mm: munlock: remove unnecessary call to lru_add_drain()
[deliverable/linux.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/export.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
93 #include <linux/mmu_notifier.h>
94
95 #include <asm/tlbflush.h>
96 #include <asm/uaccess.h>
97 #include <linux/random.h>
98
99 #include "internal.h"
100
101 /* Internal flags */
102 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
103 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
104
105 static struct kmem_cache *policy_cache;
106 static struct kmem_cache *sn_cache;
107
108 /* Highest zone. An specific allocation for a zone below that is not
109 policied. */
110 enum zone_type policy_zone = 0;
111
112 /*
113 * run-time system-wide default policy => local allocation
114 */
115 static struct mempolicy default_policy = {
116 .refcnt = ATOMIC_INIT(1), /* never free it */
117 .mode = MPOL_PREFERRED,
118 .flags = MPOL_F_LOCAL,
119 };
120
121 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
122
123 static struct mempolicy *get_task_policy(struct task_struct *p)
124 {
125 struct mempolicy *pol = p->mempolicy;
126
127 if (!pol) {
128 int node = numa_node_id();
129
130 if (node != NUMA_NO_NODE) {
131 pol = &preferred_node_policy[node];
132 /*
133 * preferred_node_policy is not initialised early in
134 * boot
135 */
136 if (!pol->mode)
137 pol = NULL;
138 }
139 }
140
141 return pol;
142 }
143
144 static const struct mempolicy_operations {
145 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
146 /*
147 * If read-side task has no lock to protect task->mempolicy, write-side
148 * task will rebind the task->mempolicy by two step. The first step is
149 * setting all the newly nodes, and the second step is cleaning all the
150 * disallowed nodes. In this way, we can avoid finding no node to alloc
151 * page.
152 * If we have a lock to protect task->mempolicy in read-side, we do
153 * rebind directly.
154 *
155 * step:
156 * MPOL_REBIND_ONCE - do rebind work at once
157 * MPOL_REBIND_STEP1 - set all the newly nodes
158 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
159 */
160 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
161 enum mpol_rebind_step step);
162 } mpol_ops[MPOL_MAX];
163
164 /* Check that the nodemask contains at least one populated zone */
165 static int is_valid_nodemask(const nodemask_t *nodemask)
166 {
167 return nodes_intersects(*nodemask, node_states[N_MEMORY]);
168 }
169
170 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
171 {
172 return pol->flags & MPOL_MODE_FLAGS;
173 }
174
175 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
176 const nodemask_t *rel)
177 {
178 nodemask_t tmp;
179 nodes_fold(tmp, *orig, nodes_weight(*rel));
180 nodes_onto(*ret, tmp, *rel);
181 }
182
183 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
184 {
185 if (nodes_empty(*nodes))
186 return -EINVAL;
187 pol->v.nodes = *nodes;
188 return 0;
189 }
190
191 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
192 {
193 if (!nodes)
194 pol->flags |= MPOL_F_LOCAL; /* local allocation */
195 else if (nodes_empty(*nodes))
196 return -EINVAL; /* no allowed nodes */
197 else
198 pol->v.preferred_node = first_node(*nodes);
199 return 0;
200 }
201
202 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
203 {
204 if (!is_valid_nodemask(nodes))
205 return -EINVAL;
206 pol->v.nodes = *nodes;
207 return 0;
208 }
209
210 /*
211 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
212 * any, for the new policy. mpol_new() has already validated the nodes
213 * parameter with respect to the policy mode and flags. But, we need to
214 * handle an empty nodemask with MPOL_PREFERRED here.
215 *
216 * Must be called holding task's alloc_lock to protect task's mems_allowed
217 * and mempolicy. May also be called holding the mmap_semaphore for write.
218 */
219 static int mpol_set_nodemask(struct mempolicy *pol,
220 const nodemask_t *nodes, struct nodemask_scratch *nsc)
221 {
222 int ret;
223
224 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
225 if (pol == NULL)
226 return 0;
227 /* Check N_MEMORY */
228 nodes_and(nsc->mask1,
229 cpuset_current_mems_allowed, node_states[N_MEMORY]);
230
231 VM_BUG_ON(!nodes);
232 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
233 nodes = NULL; /* explicit local allocation */
234 else {
235 if (pol->flags & MPOL_F_RELATIVE_NODES)
236 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
237 else
238 nodes_and(nsc->mask2, *nodes, nsc->mask1);
239
240 if (mpol_store_user_nodemask(pol))
241 pol->w.user_nodemask = *nodes;
242 else
243 pol->w.cpuset_mems_allowed =
244 cpuset_current_mems_allowed;
245 }
246
247 if (nodes)
248 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
249 else
250 ret = mpol_ops[pol->mode].create(pol, NULL);
251 return ret;
252 }
253
254 /*
255 * This function just creates a new policy, does some check and simple
256 * initialization. You must invoke mpol_set_nodemask() to set nodes.
257 */
258 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
259 nodemask_t *nodes)
260 {
261 struct mempolicy *policy;
262
263 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
264 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
265
266 if (mode == MPOL_DEFAULT) {
267 if (nodes && !nodes_empty(*nodes))
268 return ERR_PTR(-EINVAL);
269 return NULL;
270 }
271 VM_BUG_ON(!nodes);
272
273 /*
274 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
275 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
276 * All other modes require a valid pointer to a non-empty nodemask.
277 */
278 if (mode == MPOL_PREFERRED) {
279 if (nodes_empty(*nodes)) {
280 if (((flags & MPOL_F_STATIC_NODES) ||
281 (flags & MPOL_F_RELATIVE_NODES)))
282 return ERR_PTR(-EINVAL);
283 }
284 } else if (mode == MPOL_LOCAL) {
285 if (!nodes_empty(*nodes))
286 return ERR_PTR(-EINVAL);
287 mode = MPOL_PREFERRED;
288 } else if (nodes_empty(*nodes))
289 return ERR_PTR(-EINVAL);
290 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
291 if (!policy)
292 return ERR_PTR(-ENOMEM);
293 atomic_set(&policy->refcnt, 1);
294 policy->mode = mode;
295 policy->flags = flags;
296
297 return policy;
298 }
299
300 /* Slow path of a mpol destructor. */
301 void __mpol_put(struct mempolicy *p)
302 {
303 if (!atomic_dec_and_test(&p->refcnt))
304 return;
305 kmem_cache_free(policy_cache, p);
306 }
307
308 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
309 enum mpol_rebind_step step)
310 {
311 }
312
313 /*
314 * step:
315 * MPOL_REBIND_ONCE - do rebind work at once
316 * MPOL_REBIND_STEP1 - set all the newly nodes
317 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
318 */
319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
320 enum mpol_rebind_step step)
321 {
322 nodemask_t tmp;
323
324 if (pol->flags & MPOL_F_STATIC_NODES)
325 nodes_and(tmp, pol->w.user_nodemask, *nodes);
326 else if (pol->flags & MPOL_F_RELATIVE_NODES)
327 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
328 else {
329 /*
330 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
331 * result
332 */
333 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
334 nodes_remap(tmp, pol->v.nodes,
335 pol->w.cpuset_mems_allowed, *nodes);
336 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
337 } else if (step == MPOL_REBIND_STEP2) {
338 tmp = pol->w.cpuset_mems_allowed;
339 pol->w.cpuset_mems_allowed = *nodes;
340 } else
341 BUG();
342 }
343
344 if (nodes_empty(tmp))
345 tmp = *nodes;
346
347 if (step == MPOL_REBIND_STEP1)
348 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
349 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
350 pol->v.nodes = tmp;
351 else
352 BUG();
353
354 if (!node_isset(current->il_next, tmp)) {
355 current->il_next = next_node(current->il_next, tmp);
356 if (current->il_next >= MAX_NUMNODES)
357 current->il_next = first_node(tmp);
358 if (current->il_next >= MAX_NUMNODES)
359 current->il_next = numa_node_id();
360 }
361 }
362
363 static void mpol_rebind_preferred(struct mempolicy *pol,
364 const nodemask_t *nodes,
365 enum mpol_rebind_step step)
366 {
367 nodemask_t tmp;
368
369 if (pol->flags & MPOL_F_STATIC_NODES) {
370 int node = first_node(pol->w.user_nodemask);
371
372 if (node_isset(node, *nodes)) {
373 pol->v.preferred_node = node;
374 pol->flags &= ~MPOL_F_LOCAL;
375 } else
376 pol->flags |= MPOL_F_LOCAL;
377 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
378 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
379 pol->v.preferred_node = first_node(tmp);
380 } else if (!(pol->flags & MPOL_F_LOCAL)) {
381 pol->v.preferred_node = node_remap(pol->v.preferred_node,
382 pol->w.cpuset_mems_allowed,
383 *nodes);
384 pol->w.cpuset_mems_allowed = *nodes;
385 }
386 }
387
388 /*
389 * mpol_rebind_policy - Migrate a policy to a different set of nodes
390 *
391 * If read-side task has no lock to protect task->mempolicy, write-side
392 * task will rebind the task->mempolicy by two step. The first step is
393 * setting all the newly nodes, and the second step is cleaning all the
394 * disallowed nodes. In this way, we can avoid finding no node to alloc
395 * page.
