Merge tag 'trace-v4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux...
[deliverable/linux.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/pfn_t.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 #include <linux/gfp.h>
61 #include <linux/migrate.h>
62 #include <linux/string.h>
63 #include <linux/dma-debug.h>
64 #include <linux/debugfs.h>
65 #include <linux/userfaultfd_k.h>
66
67 #include <asm/io.h>
68 #include <asm/mmu_context.h>
69 #include <asm/pgalloc.h>
70 #include <asm/uaccess.h>
71 #include <asm/tlb.h>
72 #include <asm/tlbflush.h>
73 #include <asm/pgtable.h>
74
75 #include "internal.h"
76
77 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
78 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
79 #endif
80
81 #ifndef CONFIG_NEED_MULTIPLE_NODES
82 /* use the per-pgdat data instead for discontigmem - mbligh */
83 unsigned long max_mapnr;
84 struct page *mem_map;
85
86 EXPORT_SYMBOL(max_mapnr);
87 EXPORT_SYMBOL(mem_map);
88 #endif
89
90 /*
91 * A number of key systems in x86 including ioremap() rely on the assumption
92 * that high_memory defines the upper bound on direct map memory, then end
93 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
94 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
95 * and ZONE_HIGHMEM.
96 */
97 void * high_memory;
98
99 EXPORT_SYMBOL(high_memory);
100
101 /*
102 * Randomize the address space (stacks, mmaps, brk, etc.).
103 *
104 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
105 * as ancient (libc5 based) binaries can segfault. )
106 */
107 int randomize_va_space __read_mostly =
108 #ifdef CONFIG_COMPAT_BRK
109 1;
110 #else
111 2;
112 #endif
113
114 static int __init disable_randmaps(char *s)
115 {
116 randomize_va_space = 0;
117 return 1;
118 }
119 __setup("norandmaps", disable_randmaps);
120
121 unsigned long zero_pfn __read_mostly;
122 unsigned long highest_memmap_pfn __read_mostly;
123
124 EXPORT_SYMBOL(zero_pfn);
125
126 /*
127 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
128 */
129 static int __init init_zero_pfn(void)
130 {
131 zero_pfn = page_to_pfn(ZERO_PAGE(0));
132 return 0;
133 }
134 core_initcall(init_zero_pfn);
135
136
137 #if defined(SPLIT_RSS_COUNTING)
138
139 void sync_mm_rss(struct mm_struct *mm)
140 {
141 int i;
142
143 for (i = 0; i < NR_MM_COUNTERS; i++) {
144 if (current->rss_stat.count[i]) {
145 add_mm_counter(mm, i, current->rss_stat.count[i]);
146 current->rss_stat.count[i] = 0;
147 }
148 }
149 current->rss_stat.events = 0;
150 }
151
152 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
153 {
154 struct task_struct *task = current;
155
156 if (likely(task->mm == mm))
157 task->rss_stat.count[member] += val;
158 else
159 add_mm_counter(mm, member, val);
160 }
161 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
162 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
163
164 /* sync counter once per 64 page faults */
165 #define TASK_RSS_EVENTS_THRESH (64)
166 static void check_sync_rss_stat(struct task_struct *task)
167 {
168 if (unlikely(task != current))
169 return;
170 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
171 sync_mm_rss(task->mm);
172 }
173 #else /* SPLIT_RSS_COUNTING */
174
175 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
176 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
177
178 static void check_sync_rss_stat(struct task_struct *task)
179 {
180 }
181
182 #endif /* SPLIT_RSS_COUNTING */
183
184 #ifdef HAVE_GENERIC_MMU_GATHER
185
186 static bool tlb_next_batch(struct mmu_gather *tlb)
187 {
188 struct mmu_gather_batch *batch;
189
190 batch = tlb->active;
191 if (batch->next) {
192 tlb->active = batch->next;
193 return true;
194 }
195
196 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
197 return false;
198
199 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
200 if (!batch)
201 return false;
202
203 tlb->batch_count++;
204 batch->next = NULL;
205 batch->nr = 0;
206 batch->max = MAX_GATHER_BATCH;
207
208 tlb->active->next = batch;
209 tlb->active = batch;
210
211 return true;
212 }
213
214 /* tlb_gather_mmu
215 * Called to initialize an (on-stack) mmu_gather structure for page-table
216 * tear-down from @mm. The @fullmm argument is used when @mm is without
217 * users and we're going to destroy the full address space (exit/execve).
218 */
219 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
220 {
221 tlb->mm = mm;
222
223 /* Is it from 0 to ~0? */
224 tlb->fullmm = !(start | (end+1));
225 tlb->need_flush_all = 0;
226 tlb->local.next = NULL;
227 tlb->local.nr = 0;
228 tlb->local.max = ARRAY_SIZE(tlb->__pages);
229 tlb->active = &tlb->local;
230 tlb->batch_count = 0;
231
232 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
233 tlb->batch = NULL;
234 #endif
235
236 __tlb_reset_range(tlb);
237 }
238
239 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
240 {
241 if (!tlb->end)
242 return;
243
244 tlb_flush(tlb);
245 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
246 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
247 tlb_table_flush(tlb);
248 #endif
249 __tlb_reset_range(tlb);
250 }
251
252 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
253 {
254 struct mmu_gather_batch *batch;
255
256 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
257 free_pages_and_swap_cache(batch->pages, batch->nr);
258 batch->nr = 0;
259 }
260 tlb->active = &tlb->local;
261 }
262
263 void tlb_flush_mmu(struct mmu_gather *tlb)
264 {
265 tlb_flush_mmu_tlbonly(tlb);
266 tlb_flush_mmu_free(tlb);
267 }
268
269 /* tlb_finish_mmu
270 * Called at the end of the shootdown operation to free up any resources
271 * that were required.
272 */
273 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
274 {
275 struct mmu_gather_batch *batch, *next;
276
277 tlb_flush_mmu(tlb);
278
279 /* keep the page table cache within bounds */
280 check_pgt_cache();
281
282 for (batch = tlb->local.next; batch; batch = next) {
283 next = batch->next;
284 free_pages((unsigned long)batch, 0);
285 }
286 tlb->local.next = NULL;
287 }
288
289 /* __tlb_remove_page
290 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
291 * handling the additional races in SMP caused by other CPUs caching valid
292 * mappings in their TLBs. Returns the number of free page slots left.
293 * When out of page slots we must call tlb_flush_mmu().
294 */
295 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
296 {
297 struct mmu_gather_batch *batch;
298
299 VM_BUG_ON(!tlb->end);
300
301 batch = tlb->active;
302 batch->pages[batch->nr++] = page;
303 if (batch->nr == batch->max) {
304 if (!tlb_next_batch(tlb))
305 return 0;
306 batch = tlb->active;
307 }
308 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
309
310 return batch->max - batch->nr;
311 }
312
313 #endif /* HAVE_GENERIC_MMU_GATHER */
314
315 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
316
317 /*
318 * See the comment near struct mmu_table_batch.
319 */
320
321 static void tlb_remove_table_smp_sync(void *arg)
322 {
323 /* Simply deliver the interrupt */
324 }
325
326 static void tlb_remove_table_one(void *table)
327 {
328 /*
329 * This isn't an RCU grace period and hence the page-tables cannot be
330 * assumed to be actually RCU-freed.
331 *
332 * It is however sufficient for software page-table walkers that rely on
333 * IRQ disabling. See the comment near struct mmu_table_batch.
334 */
335 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
336 __tlb_remove_table(table);
337 }
338
339 static void tlb_remove_table_rcu(struct rcu_head *head)
340 {
341 struct mmu_table_batch *batch;
342 int i;
343
344 batch = container_of(head, struct mmu_table_batch, rcu);
345
346 for (i = 0; i < batch->nr; i++)
347 __tlb_remove_table(batch->tables[i]);
348
349 free_page((unsigned long)batch);
350 }
351
352 void tlb_table_flush(struct mmu_gather *tlb)
353 {
354 struct mmu_table_batch **batch = &tlb->batch;
355
356 if (*batch) {
357 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
358 *batch = NULL;
359 }
360 }
361
362 void tlb_remove_table(struct mmu_gather *tlb, void *table)
363 {
364 struct mmu_table_batch **batch = &tlb->batch;
365
366 /*
367 * When there's less then two users of this mm there cannot be a
368 * concurrent page-table walk.
369 */
370 if (atomic_read(&tlb->mm->mm_users) < 2) {
371 __tlb_remove_table(table);
372 return;
373 }
374
375 if (*batch == NULL) {
376 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
377 if (*batch == NULL) {
378 tlb_remove_table_one(table);
379 return;
380 }
381 (*batch)->nr = 0;
382 }
383 (*batch)->tables[(*batch)->nr++] = table;
384 if ((*batch)->nr == MAX_TABLE_BATCH)
385 tlb_table_flush(tlb);
386 }
387
388 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
389
390 /*
391 * Note: this doesn't free the actual pages themselves. That
392 * has been handled earlier when unmapping all the memory regions.
393 */
394 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
395 unsigned long addr)
396 {
397 pgtable_t token = pmd_pgtable(*pmd);
398 pmd_clear(pmd);
399 pte_free_tlb(tlb, token, addr);
400 atomic_long_dec(&tlb->mm->nr_ptes);
401 }
402
403 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
404 unsigned long addr, unsigned long end,
405 unsigned long floor, unsigned long ceiling)
406 {
407 pmd_t *pmd;
408 unsigned long next;
409 unsigned long start;
410
411 start = addr;
412 pmd = pmd_offset(pud, addr);
413 do {
414 next = pmd_addr_end(addr, end);
415 if (pmd_none_or_clear_bad(pmd))
416 continue;
417 free_pte_range(tlb, pmd, addr);
418 } while (pmd++, addr = next, addr != end);
419
420 start &= PUD_MASK;
421 if (start < floor)
422 return;
423 if (ceiling) {
424 ceiling &= PUD_MASK;
425 if (!ceiling)
426 return;
427 }
428 if (end - 1 > ceiling - 1)
429 return;
430
431 pmd = pmd_offset(pud, start);
432 pud_clear(pud);
433 pmd_free_tlb(tlb, pmd, start);
434 mm_dec_nr_pmds(tlb->mm);
435 }
436
437 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
438 unsigned long addr, unsigned long end,
439 unsigned long floor, unsigned long ceiling)
440 {
441 pud_t *pud;
442 unsigned long next;
443 unsigned long start;
444
445 start = addr;
446 pud = pud_offset(pgd, addr);
447 do {
448 next = pud_addr_end(addr, end);
449 if (pud_none_or_clear_bad(pud))
450 continue;
451 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
452 } while (pud++, addr = next, addr != end);
453
454 start &= PGDIR_MASK;
455 if (start < floor)
456 return;
457 if (ceiling) {
458 ceiling &= PGDIR_MASK;
459 if (!ceiling)
460 return;
461 }
462 if (end - 1 > ceiling - 1)
463 return;
464
465 pud = pud_offset(pgd, start);
466 pgd_clear(pgd);
467 pud_free_tlb(tlb, pud, start);
468 }
469
470 /*
471 * This function frees user-level page tables of a process.
472 */
473 void free_pgd_range(struct mmu_gather *tlb,
474 unsigned long addr, unsigned long end,
475 unsigned long floor, unsigned long ceiling)
476 {
477 pgd_t *pgd;
478 unsigned long next;
479
480 /*
481 * The next few lines have given us lots of grief...
482 *
483 * Why are we testing PMD* at this top level? Because often
484 * there will be no work to do at all, and we'd prefer not to
485 * go all the way down to the bottom just to discover that.
486 *
487 * Why all these "- 1"s? Because 0 represents both the bottom
488 * of the address space and the top of it (using -1 for the
489 * top wouldn't help much: the masks would do the wrong thing).
490 * The rule is that addr 0 and floor 0 refer to the bottom of
491 * the address space, but end 0 and ceiling 0 refer to the top
492 * Comparisons need to use "end - 1" and "ceiling - 1" (though
493 * that end 0 case should be mythical).
494 *
495 * Wherever addr is brought up or ceiling brought down, we must
496 * be careful to reject "the opposite 0" before it confuses the
497 * subsequent tests. But what about where end is brought down
498 * by PMD_SIZE below? no, end can't go down to 0 there.
499 *
500 * Whereas we round start (addr) and ceiling down, by different
501 * masks at different levels, in order to test whether a table
502 * now has no other vmas using it, so can be freed, we don't
503 * bother to round floor or end up - the tests don't need that.
504 */
505
506 addr &= PMD_MASK;
507 if (addr < floor) {
508 addr += PMD_SIZE;
509 if (!addr)
510 return;
511 }
512 if (ceiling) {
513 ceiling &= PMD_MASK;
514 if (!ceiling)
515 return;
516 }
517 if (end - 1 > ceiling - 1)
518 end -= PMD_SIZE;
519 if (addr > end - 1)
520 return;
521
522 pgd = pgd_offset(tlb->mm, addr);
523 do {
524 next = pgd_addr_end(addr, end);
525 if (pgd_none_or_clear_bad(pgd))
526 continue;
527 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
528 } while (pgd++, addr = next, addr != end);
529 }
530
531 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
532 unsigned long floor, unsigned long ceiling)
533 {
534 while (vma) {
535 struct vm_area_struct *next = vma->vm_next;
536 unsigned long addr = vma->vm_start;
537
538 /*
539 * Hide vma from rmap and truncate_pagecache before freeing
540 * pgtables
541 */
542 unlink_anon_vmas(vma);
543 unlink_file_vma(vma);
544
545 if (is_vm_hugetlb_page(vma)) {
546 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
547 floor, next? next->vm_start: ceiling);
548 } else {
549 /*
550 * Optimization: gather nearby vmas into one call down
551 */
552 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
553 && !is_vm_hugetlb_page(next)) {
554 vma = next;
555 next = vma->vm_next;
556 unlink_anon_vmas(vma);
557 unlink_file_vma(vma);
558 }
559 free_pgd_range(tlb, addr, vma->vm_end,
560 floor, next? next->vm_start: ceiling);
561 }
562 vma = next;
563 }
564 }
565
566 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
567 {
568 spinlock_t *ptl;
569 pgtable_t new = pte_alloc_one(mm, address);
570 if (!new)
571 return -ENOMEM;
572
573 /*
574 * Ensure all pte setup (eg. pte page lock and page clearing) are
575 * visible before the pte is made visible to other CPUs by being
576 * put into page tables.
577 *
578 * The other side of the story is the pointer chasing in the page
579 * table walking code (when walking the page table without locking;
580 * ie. most of the time). Fortunately, these data accesses consist
581 * of a chain of data-dependent loads, meaning most CPUs (alpha
582 * being the notable exception) will already guarantee loads are
583 * seen in-order. See the alpha page table accessors for the
584 * smp_read_barrier_depends() barriers in page table walking code.
