
1219 rcu_read_unlock();
1220
1221 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1222 K((u64)page_counter_read(&memcg->memory)),
1223 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1224 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1225 K((u64)page_counter_read(&memcg->memsw)),
1226 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1227 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1228 K((u64)page_counter_read(&memcg->kmem)),
1229 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1230
1231 for_each_mem_cgroup_tree(iter, memcg) {
1232 pr_info("Memory cgroup stats for ");
1233 pr_cont_cgroup_path(iter->css.cgroup);
1234 pr_cont(":");
1235
1236 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1237 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1238 continue;
1239 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1240 K(mem_cgroup_read_stat(iter, i)));
1241 }
1242
1243 for (i = 0; i < NR_LRU_LISTS; i++)
1244 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1245 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1246
1247 pr_cont("\n");
1248 }
1249 mutex_unlock(&oom_info_lock);
1250 }
1251
1252 /*
1253 * This function returns the number of memcg under hierarchy tree. Returns
1254 * 1(self count) if no children.
1255 */
1256 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1257 {
1258 int num = 0;
1259 struct mem_cgroup *iter;
1260
1261 for_each_mem_cgroup_tree(iter, memcg)
1262 num++;
1263 return num;
1264 }
1265
1266 /*
1267 * Return the memory (and swap, if configured) limit for a memcg.
1268 */
1269 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1270 {
1271 unsigned long limit;
1272
1273 limit = memcg->memory.limit;
1274 if (mem_cgroup_swappiness(memcg)) {
1275 unsigned long memsw_limit;
1276
1277 memsw_limit = memcg->memsw.limit;
1278 limit = min(limit + total_swap_pages, memsw_limit);
1279 }
1280 return limit;
1281 }
1282
1283 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1284 int order)
1285 {
1286 struct oom_control oc = {
1287 .zonelist = NULL,
1288 .nodemask = NULL,
1289 .gfp_mask = gfp_mask,
1290 .order = order,
1291 };
1292 struct mem_cgroup *iter;
1293 unsigned long chosen_points = 0;
1294 unsigned long totalpages;
1295 unsigned int points = 0;
1296 struct task_struct *chosen = NULL;
1297
1298 mutex_lock(&oom_lock);
1299
1300 /*
1301 * If current has a pending SIGKILL or is exiting, then automatically
1302 * select it. The goal is to allow it to allocate so that it may
1303 * quickly exit and free its memory.
1304 */
1305 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1306 mark_oom_victim(current);
1307 goto unlock;
1308 }
1309
1310 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1311 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1312 for_each_mem_cgroup_tree(iter, memcg) {
1313 struct css_task_iter it;
1314 struct task_struct *task;
1315
1316 css_task_iter_start(&iter->css, &it);
1317 while ((task = css_task_iter_next(&it))) {
1318 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1319 case OOM_SCAN_SELECT:
1320 if (chosen)
1321 put_task_struct(chosen);
1322 chosen = task;
1323 chosen_points = ULONG_MAX;
1324 get_task_struct(chosen);
1325 /* fall through */
1326 case OOM_SCAN_CONTINUE:
1327 continue;
1328 case OOM_SCAN_ABORT:
1329 css_task_iter_end(&it);
1330 mem_cgroup_iter_break(memcg, iter);
1331 if (chosen)
1332 put_task_struct(chosen);
1333 goto unlock;
1334 case OOM_SCAN_OK:
1335 break;
1336 };
1337 points = oom_badness(task, memcg, NULL, totalpages);
1338 if (!points || points < chosen_points)
1339 continue;
1340 /* Prefer thread group leaders for display purposes */
1341 if (points == chosen_points &&
1342 thread_group_leader(chosen))
1343 continue;
1344
1345 if (chosen)
1346 put_task_struct(chosen);
1347 chosen = task;
1348 chosen_points = points;
1349 get_task_struct(chosen);
1350 }
1351 css_task_iter_end(&it);
1352 }
1353
1354 if (chosen) {
1355 points = chosen_points * 1000 / totalpages;
1356 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1357 "Memory cgroup out of memory");
1358 }
1359 unlock:
1360 mutex_unlock(&oom_lock);
1361 }
1362
1363 #if MAX_NUMNODES > 1
1364
1365 /**
1366 * test_mem_cgroup_node_reclaimable
1367 * @memcg: the target memcg
1368 * @nid: the node ID to be checked.
1369 * @noswap : specify true here if the user wants flle only information.
1370 *
1371 * This function returns whether the specified memcg contains any
1372 * reclaimable pages on a node. Returns true if there are any reclaimable
1373 * pages in the node.
1374 */
1375 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1376 int nid, bool noswap)
1377 {
1378 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1379 return true;
1380 if (noswap || !total_swap_pages)
1381 return false;
1382 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1383 return true;
1384 return false;
1385
1386 }
1387
1388 /*
1389 * Always updating the nodemask is not very good - even if we have an empty
1390 * list or the wrong list here, we can start from some node and traverse all
1391 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1392 *
1393 */
1394 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1395 {
1396 int nid;
1397 /*
1398 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1399 * pagein/pageout changes since the last update.
1400 */
1401 if (!atomic_read(&memcg->numainfo_events))
1402 return;
1403 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1404 return;
1405
1406 /* make a nodemask where this memcg uses memory from */
1407 memcg->scan_nodes = node_states[N_MEMORY];
1408
1409 for_each_node_mask(nid, node_states[N_MEMORY]) {
1410
1411 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1412 node_clear(nid, memcg->scan_nodes);
1413 }
1414
1415 atomic_set(&memcg->numainfo_events, 0);
1416 atomic_set(&memcg->numainfo_updating, 0);
1417 }
1418
1419 /*
1420 * Selecting a node where we start reclaim from. Because what we need is just
1421 * reducing usage counter, start from anywhere is O,K. Considering
1422 * memory reclaim from current node, there are pros. and cons.
1423 *
1424 * Freeing memory from current node means freeing memory from a node which
1425 * we'll use or we've used. So, it may make LRU bad. And if several threads
1426 * hit limits, it will see a contention on a node. But freeing from remote
1427 * node means more costs for memory reclaim because of memory latency.
1428 *
1429 * Now, we use round-robin. Better algorithm is welcomed.
1430 */
1431 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1432 {
1433 int node;
1434
1435 mem_cgroup_may_update_nodemask(memcg);
1436 node = memcg->last_scanned_node;
1437
1438 node = next_node(node, memcg->scan_nodes);
1439 if (node == MAX_NUMNODES)
1440 node = first_node(memcg->scan_nodes);
1441 /*
1442 * We call this when we hit limit, not when pages are added to LRU.
1443 * No LRU may hold pages because all pages are UNEVICTABLE or
1444 * memcg is too small and all pages are not on LRU. In that case,
1445 * we use curret node.
1446 */
1447 if (unlikely(node == MAX_NUMNODES))
1448 node = numa_node_id();
1449
1450 memcg->last_scanned_node = node;
1451 return node;
1452 }
1453 #else
1454 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1455 {
1456 return 0;
1457 }
1458 #endif
1459
1460 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1461 struct zone *zone,
1462 gfp_t gfp_mask,
1463 unsigned long *total_scanned)
1464 {
1465 struct mem_cgroup *victim = NULL;
1466 int total = 0;
1467 int loop = 0;
1468 unsigned long excess;
1469 unsigned long nr_scanned;
1470 struct mem_cgroup_reclaim_cookie reclaim = {
1471 .zone = zone,
1472 .priority = 0,
1473 };
1474
1475 excess = soft_limit_excess(root_memcg);
1476
1477 while (1) {
1478 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1479 if (!victim) {
1480 loop++;
1481 if (loop >= 2) {
1482 /*
1483 * If we have not been able to reclaim
1484 * anything, it might because there are
1485 * no reclaimable pages under this hierarchy
1486 */
1487 if (!total)
1488 break;
1489 /*
1490 * We want to do more targeted reclaim.
1491 * excess >> 2 is not to excessive so as to
1492 * reclaim too much, nor too less that we keep
1493 * coming back to reclaim from this cgroup
1494 */
1495 if (total >= (excess >> 2) ||
1496 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1497 break;
1498 }
1499 continue;
1500 }
1501 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1502 zone, &nr_scanned);
1503 *total_scanned += nr_scanned;
1504 if (!soft_limit_excess(root_memcg))
1505 break;
1506 }
1507 mem_cgroup_iter_break(root_memcg, victim);
1508 return total;
1509 }
1510
1511 #ifdef CONFIG_LOCKDEP
1512 static struct lockdep_map memcg_oom_lock_dep_map = {
1513 .name = "memcg_oom_lock",
1514 };
1515 #endif
1516
1517 static DEFINE_SPINLOCK(memcg_oom_lock);
1518
1519 /*
1520 * Check OOM-Killer is already running under our hierarchy.
1521 * If someone is running, return false.
1522 */
1523 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1524 {
1525 struct mem_cgroup *iter, *failed = NULL;
1526
1527 spin_lock(&memcg_oom_lock);
1528
1529 for_each_mem_cgroup_tree(iter, memcg) {
1530 if (iter->oom_lock) {
1531 /*
1532 * this subtree of our hierarchy is already locked
1533 * so we cannot give a lock.
1534 */
1535 failed = iter;
1536 mem_cgroup_iter_break(memcg, iter);
1537 break;
1538 } else
1539 iter->oom_lock = true;
1540 }
1541
1542 if (failed) {
1543 /*
1544 * OK, we failed to lock the whole subtree so we have
1545 * to clean up what we set up to the failing subtree
1546 */
1547 for_each_mem_cgroup_tree(iter, memcg) {
1548 if (iter == failed) {
1549 mem_cgroup_iter_break(memcg, iter);
1550 break;
1551 }
1552 iter->oom_lock = false;
1553 }
1554 } else
1555 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1556
1557 spin_unlock(&memcg_oom_lock);
1558
1559 return !failed;
1560 }
1561
1562 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1563 {
1564 struct mem_cgroup *iter;
1565
1566 spin_lock(&memcg_oom_lock);
1567 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1568 for_each_mem_cgroup_tree(iter, memcg)
1569 iter->oom_lock = false;
1570 spin_unlock(&memcg_oom_lock);
1571 }
1572
1573 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1574 {
1575 struct mem_cgroup *iter;
1576
1577 spin_lock(&memcg_oom_lock);
1578 for_each_mem_cgroup_tree(iter, memcg)
1579 iter->under_oom++;
1580 spin_unlock(&memcg_oom_lock);
1581 }
1582
1583 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1584 {
1585 struct mem_cgroup *iter;
1586
1587 /*
1588 * When a new child is created while the hierarchy is under oom,
1589 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1590 */
1591 spin_lock(&memcg_oom_lock);
1592 for_each_mem_cgroup_tree(iter, memcg)
1593 if (iter->under_oom > 0)
1594 iter->under_oom--;
1595 spin_unlock(&memcg_oom_lock);
1596 }
1597
1598 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1599
1600 struct oom_wait_info {
1601 struct mem_cgroup *memcg;
1602 wait_queue_t wait;
1603 };
1604
1605 static int memcg_oom_wake_function(wait_queue_t *wait,
1606 unsigned mode, int sync, void *arg)
1607 {
1608 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1609 struct mem_cgroup *oom_wait_memcg;
1610 struct oom_wait_info *oom_wait_info;
1611
1612 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1613 oom_wait_memcg = oom_wait_info->memcg;
1614
1615 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1616 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1617 return 0;
1618 return autoremove_wake_function(wait, mode, sync, arg);
1619 }
1620
1621 static void memcg_oom_recover(struct mem_cgroup *memcg)
1622 {
1623 /*
1624 * For the following lockless ->under_oom test, the only required
1625 * guarantee is that it must see the state asserted by an OOM when
1626 * this function is called as a result of userland actions
1627 * triggered by the notification of the OOM. This is trivially
1628 * achieved by invoking mem_cgroup_mark_under_oom() before
1629 * triggering notification.
1630 */
1631 if (memcg && memcg->under_oom)
1632 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1633 }
1634
1635 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1636 {
1637 if (!current->memcg_may_oom)
1638 return;
1639 /*
1640 * We are in the middle of the charge context here, so we
1641 * don't want to block when potentially sitting on a callstack
1642 * that holds all kinds of filesystem and mm locks.
1643 *
1644 * Also, the caller may handle a failed allocation gracefully
1645 * (like optional page cache readahead) and so an OOM killer
1646 * invocation might not even be necessary.
1647 *
1648 * That's why we don't do anything here except remember the
1649 * OOM context and then deal with it at the end of the page
1650 * fault when the stack is unwound, the locks are released,
1651 * and when we know whether the fault was overall successful.
1652 */
1653 css_get(&memcg->css);
1654 current->memcg_in_oom = memcg;
1655 current->memcg_oom_gfp_mask = mask;
1656 current->memcg_oom_order = order;
1657 }
1658
1659 /**
1660 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1661 * @handle: actually kill/wait or just clean up the OOM state
1662 *
1663 * This has to be called at the end of a page fault if the memcg OOM
1664 * handler was enabled.
1665 *
1666 * Memcg supports userspace OOM handling where failed allocations must
1667 * sleep on a waitqueue until the userspace task resolves the
1668 * situation. Sleeping directly in the charge context with all kinds
1669 * of locks held is not a good idea, instead we remember an OOM state
1670 * in the task and mem_cgroup_oom_synchronize() has to be called at
1671 * the end of the page fault to complete the OOM handling.
1672 *
1673 * Returns %true if an ongoing memcg OOM situation was detected and
1674 * completed, %false otherwise.
1675 */
1676 bool mem_cgroup_oom_synchronize(bool handle)
1677 {
1678 struct mem_cgroup *memcg = current->memcg_in_oom;
1679 struct oom_wait_info owait;
1680 bool locked;
1681
1682 /* OOM is global, do not handle */
1683 if (!memcg)
1684 return false;
1685
1686 if (!handle || oom_killer_disabled)
1687 goto cleanup;
1688
1689 owait.memcg = memcg;
1690 owait.wait.flags = 0;
1691 owait.wait.func = memcg_oom_wake_function;
1692 owait.wait.private = current;
1693 INIT_LIST_HEAD(&owait.wait.task_list);
1694
1695 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1696 mem_cgroup_mark_under_oom(memcg);
1697
1698 locked = mem_cgroup_oom_trylock(memcg);
1699
1700 if (locked)
1701 mem_cgroup_oom_notify(memcg);
1702
1703 if (locked && !memcg->oom_kill_disable) {
1704 mem_cgroup_unmark_under_oom(memcg);
1705 finish_wait(&memcg_oom_waitq, &owait.wait);
1706 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1707 current->memcg_oom_order);
1708 } else {
1709 schedule();
1710 mem_cgroup_unmark_under_oom(memcg);
1711 finish_wait(&memcg_oom_waitq, &owait.wait);
1712 }
1713
1714 if (locked) {
1715 mem_cgroup_oom_unlock(memcg);
1716 /*
1717 * There is no guarantee that an OOM-lock contender
1718 * sees the wakeups triggered by the OOM kill
1719 * uncharges. Wake any sleepers explicitely.
1720 */
1721 memcg_oom_recover(memcg);
1722 }
1723 cleanup:
1724 current->memcg_in_oom = NULL;
1725 css_put(&memcg->css);
1726 return true;
1727 }
1728
1729 /**
1730 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1731 * @page: page that is going to change accounted state
1732 *
1733 * This function must mark the beginning of an accounted page state
1734 * change to prevent double accounting when the page is concurrently
1735 * being moved to another memcg:
1736 *
1737 * memcg = mem_cgroup_begin_page_stat(page);
1738 * if (TestClearPageState(page))
1739 * mem_cgroup_update_page_stat(memcg, state, -1);
1740 * mem_cgroup_end_page_stat(memcg);
1741 */
1742 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1743 {
1744 struct mem_cgroup *memcg;
1745 unsigned long flags;
1746
1747 /*
1748 * The RCU lock is held throughout the transaction. The fast
1749 * path can get away without acquiring the memcg->move_lock
1750 * because page moving starts with an RCU grace period.
1751 *
1752 * The RCU lock also protects the memcg from being freed when
1753 * the page state that is going to change is the only thing
1754 * preventing the page from being uncharged.
1755 * E.g. end-writeback clearing PageWriteback(), which allows
1756 * migration to go ahead and uncharge the page before the
1757 * account transaction might be complete.
1758 */
1759 rcu_read_lock();
1760
1761 if (mem_cgroup_disabled())
1762 return NULL;
1763 again:
1764 memcg = page->mem_cgroup;
1765 if (unlikely(!memcg))
1766 return NULL;
1767
1768 if (atomic_read(&memcg->moving_account) <= 0)
1769 return memcg;
1770
1771 spin_lock_irqsave(&memcg->move_lock, flags);
1772 if (memcg != page->mem_cgroup) {
1773 spin_unlock_irqrestore(&memcg->move_lock, flags);
1774 goto again;
1775 }
1776
1777 /*
1778 * When charge migration first begins, we can have locked and
1779 * unlocked page stat updates happening concurrently. Track
1780 * the task who has the lock for mem_cgroup_end_page_stat().