396 * If we have a lock to protect task->mempolicy in read-side, we do
397 * rebind directly.
398 *
399 * step:
400 * MPOL_REBIND_ONCE - do rebind work at once
401 * MPOL_REBIND_STEP1 - set all the newly nodes
402 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
403 */
404 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
405 enum mpol_rebind_step step)
406 {
407 if (!pol)
408 return;
409 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
410 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
411 return;
412
413 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
414 return;
415
416 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
417 BUG();
418
419 if (step == MPOL_REBIND_STEP1)
420 pol->flags |= MPOL_F_REBINDING;
421 else if (step == MPOL_REBIND_STEP2)
422 pol->flags &= ~MPOL_F_REBINDING;
423 else if (step >= MPOL_REBIND_NSTEP)
424 BUG();
425
426 mpol_ops[pol->mode].rebind(pol, newmask, step);
427 }
428
429 /*
430 * Wrapper for mpol_rebind_policy() that just requires task
431 * pointer, and updates task mempolicy.
432 *
433 * Called with task's alloc_lock held.
434 */
435
436 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
437 enum mpol_rebind_step step)
438 {
439 mpol_rebind_policy(tsk->mempolicy, new, step);
440 }
441
442 /*
443 * Rebind each vma in mm to new nodemask.
444 *
445 * Call holding a reference to mm. Takes mm->mmap_sem during call.
446 */
447
448 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
449 {
450 struct vm_area_struct *vma;
451
452 down_write(&mm->mmap_sem);
453 for (vma = mm->mmap; vma; vma = vma->vm_next)
454 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
455 up_write(&mm->mmap_sem);
456 }
457
458 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
459 [MPOL_DEFAULT] = {
460 .rebind = mpol_rebind_default,
461 },
462 [MPOL_INTERLEAVE] = {
463 .create = mpol_new_interleave,
464 .rebind = mpol_rebind_nodemask,
465 },
466 [MPOL_PREFERRED] = {
467 .create = mpol_new_preferred,
468 .rebind = mpol_rebind_preferred,
469 },
470 [MPOL_BIND] = {
471 .create = mpol_new_bind,
472 .rebind = mpol_rebind_nodemask,
473 },
474 };
475
476 static void migrate_page_add(struct page *page, struct list_head *pagelist,
477 unsigned long flags);
478
479 /*
480 * Scan through pages checking if pages follow certain conditions,
481 * and move them to the pagelist if they do.
482 */
483 static int queue_pages_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
484 unsigned long addr, unsigned long end,
485 const nodemask_t *nodes, unsigned long flags,
486 void *private)
487 {
488 pte_t *orig_pte;
489 pte_t *pte;
490 spinlock_t *ptl;
491
492 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
493 do {
494 struct page *page;
495 int nid;
496
497 if (!pte_present(*pte))
498 continue;
499 page = vm_normal_page(vma, addr, *pte);
500 if (!page)
501 continue;
502 /*
503 * vm_normal_page() filters out zero pages, but there might
504 * still be PageReserved pages to skip, perhaps in a VDSO.
505 */
506 if (PageReserved(page))
507 continue;
508 nid = page_to_nid(page);
509 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
510 continue;
511
512 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
513 migrate_page_add(page, private, flags);
514 else
515 break;
516 } while (pte++, addr += PAGE_SIZE, addr != end);
517 pte_unmap_unlock(orig_pte, ptl);
518 return addr != end;
519 }
520
521 static void queue_pages_hugetlb_pmd_range(struct vm_area_struct *vma,
522 pmd_t *pmd, const nodemask_t *nodes, unsigned long flags,
523 void *private)
524 {
525 #ifdef CONFIG_HUGETLB_PAGE
526 int nid;
527 struct page *page;
528
529 spin_lock(&vma->vm_mm->page_table_lock);
530 page = pte_page(huge_ptep_get((pte_t *)pmd));
531 nid = page_to_nid(page);
532 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
533 goto unlock;
534 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
535 if (flags & (MPOL_MF_MOVE_ALL) ||
536 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
537 isolate_huge_page(page, private);
538 unlock:
539 spin_unlock(&vma->vm_mm->page_table_lock);
540 #else
541 BUG();
542 #endif
543 }
544
545 static inline int queue_pages_pmd_range(struct vm_area_struct *vma, pud_t *pud,
546 unsigned long addr, unsigned long end,
547 const nodemask_t *nodes, unsigned long flags,
548 void *private)
549 {
550 pmd_t *pmd;
551 unsigned long next;
552
553 pmd = pmd_offset(pud, addr);
554 do {
555 next = pmd_addr_end(addr, end);
556 if (!pmd_present(*pmd))
557 continue;
558 if (pmd_huge(*pmd) && is_vm_hugetlb_page(vma)) {
559 queue_pages_hugetlb_pmd_range(vma, pmd, nodes,
560 flags, private);
561 continue;
562 }
563 split_huge_page_pmd(vma, addr, pmd);
564 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
565 continue;
566 if (queue_pages_pte_range(vma, pmd, addr, next, nodes,
567 flags, private))
568 return -EIO;
569 } while (pmd++, addr = next, addr != end);
570 return 0;
571 }
572
573 static inline int queue_pages_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
574 unsigned long addr, unsigned long end,
575 const nodemask_t *nodes, unsigned long flags,
576 void *private)
577 {
578 pud_t *pud;
579 unsigned long next;
580
581 pud = pud_offset(pgd, addr);
582 do {
583 next = pud_addr_end(addr, end);
584 if (pud_huge(*pud) && is_vm_hugetlb_page(vma))
585 continue;
586 if (pud_none_or_clear_bad(pud))
587 continue;
588 if (queue_pages_pmd_range(vma, pud, addr, next, nodes,
589 flags, private))
590 return -EIO;
591 } while (pud++, addr = next, addr != end);
592 return 0;
593 }
594
595 static inline int queue_pages_pgd_range(struct vm_area_struct *vma,
596 unsigned long addr, unsigned long end,
597 const nodemask_t *nodes, unsigned long flags,
598 void *private)
599 {
600 pgd_t *pgd;
601 unsigned long next;
602
603 pgd = pgd_offset(vma->vm_mm, addr);
604 do {
605 next = pgd_addr_end(addr, end);
606 if (pgd_none_or_clear_bad(pgd))
607 continue;
608 if (queue_pages_pud_range(vma, pgd, addr, next, nodes,
609 flags, private))
610 return -EIO;
611 } while (pgd++, addr = next, addr != end);
612 return 0;
613 }
614
615 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
616 /*
617 * This is used to mark a range of virtual addresses to be inaccessible.
618 * These are later cleared by a NUMA hinting fault. Depending on these
619 * faults, pages may be migrated for better NUMA placement.
620 *
621 * This is assuming that NUMA faults are handled using PROT_NONE. If
622 * an architecture makes a different choice, it will need further
623 * changes to the core.
624 */
625 unsigned long change_prot_numa(struct vm_area_struct *vma,
626 unsigned long addr, unsigned long end)
627 {
628 int nr_updated;
629 BUILD_BUG_ON(_PAGE_NUMA != _PAGE_PROTNONE);
630
631 nr_updated = change_protection(vma, addr, end, vma->vm_page_prot, 0, 1);
632 if (nr_updated)
633 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
634
635 return nr_updated;
636 }
637 #else
638 static unsigned long change_prot_numa(struct vm_area_struct *vma,
639 unsigned long addr, unsigned long end)
640 {
641 return 0;
642 }
643 #endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */
644
645 /*
646 * Walk through page tables and collect pages to be migrated.