585 */
586 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
587
588 ptl = pmd_lock(mm, pmd);
589 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
590 atomic_long_inc(&mm->nr_ptes);
591 pmd_populate(mm, pmd, new);
592 new = NULL;
593 }
594 spin_unlock(ptl);
595 if (new)
596 pte_free(mm, new);
597 return 0;
598 }
599
600 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
601 {
602 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
603 if (!new)
604 return -ENOMEM;
605
606 smp_wmb(); /* See comment in __pte_alloc */
607
608 spin_lock(&init_mm.page_table_lock);
609 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
610 pmd_populate_kernel(&init_mm, pmd, new);
611 new = NULL;
612 }
613 spin_unlock(&init_mm.page_table_lock);
614 if (new)
615 pte_free_kernel(&init_mm, new);
616 return 0;
617 }
618
619 static inline void init_rss_vec(int *rss)
620 {
621 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
622 }
623
624 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
625 {
626 int i;
627
628 if (current->mm == mm)
629 sync_mm_rss(mm);
630 for (i = 0; i < NR_MM_COUNTERS; i++)
631 if (rss[i])
632 add_mm_counter(mm, i, rss[i]);
633 }
634
635 /*
636 * This function is called to print an error when a bad pte
637 * is found. For example, we might have a PFN-mapped pte in
638 * a region that doesn't allow it.
639 *
640 * The calling function must still handle the error.
641 */
642 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
643 pte_t pte, struct page *page)
644 {
645 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
646 pud_t *pud = pud_offset(pgd, addr);
647 pmd_t *pmd = pmd_offset(pud, addr);
648 struct address_space *mapping;
649 pgoff_t index;
650 static unsigned long resume;
651 static unsigned long nr_shown;
652 static unsigned long nr_unshown;
653
654 /*
655 * Allow a burst of 60 reports, then keep quiet for that minute;
656 * or allow a steady drip of one report per second.
657 */
658 if (nr_shown == 60) {
659 if (time_before(jiffies, resume)) {
660 nr_unshown++;
661 return;
662 }
663 if (nr_unshown) {
664 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
665 nr_unshown);
666 nr_unshown = 0;
667 }
668 nr_shown = 0;
669 }
670 if (nr_shown++ == 0)
671 resume = jiffies + 60 * HZ;
672
673 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
674 index = linear_page_index(vma, addr);
675
676 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
677 current->comm,
678 (long long)pte_val(pte), (long long)pmd_val(*pmd));
679 if (page)
680 dump_page(page, "bad pte");
681 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
682 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
683 /*
684 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
685 */
686 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
687 vma->vm_file,
688 vma->vm_ops ? vma->vm_ops->fault : NULL,
689 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
690 mapping ? mapping->a_ops->readpage : NULL);
691 dump_stack();
692 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
693 }
694
695 /*
696 * vm_normal_page -- This function gets the "struct page" associated with a pte.
697 *
698 * "Special" mappings do not wish to be associated with a "struct page" (either
699 * it doesn't exist, or it exists but they don't want to touch it). In this
700 * case, NULL is returned here. "Normal" mappings do have a struct page.
701 *
702 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
703 * pte bit, in which case this function is trivial. Secondly, an architecture
704 * may not have a spare pte bit, which requires a more complicated scheme,
705 * described below.
706 *
707 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
708 * special mapping (even if there are underlying and valid "struct pages").
709 * COWed pages of a VM_PFNMAP are always normal.
710 *
711 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
712 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
713 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
714 * mapping will always honor the rule
715 *
716 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
717 *
718 * And for normal mappings this is false.
719 *
720 * This restricts such mappings to be a linear translation from virtual address
721 * to pfn. To get around this restriction, we allow arbitrary mappings so long
722 * as the vma is not a COW mapping; in that case, we know that all ptes are
723 * special (because none can have been COWed).
724 *
725 *
726 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
727 *
728 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
729 * page" backing, however the difference is that _all_ pages with a struct
730 * page (that is, those where pfn_valid is true) are refcounted and considered
731 * normal pages by the VM. The disadvantage is that pages are refcounted
732 * (which can be slower and simply not an option for some PFNMAP users). The
733 * advantage is that we don't have to follow the strict linearity rule of
734 * PFNMAP mappings in order to support COWable mappings.
735 *
736 */
737 #ifdef __HAVE_ARCH_PTE_SPECIAL
738 # define HAVE_PTE_SPECIAL 1
739 #else
740 # define HAVE_PTE_SPECIAL 0
741 #endif
742 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
743 pte_t pte)
744 {
745 unsigned long pfn = pte_pfn(pte);
746
747 if (HAVE_PTE_SPECIAL) {
748 if (likely(!pte_special(pte)))
749 goto check_pfn;
750 if (vma->vm_ops && vma->vm_ops->find_special_page)
751 return vma->vm_ops->find_special_page(vma, addr);
752 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
753 return NULL;
754 if (!is_zero_pfn(pfn))
755 print_bad_pte(vma, addr, pte, NULL);
756 return NULL;
757 }
758
759 /* !HAVE_PTE_SPECIAL case follows: */
760
761 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
762 if (vma->vm_flags & VM_MIXEDMAP) {
763 if (!pfn_valid(pfn))
764 return NULL;
765 goto out;
766 } else {
767 unsigned long off;
768 off = (addr - vma->vm_start) >> PAGE_SHIFT;
769 if (pfn == vma->vm_pgoff + off)
770 return NULL;
771 if (!is_cow_mapping(vma->vm_flags))
772 return NULL;
773 }
774 }
775
776 if (is_zero_pfn(pfn))
777 return NULL;
778 check_pfn:
779 if (unlikely(pfn > highest_memmap_pfn)) {
780 print_bad_pte(vma, addr, pte, NULL);
781 return NULL;
782 }
783
784 /*
785 * NOTE! We still have PageReserved() pages in the page tables.
786 * eg. VDSO mappings can cause them to exist.
787 */
788 out:
789 return pfn_to_page(pfn);
790 }
791
792 /*
793 * copy one vm_area from one task to the other. Assumes the page tables
794 * already present in the new task to be cleared in the whole range
795 * covered by this vma.
796 */
797
798 static inline unsigned long
799 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
800 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
801 unsigned long addr, int *rss)
802 {
803 unsigned long vm_flags = vma->vm_flags;
804 pte_t pte = *src_pte;
805 struct page *page;
806
807 /* pte contains position in swap or file, so copy. */
808 if (unlikely(!pte_present(pte))) {
809 swp_entry_t entry = pte_to_swp_entry(pte);
810
811 if (likely(!non_swap_entry(entry))) {
812 if (swap_duplicate(entry) < 0)
813 return entry.val;
814
815 /* make sure dst_mm is on swapoff's mmlist. */
816 if (unlikely(list_empty(&dst_mm->mmlist))) {
817 spin_lock(&mmlist_lock);
818 if (list_empty(&dst_mm->mmlist))
819 list_add(&dst_mm->mmlist,
820 &src_mm->mmlist);
821 spin_unlock(&mmlist_lock);
822 }
823 rss[MM_SWAPENTS]++;
824 } else if (is_migration_entry(entry)) {
825 page = migration_entry_to_page(entry);
826
827 rss[mm_counter(page)]++;
828
829 if (is_write_migration_entry(entry) &&
830 is_cow_mapping(vm_flags)) {
831 /*
832 * COW mappings require pages in both
833 * parent and child to be set to read.
834 */
835 make_migration_entry_read(&entry);
836 pte = swp_entry_to_pte(entry);
837 if (pte_swp_soft_dirty(*src_pte))
838 pte = pte_swp_mksoft_dirty(pte);
839 set_pte_at(src_mm, addr, src_pte, pte);
840 }
841 }
842 goto out_set_pte;
843 }
844
845 /*
846 * If it's a COW mapping, write protect it both
847 * in the parent and the child
848 */
849 if (is_cow_mapping(vm_flags)) {
850 ptep_set_wrprotect(src_mm, addr, src_pte);
851 pte = pte_wrprotect(pte);
852 }
853
854 /*
855 * If it's a shared mapping, mark it clean in
856 * the child
857 */
858 if (vm_flags & VM_SHARED)
859 pte = pte_mkclean(pte);
860 pte = pte_mkold(pte);
861
862 page = vm_normal_page(vma, addr, pte);
863 if (page) {
864 get_page(page);
865 page_dup_rmap(page, false);
866 rss[mm_counter(page)]++;
867 }
868
869 out_set_pte:
870 set_pte_at(dst_mm, addr, dst_pte, pte);
871 return 0;
872 }
873
874 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
875 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
876 unsigned long addr, unsigned long end)
877 {
878 pte_t *orig_src_pte, *orig_dst_pte;
879 pte_t *src_pte, *dst_pte;
880 spinlock_t *src_ptl, *dst_ptl;
881 int progress = 0;
882 int rss[NR_MM_COUNTERS];
883 swp_entry_t entry = (swp_entry_t){0};
884
885 again:
886 init_rss_vec(rss);
887
888 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
889 if (!dst_pte)
890 return -ENOMEM;
891 src_pte = pte_offset_map(src_pmd, addr);
892 src_ptl = pte_lockptr(src_mm, src_pmd);
893 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
894 orig_src_pte = src_pte;
895 orig_dst_pte = dst_pte;
896 arch_enter_lazy_mmu_mode();
897
898 do {
899 /*
900 * We are holding two locks at this point - either of them
901 * could generate latencies in another task on another CPU.
902 */
903 if (progress >= 32) {
904 progress = 0;
905 if (need_resched() ||
906 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
907 break;
908 }
909 if (pte_none(*src_pte)) {
910 progress++;
911 continue;
912 }
913 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
914 vma, addr, rss);
915 if (entry.val)
916 break;
917 progress += 8;
918 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
919
920 arch_leave_lazy_mmu_mode();
921 spin_unlock(src_ptl);
922 pte_unmap(orig_src_pte);
923 add_mm_rss_vec(dst_mm, rss);
924 pte_unmap_unlock(orig_dst_pte, dst_ptl);
925 cond_resched();
926
927 if (entry.val) {
928 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
929 return -ENOMEM;
930 progress = 0;
931 }
932 if (addr != end)
933 goto again;
934 return 0;
935 }
936
937 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
938 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
939 unsigned long addr, unsigned long end)
940 {
941 pmd_t *src_pmd, *dst_pmd;
942 unsigned long next;
943
944 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
945 if (!dst_pmd)
946 return -ENOMEM;
947 src_pmd = pmd_offset(src_pud, addr);
948 do {
949 next = pmd_addr_end(addr, end);
950 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
951 int err;
952 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
953 err = copy_huge_pmd(dst_mm, src_mm,
954 dst_pmd, src_pmd, addr, vma);
955 if (err == -ENOMEM)
956 return -ENOMEM;
957 if (!err)
958 continue;
959 /* fall through */
960 }
961 if (pmd_none_or_clear_bad(src_pmd))
962 continue;
963 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
964 vma, addr, next))
965 return -ENOMEM;
966 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
967 return 0;
968 }
969
970 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
971 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
972 unsigned long addr, unsigned long end)
973 {
974 pud_t *src_pud, *dst_pud;
975 unsigned long next;
976
977 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
978 if (!dst_pud)
979 return -ENOMEM;
980 src_pud = pud_offset(src_pgd, addr);
981 do {
982 next = pud_addr_end(addr, end);
983 if (pud_none_or_clear_bad(src_pud))
984 continue;
985 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
986 vma, addr, next))
987 return -ENOMEM;
988 } while (dst_pud++, src_pud++, addr = next, addr != end);
989 return 0;
990 }
991
992 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
993 struct vm_area_struct *vma)
994 {
995 pgd_t *src_pgd, *dst_pgd;
996 unsigned long next;
997 unsigned long addr = vma->vm_start;
998 unsigned long end = vma->vm_end;
999 unsigned long mmun_start; /* For mmu_notifiers */
1000 unsigned long mmun_end; /* For mmu_notifiers */
1001 bool is_cow;
1002 int ret;
1003
1004 /*
1005 * Don't copy ptes where a page fault will fill them correctly.
1006 * Fork becomes much lighter when there are big shared or private
1007 * readonly mappings. The tradeoff is that copy_page_range is more
1008 * efficient than faulting.
1009 */
1010 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1011 !vma->anon_vma)
1012 return 0;
1013
1014 if (is_vm_hugetlb_page(vma))
1015 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1016
1017 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1018 /*
1019 * We do not free on error cases below as remove_vma
1020 * gets called on error from higher level routine
1021 */
1022 ret = track_pfn_copy(vma);
1023 if (ret)
1024 return ret;
1025 }
1026
1027 /*
1028 * We need to invalidate the secondary MMU mappings only when
1029 * there could be a permission downgrade on the ptes of the
1030 * parent mm. And a permission downgrade will only happen if
1031 * is_cow_mapping() returns true.
1032 */
1033 is_cow = is_cow_mapping(vma->vm_flags);
1034 mmun_start = addr;
1035 mmun_end = end;
1036 if (is_cow)
1037 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1038 mmun_end);
1039
1040 ret = 0;
1041 dst_pgd = pgd_offset(dst_mm, addr);
1042 src_pgd = pgd_offset(src_mm, addr);
1043 do {
1044 next = pgd_addr_end(addr, end);
1045 if (pgd_none_or_clear_bad(src_pgd))
1046 continue;
1047 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1048 vma, addr, next))) {
1049 ret = -ENOMEM;
1050 break;
1051 }
1052 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1053
1054 if (is_cow)
1055 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1056 return ret;
1057 }
1058
1059 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1060 struct vm_area_struct *vma, pmd_t *pmd,
1061 unsigned long addr, unsigned long end,
1062 struct zap_details *details)
1063 {
1064 struct mm_struct *mm = tlb->mm;
1065 int force_flush = 0;
1066 int rss[NR_MM_COUNTERS];
1067 spinlock_t *ptl;
1068 pte_t *start_pte;
1069 pte_t *pte;
1070 swp_entry_t entry;
1071
1072 again:
1073 init_rss_vec(rss);
1074 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1075 pte = start_pte;
1076 arch_enter_lazy_mmu_mode();
1077 do {
1078 pte_t ptent = *pte;
1079 if (pte_none(ptent)) {
1080 continue;
1081 }
1082
1083 if (pte_present(ptent)) {
1084 struct page *page;
1085
1086 page = vm_normal_page(vma, addr, ptent);
1087 if (unlikely(details) && page) {
1088 /*
1089 * unmap_shared_mapping_pages() wants to
1090 * invalidate cache without truncating:
1091 * unmap shared but keep private pages.