1781 */
1782 memcg->move_lock_task = current;
1783 memcg->move_lock_flags = flags;
1784
1785 return memcg;
1786 }
1787 EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1788
1789 /**
1790 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1791 * @memcg: the memcg that was accounted against
1792 */
1793 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1794 {
1795 if (memcg && memcg->move_lock_task == current) {
1796 unsigned long flags = memcg->move_lock_flags;
1797
1798 memcg->move_lock_task = NULL;
1799 memcg->move_lock_flags = 0;
1800
1801 spin_unlock_irqrestore(&memcg->move_lock, flags);
1802 }
1803
1804 rcu_read_unlock();
1805 }
1806 EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1807
1808 /*
1809 * size of first charge trial. "32" comes from vmscan.c's magic value.
1810 * TODO: maybe necessary to use big numbers in big irons.
1811 */
1812 #define CHARGE_BATCH 32U
1813 struct memcg_stock_pcp {
1814 struct mem_cgroup *cached; /* this never be root cgroup */
1815 unsigned int nr_pages;
1816 struct work_struct work;
1817 unsigned long flags;
1818 #define FLUSHING_CACHED_CHARGE 0
1819 };
1820 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1821 static DEFINE_MUTEX(percpu_charge_mutex);
1822
1823 /**
1824 * consume_stock: Try to consume stocked charge on this cpu.
1825 * @memcg: memcg to consume from.
1826 * @nr_pages: how many pages to charge.
1827 *
1828 * The charges will only happen if @memcg matches the current cpu's memcg
1829 * stock, and at least @nr_pages are available in that stock. Failure to
1830 * service an allocation will refill the stock.
1831 *
1832 * returns true if successful, false otherwise.
1833 */
1834 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1835 {
1836 struct memcg_stock_pcp *stock;
1837 bool ret = false;
1838
1839 if (nr_pages > CHARGE_BATCH)
1840 return ret;
1841
1842 stock = &get_cpu_var(memcg_stock);
1843 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1844 stock->nr_pages -= nr_pages;
1845 ret = true;
1846 }
1847 put_cpu_var(memcg_stock);
1848 return ret;
1849 }
1850
1851 /*
1852 * Returns stocks cached in percpu and reset cached information.
1853 */
1854 static void drain_stock(struct memcg_stock_pcp *stock)
1855 {
1856 struct mem_cgroup *old = stock->cached;
1857
1858 if (stock->nr_pages) {
1859 page_counter_uncharge(&old->memory, stock->nr_pages);
1860 if (do_memsw_account())
1861 page_counter_uncharge(&old->memsw, stock->nr_pages);
1862 css_put_many(&old->css, stock->nr_pages);
1863 stock->nr_pages = 0;
1864 }
1865 stock->cached = NULL;
1866 }
1867
1868 /*
1869 * This must be called under preempt disabled or must be called by
1870 * a thread which is pinned to local cpu.
1871 */
1872 static void drain_local_stock(struct work_struct *dummy)
1873 {
1874 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1875 drain_stock(stock);
1876 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1877 }
1878
1879 /*
1880 * Cache charges(val) to local per_cpu area.
1881 * This will be consumed by consume_stock() function, later.
1882 */
1883 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1884 {
1885 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1886
1887 if (stock->cached != memcg) { /* reset if necessary */
1888 drain_stock(stock);
1889 stock->cached = memcg;
1890 }
1891 stock->nr_pages += nr_pages;
1892 put_cpu_var(memcg_stock);
1893 }
1894
1895 /*
1896 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1897 * of the hierarchy under it.
1898 */
1899 static void drain_all_stock(struct mem_cgroup *root_memcg)
1900 {
1901 int cpu, curcpu;
1902
1903 /* If someone's already draining, avoid adding running more workers. */
1904 if (!mutex_trylock(&percpu_charge_mutex))
1905 return;
1906 /* Notify other cpus that system-wide "drain" is running */
1907 get_online_cpus();
1908 curcpu = get_cpu();
1909 for_each_online_cpu(cpu) {
1910 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1911 struct mem_cgroup *memcg;
1912
1913 memcg = stock->cached;
1914 if (!memcg || !stock->nr_pages)
1915 continue;
1916 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1917 continue;
1918 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1919 if (cpu == curcpu)
1920 drain_local_stock(&stock->work);
1921 else
1922 schedule_work_on(cpu, &stock->work);
1923 }
1924 }
1925 put_cpu();
1926 put_online_cpus();
1927 mutex_unlock(&percpu_charge_mutex);
1928 }
1929
1930 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1931 unsigned long action,
1932 void *hcpu)
1933 {
1934 int cpu = (unsigned long)hcpu;
1935 struct memcg_stock_pcp *stock;
1936
1937 if (action == CPU_ONLINE)
1938 return NOTIFY_OK;
1939
1940 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1941 return NOTIFY_OK;
1942
1943 stock = &per_cpu(memcg_stock, cpu);
1944 drain_stock(stock);
1945 return NOTIFY_OK;
1946 }
1947
1948 static void reclaim_high(struct mem_cgroup *memcg,
1949 unsigned int nr_pages,
1950 gfp_t gfp_mask)
1951 {
1952 do {
1953 if (page_counter_read(&memcg->memory) <= memcg->high)
1954 continue;
1955 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1956 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1957 } while ((memcg = parent_mem_cgroup(memcg)));
1958 }
1959
1960 static void high_work_func(struct work_struct *work)
1961 {
1962 struct mem_cgroup *memcg;
1963
1964 memcg = container_of(work, struct mem_cgroup, high_work);
1965 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1966 }
1967
1968 /*
1969 * Scheduled by try_charge() to be executed from the userland return path
1970 * and reclaims memory over the high limit.
1971 */
1972 void mem_cgroup_handle_over_high(void)
1973 {
1974 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1975 struct mem_cgroup *memcg;
1976
1977 if (likely(!nr_pages))
1978 return;
1979
1980 memcg = get_mem_cgroup_from_mm(current->mm);
1981 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1982 css_put(&memcg->css);
1983 current->memcg_nr_pages_over_high = 0;
1984 }
1985
1986 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1987 unsigned int nr_pages)
1988 {
1989 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1990 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1991 struct mem_cgroup *mem_over_limit;
1992 struct page_counter *counter;
1993 unsigned long nr_reclaimed;
1994 bool may_swap = true;
1995 bool drained = false;
1996
1997 if (mem_cgroup_is_root(memcg))
1998 return 0;
1999 retry:
2000 if (consume_stock(memcg, nr_pages))
2001 return 0;
2002
2003 if (!do_memsw_account() ||
2004 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2005 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2006 goto done_restock;
2007 if (do_memsw_account())
2008 page_counter_uncharge(&memcg->memsw, batch);
2009 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2010 } else {
2011 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2012 may_swap = false;
2013 }
2014
2015 if (batch > nr_pages) {
2016 batch = nr_pages;
2017 goto retry;
2018 }
2019
2020 /*
2021 * Unlike in global OOM situations, memcg is not in a physical
2022 * memory shortage. Allow dying and OOM-killed tasks to
2023 * bypass the last charges so that they can exit quickly and
2024 * free their memory.
2025 */
2026 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2027 fatal_signal_pending(current) ||
2028 current->flags & PF_EXITING))
2029 goto force;
2030
2031 if (unlikely(task_in_memcg_oom(current)))
2032 goto nomem;
2033
2034 if (!gfpflags_allow_blocking(gfp_mask))
2035 goto nomem;
2036
2037 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2038
2039 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2040 gfp_mask, may_swap);
2041
2042 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2043 goto retry;
2044
2045 if (!drained) {
2046 drain_all_stock(mem_over_limit);
2047 drained = true;
2048 goto retry;
2049 }
2050
2051 if (gfp_mask & __GFP_NORETRY)
2052 goto nomem;
2053 /*
2054 * Even though the limit is exceeded at this point, reclaim
2055 * may have been able to free some pages. Retry the charge
2056 * before killing the task.
2057 *
2058 * Only for regular pages, though: huge pages are rather
2059 * unlikely to succeed so close to the limit, and we fall back
2060 * to regular pages anyway in case of failure.
2061 */
2062 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2063 goto retry;
2064 /*
2065 * At task move, charge accounts can be doubly counted. So, it's
2066 * better to wait until the end of task_move if something is going on.
2067 */
2068 if (mem_cgroup_wait_acct_move(mem_over_limit))
2069 goto retry;
2070
2071 if (nr_retries--)
2072 goto retry;
2073
2074 if (gfp_mask & __GFP_NOFAIL)
2075 goto force;
2076
2077 if (fatal_signal_pending(current))
2078 goto force;
2079
2080 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2081
2082 mem_cgroup_oom(mem_over_limit, gfp_mask,
2083 get_order(nr_pages * PAGE_SIZE));
2084 nomem:
2085 if (!(gfp_mask & __GFP_NOFAIL))
2086 return -ENOMEM;
2087 force:
2088 /*
2089 * The allocation either can't fail or will lead to more memory
2090 * being freed very soon. Allow memory usage go over the limit
2091 * temporarily by force charging it.
2092 */
2093 page_counter_charge(&memcg->memory, nr_pages);
2094 if (do_memsw_account())
2095 page_counter_charge(&memcg->memsw, nr_pages);
2096 css_get_many(&memcg->css, nr_pages);
2097
2098 return 0;
2099
2100 done_restock:
2101 css_get_many(&memcg->css, batch);
2102 if (batch > nr_pages)
2103 refill_stock(memcg, batch - nr_pages);
2104
2105 /*
2106 * If the hierarchy is above the normal consumption range, schedule
2107 * reclaim on returning to userland. We can perform reclaim here
2108 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2109 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2110 * not recorded as it most likely matches current's and won't
2111 * change in the meantime. As high limit is checked again before
2112 * reclaim, the cost of mismatch is negligible.
2113 */
2114 do {
2115 if (page_counter_read(&memcg->memory) > memcg->high) {
2116 /* Don't bother a random interrupted task */
2117 if (in_interrupt()) {
2118 schedule_work(&memcg->high_work);
2119 break;
2120 }
2121 current->memcg_nr_pages_over_high += batch;
2122 set_notify_resume(current);
2123 break;
2124 }
2125 } while ((memcg = parent_mem_cgroup(memcg)));
2126
2127 return 0;
2128 }
2129
2130 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2131 {
2132 if (mem_cgroup_is_root(memcg))
2133 return;
2134
2135 page_counter_uncharge(&memcg->memory, nr_pages);
2136 if (do_memsw_account())
2137 page_counter_uncharge(&memcg->memsw, nr_pages);
2138
2139 css_put_many(&memcg->css, nr_pages);
2140 }
2141
2142 static void lock_page_lru(struct page *page, int *isolated)
2143 {
2144 struct zone *zone = page_zone(page);
2145
2146 spin_lock_irq(&zone->lru_lock);
2147 if (PageLRU(page)) {
2148 struct lruvec *lruvec;
2149
2150 lruvec = mem_cgroup_page_lruvec(page, zone);
2151 ClearPageLRU(page);
2152 del_page_from_lru_list(page, lruvec, page_lru(page));
2153 *isolated = 1;
2154 } else
2155 *isolated = 0;
2156 }
2157
2158 static void unlock_page_lru(struct page *page, int isolated)
2159 {
2160 struct zone *zone = page_zone(page);
2161
2162 if (isolated) {
2163 struct lruvec *lruvec;
2164
2165 lruvec = mem_cgroup_page_lruvec(page, zone);
2166 VM_BUG_ON_PAGE(PageLRU(page), page);
2167 SetPageLRU(page);
2168 add_page_to_lru_list(page, lruvec, page_lru(page));
2169 }
2170 spin_unlock_irq(&zone->lru_lock);
2171 }
2172
2173 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2174 bool lrucare)
2175 {
2176 int isolated;
2177
2178 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2179
2180 /*
2181 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2182 * may already be on some other mem_cgroup's LRU. Take care of it.
2183 */
2184 if (lrucare)
2185 lock_page_lru(page, &isolated);
2186
2187 /*
2188 * Nobody should be changing or seriously looking at
2189 * page->mem_cgroup at this point:
2190 *
2191 * - the page is uncharged
2192 *
2193 * - the page is off-LRU
2194 *
2195 * - an anonymous fault has exclusive page access, except for
2196 * a locked page table
2197 *
2198 * - a page cache insertion, a swapin fault, or a migration
2199 * have the page locked
2200 */
2201 page->mem_cgroup = memcg;
2202
2203 if (lrucare)
2204 unlock_page_lru(page, isolated);
2205 }
2206
2207 #ifdef CONFIG_MEMCG_KMEM
2208 static int memcg_alloc_cache_id(void)
2209 {
2210 int id, size;
2211 int err;
2212
2213 id = ida_simple_get(&memcg_cache_ida,
2214 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2215 if (id < 0)
2216 return id;
2217
2218 if (id < memcg_nr_cache_ids)
2219 return id;
2220
2221 /*
2222 * There's no space for the new id in memcg_caches arrays,
2223 * so we have to grow them.
2224 */
2225 down_write(&memcg_cache_ids_sem);
2226
2227 size = 2 * (id + 1);
2228 if (size < MEMCG_CACHES_MIN_SIZE)
2229 size = MEMCG_CACHES_MIN_SIZE;
2230 else if (size > MEMCG_CACHES_MAX_SIZE)
2231 size = MEMCG_CACHES_MAX_SIZE;
2232
2233 err = memcg_update_all_caches(size);
2234 if (!err)
2235 err = memcg_update_all_list_lrus(size);
2236 if (!err)
2237 memcg_nr_cache_ids = size;
2238
2239 up_write(&memcg_cache_ids_sem);
2240
2241 if (err) {
2242 ida_simple_remove(&memcg_cache_ida, id);
2243 return err;
2244 }
2245 return id;
2246 }
2247
2248 static void memcg_free_cache_id(int id)
2249 {
2250 ida_simple_remove(&memcg_cache_ida, id);
2251 }
2252
2253 struct memcg_kmem_cache_create_work {
2254 struct mem_cgroup *memcg;
2255 struct kmem_cache *cachep;
2256 struct work_struct work;
2257 };
2258
2259 static void memcg_kmem_cache_create_func(struct work_struct *w)
2260 {
2261 struct memcg_kmem_cache_create_work *cw =
2262 container_of(w, struct memcg_kmem_cache_create_work, work);
2263 struct mem_cgroup *memcg = cw->memcg;
2264 struct kmem_cache *cachep = cw->cachep;
2265
2266 memcg_create_kmem_cache(memcg, cachep);
2267
2268 css_put(&memcg->css);
2269 kfree(cw);
2270 }
2271
2272 /*
2273 * Enqueue the creation of a per-memcg kmem_cache.
2274 */
2275 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2276 struct kmem_cache *cachep)
2277 {
2278 struct memcg_kmem_cache_create_work *cw;
2279
2280 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2281 if (!cw)
2282 return;
2283
2284 css_get(&memcg->css);
2285
2286 cw->memcg = memcg;
2287 cw->cachep = cachep;
2288 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2289
2290 schedule_work(&cw->work);
2291 }
2292
2293 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2294 struct kmem_cache *cachep)
2295 {
2296 /*
2297 * We need to stop accounting when we kmalloc, because if the
2298 * corresponding kmalloc cache is not yet created, the first allocation
2299 * in __memcg_schedule_kmem_cache_create will recurse.
2300 *
2301 * However, it is better to enclose the whole function. Depending on
2302 * the debugging options enabled, INIT_WORK(), for instance, can
2303 * trigger an allocation. This too, will make us recurse. Because at
2304 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2305 * the safest choice is to do it like this, wrapping the whole function.
2306 */
2307 current->memcg_kmem_skip_account = 1;
2308 __memcg_schedule_kmem_cache_create(memcg, cachep);
2309 current->memcg_kmem_skip_account = 0;
2310 }
2311
2312 /*
2313 * Return the kmem_cache we're supposed to use for a slab allocation.
2314 * We try to use the current memcg's version of the cache.
2315 *
2316 * If the cache does not exist yet, if we are the first user of it,
2317 * we either create it immediately, if possible, or create it asynchronously
2318 * in a workqueue.
2319 * In the latter case, we will let the current allocation go through with
2320 * the original cache.
2321 *
2322 * Can't be called in interrupt context or from kernel threads.
2323 * This function needs to be called with rcu_read_lock() held.
2324 */
2325 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2326 {
2327 struct mem_cgroup *memcg;
2328 struct kmem_cache *memcg_cachep;
2329 int kmemcg_id;
2330
2331 VM_BUG_ON(!is_root_cache(cachep));
2332
2333 if (cachep->flags & SLAB_ACCOUNT)
2334 gfp |= __GFP_ACCOUNT;
2335
2336 if (!(gfp & __GFP_ACCOUNT))
2337 return cachep;
2338
2339 if (current->memcg_kmem_skip_account)
2340 return cachep;
2341
2342 memcg = get_mem_cgroup_from_mm(current->mm);
2343 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2344 if (kmemcg_id < 0)
2345 goto out;
2346
2347 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2348 if (likely(memcg_cachep))
2349 return memcg_cachep;
2350
2351 /*
2352 * If we are in a safe context (can wait, and not in interrupt
2353 * context), we could be be predictable and return right away.