647 *
648 * If pages found in a given range are on a set of nodes (determined by
649 * @nodes and @flags,) it's isolated and queued to the pagelist which is
650 * passed via @private.)
651 */
652 static struct vm_area_struct *
653 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
654 const nodemask_t *nodes, unsigned long flags, void *private)
655 {
656 int err;
657 struct vm_area_struct *first, *vma, *prev;
658
659
660 first = find_vma(mm, start);
661 if (!first)
662 return ERR_PTR(-EFAULT);
663 prev = NULL;
664 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
665 unsigned long endvma = vma->vm_end;
666
667 if (endvma > end)
668 endvma = end;
669 if (vma->vm_start > start)
670 start = vma->vm_start;
671
672 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
673 if (!vma->vm_next && vma->vm_end < end)
674 return ERR_PTR(-EFAULT);
675 if (prev && prev->vm_end < vma->vm_start)
676 return ERR_PTR(-EFAULT);
677 }
678
679 if (flags & MPOL_MF_LAZY) {
680 change_prot_numa(vma, start, endvma);
681 goto next;
682 }
683
684 if ((flags & MPOL_MF_STRICT) ||
685 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
686 vma_migratable(vma))) {
687
688 err = queue_pages_pgd_range(vma, start, endvma, nodes,
689 flags, private);
690 if (err) {
691 first = ERR_PTR(err);
692 break;
693 }
694 }
695 next:
696 prev = vma;
697 }
698 return first;
699 }
700
701 /*
702 * Apply policy to a single VMA
703 * This must be called with the mmap_sem held for writing.
704 */
705 static int vma_replace_policy(struct vm_area_struct *vma,
706 struct mempolicy *pol)
707 {
708 int err;
709 struct mempolicy *old;
710 struct mempolicy *new;
711
712 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
713 vma->vm_start, vma->vm_end, vma->vm_pgoff,
714 vma->vm_ops, vma->vm_file,
715 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
716
717 new = mpol_dup(pol);
718 if (IS_ERR(new))
719 return PTR_ERR(new);
720
721 if (vma->vm_ops && vma->vm_ops->set_policy) {
722 err = vma->vm_ops->set_policy(vma, new);
723 if (err)
724 goto err_out;
725 }
726
727 old = vma->vm_policy;
728 vma->vm_policy = new; /* protected by mmap_sem */
729 mpol_put(old);
730
731 return 0;
732 err_out:
733 mpol_put(new);
734 return err;
735 }
736
737 /* Step 2: apply policy to a range and do splits. */
738 static int mbind_range(struct mm_struct *mm, unsigned long start,
739 unsigned long end, struct mempolicy *new_pol)
740 {
741 struct vm_area_struct *next;
742 struct vm_area_struct *prev;
743 struct vm_area_struct *vma;
744 int err = 0;
745 pgoff_t pgoff;
746 unsigned long vmstart;
747 unsigned long vmend;
748
749 vma = find_vma(mm, start);
750 if (!vma || vma->vm_start > start)
751 return -EFAULT;
752
753 prev = vma->vm_prev;
754 if (start > vma->vm_start)
755 prev = vma;
756
757 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
758 next = vma->vm_next;
759 vmstart = max(start, vma->vm_start);
760 vmend = min(end, vma->vm_end);
761
762 if (mpol_equal(vma_policy(vma), new_pol))
763 continue;
764
765 pgoff = vma->vm_pgoff +
766 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
767 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
768 vma->anon_vma, vma->vm_file, pgoff,
769 new_pol);
770 if (prev) {
771 vma = prev;
772 next = vma->vm_next;
773 if (mpol_equal(vma_policy(vma), new_pol))
774 continue;
775 /* vma_merge() joined vma && vma->next, case 8 */
776 goto replace;
777 }
778 if (vma->vm_start != vmstart) {
779 err = split_vma(vma->vm_mm, vma, vmstart, 1);
780 if (err)
781 goto out;
782 }
783 if (vma->vm_end != vmend) {
784 err = split_vma(vma->vm_mm, vma, vmend, 0);
785 if (err)
786 goto out;
787 }
788 replace:
789 err = vma_replace_policy(vma, new_pol);
790 if (err)
791 goto out;
792 }
793
794 out:
795 return err;
796 }
797
798 /*
799 * Update task->flags PF_MEMPOLICY bit: set iff non-default
800 * mempolicy. Allows more rapid checking of this (combined perhaps
801 * with other PF_* flag bits) on memory allocation hot code paths.
802 *
803 * If called from outside this file, the task 'p' should -only- be
804 * a newly forked child not yet visible on the task list, because
805 * manipulating the task flags of a visible task is not safe.
806 *
807 * The above limitation is why this routine has the funny name
808 * mpol_fix_fork_child_flag().
809 *
810 * It is also safe to call this with a task pointer of current,
811 * which the static wrapper mpol_set_task_struct_flag() does,
812 * for use within this file.
813 */
814
815 void mpol_fix_fork_child_flag(struct task_struct *p)
816 {
817 if (p->mempolicy)
818 p->flags |= PF_MEMPOLICY;
819 else
820 p->flags &= ~PF_MEMPOLICY;
821 }
822
823 static void mpol_set_task_struct_flag(void)
824 {
825 mpol_fix_fork_child_flag(current);
826 }
827
828 /* Set the process memory policy */
829 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
830 nodemask_t *nodes)
831 {
832 struct mempolicy *new, *old;
833 struct mm_struct *mm = current->mm;
834 NODEMASK_SCRATCH(scratch);
835 int ret;
836
837 if (!scratch)
838 return -ENOMEM;
839
840 new = mpol_new(mode, flags, nodes);
841 if (IS_ERR(new)) {
842 ret = PTR_ERR(new);
843 goto out;
844 }
845 /*
846 * prevent changing our mempolicy while show_numa_maps()
847 * is using it.
848 * Note: do_set_mempolicy() can be called at init time
849 * with no 'mm'.
850 */
851 if (mm)
852 down_write(&mm->mmap_sem);
853 task_lock(current);
854 ret = mpol_set_nodemask(new, nodes, scratch);
855 if (ret) {
856 task_unlock(current);
857 if (mm)
858 up_write(&mm->mmap_sem);
859 mpol_put(new);
860 goto out;
861 }
862 old = current->mempolicy;
863 current->mempolicy = new;
864 mpol_set_task_struct_flag();
865 if (new && new->mode == MPOL_INTERLEAVE &&
866 nodes_weight(new->v.nodes))
867 current->il_next = first_node(new->v.nodes);
868 task_unlock(current);
869 if (mm)
870 up_write(&mm->mmap_sem);
871
872 mpol_put(old);
873 ret = 0;
874 out:
875 NODEMASK_SCRATCH_FREE(scratch);
876 return ret;
877 }
878
879 /*
880 * Return nodemask for policy for get_mempolicy() query
881 *
882 * Called with task's alloc_lock held
883 */
884 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
885 {
886 nodes_clear(*nodes);
887 if (p == &default_policy)
888 return;
889
890 switch (p->mode) {
891 case MPOL_BIND:
892 /* Fall through */
893 case MPOL_INTERLEAVE:
894 *nodes = p->v.nodes;
895 break;
896 case MPOL_PREFERRED:
897 if (!(p->flags & MPOL_F_LOCAL))
898 node_set(p->v.preferred_node, *nodes);
899 /* else return empty node mask for local allocation */
900 break;
901 default:
902 BUG();
903 }
904 }
905
906 static int lookup_node(struct mm_struct *mm, unsigned long addr)
907 {
908 struct page *p;
909 int err;
910
911 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
912 if (err >= 0) {
913 err = page_to_nid(p);
914 put_page(p);
915 }
916 return err;
917 }
918
919 /* Retrieve NUMA policy */
920 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
921 unsigned long addr, unsigned long flags)
922 {
923 int err;
924 struct mm_struct *mm = current->mm;
925 struct vm_area_struct *vma = NULL;
926 struct mempolicy *pol = current->mempolicy;
927
928 if (flags &
929 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
930 return -EINVAL;
931
932 if (flags & MPOL_F_MEMS_ALLOWED) {
933 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
934 return -EINVAL;
935 *policy = 0; /* just so it's initialized */
936 task_lock(current);
937 *nmask = cpuset_current_mems_allowed;
938 task_unlock(current);
939 return 0;
940 }
941
942 if (flags & MPOL_F_ADDR) {
943 /*
944 * Do NOT fall back to task policy if the
945 * vma/shared policy at addr is NULL. We
946 * want to return MPOL_DEFAULT in this case.