1092 */
1093 if (details->check_mapping &&
1094 details->check_mapping != page->mapping)
1095 continue;
1096 }
1097 ptent = ptep_get_and_clear_full(mm, addr, pte,
1098 tlb->fullmm);
1099 tlb_remove_tlb_entry(tlb, pte, addr);
1100 if (unlikely(!page))
1101 continue;
1102
1103 if (!PageAnon(page)) {
1104 if (pte_dirty(ptent)) {
1105 force_flush = 1;
1106 set_page_dirty(page);
1107 }
1108 if (pte_young(ptent) &&
1109 likely(!(vma->vm_flags & VM_SEQ_READ)))
1110 mark_page_accessed(page);
1111 }
1112 rss[mm_counter(page)]--;
1113 page_remove_rmap(page, false);
1114 if (unlikely(page_mapcount(page) < 0))
1115 print_bad_pte(vma, addr, ptent, page);
1116 if (unlikely(!__tlb_remove_page(tlb, page))) {
1117 force_flush = 1;
1118 addr += PAGE_SIZE;
1119 break;
1120 }
1121 continue;
1122 }
1123 /* If details->check_mapping, we leave swap entries. */
1124 if (unlikely(details))
1125 continue;
1126
1127 entry = pte_to_swp_entry(ptent);
1128 if (!non_swap_entry(entry))
1129 rss[MM_SWAPENTS]--;
1130 else if (is_migration_entry(entry)) {
1131 struct page *page;
1132
1133 page = migration_entry_to_page(entry);
1134 rss[mm_counter(page)]--;
1135 }
1136 if (unlikely(!free_swap_and_cache(entry)))
1137 print_bad_pte(vma, addr, ptent, NULL);
1138 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1139 } while (pte++, addr += PAGE_SIZE, addr != end);
1140
1141 add_mm_rss_vec(mm, rss);
1142 arch_leave_lazy_mmu_mode();
1143
1144 /* Do the actual TLB flush before dropping ptl */
1145 if (force_flush)
1146 tlb_flush_mmu_tlbonly(tlb);
1147 pte_unmap_unlock(start_pte, ptl);
1148
1149 /*
1150 * If we forced a TLB flush (either due to running out of
1151 * batch buffers or because we needed to flush dirty TLB
1152 * entries before releasing the ptl), free the batched
1153 * memory too. Restart if we didn't do everything.
1154 */
1155 if (force_flush) {
1156 force_flush = 0;
1157 tlb_flush_mmu_free(tlb);
1158
1159 if (addr != end)
1160 goto again;
1161 }
1162
1163 return addr;
1164 }
1165
1166 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1167 struct vm_area_struct *vma, pud_t *pud,
1168 unsigned long addr, unsigned long end,
1169 struct zap_details *details)
1170 {
1171 pmd_t *pmd;
1172 unsigned long next;
1173
1174 pmd = pmd_offset(pud, addr);
1175 do {
1176 next = pmd_addr_end(addr, end);
1177 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1178 if (next - addr != HPAGE_PMD_SIZE) {
1179 #ifdef CONFIG_DEBUG_VM
1180 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1181 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1182 __func__, addr, end,
1183 vma->vm_start,
1184 vma->vm_end);
1185 BUG();
1186 }
1187 #endif
1188 split_huge_pmd(vma, pmd, addr);
1189 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1190 goto next;
1191 /* fall through */
1192 }
1193 /*
1194 * Here there can be other concurrent MADV_DONTNEED or
1195 * trans huge page faults running, and if the pmd is
1196 * none or trans huge it can change under us. This is
1197 * because MADV_DONTNEED holds the mmap_sem in read
1198 * mode.
1199 */
1200 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1201 goto next;
1202 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1203 next:
1204 cond_resched();
1205 } while (pmd++, addr = next, addr != end);
1206
1207 return addr;
1208 }
1209
1210 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1211 struct vm_area_struct *vma, pgd_t *pgd,
1212 unsigned long addr, unsigned long end,
1213 struct zap_details *details)
1214 {
1215 pud_t *pud;
1216 unsigned long next;
1217
1218 pud = pud_offset(pgd, addr);
1219 do {
1220 next = pud_addr_end(addr, end);
1221 if (pud_none_or_clear_bad(pud))
1222 continue;
1223 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1224 } while (pud++, addr = next, addr != end);
1225
1226 return addr;
1227 }
1228
1229 static void unmap_page_range(struct mmu_gather *tlb,
1230 struct vm_area_struct *vma,
1231 unsigned long addr, unsigned long end,
1232 struct zap_details *details)
1233 {
1234 pgd_t *pgd;
1235 unsigned long next;
1236
1237 if (details && !details->check_mapping)
1238 details = NULL;
1239
1240 BUG_ON(addr >= end);
1241 tlb_start_vma(tlb, vma);
1242 pgd = pgd_offset(vma->vm_mm, addr);
1243 do {
1244 next = pgd_addr_end(addr, end);
1245 if (pgd_none_or_clear_bad(pgd))
1246 continue;
1247 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1248 } while (pgd++, addr = next, addr != end);
1249 tlb_end_vma(tlb, vma);
1250 }
1251
1252
1253 static void unmap_single_vma(struct mmu_gather *tlb,
1254 struct vm_area_struct *vma, unsigned long start_addr,
1255 unsigned long end_addr,
1256 struct zap_details *details)
1257 {
1258 unsigned long start = max(vma->vm_start, start_addr);
1259 unsigned long end;
1260
1261 if (start >= vma->vm_end)
1262 return;
1263 end = min(vma->vm_end, end_addr);
1264 if (end <= vma->vm_start)
1265 return;
1266
1267 if (vma->vm_file)
1268 uprobe_munmap(vma, start, end);
1269
1270 if (unlikely(vma->vm_flags & VM_PFNMAP))
1271 untrack_pfn(vma, 0, 0);
1272
1273 if (start != end) {
1274 if (unlikely(is_vm_hugetlb_page(vma))) {
1275 /*
1276 * It is undesirable to test vma->vm_file as it
1277 * should be non-null for valid hugetlb area.
1278 * However, vm_file will be NULL in the error
1279 * cleanup path of mmap_region. When
1280 * hugetlbfs ->mmap method fails,
1281 * mmap_region() nullifies vma->vm_file
1282 * before calling this function to clean up.
1283 * Since no pte has actually been setup, it is
1284 * safe to do nothing in this case.
1285 */
1286 if (vma->vm_file) {
1287 i_mmap_lock_write(vma->vm_file->f_mapping);
1288 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1289 i_mmap_unlock_write(vma->vm_file->f_mapping);
1290 }
1291 } else
1292 unmap_page_range(tlb, vma, start, end, details);
1293 }
1294 }
1295
1296 /**
1297 * unmap_vmas - unmap a range of memory covered by a list of vma's
1298 * @tlb: address of the caller's struct mmu_gather
1299 * @vma: the starting vma
1300 * @start_addr: virtual address at which to start unmapping
1301 * @end_addr: virtual address at which to end unmapping
1302 *
1303 * Unmap all pages in the vma list.
1304 *
1305 * Only addresses between `start' and `end' will be unmapped.
1306 *
1307 * The VMA list must be sorted in ascending virtual address order.
1308 *
1309 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1310 * range after unmap_vmas() returns. So the only responsibility here is to
1311 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1312 * drops the lock and schedules.
1313 */
1314 void unmap_vmas(struct mmu_gather *tlb,
1315 struct vm_area_struct *vma, unsigned long start_addr,
1316 unsigned long end_addr)
1317 {
1318 struct mm_struct *mm = vma->vm_mm;
1319
1320 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1321 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1322 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1323 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1324 }
1325
1326 /**
1327 * zap_page_range - remove user pages in a given range
1328 * @vma: vm_area_struct holding the applicable pages
1329 * @start: starting address of pages to zap
1330 * @size: number of bytes to zap
1331 * @details: details of shared cache invalidation
1332 *
1333 * Caller must protect the VMA list
1334 */
1335 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1336 unsigned long size, struct zap_details *details)
1337 {
1338 struct mm_struct *mm = vma->vm_mm;
1339 struct mmu_gather tlb;
1340 unsigned long end = start + size;
1341
1342 lru_add_drain();
1343 tlb_gather_mmu(&tlb, mm, start, end);
1344 update_hiwater_rss(mm);
1345 mmu_notifier_invalidate_range_start(mm, start, end);
1346 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1347 unmap_single_vma(&tlb, vma, start, end, details);
1348 mmu_notifier_invalidate_range_end(mm, start, end);
1349 tlb_finish_mmu(&tlb, start, end);
1350 }
1351
1352 /**
1353 * zap_page_range_single - remove user pages in a given range
1354 * @vma: vm_area_struct holding the applicable pages
1355 * @address: starting address of pages to zap
1356 * @size: number of bytes to zap
1357 * @details: details of shared cache invalidation
1358 *
1359 * The range must fit into one VMA.
1360 */
1361 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1362 unsigned long size, struct zap_details *details)
1363 {
1364 struct mm_struct *mm = vma->vm_mm;
1365 struct mmu_gather tlb;
1366 unsigned long end = address + size;
1367
1368 lru_add_drain();
1369 tlb_gather_mmu(&tlb, mm, address, end);
1370 update_hiwater_rss(mm);
1371 mmu_notifier_invalidate_range_start(mm, address, end);
1372 unmap_single_vma(&tlb, vma, address, end, details);
1373 mmu_notifier_invalidate_range_end(mm, address, end);
1374 tlb_finish_mmu(&tlb, address, end);
1375 }
1376
1377 /**
1378 * zap_vma_ptes - remove ptes mapping the vma
1379 * @vma: vm_area_struct holding ptes to be zapped
1380 * @address: starting address of pages to zap
1381 * @size: number of bytes to zap
1382 *
1383 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1384 *
1385 * The entire address range must be fully contained within the vma.
1386 *
1387 * Returns 0 if successful.
1388 */
1389 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1390 unsigned long size)
1391 {
1392 if (address < vma->vm_start || address + size > vma->vm_end ||
1393 !(vma->vm_flags & VM_PFNMAP))
1394 return -1;
1395 zap_page_range_single(vma, address, size, NULL);
1396 return 0;
1397 }
1398 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1399
1400 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1401 spinlock_t **ptl)
1402 {
1403 pgd_t * pgd = pgd_offset(mm, addr);
1404 pud_t * pud = pud_alloc(mm, pgd, addr);
1405 if (pud) {
1406 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1407 if (pmd) {
1408 VM_BUG_ON(pmd_trans_huge(*pmd));
1409 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1410 }
1411 }
1412 return NULL;
1413 }
1414
1415 /*
1416 * This is the old fallback for page remapping.
1417 *
1418 * For historical reasons, it only allows reserved pages. Only
1419 * old drivers should use this, and they needed to mark their
1420 * pages reserved for the old functions anyway.
1421 */
1422 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1423 struct page *page, pgprot_t prot)
1424 {
1425 struct mm_struct *mm = vma->vm_mm;
1426 int retval;
1427 pte_t *pte;
1428 spinlock_t *ptl;
1429
1430 retval = -EINVAL;
1431 if (PageAnon(page))
1432 goto out;
1433 retval = -ENOMEM;
1434 flush_dcache_page(page);
1435 pte = get_locked_pte(mm, addr, &ptl);
1436 if (!pte)
1437 goto out;
1438 retval = -EBUSY;
1439 if (!pte_none(*pte))
1440 goto out_unlock;
1441
1442 /* Ok, finally just insert the thing.. */
1443 get_page(page);
1444 inc_mm_counter_fast(mm, mm_counter_file(page));
1445 page_add_file_rmap(page);
1446 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1447
1448 retval = 0;
1449 pte_unmap_unlock(pte, ptl);
1450 return retval;
1451 out_unlock:
1452 pte_unmap_unlock(pte, ptl);
1453 out:
1454 return retval;
1455 }
1456
1457 /**
1458 * vm_insert_page - insert single page into user vma
1459 * @vma: user vma to map to
1460 * @addr: target user address of this page
1461 * @page: source kernel page
1462 *
1463 * This allows drivers to insert individual pages they've allocated
1464 * into a user vma.
1465 *
1466 * The page has to be a nice clean _individual_ kernel allocation.
1467 * If you allocate a compound page, you need to have marked it as
1468 * such (__GFP_COMP), or manually just split the page up yourself
1469 * (see split_page()).
1470 *
1471 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1472 * took an arbitrary page protection parameter. This doesn't allow
1473 * that. Your vma protection will have to be set up correctly, which
1474 * means that if you want a shared writable mapping, you'd better
1475 * ask for a shared writable mapping!
1476 *
1477 * The page does not need to be reserved.
1478 *
1479 * Usually this function is called from f_op->mmap() handler
1480 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1481 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1482 * function from other places, for example from page-fault handler.
1483 */
1484 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1485 struct page *page)
1486 {
1487 if (addr < vma->vm_start || addr >= vma->vm_end)
1488 return -EFAULT;
1489 if (!page_count(page))
1490 return -EINVAL;
1491 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1492 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1493 BUG_ON(vma->vm_flags & VM_PFNMAP);
1494 vma->vm_flags |= VM_MIXEDMAP;
1495 }
1496 return insert_page(vma, addr, page, vma->vm_page_prot);
1497 }
1498 EXPORT_SYMBOL(vm_insert_page);
1499
1500 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1501 pfn_t pfn, pgprot_t prot)
1502 {
1503 struct mm_struct *mm = vma->vm_mm;
1504 int retval;
1505 pte_t *pte, entry;
1506 spinlock_t *ptl;
1507
1508 retval = -ENOMEM;
1509 pte = get_locked_pte(mm, addr, &ptl);
1510 if (!pte)
1511 goto out;
1512 retval = -EBUSY;
1513 if (!pte_none(*pte))
1514 goto out_unlock;
1515
1516 /* Ok, finally just insert the thing.. */
1517 if (pfn_t_devmap(pfn))
1518 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1519 else
1520 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1521 set_pte_at(mm, addr, pte, entry);
1522 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1523
1524 retval = 0;
1525 out_unlock:
1526 pte_unmap_unlock(pte, ptl);
1527 out:
1528 return retval;
1529 }
1530
1531 /**
1532 * vm_insert_pfn - insert single pfn into user vma
1533 * @vma: user vma to map to
1534 * @addr: target user address of this page
1535 * @pfn: source kernel pfn
1536 *
1537 * Similar to vm_insert_page, this allows drivers to insert individual pages
1538 * they've allocated into a user vma. Same comments apply.
1539 *
1540 * This function should only be called from a vm_ops->fault handler, and
1541 * in that case the handler should return NULL.
1542 *
1543 * vma cannot be a COW mapping.
1544 *
1545 * As this is called only for pages that do not currently exist, we
1546 * do not need to flush old virtual caches or the TLB.
1547 */
1548 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1549 unsigned long pfn)
1550 {
1551 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1552 }
1553 EXPORT_SYMBOL(vm_insert_pfn);
1554
1555 /**
1556 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1557 * @vma: user vma to map to
1558 * @addr: target user address of this page
1559 * @pfn: source kernel pfn
1560 * @pgprot: pgprot flags for the inserted page
1561 *
1562 * This is exactly like vm_insert_pfn, except that it allows drivers to
1563 * to override pgprot on a per-page basis.
