Merge branch 'for-linville' of git://github.com/kvalo/ath6kl
[deliverable/linux.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62
63 #include <asm/io.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
66 #include <asm/tlb.h>
67 #include <asm/tlbflush.h>
68 #include <asm/pgtable.h>
69
70 #include "internal.h"
71
72 #ifndef CONFIG_NEED_MULTIPLE_NODES
73 /* use the per-pgdat data instead for discontigmem - mbligh */
74 unsigned long max_mapnr;
75 struct page *mem_map;
76
77 EXPORT_SYMBOL(max_mapnr);
78 EXPORT_SYMBOL(mem_map);
79 #endif
80
81 unsigned long num_physpages;
82 /*
83 * A number of key systems in x86 including ioremap() rely on the assumption
84 * that high_memory defines the upper bound on direct map memory, then end
85 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
86 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
87 * and ZONE_HIGHMEM.
88 */
89 void * high_memory;
90
91 EXPORT_SYMBOL(num_physpages);
92 EXPORT_SYMBOL(high_memory);
93
94 /*
95 * Randomize the address space (stacks, mmaps, brk, etc.).
96 *
97 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
98 * as ancient (libc5 based) binaries can segfault. )
99 */
100 int randomize_va_space __read_mostly =
101 #ifdef CONFIG_COMPAT_BRK
102 1;
103 #else
104 2;
105 #endif
106
107 static int __init disable_randmaps(char *s)
108 {
109 randomize_va_space = 0;
110 return 1;
111 }
112 __setup("norandmaps", disable_randmaps);
113
114 unsigned long zero_pfn __read_mostly;
115 unsigned long highest_memmap_pfn __read_mostly;
116
117 /*
118 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
119 */
120 static int __init init_zero_pfn(void)
121 {
122 zero_pfn = page_to_pfn(ZERO_PAGE(0));
123 return 0;
124 }
125 core_initcall(init_zero_pfn);
126
127
128 #if defined(SPLIT_RSS_COUNTING)
129
130 void sync_mm_rss(struct mm_struct *mm)
131 {
132 int i;
133
134 for (i = 0; i < NR_MM_COUNTERS; i++) {
135 if (current->rss_stat.count[i]) {
136 add_mm_counter(mm, i, current->rss_stat.count[i]);
137 current->rss_stat.count[i] = 0;
138 }
139 }
140 current->rss_stat.events = 0;
141 }
142
143 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
144 {
145 struct task_struct *task = current;
146
147 if (likely(task->mm == mm))
148 task->rss_stat.count[member] += val;
149 else
150 add_mm_counter(mm, member, val);
151 }
152 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
153 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
154
155 /* sync counter once per 64 page faults */
156 #define TASK_RSS_EVENTS_THRESH (64)
157 static void check_sync_rss_stat(struct task_struct *task)
158 {
159 if (unlikely(task != current))
160 return;
161 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
162 sync_mm_rss(task->mm);
163 }
164 #else /* SPLIT_RSS_COUNTING */
165
166 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
167 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
168
169 static void check_sync_rss_stat(struct task_struct *task)
170 {
171 }
172
173 #endif /* SPLIT_RSS_COUNTING */
174
175 #ifdef HAVE_GENERIC_MMU_GATHER
176
177 static int tlb_next_batch(struct mmu_gather *tlb)
178 {
179 struct mmu_gather_batch *batch;
180
181 batch = tlb->active;
182 if (batch->next) {
183 tlb->active = batch->next;
184 return 1;
185 }
186
187 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
188 if (!batch)
189 return 0;
190
191 batch->next = NULL;
192 batch->nr = 0;
193 batch->max = MAX_GATHER_BATCH;
194
195 tlb->active->next = batch;
196 tlb->active = batch;
197
198 return 1;
199 }
200
201 /* tlb_gather_mmu
202 * Called to initialize an (on-stack) mmu_gather structure for page-table
203 * tear-down from @mm. The @fullmm argument is used when @mm is without
204 * users and we're going to destroy the full address space (exit/execve).
205 */
206 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
207 {
208 tlb->mm = mm;
209
210 tlb->fullmm = fullmm;
211 tlb->start = -1UL;
212 tlb->end = 0;
213 tlb->need_flush = 0;
214 tlb->fast_mode = (num_possible_cpus() == 1);
215 tlb->local.next = NULL;
216 tlb->local.nr = 0;
217 tlb->local.max = ARRAY_SIZE(tlb->__pages);
218 tlb->active = &tlb->local;
219
220 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
221 tlb->batch = NULL;
222 #endif
223 }
224
225 void tlb_flush_mmu(struct mmu_gather *tlb)
226 {
227 struct mmu_gather_batch *batch;
228
229 if (!tlb->need_flush)
230 return;
231 tlb->need_flush = 0;
232 tlb_flush(tlb);
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 tlb_table_flush(tlb);
235 #endif
236
237 if (tlb_fast_mode(tlb))
238 return;
239
240 for (batch = &tlb->local; batch; batch = batch->next) {
241 free_pages_and_swap_cache(batch->pages, batch->nr);
242 batch->nr = 0;
243 }
244 tlb->active = &tlb->local;
245 }
246
247 /* tlb_finish_mmu
248 * Called at the end of the shootdown operation to free up any resources
249 * that were required.
250 */
251 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
252 {
253 struct mmu_gather_batch *batch, *next;
254
255 tlb->start = start;
256 tlb->end = end;
257 tlb_flush_mmu(tlb);
258
259 /* keep the page table cache within bounds */
260 check_pgt_cache();
261
262 for (batch = tlb->local.next; batch; batch = next) {
263 next = batch->next;
264 free_pages((unsigned long)batch, 0);
265 }
266 tlb->local.next = NULL;
267 }
268
269 /* __tlb_remove_page
270 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
271 * handling the additional races in SMP caused by other CPUs caching valid
272 * mappings in their TLBs. Returns the number of free page slots left.
273 * When out of page slots we must call tlb_flush_mmu().
274 */
275 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
276 {
277 struct mmu_gather_batch *batch;
278
279 VM_BUG_ON(!tlb->need_flush);
280
281 if (tlb_fast_mode(tlb)) {
282 free_page_and_swap_cache(page);
283 return 1; /* avoid calling tlb_flush_mmu() */
284 }
285
286 batch = tlb->active;
287 batch->pages[batch->nr++] = page;
288 if (batch->nr == batch->max) {
289 if (!tlb_next_batch(tlb))
290 return 0;
291 batch = tlb->active;
292 }
293 VM_BUG_ON(batch->nr > batch->max);
294
295 return batch->max - batch->nr;
296 }
297
298 #endif /* HAVE_GENERIC_MMU_GATHER */
299
300 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
301
302 /*
303 * See the comment near struct mmu_table_batch.
304 */
305
306 static void tlb_remove_table_smp_sync(void *arg)
307 {
308 /* Simply deliver the interrupt */
309 }
310
311 static void tlb_remove_table_one(void *table)
312 {
313 /*
314 * This isn't an RCU grace period and hence the page-tables cannot be
315 * assumed to be actually RCU-freed.
316 *
317 * It is however sufficient for software page-table walkers that rely on
318 * IRQ disabling. See the comment near struct mmu_table_batch.
319 */
320 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
321 __tlb_remove_table(table);
322 }
323
324 static void tlb_remove_table_rcu(struct rcu_head *head)
325 {
326 struct mmu_table_batch *batch;
327 int i;
328
329 batch = container_of(head, struct mmu_table_batch, rcu);
330
331 for (i = 0; i < batch->nr; i++)
332 __tlb_remove_table(batch->tables[i]);
333
334 free_page((unsigned long)batch);
335 }
336
337 void tlb_table_flush(struct mmu_gather *tlb)
338 {
339 struct mmu_table_batch **batch = &tlb->batch;
340
341 if (*batch) {
342 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
343 *batch = NULL;
344 }
345 }
346
347 void tlb_remove_table(struct mmu_gather *tlb, void *table)
348 {
349 struct mmu_table_batch **batch = &tlb->batch;
350
351 tlb->need_flush = 1;
352
353 /*
354 * When there's less then two users of this mm there cannot be a
355 * concurrent page-table walk.
356 */
357 if (atomic_read(&tlb->mm->mm_users) < 2) {
358 __tlb_remove_table(table);
359 return;
360 }
361
362 if (*batch == NULL) {
363 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
364 if (*batch == NULL) {
365 tlb_remove_table_one(table);
366 return;
367 }
368 (*batch)->nr = 0;
369 }
370 (*batch)->tables[(*batch)->nr++] = table;
371 if ((*batch)->nr == MAX_TABLE_BATCH)
372 tlb_table_flush(tlb);
373 }
374
375 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
376
377 /*
378 * If a p?d_bad entry is found while walking page tables, report
379 * the error, before resetting entry to p?d_none. Usually (but
380 * very seldom) called out from the p?d_none_or_clear_bad macros.
381 */
382
383 void pgd_clear_bad(pgd_t *pgd)
384 {
385 pgd_ERROR(*pgd);
386 pgd_clear(pgd);
387 }
388
389 void pud_clear_bad(pud_t *pud)
390 {
391 pud_ERROR(*pud);
392 pud_clear(pud);
393 }
394
395 void pmd_clear_bad(pmd_t *pmd)
396 {
397 pmd_ERROR(*pmd);
398 pmd_clear(pmd);
399 }
400
401 /*
402 * Note: this doesn't free the actual pages themselves. That
403 * has been handled earlier when unmapping all the memory regions.
404 */
405 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
406 unsigned long addr)
407 {
408 pgtable_t token = pmd_pgtable(*pmd);
409 pmd_clear(pmd);
410 pte_free_tlb(tlb, token, addr);
411 tlb->mm->nr_ptes--;
412 }
413
414 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
415 unsigned long addr, unsigned long end,
416 unsigned long floor, unsigned long ceiling)
417 {
418 pmd_t *pmd;
419 unsigned long next;
420 unsigned long start;
421
422 start = addr;
423 pmd = pmd_offset(pud, addr);
424 do {
425 next = pmd_addr_end(addr, end);
426 if (pmd_none_or_clear_bad(pmd))
427 continue;
428 free_pte_range(tlb, pmd, addr);
429 } while (pmd++, addr = next, addr != end);
430
431 start &= PUD_MASK;
432 if (start < floor)
433 return;
434 if (ceiling) {
435 ceiling &= PUD_MASK;
436 if (!ceiling)
437 return;
438 }
439 if (end - 1 > ceiling - 1)
440 return;
441
442 pmd = pmd_offset(pud, start);
443 pud_clear(pud);
444 pmd_free_tlb(tlb, pmd, start);
445 }
446
447 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
448 unsigned long addr, unsigned long end,
449 unsigned long floor, unsigned long ceiling)
450 {
451 pud_t *pud;
452 unsigned long next;
453 unsigned long start;
454
455 start = addr;
456 pud = pud_offset(pgd, addr);
457 do {
458 next = pud_addr_end(addr, end);
459 if (pud_none_or_clear_bad(pud))
460 continue;
461 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
462 } while (pud++, addr = next, addr != end);
463
464 start &= PGDIR_MASK;
465 if (start < floor)
466 return;
467 if (ceiling) {
468 ceiling &= PGDIR_MASK;
469 if (!ceiling)
470 return;
471 }
472 if (end - 1 > ceiling - 1)
473 return;
474
475 pud = pud_offset(pgd, start);
476 pgd_clear(pgd);
477 pud_free_tlb(tlb, pud, start);
478 }
479
480 /*
481 * This function frees user-level page tables of a process.
482 *
483 * Must be called with pagetable lock held.
484 */
485 void free_pgd_range(struct mmu_gather *tlb,
486 unsigned long addr, unsigned long end,
487 unsigned long floor, unsigned long ceiling)
488 {
489 pgd_t *pgd;
490 unsigned long next;
491
492 /*
493 * The next few lines have given us lots of grief...
494 *
495 * Why are we testing PMD* at this top level? Because often
496 * there will be no work to do at all, and we'd prefer not to
497 * go all the way down to the bottom just to discover that.
498 *
499 * Why all these "- 1"s? Because 0 represents both the bottom
500 * of the address space and the top of it (using -1 for the
501 * top wouldn't help much: the masks would do the wrong thing).
502 * The rule is that addr 0 and floor 0 refer to the bottom of
503 * the address space, but end 0 and ceiling 0 refer to the top
504 * Comparisons need to use "end - 1" and "ceiling - 1" (though
505 * that end 0 case should be mythical).
506 *
507 * Wherever addr is brought up or ceiling brought down, we must
508 * be careful to reject "the opposite 0" before it confuses the
509 * subsequent tests. But what about where end is brought down
510 * by PMD_SIZE below? no, end can't go down to 0 there.
511 *
512 * Whereas we round start (addr) and ceiling down, by different
513 * masks at different levels, in order to test whether a table
514 * now has no other vmas using it, so can be freed, we don't
515 * bother to round floor or end up - the tests don't need that.
516 */
517
518 addr &= PMD_MASK;
519 if (addr < floor) {
520 addr += PMD_SIZE;
521 if (!addr)
522 return;
523 }
524 if (ceiling) {
525 ceiling &= PMD_MASK;
526 if (!ceiling)
527 return;
528 }
529 if (end - 1 > ceiling - 1)
530 end -= PMD_SIZE;
531 if (addr > end - 1)
532 return;
533
534 pgd = pgd_offset(tlb->mm, addr);
535 do {
536 next = pgd_addr_end(addr, end);
537 if (pgd_none_or_clear_bad(pgd))
538 continue;
539 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
540 } while (pgd++, addr = next, addr != end);
541 }
542
543 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
544 unsigned long floor, unsigned long ceiling)
545 {
546 while (vma) {
547 struct vm_area_struct *next = vma->vm_next;
548 unsigned long addr = vma->vm_start;
549
550 /*
551 * Hide vma from rmap and truncate_pagecache before freeing
552 * pgtables
553 */
554 unlink_anon_vmas(vma);
555 unlink_file_vma(vma);
556
557 if (is_vm_hugetlb_page(vma)) {
558 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
559 floor, next? next->vm_start: ceiling);
560 } else {
561 /*
562 * Optimization: gather nearby vmas into one call down
563 */
564 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
565 && !is_vm_hugetlb_page(next)) {
566 vma = next;
567 next = vma->vm_next;
568 unlink_anon_vmas(vma);
569 unlink_file_vma(vma);
570 }
571 free_pgd_range(tlb, addr, vma->vm_end,
572 floor, next? next->vm_start: ceiling);
573 }
574 vma = next;
575 }
576 }
577
578 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
579 pmd_t *pmd, unsigned long address)
580 {
581 pgtable_t new = pte_alloc_one(mm, address);
582 int wait_split_huge_page;
583 if (!new)
584 return -ENOMEM;
585
586 /*
587 * Ensure all pte setup (eg. pte page lock and page clearing) are
588 * visible before the pte is made visible to other CPUs by being
589 * put into page tables.
590 *
591 * The other side of the story is the pointer chasing in the page
592 * table walking code (when walking the page table without locking;
593 * ie. most of the time). Fortunately, these data accesses consist
594 * of a chain of data-dependent loads, meaning most CPUs (alpha
595 * being the notable exception) will already guarantee loads are
596 * seen in-order. See the alpha page table accessors for the
597 * smp_read_barrier_depends() barriers in page table walking code.
598 */
599 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
600
601 spin_lock(&mm->page_table_lock);
602 wait_split_huge_page = 0;
603 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
604 mm->nr_ptes++;
605 pmd_populate(mm, pmd, new);
606 new = NULL;
607 } else if (unlikely(pmd_trans_splitting(*pmd)))
608 wait_split_huge_page = 1;
609 spin_unlock(&mm->page_table_lock);
610 if (new)
611 pte_free(mm, new);
612 if (wait_split_huge_page)
613 wait_split_huge_page(vma->anon_vma, pmd);
614 return 0;
615 }
616
617 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
618 {
619 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
620 if (!new)
621 return -ENOMEM;
622
623 smp_wmb(); /* See comment in __pte_alloc */
624
625 spin_lock(&init_mm.page_table_lock);
626 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
627 pmd_populate_kernel(&init_mm, pmd, new);
628 new = NULL;
629 } else
630 VM_BUG_ON(pmd_trans_splitting(*pmd));
631 spin_unlock(&init_mm.page_table_lock);
632 if (new)
633 pte_free_kernel(&init_mm, new);
634 return 0;
635 }
636
637 static inline void init_rss_vec(int *rss)
638 {
639 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
640 }
641
642 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
643 {
644 int i;
645
646 if (current->mm == mm)
647 sync_mm_rss(mm);
648 for (i = 0; i < NR_MM_COUNTERS; i++)
649 if (rss[i])
650 add_mm_counter(mm, i, rss[i]);
651 }
652
653 /*
654 * This function is called to print an error when a bad pte
655 * is found. For example, we might have a PFN-mapped pte in
656 * a region that doesn't allow it.