947 */
948 down_read(&mm->mmap_sem);
949 vma = find_vma_intersection(mm, addr, addr+1);
950 if (!vma) {
951 up_read(&mm->mmap_sem);
952 return -EFAULT;
953 }
954 if (vma->vm_ops && vma->vm_ops->get_policy)
955 pol = vma->vm_ops->get_policy(vma, addr);
956 else
957 pol = vma->vm_policy;
958 } else if (addr)
959 return -EINVAL;
960
961 if (!pol)
962 pol = &default_policy; /* indicates default behavior */
963
964 if (flags & MPOL_F_NODE) {
965 if (flags & MPOL_F_ADDR) {
966 err = lookup_node(mm, addr);
967 if (err < 0)
968 goto out;
969 *policy = err;
970 } else if (pol == current->mempolicy &&
971 pol->mode == MPOL_INTERLEAVE) {
972 *policy = current->il_next;
973 } else {
974 err = -EINVAL;
975 goto out;
976 }
977 } else {
978 *policy = pol == &default_policy ? MPOL_DEFAULT :
979 pol->mode;
980 /*
981 * Internal mempolicy flags must be masked off before exposing
982 * the policy to userspace.
983 */
984 *policy |= (pol->flags & MPOL_MODE_FLAGS);
985 }
986
987 if (vma) {
988 up_read(&current->mm->mmap_sem);
989 vma = NULL;
990 }
991
992 err = 0;
993 if (nmask) {
994 if (mpol_store_user_nodemask(pol)) {
995 *nmask = pol->w.user_nodemask;
996 } else {
997 task_lock(current);
998 get_policy_nodemask(pol, nmask);
999 task_unlock(current);
1000 }
1001 }
1002
1003 out:
1004 mpol_cond_put(pol);
1005 if (vma)
1006 up_read(&current->mm->mmap_sem);
1007 return err;
1008 }
1009
1010 #ifdef CONFIG_MIGRATION
1011 /*
1012 * page migration
1013 */
1014 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1015 unsigned long flags)
1016 {
1017 /*
1018 * Avoid migrating a page that is shared with others.
1019 */
1020 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
1021 if (!isolate_lru_page(page)) {
1022 list_add_tail(&page->lru, pagelist);
1023 inc_zone_page_state(page, NR_ISOLATED_ANON +
1024 page_is_file_cache(page));
1025 }
1026 }
1027 }
1028
1029 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
1030 {
1031 if (PageHuge(page))
1032 return alloc_huge_page_node(page_hstate(compound_head(page)),
1033 node);
1034 else
1035 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
1036 }
1037
1038 /*
1039 * Migrate pages from one node to a target node.
1040 * Returns error or the number of pages not migrated.
1041 */
1042 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1043 int flags)
1044 {
1045 nodemask_t nmask;
1046 LIST_HEAD(pagelist);
1047 int err = 0;
1048
1049 nodes_clear(nmask);
1050 node_set(source, nmask);
1051
1052 /*
1053 * This does not "check" the range but isolates all pages that
1054 * need migration. Between passing in the full user address
1055 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1056 */
1057 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1058 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1059 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1060
1061 if (!list_empty(&pagelist)) {
1062 err = migrate_pages(&pagelist, new_node_page, dest,
1063 MIGRATE_SYNC, MR_SYSCALL);
1064 if (err)
1065 putback_movable_pages(&pagelist);
1066 }
1067
1068 return err;
1069 }
1070
1071 /*
1072 * Move pages between the two nodesets so as to preserve the physical
1073 * layout as much as possible.
1074 *
1075 * Returns the number of page that could not be moved.
1076 */
1077 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1078 const nodemask_t *to, int flags)
1079 {
1080 int busy = 0;
1081 int err;
1082 nodemask_t tmp;
1083
1084 err = migrate_prep();
1085 if (err)
1086 return err;
1087
1088 down_read(&mm->mmap_sem);
1089
1090 err = migrate_vmas(mm, from, to, flags);
1091 if (err)
1092 goto out;
1093
1094 /*
1095 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1096 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1097 * bit in 'tmp', and return that <source, dest> pair for migration.
1098 * The pair of nodemasks 'to' and 'from' define the map.
1099 *
1100 * If no pair of bits is found that way, fallback to picking some
1101 * pair of 'source' and 'dest' bits that are not the same. If the
1102 * 'source' and 'dest' bits are the same, this represents a node
1103 * that will be migrating to itself, so no pages need move.
1104 *
1105 * If no bits are left in 'tmp', or if all remaining bits left
1106 * in 'tmp' correspond to the same bit in 'to', return false
1107 * (nothing left to migrate).
1108 *
1109 * This lets us pick a pair of nodes to migrate between, such that
1110 * if possible the dest node is not already occupied by some other
1111 * source node, minimizing the risk of overloading the memory on a
1112 * node that would happen if we migrated incoming memory to a node
1113 * before migrating outgoing memory source that same node.
1114 *
1115 * A single scan of tmp is sufficient. As we go, we remember the
1116 * most recent <s, d> pair that moved (s != d). If we find a pair
1117 * that not only moved, but what's better, moved to an empty slot
1118 * (d is not set in tmp), then we break out then, with that pair.
1119 * Otherwise when we finish scanning from_tmp, we at least have the
1120 * most recent <s, d> pair that moved. If we get all the way through
1121 * the scan of tmp without finding any node that moved, much less
1122 * moved to an empty node, then there is nothing left worth migrating.
1123 */
1124
1125 tmp = *from;
1126 while (!nodes_empty(tmp)) {
1127 int s,d;
1128 int source = -1;
1129 int dest = 0;
1130
1131 for_each_node_mask(s, tmp) {
1132
1133 /*
1134 * do_migrate_pages() tries to maintain the relative
1135 * node relationship of the pages established between
1136 * threads and memory areas.
1137 *
1138 * However if the number of source nodes is not equal to
1139 * the number of destination nodes we can not preserve
1140 * this node relative relationship. In that case, skip
1141 * copying memory from a node that is in the destination
1142 * mask.
1143 *
1144 * Example: [2,3,4] -> [3,4,5] moves everything.
1145 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1146 */
1147
1148 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1149 (node_isset(s, *to)))
1150 continue;
1151
1152 d = node_remap(s, *from, *to);
1153 if (s == d)
1154 continue;
1155
1156 source = s; /* Node moved. Memorize */
1157 dest = d;
1158
1159 /* dest not in remaining from nodes? */
1160 if (!node_isset(dest, tmp))
1161 break;
1162 }
1163 if (source == -1)
1164 break;
1165
1166 node_clear(source, tmp);
1167 err = migrate_to_node(mm, source, dest, flags);
1168 if (err > 0)
1169 busy += err;
1170 if (err < 0)
1171 break;
1172 }
1173 out:
1174 up_read(&mm->mmap_sem);
1175 if (err < 0)
1176 return err;
1177 return busy;
1178
1179 }
1180
1181 /*
1182 * Allocate a new page for page migration based on vma policy.
1183 * Start assuming that page is mapped by vma pointed to by @private.
1184 * Search forward from there, if not. N.B., this assumes that the
1185 * list of pages handed to migrate_pages()--which is how we get here--
1186 * is in virtual address order.
1187 */
1188 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1189 {
1190 struct vm_area_struct *vma = (struct vm_area_struct *)private;
1191 unsigned long uninitialized_var(address);
1192
1193 while (vma) {
1194 address = page_address_in_vma(page, vma);
1195 if (address != -EFAULT)
1196 break;
1197 vma = vma->vm_next;
1198 }
1199 /*
1200 * queue_pages_range() confirms that @page belongs to some vma,
1201 * so vma shouldn't be NULL.