1564 *
1565 * This only makes sense for IO mappings, and it makes no sense for
1566 * cow mappings. In general, using multiple vmas is preferable;
1567 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1568 * impractical.
1569 */
1570 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1571 unsigned long pfn, pgprot_t pgprot)
1572 {
1573 int ret;
1574 /*
1575 * Technically, architectures with pte_special can avoid all these
1576 * restrictions (same for remap_pfn_range). However we would like
1577 * consistency in testing and feature parity among all, so we should
1578 * try to keep these invariants in place for everybody.
1579 */
1580 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1581 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1582 (VM_PFNMAP|VM_MIXEDMAP));
1583 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1584 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1585
1586 if (addr < vma->vm_start || addr >= vma->vm_end)
1587 return -EFAULT;
1588 if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
1589 return -EINVAL;
1590
1591 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1592
1593 return ret;
1594 }
1595 EXPORT_SYMBOL(vm_insert_pfn_prot);
1596
1597 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1598 pfn_t pfn)
1599 {
1600 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1601
1602 if (addr < vma->vm_start || addr >= vma->vm_end)
1603 return -EFAULT;
1604
1605 /*
1606 * If we don't have pte special, then we have to use the pfn_valid()
1607 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1608 * refcount the page if pfn_valid is true (hence insert_page rather
1609 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1610 * without pte special, it would there be refcounted as a normal page.
1611 */
1612 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1613 struct page *page;
1614
1615 /*
1616 * At this point we are committed to insert_page()
1617 * regardless of whether the caller specified flags that
1618 * result in pfn_t_has_page() == false.
1619 */
1620 page = pfn_to_page(pfn_t_to_pfn(pfn));
1621 return insert_page(vma, addr, page, vma->vm_page_prot);
1622 }
1623 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1624 }
1625 EXPORT_SYMBOL(vm_insert_mixed);
1626
1627 /*
1628 * maps a range of physical memory into the requested pages. the old
1629 * mappings are removed. any references to nonexistent pages results
1630 * in null mappings (currently treated as "copy-on-access")
1631 */
1632 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1633 unsigned long addr, unsigned long end,
1634 unsigned long pfn, pgprot_t prot)
1635 {
1636 pte_t *pte;
1637 spinlock_t *ptl;
1638
1639 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1640 if (!pte)
1641 return -ENOMEM;
1642 arch_enter_lazy_mmu_mode();
1643 do {
1644 BUG_ON(!pte_none(*pte));
1645 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1646 pfn++;
1647 } while (pte++, addr += PAGE_SIZE, addr != end);
1648 arch_leave_lazy_mmu_mode();
1649 pte_unmap_unlock(pte - 1, ptl);
1650 return 0;
1651 }
1652
1653 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1654 unsigned long addr, unsigned long end,
1655 unsigned long pfn, pgprot_t prot)
1656 {
1657 pmd_t *pmd;
1658 unsigned long next;
1659
1660 pfn -= addr >> PAGE_SHIFT;
1661 pmd = pmd_alloc(mm, pud, addr);
1662 if (!pmd)
1663 return -ENOMEM;
1664 VM_BUG_ON(pmd_trans_huge(*pmd));
1665 do {
1666 next = pmd_addr_end(addr, end);
1667 if (remap_pte_range(mm, pmd, addr, next,
1668 pfn + (addr >> PAGE_SHIFT), prot))
1669 return -ENOMEM;
1670 } while (pmd++, addr = next, addr != end);
1671 return 0;
1672 }
1673
1674 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1675 unsigned long addr, unsigned long end,
1676 unsigned long pfn, pgprot_t prot)
1677 {
1678 pud_t *pud;
1679 unsigned long next;
1680
1681 pfn -= addr >> PAGE_SHIFT;
1682 pud = pud_alloc(mm, pgd, addr);
1683 if (!pud)
1684 return -ENOMEM;
1685 do {
1686 next = pud_addr_end(addr, end);
1687 if (remap_pmd_range(mm, pud, addr, next,
1688 pfn + (addr >> PAGE_SHIFT), prot))
1689 return -ENOMEM;
1690 } while (pud++, addr = next, addr != end);
1691 return 0;
1692 }
1693
1694 /**
1695 * remap_pfn_range - remap kernel memory to userspace
1696 * @vma: user vma to map to
1697 * @addr: target user address to start at
1698 * @pfn: physical address of kernel memory
1699 * @size: size of map area
1700 * @prot: page protection flags for this mapping
1701 *
1702 * Note: this is only safe if the mm semaphore is held when called.
1703 */
1704 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1705 unsigned long pfn, unsigned long size, pgprot_t prot)
1706 {
1707 pgd_t *pgd;
1708 unsigned long next;
1709 unsigned long end = addr + PAGE_ALIGN(size);
1710 struct mm_struct *mm = vma->vm_mm;
1711 int err;
1712
1713 /*
1714 * Physically remapped pages are special. Tell the
1715 * rest of the world about it:
1716 * VM_IO tells people not to look at these pages
1717 * (accesses can have side effects).
1718 * VM_PFNMAP tells the core MM that the base pages are just
1719 * raw PFN mappings, and do not have a "struct page" associated
1720 * with them.
1721 * VM_DONTEXPAND
1722 * Disable vma merging and expanding with mremap().
1723 * VM_DONTDUMP
1724 * Omit vma from core dump, even when VM_IO turned off.
1725 *
1726 * There's a horrible special case to handle copy-on-write
1727 * behaviour that some programs depend on. We mark the "original"
1728 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1729 * See vm_normal_page() for details.
1730 */
1731 if (is_cow_mapping(vma->vm_flags)) {
1732 if (addr != vma->vm_start || end != vma->vm_end)
1733 return -EINVAL;
1734 vma->vm_pgoff = pfn;
1735 }
1736
1737 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1738 if (err)
1739 return -EINVAL;
1740
1741 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1742
1743 BUG_ON(addr >= end);
1744 pfn -= addr >> PAGE_SHIFT;
1745 pgd = pgd_offset(mm, addr);
1746 flush_cache_range(vma, addr, end);
1747 do {
1748 next = pgd_addr_end(addr, end);
1749 err = remap_pud_range(mm, pgd, addr, next,
1750 pfn + (addr >> PAGE_SHIFT), prot);
1751 if (err)
1752 break;
1753 } while (pgd++, addr = next, addr != end);
1754
1755 if (err)
1756 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1757
1758 return err;
1759 }
1760 EXPORT_SYMBOL(remap_pfn_range);
1761
1762 /**
1763 * vm_iomap_memory - remap memory to userspace
1764 * @vma: user vma to map to
1765 * @start: start of area
1766 * @len: size of area
1767 *
1768 * This is a simplified io_remap_pfn_range() for common driver use. The
1769 * driver just needs to give us the physical memory range to be mapped,
1770 * we'll figure out the rest from the vma information.
1771 *
1772 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1773 * whatever write-combining details or similar.
1774 */
1775 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1776 {
1777 unsigned long vm_len, pfn, pages;
1778
1779 /* Check that the physical memory area passed in looks valid */
1780 if (start + len < start)
1781 return -EINVAL;
1782 /*
1783 * You *really* shouldn't map things that aren't page-aligned,
1784 * but we've historically allowed it because IO memory might
1785 * just have smaller alignment.
1786 */
1787 len += start & ~PAGE_MASK;
1788 pfn = start >> PAGE_SHIFT;
1789 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1790 if (pfn + pages < pfn)
1791 return -EINVAL;
1792
1793 /* We start the mapping 'vm_pgoff' pages into the area */
1794 if (vma->vm_pgoff > pages)
1795 return -EINVAL;
1796 pfn += vma->vm_pgoff;
1797 pages -= vma->vm_pgoff;
1798
1799 /* Can we fit all of the mapping? */
1800 vm_len = vma->vm_end - vma->vm_start;
1801 if (vm_len >> PAGE_SHIFT > pages)
1802 return -EINVAL;
1803
1804 /* Ok, let it rip */
1805 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1806 }
1807 EXPORT_SYMBOL(vm_iomap_memory);
1808
1809 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1810 unsigned long addr, unsigned long end,
1811 pte_fn_t fn, void *data)
1812 {
1813 pte_t *pte;
1814 int err;
1815 pgtable_t token;
1816 spinlock_t *uninitialized_var(ptl);
1817
1818 pte = (mm == &init_mm) ?
1819 pte_alloc_kernel(pmd, addr) :
1820 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1821 if (!pte)
1822 return -ENOMEM;
1823
1824 BUG_ON(pmd_huge(*pmd));
1825
1826 arch_enter_lazy_mmu_mode();
1827
1828 token = pmd_pgtable(*pmd);
1829
1830 do {
1831 err = fn(pte++, token, addr, data);
1832 if (err)
1833 break;
1834 } while (addr += PAGE_SIZE, addr != end);
1835
1836 arch_leave_lazy_mmu_mode();
1837
1838 if (mm != &init_mm)
1839 pte_unmap_unlock(pte-1, ptl);
1840 return err;
1841 }
1842
1843 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1844 unsigned long addr, unsigned long end,
1845 pte_fn_t fn, void *data)
1846 {
1847 pmd_t *pmd;
1848 unsigned long next;
1849 int err;
1850
1851 BUG_ON(pud_huge(*pud));
1852
1853 pmd = pmd_alloc(mm, pud, addr);
1854 if (!pmd)
1855 return -ENOMEM;
1856 do {
1857 next = pmd_addr_end(addr, end);
1858 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1859 if (err)
1860 break;
1861 } while (pmd++, addr = next, addr != end);
1862 return err;
1863 }
1864
1865 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1866 unsigned long addr, unsigned long end,
1867 pte_fn_t fn, void *data)
1868 {
1869 pud_t *pud;
1870 unsigned long next;
1871 int err;
1872
1873 pud = pud_alloc(mm, pgd, addr);
1874 if (!pud)
1875 return -ENOMEM;
1876 do {
1877 next = pud_addr_end(addr, end);
1878 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1879 if (err)
1880 break;
1881 } while (pud++, addr = next, addr != end);
1882 return err;
1883 }
1884
1885 /*
1886 * Scan a region of virtual memory, filling in page tables as necessary
1887 * and calling a provided function on each leaf page table.
1888 */
1889 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1890 unsigned long size, pte_fn_t fn, void *data)
1891 {
1892 pgd_t *pgd;
1893 unsigned long next;
1894 unsigned long end = addr + size;
1895 int err;
1896
1897 if (WARN_ON(addr >= end))
1898 return -EINVAL;
1899
1900 pgd = pgd_offset(mm, addr);
1901 do {
1902 next = pgd_addr_end(addr, end);
1903 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1904 if (err)
1905 break;
1906 } while (pgd++, addr = next, addr != end);
1907
1908 return err;
1909 }
1910 EXPORT_SYMBOL_GPL(apply_to_page_range);
1911
1912 /*
1913 * handle_pte_fault chooses page fault handler according to an entry which was
1914 * read non-atomically. Before making any commitment, on those architectures
1915 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1916 * parts, do_swap_page must check under lock before unmapping the pte and
1917 * proceeding (but do_wp_page is only called after already making such a check;
1918 * and do_anonymous_page can safely check later on).
1919 */
1920 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1921 pte_t *page_table, pte_t orig_pte)
1922 {
1923 int same = 1;
1924 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1925 if (sizeof(pte_t) > sizeof(unsigned long)) {
1926 spinlock_t *ptl = pte_lockptr(mm, pmd);
1927 spin_lock(ptl);
1928 same = pte_same(*page_table, orig_pte);
1929 spin_unlock(ptl);
1930 }
1931 #endif
1932 pte_unmap(page_table);
1933 return same;
1934 }
1935
1936 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1937 {
1938 debug_dma_assert_idle(src);
1939
1940 /*
1941 * If the source page was a PFN mapping, we don't have
1942 * a "struct page" for it. We do a best-effort copy by
1943 * just copying from the original user address. If that
1944 * fails, we just zero-fill it. Live with it.
1945 */
1946 if (unlikely(!src)) {
1947 void *kaddr = kmap_atomic(dst);
1948 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1949
1950 /*
1951 * This really shouldn't fail, because the page is there
1952 * in the page tables. But it might just be unreadable,
1953 * in which case we just give up and fill the result with
1954 * zeroes.
1955 */
1956 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1957 clear_page(kaddr);
1958 kunmap_atomic(kaddr);
1959 flush_dcache_page(dst);
1960 } else
1961 copy_user_highpage(dst, src, va, vma);
1962 }
1963
1964 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
1965 {
1966 struct file *vm_file = vma->vm_file;
1967
1968 if (vm_file)
1969 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
1970
1971 /*
1972 * Special mappings (e.g. VDSO) do not have any file so fake
1973 * a default GFP_KERNEL for them.
1974 */
1975 return GFP_KERNEL;
1976 }
1977
1978 /*
1979 * Notify the address space that the page is about to become writable so that
1980 * it can prohibit this or wait for the page to get into an appropriate state.
1981 *
1982 * We do this without the lock held, so that it can sleep if it needs to.
1983 */
1984 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1985 unsigned long address)
1986 {
1987 struct vm_fault vmf;
1988 int ret;
1989
1990 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1991 vmf.pgoff = page->index;
1992 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1993 vmf.gfp_mask = __get_fault_gfp_mask(vma);
1994 vmf.page = page;
1995 vmf.cow_page = NULL;
1996
1997 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1998 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1999 return ret;
2000 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2001 lock_page(page);
2002 if (!page->mapping) {
2003 unlock_page(page);
2004 return 0; /* retry */
2005 }
2006 ret |= VM_FAULT_LOCKED;
2007 } else
2008 VM_BUG_ON_PAGE(!PageLocked(page), page);
2009 return ret;
2010 }
2011
2012 /*
2013 * Handle write page faults for pages that can be reused in the current vma
2014 *
2015 * This can happen either due to the mapping being with the VM_SHARED flag,
2016 * or due to us being the last reference standing to the page. In either
2017 * case, all we need to do here is to mark the page as writable and update
2018 * any related book-keeping.
2019 */
2020 static inline int wp_page_reuse(struct mm_struct *mm,
2021 struct vm_area_struct *vma, unsigned long address,
2022 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2023 struct page *page, int page_mkwrite,
2024 int dirty_shared)
2025 __releases(ptl)
2026 {
2027 pte_t entry;
2028 /*
2029 * Clear the pages cpupid information as the existing
2030 * information potentially belongs to a now completely
2031 * unrelated process.