2354 * This would guarantee that the allocation being performed
2355 * already belongs in the new cache.
2356 *
2357 * However, there are some clashes that can arrive from locking.
2358 * For instance, because we acquire the slab_mutex while doing
2359 * memcg_create_kmem_cache, this means no further allocation
2360 * could happen with the slab_mutex held. So it's better to
2361 * defer everything.
2362 */
2363 memcg_schedule_kmem_cache_create(memcg, cachep);
2364 out:
2365 css_put(&memcg->css);
2366 return cachep;
2367 }
2368
2369 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2370 {
2371 if (!is_root_cache(cachep))
2372 css_put(&cachep->memcg_params.memcg->css);
2373 }
2374
2375 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2376 struct mem_cgroup *memcg)
2377 {
2378 unsigned int nr_pages = 1 << order;
2379 struct page_counter *counter;
2380 int ret;
2381
2382 if (!memcg_kmem_is_active(memcg))
2383 return 0;
2384
2385 if (!page_counter_try_charge(&memcg->kmem, nr_pages, &counter))
2386 return -ENOMEM;
2387
2388 ret = try_charge(memcg, gfp, nr_pages);
2389 if (ret) {
2390 page_counter_uncharge(&memcg->kmem, nr_pages);
2391 return ret;
2392 }
2393
2394 page->mem_cgroup = memcg;
2395
2396 return 0;
2397 }
2398
2399 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2400 {
2401 struct mem_cgroup *memcg;
2402 int ret;
2403
2404 memcg = get_mem_cgroup_from_mm(current->mm);
2405 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2406 css_put(&memcg->css);
2407 return ret;
2408 }
2409
2410 void __memcg_kmem_uncharge(struct page *page, int order)
2411 {
2412 struct mem_cgroup *memcg = page->mem_cgroup;
2413 unsigned int nr_pages = 1 << order;
2414
2415 if (!memcg)
2416 return;
2417
2418 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2419
2420 page_counter_uncharge(&memcg->kmem, nr_pages);
2421 page_counter_uncharge(&memcg->memory, nr_pages);
2422 if (do_memsw_account())
2423 page_counter_uncharge(&memcg->memsw, nr_pages);
2424
2425 page->mem_cgroup = NULL;
2426 css_put_many(&memcg->css, nr_pages);
2427 }
2428 #endif /* CONFIG_MEMCG_KMEM */
2429
2430 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2431
2432 /*
2433 * Because tail pages are not marked as "used", set it. We're under
2434 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2435 * charge/uncharge will be never happen and move_account() is done under
2436 * compound_lock(), so we don't have to take care of races.
2437 */
2438 void mem_cgroup_split_huge_fixup(struct page *head)
2439 {
2440 int i;
2441
2442 if (mem_cgroup_disabled())
2443 return;
2444
2445 for (i = 1; i < HPAGE_PMD_NR; i++)
2446 head[i].mem_cgroup = head->mem_cgroup;
2447
2448 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2449 HPAGE_PMD_NR);
2450 }
2451 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2452
2453 #ifdef CONFIG_MEMCG_SWAP
2454 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2455 bool charge)
2456 {
2457 int val = (charge) ? 1 : -1;
2458 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2459 }
2460
2461 /**
2462 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2463 * @entry: swap entry to be moved
2464 * @from: mem_cgroup which the entry is moved from
2465 * @to: mem_cgroup which the entry is moved to
2466 *
2467 * It succeeds only when the swap_cgroup's record for this entry is the same
2468 * as the mem_cgroup's id of @from.
2469 *
2470 * Returns 0 on success, -EINVAL on failure.
2471 *
2472 * The caller must have charged to @to, IOW, called page_counter_charge() about
2473 * both res and memsw, and called css_get().
2474 */
2475 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2476 struct mem_cgroup *from, struct mem_cgroup *to)
2477 {
2478 unsigned short old_id, new_id;
2479
2480 old_id = mem_cgroup_id(from);
2481 new_id = mem_cgroup_id(to);
2482
2483 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2484 mem_cgroup_swap_statistics(from, false);
2485 mem_cgroup_swap_statistics(to, true);
2486 return 0;
2487 }
2488 return -EINVAL;
2489 }
2490 #else
2491 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2492 struct mem_cgroup *from, struct mem_cgroup *to)
2493 {
2494 return -EINVAL;
2495 }
2496 #endif
2497
2498 static DEFINE_MUTEX(memcg_limit_mutex);
2499
2500 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2501 unsigned long limit)
2502 {
2503 unsigned long curusage;
2504 unsigned long oldusage;
2505 bool enlarge = false;
2506 int retry_count;
2507 int ret;
2508
2509 /*
2510 * For keeping hierarchical_reclaim simple, how long we should retry
2511 * is depends on callers. We set our retry-count to be function
2512 * of # of children which we should visit in this loop.
2513 */
2514 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2515 mem_cgroup_count_children(memcg);
2516
2517 oldusage = page_counter_read(&memcg->memory);
2518
2519 do {
2520 if (signal_pending(current)) {
2521 ret = -EINTR;
2522 break;
2523 }
2524
2525 mutex_lock(&memcg_limit_mutex);
2526 if (limit > memcg->memsw.limit) {
2527 mutex_unlock(&memcg_limit_mutex);
2528 ret = -EINVAL;
2529 break;
2530 }
2531 if (limit > memcg->memory.limit)
2532 enlarge = true;
2533 ret = page_counter_limit(&memcg->memory, limit);
2534 mutex_unlock(&memcg_limit_mutex);
2535
2536 if (!ret)
2537 break;
2538
2539 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2540
2541 curusage = page_counter_read(&memcg->memory);
2542 /* Usage is reduced ? */
2543 if (curusage >= oldusage)
2544 retry_count--;
2545 else
2546 oldusage = curusage;
2547 } while (retry_count);
2548
2549 if (!ret && enlarge)
2550 memcg_oom_recover(memcg);
2551
2552 return ret;
2553 }
2554
2555 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2556 unsigned long limit)
2557 {
2558 unsigned long curusage;
2559 unsigned long oldusage;
2560 bool enlarge = false;
2561 int retry_count;
2562 int ret;
2563
2564 /* see mem_cgroup_resize_res_limit */
2565 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2566 mem_cgroup_count_children(memcg);
2567
2568 oldusage = page_counter_read(&memcg->memsw);
2569
2570 do {
2571 if (signal_pending(current)) {
2572 ret = -EINTR;
2573 break;
2574 }
2575
2576 mutex_lock(&memcg_limit_mutex);
2577 if (limit < memcg->memory.limit) {
2578 mutex_unlock(&memcg_limit_mutex);
2579 ret = -EINVAL;
2580 break;
2581 }
2582 if (limit > memcg->memsw.limit)
2583 enlarge = true;
2584 ret = page_counter_limit(&memcg->memsw, limit);
2585 mutex_unlock(&memcg_limit_mutex);
2586
2587 if (!ret)
2588 break;
2589
2590 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2591
2592 curusage = page_counter_read(&memcg->memsw);
2593 /* Usage is reduced ? */
2594 if (curusage >= oldusage)
2595 retry_count--;
2596 else
2597 oldusage = curusage;
2598 } while (retry_count);
2599
2600 if (!ret && enlarge)
2601 memcg_oom_recover(memcg);
2602
2603 return ret;
2604 }
2605
2606 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2607 gfp_t gfp_mask,
2608 unsigned long *total_scanned)
2609 {
2610 unsigned long nr_reclaimed = 0;
2611 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2612 unsigned long reclaimed;
2613 int loop = 0;
2614 struct mem_cgroup_tree_per_zone *mctz;
2615 unsigned long excess;
2616 unsigned long nr_scanned;
2617
2618 if (order > 0)
2619 return 0;
2620
2621 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2622 /*
2623 * This loop can run a while, specially if mem_cgroup's continuously
2624 * keep exceeding their soft limit and putting the system under
2625 * pressure
2626 */
2627 do {
2628 if (next_mz)
2629 mz = next_mz;
2630 else
2631 mz = mem_cgroup_largest_soft_limit_node(mctz);
2632 if (!mz)
2633 break;
2634
2635 nr_scanned = 0;
2636 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2637 gfp_mask, &nr_scanned);
2638 nr_reclaimed += reclaimed;
2639 *total_scanned += nr_scanned;
2640 spin_lock_irq(&mctz->lock);
2641 __mem_cgroup_remove_exceeded(mz, mctz);
2642
2643 /*
2644 * If we failed to reclaim anything from this memory cgroup
2645 * it is time to move on to the next cgroup
2646 */
2647 next_mz = NULL;
2648 if (!reclaimed)
2649 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2650
2651 excess = soft_limit_excess(mz->memcg);
2652 /*
2653 * One school of thought says that we should not add
2654 * back the node to the tree if reclaim returns 0.
2655 * But our reclaim could return 0, simply because due
2656 * to priority we are exposing a smaller subset of
2657 * memory to reclaim from. Consider this as a longer
2658 * term TODO.
2659 */
2660 /* If excess == 0, no tree ops */
2661 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2662 spin_unlock_irq(&mctz->lock);
2663 css_put(&mz->memcg->css);
2664 loop++;
2665 /*
2666 * Could not reclaim anything and there are no more
2667 * mem cgroups to try or we seem to be looping without
2668 * reclaiming anything.
2669 */
2670 if (!nr_reclaimed &&
2671 (next_mz == NULL ||
2672 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2673 break;
2674 } while (!nr_reclaimed);
2675 if (next_mz)
2676 css_put(&next_mz->memcg->css);
2677 return nr_reclaimed;
2678 }
2679
2680 /*
2681 * Test whether @memcg has children, dead or alive. Note that this
2682 * function doesn't care whether @memcg has use_hierarchy enabled and
2683 * returns %true if there are child csses according to the cgroup
2684 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2685 */
2686 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2687 {
2688 bool ret;
2689
2690 /*
2691 * The lock does not prevent addition or deletion of children, but
2692 * it prevents a new child from being initialized based on this
2693 * parent in css_online(), so it's enough to decide whether
2694 * hierarchically inherited attributes can still be changed or not.
2695 */
2696 lockdep_assert_held(&memcg_create_mutex);
2697
2698 rcu_read_lock();
2699 ret = css_next_child(NULL, &memcg->css);
2700 rcu_read_unlock();
2701 return ret;
2702 }
2703
2704 /*
2705 * Reclaims as many pages from the given memcg as possible and moves
2706 * the rest to the parent.
2707 *
2708 * Caller is responsible for holding css reference for memcg.
2709 */
2710 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2711 {
2712 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2713
2714 /* we call try-to-free pages for make this cgroup empty */
2715 lru_add_drain_all();
2716 /* try to free all pages in this cgroup */
2717 while (nr_retries && page_counter_read(&memcg->memory)) {
2718 int progress;
2719
2720 if (signal_pending(current))
2721 return -EINTR;
2722
2723 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2724 GFP_KERNEL, true);
2725 if (!progress) {
2726 nr_retries--;
2727 /* maybe some writeback is necessary */
2728 congestion_wait(BLK_RW_ASYNC, HZ/10);
2729 }
2730
2731 }
2732
2733 return 0;
2734 }
2735
2736 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2737 char *buf, size_t nbytes,
2738 loff_t off)
2739 {
2740 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2741
2742 if (mem_cgroup_is_root(memcg))
2743 return -EINVAL;
2744 return mem_cgroup_force_empty(memcg) ?: nbytes;
2745 }
2746
2747 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2748 struct cftype *cft)
2749 {
2750 return mem_cgroup_from_css(css)->use_hierarchy;
2751 }
2752
2753 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2754 struct cftype *cft, u64 val)
2755 {
2756 int retval = 0;
2757 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2758 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2759
2760 mutex_lock(&memcg_create_mutex);
2761
2762 if (memcg->use_hierarchy == val)
2763 goto out;
2764
2765 /*
2766 * If parent's use_hierarchy is set, we can't make any modifications
2767 * in the child subtrees. If it is unset, then the change can
2768 * occur, provided the current cgroup has no children.
2769 *
2770 * For the root cgroup, parent_mem is NULL, we allow value to be
2771 * set if there are no children.
2772 */
2773 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2774 (val == 1 || val == 0)) {
2775 if (!memcg_has_children(memcg))
2776 memcg->use_hierarchy = val;
2777 else
2778 retval = -EBUSY;
2779 } else
2780 retval = -EINVAL;
2781
2782 out:
2783 mutex_unlock(&memcg_create_mutex);
2784
2785 return retval;
2786 }
2787
2788 static unsigned long tree_stat(struct mem_cgroup *memcg,
2789 enum mem_cgroup_stat_index idx)
2790 {
2791 struct mem_cgroup *iter;
2792 unsigned long val = 0;
2793
2794 for_each_mem_cgroup_tree(iter, memcg)
2795 val += mem_cgroup_read_stat(iter, idx);
2796
2797 return val;
2798 }
2799
2800 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2801 {
2802 unsigned long val;
2803
2804 if (mem_cgroup_is_root(memcg)) {
2805 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2806 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2807 if (swap)
2808 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2809 } else {
2810 if (!swap)
2811 val = page_counter_read(&memcg->memory);
2812 else
2813 val = page_counter_read(&memcg->memsw);
2814 }
2815 return val;
2816 }
2817
2818 enum {
2819 RES_USAGE,
2820 RES_LIMIT,
2821 RES_MAX_USAGE,
2822 RES_FAILCNT,
2823 RES_SOFT_LIMIT,
2824 };
2825
2826 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2827 struct cftype *cft)
2828 {
2829 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2830 struct page_counter *counter;
2831
2832 switch (MEMFILE_TYPE(cft->private)) {
2833 case _MEM:
2834 counter = &memcg->memory;
2835 break;
2836 case _MEMSWAP:
2837 counter = &memcg->memsw;
2838 break;
2839 case _KMEM:
2840 counter = &memcg->kmem;
2841 break;
2842 default:
2843 BUG();
2844 }
2845
2846 switch (MEMFILE_ATTR(cft->private)) {
2847 case RES_USAGE:
2848 if (counter == &memcg->memory)
2849 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2850 if (counter == &memcg->memsw)
2851 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2852 return (u64)page_counter_read(counter) * PAGE_SIZE;
2853 case RES_LIMIT:
2854 return (u64)counter->limit * PAGE_SIZE;
2855 case RES_MAX_USAGE:
2856 return (u64)counter->watermark * PAGE_SIZE;
2857 case RES_FAILCNT:
2858 return counter->failcnt;
2859 case RES_SOFT_LIMIT:
2860 return (u64)memcg->soft_limit * PAGE_SIZE;
2861 default:
2862 BUG();
2863 }
2864 }
2865
2866 #ifdef CONFIG_MEMCG_KMEM
2867 static int memcg_activate_kmem(struct mem_cgroup *memcg,
2868 unsigned long nr_pages)
2869 {
2870 int err = 0;
2871 int memcg_id;
2872
2873 BUG_ON(memcg->kmemcg_id >= 0);
2874 BUG_ON(memcg->kmem_acct_activated);
2875 BUG_ON(memcg->kmem_acct_active);
2876
2877 /*
2878 * For simplicity, we won't allow this to be disabled. It also can't
2879 * be changed if the cgroup has children already, or if tasks had
2880 * already joined.
2881 *
2882 * If tasks join before we set the limit, a person looking at
2883 * kmem.usage_in_bytes will have no way to determine when it took
2884 * place, which makes the value quite meaningless.
2885 *
2886 * After it first became limited, changes in the value of the limit are
2887 * of course permitted.
2888 */
2889 mutex_lock(&memcg_create_mutex);
2890 if (cgroup_is_populated(memcg->css.cgroup) ||
2891 (memcg->use_hierarchy && memcg_has_children(memcg)))
2892 err = -EBUSY;
2893 mutex_unlock(&memcg_create_mutex);
2894 if (err)
2895 goto out;
2896
2897 memcg_id = memcg_alloc_cache_id();
2898 if (memcg_id < 0) {
2899 err = memcg_id;
2900 goto out;
2901 }
2902
2903 /*
2904 * We couldn't have accounted to this cgroup, because it hasn't got
2905 * activated yet, so this should succeed.
2906 */
2907 err = page_counter_limit(&memcg->kmem, nr_pages);
2908 VM_BUG_ON(err);
2909
2910 static_branch_inc(&memcg_kmem_enabled_key);
2911 /*
2912 * A memory cgroup is considered kmem-active as soon as it gets
2913 * kmemcg_id. Setting the id after enabling static branching will
2914 * guarantee no one starts accounting before all call sites are
2915 * patched.