1202 */
1203 BUG_ON(!vma);
1204
1205 if (PageHuge(page))
1206 return alloc_huge_page_noerr(vma, address, 1);
1207 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1208 }
1209 #else
1210
1211 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1212 unsigned long flags)
1213 {
1214 }
1215
1216 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1217 const nodemask_t *to, int flags)
1218 {
1219 return -ENOSYS;
1220 }
1221
1222 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1223 {
1224 return NULL;
1225 }
1226 #endif
1227
1228 static long do_mbind(unsigned long start, unsigned long len,
1229 unsigned short mode, unsigned short mode_flags,
1230 nodemask_t *nmask, unsigned long flags)
1231 {
1232 struct vm_area_struct *vma;
1233 struct mm_struct *mm = current->mm;
1234 struct mempolicy *new;
1235 unsigned long end;
1236 int err;
1237 LIST_HEAD(pagelist);
1238
1239 if (flags & ~(unsigned long)MPOL_MF_VALID)
1240 return -EINVAL;
1241 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1242 return -EPERM;
1243
1244 if (start & ~PAGE_MASK)
1245 return -EINVAL;
1246
1247 if (mode == MPOL_DEFAULT)
1248 flags &= ~MPOL_MF_STRICT;
1249
1250 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1251 end = start + len;
1252
1253 if (end < start)
1254 return -EINVAL;
1255 if (end == start)
1256 return 0;
1257
1258 new = mpol_new(mode, mode_flags, nmask);
1259 if (IS_ERR(new))
1260 return PTR_ERR(new);
1261
1262 if (flags & MPOL_MF_LAZY)
1263 new->flags |= MPOL_F_MOF;
1264
1265 /*
1266 * If we are using the default policy then operation
1267 * on discontinuous address spaces is okay after all
1268 */
1269 if (!new)
1270 flags |= MPOL_MF_DISCONTIG_OK;
1271
1272 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1273 start, start + len, mode, mode_flags,
1274 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1275
1276 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1277
1278 err = migrate_prep();
1279 if (err)
1280 goto mpol_out;
1281 }
1282 {
1283 NODEMASK_SCRATCH(scratch);
1284 if (scratch) {
1285 down_write(&mm->mmap_sem);
1286 task_lock(current);
1287 err = mpol_set_nodemask(new, nmask, scratch);
1288 task_unlock(current);
1289 if (err)
1290 up_write(&mm->mmap_sem);
1291 } else
1292 err = -ENOMEM;
1293 NODEMASK_SCRATCH_FREE(scratch);
1294 }
1295 if (err)
1296 goto mpol_out;
1297
1298 vma = queue_pages_range(mm, start, end, nmask,
1299 flags | MPOL_MF_INVERT, &pagelist);
1300
1301 err = PTR_ERR(vma); /* maybe ... */
1302 if (!IS_ERR(vma))
1303 err = mbind_range(mm, start, end, new);
1304
1305 if (!err) {
1306 int nr_failed = 0;
1307
1308 if (!list_empty(&pagelist)) {
1309 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1310 nr_failed = migrate_pages(&pagelist, new_vma_page,
1311 (unsigned long)vma,
1312 MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1313 if (nr_failed)
1314 putback_movable_pages(&pagelist);
1315 }
1316
1317 if (nr_failed && (flags & MPOL_MF_STRICT))
1318 err = -EIO;
1319 } else
1320 putback_lru_pages(&pagelist);
1321
1322 up_write(&mm->mmap_sem);
1323 mpol_out:
1324 mpol_put(new);
1325 return err;
1326 }
1327
1328 /*
1329 * User space interface with variable sized bitmaps for nodelists.
1330 */
1331
1332 /* Copy a node mask from user space. */
1333 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1334 unsigned long maxnode)
1335 {
1336 unsigned long k;
1337 unsigned long nlongs;
1338 unsigned long endmask;
1339
1340 --maxnode;
1341 nodes_clear(*nodes);
1342 if (maxnode == 0 || !nmask)
1343 return 0;
1344 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1345 return -EINVAL;
1346
1347 nlongs = BITS_TO_LONGS(maxnode);
1348 if ((maxnode % BITS_PER_LONG) == 0)
1349 endmask = ~0UL;
1350 else
1351 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1352
1353 /* When the user specified more nodes than supported just check
1354 if the non supported part is all zero. */
1355 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1356 if (nlongs > PAGE_SIZE/sizeof(long))
1357 return -EINVAL;
1358 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1359 unsigned long t;
1360 if (get_user(t, nmask + k))
1361 return -EFAULT;
1362 if (k == nlongs - 1) {
1363 if (t & endmask)
1364 return -EINVAL;
1365 } else if (t)
1366 return -EINVAL;
1367 }
1368 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1369 endmask = ~0UL;
1370 }
1371
1372 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1373 return -EFAULT;
1374 nodes_addr(*nodes)[nlongs-1] &= endmask;
1375 return 0;
1376 }
1377
1378 /* Copy a kernel node mask to user space */
1379 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1380 nodemask_t *nodes)
1381 {
1382 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1383 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1384
1385 if (copy > nbytes) {
1386 if (copy > PAGE_SIZE)
1387 return -EINVAL;
1388 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1389 return -EFAULT;
1390 copy = nbytes;
1391 }
1392 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1393 }
1394
1395 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1396 unsigned long, mode, unsigned long __user *, nmask,
1397 unsigned long, maxnode, unsigned, flags)
1398 {
1399 nodemask_t nodes;
1400 int err;
1401 unsigned short mode_flags;
1402
1403 mode_flags = mode & MPOL_MODE_FLAGS;
1404 mode &= ~MPOL_MODE_FLAGS;
1405 if (mode >= MPOL_MAX)
1406 return -EINVAL;
1407 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1408 (mode_flags & MPOL_F_RELATIVE_NODES))
1409 return -EINVAL;
1410 err = get_nodes(&nodes, nmask, maxnode);
1411 if (err)
1412 return err;
1413 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1414 }
1415
1416 /* Set the process memory policy */
1417 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1418 unsigned long, maxnode)
1419 {
1420 int err;
1421 nodemask_t nodes;
1422 unsigned short flags;
1423
1424 flags = mode & MPOL_MODE_FLAGS;
1425 mode &= ~MPOL_MODE_FLAGS;
1426 if ((unsigned int)mode >= MPOL_MAX)
1427 return -EINVAL;
1428 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1429 return -EINVAL;
1430 err = get_nodes(&nodes, nmask, maxnode);
1431 if (err)
1432 return err;
1433 return do_set_mempolicy(mode, flags, &nodes);
1434 }
1435
1436 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1437 const unsigned long __user *, old_nodes,
1438 const unsigned long __user *, new_nodes)
1439 {
1440 const struct cred *cred = current_cred(), *tcred;
1441 struct mm_struct *mm = NULL;
1442 struct task_struct *task;
1443 nodemask_t task_nodes;
1444 int err;
1445 nodemask_t *old;
1446 nodemask_t *new;
1447 NODEMASK_SCRATCH(scratch);
1448
1449 if (!scratch)
1450 return -ENOMEM;
1451
1452 old = &scratch->mask1;
1453 new = &scratch->mask2;
1454
1455 err = get_nodes(old, old_nodes, maxnode);
1456 if (err)
1457 goto out;
1458
1459 err = get_nodes(new, new_nodes, maxnode);
1460 if (err)
1461 goto out;
1462
1463 /* Find the mm_struct */
1464 rcu_read_lock();
1465 task = pid ? find_task_by_vpid(pid) : current;
1466 if (!task) {
1467 rcu_read_unlock();
1468 err = -ESRCH;
1469 goto out;
1470 }
1471 get_task_struct(task);
1472
1473 err = -EINVAL;
1474
1475 /*
1476 * Check if this process has the right to modify the specified
1477 * process. The right exists if the process has administrative
1478 * capabilities, superuser privileges or the same
1479 * userid as the target process.