2032 */
2033 if (page)
2034 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2035
2036 flush_cache_page(vma, address, pte_pfn(orig_pte));
2037 entry = pte_mkyoung(orig_pte);
2038 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2039 if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2040 update_mmu_cache(vma, address, page_table);
2041 pte_unmap_unlock(page_table, ptl);
2042
2043 if (dirty_shared) {
2044 struct address_space *mapping;
2045 int dirtied;
2046
2047 if (!page_mkwrite)
2048 lock_page(page);
2049
2050 dirtied = set_page_dirty(page);
2051 VM_BUG_ON_PAGE(PageAnon(page), page);
2052 mapping = page->mapping;
2053 unlock_page(page);
2054 page_cache_release(page);
2055
2056 if ((dirtied || page_mkwrite) && mapping) {
2057 /*
2058 * Some device drivers do not set page.mapping
2059 * but still dirty their pages
2060 */
2061 balance_dirty_pages_ratelimited(mapping);
2062 }
2063
2064 if (!page_mkwrite)
2065 file_update_time(vma->vm_file);
2066 }
2067
2068 return VM_FAULT_WRITE;
2069 }
2070
2071 /*
2072 * Handle the case of a page which we actually need to copy to a new page.
2073 *
2074 * Called with mmap_sem locked and the old page referenced, but
2075 * without the ptl held.
2076 *
2077 * High level logic flow:
2078 *
2079 * - Allocate a page, copy the content of the old page to the new one.
2080 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2081 * - Take the PTL. If the pte changed, bail out and release the allocated page
2082 * - If the pte is still the way we remember it, update the page table and all
2083 * relevant references. This includes dropping the reference the page-table
2084 * held to the old page, as well as updating the rmap.
2085 * - In any case, unlock the PTL and drop the reference we took to the old page.
2086 */
2087 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2088 unsigned long address, pte_t *page_table, pmd_t *pmd,
2089 pte_t orig_pte, struct page *old_page)
2090 {
2091 struct page *new_page = NULL;
2092 spinlock_t *ptl = NULL;
2093 pte_t entry;
2094 int page_copied = 0;
2095 const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */
2096 const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */
2097 struct mem_cgroup *memcg;
2098
2099 if (unlikely(anon_vma_prepare(vma)))
2100 goto oom;
2101
2102 if (is_zero_pfn(pte_pfn(orig_pte))) {
2103 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2104 if (!new_page)
2105 goto oom;
2106 } else {
2107 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2108 if (!new_page)
2109 goto oom;
2110 cow_user_page(new_page, old_page, address, vma);
2111 }
2112
2113 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2114 goto oom_free_new;
2115
2116 __SetPageUptodate(new_page);
2117
2118 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2119
2120 /*
2121 * Re-check the pte - we dropped the lock
2122 */
2123 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2124 if (likely(pte_same(*page_table, orig_pte))) {
2125 if (old_page) {
2126 if (!PageAnon(old_page)) {
2127 dec_mm_counter_fast(mm,
2128 mm_counter_file(old_page));
2129 inc_mm_counter_fast(mm, MM_ANONPAGES);
2130 }
2131 } else {
2132 inc_mm_counter_fast(mm, MM_ANONPAGES);
2133 }
2134 flush_cache_page(vma, address, pte_pfn(orig_pte));
2135 entry = mk_pte(new_page, vma->vm_page_prot);
2136 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2137 /*
2138 * Clear the pte entry and flush it first, before updating the
2139 * pte with the new entry. This will avoid a race condition
2140 * seen in the presence of one thread doing SMC and another
2141 * thread doing COW.
2142 */
2143 ptep_clear_flush_notify(vma, address, page_table);
2144 page_add_new_anon_rmap(new_page, vma, address, false);
2145 mem_cgroup_commit_charge(new_page, memcg, false, false);
2146 lru_cache_add_active_or_unevictable(new_page, vma);
2147 /*
2148 * We call the notify macro here because, when using secondary
2149 * mmu page tables (such as kvm shadow page tables), we want the
2150 * new page to be mapped directly into the secondary page table.
2151 */
2152 set_pte_at_notify(mm, address, page_table, entry);
2153 update_mmu_cache(vma, address, page_table);
2154 if (old_page) {
2155 /*
2156 * Only after switching the pte to the new page may
2157 * we remove the mapcount here. Otherwise another
2158 * process may come and find the rmap count decremented
2159 * before the pte is switched to the new page, and
2160 * "reuse" the old page writing into it while our pte
2161 * here still points into it and can be read by other
2162 * threads.
2163 *
2164 * The critical issue is to order this
2165 * page_remove_rmap with the ptp_clear_flush above.
2166 * Those stores are ordered by (if nothing else,)
2167 * the barrier present in the atomic_add_negative
2168 * in page_remove_rmap.
2169 *
2170 * Then the TLB flush in ptep_clear_flush ensures that
2171 * no process can access the old page before the
2172 * decremented mapcount is visible. And the old page
2173 * cannot be reused until after the decremented
2174 * mapcount is visible. So transitively, TLBs to
2175 * old page will be flushed before it can be reused.
2176 */
2177 page_remove_rmap(old_page, false);
2178 }
2179
2180 /* Free the old page.. */
2181 new_page = old_page;
2182 page_copied = 1;
2183 } else {
2184 mem_cgroup_cancel_charge(new_page, memcg, false);
2185 }
2186
2187 if (new_page)
2188 page_cache_release(new_page);
2189
2190 pte_unmap_unlock(page_table, ptl);
2191 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2192 if (old_page) {
2193 /*
2194 * Don't let another task, with possibly unlocked vma,
2195 * keep the mlocked page.
2196 */
2197 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2198 lock_page(old_page); /* LRU manipulation */
2199 if (PageMlocked(old_page))
2200 munlock_vma_page(old_page);
2201 unlock_page(old_page);
2202 }
2203 page_cache_release(old_page);
2204 }
2205 return page_copied ? VM_FAULT_WRITE : 0;
2206 oom_free_new:
2207 page_cache_release(new_page);
2208 oom:
2209 if (old_page)
2210 page_cache_release(old_page);
2211 return VM_FAULT_OOM;
2212 }
2213
2214 /*
2215 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2216 * mapping
2217 */
2218 static int wp_pfn_shared(struct mm_struct *mm,
2219 struct vm_area_struct *vma, unsigned long address,
2220 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2221 pmd_t *pmd)
2222 {
2223 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2224 struct vm_fault vmf = {
2225 .page = NULL,
2226 .pgoff = linear_page_index(vma, address),
2227 .virtual_address = (void __user *)(address & PAGE_MASK),
2228 .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2229 };
2230 int ret;
2231
2232 pte_unmap_unlock(page_table, ptl);
2233 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2234 if (ret & VM_FAULT_ERROR)
2235 return ret;
2236 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2237 /*
2238 * We might have raced with another page fault while we
2239 * released the pte_offset_map_lock.
2240 */
2241 if (!pte_same(*page_table, orig_pte)) {
2242 pte_unmap_unlock(page_table, ptl);
2243 return 0;
2244 }
2245 }
2246 return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2247 NULL, 0, 0);
2248 }
2249
2250 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2251 unsigned long address, pte_t *page_table,
2252 pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2253 struct page *old_page)
2254 __releases(ptl)
2255 {
2256 int page_mkwrite = 0;
2257
2258 page_cache_get(old_page);
2259
2260 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2261 int tmp;
2262
2263 pte_unmap_unlock(page_table, ptl);
2264 tmp = do_page_mkwrite(vma, old_page, address);
2265 if (unlikely(!tmp || (tmp &
2266 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2267 page_cache_release(old_page);
2268 return tmp;
2269 }
2270 /*
2271 * Since we dropped the lock we need to revalidate
2272 * the PTE as someone else may have changed it. If
2273 * they did, we just return, as we can count on the
2274 * MMU to tell us if they didn't also make it writable.
2275 */
2276 page_table = pte_offset_map_lock(mm, pmd, address,
2277 &ptl);
2278 if (!pte_same(*page_table, orig_pte)) {
2279 unlock_page(old_page);
2280 pte_unmap_unlock(page_table, ptl);
2281 page_cache_release(old_page);
2282 return 0;
2283 }
2284 page_mkwrite = 1;
2285 }
2286
2287 return wp_page_reuse(mm, vma, address, page_table, ptl,
2288 orig_pte, old_page, page_mkwrite, 1);
2289 }
2290
2291 /*
2292 * This routine handles present pages, when users try to write
2293 * to a shared page. It is done by copying the page to a new address
2294 * and decrementing the shared-page counter for the old page.
2295 *
2296 * Note that this routine assumes that the protection checks have been
2297 * done by the caller (the low-level page fault routine in most cases).
2298 * Thus we can safely just mark it writable once we've done any necessary
2299 * COW.
2300 *
2301 * We also mark the page dirty at this point even though the page will
2302 * change only once the write actually happens. This avoids a few races,
2303 * and potentially makes it more efficient.
2304 *
2305 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2306 * but allow concurrent faults), with pte both mapped and locked.
2307 * We return with mmap_sem still held, but pte unmapped and unlocked.
2308 */
2309 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2310 unsigned long address, pte_t *page_table, pmd_t *pmd,
2311 spinlock_t *ptl, pte_t orig_pte)
2312 __releases(ptl)
2313 {
2314 struct page *old_page;
2315
2316 old_page = vm_normal_page(vma, address, orig_pte);
2317 if (!old_page) {
2318 /*
2319 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2320 * VM_PFNMAP VMA.
2321 *
2322 * We should not cow pages in a shared writeable mapping.
2323 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2324 */
2325 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2326 (VM_WRITE|VM_SHARED))
2327 return wp_pfn_shared(mm, vma, address, page_table, ptl,
2328 orig_pte, pmd);
2329
2330 pte_unmap_unlock(page_table, ptl);
2331 return wp_page_copy(mm, vma, address, page_table, pmd,
2332 orig_pte, old_page);
2333 }
2334
2335 /*
2336 * Take out anonymous pages first, anonymous shared vmas are
2337 * not dirty accountable.
2338 */
2339 if (PageAnon(old_page) && !PageKsm(old_page)) {
2340 if (!trylock_page(old_page)) {
2341 page_cache_get(old_page);
2342 pte_unmap_unlock(page_table, ptl);
2343 lock_page(old_page);
2344 page_table = pte_offset_map_lock(mm, pmd, address,
2345 &ptl);
2346 if (!pte_same(*page_table, orig_pte)) {
2347 unlock_page(old_page);
2348 pte_unmap_unlock(page_table, ptl);
2349 page_cache_release(old_page);
2350 return 0;
2351 }
2352 page_cache_release(old_page);
2353 }
2354 if (reuse_swap_page(old_page)) {
2355 /*
2356 * The page is all ours. Move it to our anon_vma so
2357 * the rmap code will not search our parent or siblings.
2358 * Protected against the rmap code by the page lock.
2359 */
2360 page_move_anon_rmap(old_page, vma, address);
2361 unlock_page(old_page);
2362 return wp_page_reuse(mm, vma, address, page_table, ptl,
2363 orig_pte, old_page, 0, 0);
2364 }
2365 unlock_page(old_page);
2366 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2367 (VM_WRITE|VM_SHARED))) {
2368 return wp_page_shared(mm, vma, address, page_table, pmd,
2369 ptl, orig_pte, old_page);
2370 }
2371
2372 /*
2373 * Ok, we need to copy. Oh, well..
2374 */
2375 page_cache_get(old_page);
2376
2377 pte_unmap_unlock(page_table, ptl);
2378 return wp_page_copy(mm, vma, address, page_table, pmd,
2379 orig_pte, old_page);
2380 }
2381
2382 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2383 unsigned long start_addr, unsigned long end_addr,
2384 struct zap_details *details)
2385 {
2386 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2387 }
2388
2389 static inline void unmap_mapping_range_tree(struct rb_root *root,
2390 struct zap_details *details)
2391 {
2392 struct vm_area_struct *vma;
2393 pgoff_t vba, vea, zba, zea;
2394
2395 vma_interval_tree_foreach(vma, root,
2396 details->first_index, details->last_index) {
2397
2398 vba = vma->vm_pgoff;
2399 vea = vba + vma_pages(vma) - 1;
2400 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2401 zba = details->first_index;
2402 if (zba < vba)
2403 zba = vba;
2404 zea = details->last_index;
2405 if (zea > vea)
2406 zea = vea;
2407
2408 unmap_mapping_range_vma(vma,
2409 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2410 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2411 details);
2412 }
2413 }
2414
2415 /**
2416 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2417 * address_space corresponding to the specified page range in the underlying
2418 * file.
2419 *
2420 * @mapping: the address space containing mmaps to be unmapped.
2421 * @holebegin: byte in first page to unmap, relative to the start of
2422 * the underlying file. This will be rounded down to a PAGE_SIZE
2423 * boundary. Note that this is different from truncate_pagecache(), which
2424 * must keep the partial page. In contrast, we must get rid of
2425 * partial pages.
2426 * @holelen: size of prospective hole in bytes. This will be rounded
2427 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2428 * end of the file.
2429 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2430 * but 0 when invalidating pagecache, don't throw away private data.
2431 */
2432 void unmap_mapping_range(struct address_space *mapping,
2433 loff_t const holebegin, loff_t const holelen, int even_cows)
2434 {
2435 struct zap_details details;
2436 pgoff_t hba = holebegin >> PAGE_SHIFT;
2437 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2438
2439 /* Check for overflow. */
2440 if (sizeof(holelen) > sizeof(hlen)) {
2441 long long holeend =
2442 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2443 if (holeend & ~(long long)ULONG_MAX)
2444 hlen = ULONG_MAX - hba + 1;
2445 }
2446
2447 details.check_mapping = even_cows? NULL: mapping;
2448 details.first_index = hba;
2449 details.last_index = hba + hlen - 1;
2450 if (details.last_index < details.first_index)
2451 details.last_index = ULONG_MAX;
2452
2453
2454 /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2455 i_mmap_lock_write(mapping);
2456 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2457 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2458 i_mmap_unlock_write(mapping);
2459 }
2460 EXPORT_SYMBOL(unmap_mapping_range);
2461
2462 /*
2463 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2464 * but allow concurrent faults), and pte mapped but not yet locked.
2465 * We return with pte unmapped and unlocked.
2466 *
2467 * We return with the mmap_sem locked or unlocked in the same cases
2468 * as does filemap_fault().
2469 */
2470 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2471 unsigned long address, pte_t *page_table, pmd_t *pmd,
2472 unsigned int flags, pte_t orig_pte)
2473 {
2474 spinlock_t *ptl;
2475 struct page *page, *swapcache;
2476 struct mem_cgroup *memcg;
2477 swp_entry_t entry;
2478 pte_t pte;
2479 int locked;
2480 int exclusive = 0;
2481 int ret = 0;
2482
2483 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2484 goto out;
2485
2486 entry = pte_to_swp_entry(orig_pte);
2487 if (unlikely(non_swap_entry(entry))) {
2488 if (is_migration_entry(entry)) {
2489 migration_entry_wait(mm, pmd, address);
2490 } else if (is_hwpoison_entry(entry)) {
2491 ret = VM_FAULT_HWPOISON;
2492 } else {
2493 print_bad_pte(vma, address, orig_pte, NULL);
2494 ret = VM_FAULT_SIGBUS;
2495 }
2496 goto out;
2497 }
2498 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2499 page = lookup_swap_cache(entry);
2500 if (!page) {
2501 page = swapin_readahead(entry,
2502 GFP_HIGHUSER_MOVABLE, vma, address);
2503 if (!page) {
2504 /*
2505 * Back out if somebody else faulted in this pte
2506 * while we released the pte lock.