657 *
658 * The calling function must still handle the error.
659 */
660 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
661 pte_t pte, struct page *page)
662 {
663 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
664 pud_t *pud = pud_offset(pgd, addr);
665 pmd_t *pmd = pmd_offset(pud, addr);
666 struct address_space *mapping;
667 pgoff_t index;
668 static unsigned long resume;
669 static unsigned long nr_shown;
670 static unsigned long nr_unshown;
671
672 /*
673 * Allow a burst of 60 reports, then keep quiet for that minute;
674 * or allow a steady drip of one report per second.
675 */
676 if (nr_shown == 60) {
677 if (time_before(jiffies, resume)) {
678 nr_unshown++;
679 return;
680 }
681 if (nr_unshown) {
682 printk(KERN_ALERT
683 "BUG: Bad page map: %lu messages suppressed\n",
684 nr_unshown);
685 nr_unshown = 0;
686 }
687 nr_shown = 0;
688 }
689 if (nr_shown++ == 0)
690 resume = jiffies + 60 * HZ;
691
692 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
693 index = linear_page_index(vma, addr);
694
695 printk(KERN_ALERT
696 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
697 current->comm,
698 (long long)pte_val(pte), (long long)pmd_val(*pmd));
699 if (page)
700 dump_page(page);
701 printk(KERN_ALERT
702 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
703 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
704 /*
705 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
706 */
707 if (vma->vm_ops)
708 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
709 (unsigned long)vma->vm_ops->fault);
710 if (vma->vm_file && vma->vm_file->f_op)
711 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
712 (unsigned long)vma->vm_file->f_op->mmap);
713 dump_stack();
714 add_taint(TAINT_BAD_PAGE);
715 }
716
717 static inline bool is_cow_mapping(vm_flags_t flags)
718 {
719 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
720 }
721
722 /*
723 * vm_normal_page -- This function gets the "struct page" associated with a pte.
724 *
725 * "Special" mappings do not wish to be associated with a "struct page" (either
726 * it doesn't exist, or it exists but they don't want to touch it). In this
727 * case, NULL is returned here. "Normal" mappings do have a struct page.
728 *
729 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
730 * pte bit, in which case this function is trivial. Secondly, an architecture
731 * may not have a spare pte bit, which requires a more complicated scheme,
732 * described below.
733 *
734 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
735 * special mapping (even if there are underlying and valid "struct pages").
736 * COWed pages of a VM_PFNMAP are always normal.
737 *
738 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
739 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
740 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
741 * mapping will always honor the rule
742 *
743 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
744 *
745 * And for normal mappings this is false.
746 *
747 * This restricts such mappings to be a linear translation from virtual address
748 * to pfn. To get around this restriction, we allow arbitrary mappings so long
749 * as the vma is not a COW mapping; in that case, we know that all ptes are
750 * special (because none can have been COWed).
751 *
752 *
753 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
754 *
755 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
756 * page" backing, however the difference is that _all_ pages with a struct
757 * page (that is, those where pfn_valid is true) are refcounted and considered
758 * normal pages by the VM. The disadvantage is that pages are refcounted
759 * (which can be slower and simply not an option for some PFNMAP users). The
760 * advantage is that we don't have to follow the strict linearity rule of
761 * PFNMAP mappings in order to support COWable mappings.
762 *
763 */
764 #ifdef __HAVE_ARCH_PTE_SPECIAL
765 # define HAVE_PTE_SPECIAL 1
766 #else
767 # define HAVE_PTE_SPECIAL 0
768 #endif
769 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
770 pte_t pte)
771 {
772 unsigned long pfn = pte_pfn(pte);
773
774 if (HAVE_PTE_SPECIAL) {
775 if (likely(!pte_special(pte)))
776 goto check_pfn;
777 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
778 return NULL;
779 if (!is_zero_pfn(pfn))
780 print_bad_pte(vma, addr, pte, NULL);
781 return NULL;
782 }
783
784 /* !HAVE_PTE_SPECIAL case follows: */
785
786 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
787 if (vma->vm_flags & VM_MIXEDMAP) {
788 if (!pfn_valid(pfn))
789 return NULL;
790 goto out;
791 } else {
792 unsigned long off;
793 off = (addr - vma->vm_start) >> PAGE_SHIFT;
794 if (pfn == vma->vm_pgoff + off)
795 return NULL;
796 if (!is_cow_mapping(vma->vm_flags))
797 return NULL;
798 }
799 }
800
801 if (is_zero_pfn(pfn))
802 return NULL;
803 check_pfn:
804 if (unlikely(pfn > highest_memmap_pfn)) {
805 print_bad_pte(vma, addr, pte, NULL);
806 return NULL;
807 }
808
809 /*
810 * NOTE! We still have PageReserved() pages in the page tables.
811 * eg. VDSO mappings can cause them to exist.
812 */
813 out:
814 return pfn_to_page(pfn);
815 }
816
817 /*
818 * copy one vm_area from one task to the other. Assumes the page tables
819 * already present in the new task to be cleared in the whole range
820 * covered by this vma.
821 */
822
823 static inline unsigned long
824 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
825 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
826 unsigned long addr, int *rss)
827 {
828 unsigned long vm_flags = vma->vm_flags;
829 pte_t pte = *src_pte;
830 struct page *page;
831
832 /* pte contains position in swap or file, so copy. */
833 if (unlikely(!pte_present(pte))) {
834 if (!pte_file(pte)) {
835 swp_entry_t entry = pte_to_swp_entry(pte);
836
837 if (swap_duplicate(entry) < 0)
838 return entry.val;
839
840 /* make sure dst_mm is on swapoff's mmlist. */
841 if (unlikely(list_empty(&dst_mm->mmlist))) {
842 spin_lock(&mmlist_lock);
843 if (list_empty(&dst_mm->mmlist))
844 list_add(&dst_mm->mmlist,
845 &src_mm->mmlist);
846 spin_unlock(&mmlist_lock);
847 }
848 if (likely(!non_swap_entry(entry)))
849 rss[MM_SWAPENTS]++;
850 else if (is_migration_entry(entry)) {
851 page = migration_entry_to_page(entry);
852
853 if (PageAnon(page))
854 rss[MM_ANONPAGES]++;
855 else
856 rss[MM_FILEPAGES]++;
857
858 if (is_write_migration_entry(entry) &&
859 is_cow_mapping(vm_flags)) {
860 /*
861 * COW mappings require pages in both
862 * parent and child to be set to read.
863 */
864 make_migration_entry_read(&entry);
865 pte = swp_entry_to_pte(entry);
866 set_pte_at(src_mm, addr, src_pte, pte);
867 }
868 }
869 }
870 goto out_set_pte;
871 }
872
873 /*
874 * If it's a COW mapping, write protect it both
875 * in the parent and the child
876 */
877 if (is_cow_mapping(vm_flags)) {
878 ptep_set_wrprotect(src_mm, addr, src_pte);
879 pte = pte_wrprotect(pte);
880 }
881
882 /*
883 * If it's a shared mapping, mark it clean in
884 * the child
885 */
886 if (vm_flags & VM_SHARED)
887 pte = pte_mkclean(pte);
888 pte = pte_mkold(pte);
889
890 page = vm_normal_page(vma, addr, pte);
891 if (page) {
892 get_page(page);
893 page_dup_rmap(page);
894 if (PageAnon(page))
895 rss[MM_ANONPAGES]++;
896 else
897 rss[MM_FILEPAGES]++;
898 }
899
900 out_set_pte:
901 set_pte_at(dst_mm, addr, dst_pte, pte);
902 return 0;
903 }
904
905 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
906 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
907 unsigned long addr, unsigned long end)
908 {
909 pte_t *orig_src_pte, *orig_dst_pte;
910 pte_t *src_pte, *dst_pte;
911 spinlock_t *src_ptl, *dst_ptl;
912 int progress = 0;
913 int rss[NR_MM_COUNTERS];
914 swp_entry_t entry = (swp_entry_t){0};
915
916 again:
917 init_rss_vec(rss);
918
919 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
920 if (!dst_pte)
921 return -ENOMEM;
922 src_pte = pte_offset_map(src_pmd, addr);
923 src_ptl = pte_lockptr(src_mm, src_pmd);
924 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
925 orig_src_pte = src_pte;
926 orig_dst_pte = dst_pte;
927 arch_enter_lazy_mmu_mode();
928
929 do {
930 /*
931 * We are holding two locks at this point - either of them
932 * could generate latencies in another task on another CPU.
933 */
934 if (progress >= 32) {
935 progress = 0;
936 if (need_resched() ||
937 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
938 break;
939 }
940 if (pte_none(*src_pte)) {
941 progress++;
942 continue;
943 }
944 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
945 vma, addr, rss);
946 if (entry.val)
947 break;
948 progress += 8;
949 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
950
951 arch_leave_lazy_mmu_mode();
952 spin_unlock(src_ptl);
953 pte_unmap(orig_src_pte);
954 add_mm_rss_vec(dst_mm, rss);
955 pte_unmap_unlock(orig_dst_pte, dst_ptl);
956 cond_resched();
957
958 if (entry.val) {
959 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
960 return -ENOMEM;
961 progress = 0;
962 }
963 if (addr != end)
964 goto again;
965 return 0;
966 }
967
968 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
969 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
970 unsigned long addr, unsigned long end)
971 {
972 pmd_t *src_pmd, *dst_pmd;
973 unsigned long next;
974
975 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
976 if (!dst_pmd)
977 return -ENOMEM;
978 src_pmd = pmd_offset(src_pud, addr);
979 do {
980 next = pmd_addr_end(addr, end);
981 if (pmd_trans_huge(*src_pmd)) {
982 int err;
983 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
984 err = copy_huge_pmd(dst_mm, src_mm,
985 dst_pmd, src_pmd, addr, vma);
986 if (err == -ENOMEM)
987 return -ENOMEM;
988 if (!err)
989 continue;
990 /* fall through */
991 }
992 if (pmd_none_or_clear_bad(src_pmd))
993 continue;
994 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
995 vma, addr, next))
996 return -ENOMEM;
997 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
998 return 0;
999 }
1000
1001 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1002 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1003 unsigned long addr, unsigned long end)
1004 {
1005 pud_t *src_pud, *dst_pud;
1006 unsigned long next;
1007
1008 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1009 if (!dst_pud)
1010 return -ENOMEM;
1011 src_pud = pud_offset(src_pgd, addr);
1012 do {
1013 next = pud_addr_end(addr, end);
1014 if (pud_none_or_clear_bad(src_pud))
1015 continue;
1016 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1017 vma, addr, next))
1018 return -ENOMEM;
1019 } while (dst_pud++, src_pud++, addr = next, addr != end);
1020 return 0;
1021 }
1022
1023 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1024 struct vm_area_struct *vma)
1025 {
1026 pgd_t *src_pgd, *dst_pgd;
1027 unsigned long next;
1028 unsigned long addr = vma->vm_start;
1029 unsigned long end = vma->vm_end;
1030 unsigned long mmun_start; /* For mmu_notifiers */
1031 unsigned long mmun_end; /* For mmu_notifiers */
1032 bool is_cow;
1033 int ret;
1034
1035 /*
1036 * Don't copy ptes where a page fault will fill them correctly.
1037 * Fork becomes much lighter when there are big shared or private
1038 * readonly mappings. The tradeoff is that copy_page_range is more
1039 * efficient than faulting.
1040 */
1041 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1042 VM_PFNMAP | VM_MIXEDMAP))) {
1043 if (!vma->anon_vma)
1044 return 0;
1045 }
1046
1047 if (is_vm_hugetlb_page(vma))
1048 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1049
1050 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1051 /*
1052 * We do not free on error cases below as remove_vma
1053 * gets called on error from higher level routine
1054 */
1055 ret = track_pfn_copy(vma);
1056 if (ret)
1057 return ret;
1058 }
1059
1060 /*
1061 * We need to invalidate the secondary MMU mappings only when
1062 * there could be a permission downgrade on the ptes of the
1063 * parent mm. And a permission downgrade will only happen if
1064 * is_cow_mapping() returns true.
1065 */
1066 is_cow = is_cow_mapping(vma->vm_flags);
1067 mmun_start = addr;
1068 mmun_end = end;
1069 if (is_cow)
1070 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1071 mmun_end);
1072
1073 ret = 0;
1074 dst_pgd = pgd_offset(dst_mm, addr);
1075 src_pgd = pgd_offset(src_mm, addr);
1076 do {
1077 next = pgd_addr_end(addr, end);
1078 if (pgd_none_or_clear_bad(src_pgd))
1079 continue;
1080 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1081 vma, addr, next))) {
1082 ret = -ENOMEM;
1083 break;
1084 }
1085 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1086
1087 if (is_cow)
1088 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1089 return ret;
1090 }
1091
1092 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1093 struct vm_area_struct *vma, pmd_t *pmd,
1094 unsigned long addr, unsigned long end,
1095 struct zap_details *details)
1096 {
1097 struct mm_struct *mm = tlb->mm;
1098 int force_flush = 0;
1099 int rss[NR_MM_COUNTERS];
1100 spinlock_t *ptl;
1101 pte_t *start_pte;
1102 pte_t *pte;
1103
1104 again:
1105 init_rss_vec(rss);
1106 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1107 pte = start_pte;
1108 arch_enter_lazy_mmu_mode();
1109 do {
1110 pte_t ptent = *pte;
1111 if (pte_none(ptent)) {
1112 continue;
1113 }
1114
1115 if (pte_present(ptent)) {
1116 struct page *page;
1117
1118 page = vm_normal_page(vma, addr, ptent);
1119 if (unlikely(details) && page) {
1120 /*
1121 * unmap_shared_mapping_pages() wants to
1122 * invalidate cache without truncating:
1123 * unmap shared but keep private pages.
1124 */
1125 if (details->check_mapping &&
1126 details->check_mapping != page->mapping)
1127 continue;
1128 /*
1129 * Each page->index must be checked when
1130 * invalidating or truncating nonlinear.
1131 */
1132 if (details->nonlinear_vma &&
1133 (page->index < details->first_index ||
1134 page->index > details->last_index))
1135 continue;
1136 }
1137 ptent = ptep_get_and_clear_full(mm, addr, pte,
1138 tlb->fullmm);
1139 tlb_remove_tlb_entry(tlb, pte, addr);
1140 if (unlikely(!page))
1141 continue;
1142 if (unlikely(details) && details->nonlinear_vma
1143 && linear_page_index(details->nonlinear_vma,
1144 addr) != page->index)
1145 set_pte_at(mm, addr, pte,
1146 pgoff_to_pte(page->index));
1147 if (PageAnon(page))
1148 rss[MM_ANONPAGES]--;
1149 else {
1150 if (pte_dirty(ptent))
1151 set_page_dirty(page);
1152 if (pte_young(ptent) &&
1153 likely(!VM_SequentialReadHint(vma)))
1154 mark_page_accessed(page);
1155 rss[MM_FILEPAGES]--;
1156 }
1157 page_remove_rmap(page);
1158 if (unlikely(page_mapcount(page) < 0))
1159 print_bad_pte(vma, addr, ptent, page);
1160 force_flush = !__tlb_remove_page(tlb, page);
1161 if (force_flush)
1162 break;
1163 continue;
1164 }
1165 /*
1166 * If details->check_mapping, we leave swap entries;
1167 * if details->nonlinear_vma, we leave file entries.