1480 */
1481 tcred = __task_cred(task);
1482 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1483 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1484 !capable(CAP_SYS_NICE)) {
1485 rcu_read_unlock();
1486 err = -EPERM;
1487 goto out_put;
1488 }
1489 rcu_read_unlock();
1490
1491 task_nodes = cpuset_mems_allowed(task);
1492 /* Is the user allowed to access the target nodes? */
1493 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1494 err = -EPERM;
1495 goto out_put;
1496 }
1497
1498 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1499 err = -EINVAL;
1500 goto out_put;
1501 }
1502
1503 err = security_task_movememory(task);
1504 if (err)
1505 goto out_put;
1506
1507 mm = get_task_mm(task);
1508 put_task_struct(task);
1509
1510 if (!mm) {
1511 err = -EINVAL;
1512 goto out;
1513 }
1514
1515 err = do_migrate_pages(mm, old, new,
1516 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1517
1518 mmput(mm);
1519 out:
1520 NODEMASK_SCRATCH_FREE(scratch);
1521
1522 return err;
1523
1524 out_put:
1525 put_task_struct(task);
1526 goto out;
1527
1528 }
1529
1530
1531 /* Retrieve NUMA policy */
1532 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1533 unsigned long __user *, nmask, unsigned long, maxnode,
1534 unsigned long, addr, unsigned long, flags)
1535 {
1536 int err;
1537 int uninitialized_var(pval);
1538 nodemask_t nodes;
1539
1540 if (nmask != NULL && maxnode < MAX_NUMNODES)
1541 return -EINVAL;
1542
1543 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1544
1545 if (err)
1546 return err;
1547
1548 if (policy && put_user(pval, policy))
1549 return -EFAULT;
1550
1551 if (nmask)
1552 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1553
1554 return err;
1555 }
1556
1557 #ifdef CONFIG_COMPAT
1558
1559 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1560 compat_ulong_t __user *nmask,
1561 compat_ulong_t maxnode,
1562 compat_ulong_t addr, compat_ulong_t flags)
1563 {
1564 long err;
1565 unsigned long __user *nm = NULL;
1566 unsigned long nr_bits, alloc_size;
1567 DECLARE_BITMAP(bm, MAX_NUMNODES);
1568
1569 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1570 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1571
1572 if (nmask)
1573 nm = compat_alloc_user_space(alloc_size);
1574
1575 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1576
1577 if (!err && nmask) {
1578 unsigned long copy_size;
1579 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1580 err = copy_from_user(bm, nm, copy_size);
1581 /* ensure entire bitmap is zeroed */
1582 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1583 err |= compat_put_bitmap(nmask, bm, nr_bits);
1584 }
1585
1586 return err;
1587 }
1588
1589 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1590 compat_ulong_t maxnode)
1591 {
1592 long err = 0;
1593 unsigned long __user *nm = NULL;
1594 unsigned long nr_bits, alloc_size;
1595 DECLARE_BITMAP(bm, MAX_NUMNODES);
1596
1597 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1598 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1599
1600 if (nmask) {
1601 err = compat_get_bitmap(bm, nmask, nr_bits);
1602 nm = compat_alloc_user_space(alloc_size);
1603 err |= copy_to_user(nm, bm, alloc_size);
1604 }
1605
1606 if (err)
1607 return -EFAULT;
1608
1609 return sys_set_mempolicy(mode, nm, nr_bits+1);
1610 }
1611
1612 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1613 compat_ulong_t mode, compat_ulong_t __user *nmask,
1614 compat_ulong_t maxnode, compat_ulong_t flags)
1615 {
1616 long err = 0;
1617 unsigned long __user *nm = NULL;
1618 unsigned long nr_bits, alloc_size;
1619 nodemask_t bm;
1620
1621 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1622 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1623
1624 if (nmask) {
1625 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1626 nm = compat_alloc_user_space(alloc_size);
1627 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1628 }
1629
1630 if (err)
1631 return -EFAULT;
1632
1633 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1634 }
1635
1636 #endif
1637
1638 /*
1639 * get_vma_policy(@task, @vma, @addr)
1640 * @task - task for fallback if vma policy == default
1641 * @vma - virtual memory area whose policy is sought
1642 * @addr - address in @vma for shared policy lookup
1643 *
1644 * Returns effective policy for a VMA at specified address.
1645 * Falls back to @task or system default policy, as necessary.
1646 * Current or other task's task mempolicy and non-shared vma policies must be
1647 * protected by task_lock(task) by the caller.
1648 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1649 * count--added by the get_policy() vm_op, as appropriate--to protect against
1650 * freeing by another task. It is the caller's responsibility to free the
1651 * extra reference for shared policies.
1652 */
1653 struct mempolicy *get_vma_policy(struct task_struct *task,
1654 struct vm_area_struct *vma, unsigned long addr)
1655 {
1656 struct mempolicy *pol = get_task_policy(task);
1657
1658 if (vma) {
1659 if (vma->vm_ops && vma->vm_ops->get_policy) {
1660 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1661 addr);
1662 if (vpol)
1663 pol = vpol;
1664 } else if (vma->vm_policy) {
1665 pol = vma->vm_policy;
1666
1667 /*
1668 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1669 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1670 * count on these policies which will be dropped by
1671 * mpol_cond_put() later
1672 */
1673 if (mpol_needs_cond_ref(pol))
1674 mpol_get(pol);
1675 }
1676 }
1677 if (!pol)
1678 pol = &default_policy;
1679 return pol;
1680 }
1681
1682 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1683 {
1684 enum zone_type dynamic_policy_zone = policy_zone;
1685
1686 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1687
1688 /*
1689 * if policy->v.nodes has movable memory only,
1690 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1691 *
1692 * policy->v.nodes is intersect with node_states[N_MEMORY].
1693 * so if the following test faile, it implies
1694 * policy->v.nodes has movable memory only.
1695 */
1696 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1697 dynamic_policy_zone = ZONE_MOVABLE;
1698
1699 return zone >= dynamic_policy_zone;
1700 }
1701
1702 /*
1703 * Return a nodemask representing a mempolicy for filtering nodes for
1704 * page allocation
1705 */
1706 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1707 {
1708 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1709 if (unlikely(policy->mode == MPOL_BIND) &&
1710 apply_policy_zone(policy, gfp_zone(gfp)) &&
1711 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1712 return &policy->v.nodes;
1713
1714 return NULL;
1715 }
1716
1717 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1718 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1719 int nd)
1720 {
1721 switch (policy->mode) {
1722 case MPOL_PREFERRED:
1723 if (!(policy->flags & MPOL_F_LOCAL))
1724 nd = policy->v.preferred_node;
1725 break;
1726 case MPOL_BIND:
1727 /*
1728 * Normally, MPOL_BIND allocations are node-local within the
1729 * allowed nodemask. However, if __GFP_THISNODE is set and the
1730 * current node isn't part of the mask, we use the zonelist for
1731 * the first node in the mask instead.
1732 */
1733 if (unlikely(gfp & __GFP_THISNODE) &&
1734 unlikely(!node_isset(nd, policy->v.nodes)))
1735 nd = first_node(policy->v.nodes);
1736 break;
1737 default:
1738 BUG();
1739 }
1740 return node_zonelist(nd, gfp);
1741 }
1742
1743 /* Do dynamic interleaving for a process */
1744 static unsigned interleave_nodes(struct mempolicy *policy)
1745 {
1746 unsigned nid, next;
1747 struct task_struct *me = current;
1748
1749 nid = me->il_next;
1750 next = next_node(nid, policy->v.nodes);
1751 if (next >= MAX_NUMNODES)
1752 next = first_node(policy->v.nodes);
1753 if (next < MAX_NUMNODES)
1754 me->il_next = next;
1755 return nid;
1756 }
1757
1758 /*
1759 * Depending on the memory policy provide a node from which to allocate the
1760 * next slab entry.
1761 * @policy must be protected by freeing by the caller. If @policy is
1762 * the current task's mempolicy, this protection is implicit, as only the
1763 * task can change it's policy. The system default policy requires no
1764 * such protection.
1765 */
1766 unsigned slab_node(void)
1767 {
1768 struct mempolicy *policy;
1769
1770 if (in_interrupt())
1771 return numa_node_id();
1772
1773 policy = current->mempolicy;
1774 if (!policy || policy->flags & MPOL_F_LOCAL)
1775 return numa_node_id();
1776
1777 switch (policy->mode) {
1778 case MPOL_PREFERRED:
1779 /*
1780 * handled MPOL_F_LOCAL above
1781 */
1782 return policy->v.preferred_node;
1783
1784 case MPOL_INTERLEAVE:
1785 return interleave_nodes(policy);
1786
1787 case MPOL_BIND: {
1788 /*
1789 * Follow bind policy behavior and start allocation at the
1790 * first node.
1791 */
1792 struct zonelist *zonelist;
1793 struct zone *zone;
1794 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1795 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1796 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1797 &policy->v.nodes,
1798 &zone);
1799 return zone ? zone->node : numa_node_id();
1800 }
1801
1802 default:
1803 BUG();
1804 }
1805 }
1806
1807 /* Do static interleaving for a VMA with known offset. */
1808 static unsigned offset_il_node(struct mempolicy *pol,
1809 struct vm_area_struct *vma, unsigned long off)
1810 {
1811 unsigned nnodes = nodes_weight(pol->v.nodes);
1812 unsigned target;
1813 int c;
1814 int nid = -1;
1815
1816 if (!nnodes)
1817 return numa_node_id();
1818 target = (unsigned int)off % nnodes;
1819 c = 0;
1820 do {
1821 nid = next_node(nid, pol->v.nodes);
1822 c++;
1823 } while (c <= target);
1824 return nid;
1825 }
1826
1827 /* Determine a node number for interleave */
1828 static inline unsigned interleave_nid(struct mempolicy *pol,
1829 struct vm_area_struct *vma, unsigned long addr, int shift)
1830 {
1831 if (vma) {
1832 unsigned long off;
1833
1834 /*
1835 * for small pages, there is no difference between
1836 * shift and PAGE_SHIFT, so the bit-shift is safe.