2507 */
2508 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2509 if (likely(pte_same(*page_table, orig_pte)))
2510 ret = VM_FAULT_OOM;
2511 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2512 goto unlock;
2513 }
2514
2515 /* Had to read the page from swap area: Major fault */
2516 ret = VM_FAULT_MAJOR;
2517 count_vm_event(PGMAJFAULT);
2518 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2519 } else if (PageHWPoison(page)) {
2520 /*
2521 * hwpoisoned dirty swapcache pages are kept for killing
2522 * owner processes (which may be unknown at hwpoison time)
2523 */
2524 ret = VM_FAULT_HWPOISON;
2525 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2526 swapcache = page;
2527 goto out_release;
2528 }
2529
2530 swapcache = page;
2531 locked = lock_page_or_retry(page, mm, flags);
2532
2533 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2534 if (!locked) {
2535 ret |= VM_FAULT_RETRY;
2536 goto out_release;
2537 }
2538
2539 /*
2540 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2541 * release the swapcache from under us. The page pin, and pte_same
2542 * test below, are not enough to exclude that. Even if it is still
2543 * swapcache, we need to check that the page's swap has not changed.
2544 */
2545 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2546 goto out_page;
2547
2548 page = ksm_might_need_to_copy(page, vma, address);
2549 if (unlikely(!page)) {
2550 ret = VM_FAULT_OOM;
2551 page = swapcache;
2552 goto out_page;
2553 }
2554
2555 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
2556 ret = VM_FAULT_OOM;
2557 goto out_page;
2558 }
2559
2560 /*
2561 * Back out if somebody else already faulted in this pte.
2562 */
2563 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2564 if (unlikely(!pte_same(*page_table, orig_pte)))
2565 goto out_nomap;
2566
2567 if (unlikely(!PageUptodate(page))) {
2568 ret = VM_FAULT_SIGBUS;
2569 goto out_nomap;
2570 }
2571
2572 /*
2573 * The page isn't present yet, go ahead with the fault.
2574 *
2575 * Be careful about the sequence of operations here.
2576 * To get its accounting right, reuse_swap_page() must be called
2577 * while the page is counted on swap but not yet in mapcount i.e.
2578 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2579 * must be called after the swap_free(), or it will never succeed.
2580 */
2581
2582 inc_mm_counter_fast(mm, MM_ANONPAGES);
2583 dec_mm_counter_fast(mm, MM_SWAPENTS);
2584 pte = mk_pte(page, vma->vm_page_prot);
2585 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2586 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2587 flags &= ~FAULT_FLAG_WRITE;
2588 ret |= VM_FAULT_WRITE;
2589 exclusive = RMAP_EXCLUSIVE;
2590 }
2591 flush_icache_page(vma, page);
2592 if (pte_swp_soft_dirty(orig_pte))
2593 pte = pte_mksoft_dirty(pte);
2594 set_pte_at(mm, address, page_table, pte);
2595 if (page == swapcache) {
2596 do_page_add_anon_rmap(page, vma, address, exclusive);
2597 mem_cgroup_commit_charge(page, memcg, true, false);
2598 } else { /* ksm created a completely new copy */
2599 page_add_new_anon_rmap(page, vma, address, false);
2600 mem_cgroup_commit_charge(page, memcg, false, false);
2601 lru_cache_add_active_or_unevictable(page, vma);
2602 }
2603
2604 swap_free(entry);
2605 if (mem_cgroup_swap_full(page) ||
2606 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2607 try_to_free_swap(page);
2608 unlock_page(page);
2609 if (page != swapcache) {
2610 /*
2611 * Hold the lock to avoid the swap entry to be reused
2612 * until we take the PT lock for the pte_same() check
2613 * (to avoid false positives from pte_same). For
2614 * further safety release the lock after the swap_free
2615 * so that the swap count won't change under a
2616 * parallel locked swapcache.
2617 */
2618 unlock_page(swapcache);
2619 page_cache_release(swapcache);
2620 }
2621
2622 if (flags & FAULT_FLAG_WRITE) {
2623 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2624 if (ret & VM_FAULT_ERROR)
2625 ret &= VM_FAULT_ERROR;
2626 goto out;
2627 }
2628
2629 /* No need to invalidate - it was non-present before */
2630 update_mmu_cache(vma, address, page_table);
2631 unlock:
2632 pte_unmap_unlock(page_table, ptl);
2633 out:
2634 return ret;
2635 out_nomap:
2636 mem_cgroup_cancel_charge(page, memcg, false);
2637 pte_unmap_unlock(page_table, ptl);
2638 out_page:
2639 unlock_page(page);
2640 out_release:
2641 page_cache_release(page);
2642 if (page != swapcache) {
2643 unlock_page(swapcache);
2644 page_cache_release(swapcache);
2645 }
2646 return ret;
2647 }
2648
2649 /*
2650 * This is like a special single-page "expand_{down|up}wards()",
2651 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2652 * doesn't hit another vma.
2653 */
2654 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2655 {
2656 address &= PAGE_MASK;
2657 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2658 struct vm_area_struct *prev = vma->vm_prev;
2659
2660 /*
2661 * Is there a mapping abutting this one below?
2662 *
2663 * That's only ok if it's the same stack mapping
2664 * that has gotten split..
2665 */
2666 if (prev && prev->vm_end == address)
2667 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2668
2669 return expand_downwards(vma, address - PAGE_SIZE);
2670 }
2671 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2672 struct vm_area_struct *next = vma->vm_next;
2673
2674 /* As VM_GROWSDOWN but s/below/above/ */
2675 if (next && next->vm_start == address + PAGE_SIZE)
2676 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2677
2678 return expand_upwards(vma, address + PAGE_SIZE);
2679 }
2680 return 0;
2681 }
2682
2683 /*
2684 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2685 * but allow concurrent faults), and pte mapped but not yet locked.
2686 * We return with mmap_sem still held, but pte unmapped and unlocked.
2687 */
2688 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2689 unsigned long address, pte_t *page_table, pmd_t *pmd,
2690 unsigned int flags)
2691 {
2692 struct mem_cgroup *memcg;
2693 struct page *page;
2694 spinlock_t *ptl;
2695 pte_t entry;
2696
2697 pte_unmap(page_table);
2698
2699 /* File mapping without ->vm_ops ? */
2700 if (vma->vm_flags & VM_SHARED)
2701 return VM_FAULT_SIGBUS;
2702
2703 /* Check if we need to add a guard page to the stack */
2704 if (check_stack_guard_page(vma, address) < 0)
2705 return VM_FAULT_SIGSEGV;
2706
2707 /* Use the zero-page for reads */
2708 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2709 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2710 vma->vm_page_prot));
2711 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2712 if (!pte_none(*page_table))
2713 goto unlock;
2714 /* Deliver the page fault to userland, check inside PT lock */
2715 if (userfaultfd_missing(vma)) {
2716 pte_unmap_unlock(page_table, ptl);
2717 return handle_userfault(vma, address, flags,
2718 VM_UFFD_MISSING);
2719 }
2720 goto setpte;
2721 }
2722
2723 /* Allocate our own private page. */
2724 if (unlikely(anon_vma_prepare(vma)))
2725 goto oom;
2726 page = alloc_zeroed_user_highpage_movable(vma, address);
2727 if (!page)
2728 goto oom;
2729
2730 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
2731 goto oom_free_page;
2732
2733 /*
2734 * The memory barrier inside __SetPageUptodate makes sure that
2735 * preceeding stores to the page contents become visible before
2736 * the set_pte_at() write.
2737 */
2738 __SetPageUptodate(page);
2739
2740 entry = mk_pte(page, vma->vm_page_prot);
2741 if (vma->vm_flags & VM_WRITE)
2742 entry = pte_mkwrite(pte_mkdirty(entry));
2743
2744 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2745 if (!pte_none(*page_table))
2746 goto release;
2747
2748 /* Deliver the page fault to userland, check inside PT lock */
2749 if (userfaultfd_missing(vma)) {
2750 pte_unmap_unlock(page_table, ptl);
2751 mem_cgroup_cancel_charge(page, memcg, false);
2752 page_cache_release(page);
2753 return handle_userfault(vma, address, flags,
2754 VM_UFFD_MISSING);
2755 }
2756
2757 inc_mm_counter_fast(mm, MM_ANONPAGES);
2758 page_add_new_anon_rmap(page, vma, address, false);
2759 mem_cgroup_commit_charge(page, memcg, false, false);
2760 lru_cache_add_active_or_unevictable(page, vma);
2761 setpte:
2762 set_pte_at(mm, address, page_table, entry);
2763
2764 /* No need to invalidate - it was non-present before */
2765 update_mmu_cache(vma, address, page_table);
2766 unlock:
2767 pte_unmap_unlock(page_table, ptl);
2768 return 0;
2769 release:
2770 mem_cgroup_cancel_charge(page, memcg, false);
2771 page_cache_release(page);
2772 goto unlock;
2773 oom_free_page:
2774 page_cache_release(page);
2775 oom:
2776 return VM_FAULT_OOM;
2777 }
2778
2779 /*
2780 * The mmap_sem must have been held on entry, and may have been
2781 * released depending on flags and vma->vm_ops->fault() return value.
2782 * See filemap_fault() and __lock_page_retry().
2783 */
2784 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2785 pgoff_t pgoff, unsigned int flags,
2786 struct page *cow_page, struct page **page)
2787 {
2788 struct vm_fault vmf;
2789 int ret;
2790
2791 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2792 vmf.pgoff = pgoff;
2793 vmf.flags = flags;
2794 vmf.page = NULL;
2795 vmf.gfp_mask = __get_fault_gfp_mask(vma);
2796 vmf.cow_page = cow_page;
2797
2798 ret = vma->vm_ops->fault(vma, &vmf);
2799 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2800 return ret;
2801 if (!vmf.page)
2802 goto out;
2803
2804 if (unlikely(PageHWPoison(vmf.page))) {
2805 if (ret & VM_FAULT_LOCKED)
2806 unlock_page(vmf.page);
2807 page_cache_release(vmf.page);
2808 return VM_FAULT_HWPOISON;
2809 }
2810
2811 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2812 lock_page(vmf.page);
2813 else
2814 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2815
2816 out:
2817 *page = vmf.page;
2818 return ret;
2819 }
2820
2821 /**
2822 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2823 *
2824 * @vma: virtual memory area
2825 * @address: user virtual address
2826 * @page: page to map
2827 * @pte: pointer to target page table entry
2828 * @write: true, if new entry is writable
2829 * @anon: true, if it's anonymous page
2830 *
2831 * Caller must hold page table lock relevant for @pte.
2832 *
2833 * Target users are page handler itself and implementations of
2834 * vm_ops->map_pages.
2835 */
2836 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2837 struct page *page, pte_t *pte, bool write, bool anon)
2838 {
2839 pte_t entry;
2840
2841 flush_icache_page(vma, page);
2842 entry = mk_pte(page, vma->vm_page_prot);
2843 if (write)
2844 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2845 if (anon) {
2846 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2847 page_add_new_anon_rmap(page, vma, address, false);
2848 } else {
2849 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
2850 page_add_file_rmap(page);
2851 }
2852 set_pte_at(vma->vm_mm, address, pte, entry);
2853
2854 /* no need to invalidate: a not-present page won't be cached */
2855 update_mmu_cache(vma, address, pte);
2856 }
2857
2858 static unsigned long fault_around_bytes __read_mostly =
2859 rounddown_pow_of_two(65536);
2860
2861 #ifdef CONFIG_DEBUG_FS
2862 static int fault_around_bytes_get(void *data, u64 *val)
2863 {
2864 *val = fault_around_bytes;
2865 return 0;
2866 }
2867
2868 /*
2869 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2870 * rounded down to nearest page order. It's what do_fault_around() expects to
2871 * see.
2872 */
2873 static int fault_around_bytes_set(void *data, u64 val)
2874 {
2875 if (val / PAGE_SIZE > PTRS_PER_PTE)
2876 return -EINVAL;
2877 if (val > PAGE_SIZE)
2878 fault_around_bytes = rounddown_pow_of_two(val);
2879 else
2880 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2881 return 0;
2882 }
2883 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2884 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2885
2886 static int __init fault_around_debugfs(void)
2887 {
2888 void *ret;
2889
2890 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2891 &fault_around_bytes_fops);
2892 if (!ret)
2893 pr_warn("Failed to create fault_around_bytes in debugfs");
2894 return 0;
2895 }
2896 late_initcall(fault_around_debugfs);
2897 #endif
2898
2899 /*
2900 * do_fault_around() tries to map few pages around the fault address. The hope
2901 * is that the pages will be needed soon and this will lower the number of
2902 * faults to handle.
2903 *
2904 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2905 * not ready to be mapped: not up-to-date, locked, etc.
2906 *
2907 * This function is called with the page table lock taken. In the split ptlock
2908 * case the page table lock only protects only those entries which belong to
2909 * the page table corresponding to the fault address.
2910 *
2911 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2912 * only once.
2913 *
2914 * fault_around_pages() defines how many pages we'll try to map.
2915 * do_fault_around() expects it to return a power of two less than or equal to
2916 * PTRS_PER_PTE.
2917 *
2918 * The virtual address of the area that we map is naturally aligned to the
2919 * fault_around_pages() value (and therefore to page order). This way it's
2920 * easier to guarantee that we don't cross page table boundaries.
2921 */
2922 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2923 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2924 {
2925 unsigned long start_addr, nr_pages, mask;
2926 pgoff_t max_pgoff;
2927 struct vm_fault vmf;
2928 int off;
2929
2930 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2931 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2932
2933 start_addr = max(address & mask, vma->vm_start);
2934 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2935 pte -= off;
2936 pgoff -= off;
2937
2938 /*
2939 * max_pgoff is either end of page table or end of vma
2940 * or fault_around_pages() from pgoff, depending what is nearest.
2941 */
2942 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2943 PTRS_PER_PTE - 1;
2944 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2945 pgoff + nr_pages - 1);
2946
2947 /* Check if it makes any sense to call ->map_pages */
2948 while (!pte_none(*pte)) {
2949 if (++pgoff > max_pgoff)
2950 return;
2951 start_addr += PAGE_SIZE;
2952 if (start_addr >= vma->vm_end)
2953 return;
2954 pte++;
2955 }
2956
2957 vmf.virtual_address = (void __user *) start_addr;
2958 vmf.pte = pte;
2959 vmf.pgoff = pgoff;
2960 vmf.max_pgoff = max_pgoff;
2961 vmf.flags = flags;
2962 vmf.gfp_mask = __get_fault_gfp_mask(vma);
2963 vma->vm_ops->map_pages(vma, &vmf);
2964 }
2965
2966 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2967 unsigned long address, pmd_t *pmd,
2968 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2969 {
2970 struct page *fault_page;
2971 spinlock_t *ptl;
2972 pte_t *pte;
2973 int ret = 0;
2974
2975 /*
2976 * Let's call ->map_pages() first and use ->fault() as fallback
2977 * if page by the offset is not ready to be mapped (cold cache or
2978 * something).