1168 */
1169 if (unlikely(details))
1170 continue;
1171 if (pte_file(ptent)) {
1172 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1173 print_bad_pte(vma, addr, ptent, NULL);
1174 } else {
1175 swp_entry_t entry = pte_to_swp_entry(ptent);
1176
1177 if (!non_swap_entry(entry))
1178 rss[MM_SWAPENTS]--;
1179 else if (is_migration_entry(entry)) {
1180 struct page *page;
1181
1182 page = migration_entry_to_page(entry);
1183
1184 if (PageAnon(page))
1185 rss[MM_ANONPAGES]--;
1186 else
1187 rss[MM_FILEPAGES]--;
1188 }
1189 if (unlikely(!free_swap_and_cache(entry)))
1190 print_bad_pte(vma, addr, ptent, NULL);
1191 }
1192 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1193 } while (pte++, addr += PAGE_SIZE, addr != end);
1194
1195 add_mm_rss_vec(mm, rss);
1196 arch_leave_lazy_mmu_mode();
1197 pte_unmap_unlock(start_pte, ptl);
1198
1199 /*
1200 * mmu_gather ran out of room to batch pages, we break out of
1201 * the PTE lock to avoid doing the potential expensive TLB invalidate
1202 * and page-free while holding it.
1203 */
1204 if (force_flush) {
1205 force_flush = 0;
1206
1207 #ifdef HAVE_GENERIC_MMU_GATHER
1208 tlb->start = addr;
1209 tlb->end = end;
1210 #endif
1211 tlb_flush_mmu(tlb);
1212 if (addr != end)
1213 goto again;
1214 }
1215
1216 return addr;
1217 }
1218
1219 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1220 struct vm_area_struct *vma, pud_t *pud,
1221 unsigned long addr, unsigned long end,
1222 struct zap_details *details)
1223 {
1224 pmd_t *pmd;
1225 unsigned long next;
1226
1227 pmd = pmd_offset(pud, addr);
1228 do {
1229 next = pmd_addr_end(addr, end);
1230 if (pmd_trans_huge(*pmd)) {
1231 if (next - addr != HPAGE_PMD_SIZE) {
1232 #ifdef CONFIG_DEBUG_VM
1233 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1234 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1235 __func__, addr, end,
1236 vma->vm_start,
1237 vma->vm_end);
1238 BUG();
1239 }
1240 #endif
1241 split_huge_page_pmd(vma, addr, pmd);
1242 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1243 goto next;
1244 /* fall through */
1245 }
1246 /*
1247 * Here there can be other concurrent MADV_DONTNEED or
1248 * trans huge page faults running, and if the pmd is
1249 * none or trans huge it can change under us. This is
1250 * because MADV_DONTNEED holds the mmap_sem in read
1251 * mode.
1252 */
1253 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1254 goto next;
1255 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1256 next:
1257 cond_resched();
1258 } while (pmd++, addr = next, addr != end);
1259
1260 return addr;
1261 }
1262
1263 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1264 struct vm_area_struct *vma, pgd_t *pgd,
1265 unsigned long addr, unsigned long end,
1266 struct zap_details *details)
1267 {
1268 pud_t *pud;
1269 unsigned long next;
1270
1271 pud = pud_offset(pgd, addr);
1272 do {
1273 next = pud_addr_end(addr, end);
1274 if (pud_none_or_clear_bad(pud))
1275 continue;
1276 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1277 } while (pud++, addr = next, addr != end);
1278
1279 return addr;
1280 }
1281
1282 static void unmap_page_range(struct mmu_gather *tlb,
1283 struct vm_area_struct *vma,
1284 unsigned long addr, unsigned long end,
1285 struct zap_details *details)
1286 {
1287 pgd_t *pgd;
1288 unsigned long next;
1289
1290 if (details && !details->check_mapping && !details->nonlinear_vma)
1291 details = NULL;
1292
1293 BUG_ON(addr >= end);
1294 mem_cgroup_uncharge_start();
1295 tlb_start_vma(tlb, vma);
1296 pgd = pgd_offset(vma->vm_mm, addr);
1297 do {
1298 next = pgd_addr_end(addr, end);
1299 if (pgd_none_or_clear_bad(pgd))
1300 continue;
1301 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1302 } while (pgd++, addr = next, addr != end);
1303 tlb_end_vma(tlb, vma);
1304 mem_cgroup_uncharge_end();
1305 }
1306
1307
1308 static void unmap_single_vma(struct mmu_gather *tlb,
1309 struct vm_area_struct *vma, unsigned long start_addr,
1310 unsigned long end_addr,
1311 struct zap_details *details)
1312 {
1313 unsigned long start = max(vma->vm_start, start_addr);
1314 unsigned long end;
1315
1316 if (start >= vma->vm_end)
1317 return;
1318 end = min(vma->vm_end, end_addr);
1319 if (end <= vma->vm_start)
1320 return;
1321
1322 if (vma->vm_file)
1323 uprobe_munmap(vma, start, end);
1324
1325 if (unlikely(vma->vm_flags & VM_PFNMAP))
1326 untrack_pfn(vma, 0, 0);
1327
1328 if (start != end) {
1329 if (unlikely(is_vm_hugetlb_page(vma))) {
1330 /*
1331 * It is undesirable to test vma->vm_file as it
1332 * should be non-null for valid hugetlb area.
1333 * However, vm_file will be NULL in the error
1334 * cleanup path of do_mmap_pgoff. When
1335 * hugetlbfs ->mmap method fails,
1336 * do_mmap_pgoff() nullifies vma->vm_file
1337 * before calling this function to clean up.
1338 * Since no pte has actually been setup, it is
1339 * safe to do nothing in this case.
1340 */
1341 if (vma->vm_file) {
1342 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1343 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1344 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1345 }
1346 } else
1347 unmap_page_range(tlb, vma, start, end, details);
1348 }
1349 }
1350
1351 /**
1352 * unmap_vmas - unmap a range of memory covered by a list of vma's
1353 * @tlb: address of the caller's struct mmu_gather
1354 * @vma: the starting vma
1355 * @start_addr: virtual address at which to start unmapping
1356 * @end_addr: virtual address at which to end unmapping
1357 *
1358 * Unmap all pages in the vma list.
1359 *
1360 * Only addresses between `start' and `end' will be unmapped.
1361 *
1362 * The VMA list must be sorted in ascending virtual address order.
1363 *
1364 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1365 * range after unmap_vmas() returns. So the only responsibility here is to
1366 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1367 * drops the lock and schedules.
1368 */
1369 void unmap_vmas(struct mmu_gather *tlb,
1370 struct vm_area_struct *vma, unsigned long start_addr,
1371 unsigned long end_addr)
1372 {
1373 struct mm_struct *mm = vma->vm_mm;
1374
1375 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1376 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1377 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1378 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1379 }
1380
1381 /**
1382 * zap_page_range - remove user pages in a given range
1383 * @vma: vm_area_struct holding the applicable pages
1384 * @start: starting address of pages to zap
1385 * @size: number of bytes to zap
1386 * @details: details of nonlinear truncation or shared cache invalidation
1387 *
1388 * Caller must protect the VMA list
1389 */
1390 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1391 unsigned long size, struct zap_details *details)
1392 {
1393 struct mm_struct *mm = vma->vm_mm;
1394 struct mmu_gather tlb;
1395 unsigned long end = start + size;
1396
1397 lru_add_drain();
1398 tlb_gather_mmu(&tlb, mm, 0);
1399 update_hiwater_rss(mm);
1400 mmu_notifier_invalidate_range_start(mm, start, end);
1401 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1402 unmap_single_vma(&tlb, vma, start, end, details);
1403 mmu_notifier_invalidate_range_end(mm, start, end);
1404 tlb_finish_mmu(&tlb, start, end);
1405 }
1406
1407 /**
1408 * zap_page_range_single - remove user pages in a given range
1409 * @vma: vm_area_struct holding the applicable pages
1410 * @address: starting address of pages to zap
1411 * @size: number of bytes to zap
1412 * @details: details of nonlinear truncation or shared cache invalidation
1413 *
1414 * The range must fit into one VMA.
1415 */
1416 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1417 unsigned long size, struct zap_details *details)
1418 {
1419 struct mm_struct *mm = vma->vm_mm;
1420 struct mmu_gather tlb;
1421 unsigned long end = address + size;
1422
1423 lru_add_drain();
1424 tlb_gather_mmu(&tlb, mm, 0);
1425 update_hiwater_rss(mm);
1426 mmu_notifier_invalidate_range_start(mm, address, end);
1427 unmap_single_vma(&tlb, vma, address, end, details);
1428 mmu_notifier_invalidate_range_end(mm, address, end);
1429 tlb_finish_mmu(&tlb, address, end);
1430 }
1431
1432 /**
1433 * zap_vma_ptes - remove ptes mapping the vma
1434 * @vma: vm_area_struct holding ptes to be zapped
1435 * @address: starting address of pages to zap
1436 * @size: number of bytes to zap
1437 *
1438 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1439 *
1440 * The entire address range must be fully contained within the vma.
1441 *
1442 * Returns 0 if successful.
1443 */
1444 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1445 unsigned long size)
1446 {
1447 if (address < vma->vm_start || address + size > vma->vm_end ||
1448 !(vma->vm_flags & VM_PFNMAP))
1449 return -1;
1450 zap_page_range_single(vma, address, size, NULL);
1451 return 0;
1452 }
1453 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1454
1455 /**
1456 * follow_page - look up a page descriptor from a user-virtual address
1457 * @vma: vm_area_struct mapping @address
1458 * @address: virtual address to look up
1459 * @flags: flags modifying lookup behaviour
1460 *
1461 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1462 *
1463 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1464 * an error pointer if there is a mapping to something not represented
1465 * by a page descriptor (see also vm_normal_page()).
1466 */
1467 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1468 unsigned int flags)
1469 {
1470 pgd_t *pgd;
1471 pud_t *pud;
1472 pmd_t *pmd;
1473 pte_t *ptep, pte;
1474 spinlock_t *ptl;
1475 struct page *page;
1476 struct mm_struct *mm = vma->vm_mm;
1477
1478 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1479 if (!IS_ERR(page)) {
1480 BUG_ON(flags & FOLL_GET);
1481 goto out;
1482 }
1483
1484 page = NULL;
1485 pgd = pgd_offset(mm, address);
1486 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1487 goto no_page_table;
1488
1489 pud = pud_offset(pgd, address);
1490 if (pud_none(*pud))
1491 goto no_page_table;
1492 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1493 BUG_ON(flags & FOLL_GET);
1494 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1495 goto out;
1496 }
1497 if (unlikely(pud_bad(*pud)))
1498 goto no_page_table;
1499
1500 pmd = pmd_offset(pud, address);
1501 if (pmd_none(*pmd))
1502 goto no_page_table;
1503 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1504 BUG_ON(flags & FOLL_GET);
1505 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1506 goto out;
1507 }
1508 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1509 goto no_page_table;
1510 if (pmd_trans_huge(*pmd)) {
1511 if (flags & FOLL_SPLIT) {
1512 split_huge_page_pmd(vma, address, pmd);
1513 goto split_fallthrough;
1514 }
1515 spin_lock(&mm->page_table_lock);
1516 if (likely(pmd_trans_huge(*pmd))) {
1517 if (unlikely(pmd_trans_splitting(*pmd))) {
1518 spin_unlock(&mm->page_table_lock);
1519 wait_split_huge_page(vma->anon_vma, pmd);
1520 } else {
1521 page = follow_trans_huge_pmd(vma, address,
1522 pmd, flags);
1523 spin_unlock(&mm->page_table_lock);
1524 goto out;
1525 }
1526 } else
1527 spin_unlock(&mm->page_table_lock);
1528 /* fall through */
1529 }
1530 split_fallthrough:
1531 if (unlikely(pmd_bad(*pmd)))
1532 goto no_page_table;
1533
1534 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1535
1536 pte = *ptep;
1537 if (!pte_present(pte))
1538 goto no_page;
1539 if ((flags & FOLL_NUMA) && pte_numa(pte))
1540 goto no_page;
1541 if ((flags & FOLL_WRITE) && !pte_write(pte))
1542 goto unlock;
1543
1544 page = vm_normal_page(vma, address, pte);
1545 if (unlikely(!page)) {
1546 if ((flags & FOLL_DUMP) ||
1547 !is_zero_pfn(pte_pfn(pte)))
1548 goto bad_page;
1549 page = pte_page(pte);
1550 }
1551
1552 if (flags & FOLL_GET)
1553 get_page_foll(page);
1554 if (flags & FOLL_TOUCH) {
1555 if ((flags & FOLL_WRITE) &&
1556 !pte_dirty(pte) && !PageDirty(page))
1557 set_page_dirty(page);
1558 /*
1559 * pte_mkyoung() would be more correct here, but atomic care
1560 * is needed to avoid losing the dirty bit: it is easier to use
1561 * mark_page_accessed().
1562 */
1563 mark_page_accessed(page);
1564 }
1565 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1566 /*
1567 * The preliminary mapping check is mainly to avoid the
1568 * pointless overhead of lock_page on the ZERO_PAGE
1569 * which might bounce very badly if there is contention.
1570 *
1571 * If the page is already locked, we don't need to
1572 * handle it now - vmscan will handle it later if and
1573 * when it attempts to reclaim the page.
1574 */
1575 if (page->mapping && trylock_page(page)) {
1576 lru_add_drain(); /* push cached pages to LRU */
1577 /*
1578 * Because we lock page here, and migration is
1579 * blocked by the pte's page reference, and we
1580 * know the page is still mapped, we don't even
1581 * need to check for file-cache page truncation.
1582 */
1583 mlock_vma_page(page);
1584 unlock_page(page);
1585 }
1586 }
1587 unlock:
1588 pte_unmap_unlock(ptep, ptl);
1589 out:
1590 return page;
1591
1592 bad_page:
1593 pte_unmap_unlock(ptep, ptl);
1594 return ERR_PTR(-EFAULT);
1595
1596 no_page:
1597 pte_unmap_unlock(ptep, ptl);
1598 if (!pte_none(pte))
1599 return page;
1600
1601 no_page_table:
1602 /*
1603 * When core dumping an enormous anonymous area that nobody
1604 * has touched so far, we don't want to allocate unnecessary pages or
1605 * page tables. Return error instead of NULL to skip handle_mm_fault,
1606 * then get_dump_page() will return NULL to leave a hole in the dump.
1607 * But we can only make this optimization where a hole would surely
1608 * be zero-filled if handle_mm_fault() actually did handle it.
1609 */
1610 if ((flags & FOLL_DUMP) &&
1611 (!vma->vm_ops || !vma->vm_ops->fault))
1612 return ERR_PTR(-EFAULT);
1613 return page;
1614 }
1615
1616 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1617 {
1618 return stack_guard_page_start(vma, addr) ||
1619 stack_guard_page_end(vma, addr+PAGE_SIZE);
1620 }
1621
1622 /**
1623 * __get_user_pages() - pin user pages in memory
1624 * @tsk: task_struct of target task
1625 * @mm: mm_struct of target mm
1626 * @start: starting user address
1627 * @nr_pages: number of pages from start to pin
1628 * @gup_flags: flags modifying pin behaviour
1629 * @pages: array that receives pointers to the pages pinned.
1630 * Should be at least nr_pages long. Or NULL, if caller
1631 * only intends to ensure the pages are faulted in.
1632 * @vmas: array of pointers to vmas corresponding to each page.
1633 * Or NULL if the caller does not require them.
1634 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1635 *
1636 * Returns number of pages pinned. This may be fewer than the number
1637 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1638 * were pinned, returns -errno. Each page returned must be released
1639 * with a put_page() call when it is finished with. vmas will only
1640 * remain valid while mmap_sem is held.
1641 *
1642 * Must be called with mmap_sem held for read or write.
1643 *
1644 * __get_user_pages walks a process's page tables and takes a reference to
1645 * each struct page that each user address corresponds to at a given
1646 * instant. That is, it takes the page that would be accessed if a user
1647 * thread accesses the given user virtual address at that instant.
1648 *
1649 * This does not guarantee that the page exists in the user mappings when
1650 * __get_user_pages returns, and there may even be a completely different
1651 * page there in some cases (eg. if mmapped pagecache has been invalidated
1652 * and subsequently re faulted). However it does guarantee that the page
1653 * won't be freed completely. And mostly callers simply care that the page
1654 * contains data that was valid *at some point in time*. Typically, an IO
1655 * or similar operation cannot guarantee anything stronger anyway because
1656 * locks can't be held over the syscall boundary.
1657 *
1658 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1659 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1660 * appropriate) must be called after the page is finished with, and
1661 * before put_page is called.
1662 *
1663 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1664 * or mmap_sem contention, and if waiting is needed to pin all pages,
1665 * *@nonblocking will be set to 0.
1666 *
1667 * In most cases, get_user_pages or get_user_pages_fast should be used
1668 * instead of __get_user_pages. __get_user_pages should be used only if
1669 * you need some special @gup_flags.