1837 * for huge pages, since vm_pgoff is in units of small
1838 * pages, we need to shift off the always 0 bits to get
1839 * a useful offset.
1840 */
1841 BUG_ON(shift < PAGE_SHIFT);
1842 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1843 off += (addr - vma->vm_start) >> shift;
1844 return offset_il_node(pol, vma, off);
1845 } else
1846 return interleave_nodes(pol);
1847 }
1848
1849 /*
1850 * Return the bit number of a random bit set in the nodemask.
1851 * (returns -1 if nodemask is empty)
1852 */
1853 int node_random(const nodemask_t *maskp)
1854 {
1855 int w, bit = -1;
1856
1857 w = nodes_weight(*maskp);
1858 if (w)
1859 bit = bitmap_ord_to_pos(maskp->bits,
1860 get_random_int() % w, MAX_NUMNODES);
1861 return bit;
1862 }
1863
1864 #ifdef CONFIG_HUGETLBFS
1865 /*
1866 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1867 * @vma = virtual memory area whose policy is sought
1868 * @addr = address in @vma for shared policy lookup and interleave policy
1869 * @gfp_flags = for requested zone
1870 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1871 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1872 *
1873 * Returns a zonelist suitable for a huge page allocation and a pointer
1874 * to the struct mempolicy for conditional unref after allocation.
1875 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1876 * @nodemask for filtering the zonelist.
1877 *
1878 * Must be protected by get_mems_allowed()
1879 */
1880 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1881 gfp_t gfp_flags, struct mempolicy **mpol,
1882 nodemask_t **nodemask)
1883 {
1884 struct zonelist *zl;
1885
1886 *mpol = get_vma_policy(current, vma, addr);
1887 *nodemask = NULL; /* assume !MPOL_BIND */
1888
1889 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1890 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1891 huge_page_shift(hstate_vma(vma))), gfp_flags);
1892 } else {
1893 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1894 if ((*mpol)->mode == MPOL_BIND)
1895 *nodemask = &(*mpol)->v.nodes;
1896 }
1897 return zl;
1898 }
1899
1900 /*
1901 * init_nodemask_of_mempolicy
1902 *
1903 * If the current task's mempolicy is "default" [NULL], return 'false'
1904 * to indicate default policy. Otherwise, extract the policy nodemask
1905 * for 'bind' or 'interleave' policy into the argument nodemask, or
1906 * initialize the argument nodemask to contain the single node for
1907 * 'preferred' or 'local' policy and return 'true' to indicate presence
1908 * of non-default mempolicy.
1909 *
1910 * We don't bother with reference counting the mempolicy [mpol_get/put]
1911 * because the current task is examining it's own mempolicy and a task's
1912 * mempolicy is only ever changed by the task itself.
1913 *
1914 * N.B., it is the caller's responsibility to free a returned nodemask.
1915 */
1916 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1917 {
1918 struct mempolicy *mempolicy;
1919 int nid;
1920
1921 if (!(mask && current->mempolicy))
1922 return false;
1923
1924 task_lock(current);
1925 mempolicy = current->mempolicy;
1926 switch (mempolicy->mode) {
1927 case MPOL_PREFERRED:
1928 if (mempolicy->flags & MPOL_F_LOCAL)
1929 nid = numa_node_id();
1930 else
1931 nid = mempolicy->v.preferred_node;
1932 init_nodemask_of_node(mask, nid);
1933 break;
1934
1935 case MPOL_BIND:
1936 /* Fall through */
1937 case MPOL_INTERLEAVE:
1938 *mask = mempolicy->v.nodes;
1939 break;
1940
1941 default:
1942 BUG();
1943 }
1944 task_unlock(current);
1945
1946 return true;
1947 }
1948 #endif
1949
1950 /*
1951 * mempolicy_nodemask_intersects
1952 *
1953 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1954 * policy. Otherwise, check for intersection between mask and the policy
1955 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1956 * policy, always return true since it may allocate elsewhere on fallback.
1957 *
1958 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1959 */
1960 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1961 const nodemask_t *mask)
1962 {
1963 struct mempolicy *mempolicy;
1964 bool ret = true;
1965
1966 if (!mask)
1967 return ret;
1968 task_lock(tsk);
1969 mempolicy = tsk->mempolicy;
1970 if (!mempolicy)
1971 goto out;
1972
1973 switch (mempolicy->mode) {
1974 case MPOL_PREFERRED:
1975 /*
1976 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1977 * allocate from, they may fallback to other nodes when oom.
1978 * Thus, it's possible for tsk to have allocated memory from
1979 * nodes in mask.
1980 */
1981 break;
1982 case MPOL_BIND:
1983 case MPOL_INTERLEAVE:
1984 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1985 break;
1986 default:
1987 BUG();
1988 }
1989 out:
1990 task_unlock(tsk);
1991 return ret;
1992 }
1993
1994 /* Allocate a page in interleaved policy.
1995 Own path because it needs to do special accounting. */
1996 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1997 unsigned nid)
1998 {
1999 struct zonelist *zl;
2000 struct page *page;
2001
2002 zl = node_zonelist(nid, gfp);
2003 page = __alloc_pages(gfp, order, zl);
2004 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
2005 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
2006 return page;
2007 }
2008
2009 /**
2010 * alloc_pages_vma - Allocate a page for a VMA.
2011 *
2012 * @gfp:
2013 * %GFP_USER user allocation.
2014 * %GFP_KERNEL kernel allocations,
2015 * %GFP_HIGHMEM highmem/user allocations,
2016 * %GFP_FS allocation should not call back into a file system.
2017 * %GFP_ATOMIC don't sleep.
2018 *
2019 * @order:Order of the GFP allocation.
2020 * @vma: Pointer to VMA or NULL if not available.
2021 * @addr: Virtual Address of the allocation. Must be inside the VMA.
2022 *
2023 * This function allocates a page from the kernel page pool and applies
2024 * a NUMA policy associated with the VMA or the current process.
2025 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
2026 * mm_struct of the VMA to prevent it from going away. Should be used for
2027 * all allocations for pages that will be mapped into
2028 * user space. Returns NULL when no page can be allocated.
2029 *
2030 * Should be called with the mm_sem of the vma hold.
2031 */
2032 struct page *
2033 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2034 unsigned long addr, int node)
2035 {
2036 struct mempolicy *pol;
2037 struct page *page;
2038 unsigned int cpuset_mems_cookie;
2039
2040 retry_cpuset:
2041 pol = get_vma_policy(current, vma, addr);
2042 cpuset_mems_cookie = get_mems_allowed();
2043
2044 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
2045 unsigned nid;
2046
2047 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2048 mpol_cond_put(pol);
2049 page = alloc_page_interleave(gfp, order, nid);
2050 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2051 goto retry_cpuset;
2052
2053 return page;
2054 }
2055 page = __alloc_pages_nodemask(gfp, order,
2056 policy_zonelist(gfp, pol, node),
2057 policy_nodemask(gfp, pol));
2058 if (unlikely(mpol_needs_cond_ref(pol)))
2059 __mpol_put(pol);
2060 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2061 goto retry_cpuset;
2062 return page;
2063 }
2064
2065 /**
2066 * alloc_pages_current - Allocate pages.
2067 *
2068 * @gfp:
2069 * %GFP_USER user allocation,
2070 * %GFP_KERNEL kernel allocation,
2071 * %GFP_HIGHMEM highmem allocation,
2072 * %GFP_FS don't call back into a file system.
2073 * %GFP_ATOMIC don't sleep.
2074 * @order: Power of two of allocation size in pages. 0 is a single page.
2075 *
2076 * Allocate a page from the kernel page pool. When not in
2077 * interrupt context and apply the current process NUMA policy.
2078 * Returns NULL when no page can be allocated.