2979 */
2980 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2981 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2982 do_fault_around(vma, address, pte, pgoff, flags);
2983 if (!pte_same(*pte, orig_pte))
2984 goto unlock_out;
2985 pte_unmap_unlock(pte, ptl);
2986 }
2987
2988 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
2989 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2990 return ret;
2991
2992 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2993 if (unlikely(!pte_same(*pte, orig_pte))) {
2994 pte_unmap_unlock(pte, ptl);
2995 unlock_page(fault_page);
2996 page_cache_release(fault_page);
2997 return ret;
2998 }
2999 do_set_pte(vma, address, fault_page, pte, false, false);
3000 unlock_page(fault_page);
3001 unlock_out:
3002 pte_unmap_unlock(pte, ptl);
3003 return ret;
3004 }
3005
3006 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3007 unsigned long address, pmd_t *pmd,
3008 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3009 {
3010 struct page *fault_page, *new_page;
3011 struct mem_cgroup *memcg;
3012 spinlock_t *ptl;
3013 pte_t *pte;
3014 int ret;
3015
3016 if (unlikely(anon_vma_prepare(vma)))
3017 return VM_FAULT_OOM;
3018
3019 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3020 if (!new_page)
3021 return VM_FAULT_OOM;
3022
3023 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
3024 page_cache_release(new_page);
3025 return VM_FAULT_OOM;
3026 }
3027
3028 ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3029 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3030 goto uncharge_out;
3031
3032 if (fault_page)
3033 copy_user_highpage(new_page, fault_page, address, vma);
3034 __SetPageUptodate(new_page);
3035
3036 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3037 if (unlikely(!pte_same(*pte, orig_pte))) {
3038 pte_unmap_unlock(pte, ptl);
3039 if (fault_page) {
3040 unlock_page(fault_page);
3041 page_cache_release(fault_page);
3042 } else {
3043 /*
3044 * The fault handler has no page to lock, so it holds
3045 * i_mmap_lock for read to protect against truncate.
3046 */
3047 i_mmap_unlock_read(vma->vm_file->f_mapping);
3048 }
3049 goto uncharge_out;
3050 }
3051 do_set_pte(vma, address, new_page, pte, true, true);
3052 mem_cgroup_commit_charge(new_page, memcg, false, false);
3053 lru_cache_add_active_or_unevictable(new_page, vma);
3054 pte_unmap_unlock(pte, ptl);
3055 if (fault_page) {
3056 unlock_page(fault_page);
3057 page_cache_release(fault_page);
3058 } else {
3059 /*
3060 * The fault handler has no page to lock, so it holds
3061 * i_mmap_lock for read to protect against truncate.
3062 */
3063 i_mmap_unlock_read(vma->vm_file->f_mapping);
3064 }
3065 return ret;
3066 uncharge_out:
3067 mem_cgroup_cancel_charge(new_page, memcg, false);
3068 page_cache_release(new_page);
3069 return ret;
3070 }
3071
3072 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3073 unsigned long address, pmd_t *pmd,
3074 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3075 {
3076 struct page *fault_page;
3077 struct address_space *mapping;
3078 spinlock_t *ptl;
3079 pte_t *pte;
3080 int dirtied = 0;
3081 int ret, tmp;
3082
3083 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3084 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3085 return ret;
3086
3087 /*
3088 * Check if the backing address space wants to know that the page is
3089 * about to become writable
3090 */
3091 if (vma->vm_ops->page_mkwrite) {
3092 unlock_page(fault_page);
3093 tmp = do_page_mkwrite(vma, fault_page, address);
3094 if (unlikely(!tmp ||
3095 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3096 page_cache_release(fault_page);
3097 return tmp;
3098 }
3099 }
3100
3101 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3102 if (unlikely(!pte_same(*pte, orig_pte))) {
3103 pte_unmap_unlock(pte, ptl);
3104 unlock_page(fault_page);
3105 page_cache_release(fault_page);
3106 return ret;
3107 }
3108 do_set_pte(vma, address, fault_page, pte, true, false);
3109 pte_unmap_unlock(pte, ptl);
3110
3111 if (set_page_dirty(fault_page))
3112 dirtied = 1;
3113 /*
3114 * Take a local copy of the address_space - page.mapping may be zeroed
3115 * by truncate after unlock_page(). The address_space itself remains
3116 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3117 * release semantics to prevent the compiler from undoing this copying.
3118 */
3119 mapping = page_rmapping(fault_page);
3120 unlock_page(fault_page);
3121 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3122 /*
3123 * Some device drivers do not set page.mapping but still
3124 * dirty their pages
3125 */
3126 balance_dirty_pages_ratelimited(mapping);
3127 }
3128
3129 if (!vma->vm_ops->page_mkwrite)
3130 file_update_time(vma->vm_file);
3131
3132 return ret;
3133 }
3134
3135 /*
3136 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3137 * but allow concurrent faults).
3138 * The mmap_sem may have been released depending on flags and our
3139 * return value. See filemap_fault() and __lock_page_or_retry().
3140 */
3141 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3142 unsigned long address, pte_t *page_table, pmd_t *pmd,
3143 unsigned int flags, pte_t orig_pte)
3144 {
3145 pgoff_t pgoff = linear_page_index(vma, address);
3146
3147 pte_unmap(page_table);
3148 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3149 if (!vma->vm_ops->fault)
3150 return VM_FAULT_SIGBUS;
3151 if (!(flags & FAULT_FLAG_WRITE))
3152 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3153 orig_pte);
3154 if (!(vma->vm_flags & VM_SHARED))
3155 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3156 orig_pte);
3157 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3158 }
3159
3160 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3161 unsigned long addr, int page_nid,
3162 int *flags)
3163 {
3164 get_page(page);
3165
3166 count_vm_numa_event(NUMA_HINT_FAULTS);
3167 if (page_nid == numa_node_id()) {
3168 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3169 *flags |= TNF_FAULT_LOCAL;
3170 }
3171
3172 return mpol_misplaced(page, vma, addr);
3173 }
3174
3175 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3176 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3177 {
3178 struct page *page = NULL;
3179 spinlock_t *ptl;
3180 int page_nid = -1;
3181 int last_cpupid;
3182 int target_nid;
3183 bool migrated = false;
3184 bool was_writable = pte_write(pte);
3185 int flags = 0;
3186
3187 /* A PROT_NONE fault should not end up here */
3188 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3189
3190 /*
3191 * The "pte" at this point cannot be used safely without
3192 * validation through pte_unmap_same(). It's of NUMA type but
3193 * the pfn may be screwed if the read is non atomic.
3194 *
3195 * We can safely just do a "set_pte_at()", because the old
3196 * page table entry is not accessible, so there would be no
3197 * concurrent hardware modifications to the PTE.
3198 */
3199 ptl = pte_lockptr(mm, pmd);
3200 spin_lock(ptl);
3201 if (unlikely(!pte_same(*ptep, pte))) {
3202 pte_unmap_unlock(ptep, ptl);
3203 goto out;
3204 }
3205
3206 /* Make it present again */
3207 pte = pte_modify(pte, vma->vm_page_prot);
3208 pte = pte_mkyoung(pte);
3209 if (was_writable)
3210 pte = pte_mkwrite(pte);
3211 set_pte_at(mm, addr, ptep, pte);
3212 update_mmu_cache(vma, addr, ptep);
3213
3214 page = vm_normal_page(vma, addr, pte);
3215 if (!page) {
3216 pte_unmap_unlock(ptep, ptl);
3217 return 0;
3218 }
3219
3220 /* TODO: handle PTE-mapped THP */
3221 if (PageCompound(page)) {
3222 pte_unmap_unlock(ptep, ptl);
3223 return 0;
3224 }
3225
3226 /*
3227 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3228 * much anyway since they can be in shared cache state. This misses
3229 * the case where a mapping is writable but the process never writes
3230 * to it but pte_write gets cleared during protection updates and
3231 * pte_dirty has unpredictable behaviour between PTE scan updates,
3232 * background writeback, dirty balancing and application behaviour.
3233 */
3234 if (!(vma->vm_flags & VM_WRITE))
3235 flags |= TNF_NO_GROUP;
3236
3237 /*
3238 * Flag if the page is shared between multiple address spaces. This
3239 * is later used when determining whether to group tasks together
3240 */
3241 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3242 flags |= TNF_SHARED;
3243
3244 last_cpupid = page_cpupid_last(page);
3245 page_nid = page_to_nid(page);
3246 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3247 pte_unmap_unlock(ptep, ptl);
3248 if (target_nid == -1) {
3249 put_page(page);
3250 goto out;
3251 }
3252
3253 /* Migrate to the requested node */
3254 migrated = migrate_misplaced_page(page, vma, target_nid);
3255 if (migrated) {
3256 page_nid = target_nid;
3257 flags |= TNF_MIGRATED;
3258 } else
3259 flags |= TNF_MIGRATE_FAIL;
3260
3261 out:
3262 if (page_nid != -1)
3263 task_numa_fault(last_cpupid, page_nid, 1, flags);
3264 return 0;
3265 }
3266
3267 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3268 unsigned long address, pmd_t *pmd, unsigned int flags)
3269 {
3270 if (vma_is_anonymous(vma))
3271 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3272 if (vma->vm_ops->pmd_fault)
3273 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3274 return VM_FAULT_FALLBACK;
3275 }
3276
3277 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3278 unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3279 unsigned int flags)
3280 {
3281 if (vma_is_anonymous(vma))
3282 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3283 if (vma->vm_ops->pmd_fault)
3284 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3285 return VM_FAULT_FALLBACK;
3286 }
3287
3288 /*
3289 * These routines also need to handle stuff like marking pages dirty
3290 * and/or accessed for architectures that don't do it in hardware (most
3291 * RISC architectures). The early dirtying is also good on the i386.
3292 *
3293 * There is also a hook called "update_mmu_cache()" that architectures
3294 * with external mmu caches can use to update those (ie the Sparc or
3295 * PowerPC hashed page tables that act as extended TLBs).
3296 *
3297 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3298 * but allow concurrent faults), and pte mapped but not yet locked.
3299 * We return with pte unmapped and unlocked.
3300 *
3301 * The mmap_sem may have been released depending on flags and our
3302 * return value. See filemap_fault() and __lock_page_or_retry().
3303 */
3304 static int handle_pte_fault(struct mm_struct *mm,
3305 struct vm_area_struct *vma, unsigned long address,
3306 pte_t *pte, pmd_t *pmd, unsigned int flags)
3307 {
3308 pte_t entry;
3309 spinlock_t *ptl;
3310
3311 /*
3312 * some architectures can have larger ptes than wordsize,
3313 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3314 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3315 * The code below just needs a consistent view for the ifs and
3316 * we later double check anyway with the ptl lock held. So here
3317 * a barrier will do.
3318 */
3319 entry = *pte;
3320 barrier();
3321 if (!pte_present(entry)) {
3322 if (pte_none(entry)) {
3323 if (vma_is_anonymous(vma))
3324 return do_anonymous_page(mm, vma, address,
3325 pte, pmd, flags);
3326 else
3327 return do_fault(mm, vma, address, pte, pmd,
3328 flags, entry);
3329 }
3330 return do_swap_page(mm, vma, address,
3331 pte, pmd, flags, entry);
3332 }
3333
3334 if (pte_protnone(entry))
3335 return do_numa_page(mm, vma, address, entry, pte, pmd);
3336
3337 ptl = pte_lockptr(mm, pmd);
3338 spin_lock(ptl);
3339 if (unlikely(!pte_same(*pte, entry)))
3340 goto unlock;
3341 if (flags & FAULT_FLAG_WRITE) {
3342 if (!pte_write(entry))
3343 return do_wp_page(mm, vma, address,
3344 pte, pmd, ptl, entry);
3345 entry = pte_mkdirty(entry);
3346 }
3347 entry = pte_mkyoung(entry);
3348 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3349 update_mmu_cache(vma, address, pte);
3350 } else {
3351 /*
3352 * This is needed only for protection faults but the arch code
3353 * is not yet telling us if this is a protection fault or not.
3354 * This still avoids useless tlb flushes for .text page faults
3355 * with threads.
3356 */
3357 if (flags & FAULT_FLAG_WRITE)
3358 flush_tlb_fix_spurious_fault(vma, address);
3359 }
3360 unlock:
3361 pte_unmap_unlock(pte, ptl);
3362 return 0;
3363 }
3364
3365 /*
3366 * By the time we get here, we already hold the mm semaphore
3367 *
3368 * The mmap_sem may have been released depending on flags and our
3369 * return value. See filemap_fault() and __lock_page_or_retry().
3370 */
3371 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3372 unsigned long address, unsigned int flags)
3373 {
3374 pgd_t *pgd;
3375 pud_t *pud;
3376 pmd_t *pmd;
3377 pte_t *pte;
3378
3379 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3380 flags & FAULT_FLAG_INSTRUCTION,
3381 flags & FAULT_FLAG_REMOTE))
3382 return VM_FAULT_SIGSEGV;
3383
3384 if (unlikely(is_vm_hugetlb_page(vma)))
3385 return hugetlb_fault(mm, vma, address, flags);
3386
3387 pgd = pgd_offset(mm, address);
3388 pud = pud_alloc(mm, pgd, address);
3389 if (!pud)
3390 return VM_FAULT_OOM;
3391 pmd = pmd_alloc(mm, pud, address);
3392 if (!pmd)
3393 return VM_FAULT_OOM;
3394 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3395 int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3396 if (!(ret & VM_FAULT_FALLBACK))
3397 return ret;
3398 } else {
3399 pmd_t orig_pmd = *pmd;
3400 int ret;
3401
3402 barrier();
3403 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3404 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3405
3406 if (pmd_protnone(orig_pmd))
3407 return do_huge_pmd_numa_page(mm, vma, address,
3408 orig_pmd, pmd);
3409
3410 if (dirty && !pmd_write(orig_pmd)) {
3411 ret = wp_huge_pmd(mm, vma, address, pmd,
3412 orig_pmd, flags);
3413 if (!(ret & VM_FAULT_FALLBACK))
3414 return ret;
3415 } else {
3416 huge_pmd_set_accessed(mm, vma, address, pmd,
3417 orig_pmd, dirty);
3418 return 0;
3419 }
3420 }
3421 }
3422
3423 /*
3424 * Use pte_alloc() instead of pte_alloc_map, because we can't
3425 * run pte_offset_map on the pmd, if an huge pmd could
3426 * materialize from under us from a different thread.