1670 */
1671 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1672 unsigned long start, int nr_pages, unsigned int gup_flags,
1673 struct page **pages, struct vm_area_struct **vmas,
1674 int *nonblocking)
1675 {
1676 int i;
1677 unsigned long vm_flags;
1678
1679 if (nr_pages <= 0)
1680 return 0;
1681
1682 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1683
1684 /*
1685 * Require read or write permissions.
1686 * If FOLL_FORCE is set, we only require the "MAY" flags.
1687 */
1688 vm_flags = (gup_flags & FOLL_WRITE) ?
1689 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1690 vm_flags &= (gup_flags & FOLL_FORCE) ?
1691 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1692
1693 /*
1694 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1695 * would be called on PROT_NONE ranges. We must never invoke
1696 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1697 * page faults would unprotect the PROT_NONE ranges if
1698 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1699 * bitflag. So to avoid that, don't set FOLL_NUMA if
1700 * FOLL_FORCE is set.
1701 */
1702 if (!(gup_flags & FOLL_FORCE))
1703 gup_flags |= FOLL_NUMA;
1704
1705 i = 0;
1706
1707 do {
1708 struct vm_area_struct *vma;
1709
1710 vma = find_extend_vma(mm, start);
1711 if (!vma && in_gate_area(mm, start)) {
1712 unsigned long pg = start & PAGE_MASK;
1713 pgd_t *pgd;
1714 pud_t *pud;
1715 pmd_t *pmd;
1716 pte_t *pte;
1717
1718 /* user gate pages are read-only */
1719 if (gup_flags & FOLL_WRITE)
1720 return i ? : -EFAULT;
1721 if (pg > TASK_SIZE)
1722 pgd = pgd_offset_k(pg);
1723 else
1724 pgd = pgd_offset_gate(mm, pg);
1725 BUG_ON(pgd_none(*pgd));
1726 pud = pud_offset(pgd, pg);
1727 BUG_ON(pud_none(*pud));
1728 pmd = pmd_offset(pud, pg);
1729 if (pmd_none(*pmd))
1730 return i ? : -EFAULT;
1731 VM_BUG_ON(pmd_trans_huge(*pmd));
1732 pte = pte_offset_map(pmd, pg);
1733 if (pte_none(*pte)) {
1734 pte_unmap(pte);
1735 return i ? : -EFAULT;
1736 }
1737 vma = get_gate_vma(mm);
1738 if (pages) {
1739 struct page *page;
1740
1741 page = vm_normal_page(vma, start, *pte);
1742 if (!page) {
1743 if (!(gup_flags & FOLL_DUMP) &&
1744 is_zero_pfn(pte_pfn(*pte)))
1745 page = pte_page(*pte);
1746 else {
1747 pte_unmap(pte);
1748 return i ? : -EFAULT;
1749 }
1750 }
1751 pages[i] = page;
1752 get_page(page);
1753 }
1754 pte_unmap(pte);
1755 goto next_page;
1756 }
1757
1758 if (!vma ||
1759 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1760 !(vm_flags & vma->vm_flags))
1761 return i ? : -EFAULT;
1762
1763 if (is_vm_hugetlb_page(vma)) {
1764 i = follow_hugetlb_page(mm, vma, pages, vmas,
1765 &start, &nr_pages, i, gup_flags);
1766 continue;
1767 }
1768
1769 do {
1770 struct page *page;
1771 unsigned int foll_flags = gup_flags;
1772
1773 /*
1774 * If we have a pending SIGKILL, don't keep faulting
1775 * pages and potentially allocating memory.
1776 */
1777 if (unlikely(fatal_signal_pending(current)))
1778 return i ? i : -ERESTARTSYS;
1779
1780 cond_resched();
1781 while (!(page = follow_page(vma, start, foll_flags))) {
1782 int ret;
1783 unsigned int fault_flags = 0;
1784
1785 /* For mlock, just skip the stack guard page. */
1786 if (foll_flags & FOLL_MLOCK) {
1787 if (stack_guard_page(vma, start))
1788 goto next_page;
1789 }
1790 if (foll_flags & FOLL_WRITE)
1791 fault_flags |= FAULT_FLAG_WRITE;
1792 if (nonblocking)
1793 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1794 if (foll_flags & FOLL_NOWAIT)
1795 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1796
1797 ret = handle_mm_fault(mm, vma, start,
1798 fault_flags);
1799
1800 if (ret & VM_FAULT_ERROR) {
1801 if (ret & VM_FAULT_OOM)
1802 return i ? i : -ENOMEM;
1803 if (ret & (VM_FAULT_HWPOISON |
1804 VM_FAULT_HWPOISON_LARGE)) {
1805 if (i)
1806 return i;
1807 else if (gup_flags & FOLL_HWPOISON)
1808 return -EHWPOISON;
1809 else
1810 return -EFAULT;
1811 }
1812 if (ret & VM_FAULT_SIGBUS)
1813 return i ? i : -EFAULT;
1814 BUG();
1815 }
1816
1817 if (tsk) {
1818 if (ret & VM_FAULT_MAJOR)
1819 tsk->maj_flt++;
1820 else
1821 tsk->min_flt++;
1822 }
1823
1824 if (ret & VM_FAULT_RETRY) {
1825 if (nonblocking)
1826 *nonblocking = 0;
1827 return i;
1828 }
1829
1830 /*
1831 * The VM_FAULT_WRITE bit tells us that
1832 * do_wp_page has broken COW when necessary,
1833 * even if maybe_mkwrite decided not to set
1834 * pte_write. We can thus safely do subsequent
1835 * page lookups as if they were reads. But only
1836 * do so when looping for pte_write is futile:
1837 * in some cases userspace may also be wanting
1838 * to write to the gotten user page, which a
1839 * read fault here might prevent (a readonly
1840 * page might get reCOWed by userspace write).
1841 */
1842 if ((ret & VM_FAULT_WRITE) &&
1843 !(vma->vm_flags & VM_WRITE))
1844 foll_flags &= ~FOLL_WRITE;
1845
1846 cond_resched();
1847 }
1848 if (IS_ERR(page))
1849 return i ? i : PTR_ERR(page);
1850 if (pages) {
1851 pages[i] = page;
1852
1853 flush_anon_page(vma, page, start);
1854 flush_dcache_page(page);
1855 }
1856 next_page:
1857 if (vmas)
1858 vmas[i] = vma;
1859 i++;
1860 start += PAGE_SIZE;
1861 nr_pages--;
1862 } while (nr_pages && start < vma->vm_end);
1863 } while (nr_pages);
1864 return i;
1865 }
1866 EXPORT_SYMBOL(__get_user_pages);
1867
1868 /*
1869 * fixup_user_fault() - manually resolve a user page fault
1870 * @tsk: the task_struct to use for page fault accounting, or
1871 * NULL if faults are not to be recorded.
1872 * @mm: mm_struct of target mm
1873 * @address: user address
1874 * @fault_flags:flags to pass down to handle_mm_fault()
1875 *
1876 * This is meant to be called in the specific scenario where for locking reasons
1877 * we try to access user memory in atomic context (within a pagefault_disable()
1878 * section), this returns -EFAULT, and we want to resolve the user fault before
1879 * trying again.
1880 *
1881 * Typically this is meant to be used by the futex code.
1882 *
1883 * The main difference with get_user_pages() is that this function will
1884 * unconditionally call handle_mm_fault() which will in turn perform all the
1885 * necessary SW fixup of the dirty and young bits in the PTE, while
1886 * handle_mm_fault() only guarantees to update these in the struct page.
1887 *
1888 * This is important for some architectures where those bits also gate the
1889 * access permission to the page because they are maintained in software. On
1890 * such architectures, gup() will not be enough to make a subsequent access
1891 * succeed.
1892 *
1893 * This should be called with the mm_sem held for read.
1894 */
1895 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1896 unsigned long address, unsigned int fault_flags)
1897 {
1898 struct vm_area_struct *vma;
1899 int ret;
1900
1901 vma = find_extend_vma(mm, address);
1902 if (!vma || address < vma->vm_start)
1903 return -EFAULT;
1904
1905 ret = handle_mm_fault(mm, vma, address, fault_flags);
1906 if (ret & VM_FAULT_ERROR) {
1907 if (ret & VM_FAULT_OOM)
1908 return -ENOMEM;
1909 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1910 return -EHWPOISON;
1911 if (ret & VM_FAULT_SIGBUS)
1912 return -EFAULT;
1913 BUG();
1914 }
1915 if (tsk) {
1916 if (ret & VM_FAULT_MAJOR)
1917 tsk->maj_flt++;
1918 else
1919 tsk->min_flt++;
1920 }
1921 return 0;
1922 }
1923
1924 /*
1925 * get_user_pages() - pin user pages in memory
1926 * @tsk: the task_struct to use for page fault accounting, or
1927 * NULL if faults are not to be recorded.
1928 * @mm: mm_struct of target mm
1929 * @start: starting user address
1930 * @nr_pages: number of pages from start to pin
1931 * @write: whether pages will be written to by the caller
1932 * @force: whether to force write access even if user mapping is
1933 * readonly. This will result in the page being COWed even
1934 * in MAP_SHARED mappings. You do not want this.
1935 * @pages: array that receives pointers to the pages pinned.
1936 * Should be at least nr_pages long. Or NULL, if caller
1937 * only intends to ensure the pages are faulted in.
1938 * @vmas: array of pointers to vmas corresponding to each page.
1939 * Or NULL if the caller does not require them.
1940 *
1941 * Returns number of pages pinned. This may be fewer than the number
1942 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1943 * were pinned, returns -errno. Each page returned must be released
1944 * with a put_page() call when it is finished with. vmas will only
1945 * remain valid while mmap_sem is held.
1946 *
1947 * Must be called with mmap_sem held for read or write.
1948 *
1949 * get_user_pages walks a process's page tables and takes a reference to
1950 * each struct page that each user address corresponds to at a given
1951 * instant. That is, it takes the page that would be accessed if a user
1952 * thread accesses the given user virtual address at that instant.
1953 *
1954 * This does not guarantee that the page exists in the user mappings when
1955 * get_user_pages returns, and there may even be a completely different
1956 * page there in some cases (eg. if mmapped pagecache has been invalidated
1957 * and subsequently re faulted). However it does guarantee that the page
1958 * won't be freed completely. And mostly callers simply care that the page
1959 * contains data that was valid *at some point in time*. Typically, an IO
1960 * or similar operation cannot guarantee anything stronger anyway because
1961 * locks can't be held over the syscall boundary.
1962 *
1963 * If write=0, the page must not be written to. If the page is written to,
1964 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1965 * after the page is finished with, and before put_page is called.
1966 *
1967 * get_user_pages is typically used for fewer-copy IO operations, to get a
1968 * handle on the memory by some means other than accesses via the user virtual
1969 * addresses. The pages may be submitted for DMA to devices or accessed via
1970 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1971 * use the correct cache flushing APIs.
1972 *
1973 * See also get_user_pages_fast, for performance critical applications.
1974 */
1975 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1976 unsigned long start, int nr_pages, int write, int force,
1977 struct page **pages, struct vm_area_struct **vmas)
1978 {
1979 int flags = FOLL_TOUCH;
1980
1981 if (pages)
1982 flags |= FOLL_GET;
1983 if (write)
1984 flags |= FOLL_WRITE;
1985 if (force)
1986 flags |= FOLL_FORCE;
1987
1988 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1989 NULL);
1990 }
1991 EXPORT_SYMBOL(get_user_pages);
1992
1993 /**
1994 * get_dump_page() - pin user page in memory while writing it to core dump
1995 * @addr: user address
1996 *
1997 * Returns struct page pointer of user page pinned for dump,
1998 * to be freed afterwards by page_cache_release() or put_page().
1999 *
2000 * Returns NULL on any kind of failure - a hole must then be inserted into
2001 * the corefile, to preserve alignment with its headers; and also returns
2002 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2003 * allowing a hole to be left in the corefile to save diskspace.
2004 *
2005 * Called without mmap_sem, but after all other threads have been killed.
2006 */
2007 #ifdef CONFIG_ELF_CORE
2008 struct page *get_dump_page(unsigned long addr)
2009 {
2010 struct vm_area_struct *vma;
2011 struct page *page;
2012
2013 if (__get_user_pages(current, current->mm, addr, 1,
2014 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2015 NULL) < 1)
2016 return NULL;
2017 flush_cache_page(vma, addr, page_to_pfn(page));
2018 return page;
2019 }
2020 #endif /* CONFIG_ELF_CORE */
2021
2022 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2023 spinlock_t **ptl)
2024 {
2025 pgd_t * pgd = pgd_offset(mm, addr);
2026 pud_t * pud = pud_alloc(mm, pgd, addr);
2027 if (pud) {
2028 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2029 if (pmd) {
2030 VM_BUG_ON(pmd_trans_huge(*pmd));
2031 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2032 }
2033 }
2034 return NULL;
2035 }
2036
2037 /*
2038 * This is the old fallback for page remapping.
2039 *
2040 * For historical reasons, it only allows reserved pages. Only
2041 * old drivers should use this, and they needed to mark their
2042 * pages reserved for the old functions anyway.
2043 */
2044 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2045 struct page *page, pgprot_t prot)
2046 {
2047 struct mm_struct *mm = vma->vm_mm;
2048 int retval;
2049 pte_t *pte;
2050 spinlock_t *ptl;
2051
2052 retval = -EINVAL;
2053 if (PageAnon(page))
2054 goto out;
2055 retval = -ENOMEM;
2056 flush_dcache_page(page);
2057 pte = get_locked_pte(mm, addr, &ptl);
2058 if (!pte)
2059 goto out;
2060 retval = -EBUSY;
2061 if (!pte_none(*pte))
2062 goto out_unlock;
2063
2064 /* Ok, finally just insert the thing.. */
2065 get_page(page);
2066 inc_mm_counter_fast(mm, MM_FILEPAGES);
2067 page_add_file_rmap(page);
2068 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2069
2070 retval = 0;
2071 pte_unmap_unlock(pte, ptl);
2072 return retval;
2073 out_unlock:
2074 pte_unmap_unlock(pte, ptl);
2075 out:
2076 return retval;
2077 }
2078
2079 /**
2080 * vm_insert_page - insert single page into user vma
2081 * @vma: user vma to map to
2082 * @addr: target user address of this page
2083 * @page: source kernel page
2084 *
2085 * This allows drivers to insert individual pages they've allocated
2086 * into a user vma.
2087 *
2088 * The page has to be a nice clean _individual_ kernel allocation.
2089 * If you allocate a compound page, you need to have marked it as
2090 * such (__GFP_COMP), or manually just split the page up yourself
2091 * (see split_page()).
2092 *
2093 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2094 * took an arbitrary page protection parameter. This doesn't allow
2095 * that. Your vma protection will have to be set up correctly, which
2096 * means that if you want a shared writable mapping, you'd better
2097 * ask for a shared writable mapping!
2098 *
2099 * The page does not need to be reserved.
2100 *
2101 * Usually this function is called from f_op->mmap() handler
2102 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2103 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2104 * function from other places, for example from page-fault handler.
2105 */
2106 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2107 struct page *page)
2108 {
2109 if (addr < vma->vm_start || addr >= vma->vm_end)
2110 return -EFAULT;
2111 if (!page_count(page))
2112 return -EINVAL;
2113 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2114 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2115 BUG_ON(vma->vm_flags & VM_PFNMAP);
2116 vma->vm_flags |= VM_MIXEDMAP;
2117 }
2118 return insert_page(vma, addr, page, vma->vm_page_prot);
2119 }
2120 EXPORT_SYMBOL(vm_insert_page);
2121
2122 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2123 unsigned long pfn, pgprot_t prot)
2124 {
2125 struct mm_struct *mm = vma->vm_mm;
2126 int retval;
2127 pte_t *pte, entry;
2128 spinlock_t *ptl;
2129
2130 retval = -ENOMEM;
2131 pte = get_locked_pte(mm, addr, &ptl);
2132 if (!pte)
2133 goto out;
2134 retval = -EBUSY;
2135 if (!pte_none(*pte))
2136 goto out_unlock;
2137
2138 /* Ok, finally just insert the thing.. */
2139 entry = pte_mkspecial(pfn_pte(pfn, prot));
2140 set_pte_at(mm, addr, pte, entry);
2141 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2142
2143 retval = 0;
2144 out_unlock:
2145 pte_unmap_unlock(pte, ptl);
2146 out:
2147 return retval;
2148 }
2149
2150 /**
2151 * vm_insert_pfn - insert single pfn into user vma
2152 * @vma: user vma to map to
2153 * @addr: target user address of this page
2154 * @pfn: source kernel pfn
2155 *
2156 * Similar to vm_insert_page, this allows drivers to insert individual pages
2157 * they've allocated into a user vma. Same comments apply.