2916 */
2917 memcg->kmemcg_id = memcg_id;
2918 memcg->kmem_acct_activated = true;
2919 memcg->kmem_acct_active = true;
2920 out:
2921 return err;
2922 }
2923
2924 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2925 unsigned long limit)
2926 {
2927 int ret;
2928
2929 mutex_lock(&memcg_limit_mutex);
2930 if (!memcg_kmem_is_active(memcg))
2931 ret = memcg_activate_kmem(memcg, limit);
2932 else
2933 ret = page_counter_limit(&memcg->kmem, limit);
2934 mutex_unlock(&memcg_limit_mutex);
2935 return ret;
2936 }
2937
2938 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2939 {
2940 int ret = 0;
2941 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2942
2943 if (!parent)
2944 return 0;
2945
2946 mutex_lock(&memcg_limit_mutex);
2947 /*
2948 * If the parent cgroup is not kmem-active now, it cannot be activated
2949 * after this point, because it has at least one child already.
2950 */
2951 if (memcg_kmem_is_active(parent))
2952 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
2953 mutex_unlock(&memcg_limit_mutex);
2954 return ret;
2955 }
2956 #else
2957 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2958 unsigned long limit)
2959 {
2960 return -EINVAL;
2961 }
2962 #endif /* CONFIG_MEMCG_KMEM */
2963
2964 /*
2965 * The user of this function is...
2966 * RES_LIMIT.
2967 */
2968 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2969 char *buf, size_t nbytes, loff_t off)
2970 {
2971 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2972 unsigned long nr_pages;
2973 int ret;
2974
2975 buf = strstrip(buf);
2976 ret = page_counter_memparse(buf, "-1", &nr_pages);
2977 if (ret)
2978 return ret;
2979
2980 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2981 case RES_LIMIT:
2982 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2983 ret = -EINVAL;
2984 break;
2985 }
2986 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2987 case _MEM:
2988 ret = mem_cgroup_resize_limit(memcg, nr_pages);
2989 break;
2990 case _MEMSWAP:
2991 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2992 break;
2993 case _KMEM:
2994 ret = memcg_update_kmem_limit(memcg, nr_pages);
2995 break;
2996 }
2997 break;
2998 case RES_SOFT_LIMIT:
2999 memcg->soft_limit = nr_pages;
3000 ret = 0;
3001 break;
3002 }
3003 return ret ?: nbytes;
3004 }
3005
3006 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3007 size_t nbytes, loff_t off)
3008 {
3009 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3010 struct page_counter *counter;
3011
3012 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3013 case _MEM:
3014 counter = &memcg->memory;
3015 break;
3016 case _MEMSWAP:
3017 counter = &memcg->memsw;
3018 break;
3019 case _KMEM:
3020 counter = &memcg->kmem;
3021 break;
3022 default:
3023 BUG();
3024 }
3025
3026 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3027 case RES_MAX_USAGE:
3028 page_counter_reset_watermark(counter);
3029 break;
3030 case RES_FAILCNT:
3031 counter->failcnt = 0;
3032 break;
3033 default:
3034 BUG();
3035 }
3036
3037 return nbytes;
3038 }
3039
3040 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3041 struct cftype *cft)
3042 {
3043 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3044 }
3045
3046 #ifdef CONFIG_MMU
3047 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3048 struct cftype *cft, u64 val)
3049 {
3050 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3051
3052 if (val & ~MOVE_MASK)
3053 return -EINVAL;
3054
3055 /*
3056 * No kind of locking is needed in here, because ->can_attach() will
3057 * check this value once in the beginning of the process, and then carry
3058 * on with stale data. This means that changes to this value will only
3059 * affect task migrations starting after the change.
3060 */
3061 memcg->move_charge_at_immigrate = val;
3062 return 0;
3063 }
3064 #else
3065 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3066 struct cftype *cft, u64 val)
3067 {
3068 return -ENOSYS;
3069 }
3070 #endif
3071
3072 #ifdef CONFIG_NUMA
3073 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3074 {
3075 struct numa_stat {
3076 const char *name;
3077 unsigned int lru_mask;
3078 };
3079
3080 static const struct numa_stat stats[] = {
3081 { "total", LRU_ALL },
3082 { "file", LRU_ALL_FILE },
3083 { "anon", LRU_ALL_ANON },
3084 { "unevictable", BIT(LRU_UNEVICTABLE) },
3085 };
3086 const struct numa_stat *stat;
3087 int nid;
3088 unsigned long nr;
3089 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3090
3091 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3092 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3093 seq_printf(m, "%s=%lu", stat->name, nr);
3094 for_each_node_state(nid, N_MEMORY) {
3095 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3096 stat->lru_mask);
3097 seq_printf(m, " N%d=%lu", nid, nr);
3098 }
3099 seq_putc(m, '\n');
3100 }
3101
3102 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3103 struct mem_cgroup *iter;
3104
3105 nr = 0;
3106 for_each_mem_cgroup_tree(iter, memcg)
3107 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3108 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3109 for_each_node_state(nid, N_MEMORY) {
3110 nr = 0;
3111 for_each_mem_cgroup_tree(iter, memcg)
3112 nr += mem_cgroup_node_nr_lru_pages(
3113 iter, nid, stat->lru_mask);
3114 seq_printf(m, " N%d=%lu", nid, nr);
3115 }
3116 seq_putc(m, '\n');
3117 }
3118
3119 return 0;
3120 }
3121 #endif /* CONFIG_NUMA */
3122
3123 static int memcg_stat_show(struct seq_file *m, void *v)
3124 {
3125 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3126 unsigned long memory, memsw;
3127 struct mem_cgroup *mi;
3128 unsigned int i;
3129
3130 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3131 MEM_CGROUP_STAT_NSTATS);
3132 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3133 MEM_CGROUP_EVENTS_NSTATS);
3134 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3135
3136 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3137 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3138 continue;
3139 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3140 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3141 }
3142
3143 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3144 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3145 mem_cgroup_read_events(memcg, i));
3146
3147 for (i = 0; i < NR_LRU_LISTS; i++)
3148 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3149 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3150
3151 /* Hierarchical information */
3152 memory = memsw = PAGE_COUNTER_MAX;
3153 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3154 memory = min(memory, mi->memory.limit);
3155 memsw = min(memsw, mi->memsw.limit);
3156 }
3157 seq_printf(m, "hierarchical_memory_limit %llu\n",
3158 (u64)memory * PAGE_SIZE);
3159 if (do_memsw_account())
3160 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3161 (u64)memsw * PAGE_SIZE);
3162
3163 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3164 unsigned long long val = 0;
3165
3166 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3167 continue;
3168 for_each_mem_cgroup_tree(mi, memcg)
3169 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3170 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3171 }
3172
3173 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3174 unsigned long long val = 0;
3175
3176 for_each_mem_cgroup_tree(mi, memcg)
3177 val += mem_cgroup_read_events(mi, i);
3178 seq_printf(m, "total_%s %llu\n",
3179 mem_cgroup_events_names[i], val);
3180 }
3181
3182 for (i = 0; i < NR_LRU_LISTS; i++) {
3183 unsigned long long val = 0;
3184
3185 for_each_mem_cgroup_tree(mi, memcg)
3186 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3187 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3188 }
3189
3190 #ifdef CONFIG_DEBUG_VM
3191 {
3192 int nid, zid;
3193 struct mem_cgroup_per_zone *mz;
3194 struct zone_reclaim_stat *rstat;
3195 unsigned long recent_rotated[2] = {0, 0};
3196 unsigned long recent_scanned[2] = {0, 0};
3197
3198 for_each_online_node(nid)
3199 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3200 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3201 rstat = &mz->lruvec.reclaim_stat;
3202
3203 recent_rotated[0] += rstat->recent_rotated[0];
3204 recent_rotated[1] += rstat->recent_rotated[1];
3205 recent_scanned[0] += rstat->recent_scanned[0];
3206 recent_scanned[1] += rstat->recent_scanned[1];
3207 }
3208 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3209 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3210 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3211 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3212 }
3213 #endif
3214
3215 return 0;
3216 }
3217
3218 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3219 struct cftype *cft)
3220 {
3221 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3222
3223 return mem_cgroup_swappiness(memcg);
3224 }
3225
3226 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3227 struct cftype *cft, u64 val)
3228 {
3229 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3230
3231 if (val > 100)
3232 return -EINVAL;
3233
3234 if (css->parent)
3235 memcg->swappiness = val;
3236 else
3237 vm_swappiness = val;
3238
3239 return 0;
3240 }
3241
3242 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3243 {
3244 struct mem_cgroup_threshold_ary *t;
3245 unsigned long usage;
3246 int i;
3247
3248 rcu_read_lock();
3249 if (!swap)
3250 t = rcu_dereference(memcg->thresholds.primary);
3251 else
3252 t = rcu_dereference(memcg->memsw_thresholds.primary);
3253
3254 if (!t)
3255 goto unlock;
3256
3257 usage = mem_cgroup_usage(memcg, swap);
3258
3259 /*
3260 * current_threshold points to threshold just below or equal to usage.
3261 * If it's not true, a threshold was crossed after last
3262 * call of __mem_cgroup_threshold().
3263 */
3264 i = t->current_threshold;
3265
3266 /*
3267 * Iterate backward over array of thresholds starting from
3268 * current_threshold and check if a threshold is crossed.
3269 * If none of thresholds below usage is crossed, we read
3270 * only one element of the array here.
3271 */
3272 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3273 eventfd_signal(t->entries[i].eventfd, 1);
3274
3275 /* i = current_threshold + 1 */
3276 i++;
3277
3278 /*
3279 * Iterate forward over array of thresholds starting from
3280 * current_threshold+1 and check if a threshold is crossed.
3281 * If none of thresholds above usage is crossed, we read
3282 * only one element of the array here.
3283 */
3284 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3285 eventfd_signal(t->entries[i].eventfd, 1);
3286
3287 /* Update current_threshold */
3288 t->current_threshold = i - 1;
3289 unlock:
3290 rcu_read_unlock();
3291 }
3292
3293 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3294 {
3295 while (memcg) {
3296 __mem_cgroup_threshold(memcg, false);
3297 if (do_memsw_account())
3298 __mem_cgroup_threshold(memcg, true);
3299
3300 memcg = parent_mem_cgroup(memcg);
3301 }
3302 }
3303
3304 static int compare_thresholds(const void *a, const void *b)
3305 {
3306 const struct mem_cgroup_threshold *_a = a;
3307 const struct mem_cgroup_threshold *_b = b;
3308
3309 if (_a->threshold > _b->threshold)
3310 return 1;
3311
3312 if (_a->threshold < _b->threshold)
3313 return -1;
3314
3315 return 0;
3316 }
3317
3318 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3319 {
3320 struct mem_cgroup_eventfd_list *ev;
3321
3322 spin_lock(&memcg_oom_lock);
3323
3324 list_for_each_entry(ev, &memcg->oom_notify, list)
3325 eventfd_signal(ev->eventfd, 1);
3326
3327 spin_unlock(&memcg_oom_lock);
3328 return 0;
3329 }
3330
3331 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3332 {
3333 struct mem_cgroup *iter;
3334
3335 for_each_mem_cgroup_tree(iter, memcg)
3336 mem_cgroup_oom_notify_cb(iter);
3337 }
3338
3339 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3340 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3341 {
3342 struct mem_cgroup_thresholds *thresholds;
3343 struct mem_cgroup_threshold_ary *new;
3344 unsigned long threshold;
3345 unsigned long usage;
3346 int i, size, ret;
3347
3348 ret = page_counter_memparse(args, "-1", &threshold);
3349 if (ret)
3350 return ret;
3351
3352 mutex_lock(&memcg->thresholds_lock);
3353
3354 if (type == _MEM) {
3355 thresholds = &memcg->thresholds;
3356 usage = mem_cgroup_usage(memcg, false);
3357 } else if (type == _MEMSWAP) {
3358 thresholds = &memcg->memsw_thresholds;
3359 usage = mem_cgroup_usage(memcg, true);
3360 } else
3361 BUG();
3362
3363 /* Check if a threshold crossed before adding a new one */
3364 if (thresholds->primary)
3365 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3366
3367 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3368
3369 /* Allocate memory for new array of thresholds */
3370 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3371 GFP_KERNEL);
3372 if (!new) {
3373 ret = -ENOMEM;
3374 goto unlock;
3375 }
3376 new->size = size;
3377
3378 /* Copy thresholds (if any) to new array */
3379 if (thresholds->primary) {
3380 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3381 sizeof(struct mem_cgroup_threshold));
3382 }
3383
3384 /* Add new threshold */
3385 new->entries[size - 1].eventfd = eventfd;
3386 new->entries[size - 1].threshold = threshold;
3387
3388 /* Sort thresholds. Registering of new threshold isn't time-critical */
3389 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3390 compare_thresholds, NULL);
3391
3392 /* Find current threshold */
3393 new->current_threshold = -1;
3394 for (i = 0; i < size; i++) {
3395 if (new->entries[i].threshold <= usage) {
3396 /*
3397 * new->current_threshold will not be used until
3398 * rcu_assign_pointer(), so it's safe to increment
3399 * it here.
3400 */
3401 ++new->current_threshold;
3402 } else
3403 break;
3404 }
3405
3406 /* Free old spare buffer and save old primary buffer as spare */
3407 kfree(thresholds->spare);
3408 thresholds->spare = thresholds->primary;
3409
3410 rcu_assign_pointer(thresholds->primary, new);
3411
3412 /* To be sure that nobody uses thresholds */
3413 synchronize_rcu();
3414
3415 unlock:
3416 mutex_unlock(&memcg->thresholds_lock);
3417
3418 return ret;
3419 }
3420
3421 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3422 struct eventfd_ctx *eventfd, const char *args)
3423 {
3424 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3425 }
3426
3427 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3428 struct eventfd_ctx *eventfd, const char *args)
3429 {
3430 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3431 }
3432
3433 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3434 struct eventfd_ctx *eventfd, enum res_type type)
3435 {
3436 struct mem_cgroup_thresholds *thresholds;
3437 struct mem_cgroup_threshold_ary *new;
3438 unsigned long usage;
3439 int i, j, size;
3440
3441 mutex_lock(&memcg->thresholds_lock);
3442
3443 if (type == _MEM) {
3444 thresholds = &memcg->thresholds;
3445 usage = mem_cgroup_usage(memcg, false);
3446 } else if (type == _MEMSWAP) {
3447 thresholds = &memcg->memsw_thresholds;
3448 usage = mem_cgroup_usage(memcg, true);
3449 } else
3450 BUG();
3451
3452 if (!thresholds->primary)
3453 goto unlock;
3454
3455 /* Check if a threshold crossed before removing */
3456 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3457
3458 /* Calculate new number of threshold */
3459 size = 0;
3460 for (i = 0; i < thresholds->primary->size; i++) {
3461 if (thresholds->primary->entries[i].eventfd != eventfd)
3462 size++;
3463 }
3464
3465 new = thresholds->spare;
3466
3467 /* Set thresholds array to NULL if we don't have thresholds */
3468 if (!size) {
3469 kfree(new);
3470 new = NULL;
3471 goto swap_buffers;
3472 }
3473
3474 new->size = size;
3475
3476 /* Copy thresholds and find current threshold */
3477 new->current_threshold = -1;
3478 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3479 if (thresholds->primary->entries[i].eventfd == eventfd)
3480 continue;
3481
3482 new->entries[j] = thresholds->primary->entries[i];
3483 if (new->entries[j].threshold <= usage) {
3484 /*
3485 * new->current_threshold will not be used
3486 * until rcu_assign_pointer(), so it's safe to increment
3487 * it here.
3488 */
3489 ++new->current_threshold;
3490 }
3491 j++;
3492 }
3493
3494 swap_buffers:
3495 /* Swap primary and spare array */
3496 thresholds->spare = thresholds->primary;
3497 /* If all events are unregistered, free the spare array */
3498 if (!new) {
3499 kfree(thresholds->spare);
3500 thresholds->spare = NULL;
3501 }
3502
3503 rcu_assign_pointer(thresholds->primary, new);
3504
3505 /* To be sure that nobody uses thresholds */
3506 synchronize_rcu();
3507 unlock:
3508 mutex_unlock(&memcg->thresholds_lock);
3509 }
3510
3511 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3512 struct eventfd_ctx *eventfd)
3513 {
3514 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3515 }
3516
3517 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3518 struct eventfd_ctx *eventfd)
3519 {
3520 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3521 }
3522
3523 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3524 struct eventfd_ctx *eventfd, const char *args)
3525 {
3526 struct mem_cgroup_eventfd_list *event;
3527
3528 event = kmalloc(sizeof(*event), GFP_KERNEL);
3529 if (!event)
3530 return -ENOMEM;
3531
3532 spin_lock(&memcg_oom_lock);
3533
3534 event->eventfd = eventfd;
3535 list_add(&event->list, &memcg->oom_notify);
3536
3537 /* already in OOM ? */
3538 if (memcg->under_oom)
3539 eventfd_signal(eventfd, 1);
3540 spin_unlock(&memcg_oom_lock);
3541
3542 return 0;
3543 }
3544
3545 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3546 struct eventfd_ctx *eventfd)
3547 {
3548 struct mem_cgroup_eventfd_list *ev, *tmp;
3549
3550 spin_lock(&memcg_oom_lock);
3551
3552 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3553 if (ev->eventfd == eventfd) {
3554 list_del(&ev->list);
3555 kfree(ev);
3556 }
3557 }
3558
3559 spin_unlock(&memcg_oom_lock);
3560 }
3561
3562 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3563 {
3564 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3565
3566 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3567 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3568 return 0;
3569 }
3570
3571 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3572 struct cftype *cft, u64 val)
3573 {
3574 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3575
3576 /* cannot set to root cgroup and only 0 and 1 are allowed */
3577 if (!css->parent || !((val == 0) || (val == 1)))
3578 return -EINVAL;
3579
3580 memcg->oom_kill_disable = val;
3581 if (!val)
3582 memcg_oom_recover(memcg);
3583
3584 return 0;
3585 }
3586
3587 #ifdef CONFIG_MEMCG_KMEM
3588 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3589 {
3590 int ret;
3591
3592 ret = memcg_propagate_kmem(memcg);
3593 if (ret)
3594 return ret;
3595
3596 return tcp_init_cgroup(memcg, ss);
3597 }
3598
3599 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3600 {
3601 struct cgroup_subsys_state *css;
3602 struct mem_cgroup *parent, *child;
3603 int kmemcg_id;
3604
3605 if (!memcg->kmem_acct_active)
3606 return;
3607
3608 /*
3609 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3610 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3611 * guarantees no cache will be created for this cgroup after we are
3612 * done (see memcg_create_kmem_cache()).