3427 */
3428 if (unlikely(pte_alloc(mm, pmd, address)))
3429 return VM_FAULT_OOM;
3430 /*
3431 * If a huge pmd materialized under us just retry later. Use
3432 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3433 * didn't become pmd_trans_huge under us and then back to pmd_none, as
3434 * a result of MADV_DONTNEED running immediately after a huge pmd fault
3435 * in a different thread of this mm, in turn leading to a misleading
3436 * pmd_trans_huge() retval. All we have to ensure is that it is a
3437 * regular pmd that we can walk with pte_offset_map() and we can do that
3438 * through an atomic read in C, which is what pmd_trans_unstable()
3439 * provides.
3440 */
3441 if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd)))
3442 return 0;
3443 /*
3444 * A regular pmd is established and it can't morph into a huge pmd
3445 * from under us anymore at this point because we hold the mmap_sem
3446 * read mode and khugepaged takes it in write mode. So now it's
3447 * safe to run pte_offset_map().
3448 */
3449 pte = pte_offset_map(pmd, address);
3450
3451 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3452 }
3453
3454 /*
3455 * By the time we get here, we already hold the mm semaphore
3456 *
3457 * The mmap_sem may have been released depending on flags and our
3458 * return value. See filemap_fault() and __lock_page_or_retry().
3459 */
3460 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3461 unsigned long address, unsigned int flags)
3462 {
3463 int ret;
3464
3465 __set_current_state(TASK_RUNNING);
3466
3467 count_vm_event(PGFAULT);
3468 mem_cgroup_count_vm_event(mm, PGFAULT);
3469
3470 /* do counter updates before entering really critical section. */
3471 check_sync_rss_stat(current);
3472
3473 /*
3474 * Enable the memcg OOM handling for faults triggered in user
3475 * space. Kernel faults are handled more gracefully.
3476 */
3477 if (flags & FAULT_FLAG_USER)
3478 mem_cgroup_oom_enable();
3479
3480 ret = __handle_mm_fault(mm, vma, address, flags);
3481
3482 if (flags & FAULT_FLAG_USER) {
3483 mem_cgroup_oom_disable();
3484 /*
3485 * The task may have entered a memcg OOM situation but
3486 * if the allocation error was handled gracefully (no
3487 * VM_FAULT_OOM), there is no need to kill anything.
3488 * Just clean up the OOM state peacefully.
3489 */
3490 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3491 mem_cgroup_oom_synchronize(false);
3492 }
3493
3494 return ret;
3495 }
3496 EXPORT_SYMBOL_GPL(handle_mm_fault);
3497
3498 #ifndef __PAGETABLE_PUD_FOLDED
3499 /*
3500 * Allocate page upper directory.
3501 * We've already handled the fast-path in-line.
3502 */
3503 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3504 {
3505 pud_t *new = pud_alloc_one(mm, address);
3506 if (!new)
3507 return -ENOMEM;
3508
3509 smp_wmb(); /* See comment in __pte_alloc */
3510
3511 spin_lock(&mm->page_table_lock);
3512 if (pgd_present(*pgd)) /* Another has populated it */
3513 pud_free(mm, new);
3514 else
3515 pgd_populate(mm, pgd, new);
3516 spin_unlock(&mm->page_table_lock);
3517 return 0;
3518 }
3519 #endif /* __PAGETABLE_PUD_FOLDED */
3520
3521 #ifndef __PAGETABLE_PMD_FOLDED
3522 /*
3523 * Allocate page middle directory.
3524 * We've already handled the fast-path in-line.
3525 */
3526 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3527 {
3528 pmd_t *new = pmd_alloc_one(mm, address);
3529 if (!new)
3530 return -ENOMEM;
3531
3532 smp_wmb(); /* See comment in __pte_alloc */
3533
3534 spin_lock(&mm->page_table_lock);
3535 #ifndef __ARCH_HAS_4LEVEL_HACK
3536 if (!pud_present(*pud)) {
3537 mm_inc_nr_pmds(mm);
3538 pud_populate(mm, pud, new);
3539 } else /* Another has populated it */
3540 pmd_free(mm, new);
3541 #else
3542 if (!pgd_present(*pud)) {
3543 mm_inc_nr_pmds(mm);
3544 pgd_populate(mm, pud, new);
3545 } else /* Another has populated it */
3546 pmd_free(mm, new);
3547 #endif /* __ARCH_HAS_4LEVEL_HACK */
3548 spin_unlock(&mm->page_table_lock);
3549 return 0;
3550 }
3551 #endif /* __PAGETABLE_PMD_FOLDED */
3552
3553 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3554 pte_t **ptepp, spinlock_t **ptlp)
3555 {
3556 pgd_t *pgd;
3557 pud_t *pud;
3558 pmd_t *pmd;
3559 pte_t *ptep;
3560
3561 pgd = pgd_offset(mm, address);
3562 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3563 goto out;
3564
3565 pud = pud_offset(pgd, address);
3566 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3567 goto out;
3568
3569 pmd = pmd_offset(pud, address);
3570 VM_BUG_ON(pmd_trans_huge(*pmd));
3571 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3572 goto out;
3573
3574 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3575 if (pmd_huge(*pmd))
3576 goto out;
3577
3578 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3579 if (!ptep)
3580 goto out;
3581 if (!pte_present(*ptep))
3582 goto unlock;
3583 *ptepp = ptep;
3584 return 0;
3585 unlock:
3586 pte_unmap_unlock(ptep, *ptlp);
3587 out:
3588 return -EINVAL;
3589 }
3590
3591 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3592 pte_t **ptepp, spinlock_t **ptlp)
3593 {
3594 int res;
3595
3596 /* (void) is needed to make gcc happy */
3597 (void) __cond_lock(*ptlp,
3598 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3599 return res;
3600 }
3601
3602 /**
3603 * follow_pfn - look up PFN at a user virtual address
3604 * @vma: memory mapping
3605 * @address: user virtual address
3606 * @pfn: location to store found PFN
3607 *
3608 * Only IO mappings and raw PFN mappings are allowed.
3609 *
3610 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3611 */
3612 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3613 unsigned long *pfn)
3614 {
3615 int ret = -EINVAL;
3616 spinlock_t *ptl;
3617 pte_t *ptep;
3618
3619 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3620 return ret;
3621
3622 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3623 if (ret)
3624 return ret;
3625 *pfn = pte_pfn(*ptep);
3626 pte_unmap_unlock(ptep, ptl);
3627 return 0;
3628 }
3629 EXPORT_SYMBOL(follow_pfn);
3630
3631 #ifdef CONFIG_HAVE_IOREMAP_PROT
3632 int follow_phys(struct vm_area_struct *vma,
3633 unsigned long address, unsigned int flags,
3634 unsigned long *prot, resource_size_t *phys)
3635 {
3636 int ret = -EINVAL;
3637 pte_t *ptep, pte;
3638 spinlock_t *ptl;
3639
3640 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3641 goto out;
3642
3643 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3644 goto out;
3645 pte = *ptep;
3646
3647 if ((flags & FOLL_WRITE) && !pte_write(pte))
3648 goto unlock;
3649
3650 *prot = pgprot_val(pte_pgprot(pte));
3651 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3652
3653 ret = 0;
3654 unlock:
3655 pte_unmap_unlock(ptep, ptl);
3656 out:
3657 return ret;
3658 }
3659
3660 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3661 void *buf, int len, int write)
3662 {
3663 resource_size_t phys_addr;
3664 unsigned long prot = 0;
3665 void __iomem *maddr;
3666 int offset = addr & (PAGE_SIZE-1);
3667
3668 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3669 return -EINVAL;
3670
3671 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3672 if (write)
3673 memcpy_toio(maddr + offset, buf, len);
3674 else
3675 memcpy_fromio(buf, maddr + offset, len);
3676 iounmap(maddr);
3677
3678 return len;
3679 }
3680 EXPORT_SYMBOL_GPL(generic_access_phys);
3681 #endif
3682
3683 /*
3684 * Access another process' address space as given in mm. If non-NULL, use the
3685 * given task for page fault accounting.
3686 */
3687 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3688 unsigned long addr, void *buf, int len, int write)
3689 {
3690 struct vm_area_struct *vma;
3691 void *old_buf = buf;
3692
3693 down_read(&mm->mmap_sem);
3694 /* ignore errors, just check how much was successfully transferred */
3695 while (len) {
3696 int bytes, ret, offset;
3697 void *maddr;
3698 struct page *page = NULL;
3699
3700 ret = get_user_pages_remote(tsk, mm, addr, 1,
3701 write, 1, &page, &vma);
3702 if (ret <= 0) {
3703 #ifndef CONFIG_HAVE_IOREMAP_PROT
3704 break;
3705 #else
3706 /*
3707 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3708 * we can access using slightly different code.
3709 */
3710 vma = find_vma(mm, addr);
3711 if (!vma || vma->vm_start > addr)
3712 break;
3713 if (vma->vm_ops && vma->vm_ops->access)
3714 ret = vma->vm_ops->access(vma, addr, buf,
3715 len, write);
3716 if (ret <= 0)
3717 break;
3718 bytes = ret;
3719 #endif
3720 } else {
3721 bytes = len;
3722 offset = addr & (PAGE_SIZE-1);
3723 if (bytes > PAGE_SIZE-offset)
3724 bytes = PAGE_SIZE-offset;
3725
3726 maddr = kmap(page);
3727 if (write) {
3728 copy_to_user_page(vma, page, addr,
3729 maddr + offset, buf, bytes);
3730 set_page_dirty_lock(page);
3731 } else {
3732 copy_from_user_page(vma, page, addr,
3733 buf, maddr + offset, bytes);
3734 }
3735 kunmap(page);
3736 page_cache_release(page);
3737 }
3738 len -= bytes;
3739 buf += bytes;
3740 addr += bytes;
3741 }
3742 up_read(&mm->mmap_sem);
3743
3744 return buf - old_buf;
3745 }
3746
3747 /**
3748 * access_remote_vm - access another process' address space
3749 * @mm: the mm_struct of the target address space
3750 * @addr: start address to access
3751 * @buf: source or destination buffer
3752 * @len: number of bytes to transfer
3753 * @write: whether the access is a write
3754 *
3755 * The caller must hold a reference on @mm.
3756 */
3757 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3758 void *buf, int len, int write)
3759 {
3760 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3761 }
3762
3763 /*
3764 * Access another process' address space.
3765 * Source/target buffer must be kernel space,
3766 * Do not walk the page table directly, use get_user_pages
3767 */
3768 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3769 void *buf, int len, int write)
3770 {
3771 struct mm_struct *mm;
3772 int ret;
3773
3774 mm = get_task_mm(tsk);
3775 if (!mm)
3776 return 0;
3777
3778 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3779 mmput(mm);
3780
3781 return ret;
3782 }
3783
3784 /*
3785 * Print the name of a VMA.
3786 */
3787 void print_vma_addr(char *prefix, unsigned long ip)
3788 {
3789 struct mm_struct *mm = current->mm;
3790 struct vm_area_struct *vma;
3791
3792 /*
3793 * Do not print if we are in atomic
3794 * contexts (in exception stacks, etc.):
3795 */
3796 if (preempt_count())
3797 return;
3798
3799 down_read(&mm->mmap_sem);
3800 vma = find_vma(mm, ip);
3801 if (vma && vma->vm_file) {
3802 struct file *f = vma->vm_file;
3803 char *buf = (char *)__get_free_page(GFP_KERNEL);
3804 if (buf) {
3805 char *p;
3806
3807 p = file_path(f, buf, PAGE_SIZE);
3808 if (IS_ERR(p))
3809 p = "?";
3810 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3811 vma->vm_start,
3812 vma->vm_end - vma->vm_start);
3813 free_page((unsigned long)buf);
3814 }
3815 }
3816 up_read(&mm->mmap_sem);
3817 }
3818
3819 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3820 void __might_fault(const char *file, int line)
3821 {
3822 /*
3823 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3824 * holding the mmap_sem, this is safe because kernel memory doesn't
3825 * get paged out, therefore we'll never actually fault, and the
3826 * below annotations will generate false positives.
3827 */
3828 if (segment_eq(get_fs(), KERNEL_DS))
3829 return;
3830 if (pagefault_disabled())
3831 return;
3832 __might_sleep(file, line, 0);
3833 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3834 if (current->mm)
3835 might_lock_read(&current->mm->mmap_sem);
3836 #endif
3837 }
3838 EXPORT_SYMBOL(__might_fault);
3839 #endif
3840
3841 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3842 static void clear_gigantic_page(struct page *page,
3843 unsigned long addr,
3844 unsigned int pages_per_huge_page)
3845 {
3846 int i;
3847 struct page *p = page;
3848
3849 might_sleep();
3850 for (i = 0; i < pages_per_huge_page;
3851 i++, p = mem_map_next(p, page, i)) {
3852 cond_resched();
3853 clear_user_highpage(p, addr + i * PAGE_SIZE);
3854 }
3855 }
3856 void clear_huge_page(struct page *page,
3857 unsigned long addr, unsigned int pages_per_huge_page)
3858 {
3859 int i;
3860
3861 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3862 clear_gigantic_page(page, addr, pages_per_huge_page);
3863 return;
3864 }
3865
3866 might_sleep();
3867 for (i = 0; i < pages_per_huge_page; i++) {
3868 cond_resched();
3869 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3870 }
3871 }
3872
3873 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3874 unsigned long addr,
3875 struct vm_area_struct *vma,
3876 unsigned int pages_per_huge_page)
3877 {
3878 int i;
3879 struct page *dst_base = dst;
3880 struct page *src_base = src;
3881
3882 for (i = 0; i < pages_per_huge_page; ) {
3883 cond_resched();
3884 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3885
3886 i++;
3887 dst = mem_map_next(dst, dst_base, i);
3888 src = mem_map_next(src, src_base, i);
3889 }
3890 }
3891
3892 void copy_user_huge_page(struct page *dst, struct page *src,
3893 unsigned long addr, struct vm_area_struct *vma,
3894 unsigned int pages_per_huge_page)
3895 {
3896 int i;
3897
3898 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3899 copy_user_gigantic_page(dst, src, addr, vma,
3900 pages_per_huge_page);
3901 return;
3902 }
3903
3904 might_sleep();
3905 for (i = 0; i < pages_per_huge_page; i++) {
3906 cond_resched();
3907 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3908 }
3909 }
3910 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3911
3912 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3913
3914 static struct kmem_cache *page_ptl_cachep;
3915
3916 void __init ptlock_cache_init(void)
3917 {
3918 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3919 SLAB_PANIC, NULL);
3920 }
3921
3922 bool ptlock_alloc(struct page *page)
3923 {
3924 spinlock_t *ptl;
3925
3926 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3927 if (!ptl)
3928 return false;
3929 page->ptl = ptl;
3930 return true;
3931 }
3932
3933 void ptlock_free(struct page *page)
3934 {
3935 kmem_cache_free(page_ptl_cachep, page->ptl);
3936 }
3937 #endif
This page took 0.109984 seconds and 5 git commands to generate.