2158 *
2159 * This function should only be called from a vm_ops->fault handler, and
2160 * in that case the handler should return NULL.
2161 *
2162 * vma cannot be a COW mapping.
2163 *
2164 * As this is called only for pages that do not currently exist, we
2165 * do not need to flush old virtual caches or the TLB.
2166 */
2167 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2168 unsigned long pfn)
2169 {
2170 int ret;
2171 pgprot_t pgprot = vma->vm_page_prot;
2172 /*
2173 * Technically, architectures with pte_special can avoid all these
2174 * restrictions (same for remap_pfn_range). However we would like
2175 * consistency in testing and feature parity among all, so we should
2176 * try to keep these invariants in place for everybody.
2177 */
2178 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2179 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2180 (VM_PFNMAP|VM_MIXEDMAP));
2181 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2182 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2183
2184 if (addr < vma->vm_start || addr >= vma->vm_end)
2185 return -EFAULT;
2186 if (track_pfn_insert(vma, &pgprot, pfn))
2187 return -EINVAL;
2188
2189 ret = insert_pfn(vma, addr, pfn, pgprot);
2190
2191 return ret;
2192 }
2193 EXPORT_SYMBOL(vm_insert_pfn);
2194
2195 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2196 unsigned long pfn)
2197 {
2198 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2199
2200 if (addr < vma->vm_start || addr >= vma->vm_end)
2201 return -EFAULT;
2202
2203 /*
2204 * If we don't have pte special, then we have to use the pfn_valid()
2205 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2206 * refcount the page if pfn_valid is true (hence insert_page rather
2207 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2208 * without pte special, it would there be refcounted as a normal page.
2209 */
2210 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2211 struct page *page;
2212
2213 page = pfn_to_page(pfn);
2214 return insert_page(vma, addr, page, vma->vm_page_prot);
2215 }
2216 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2217 }
2218 EXPORT_SYMBOL(vm_insert_mixed);
2219
2220 /*
2221 * maps a range of physical memory into the requested pages. the old
2222 * mappings are removed. any references to nonexistent pages results
2223 * in null mappings (currently treated as "copy-on-access")
2224 */
2225 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2226 unsigned long addr, unsigned long end,
2227 unsigned long pfn, pgprot_t prot)
2228 {
2229 pte_t *pte;
2230 spinlock_t *ptl;
2231
2232 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2233 if (!pte)
2234 return -ENOMEM;
2235 arch_enter_lazy_mmu_mode();
2236 do {
2237 BUG_ON(!pte_none(*pte));
2238 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2239 pfn++;
2240 } while (pte++, addr += PAGE_SIZE, addr != end);
2241 arch_leave_lazy_mmu_mode();
2242 pte_unmap_unlock(pte - 1, ptl);
2243 return 0;
2244 }
2245
2246 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2247 unsigned long addr, unsigned long end,
2248 unsigned long pfn, pgprot_t prot)
2249 {
2250 pmd_t *pmd;
2251 unsigned long next;
2252
2253 pfn -= addr >> PAGE_SHIFT;
2254 pmd = pmd_alloc(mm, pud, addr);
2255 if (!pmd)
2256 return -ENOMEM;
2257 VM_BUG_ON(pmd_trans_huge(*pmd));
2258 do {
2259 next = pmd_addr_end(addr, end);
2260 if (remap_pte_range(mm, pmd, addr, next,
2261 pfn + (addr >> PAGE_SHIFT), prot))
2262 return -ENOMEM;
2263 } while (pmd++, addr = next, addr != end);
2264 return 0;
2265 }
2266
2267 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2268 unsigned long addr, unsigned long end,
2269 unsigned long pfn, pgprot_t prot)
2270 {
2271 pud_t *pud;
2272 unsigned long next;
2273
2274 pfn -= addr >> PAGE_SHIFT;
2275 pud = pud_alloc(mm, pgd, addr);
2276 if (!pud)
2277 return -ENOMEM;
2278 do {
2279 next = pud_addr_end(addr, end);
2280 if (remap_pmd_range(mm, pud, addr, next,
2281 pfn + (addr >> PAGE_SHIFT), prot))
2282 return -ENOMEM;
2283 } while (pud++, addr = next, addr != end);
2284 return 0;
2285 }
2286
2287 /**
2288 * remap_pfn_range - remap kernel memory to userspace
2289 * @vma: user vma to map to
2290 * @addr: target user address to start at
2291 * @pfn: physical address of kernel memory
2292 * @size: size of map area
2293 * @prot: page protection flags for this mapping
2294 *
2295 * Note: this is only safe if the mm semaphore is held when called.
2296 */
2297 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2298 unsigned long pfn, unsigned long size, pgprot_t prot)
2299 {
2300 pgd_t *pgd;
2301 unsigned long next;
2302 unsigned long end = addr + PAGE_ALIGN(size);
2303 struct mm_struct *mm = vma->vm_mm;
2304 int err;
2305
2306 /*
2307 * Physically remapped pages are special. Tell the
2308 * rest of the world about it:
2309 * VM_IO tells people not to look at these pages
2310 * (accesses can have side effects).
2311 * VM_PFNMAP tells the core MM that the base pages are just
2312 * raw PFN mappings, and do not have a "struct page" associated
2313 * with them.
2314 * VM_DONTEXPAND
2315 * Disable vma merging and expanding with mremap().
2316 * VM_DONTDUMP
2317 * Omit vma from core dump, even when VM_IO turned off.
2318 *
2319 * There's a horrible special case to handle copy-on-write
2320 * behaviour that some programs depend on. We mark the "original"
2321 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2322 * See vm_normal_page() for details.
2323 */
2324 if (is_cow_mapping(vma->vm_flags)) {
2325 if (addr != vma->vm_start || end != vma->vm_end)
2326 return -EINVAL;
2327 vma->vm_pgoff = pfn;
2328 }
2329
2330 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2331 if (err)
2332 return -EINVAL;
2333
2334 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2335
2336 BUG_ON(addr >= end);
2337 pfn -= addr >> PAGE_SHIFT;
2338 pgd = pgd_offset(mm, addr);
2339 flush_cache_range(vma, addr, end);
2340 do {
2341 next = pgd_addr_end(addr, end);
2342 err = remap_pud_range(mm, pgd, addr, next,
2343 pfn + (addr >> PAGE_SHIFT), prot);
2344 if (err)
2345 break;
2346 } while (pgd++, addr = next, addr != end);
2347
2348 if (err)
2349 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2350
2351 return err;
2352 }
2353 EXPORT_SYMBOL(remap_pfn_range);
2354
2355 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2356 unsigned long addr, unsigned long end,
2357 pte_fn_t fn, void *data)
2358 {
2359 pte_t *pte;
2360 int err;
2361 pgtable_t token;
2362 spinlock_t *uninitialized_var(ptl);
2363
2364 pte = (mm == &init_mm) ?
2365 pte_alloc_kernel(pmd, addr) :
2366 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2367 if (!pte)
2368 return -ENOMEM;
2369
2370 BUG_ON(pmd_huge(*pmd));
2371
2372 arch_enter_lazy_mmu_mode();
2373
2374 token = pmd_pgtable(*pmd);
2375
2376 do {
2377 err = fn(pte++, token, addr, data);
2378 if (err)
2379 break;
2380 } while (addr += PAGE_SIZE, addr != end);
2381
2382 arch_leave_lazy_mmu_mode();
2383
2384 if (mm != &init_mm)
2385 pte_unmap_unlock(pte-1, ptl);
2386 return err;
2387 }
2388
2389 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2390 unsigned long addr, unsigned long end,
2391 pte_fn_t fn, void *data)
2392 {
2393 pmd_t *pmd;
2394 unsigned long next;
2395 int err;
2396
2397 BUG_ON(pud_huge(*pud));
2398
2399 pmd = pmd_alloc(mm, pud, addr);
2400 if (!pmd)
2401 return -ENOMEM;
2402 do {
2403 next = pmd_addr_end(addr, end);
2404 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2405 if (err)
2406 break;
2407 } while (pmd++, addr = next, addr != end);
2408 return err;
2409 }
2410
2411 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2412 unsigned long addr, unsigned long end,
2413 pte_fn_t fn, void *data)
2414 {
2415 pud_t *pud;
2416 unsigned long next;
2417 int err;
2418
2419 pud = pud_alloc(mm, pgd, addr);
2420 if (!pud)
2421 return -ENOMEM;
2422 do {
2423 next = pud_addr_end(addr, end);
2424 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2425 if (err)
2426 break;
2427 } while (pud++, addr = next, addr != end);
2428 return err;
2429 }
2430
2431 /*
2432 * Scan a region of virtual memory, filling in page tables as necessary
2433 * and calling a provided function on each leaf page table.
2434 */
2435 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2436 unsigned long size, pte_fn_t fn, void *data)
2437 {
2438 pgd_t *pgd;
2439 unsigned long next;
2440 unsigned long end = addr + size;
2441 int err;
2442
2443 BUG_ON(addr >= end);
2444 pgd = pgd_offset(mm, addr);
2445 do {
2446 next = pgd_addr_end(addr, end);
2447 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2448 if (err)
2449 break;
2450 } while (pgd++, addr = next, addr != end);
2451
2452 return err;
2453 }
2454 EXPORT_SYMBOL_GPL(apply_to_page_range);
2455
2456 /*
2457 * handle_pte_fault chooses page fault handler according to an entry
2458 * which was read non-atomically. Before making any commitment, on
2459 * those architectures or configurations (e.g. i386 with PAE) which
2460 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2461 * must check under lock before unmapping the pte and proceeding
2462 * (but do_wp_page is only called after already making such a check;
2463 * and do_anonymous_page can safely check later on).
2464 */
2465 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2466 pte_t *page_table, pte_t orig_pte)
2467 {
2468 int same = 1;
2469 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2470 if (sizeof(pte_t) > sizeof(unsigned long)) {
2471 spinlock_t *ptl = pte_lockptr(mm, pmd);
2472 spin_lock(ptl);
2473 same = pte_same(*page_table, orig_pte);
2474 spin_unlock(ptl);
2475 }
2476 #endif
2477 pte_unmap(page_table);
2478 return same;
2479 }
2480
2481 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2482 {
2483 /*
2484 * If the source page was a PFN mapping, we don't have
2485 * a "struct page" for it. We do a best-effort copy by
2486 * just copying from the original user address. If that
2487 * fails, we just zero-fill it. Live with it.
2488 */
2489 if (unlikely(!src)) {
2490 void *kaddr = kmap_atomic(dst);
2491 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2492
2493 /*
2494 * This really shouldn't fail, because the page is there
2495 * in the page tables. But it might just be unreadable,
2496 * in which case we just give up and fill the result with
2497 * zeroes.
2498 */
2499 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2500 clear_page(kaddr);
2501 kunmap_atomic(kaddr);
2502 flush_dcache_page(dst);
2503 } else
2504 copy_user_highpage(dst, src, va, vma);
2505 }
2506
2507 /*
2508 * This routine handles present pages, when users try to write
2509 * to a shared page. It is done by copying the page to a new address
2510 * and decrementing the shared-page counter for the old page.
2511 *
2512 * Note that this routine assumes that the protection checks have been
2513 * done by the caller (the low-level page fault routine in most cases).
2514 * Thus we can safely just mark it writable once we've done any necessary
2515 * COW.
2516 *
2517 * We also mark the page dirty at this point even though the page will
2518 * change only once the write actually happens. This avoids a few races,
2519 * and potentially makes it more efficient.
2520 *
2521 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2522 * but allow concurrent faults), with pte both mapped and locked.
2523 * We return with mmap_sem still held, but pte unmapped and unlocked.
2524 */
2525 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2526 unsigned long address, pte_t *page_table, pmd_t *pmd,
2527 spinlock_t *ptl, pte_t orig_pte)
2528 __releases(ptl)
2529 {
2530 struct page *old_page, *new_page = NULL;
2531 pte_t entry;
2532 int ret = 0;
2533 int page_mkwrite = 0;
2534 struct page *dirty_page = NULL;
2535 unsigned long mmun_start = 0; /* For mmu_notifiers */
2536 unsigned long mmun_end = 0; /* For mmu_notifiers */
2537
2538 old_page = vm_normal_page(vma, address, orig_pte);
2539 if (!old_page) {
2540 /*
2541 * VM_MIXEDMAP !pfn_valid() case
2542 *
2543 * We should not cow pages in a shared writeable mapping.
2544 * Just mark the pages writable as we can't do any dirty
2545 * accounting on raw pfn maps.
2546 */
2547 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2548 (VM_WRITE|VM_SHARED))
2549 goto reuse;
2550 goto gotten;
2551 }
2552
2553 /*
2554 * Take out anonymous pages first, anonymous shared vmas are
2555 * not dirty accountable.
2556 */
2557 if (PageAnon(old_page) && !PageKsm(old_page)) {
2558 if (!trylock_page(old_page)) {
2559 page_cache_get(old_page);
2560 pte_unmap_unlock(page_table, ptl);
2561 lock_page(old_page);
2562 page_table = pte_offset_map_lock(mm, pmd, address,
2563 &ptl);
2564 if (!pte_same(*page_table, orig_pte)) {
2565 unlock_page(old_page);
2566 goto unlock;
2567 }
2568 page_cache_release(old_page);
2569 }
2570 if (reuse_swap_page(old_page)) {
2571 /*
2572 * The page is all ours. Move it to our anon_vma so
2573 * the rmap code will not search our parent or siblings.
2574 * Protected against the rmap code by the page lock.
2575 */
2576 page_move_anon_rmap(old_page, vma, address);
2577 unlock_page(old_page);
2578 goto reuse;
2579 }
2580 unlock_page(old_page);
2581 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2582 (VM_WRITE|VM_SHARED))) {
2583 /*
2584 * Only catch write-faults on shared writable pages,
2585 * read-only shared pages can get COWed by
2586 * get_user_pages(.write=1, .force=1).
2587 */
2588 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2589 struct vm_fault vmf;
2590 int tmp;
2591
2592 vmf.virtual_address = (void __user *)(address &
2593 PAGE_MASK);
2594 vmf.pgoff = old_page->index;
2595 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2596 vmf.page = old_page;
2597
2598 /*
2599 * Notify the address space that the page is about to
2600 * become writable so that it can prohibit this or wait
2601 * for the page to get into an appropriate state.
2602 *
2603 * We do this without the lock held, so that it can
2604 * sleep if it needs to.
2605 */
2606 page_cache_get(old_page);
2607 pte_unmap_unlock(page_table, ptl);
2608
2609 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2610 if (unlikely(tmp &
2611 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2612 ret = tmp;
2613 goto unwritable_page;
2614 }
2615 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2616 lock_page(old_page);
2617 if (!old_page->mapping) {
2618 ret = 0; /* retry the fault */
2619 unlock_page(old_page);
2620 goto unwritable_page;
2621 }
2622 } else
2623 VM_BUG_ON(!PageLocked(old_page));
2624
2625 /*
2626 * Since we dropped the lock we need to revalidate
2627 * the PTE as someone else may have changed it. If
2628 * they did, we just return, as we can count on the
2629 * MMU to tell us if they didn't also make it writable.
2630 */
2631 page_table = pte_offset_map_lock(mm, pmd, address,
2632 &ptl);
2633 if (!pte_same(*page_table, orig_pte)) {
2634 unlock_page(old_page);
2635 goto unlock;
2636 }
2637
2638 page_mkwrite = 1;
2639 }
2640 dirty_page = old_page;
2641 get_page(dirty_page);
2642
2643 reuse:
2644 flush_cache_page(vma, address, pte_pfn(orig_pte));
2645 entry = pte_mkyoung(orig_pte);
2646 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2647 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2648 update_mmu_cache(vma, address, page_table);
2649 pte_unmap_unlock(page_table, ptl);
2650 ret |= VM_FAULT_WRITE;
2651
2652 if (!dirty_page)
2653 return ret;
2654
2655 /*
2656 * Yes, Virginia, this is actually required to prevent a race
2657 * with clear_page_dirty_for_io() from clearing the page dirty
2658 * bit after it clear all dirty ptes, but before a racing
2659 * do_wp_page installs a dirty pte.