3613 */
3614 memcg->kmem_acct_active = false;
3615
3616 memcg_deactivate_kmem_caches(memcg);
3617
3618 kmemcg_id = memcg->kmemcg_id;
3619 BUG_ON(kmemcg_id < 0);
3620
3621 parent = parent_mem_cgroup(memcg);
3622 if (!parent)
3623 parent = root_mem_cgroup;
3624
3625 /*
3626 * Change kmemcg_id of this cgroup and all its descendants to the
3627 * parent's id, and then move all entries from this cgroup's list_lrus
3628 * to ones of the parent. After we have finished, all list_lrus
3629 * corresponding to this cgroup are guaranteed to remain empty. The
3630 * ordering is imposed by list_lru_node->lock taken by
3631 * memcg_drain_all_list_lrus().
3632 */
3633 css_for_each_descendant_pre(css, &memcg->css) {
3634 child = mem_cgroup_from_css(css);
3635 BUG_ON(child->kmemcg_id != kmemcg_id);
3636 child->kmemcg_id = parent->kmemcg_id;
3637 if (!memcg->use_hierarchy)
3638 break;
3639 }
3640 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3641
3642 memcg_free_cache_id(kmemcg_id);
3643 }
3644
3645 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3646 {
3647 if (memcg->kmem_acct_activated) {
3648 memcg_destroy_kmem_caches(memcg);
3649 static_branch_dec(&memcg_kmem_enabled_key);
3650 WARN_ON(page_counter_read(&memcg->kmem));
3651 }
3652 tcp_destroy_cgroup(memcg);
3653 }
3654 #else
3655 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3656 {
3657 return 0;
3658 }
3659
3660 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3661 {
3662 }
3663
3664 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3665 {
3666 }
3667 #endif
3668
3669 #ifdef CONFIG_CGROUP_WRITEBACK
3670
3671 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3672 {
3673 return &memcg->cgwb_list;
3674 }
3675
3676 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3677 {
3678 return wb_domain_init(&memcg->cgwb_domain, gfp);
3679 }
3680
3681 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3682 {
3683 wb_domain_exit(&memcg->cgwb_domain);
3684 }
3685
3686 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3687 {
3688 wb_domain_size_changed(&memcg->cgwb_domain);
3689 }
3690
3691 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3692 {
3693 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3694
3695 if (!memcg->css.parent)
3696 return NULL;
3697
3698 return &memcg->cgwb_domain;
3699 }
3700
3701 /**
3702 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3703 * @wb: bdi_writeback in question
3704 * @pfilepages: out parameter for number of file pages
3705 * @pheadroom: out parameter for number of allocatable pages according to memcg
3706 * @pdirty: out parameter for number of dirty pages
3707 * @pwriteback: out parameter for number of pages under writeback
3708 *
3709 * Determine the numbers of file, headroom, dirty, and writeback pages in
3710 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3711 * is a bit more involved.
3712 *
3713 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3714 * headroom is calculated as the lowest headroom of itself and the
3715 * ancestors. Note that this doesn't consider the actual amount of
3716 * available memory in the system. The caller should further cap
3717 * *@pheadroom accordingly.
3718 */
3719 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3720 unsigned long *pheadroom, unsigned long *pdirty,
3721 unsigned long *pwriteback)
3722 {
3723 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3724 struct mem_cgroup *parent;
3725
3726 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3727
3728 /* this should eventually include NR_UNSTABLE_NFS */
3729 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3730 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3731 (1 << LRU_ACTIVE_FILE));
3732 *pheadroom = PAGE_COUNTER_MAX;
3733
3734 while ((parent = parent_mem_cgroup(memcg))) {
3735 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3736 unsigned long used = page_counter_read(&memcg->memory);
3737
3738 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3739 memcg = parent;
3740 }
3741 }
3742
3743 #else /* CONFIG_CGROUP_WRITEBACK */
3744
3745 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3746 {
3747 return 0;
3748 }
3749
3750 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3751 {
3752 }
3753
3754 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3755 {
3756 }
3757
3758 #endif /* CONFIG_CGROUP_WRITEBACK */
3759
3760 /*
3761 * DO NOT USE IN NEW FILES.
3762 *
3763 * "cgroup.event_control" implementation.
3764 *
3765 * This is way over-engineered. It tries to support fully configurable
3766 * events for each user. Such level of flexibility is completely
3767 * unnecessary especially in the light of the planned unified hierarchy.
3768 *
3769 * Please deprecate this and replace with something simpler if at all
3770 * possible.
3771 */
3772
3773 /*
3774 * Unregister event and free resources.
3775 *
3776 * Gets called from workqueue.
3777 */
3778 static void memcg_event_remove(struct work_struct *work)
3779 {
3780 struct mem_cgroup_event *event =
3781 container_of(work, struct mem_cgroup_event, remove);
3782 struct mem_cgroup *memcg = event->memcg;
3783
3784 remove_wait_queue(event->wqh, &event->wait);
3785
3786 event->unregister_event(memcg, event->eventfd);
3787
3788 /* Notify userspace the event is going away. */
3789 eventfd_signal(event->eventfd, 1);
3790
3791 eventfd_ctx_put(event->eventfd);
3792 kfree(event);
3793 css_put(&memcg->css);
3794 }
3795
3796 /*
3797 * Gets called on POLLHUP on eventfd when user closes it.
3798 *
3799 * Called with wqh->lock held and interrupts disabled.
3800 */
3801 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3802 int sync, void *key)
3803 {
3804 struct mem_cgroup_event *event =
3805 container_of(wait, struct mem_cgroup_event, wait);
3806 struct mem_cgroup *memcg = event->memcg;
3807 unsigned long flags = (unsigned long)key;
3808
3809 if (flags & POLLHUP) {
3810 /*
3811 * If the event has been detached at cgroup removal, we
3812 * can simply return knowing the other side will cleanup
3813 * for us.
3814 *
3815 * We can't race against event freeing since the other
3816 * side will require wqh->lock via remove_wait_queue(),
3817 * which we hold.
3818 */
3819 spin_lock(&memcg->event_list_lock);
3820 if (!list_empty(&event->list)) {
3821 list_del_init(&event->list);
3822 /*
3823 * We are in atomic context, but cgroup_event_remove()
3824 * may sleep, so we have to call it in workqueue.
3825 */
3826 schedule_work(&event->remove);
3827 }
3828 spin_unlock(&memcg->event_list_lock);
3829 }
3830
3831 return 0;
3832 }
3833
3834 static void memcg_event_ptable_queue_proc(struct file *file,
3835 wait_queue_head_t *wqh, poll_table *pt)
3836 {
3837 struct mem_cgroup_event *event =
3838 container_of(pt, struct mem_cgroup_event, pt);
3839
3840 event->wqh = wqh;
3841 add_wait_queue(wqh, &event->wait);
3842 }
3843
3844 /*
3845 * DO NOT USE IN NEW FILES.
3846 *
3847 * Parse input and register new cgroup event handler.
3848 *
3849 * Input must be in format '<event_fd> <control_fd> <args>'.
3850 * Interpretation of args is defined by control file implementation.
3851 */
3852 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3853 char *buf, size_t nbytes, loff_t off)
3854 {
3855 struct cgroup_subsys_state *css = of_css(of);
3856 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3857 struct mem_cgroup_event *event;
3858 struct cgroup_subsys_state *cfile_css;
3859 unsigned int efd, cfd;
3860 struct fd efile;
3861 struct fd cfile;
3862 const char *name;
3863 char *endp;
3864 int ret;
3865
3866 buf = strstrip(buf);
3867
3868 efd = simple_strtoul(buf, &endp, 10);
3869 if (*endp != ' ')
3870 return -EINVAL;
3871 buf = endp + 1;
3872
3873 cfd = simple_strtoul(buf, &endp, 10);
3874 if ((*endp != ' ') && (*endp != '\0'))
3875 return -EINVAL;
3876 buf = endp + 1;
3877
3878 event = kzalloc(sizeof(*event), GFP_KERNEL);
3879 if (!event)
3880 return -ENOMEM;
3881
3882 event->memcg = memcg;
3883 INIT_LIST_HEAD(&event->list);
3884 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3885 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3886 INIT_WORK(&event->remove, memcg_event_remove);
3887
3888 efile = fdget(efd);
3889 if (!efile.file) {
3890 ret = -EBADF;
3891 goto out_kfree;
3892 }
3893
3894 event->eventfd = eventfd_ctx_fileget(efile.file);
3895 if (IS_ERR(event->eventfd)) {
3896 ret = PTR_ERR(event->eventfd);
3897 goto out_put_efile;
3898 }
3899
3900 cfile = fdget(cfd);
3901 if (!cfile.file) {
3902 ret = -EBADF;
3903 goto out_put_eventfd;
3904 }
3905
3906 /* the process need read permission on control file */
3907 /* AV: shouldn't we check that it's been opened for read instead? */
3908 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3909 if (ret < 0)
3910 goto out_put_cfile;
3911
3912 /*
3913 * Determine the event callbacks and set them in @event. This used
3914 * to be done via struct cftype but cgroup core no longer knows
3915 * about these events. The following is crude but the whole thing
3916 * is for compatibility anyway.
3917 *
3918 * DO NOT ADD NEW FILES.
3919 */
3920 name = cfile.file->f_path.dentry->d_name.name;
3921
3922 if (!strcmp(name, "memory.usage_in_bytes")) {
3923 event->register_event = mem_cgroup_usage_register_event;
3924 event->unregister_event = mem_cgroup_usage_unregister_event;
3925 } else if (!strcmp(name, "memory.oom_control")) {
3926 event->register_event = mem_cgroup_oom_register_event;
3927 event->unregister_event = mem_cgroup_oom_unregister_event;
3928 } else if (!strcmp(name, "memory.pressure_level")) {
3929 event->register_event = vmpressure_register_event;
3930 event->unregister_event = vmpressure_unregister_event;
3931 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3932 event->register_event = memsw_cgroup_usage_register_event;
3933 event->unregister_event = memsw_cgroup_usage_unregister_event;
3934 } else {
3935 ret = -EINVAL;
3936 goto out_put_cfile;
3937 }
3938
3939 /*
3940 * Verify @cfile should belong to @css. Also, remaining events are
3941 * automatically removed on cgroup destruction but the removal is
3942 * asynchronous, so take an extra ref on @css.
3943 */
3944 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3945 &memory_cgrp_subsys);
3946 ret = -EINVAL;
3947 if (IS_ERR(cfile_css))
3948 goto out_put_cfile;
3949 if (cfile_css != css) {
3950 css_put(cfile_css);
3951 goto out_put_cfile;
3952 }
3953
3954 ret = event->register_event(memcg, event->eventfd, buf);
3955 if (ret)
3956 goto out_put_css;
3957
3958 efile.file->f_op->poll(efile.file, &event->pt);
3959
3960 spin_lock(&memcg->event_list_lock);
3961 list_add(&event->list, &memcg->event_list);
3962 spin_unlock(&memcg->event_list_lock);
3963
3964 fdput(cfile);
3965 fdput(efile);
3966
3967 return nbytes;
3968
3969 out_put_css:
3970 css_put(css);
3971 out_put_cfile:
3972 fdput(cfile);
3973 out_put_eventfd:
3974 eventfd_ctx_put(event->eventfd);
3975 out_put_efile:
3976 fdput(efile);
3977 out_kfree:
3978 kfree(event);
3979
3980 return ret;
3981 }
3982
3983 static struct cftype mem_cgroup_legacy_files[] = {
3984 {
3985 .name = "usage_in_bytes",
3986 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3987 .read_u64 = mem_cgroup_read_u64,
3988 },
3989 {
3990 .name = "max_usage_in_bytes",
3991 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3992 .write = mem_cgroup_reset,
3993 .read_u64 = mem_cgroup_read_u64,
3994 },
3995 {
3996 .name = "limit_in_bytes",
3997 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3998 .write = mem_cgroup_write,
3999 .read_u64 = mem_cgroup_read_u64,
4000 },
4001 {
4002 .name = "soft_limit_in_bytes",
4003 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4004 .write = mem_cgroup_write,
4005 .read_u64 = mem_cgroup_read_u64,
4006 },
4007 {
4008 .name = "failcnt",
4009 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4010 .write = mem_cgroup_reset,
4011 .read_u64 = mem_cgroup_read_u64,
4012 },
4013 {
4014 .name = "stat",
4015 .seq_show = memcg_stat_show,
4016 },
4017 {
4018 .name = "force_empty",
4019 .write = mem_cgroup_force_empty_write,
4020 },
4021 {
4022 .name = "use_hierarchy",
4023 .write_u64 = mem_cgroup_hierarchy_write,
4024 .read_u64 = mem_cgroup_hierarchy_read,
4025 },
4026 {
4027 .name = "cgroup.event_control", /* XXX: for compat */
4028 .write = memcg_write_event_control,
4029 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4030 },
4031 {
4032 .name = "swappiness",
4033 .read_u64 = mem_cgroup_swappiness_read,
4034 .write_u64 = mem_cgroup_swappiness_write,
4035 },
4036 {
4037 .name = "move_charge_at_immigrate",
4038 .read_u64 = mem_cgroup_move_charge_read,
4039 .write_u64 = mem_cgroup_move_charge_write,
4040 },
4041 {
4042 .name = "oom_control",
4043 .seq_show = mem_cgroup_oom_control_read,
4044 .write_u64 = mem_cgroup_oom_control_write,
4045 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4046 },
4047 {
4048 .name = "pressure_level",
4049 },
4050 #ifdef CONFIG_NUMA
4051 {
4052 .name = "numa_stat",
4053 .seq_show = memcg_numa_stat_show,
4054 },
4055 #endif
4056 #ifdef CONFIG_MEMCG_KMEM
4057 {
4058 .name = "kmem.limit_in_bytes",
4059 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4060 .write = mem_cgroup_write,
4061 .read_u64 = mem_cgroup_read_u64,
4062 },
4063 {
4064 .name = "kmem.usage_in_bytes",
4065 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4066 .read_u64 = mem_cgroup_read_u64,
4067 },
4068 {
4069 .name = "kmem.failcnt",
4070 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4071 .write = mem_cgroup_reset,
4072 .read_u64 = mem_cgroup_read_u64,
4073 },
4074 {
4075 .name = "kmem.max_usage_in_bytes",
4076 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4077 .write = mem_cgroup_reset,
4078 .read_u64 = mem_cgroup_read_u64,
4079 },
4080 #ifdef CONFIG_SLABINFO
4081 {
4082 .name = "kmem.slabinfo",
4083 .seq_start = slab_start,
4084 .seq_next = slab_next,
4085 .seq_stop = slab_stop,
4086 .seq_show = memcg_slab_show,
4087 },
4088 #endif
4089 #endif
4090 { }, /* terminate */
4091 };
4092
4093 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4094 {
4095 struct mem_cgroup_per_node *pn;
4096 struct mem_cgroup_per_zone *mz;
4097 int zone, tmp = node;
4098 /*
4099 * This routine is called against possible nodes.
4100 * But it's BUG to call kmalloc() against offline node.
4101 *
4102 * TODO: this routine can waste much memory for nodes which will
4103 * never be onlined. It's better to use memory hotplug callback
4104 * function.