2660 *
2661 * __do_fault is protected similarly.
2662 */
2663 if (!page_mkwrite) {
2664 wait_on_page_locked(dirty_page);
2665 set_page_dirty_balance(dirty_page, page_mkwrite);
2666 /* file_update_time outside page_lock */
2667 if (vma->vm_file)
2668 file_update_time(vma->vm_file);
2669 }
2670 put_page(dirty_page);
2671 if (page_mkwrite) {
2672 struct address_space *mapping = dirty_page->mapping;
2673
2674 set_page_dirty(dirty_page);
2675 unlock_page(dirty_page);
2676 page_cache_release(dirty_page);
2677 if (mapping) {
2678 /*
2679 * Some device drivers do not set page.mapping
2680 * but still dirty their pages
2681 */
2682 balance_dirty_pages_ratelimited(mapping);
2683 }
2684 }
2685
2686 return ret;
2687 }
2688
2689 /*
2690 * Ok, we need to copy. Oh, well..
2691 */
2692 page_cache_get(old_page);
2693 gotten:
2694 pte_unmap_unlock(page_table, ptl);
2695
2696 if (unlikely(anon_vma_prepare(vma)))
2697 goto oom;
2698
2699 if (is_zero_pfn(pte_pfn(orig_pte))) {
2700 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2701 if (!new_page)
2702 goto oom;
2703 } else {
2704 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2705 if (!new_page)
2706 goto oom;
2707 cow_user_page(new_page, old_page, address, vma);
2708 }
2709 __SetPageUptodate(new_page);
2710
2711 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2712 goto oom_free_new;
2713
2714 mmun_start = address & PAGE_MASK;
2715 mmun_end = mmun_start + PAGE_SIZE;
2716 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2717
2718 /*
2719 * Re-check the pte - we dropped the lock
2720 */
2721 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2722 if (likely(pte_same(*page_table, orig_pte))) {
2723 if (old_page) {
2724 if (!PageAnon(old_page)) {
2725 dec_mm_counter_fast(mm, MM_FILEPAGES);
2726 inc_mm_counter_fast(mm, MM_ANONPAGES);
2727 }
2728 } else
2729 inc_mm_counter_fast(mm, MM_ANONPAGES);
2730 flush_cache_page(vma, address, pte_pfn(orig_pte));
2731 entry = mk_pte(new_page, vma->vm_page_prot);
2732 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2733 /*
2734 * Clear the pte entry and flush it first, before updating the
2735 * pte with the new entry. This will avoid a race condition
2736 * seen in the presence of one thread doing SMC and another
2737 * thread doing COW.
2738 */
2739 ptep_clear_flush(vma, address, page_table);
2740 page_add_new_anon_rmap(new_page, vma, address);
2741 /*
2742 * We call the notify macro here because, when using secondary
2743 * mmu page tables (such as kvm shadow page tables), we want the
2744 * new page to be mapped directly into the secondary page table.
2745 */
2746 set_pte_at_notify(mm, address, page_table, entry);
2747 update_mmu_cache(vma, address, page_table);
2748 if (old_page) {
2749 /*
2750 * Only after switching the pte to the new page may
2751 * we remove the mapcount here. Otherwise another
2752 * process may come and find the rmap count decremented
2753 * before the pte is switched to the new page, and
2754 * "reuse" the old page writing into it while our pte
2755 * here still points into it and can be read by other
2756 * threads.
2757 *
2758 * The critical issue is to order this
2759 * page_remove_rmap with the ptp_clear_flush above.
2760 * Those stores are ordered by (if nothing else,)
2761 * the barrier present in the atomic_add_negative
2762 * in page_remove_rmap.
2763 *
2764 * Then the TLB flush in ptep_clear_flush ensures that
2765 * no process can access the old page before the
2766 * decremented mapcount is visible. And the old page
2767 * cannot be reused until after the decremented
2768 * mapcount is visible. So transitively, TLBs to
2769 * old page will be flushed before it can be reused.
2770 */
2771 page_remove_rmap(old_page);
2772 }
2773
2774 /* Free the old page.. */
2775 new_page = old_page;
2776 ret |= VM_FAULT_WRITE;
2777 } else
2778 mem_cgroup_uncharge_page(new_page);
2779
2780 if (new_page)
2781 page_cache_release(new_page);
2782 unlock:
2783 pte_unmap_unlock(page_table, ptl);
2784 if (mmun_end > mmun_start)
2785 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2786 if (old_page) {
2787 /*
2788 * Don't let another task, with possibly unlocked vma,
2789 * keep the mlocked page.
2790 */
2791 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2792 lock_page(old_page); /* LRU manipulation */
2793 munlock_vma_page(old_page);
2794 unlock_page(old_page);
2795 }
2796 page_cache_release(old_page);
2797 }
2798 return ret;
2799 oom_free_new:
2800 page_cache_release(new_page);
2801 oom:
2802 if (old_page)
2803 page_cache_release(old_page);
2804 return VM_FAULT_OOM;
2805
2806 unwritable_page:
2807 page_cache_release(old_page);
2808 return ret;
2809 }
2810
2811 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2812 unsigned long start_addr, unsigned long end_addr,
2813 struct zap_details *details)
2814 {
2815 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2816 }
2817
2818 static inline void unmap_mapping_range_tree(struct rb_root *root,
2819 struct zap_details *details)
2820 {
2821 struct vm_area_struct *vma;
2822 pgoff_t vba, vea, zba, zea;
2823
2824 vma_interval_tree_foreach(vma, root,
2825 details->first_index, details->last_index) {
2826
2827 vba = vma->vm_pgoff;
2828 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2829 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2830 zba = details->first_index;
2831 if (zba < vba)
2832 zba = vba;
2833 zea = details->last_index;
2834 if (zea > vea)
2835 zea = vea;
2836
2837 unmap_mapping_range_vma(vma,
2838 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2839 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2840 details);
2841 }
2842 }
2843
2844 static inline void unmap_mapping_range_list(struct list_head *head,
2845 struct zap_details *details)
2846 {
2847 struct vm_area_struct *vma;
2848
2849 /*
2850 * In nonlinear VMAs there is no correspondence between virtual address
2851 * offset and file offset. So we must perform an exhaustive search
2852 * across *all* the pages in each nonlinear VMA, not just the pages
2853 * whose virtual address lies outside the file truncation point.
2854 */
2855 list_for_each_entry(vma, head, shared.nonlinear) {
2856 details->nonlinear_vma = vma;
2857 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2858 }
2859 }
2860
2861 /**
2862 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2863 * @mapping: the address space containing mmaps to be unmapped.
2864 * @holebegin: byte in first page to unmap, relative to the start of
2865 * the underlying file. This will be rounded down to a PAGE_SIZE
2866 * boundary. Note that this is different from truncate_pagecache(), which
2867 * must keep the partial page. In contrast, we must get rid of
2868 * partial pages.
2869 * @holelen: size of prospective hole in bytes. This will be rounded
2870 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2871 * end of the file.
2872 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2873 * but 0 when invalidating pagecache, don't throw away private data.
2874 */
2875 void unmap_mapping_range(struct address_space *mapping,
2876 loff_t const holebegin, loff_t const holelen, int even_cows)
2877 {
2878 struct zap_details details;
2879 pgoff_t hba = holebegin >> PAGE_SHIFT;
2880 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2881
2882 /* Check for overflow. */
2883 if (sizeof(holelen) > sizeof(hlen)) {
2884 long long holeend =
2885 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2886 if (holeend & ~(long long)ULONG_MAX)
2887 hlen = ULONG_MAX - hba + 1;
2888 }
2889
2890 details.check_mapping = even_cows? NULL: mapping;
2891 details.nonlinear_vma = NULL;
2892 details.first_index = hba;
2893 details.last_index = hba + hlen - 1;
2894 if (details.last_index < details.first_index)
2895 details.last_index = ULONG_MAX;
2896
2897
2898 mutex_lock(&mapping->i_mmap_mutex);
2899 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2900 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2901 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2902 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2903 mutex_unlock(&mapping->i_mmap_mutex);
2904 }
2905 EXPORT_SYMBOL(unmap_mapping_range);
2906
2907 /*
2908 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2909 * but allow concurrent faults), and pte mapped but not yet locked.
2910 * We return with mmap_sem still held, but pte unmapped and unlocked.
2911 */
2912 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2913 unsigned long address, pte_t *page_table, pmd_t *pmd,
2914 unsigned int flags, pte_t orig_pte)
2915 {
2916 spinlock_t *ptl;
2917 struct page *page, *swapcache = NULL;
2918 swp_entry_t entry;
2919 pte_t pte;
2920 int locked;
2921 struct mem_cgroup *ptr;
2922 int exclusive = 0;
2923 int ret = 0;
2924
2925 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2926 goto out;
2927
2928 entry = pte_to_swp_entry(orig_pte);
2929 if (unlikely(non_swap_entry(entry))) {
2930 if (is_migration_entry(entry)) {
2931 migration_entry_wait(mm, pmd, address);
2932 } else if (is_hwpoison_entry(entry)) {
2933 ret = VM_FAULT_HWPOISON;
2934 } else {
2935 print_bad_pte(vma, address, orig_pte, NULL);
2936 ret = VM_FAULT_SIGBUS;
2937 }
2938 goto out;
2939 }
2940 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2941 page = lookup_swap_cache(entry);
2942 if (!page) {
2943 page = swapin_readahead(entry,
2944 GFP_HIGHUSER_MOVABLE, vma, address);
2945 if (!page) {
2946 /*
2947 * Back out if somebody else faulted in this pte
2948 * while we released the pte lock.
2949 */
2950 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2951 if (likely(pte_same(*page_table, orig_pte)))
2952 ret = VM_FAULT_OOM;
2953 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2954 goto unlock;
2955 }
2956
2957 /* Had to read the page from swap area: Major fault */
2958 ret = VM_FAULT_MAJOR;
2959 count_vm_event(PGMAJFAULT);
2960 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2961 } else if (PageHWPoison(page)) {
2962 /*
2963 * hwpoisoned dirty swapcache pages are kept for killing
2964 * owner processes (which may be unknown at hwpoison time)
2965 */
2966 ret = VM_FAULT_HWPOISON;
2967 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2968 goto out_release;
2969 }
2970
2971 locked = lock_page_or_retry(page, mm, flags);
2972
2973 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2974 if (!locked) {
2975 ret |= VM_FAULT_RETRY;
2976 goto out_release;
2977 }
2978
2979 /*
2980 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2981 * release the swapcache from under us. The page pin, and pte_same
2982 * test below, are not enough to exclude that. Even if it is still
2983 * swapcache, we need to check that the page's swap has not changed.
2984 */
2985 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2986 goto out_page;
2987
2988 if (ksm_might_need_to_copy(page, vma, address)) {
2989 swapcache = page;
2990 page = ksm_does_need_to_copy(page, vma, address);
2991
2992 if (unlikely(!page)) {
2993 ret = VM_FAULT_OOM;
2994 page = swapcache;
2995 swapcache = NULL;
2996 goto out_page;
2997 }
2998 }
2999
3000 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3001 ret = VM_FAULT_OOM;
3002 goto out_page;
3003 }
3004
3005 /*
3006 * Back out if somebody else already faulted in this pte.
3007 */
3008 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3009 if (unlikely(!pte_same(*page_table, orig_pte)))
3010 goto out_nomap;
3011
3012 if (unlikely(!PageUptodate(page))) {
3013 ret = VM_FAULT_SIGBUS;
3014 goto out_nomap;
3015 }
3016
3017 /*
3018 * The page isn't present yet, go ahead with the fault.
3019 *
3020 * Be careful about the sequence of operations here.
3021 * To get its accounting right, reuse_swap_page() must be called
3022 * while the page is counted on swap but not yet in mapcount i.e.
3023 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3024 * must be called after the swap_free(), or it will never succeed.
3025 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3026 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3027 * in page->private. In this case, a record in swap_cgroup is silently
3028 * discarded at swap_free().
3029 */
3030
3031 inc_mm_counter_fast(mm, MM_ANONPAGES);
3032 dec_mm_counter_fast(mm, MM_SWAPENTS);
3033 pte = mk_pte(page, vma->vm_page_prot);
3034 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3035 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3036 flags &= ~FAULT_FLAG_WRITE;
3037 ret |= VM_FAULT_WRITE;
3038 exclusive = 1;
3039 }
3040 flush_icache_page(vma, page);
3041 set_pte_at(mm, address, page_table, pte);
3042 do_page_add_anon_rmap(page, vma, address, exclusive);
3043 /* It's better to call commit-charge after rmap is established */
3044 mem_cgroup_commit_charge_swapin(page, ptr);
3045
3046 swap_free(entry);
3047 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3048 try_to_free_swap(page);
3049 unlock_page(page);
3050 if (swapcache) {
3051 /*
3052 * Hold the lock to avoid the swap entry to be reused
3053 * until we take the PT lock for the pte_same() check
3054 * (to avoid false positives from pte_same). For
3055 * further safety release the lock after the swap_free
3056 * so that the swap count won't change under a
3057 * parallel locked swapcache.
3058 */
3059 unlock_page(swapcache);
3060 page_cache_release(swapcache);
3061 }
3062
3063 if (flags & FAULT_FLAG_WRITE) {
3064 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3065 if (ret & VM_FAULT_ERROR)
3066 ret &= VM_FAULT_ERROR;
3067 goto out;
3068 }
3069
3070 /* No need to invalidate - it was non-present before */
3071 update_mmu_cache(vma, address, page_table);
3072 unlock:
3073 pte_unmap_unlock(page_table, ptl);
3074 out:
3075 return ret;
3076 out_nomap:
3077 mem_cgroup_cancel_charge_swapin(ptr);
3078 pte_unmap_unlock(page_table, ptl);
3079 out_page:
3080 unlock_page(page);
3081 out_release:
3082 page_cache_release(page);
3083 if (swapcache) {
3084 unlock_page(swapcache);
3085 page_cache_release(swapcache);
3086 }
3087 return ret;
3088 }
3089
3090 /*
3091 * This is like a special single-page "expand_{down|up}wards()",
3092 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3093 * doesn't hit another vma.
3094 */
3095 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3096 {
3097 address &= PAGE_MASK;
3098 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3099 struct vm_area_struct *prev = vma->vm_prev;
3100
3101 /*
3102 * Is there a mapping abutting this one below?
3103 *
3104 * That's only ok if it's the same stack mapping
3105 * that has gotten split..
3106 */
3107 if (prev && prev->vm_end == address)
3108 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3109
3110 expand_downwards(vma, address - PAGE_SIZE);
3111 }
3112 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3113 struct vm_area_struct *next = vma->vm_next;
3114
3115 /* As VM_GROWSDOWN but s/below/above/ */
3116 if (next && next->vm_start == address + PAGE_SIZE)
3117 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3118
3119 expand_upwards(vma, address + PAGE_SIZE);
3120 }
3121 return 0;
3122 }
3123
3124 /*
3125 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3126 * but allow concurrent faults), and pte mapped but not yet locked.
3127 * We return with mmap_sem still held, but pte unmapped and unlocked.
3128 */
3129 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3130 unsigned long address, pte_t *page_table, pmd_t *pmd,
3131 unsigned int flags)
3132 {
3133 struct page *page;
3134 spinlock_t *ptl;
3135 pte_t entry;
3136
3137 pte_unmap(page_table);
3138
3139 /* Check if we need to add a guard page to the stack */
3140 if (check_stack_guard_page(vma, address) < 0)
3141 return VM_FAULT_SIGBUS;
3142
3143 /* Use the zero-page for reads */
3144 if (!(flags & FAULT_FLAG_WRITE)) {
3145 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3146 vma->vm_page_prot));
3147 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3148 if (!pte_none(*page_table))
3149 goto unlock;
3150 goto setpte;
3151 }
3152
3153 /* Allocate our own private page. */
3154 if (unlikely(anon_vma_prepare(vma)))
3155 goto oom;
3156 page = alloc_zeroed_user_highpage_movable(vma, address);
3157 if (!page)
3158 goto oom;
3159 __SetPageUptodate(page);
3160
3161 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3162 goto oom_free_page;
3163
3164 entry = mk_pte(page, vma->vm_page_prot);
3165 if (vma->vm_flags & VM_WRITE)
3166 entry = pte_mkwrite(pte_mkdirty(entry));
3167
3168 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3169 if (!pte_none(*page_table))
3170 goto release;
3171
3172 inc_mm_counter_fast(mm, MM_ANONPAGES);
3173 page_add_new_anon_rmap(page, vma, address);
3174 setpte:
3175 set_pte_at(mm, address, page_table, entry);
3176
3177 /* No need to invalidate - it was non-present before */
3178 update_mmu_cache(vma, address, page_table);
3179 unlock:
3180 pte_unmap_unlock(page_table, ptl);
3181 return 0;
3182 release:
3183 mem_cgroup_uncharge_page(page);
3184 page_cache_release(page);
3185 goto unlock;
3186 oom_free_page:
3187 page_cache_release(page);
3188 oom:
3189 return VM_FAULT_OOM;
3190 }
3191
3192 /*
3193 * __do_fault() tries to create a new page mapping. It aggressively
3194 * tries to share with existing pages, but makes a separate copy if
3195 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3196 * the next page fault.
3197 *
3198 * As this is called only for pages that do not currently exist, we
3199 * do not need to flush old virtual caches or the TLB.
3200 *
3201 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3202 * but allow concurrent faults), and pte neither mapped nor locked.
3203 * We return with mmap_sem still held, but pte unmapped and unlocked.
3204 */
3205 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3206 unsigned long address, pmd_t *pmd,
3207 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3208 {
3209 pte_t *page_table;
3210 spinlock_t *ptl;
3211 struct page *page;
3212 struct page *cow_page;
3213 pte_t entry;
3214 int anon = 0;
3215 struct page *dirty_page = NULL;
3216 struct vm_fault vmf;
3217 int ret;
3218 int page_mkwrite = 0;
3219
3220 /*
3221 * If we do COW later, allocate page befor taking lock_page()
3222 * on the file cache page. This will reduce lock holding time.
3223 */
3224 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3225
3226 if (unlikely(anon_vma_prepare(vma)))
3227 return VM_FAULT_OOM;
3228
3229 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3230 if (!cow_page)
3231 return VM_FAULT_OOM;
3232
3233 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3234 page_cache_release(cow_page);
3235 return VM_FAULT_OOM;
3236 }
3237 } else
3238 cow_page = NULL;
3239
3240 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3241 vmf.pgoff = pgoff;
3242 vmf.flags = flags;
3243 vmf.page = NULL;
3244
3245 ret = vma->vm_ops->fault(vma, &vmf);
3246 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3247 VM_FAULT_RETRY)))
3248 goto uncharge_out;
3249
3250 if (unlikely(PageHWPoison(vmf.page))) {
3251 if (ret & VM_FAULT_LOCKED)
3252 unlock_page(vmf.page);
3253 ret = VM_FAULT_HWPOISON;
3254 goto uncharge_out;
3255 }
3256
3257 /*
3258 * For consistency in subsequent calls, make the faulted page always
3259 * locked.
3260 */
3261 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3262 lock_page(vmf.page);
3263 else
3264 VM_BUG_ON(!PageLocked(vmf.page));
3265
3266 /*
3267 * Should we do an early C-O-W break?
3268 */
3269 page = vmf.page;
3270 if (flags & FAULT_FLAG_WRITE) {
3271 if (!(vma->vm_flags & VM_SHARED)) {
3272 page = cow_page;
3273 anon = 1;
3274 copy_user_highpage(page, vmf.page, address, vma);
3275 __SetPageUptodate(page);
3276 } else {
3277 /*
3278 * If the page will be shareable, see if the backing
3279 * address space wants to know that the page is about
3280 * to become writable
3281 */
3282 if (vma->vm_ops->page_mkwrite) {
3283 int tmp;
3284
3285 unlock_page(page);
3286 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3287 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3288 if (unlikely(tmp &
3289 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3290 ret = tmp;
3291 goto unwritable_page;
3292 }
3293 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3294 lock_page(page);
3295 if (!page->mapping) {
3296 ret = 0; /* retry the fault */
3297 unlock_page(page);
3298 goto unwritable_page;
3299 }
3300 } else
3301 VM_BUG_ON(!PageLocked(page));
3302 page_mkwrite = 1;
3303 }
3304 }
3305
3306 }
3307
3308 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3309
3310 /*
3311 * This silly early PAGE_DIRTY setting removes a race
3312 * due to the bad i386 page protection. But it's valid
3313 * for other architectures too.
3314 *
3315 * Note that if FAULT_FLAG_WRITE is set, we either now have
3316 * an exclusive copy of the page, or this is a shared mapping,
3317 * so we can make it writable and dirty to avoid having to
3318 * handle that later.
3319 */
3320 /* Only go through if we didn't race with anybody else... */
3321 if (likely(pte_same(*page_table, orig_pte))) {
3322 flush_icache_page(vma, page);
3323 entry = mk_pte(page, vma->vm_page_prot);
3324 if (flags & FAULT_FLAG_WRITE)
3325 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3326 if (anon) {
3327 inc_mm_counter_fast(mm, MM_ANONPAGES);
3328 page_add_new_anon_rmap(page, vma, address);
3329 } else {
3330 inc_mm_counter_fast(mm, MM_FILEPAGES);
3331 page_add_file_rmap(page);
3332 if (flags & FAULT_FLAG_WRITE) {
3333 dirty_page = page;
3334 get_page(dirty_page);
3335 }
3336 }
3337 set_pte_at(mm, address, page_table, entry);
3338
3339 /* no need to invalidate: a not-present page won't be cached */
3340 update_mmu_cache(vma, address, page_table);
3341 } else {
3342 if (cow_page)
3343 mem_cgroup_uncharge_page(cow_page);
3344 if (anon)
3345 page_cache_release(page);
3346 else
3347 anon = 1; /* no anon but release faulted_page */
3348 }
3349
3350 pte_unmap_unlock(page_table, ptl);
3351
3352 if (dirty_page) {
3353 struct address_space *mapping = page->mapping;
3354 int dirtied = 0;
3355
3356 if (set_page_dirty(dirty_page))
3357 dirtied = 1;
3358 unlock_page(dirty_page);
3359 put_page(dirty_page);
3360 if ((dirtied || page_mkwrite) && mapping) {
3361 /*
3362 * Some device drivers do not set page.mapping but still
3363 * dirty their pages
3364 */
3365 balance_dirty_pages_ratelimited(mapping);
3366 }
3367
3368 /* file_update_time outside page_lock */
3369 if (vma->vm_file && !page_mkwrite)
3370 file_update_time(vma->vm_file);
3371 } else {
3372 unlock_page(vmf.page);
3373 if (anon)
3374 page_cache_release(vmf.page);
3375 }
3376
3377 return ret;
3378
3379 unwritable_page:
3380 page_cache_release(page);
3381 return ret;
3382 uncharge_out:
3383 /* fs's fault handler get error */
3384 if (cow_page) {
3385 mem_cgroup_uncharge_page(cow_page);
3386 page_cache_release(cow_page);
3387 }
3388 return ret;
3389 }
3390
3391 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3392 unsigned long address, pte_t *page_table, pmd_t *pmd,
3393 unsigned int flags, pte_t orig_pte)
3394 {
3395 pgoff_t pgoff = (((address & PAGE_MASK)
3396 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3397
3398 pte_unmap(page_table);
3399 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3400 }
3401
3402 /*
3403 * Fault of a previously existing named mapping. Repopulate the pte
3404 * from the encoded file_pte if possible. This enables swappable
3405 * nonlinear vmas.
3406 *
3407 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3408 * but allow concurrent faults), and pte mapped but not yet locked.
3409 * We return with mmap_sem still held, but pte unmapped and unlocked.
3410 */
3411 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3412 unsigned long address, pte_t *page_table, pmd_t *pmd,
3413 unsigned int flags, pte_t orig_pte)
3414 {
3415 pgoff_t pgoff;
3416
3417 flags |= FAULT_FLAG_NONLINEAR;
3418
3419 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3420 return 0;
3421
3422 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3423 /*
3424 * Page table corrupted: show pte and kill process.
3425 */
3426 print_bad_pte(vma, address, orig_pte, NULL);
3427 return VM_FAULT_SIGBUS;
3428 }
3429
3430 pgoff = pte_to_pgoff(orig_pte);
3431 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3432 }
3433
3434 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3435 unsigned long addr, int current_nid)
3436 {
3437 get_page(page);
3438
3439 count_vm_numa_event(NUMA_HINT_FAULTS);
3440 if (current_nid == numa_node_id())
3441 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3442
3443 return mpol_misplaced(page, vma, addr);
3444 }
3445
3446 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3447 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3448 {
3449 struct page *page = NULL;
3450 spinlock_t *ptl;
3451 int current_nid = -1;
3452 int target_nid;
3453 bool migrated = false;
3454
3455 /*
3456 * The "pte" at this point cannot be used safely without
3457 * validation through pte_unmap_same(). It's of NUMA type but
3458 * the pfn may be screwed if the read is non atomic.
3459 *
3460 * ptep_modify_prot_start is not called as this is clearing
3461 * the _PAGE_NUMA bit and it is not really expected that there
3462 * would be concurrent hardware modifications to the PTE.
3463 */
3464 ptl = pte_lockptr(mm, pmd);
3465 spin_lock(ptl);
3466 if (unlikely(!pte_same(*ptep, pte))) {
3467 pte_unmap_unlock(ptep, ptl);
3468 goto out;
3469 }
3470
3471 pte = pte_mknonnuma(pte);
3472 set_pte_at(mm, addr, ptep, pte);
3473 update_mmu_cache(vma, addr, ptep);
3474
3475 page = vm_normal_page(vma, addr, pte);
3476 if (!page) {
3477 pte_unmap_unlock(ptep, ptl);
3478 return 0;
3479 }
3480
3481 current_nid = page_to_nid(page);
3482 target_nid = numa_migrate_prep(page, vma, addr, current_nid);
3483 pte_unmap_unlock(ptep, ptl);
3484 if (target_nid == -1) {
3485 /*
3486 * Account for the fault against the current node if it not
3487 * being replaced regardless of where the page is located.
3488 */
3489 current_nid = numa_node_id();
3490 put_page(page);
3491 goto out;
3492 }
3493
3494 /* Migrate to the requested node */
3495 migrated = migrate_misplaced_page(page, target_nid);
3496 if (migrated)
3497 current_nid = target_nid;
3498
3499 out:
3500 if (current_nid != -1)
3501 task_numa_fault(current_nid, 1, migrated);
3502 return 0;
3503 }
3504
3505 /* NUMA hinting page fault entry point for regular pmds */
3506 #ifdef CONFIG_NUMA_BALANCING
3507 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3508 unsigned long addr, pmd_t *pmdp)
3509 {
3510 pmd_t pmd;
3511 pte_t *pte, *orig_pte;
3512 unsigned long _addr = addr & PMD_MASK;
3513 unsigned long offset;
3514 spinlock_t *ptl;
3515 bool numa = false;
3516 int local_nid = numa_node_id();
3517
3518 spin_lock(&mm->page_table_lock);
3519 pmd = *pmdp;
3520 if (pmd_numa(pmd)) {
3521 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3522 numa = true;
3523 }
3524 spin_unlock(&mm->page_table_lock);
3525
3526 if (!numa)
3527 return 0;
3528
3529 /* we're in a page fault so some vma must be in the range */
3530 BUG_ON(!vma);
3531 BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3532 offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3533 VM_BUG_ON(offset >= PMD_SIZE);
3534 orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3535 pte += offset >> PAGE_SHIFT;
3536 for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3537 pte_t pteval = *pte;
3538 struct page *page;
3539 int curr_nid = local_nid;
3540 int target_nid;
3541 bool migrated;
3542 if (!pte_present(pteval))
3543 continue;
3544 if (!pte_numa(pteval))
3545 continue;
3546 if (addr >= vma->vm_end) {
3547 vma = find_vma(mm, addr);
3548 /* there's a pte present so there must be a vma */
3549 BUG_ON(!vma);
3550 BUG_ON(addr < vma->vm_start);
3551 }
3552 if (pte_numa(pteval)) {
3553 pteval = pte_mknonnuma(pteval);
3554 set_pte_at(mm, addr, pte, pteval);
3555 }
3556 page = vm_normal_page(vma, addr, pteval);
3557 if (unlikely(!page))
3558 continue;
3559 /* only check non-shared pages */
3560 if (unlikely(page_mapcount(page) != 1))
3561 continue;
3562
3563 /*
3564 * Note that the NUMA fault is later accounted to either
3565 * the node that is currently running or where the page is
3566 * migrated to.
3567 */
3568 curr_nid = local_nid;
3569 target_nid = numa_migrate_prep(page, vma, addr,
3570 page_to_nid(page));
3571 if (target_nid == -1) {
3572 put_page(page);
3573 continue;
3574 }
3575
3576 /* Migrate to the requested node */
3577 pte_unmap_unlock(pte, ptl);
3578 migrated = migrate_misplaced_page(page, target_nid);
3579 if (migrated)
3580 curr_nid = target_nid;
3581 task_numa_fault(curr_nid, 1, migrated);
3582
3583 pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
3584 }
3585 pte_unmap_unlock(orig_pte, ptl);
3586
3587 return 0;
3588 }
3589 #else
3590 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3591 unsigned long addr, pmd_t *pmdp)
3592 {
3593 BUG();
3594 return 0;
3595 }
3596 #endif /* CONFIG_NUMA_BALANCING */
3597
3598 /*
3599 * These routines also need to handle stuff like marking pages dirty
3600 * and/or accessed for architectures that don't do it in hardware (most
3601 * RISC architectures). The early dirtying is also good on the i386.
3602 *
3603 * There is also a hook called "update_mmu_cache()" that architectures
3604 * with external mmu caches can use to update those (ie the Sparc or
3605 * PowerPC hashed page tables that act as extended TLBs).
3606 *
3607 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3608 * but allow concurrent faults), and pte mapped but not yet locked.
3609 * We return with mmap_sem still held, but pte unmapped and unlocked.
3610 */
3611 int handle_pte_fault(struct mm_struct *mm,
3612 struct vm_area_struct *vma, unsigned long address,
3613 pte_t *pte, pmd_t *pmd, unsigned int flags)
3614 {
3615 pte_t entry;
3616 spinlock_t *ptl;
3617
3618 entry = *pte;
3619 if (!pte_present(entry)) {
3620 if (pte_none(entry)) {
3621 if (vma->vm_ops) {
3622 if (likely(vma->vm_ops->fault))
3623 return do_linear_fault(mm, vma, address,
3624 pte, pmd, flags, entry);
3625 }
3626 return do_anonymous_page(mm, vma, address,
3627 pte, pmd, flags);
3628 }
3629 if (pte_file(entry))
3630 return do_nonlinear_fault(mm, vma, address,
3631 pte, pmd, flags, entry);
3632 return do_swap_page(mm, vma, address,
3633 pte, pmd, flags, entry);
3634 }
3635
3636 if (pte_numa(entry))
3637 return do_numa_page(mm, vma, address, entry, pte, pmd);
3638
3639 ptl = pte_lockptr(mm, pmd);
3640 spin_lock(ptl);
3641 if (unlikely(!pte_same(*pte, entry)))
3642 goto unlock;
3643 if (flags & FAULT_FLAG_WRITE) {
3644 if (!pte_write(entry))
3645 return do_wp_page(mm, vma, address,
3646 pte, pmd, ptl, entry);
3647 entry = pte_mkdirty(entry);
3648 }
3649 entry = pte_mkyoung(entry);
3650 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3651 update_mmu_cache(vma, address, pte);
3652 } else {
3653 /*
3654 * This is needed only for protection faults but the arch code
3655 * is not yet telling us if this is a protection fault or not.
3656 * This still avoids useless tlb flushes for .text page faults
3657 * with threads.