4105 */
4106 if (!node_state(node, N_NORMAL_MEMORY))
4107 tmp = -1;
4108 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4109 if (!pn)
4110 return 1;
4111
4112 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4113 mz = &pn->zoneinfo[zone];
4114 lruvec_init(&mz->lruvec);
4115 mz->usage_in_excess = 0;
4116 mz->on_tree = false;
4117 mz->memcg = memcg;
4118 }
4119 memcg->nodeinfo[node] = pn;
4120 return 0;
4121 }
4122
4123 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4124 {
4125 kfree(memcg->nodeinfo[node]);
4126 }
4127
4128 static struct mem_cgroup *mem_cgroup_alloc(void)
4129 {
4130 struct mem_cgroup *memcg;
4131 size_t size;
4132
4133 size = sizeof(struct mem_cgroup);
4134 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4135
4136 memcg = kzalloc(size, GFP_KERNEL);
4137 if (!memcg)
4138 return NULL;
4139
4140 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4141 if (!memcg->stat)
4142 goto out_free;
4143
4144 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4145 goto out_free_stat;
4146
4147 return memcg;
4148
4149 out_free_stat:
4150 free_percpu(memcg->stat);
4151 out_free:
4152 kfree(memcg);
4153 return NULL;
4154 }
4155
4156 /*
4157 * At destroying mem_cgroup, references from swap_cgroup can remain.
4158 * (scanning all at force_empty is too costly...)
4159 *
4160 * Instead of clearing all references at force_empty, we remember
4161 * the number of reference from swap_cgroup and free mem_cgroup when
4162 * it goes down to 0.
4163 *
4164 * Removal of cgroup itself succeeds regardless of refs from swap.
4165 */
4166
4167 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4168 {
4169 int node;
4170
4171 cancel_work_sync(&memcg->high_work);
4172
4173 mem_cgroup_remove_from_trees(memcg);
4174
4175 for_each_node(node)
4176 free_mem_cgroup_per_zone_info(memcg, node);
4177
4178 free_percpu(memcg->stat);
4179 memcg_wb_domain_exit(memcg);
4180 kfree(memcg);
4181 }
4182
4183 static struct cgroup_subsys_state * __ref
4184 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4185 {
4186 struct mem_cgroup *memcg;
4187 long error = -ENOMEM;
4188 int node;
4189
4190 memcg = mem_cgroup_alloc();
4191 if (!memcg)
4192 return ERR_PTR(error);
4193
4194 for_each_node(node)
4195 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4196 goto free_out;
4197
4198 /* root ? */
4199 if (parent_css == NULL) {
4200 root_mem_cgroup = memcg;
4201 page_counter_init(&memcg->memory, NULL);
4202 memcg->high = PAGE_COUNTER_MAX;
4203 memcg->soft_limit = PAGE_COUNTER_MAX;
4204 page_counter_init(&memcg->memsw, NULL);
4205 page_counter_init(&memcg->kmem, NULL);
4206 }
4207
4208 INIT_WORK(&memcg->high_work, high_work_func);
4209 memcg->last_scanned_node = MAX_NUMNODES;
4210 INIT_LIST_HEAD(&memcg->oom_notify);
4211 memcg->move_charge_at_immigrate = 0;
4212 mutex_init(&memcg->thresholds_lock);
4213 spin_lock_init(&memcg->move_lock);
4214 vmpressure_init(&memcg->vmpressure);
4215 INIT_LIST_HEAD(&memcg->event_list);
4216 spin_lock_init(&memcg->event_list_lock);
4217 #ifdef CONFIG_MEMCG_KMEM
4218 memcg->kmemcg_id = -1;
4219 #endif
4220 #ifdef CONFIG_CGROUP_WRITEBACK
4221 INIT_LIST_HEAD(&memcg->cgwb_list);
4222 #endif
4223 #ifdef CONFIG_INET
4224 memcg->socket_pressure = jiffies;
4225 #endif
4226 return &memcg->css;
4227
4228 free_out:
4229 __mem_cgroup_free(memcg);
4230 return ERR_PTR(error);
4231 }
4232
4233 static int
4234 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4235 {
4236 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4237 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4238 int ret;
4239
4240 if (css->id > MEM_CGROUP_ID_MAX)
4241 return -ENOSPC;
4242
4243 if (!parent)
4244 return 0;
4245
4246 mutex_lock(&memcg_create_mutex);
4247
4248 memcg->use_hierarchy = parent->use_hierarchy;
4249 memcg->oom_kill_disable = parent->oom_kill_disable;
4250 memcg->swappiness = mem_cgroup_swappiness(parent);
4251
4252 if (parent->use_hierarchy) {
4253 page_counter_init(&memcg->memory, &parent->memory);
4254 memcg->high = PAGE_COUNTER_MAX;
4255 memcg->soft_limit = PAGE_COUNTER_MAX;
4256 page_counter_init(&memcg->memsw, &parent->memsw);
4257 page_counter_init(&memcg->kmem, &parent->kmem);
4258
4259 /*
4260 * No need to take a reference to the parent because cgroup
4261 * core guarantees its existence.
4262 */
4263 } else {
4264 page_counter_init(&memcg->memory, NULL);
4265 memcg->high = PAGE_COUNTER_MAX;
4266 memcg->soft_limit = PAGE_COUNTER_MAX;
4267 page_counter_init(&memcg->memsw, NULL);
4268 page_counter_init(&memcg->kmem, NULL);
4269 /*
4270 * Deeper hierachy with use_hierarchy == false doesn't make
4271 * much sense so let cgroup subsystem know about this
4272 * unfortunate state in our controller.
4273 */
4274 if (parent != root_mem_cgroup)
4275 memory_cgrp_subsys.broken_hierarchy = true;
4276 }
4277 mutex_unlock(&memcg_create_mutex);
4278
4279 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4280 if (ret)
4281 return ret;
4282
4283 #ifdef CONFIG_INET
4284 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4285 static_branch_inc(&memcg_sockets_enabled_key);
4286 #endif
4287
4288 /*
4289 * Make sure the memcg is initialized: mem_cgroup_iter()
4290 * orders reading memcg->initialized against its callers
4291 * reading the memcg members.
4292 */
4293 smp_store_release(&memcg->initialized, 1);
4294
4295 return 0;
4296 }
4297
4298 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4299 {
4300 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4301 struct mem_cgroup_event *event, *tmp;
4302
4303 /*
4304 * Unregister events and notify userspace.
4305 * Notify userspace about cgroup removing only after rmdir of cgroup
4306 * directory to avoid race between userspace and kernelspace.
4307 */
4308 spin_lock(&memcg->event_list_lock);
4309 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4310 list_del_init(&event->list);
4311 schedule_work(&event->remove);
4312 }
4313 spin_unlock(&memcg->event_list_lock);
4314
4315 vmpressure_cleanup(&memcg->vmpressure);
4316
4317 memcg_deactivate_kmem(memcg);
4318
4319 wb_memcg_offline(memcg);
4320 }
4321
4322 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4323 {
4324 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4325
4326 invalidate_reclaim_iterators(memcg);
4327 }
4328
4329 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4330 {
4331 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4332
4333 memcg_destroy_kmem(memcg);
4334 #ifdef CONFIG_INET
4335 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4336 static_branch_dec(&memcg_sockets_enabled_key);
4337 #endif
4338 __mem_cgroup_free(memcg);
4339 }
4340
4341 /**
4342 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4343 * @css: the target css
4344 *
4345 * Reset the states of the mem_cgroup associated with @css. This is
4346 * invoked when the userland requests disabling on the default hierarchy
4347 * but the memcg is pinned through dependency. The memcg should stop
4348 * applying policies and should revert to the vanilla state as it may be
4349 * made visible again.
4350 *
4351 * The current implementation only resets the essential configurations.
4352 * This needs to be expanded to cover all the visible parts.
4353 */
4354 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4355 {
4356 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4357
4358 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4359 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4360 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4361 memcg->low = 0;
4362 memcg->high = PAGE_COUNTER_MAX;
4363 memcg->soft_limit = PAGE_COUNTER_MAX;
4364 memcg_wb_domain_size_changed(memcg);
4365 }
4366
4367 #ifdef CONFIG_MMU
4368 /* Handlers for move charge at task migration. */
4369 static int mem_cgroup_do_precharge(unsigned long count)
4370 {
4371 int ret;
4372
4373 /* Try a single bulk charge without reclaim first, kswapd may wake */
4374 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4375 if (!ret) {
4376 mc.precharge += count;
4377 return ret;
4378 }
4379
4380 /* Try charges one by one with reclaim */
4381 while (count--) {
4382 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4383 if (ret)
4384 return ret;
4385 mc.precharge++;
4386 cond_resched();
4387 }
4388 return 0;
4389 }
4390
4391 /**
4392 * get_mctgt_type - get target type of moving charge
4393 * @vma: the vma the pte to be checked belongs
4394 * @addr: the address corresponding to the pte to be checked
4395 * @ptent: the pte to be checked
4396 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4397 *
4398 * Returns
4399 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4400 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4401 * move charge. if @target is not NULL, the page is stored in target->page
4402 * with extra refcnt got(Callers should handle it).
4403 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4404 * target for charge migration. if @target is not NULL, the entry is stored
4405 * in target->ent.
4406 *
4407 * Called with pte lock held.
4408 */
4409 union mc_target {
4410 struct page *page;
4411 swp_entry_t ent;
4412 };
4413
4414 enum mc_target_type {
4415 MC_TARGET_NONE = 0,
4416 MC_TARGET_PAGE,
4417 MC_TARGET_SWAP,
4418 };
4419
4420 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4421 unsigned long addr, pte_t ptent)
4422 {
4423 struct page *page = vm_normal_page(vma, addr, ptent);
4424
4425 if (!page || !page_mapped(page))
4426 return NULL;
4427 if (PageAnon(page)) {
4428 if (!(mc.flags & MOVE_ANON))
4429 return NULL;
4430 } else {
4431 if (!(mc.flags & MOVE_FILE))
4432 return NULL;
4433 }
4434 if (!get_page_unless_zero(page))
4435 return NULL;
4436
4437 return page;
4438 }
4439
4440 #ifdef CONFIG_SWAP
4441 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4442 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4443 {
4444 struct page *page = NULL;
4445 swp_entry_t ent = pte_to_swp_entry(ptent);
4446
4447 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4448 return NULL;
4449 /*
4450 * Because lookup_swap_cache() updates some statistics counter,
4451 * we call find_get_page() with swapper_space directly.
4452 */
4453 page = find_get_page(swap_address_space(ent), ent.val);
4454 if (do_memsw_account())
4455 entry->val = ent.val;
4456
4457 return page;
4458 }
4459 #else
4460 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4461 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4462 {
4463 return NULL;
4464 }
4465 #endif
4466
4467 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4468 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4469 {
4470 struct page *page = NULL;
4471 struct address_space *mapping;
4472 pgoff_t pgoff;
4473
4474 if (!vma->vm_file) /* anonymous vma */
4475 return NULL;
4476 if (!(mc.flags & MOVE_FILE))
4477 return NULL;
4478
4479 mapping = vma->vm_file->f_mapping;
4480 pgoff = linear_page_index(vma, addr);
4481
4482 /* page is moved even if it's not RSS of this task(page-faulted). */
4483 #ifdef CONFIG_SWAP
4484 /* shmem/tmpfs may report page out on swap: account for that too. */
4485 if (shmem_mapping(mapping)) {
4486 page = find_get_entry(mapping, pgoff);
4487 if (radix_tree_exceptional_entry(page)) {
4488 swp_entry_t swp = radix_to_swp_entry(page);
4489 if (do_memsw_account())
4490 *entry = swp;
4491 page = find_get_page(swap_address_space(swp), swp.val);
4492 }
4493 } else
4494 page = find_get_page(mapping, pgoff);
4495 #else
4496 page = find_get_page(mapping, pgoff);
4497 #endif
4498 return page;
4499 }
4500
4501 /**
4502 * mem_cgroup_move_account - move account of the page
4503 * @page: the page
4504 * @nr_pages: number of regular pages (>1 for huge pages)
4505 * @from: mem_cgroup which the page is moved from.
4506 * @to: mem_cgroup which the page is moved to. @from != @to.
4507 *
4508 * The caller must confirm following.
4509 * - page is not on LRU (isolate_page() is useful.)
4510 * - compound_lock is held when nr_pages > 1
4511 *
4512 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4513 * from old cgroup.
4514 */
4515 static int mem_cgroup_move_account(struct page *page,
4516 unsigned int nr_pages,
4517 struct mem_cgroup *from,
4518 struct mem_cgroup *to)
4519 {
4520 unsigned long flags;
4521 int ret;
4522 bool anon;
4523
4524 VM_BUG_ON(from == to);
4525 VM_BUG_ON_PAGE(PageLRU(page), page);
4526 /*
4527 * The page is isolated from LRU. So, collapse function
4528 * will not handle this page. But page splitting can happen.
4529 * Do this check under compound_page_lock(). The caller should
4530 * hold it.
4531 */
4532 ret = -EBUSY;
4533 if (nr_pages > 1 && !PageTransHuge(page))
4534 goto out;
4535
4536 /*
4537 * Prevent mem_cgroup_replace_page() from looking at
4538 * page->mem_cgroup of its source page while we change it.
4539 */
4540 if (!trylock_page(page))
4541 goto out;
4542
4543 ret = -EINVAL;
4544 if (page->mem_cgroup != from)
4545 goto out_unlock;
4546
4547 anon = PageAnon(page);
4548
4549 spin_lock_irqsave(&from->move_lock, flags);
4550
4551 if (!anon && page_mapped(page)) {
4552 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4553 nr_pages);
4554 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4555 nr_pages);
4556 }
4557
4558 /*
4559 * move_lock grabbed above and caller set from->moving_account, so
4560 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4561 * So mapping should be stable for dirty pages.
4562 */
4563 if (!anon && PageDirty(page)) {
4564 struct address_space *mapping = page_mapping(page);
4565
4566 if (mapping_cap_account_dirty(mapping)) {
4567 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4568 nr_pages);
4569 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4570 nr_pages);
4571 }
4572 }
4573
4574 if (PageWriteback(page)) {
4575 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4576 nr_pages);
4577 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4578 nr_pages);
4579 }
4580
4581 /*
4582 * It is safe to change page->mem_cgroup here because the page
4583 * is referenced, charged, and isolated - we can't race with
4584 * uncharging, charging, migration, or LRU putback.
4585 */
4586
4587 /* caller should have done css_get */
4588 page->mem_cgroup = to;
4589 spin_unlock_irqrestore(&from->move_lock, flags);
4590
4591 ret = 0;
4592
4593 local_irq_disable();
4594 mem_cgroup_charge_statistics(to, page, nr_pages);
4595 memcg_check_events(to, page);
4596 mem_cgroup_charge_statistics(from, page, -nr_pages);
4597 memcg_check_events(from, page);
4598 local_irq_enable();
4599 out_unlock:
4600 unlock_page(page);
4601 out:
4602 return ret;
4603 }
4604
4605 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4606 unsigned long addr, pte_t ptent, union mc_target *target)
4607 {
4608 struct page *page = NULL;
4609 enum mc_target_type ret = MC_TARGET_NONE;
4610 swp_entry_t ent = { .val = 0 };
4611
4612 if (pte_present(ptent))
4613 page = mc_handle_present_pte(vma, addr, ptent);
4614 else if (is_swap_pte(ptent))
4615 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4616 else if (pte_none(ptent))
4617 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4618
4619 if (!page && !ent.val)
4620 return ret;
4621 if (page) {
4622 /*
4623 * Do only loose check w/o serialization.
4624 * mem_cgroup_move_account() checks the page is valid or
4625 * not under LRU exclusion.
4626 */
4627 if (page->mem_cgroup == mc.from) {
4628 ret = MC_TARGET_PAGE;
4629 if (target)
4630 target->page = page;
4631 }
4632 if (!ret || !target)
4633 put_page(page);
4634 }
4635 /* There is a swap entry and a page doesn't exist or isn't charged */
4636 if (ent.val && !ret &&
4637 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4638 ret = MC_TARGET_SWAP;
4639 if (target)
4640 target->ent = ent;
4641 }
4642 return ret;
4643 }
4644
4645 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4646 /*
4647 * We don't consider swapping or file mapped pages because THP does not
4648 * support them for now.
4649 * Caller should make sure that pmd_trans_huge(pmd) is true.
4650 */
4651 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4652 unsigned long addr, pmd_t pmd, union mc_target *target)
4653 {
4654 struct page *page = NULL;
4655 enum mc_target_type ret = MC_TARGET_NONE;
4656
4657 page = pmd_page(pmd);
4658 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4659 if (!(mc.flags & MOVE_ANON))
4660 return ret;
4661 if (page->mem_cgroup == mc.from) {
4662 ret = MC_TARGET_PAGE;
4663 if (target) {
4664 get_page(page);
4665 target->page = page;
4666 }
4667 }
4668 return ret;
4669 }
4670 #else
4671 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4672 unsigned long addr, pmd_t pmd, union mc_target *target)
4673 {
4674 return MC_TARGET_NONE;
4675 }
4676 #endif
4677
4678 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4679 unsigned long addr, unsigned long end,
4680 struct mm_walk *walk)
4681 {
4682 struct vm_area_struct *vma = walk->vma;
4683 pte_t *pte;
4684 spinlock_t *ptl;
4685
4686 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4687 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4688 mc.precharge += HPAGE_PMD_NR;
4689 spin_unlock(ptl);
4690 return 0;
4691 }
4692
4693 if (pmd_trans_unstable(pmd))
4694 return 0;
4695 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4696 for (; addr != end; pte++, addr += PAGE_SIZE)
4697 if (get_mctgt_type(vma, addr, *pte, NULL))
4698 mc.precharge++; /* increment precharge temporarily */
4699 pte_unmap_unlock(pte - 1, ptl);
4700 cond_resched();
4701
4702 return 0;
4703 }
4704
4705 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4706 {
4707 unsigned long precharge;
4708
4709 struct mm_walk mem_cgroup_count_precharge_walk = {
4710 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4711 .mm = mm,
4712 };
4713 down_read(&mm->mmap_sem);
4714 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4715 up_read(&mm->mmap_sem);
4716
4717 precharge = mc.precharge;
4718 mc.precharge = 0;
4719
4720 return precharge;
4721 }
4722
4723 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4724 {
4725 unsigned long precharge = mem_cgroup_count_precharge(mm);
4726
4727 VM_BUG_ON(mc.moving_task);
4728 mc.moving_task = current;
4729 return mem_cgroup_do_precharge(precharge);
4730 }
4731
4732 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4733 static void __mem_cgroup_clear_mc(void)
4734 {
4735 struct mem_cgroup *from = mc.from;
4736 struct mem_cgroup *to = mc.to;
4737
4738 /* we must uncharge all the leftover precharges from mc.to */
4739 if (mc.precharge) {
4740 cancel_charge(mc.to, mc.precharge);
4741 mc.precharge = 0;
4742 }
4743 /*
4744 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4745 * we must uncharge here.
4746 */
4747 if (mc.moved_charge) {
4748 cancel_charge(mc.from, mc.moved_charge);
4749 mc.moved_charge = 0;
4750 }
4751 /* we must fixup refcnts and charges */
4752 if (mc.moved_swap) {
4753 /* uncharge swap account from the old cgroup */
4754 if (!mem_cgroup_is_root(mc.from))
4755 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4756
4757 /*
4758 * we charged both to->memory and to->memsw, so we
4759 * should uncharge to->memory.
4760 */
4761 if (!mem_cgroup_is_root(mc.to))
4762 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4763
4764 css_put_many(&mc.from->css, mc.moved_swap);
4765
4766 /* we've already done css_get(mc.to) */
4767 mc.moved_swap = 0;
4768 }
4769 memcg_oom_recover(from);
4770 memcg_oom_recover(to);
4771 wake_up_all(&mc.waitq);
4772 }
4773
4774 static void mem_cgroup_clear_mc(void)
4775 {
4776 /*
4777 * we must clear moving_task before waking up waiters at the end of
4778 * task migration.
4779 */
4780 mc.moving_task = NULL;
4781 __mem_cgroup_clear_mc();
4782 spin_lock(&mc.lock);
4783 mc.from = NULL;
4784 mc.to = NULL;
4785 spin_unlock(&mc.lock);
4786 }
4787
4788 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4789 {
4790 struct cgroup_subsys_state *css;
4791 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4792 struct mem_cgroup *from;
4793 struct task_struct *leader, *p;
4794 struct mm_struct *mm;
4795 unsigned long move_flags;
4796 int ret = 0;
4797
4798 /* charge immigration isn't supported on the default hierarchy */
4799 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4800 return 0;
4801
4802 /*
4803 * Multi-process migrations only happen on the default hierarchy
4804 * where charge immigration is not used. Perform charge
4805 * immigration if @tset contains a leader and whine if there are
4806 * multiple.
4807 */
4808 p = NULL;
4809 cgroup_taskset_for_each_leader(leader, css, tset) {
4810 WARN_ON_ONCE(p);
4811 p = leader;
4812 memcg = mem_cgroup_from_css(css);
4813 }
4814 if (!p)
4815 return 0;
4816
4817 /*
4818 * We are now commited to this value whatever it is. Changes in this
4819 * tunable will only affect upcoming migrations, not the current one.
4820 * So we need to save it, and keep it going.
4821 */
4822 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4823 if (!move_flags)
4824 return 0;
4825
4826 from = mem_cgroup_from_task(p);
4827
4828 VM_BUG_ON(from == memcg);
4829
4830 mm = get_task_mm(p);
4831 if (!mm)
4832 return 0;
4833 /* We move charges only when we move a owner of the mm */
4834 if (mm->owner == p) {
4835 VM_BUG_ON(mc.from);
4836 VM_BUG_ON(mc.to);
4837 VM_BUG_ON(mc.precharge);
4838 VM_BUG_ON(mc.moved_charge);
4839 VM_BUG_ON(mc.moved_swap);
4840
4841 spin_lock(&mc.lock);
4842 mc.from = from;
4843 mc.to = memcg;
4844 mc.flags = move_flags;
4845 spin_unlock(&mc.lock);
4846 /* We set mc.moving_task later */
4847
4848 ret = mem_cgroup_precharge_mc(mm);
4849 if (ret)
4850 mem_cgroup_clear_mc();
4851 }
4852 mmput(mm);
4853 return ret;
4854 }
4855
4856 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4857 {
4858 if (mc.to)
4859 mem_cgroup_clear_mc();
4860 }
4861
4862 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4863 unsigned long addr, unsigned long end,
4864 struct mm_walk *walk)
4865 {
4866 int ret = 0;
4867 struct vm_area_struct *vma = walk->vma;
4868 pte_t *pte;
4869 spinlock_t *ptl;
4870 enum mc_target_type target_type;
4871 union mc_target target;
4872 struct page *page;
4873
4874 /*
4875 * We don't take compound_lock() here but no race with splitting thp
4876 * happens because:
4877 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
4878 * under splitting, which means there's no concurrent thp split,
4879 * - if another thread runs into split_huge_page() just after we
4880 * entered this if-block, the thread must wait for page table lock
4881 * to be unlocked in __split_huge_page_splitting(), where the main
4882 * part of thp split is not executed yet.
4883 */
4884 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4885 if (mc.precharge < HPAGE_PMD_NR) {
4886 spin_unlock(ptl);
4887 return 0;
4888 }
4889 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4890 if (target_type == MC_TARGET_PAGE) {
4891 page = target.page;
4892 if (!isolate_lru_page(page)) {
4893 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
4894 mc.from, mc.to)) {
4895 mc.precharge -= HPAGE_PMD_NR;
4896 mc.moved_charge += HPAGE_PMD_NR;
4897 }
4898 putback_lru_page(page);
4899 }
4900 put_page(page);
4901 }
4902 spin_unlock(ptl);
4903 return 0;
4904 }
4905
4906 if (pmd_trans_unstable(pmd))
4907 return 0;
4908 retry:
4909 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4910 for (; addr != end; addr += PAGE_SIZE) {
4911 pte_t ptent = *(pte++);
4912 swp_entry_t ent;
4913
4914 if (!mc.precharge)
4915 break;
4916
4917 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4918 case MC_TARGET_PAGE:
4919 page = target.page;
4920 if (isolate_lru_page(page))
4921 goto put;
4922 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4923 mc.precharge--;
4924 /* we uncharge from mc.from later. */
4925 mc.moved_charge++;
4926 }
4927 putback_lru_page(page);
4928 put: /* get_mctgt_type() gets the page */
4929 put_page(page);
4930 break;
4931 case MC_TARGET_SWAP:
4932 ent = target.ent;
4933 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4934 mc.precharge--;
4935 /* we fixup refcnts and charges later. */
4936 mc.moved_swap++;
4937 }
4938 break;
4939 default:
4940 break;
4941 }
4942 }
4943 pte_unmap_unlock(pte - 1, ptl);
4944 cond_resched();
4945
4946 if (addr != end) {
4947 /*
4948 * We have consumed all precharges we got in can_attach().
4949 * We try charge one by one, but don't do any additional
4950 * charges to mc.to if we have failed in charge once in attach()
4951 * phase.
4952 */
4953 ret = mem_cgroup_do_precharge(1);
4954 if (!ret)
4955 goto retry;
4956 }
4957
4958 return ret;
4959 }
4960
4961 static void mem_cgroup_move_charge(struct mm_struct *mm)
4962 {
4963 struct mm_walk mem_cgroup_move_charge_walk = {
4964 .pmd_entry = mem_cgroup_move_charge_pte_range,
4965 .mm = mm,
4966 };
4967
4968 lru_add_drain_all();
4969 /*
4970 * Signal mem_cgroup_begin_page_stat() to take the memcg's
4971 * move_lock while we're moving its pages to another memcg.
4972 * Then wait for already started RCU-only updates to finish.
4973 */
4974 atomic_inc(&mc.from->moving_account);
4975 synchronize_rcu();
4976 retry:
4977 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4978 /*
4979 * Someone who are holding the mmap_sem might be waiting in
4980 * waitq. So we cancel all extra charges, wake up all waiters,
4981 * and retry. Because we cancel precharges, we might not be able
4982 * to move enough charges, but moving charge is a best-effort
4983 * feature anyway, so it wouldn't be a big problem.
4984 */
4985 __mem_cgroup_clear_mc();
4986 cond_resched();
4987 goto retry;
4988 }
4989 /*
4990 * When we have consumed all precharges and failed in doing
4991 * additional charge, the page walk just aborts.
4992 */
4993 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4994 up_read(&mm->mmap_sem);
4995 atomic_dec(&mc.from->moving_account);
4996 }
4997
4998 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4999 {
5000 struct cgroup_subsys_state *css;
5001 struct task_struct *p = cgroup_taskset_first(tset, &css);
5002 struct mm_struct *mm = get_task_mm(p);
5003
5004 if (mm) {
5005 if (mc.to)
5006 mem_cgroup_move_charge(mm);
5007 mmput(mm);
5008 }
5009 if (mc.to)
5010 mem_cgroup_clear_mc();
5011 }
5012 #else /* !CONFIG_MMU */
5013 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5014 {
5015 return 0;
5016 }
5017 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5018 {
5019 }
5020 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5021 {
5022 }
5023 #endif
5024
5025 /*
5026 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5027 * to verify whether we're attached to the default hierarchy on each mount
5028 * attempt.
5029 */
5030 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5031 {
5032 /*
5033 * use_hierarchy is forced on the default hierarchy. cgroup core
5034 * guarantees that @root doesn't have any children, so turning it
5035 * on for the root memcg is enough.
5036 */
5037 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5038 root_mem_cgroup->use_hierarchy = true;
5039 else
5040 root_mem_cgroup->use_hierarchy = false;
5041 }
5042
5043 static u64 memory_current_read(struct cgroup_subsys_state *css,
5044 struct cftype *cft)
5045 {
5046 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5047
5048 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5049 }
5050
5051 static int memory_low_show(struct seq_file *m, void *v)
5052 {
5053 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5054 unsigned long low = READ_ONCE(memcg->low);
5055
5056 if (low == PAGE_COUNTER_MAX)
5057 seq_puts(m, "max\n");
5058 else
5059 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5060
5061 return 0;
5062 }
5063
5064 static ssize_t memory_low_write(struct kernfs_open_file *of,
5065 char *buf, size_t nbytes, loff_t off)
5066 {
5067 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5068 unsigned long low;
5069 int err;
5070
5071 buf = strstrip(buf);
5072 err = page_counter_memparse(buf, "max", &low);
5073 if (err)
5074 return err;
5075
5076 memcg->low = low;
5077
5078 return nbytes;
5079 }
5080
5081 static int memory_high_show(struct seq_file *m, void *v)
5082 {
5083 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5084 unsigned long high = READ_ONCE(memcg->high);
5085
5086 if (high == PAGE_COUNTER_MAX)
5087 seq_puts(m, "max\n");
5088 else
5089 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5090
5091 return 0;
5092 }
5093
5094 static ssize_t memory_high_write(struct kernfs_open_file *of,
5095 char *buf, size_t nbytes, loff_t off)
5096 {
5097 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5098 unsigned long high;
5099 int err;
5100
5101 buf = strstrip(buf);
5102 err = page_counter_memparse(buf, "max", &high);
5103 if (err)
5104 return err;
5105
5106 memcg->high = high;
5107
5108 memcg_wb_domain_size_changed(memcg);
5109 return nbytes;
5110 }
5111
5112 static int memory_max_show(struct seq_file *m, void *v)
5113 {
5114 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5115 unsigned long max = READ_ONCE(memcg->memory.limit);
5116
5117 if (max == PAGE_COUNTER_MAX)
5118 seq_puts(m, "max\n");
5119 else
5120 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5121
5122 return 0;
5123 }
5124
5125 static ssize_t memory_max_write(struct kernfs_open_file *of,
5126 char *buf, size_t nbytes, loff_t off)
5127 {
5128 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5129 unsigned long max;
5130 int err;
5131
5132 buf = strstrip(buf);
5133 err = page_counter_memparse(buf, "max", &max);
5134 if (err)
5135 return err;
5136
5137 err = mem_cgroup_resize_limit(memcg, max);
5138 if (err)
5139 return err;
5140
5141 memcg_wb_domain_size_changed(memcg);
5142 return nbytes;
5143 }
5144
5145 static int memory_events_show(struct seq_file *m, void *v)
5146 {
5147 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5148
5149 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5150 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5151 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5152 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5153
5154 return 0;
5155 }
5156
5157 static struct cftype memory_files[] = {
5158 {
5159 .name = "current",
5160 .flags = CFTYPE_NOT_ON_ROOT,
5161 .read_u64 = memory_current_read,
5162 },
5163 {
5164 .name = "low",
5165 .flags = CFTYPE_NOT_ON_ROOT,
5166 .seq_show = memory_low_show,
5167 .write = memory_low_write,
5168 },
5169 {
5170 .name = "high",
5171 .flags = CFTYPE_NOT_ON_ROOT,
5172 .seq_show = memory_high_show,
5173 .write = memory_high_write,
5174 },
5175 {
5176 .name = "max",
5177 .flags = CFTYPE_NOT_ON_ROOT,
5178 .seq_show = memory_max_show,
5179 .write = memory_max_write,
5180 },
5181 {
5182 .name = "events",
5183 .flags = CFTYPE_NOT_ON_ROOT,
5184 .file_offset = offsetof(struct mem_cgroup, events_file),
5185 .seq_show = memory_events_show,
5186 },
5187 { } /* terminate */
5188 };
5189
5190 struct cgroup_subsys memory_cgrp_subsys = {
5191 .css_alloc = mem_cgroup_css_alloc,
5192 .css_online = mem_cgroup_css_online,
5193 .css_offline = mem_cgroup_css_offline,
5194 .css_released = mem_cgroup_css_released,
5195 .css_free = mem_cgroup_css_free,
5196 .css_reset = mem_cgroup_css_reset,
5197 .can_attach = mem_cgroup_can_attach,
5198 .cancel_attach = mem_cgroup_cancel_attach,
5199 .attach = mem_cgroup_move_task,
5200 .bind = mem_cgroup_bind,
5201 .dfl_cftypes = memory_files,
5202 .legacy_cftypes = mem_cgroup_legacy_files,
5203 .early_init = 0,
5204 };
5205
5206 /**
5207 * mem_cgroup_low - check if memory consumption is below the normal range
5208 * @root: the highest ancestor to consider
5209 * @memcg: the memory cgroup to check
5210 *
5211 * Returns %true if memory consumption of @memcg, and that of all
5212 * configurable ancestors up to @root, is below the normal range.
5213 */
5214 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5215 {
5216 if (mem_cgroup_disabled())
5217 return false;
5218
5219 /*
5220 * The toplevel group doesn't have a configurable range, so
5221 * it's never low when looked at directly, and it is not
5222 * considered an ancestor when assessing the hierarchy.
5223 */
5224
5225 if (memcg == root_mem_cgroup)
5226 return false;
5227
5228 if (page_counter_read(&memcg->memory) >= memcg->low)
5229 return false;
5230
5231 while (memcg != root) {
5232 memcg = parent_mem_cgroup(memcg);
5233
5234 if (memcg == root_mem_cgroup)
5235 break;
5236
5237 if (page_counter_read(&memcg->memory) >= memcg->low)
5238 return false;
5239 }
5240 return true;
5241 }
5242
5243 /**
5244 * mem_cgroup_try_charge - try charging a page
5245 * @page: page to charge
5246 * @mm: mm context of the victim
5247 * @gfp_mask: reclaim mode
5248 * @memcgp: charged memcg return
5249 *
5250 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5251 * pages according to @gfp_mask if necessary.
5252 *
5253 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5254 * Otherwise, an error code is returned.
5255 *
5256 * After page->mapping has been set up, the caller must finalize the
5257 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5258 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5259 */
5260 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5261 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5262 {
5263 struct mem_cgroup *memcg = NULL;
5264 unsigned int nr_pages = 1;
5265 int ret = 0;
5266
5267 if (mem_cgroup_disabled())
5268 goto out;
5269
5270 if (PageSwapCache(page)) {
5271 /*
5272 * Every swap fault against a single page tries to charge the
5273 * page, bail as early as possible. shmem_unuse() encounters
5274 * already charged pages, too. The USED bit is protected by
5275 * the page lock, which serializes swap cache removal, which
5276 * in turn serializes uncharging.