3658 */
3659 if (flags & FAULT_FLAG_WRITE)
3660 flush_tlb_fix_spurious_fault(vma, address);
3661 }
3662 unlock:
3663 pte_unmap_unlock(pte, ptl);
3664 return 0;
3665 }
3666
3667 /*
3668 * By the time we get here, we already hold the mm semaphore
3669 */
3670 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3671 unsigned long address, unsigned int flags)
3672 {
3673 pgd_t *pgd;
3674 pud_t *pud;
3675 pmd_t *pmd;
3676 pte_t *pte;
3677
3678 __set_current_state(TASK_RUNNING);
3679
3680 count_vm_event(PGFAULT);
3681 mem_cgroup_count_vm_event(mm, PGFAULT);
3682
3683 /* do counter updates before entering really critical section. */
3684 check_sync_rss_stat(current);
3685
3686 if (unlikely(is_vm_hugetlb_page(vma)))
3687 return hugetlb_fault(mm, vma, address, flags);
3688
3689 retry:
3690 pgd = pgd_offset(mm, address);
3691 pud = pud_alloc(mm, pgd, address);
3692 if (!pud)
3693 return VM_FAULT_OOM;
3694 pmd = pmd_alloc(mm, pud, address);
3695 if (!pmd)
3696 return VM_FAULT_OOM;
3697 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3698 if (!vma->vm_ops)
3699 return do_huge_pmd_anonymous_page(mm, vma, address,
3700 pmd, flags);
3701 } else {
3702 pmd_t orig_pmd = *pmd;
3703 int ret;
3704
3705 barrier();
3706 if (pmd_trans_huge(orig_pmd)) {
3707 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3708
3709 if (pmd_numa(orig_pmd))
3710 return do_huge_pmd_numa_page(mm, vma, address,
3711 orig_pmd, pmd);
3712
3713 if (dirty && !pmd_write(orig_pmd)) {
3714 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3715 orig_pmd);
3716 /*
3717 * If COW results in an oom, the huge pmd will
3718 * have been split, so retry the fault on the
3719 * pte for a smaller charge.
3720 */
3721 if (unlikely(ret & VM_FAULT_OOM))
3722 goto retry;
3723 return ret;
3724 } else {
3725 huge_pmd_set_accessed(mm, vma, address, pmd,
3726 orig_pmd, dirty);
3727 }
3728
3729 return 0;
3730 }
3731 }
3732
3733 if (pmd_numa(*pmd))
3734 return do_pmd_numa_page(mm, vma, address, pmd);
3735
3736 /*
3737 * Use __pte_alloc instead of pte_alloc_map, because we can't
3738 * run pte_offset_map on the pmd, if an huge pmd could
3739 * materialize from under us from a different thread.
3740 */
3741 if (unlikely(pmd_none(*pmd)) &&
3742 unlikely(__pte_alloc(mm, vma, pmd, address)))
3743 return VM_FAULT_OOM;
3744 /* if an huge pmd materialized from under us just retry later */
3745 if (unlikely(pmd_trans_huge(*pmd)))
3746 return 0;
3747 /*
3748 * A regular pmd is established and it can't morph into a huge pmd
3749 * from under us anymore at this point because we hold the mmap_sem
3750 * read mode and khugepaged takes it in write mode. So now it's
3751 * safe to run pte_offset_map().
3752 */
3753 pte = pte_offset_map(pmd, address);
3754
3755 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3756 }
3757
3758 #ifndef __PAGETABLE_PUD_FOLDED
3759 /*
3760 * Allocate page upper directory.
3761 * We've already handled the fast-path in-line.
3762 */
3763 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3764 {
3765 pud_t *new = pud_alloc_one(mm, address);
3766 if (!new)
3767 return -ENOMEM;
3768
3769 smp_wmb(); /* See comment in __pte_alloc */
3770
3771 spin_lock(&mm->page_table_lock);
3772 if (pgd_present(*pgd)) /* Another has populated it */
3773 pud_free(mm, new);
3774 else
3775 pgd_populate(mm, pgd, new);
3776 spin_unlock(&mm->page_table_lock);
3777 return 0;
3778 }
3779 #endif /* __PAGETABLE_PUD_FOLDED */
3780
3781 #ifndef __PAGETABLE_PMD_FOLDED
3782 /*
3783 * Allocate page middle directory.
3784 * We've already handled the fast-path in-line.
3785 */
3786 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3787 {
3788 pmd_t *new = pmd_alloc_one(mm, address);
3789 if (!new)
3790 return -ENOMEM;
3791
3792 smp_wmb(); /* See comment in __pte_alloc */
3793
3794 spin_lock(&mm->page_table_lock);
3795 #ifndef __ARCH_HAS_4LEVEL_HACK
3796 if (pud_present(*pud)) /* Another has populated it */
3797 pmd_free(mm, new);
3798 else
3799 pud_populate(mm, pud, new);
3800 #else
3801 if (pgd_present(*pud)) /* Another has populated it */
3802 pmd_free(mm, new);
3803 else
3804 pgd_populate(mm, pud, new);
3805 #endif /* __ARCH_HAS_4LEVEL_HACK */
3806 spin_unlock(&mm->page_table_lock);
3807 return 0;
3808 }
3809 #endif /* __PAGETABLE_PMD_FOLDED */
3810
3811 int make_pages_present(unsigned long addr, unsigned long end)
3812 {
3813 int ret, len, write;
3814 struct vm_area_struct * vma;
3815
3816 vma = find_vma(current->mm, addr);
3817 if (!vma)
3818 return -ENOMEM;
3819 /*
3820 * We want to touch writable mappings with a write fault in order
3821 * to break COW, except for shared mappings because these don't COW
3822 * and we would not want to dirty them for nothing.
3823 */
3824 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3825 BUG_ON(addr >= end);
3826 BUG_ON(end > vma->vm_end);
3827 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3828 ret = get_user_pages(current, current->mm, addr,
3829 len, write, 0, NULL, NULL);
3830 if (ret < 0)
3831 return ret;
3832 return ret == len ? 0 : -EFAULT;
3833 }
3834
3835 #if !defined(__HAVE_ARCH_GATE_AREA)
3836
3837 #if defined(AT_SYSINFO_EHDR)
3838 static struct vm_area_struct gate_vma;
3839
3840 static int __init gate_vma_init(void)
3841 {
3842 gate_vma.vm_mm = NULL;
3843 gate_vma.vm_start = FIXADDR_USER_START;
3844 gate_vma.vm_end = FIXADDR_USER_END;
3845 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3846 gate_vma.vm_page_prot = __P101;
3847
3848 return 0;
3849 }
3850 __initcall(gate_vma_init);
3851 #endif
3852
3853 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3854 {
3855 #ifdef AT_SYSINFO_EHDR
3856 return &gate_vma;
3857 #else
3858 return NULL;
3859 #endif
3860 }
3861
3862 int in_gate_area_no_mm(unsigned long addr)
3863 {
3864 #ifdef AT_SYSINFO_EHDR
3865 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3866 return 1;
3867 #endif
3868 return 0;
3869 }
3870
3871 #endif /* __HAVE_ARCH_GATE_AREA */
3872
3873 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3874 pte_t **ptepp, spinlock_t **ptlp)
3875 {
3876 pgd_t *pgd;
3877 pud_t *pud;
3878 pmd_t *pmd;
3879 pte_t *ptep;
3880
3881 pgd = pgd_offset(mm, address);
3882 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3883 goto out;
3884
3885 pud = pud_offset(pgd, address);
3886 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3887 goto out;
3888
3889 pmd = pmd_offset(pud, address);
3890 VM_BUG_ON(pmd_trans_huge(*pmd));
3891 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3892 goto out;
3893
3894 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3895 if (pmd_huge(*pmd))
3896 goto out;
3897
3898 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3899 if (!ptep)
3900 goto out;
3901 if (!pte_present(*ptep))
3902 goto unlock;
3903 *ptepp = ptep;
3904 return 0;
3905 unlock:
3906 pte_unmap_unlock(ptep, *ptlp);
3907 out:
3908 return -EINVAL;
3909 }
3910
3911 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3912 pte_t **ptepp, spinlock_t **ptlp)
3913 {
3914 int res;
3915
3916 /* (void) is needed to make gcc happy */
3917 (void) __cond_lock(*ptlp,
3918 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3919 return res;
3920 }
3921
3922 /**
3923 * follow_pfn - look up PFN at a user virtual address
3924 * @vma: memory mapping
3925 * @address: user virtual address
3926 * @pfn: location to store found PFN
3927 *
3928 * Only IO mappings and raw PFN mappings are allowed.
3929 *
3930 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3931 */
3932 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3933 unsigned long *pfn)
3934 {
3935 int ret = -EINVAL;
3936 spinlock_t *ptl;
3937 pte_t *ptep;
3938
3939 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3940 return ret;
3941
3942 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3943 if (ret)
3944 return ret;
3945 *pfn = pte_pfn(*ptep);
3946 pte_unmap_unlock(ptep, ptl);
3947 return 0;
3948 }
3949 EXPORT_SYMBOL(follow_pfn);
3950
3951 #ifdef CONFIG_HAVE_IOREMAP_PROT
3952 int follow_phys(struct vm_area_struct *vma,
3953 unsigned long address, unsigned int flags,
3954 unsigned long *prot, resource_size_t *phys)
3955 {
3956 int ret = -EINVAL;
3957 pte_t *ptep, pte;
3958 spinlock_t *ptl;
3959
3960 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3961 goto out;
3962
3963 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3964 goto out;
3965 pte = *ptep;
3966
3967 if ((flags & FOLL_WRITE) && !pte_write(pte))
3968 goto unlock;
3969
3970 *prot = pgprot_val(pte_pgprot(pte));
3971 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3972
3973 ret = 0;
3974 unlock:
3975 pte_unmap_unlock(ptep, ptl);
3976 out:
3977 return ret;
3978 }
3979
3980 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3981 void *buf, int len, int write)
3982 {
3983 resource_size_t phys_addr;
3984 unsigned long prot = 0;
3985 void __iomem *maddr;
3986 int offset = addr & (PAGE_SIZE-1);
3987
3988 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3989 return -EINVAL;
3990
3991 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3992 if (write)
3993 memcpy_toio(maddr + offset, buf, len);
3994 else
3995 memcpy_fromio(buf, maddr + offset, len);
3996 iounmap(maddr);
3997
3998 return len;
3999 }
4000 #endif
4001
4002 /*
4003 * Access another process' address space as given in mm. If non-NULL, use the
4004 * given task for page fault accounting.
4005 */
4006 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4007 unsigned long addr, void *buf, int len, int write)
4008 {
4009 struct vm_area_struct *vma;
4010 void *old_buf = buf;
4011
4012 down_read(&mm->mmap_sem);
4013 /* ignore errors, just check how much was successfully transferred */
4014 while (len) {
4015 int bytes, ret, offset;
4016 void *maddr;
4017 struct page *page = NULL;
4018
4019 ret = get_user_pages(tsk, mm, addr, 1,
4020 write, 1, &page, &vma);
4021 if (ret <= 0) {
4022 /*
4023 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4024 * we can access using slightly different code.
4025 */
4026 #ifdef CONFIG_HAVE_IOREMAP_PROT
4027 vma = find_vma(mm, addr);
4028 if (!vma || vma->vm_start > addr)
4029 break;
4030 if (vma->vm_ops && vma->vm_ops->access)
4031 ret = vma->vm_ops->access(vma, addr, buf,
4032 len, write);
4033 if (ret <= 0)
4034 #endif
4035 break;
4036 bytes = ret;
4037 } else {
4038 bytes = len;
4039 offset = addr & (PAGE_SIZE-1);
4040 if (bytes > PAGE_SIZE-offset)
4041 bytes = PAGE_SIZE-offset;
4042
4043 maddr = kmap(page);
4044 if (write) {
4045 copy_to_user_page(vma, page, addr,
4046 maddr + offset, buf, bytes);
4047 set_page_dirty_lock(page);
4048 } else {
4049 copy_from_user_page(vma, page, addr,
4050 buf, maddr + offset, bytes);
4051 }
4052 kunmap(page);
4053 page_cache_release(page);
4054 }
4055 len -= bytes;
4056 buf += bytes;
4057 addr += bytes;
4058 }
4059 up_read(&mm->mmap_sem);
4060
4061 return buf - old_buf;
4062 }
4063
4064 /**
4065 * access_remote_vm - access another process' address space
4066 * @mm: the mm_struct of the target address space
4067 * @addr: start address to access
4068 * @buf: source or destination buffer
4069 * @len: number of bytes to transfer
4070 * @write: whether the access is a write
4071 *
4072 * The caller must hold a reference on @mm.
4073 */
4074 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4075 void *buf, int len, int write)
4076 {
4077 return __access_remote_vm(NULL, mm, addr, buf, len, write);
4078 }
4079
4080 /*
4081 * Access another process' address space.
4082 * Source/target buffer must be kernel space,
4083 * Do not walk the page table directly, use get_user_pages
4084 */
4085 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4086 void *buf, int len, int write)
4087 {
4088 struct mm_struct *mm;
4089 int ret;
4090
4091 mm = get_task_mm(tsk);
4092 if (!mm)
4093 return 0;
4094
4095 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4096 mmput(mm);
4097
4098 return ret;
4099 }
4100
4101 /*
4102 * Print the name of a VMA.
4103 */
4104 void print_vma_addr(char *prefix, unsigned long ip)
4105 {
4106 struct mm_struct *mm = current->mm;
4107 struct vm_area_struct *vma;
4108
4109 /*
4110 * Do not print if we are in atomic
4111 * contexts (in exception stacks, etc.):
4112 */
4113 if (preempt_count())
4114 return;
4115
4116 down_read(&mm->mmap_sem);
4117 vma = find_vma(mm, ip);
4118 if (vma && vma->vm_file) {
4119 struct file *f = vma->vm_file;
4120 char *buf = (char *)__get_free_page(GFP_KERNEL);
4121 if (buf) {
4122 char *p;
4123
4124 p = d_path(&f->f_path, buf, PAGE_SIZE);
4125 if (IS_ERR(p))
4126 p = "?";
4127 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4128 vma->vm_start,
4129 vma->vm_end - vma->vm_start);
4130 free_page((unsigned long)buf);
4131 }
4132 }
4133 up_read(&mm->mmap_sem);
4134 }
4135
4136 #ifdef CONFIG_PROVE_LOCKING
4137 void might_fault(void)
4138 {
4139 /*
4140 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4141 * holding the mmap_sem, this is safe because kernel memory doesn't
4142 * get paged out, therefore we'll never actually fault, and the
4143 * below annotations will generate false positives.
4144 */
4145 if (segment_eq(get_fs(), KERNEL_DS))
4146 return;
4147
4148 might_sleep();
4149 /*
4150 * it would be nicer only to annotate paths which are not under
4151 * pagefault_disable, however that requires a larger audit and
4152 * providing helpers like get_user_atomic.
4153 */
4154 if (!in_atomic() && current->mm)
4155 might_lock_read(&current->mm->mmap_sem);
4156 }
4157 EXPORT_SYMBOL(might_fault);
4158 #endif
4159
4160 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4161 static void clear_gigantic_page(struct page *page,
4162 unsigned long addr,
4163 unsigned int pages_per_huge_page)
4164 {
4165 int i;
4166 struct page *p = page;
4167
4168 might_sleep();
4169 for (i = 0; i < pages_per_huge_page;
4170 i++, p = mem_map_next(p, page, i)) {
4171 cond_resched();
4172 clear_user_highpage(p, addr + i * PAGE_SIZE);
4173 }
4174 }
4175 void clear_huge_page(struct page *page,
4176 unsigned long addr, unsigned int pages_per_huge_page)
4177 {
4178 int i;
4179
4180 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4181 clear_gigantic_page(page, addr, pages_per_huge_page);
4182 return;
4183 }
4184
4185 might_sleep();
4186 for (i = 0; i < pages_per_huge_page; i++) {
4187 cond_resched();
4188 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4189 }
4190 }
4191
4192 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4193 unsigned long addr,
4194 struct vm_area_struct *vma,
4195 unsigned int pages_per_huge_page)
4196 {
4197 int i;
4198 struct page *dst_base = dst;
4199 struct page *src_base = src;
4200
4201 for (i = 0; i < pages_per_huge_page; ) {
4202 cond_resched();
4203 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4204
4205 i++;
4206 dst = mem_map_next(dst, dst_base, i);
4207 src = mem_map_next(src, src_base, i);
4208 }
4209 }
4210
4211 void copy_user_huge_page(struct page *dst, struct page *src,
4212 unsigned long addr, struct vm_area_struct *vma,
4213 unsigned int pages_per_huge_page)
4214 {
4215 int i;
4216
4217 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4218 copy_user_gigantic_page(dst, src, addr, vma,
4219 pages_per_huge_page);
4220 return;
4221 }
4222
4223 might_sleep();
4224 for (i = 0; i < pages_per_huge_page; i++) {
4225 cond_resched();
4226 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4227 }
4228 }
4229 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
This page took 0.123819 seconds and 6 git commands to generate.