5277 */
5278 VM_BUG_ON_PAGE(!PageLocked(page), page);
5279 if (page->mem_cgroup)
5280 goto out;
5281
5282 if (do_memsw_account()) {
5283 swp_entry_t ent = { .val = page_private(page), };
5284 unsigned short id = lookup_swap_cgroup_id(ent);
5285
5286 rcu_read_lock();
5287 memcg = mem_cgroup_from_id(id);
5288 if (memcg && !css_tryget_online(&memcg->css))
5289 memcg = NULL;
5290 rcu_read_unlock();
5291 }
5292 }
5293
5294 if (PageTransHuge(page)) {
5295 nr_pages <<= compound_order(page);
5296 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5297 }
5298
5299 if (!memcg)
5300 memcg = get_mem_cgroup_from_mm(mm);
5301
5302 ret = try_charge(memcg, gfp_mask, nr_pages);
5303
5304 css_put(&memcg->css);
5305 out:
5306 *memcgp = memcg;
5307 return ret;
5308 }
5309
5310 /**
5311 * mem_cgroup_commit_charge - commit a page charge
5312 * @page: page to charge
5313 * @memcg: memcg to charge the page to
5314 * @lrucare: page might be on LRU already
5315 *
5316 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5317 * after page->mapping has been set up. This must happen atomically
5318 * as part of the page instantiation, i.e. under the page table lock
5319 * for anonymous pages, under the page lock for page and swap cache.
5320 *
5321 * In addition, the page must not be on the LRU during the commit, to
5322 * prevent racing with task migration. If it might be, use @lrucare.
5323 *
5324 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5325 */
5326 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5327 bool lrucare)
5328 {
5329 unsigned int nr_pages = 1;
5330
5331 VM_BUG_ON_PAGE(!page->mapping, page);
5332 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5333
5334 if (mem_cgroup_disabled())
5335 return;
5336 /*
5337 * Swap faults will attempt to charge the same page multiple
5338 * times. But reuse_swap_page() might have removed the page
5339 * from swapcache already, so we can't check PageSwapCache().
5340 */
5341 if (!memcg)
5342 return;
5343
5344 commit_charge(page, memcg, lrucare);
5345
5346 if (PageTransHuge(page)) {
5347 nr_pages <<= compound_order(page);
5348 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5349 }
5350
5351 local_irq_disable();
5352 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5353 memcg_check_events(memcg, page);
5354 local_irq_enable();
5355
5356 if (do_memsw_account() && PageSwapCache(page)) {
5357 swp_entry_t entry = { .val = page_private(page) };
5358 /*
5359 * The swap entry might not get freed for a long time,
5360 * let's not wait for it. The page already received a
5361 * memory+swap charge, drop the swap entry duplicate.
5362 */
5363 mem_cgroup_uncharge_swap(entry);
5364 }
5365 }
5366
5367 /**
5368 * mem_cgroup_cancel_charge - cancel a page charge
5369 * @page: page to charge
5370 * @memcg: memcg to charge the page to
5371 *
5372 * Cancel a charge transaction started by mem_cgroup_try_charge().
5373 */
5374 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5375 {
5376 unsigned int nr_pages = 1;
5377
5378 if (mem_cgroup_disabled())
5379 return;
5380 /*
5381 * Swap faults will attempt to charge the same page multiple
5382 * times. But reuse_swap_page() might have removed the page
5383 * from swapcache already, so we can't check PageSwapCache().
5384 */
5385 if (!memcg)
5386 return;
5387
5388 if (PageTransHuge(page)) {
5389 nr_pages <<= compound_order(page);
5390 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5391 }
5392
5393 cancel_charge(memcg, nr_pages);
5394 }
5395
5396 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5397 unsigned long nr_anon, unsigned long nr_file,
5398 unsigned long nr_huge, struct page *dummy_page)
5399 {
5400 unsigned long nr_pages = nr_anon + nr_file;
5401 unsigned long flags;
5402
5403 if (!mem_cgroup_is_root(memcg)) {
5404 page_counter_uncharge(&memcg->memory, nr_pages);
5405 if (do_memsw_account())
5406 page_counter_uncharge(&memcg->memsw, nr_pages);
5407 memcg_oom_recover(memcg);
5408 }
5409
5410 local_irq_save(flags);
5411 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5412 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5413 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5414 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5415 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5416 memcg_check_events(memcg, dummy_page);
5417 local_irq_restore(flags);
5418
5419 if (!mem_cgroup_is_root(memcg))
5420 css_put_many(&memcg->css, nr_pages);
5421 }
5422
5423 static void uncharge_list(struct list_head *page_list)
5424 {
5425 struct mem_cgroup *memcg = NULL;
5426 unsigned long nr_anon = 0;
5427 unsigned long nr_file = 0;
5428 unsigned long nr_huge = 0;
5429 unsigned long pgpgout = 0;
5430 struct list_head *next;
5431 struct page *page;
5432
5433 next = page_list->next;
5434 do {
5435 unsigned int nr_pages = 1;
5436
5437 page = list_entry(next, struct page, lru);
5438 next = page->lru.next;
5439
5440 VM_BUG_ON_PAGE(PageLRU(page), page);
5441 VM_BUG_ON_PAGE(page_count(page), page);
5442
5443 if (!page->mem_cgroup)
5444 continue;
5445
5446 /*
5447 * Nobody should be changing or seriously looking at
5448 * page->mem_cgroup at this point, we have fully
5449 * exclusive access to the page.
5450 */
5451
5452 if (memcg != page->mem_cgroup) {
5453 if (memcg) {
5454 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5455 nr_huge, page);
5456 pgpgout = nr_anon = nr_file = nr_huge = 0;
5457 }
5458 memcg = page->mem_cgroup;
5459 }
5460
5461 if (PageTransHuge(page)) {
5462 nr_pages <<= compound_order(page);
5463 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5464 nr_huge += nr_pages;
5465 }
5466
5467 if (PageAnon(page))
5468 nr_anon += nr_pages;
5469 else
5470 nr_file += nr_pages;
5471
5472 page->mem_cgroup = NULL;
5473
5474 pgpgout++;
5475 } while (next != page_list);
5476
5477 if (memcg)
5478 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5479 nr_huge, page);
5480 }
5481
5482 /**
5483 * mem_cgroup_uncharge - uncharge a page
5484 * @page: page to uncharge
5485 *
5486 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5487 * mem_cgroup_commit_charge().
5488 */
5489 void mem_cgroup_uncharge(struct page *page)
5490 {
5491 if (mem_cgroup_disabled())
5492 return;
5493
5494 /* Don't touch page->lru of any random page, pre-check: */
5495 if (!page->mem_cgroup)
5496 return;
5497
5498 INIT_LIST_HEAD(&page->lru);
5499 uncharge_list(&page->lru);
5500 }
5501
5502 /**
5503 * mem_cgroup_uncharge_list - uncharge a list of page
5504 * @page_list: list of pages to uncharge
5505 *
5506 * Uncharge a list of pages previously charged with
5507 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5508 */
5509 void mem_cgroup_uncharge_list(struct list_head *page_list)
5510 {
5511 if (mem_cgroup_disabled())
5512 return;
5513
5514 if (!list_empty(page_list))
5515 uncharge_list(page_list);
5516 }
5517
5518 /**
5519 * mem_cgroup_replace_page - migrate a charge to another page
5520 * @oldpage: currently charged page
5521 * @newpage: page to transfer the charge to
5522 *
5523 * Migrate the charge from @oldpage to @newpage.
5524 *
5525 * Both pages must be locked, @newpage->mapping must be set up.
5526 * Either or both pages might be on the LRU already.
5527 */
5528 void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
5529 {
5530 struct mem_cgroup *memcg;
5531 int isolated;
5532
5533 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5534 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5535 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5536 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5537 newpage);
5538
5539 if (mem_cgroup_disabled())
5540 return;
5541
5542 /* Page cache replacement: new page already charged? */
5543 if (newpage->mem_cgroup)
5544 return;
5545
5546 /* Swapcache readahead pages can get replaced before being charged */
5547 memcg = oldpage->mem_cgroup;
5548 if (!memcg)
5549 return;
5550
5551 lock_page_lru(oldpage, &isolated);
5552 oldpage->mem_cgroup = NULL;
5553 unlock_page_lru(oldpage, isolated);
5554
5555 commit_charge(newpage, memcg, true);
5556 }
5557
5558 #ifdef CONFIG_INET
5559
5560 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5561 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5562
5563 void sock_update_memcg(struct sock *sk)
5564 {
5565 struct mem_cgroup *memcg;
5566
5567 /* Socket cloning can throw us here with sk_cgrp already
5568 * filled. It won't however, necessarily happen from
5569 * process context. So the test for root memcg given
5570 * the current task's memcg won't help us in this case.
5571 *
5572 * Respecting the original socket's memcg is a better
5573 * decision in this case.
5574 */
5575 if (sk->sk_memcg) {
5576 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5577 css_get(&sk->sk_memcg->css);
5578 return;
5579 }
5580
5581 rcu_read_lock();
5582 memcg = mem_cgroup_from_task(current);
5583 if (memcg == root_mem_cgroup)
5584 goto out;
5585 #ifdef CONFIG_MEMCG_KMEM
5586 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcp_mem.active)
5587 goto out;
5588 #endif
5589 if (css_tryget_online(&memcg->css))
5590 sk->sk_memcg = memcg;
5591 out:
5592 rcu_read_unlock();
5593 }
5594 EXPORT_SYMBOL(sock_update_memcg);
5595
5596 void sock_release_memcg(struct sock *sk)
5597 {
5598 WARN_ON(!sk->sk_memcg);
5599 css_put(&sk->sk_memcg->css);
5600 }
5601
5602 /**
5603 * mem_cgroup_charge_skmem - charge socket memory
5604 * @memcg: memcg to charge
5605 * @nr_pages: number of pages to charge
5606 *
5607 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5608 * @memcg's configured limit, %false if the charge had to be forced.
5609 */
5610 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5611 {
5612 gfp_t gfp_mask = GFP_KERNEL;
5613
5614 #ifdef CONFIG_MEMCG_KMEM
5615 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5616 struct page_counter *counter;
5617
5618 if (page_counter_try_charge(&memcg->tcp_mem.memory_allocated,
5619 nr_pages, &counter)) {
5620 memcg->tcp_mem.memory_pressure = 0;
5621 return true;
5622 }
5623 page_counter_charge(&memcg->tcp_mem.memory_allocated, nr_pages);
5624 memcg->tcp_mem.memory_pressure = 1;
5625 return false;
5626 }
5627 #endif
5628 /* Don't block in the packet receive path */
5629 if (in_softirq())
5630 gfp_mask = GFP_NOWAIT;
5631
5632 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5633 return true;
5634
5635 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5636 return false;
5637 }
5638
5639 /**
5640 * mem_cgroup_uncharge_skmem - uncharge socket memory
5641 * @memcg - memcg to uncharge
5642 * @nr_pages - number of pages to uncharge
5643 */
5644 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5645 {
5646 #ifdef CONFIG_MEMCG_KMEM
5647 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5648 page_counter_uncharge(&memcg->tcp_mem.memory_allocated,
5649 nr_pages);
5650 return;
5651 }
5652 #endif
5653 page_counter_uncharge(&memcg->memory, nr_pages);
5654 css_put_many(&memcg->css, nr_pages);
5655 }
5656
5657 #endif /* CONFIG_INET */
5658
5659 static int __init cgroup_memory(char *s)
5660 {
5661 char *token;
5662
5663 while ((token = strsep(&s, ",")) != NULL) {
5664 if (!*token)
5665 continue;
5666 if (!strcmp(token, "nosocket"))
5667 cgroup_memory_nosocket = true;
5668 }
5669 return 0;
5670 }
5671 __setup("cgroup.memory=", cgroup_memory);
5672
5673 /*
5674 * subsys_initcall() for memory controller.
5675 *
5676 * Some parts like hotcpu_notifier() have to be initialized from this context
5677 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5678 * everything that doesn't depend on a specific mem_cgroup structure should
5679 * be initialized from here.
5680 */
5681 static int __init mem_cgroup_init(void)
5682 {
5683 int cpu, node;
5684
5685 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5686
5687 for_each_possible_cpu(cpu)
5688 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5689 drain_local_stock);
5690
5691 for_each_node(node) {
5692 struct mem_cgroup_tree_per_node *rtpn;
5693 int zone;
5694
5695 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5696 node_online(node) ? node : NUMA_NO_NODE);
5697
5698 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5699 struct mem_cgroup_tree_per_zone *rtpz;
5700
5701 rtpz = &rtpn->rb_tree_per_zone[zone];
5702 rtpz->rb_root = RB_ROOT;
5703 spin_lock_init(&rtpz->lock);
5704 }
5705 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5706 }
5707
5708 return 0;
5709 }
5710 subsys_initcall(mem_cgroup_init);
5711
5712 #ifdef CONFIG_MEMCG_SWAP
5713 /**
5714 * mem_cgroup_swapout - transfer a memsw charge to swap
5715 * @page: page whose memsw charge to transfer
5716 * @entry: swap entry to move the charge to
5717 *
5718 * Transfer the memsw charge of @page to @entry.
5719 */
5720 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5721 {
5722 struct mem_cgroup *memcg;
5723 unsigned short oldid;
5724
5725 VM_BUG_ON_PAGE(PageLRU(page), page);
5726 VM_BUG_ON_PAGE(page_count(page), page);
5727
5728 if (!do_memsw_account())
5729 return;
5730
5731 memcg = page->mem_cgroup;
5732
5733 /* Readahead page, never charged */
5734 if (!memcg)
5735 return;
5736
5737 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5738 VM_BUG_ON_PAGE(oldid, page);
5739 mem_cgroup_swap_statistics(memcg, true);
5740
5741 page->mem_cgroup = NULL;
5742
5743 if (!mem_cgroup_is_root(memcg))
5744 page_counter_uncharge(&memcg->memory, 1);
5745
5746 /*
5747 * Interrupts should be disabled here because the caller holds the
5748 * mapping->tree_lock lock which is taken with interrupts-off. It is
5749 * important here to have the interrupts disabled because it is the
5750 * only synchronisation we have for udpating the per-CPU variables.
5751 */
5752 VM_BUG_ON(!irqs_disabled());
5753 mem_cgroup_charge_statistics(memcg, page, -1);
5754 memcg_check_events(memcg, page);
5755 }
5756
5757 /**
5758 * mem_cgroup_uncharge_swap - uncharge a swap entry
5759 * @entry: swap entry to uncharge
5760 *
5761 * Drop the memsw charge associated with @entry.
5762 */
5763 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5764 {
5765 struct mem_cgroup *memcg;
5766 unsigned short id;
5767
5768 if (!do_memsw_account())
5769 return;
5770
5771 id = swap_cgroup_record(entry, 0);
5772 rcu_read_lock();
5773 memcg = mem_cgroup_from_id(id);
5774 if (memcg) {
5775 if (!mem_cgroup_is_root(memcg))
5776 page_counter_uncharge(&memcg->memsw, 1);
5777 mem_cgroup_swap_statistics(memcg, false);
5778 css_put(&memcg->css);
5779 }
5780 rcu_read_unlock();
5781 }
5782
5783 /* for remember boot option*/
5784 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5785 static int really_do_swap_account __initdata = 1;
5786 #else
5787 static int really_do_swap_account __initdata;
5788 #endif
5789
5790 static int __init enable_swap_account(char *s)
5791 {
5792 if (!strcmp(s, "1"))
5793 really_do_swap_account = 1;
5794 else if (!strcmp(s, "0"))
5795 really_do_swap_account = 0;
5796 return 1;
5797 }
5798 __setup("swapaccount=", enable_swap_account);
5799
5800 static struct cftype memsw_cgroup_files[] = {
5801 {
5802 .name = "memsw.usage_in_bytes",
5803 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5804 .read_u64 = mem_cgroup_read_u64,
5805 },
5806 {
5807 .name = "memsw.max_usage_in_bytes",
5808 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5809 .write = mem_cgroup_reset,
5810 .read_u64 = mem_cgroup_read_u64,
5811 },
5812 {
5813 .name = "memsw.limit_in_bytes",
5814 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5815 .write = mem_cgroup_write,
5816 .read_u64 = mem_cgroup_read_u64,
5817 },
5818 {
5819 .name = "memsw.failcnt",
5820 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5821 .write = mem_cgroup_reset,
5822 .read_u64 = mem_cgroup_read_u64,
5823 },
5824 { }, /* terminate */
5825 };
5826
5827 static int __init mem_cgroup_swap_init(void)
5828 {
5829 if (!mem_cgroup_disabled() && really_do_swap_account) {
5830 do_swap_account = 1;
5831 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5832 memsw_cgroup_files));
5833 }
5834 return 0;
5835 }
5836 subsys_initcall(mem_cgroup_swap_init);
5837
5838 #endif /* CONFIG_MEMCG_SWAP */
This page took 0.293047 seconds and 6 git commands to generate.