2079 *
2080 * Don't call cpuset_update_task_memory_state() unless
2081 * 1) it's ok to take cpuset_sem (can WAIT), and
2082 * 2) allocating for current task (not interrupt).
2083 */
2084 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2085 {
2086 struct mempolicy *pol = get_task_policy(current);
2087 struct page *page;
2088 unsigned int cpuset_mems_cookie;
2089
2090 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
2091 pol = &default_policy;
2092
2093 retry_cpuset:
2094 cpuset_mems_cookie = get_mems_allowed();
2095
2096 /*
2097 * No reference counting needed for current->mempolicy
2098 * nor system default_policy
2099 */
2100 if (pol->mode == MPOL_INTERLEAVE)
2101 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2102 else
2103 page = __alloc_pages_nodemask(gfp, order,
2104 policy_zonelist(gfp, pol, numa_node_id()),
2105 policy_nodemask(gfp, pol));
2106
2107 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2108 goto retry_cpuset;
2109
2110 return page;
2111 }
2112 EXPORT_SYMBOL(alloc_pages_current);
2113
2114 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2115 {
2116 struct mempolicy *pol = mpol_dup(vma_policy(src));
2117
2118 if (IS_ERR(pol))
2119 return PTR_ERR(pol);
2120 dst->vm_policy = pol;
2121 return 0;
2122 }
2123
2124 /*
2125 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2126 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2127 * with the mems_allowed returned by cpuset_mems_allowed(). This
2128 * keeps mempolicies cpuset relative after its cpuset moves. See
2129 * further kernel/cpuset.c update_nodemask().
2130 *
2131 * current's mempolicy may be rebinded by the other task(the task that changes
2132 * cpuset's mems), so we needn't do rebind work for current task.
2133 */
2134
2135 /* Slow path of a mempolicy duplicate */
2136 struct mempolicy *__mpol_dup(struct mempolicy *old)
2137 {
2138 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2139
2140 if (!new)
2141 return ERR_PTR(-ENOMEM);
2142
2143 /* task's mempolicy is protected by alloc_lock */
2144 if (old == current->mempolicy) {
2145 task_lock(current);
2146 *new = *old;
2147 task_unlock(current);
2148 } else
2149 *new = *old;
2150
2151 rcu_read_lock();
2152 if (current_cpuset_is_being_rebound()) {
2153 nodemask_t mems = cpuset_mems_allowed(current);
2154 if (new->flags & MPOL_F_REBINDING)
2155 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2156 else
2157 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2158 }
2159 rcu_read_unlock();
2160 atomic_set(&new->refcnt, 1);
2161 return new;
2162 }
2163
2164 /* Slow path of a mempolicy comparison */
2165 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2166 {
2167 if (!a || !b)
2168 return false;
2169 if (a->mode != b->mode)
2170 return false;
2171 if (a->flags != b->flags)
2172 return false;
2173 if (mpol_store_user_nodemask(a))
2174 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2175 return false;
2176
2177 switch (a->mode) {
2178 case MPOL_BIND:
2179 /* Fall through */
2180 case MPOL_INTERLEAVE:
2181 return !!nodes_equal(a->v.nodes, b->v.nodes);
2182 case MPOL_PREFERRED:
2183 return a->v.preferred_node == b->v.preferred_node;
2184 default:
2185 BUG();
2186 return false;
2187 }
2188 }
2189
2190 /*
2191 * Shared memory backing store policy support.
2192 *
2193 * Remember policies even when nobody has shared memory mapped.
2194 * The policies are kept in Red-Black tree linked from the inode.
2195 * They are protected by the sp->lock spinlock, which should be held
2196 * for any accesses to the tree.
2197 */
2198
2199 /* lookup first element intersecting start-end */
2200 /* Caller holds sp->lock */
2201 static struct sp_node *
2202 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2203 {
2204 struct rb_node *n = sp->root.rb_node;
2205
2206 while (n) {
2207 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2208
2209 if (start >= p->end)
2210 n = n->rb_right;
2211 else if (end <= p->start)
2212 n = n->rb_left;
2213 else
2214 break;
2215 }
2216 if (!n)
2217 return NULL;
2218 for (;;) {
2219 struct sp_node *w = NULL;
2220 struct rb_node *prev = rb_prev(n);
2221 if (!prev)
2222 break;
2223 w = rb_entry(prev, struct sp_node, nd);
2224 if (w->end <= start)
2225 break;
2226 n = prev;
2227 }
2228 return rb_entry(n, struct sp_node, nd);
2229 }
2230
2231 /* Insert a new shared policy into the list. */
2232 /* Caller holds sp->lock */
2233 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2234 {
2235 struct rb_node **p = &sp->root.rb_node;
2236 struct rb_node *parent = NULL;
2237 struct sp_node *nd;
2238
2239 while (*p) {
2240 parent = *p;
2241 nd = rb_entry(parent, struct sp_node, nd);
2242 if (new->start < nd->start)
2243 p = &(*p)->rb_left;
2244 else if (new->end > nd->end)
2245 p = &(*p)->rb_right;
2246 else
2247 BUG();
2248 }
2249 rb_link_node(&new->nd, parent, p);
2250 rb_insert_color(&new->nd, &sp->root);
2251 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2252 new->policy ? new->policy->mode : 0);
2253 }
2254
2255 /* Find shared policy intersecting idx */
2256 struct mempolicy *
2257 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2258 {
2259 struct mempolicy *pol = NULL;
2260 struct sp_node *sn;
2261
2262 if (!sp->root.rb_node)
2263 return NULL;
2264 spin_lock(&sp->lock);
2265 sn = sp_lookup(sp, idx, idx+1);
2266 if (sn) {
2267 mpol_get(sn->policy);
2268 pol = sn->policy;
2269 }
2270 spin_unlock(&sp->lock);
2271 return pol;
2272 }
2273
2274 static void sp_free(struct sp_node *n)
2275 {
2276 mpol_put(n->policy);
2277 kmem_cache_free(sn_cache, n);
2278 }
2279
2280 /**
2281 * mpol_misplaced - check whether current page node is valid in policy
2282 *
2283 * @page - page to be checked
2284 * @vma - vm area where page mapped
2285 * @addr - virtual address where page mapped
2286 *
2287 * Lookup current policy node id for vma,addr and "compare to" page's
2288 * node id.
2289 *
2290 * Returns:
2291 * -1 - not misplaced, page is in the right node
2292 * node - node id where the page should be
2293 *
2294 * Policy determination "mimics" alloc_page_vma().
2295 * Called from fault path where we know the vma and faulting address.
2296 */
2297 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2298 {
2299 struct mempolicy *pol;
2300 struct zone *zone;
2301 int curnid = page_to_nid(page);
2302 unsigned long pgoff;
2303 int polnid = -1;
2304 int ret = -1;
2305
2306 BUG_ON(!vma);
2307
2308 pol = get_vma_policy(current, vma, addr);
2309 if (!(pol->flags & MPOL_F_MOF))
2310 goto out;
2311
2312 switch (pol->mode) {
2313 case MPOL_INTERLEAVE:
2314 BUG_ON(addr >= vma->vm_end);
2315 BUG_ON(addr < vma->vm_start);
2316
2317 pgoff = vma->vm_pgoff;
2318 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2319 polnid = offset_il_node(pol, vma, pgoff);
2320 break;
2321
2322 case MPOL_PREFERRED:
2323 if (pol->flags & MPOL_F_LOCAL)
2324 polnid = numa_node_id();
2325 else
2326 polnid = pol->v.preferred_node;
2327 break;
2328
2329 case MPOL_BIND:
2330 /*
2331 * allows binding to multiple nodes.
2332 * use current page if in policy nodemask,
2333 * else select nearest allowed node, if any.
2334 * If no allowed nodes, use current [!misplaced].
2335 */
2336 if (node_isset(curnid, pol->v.nodes))
2337 goto out;
2338 (void)first_zones_zonelist(
2339 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2340 gfp_zone(GFP_HIGHUSER),
2341 &pol->v.nodes, &zone);
2342 polnid = zone->node;
2343 break;
2344
2345 default:
2346 BUG();
2347 }
2348
2349 /* Migrate the page towards the node whose CPU is referencing it */
2350 if (pol->flags & MPOL_F_MORON) {
2351 int last_nid;
2352
2353 polnid = numa_node_id();
2354
2355 /*
2356 * Multi-stage node selection is used in conjunction
2357 * with a periodic migration fault to build a temporal
2358 * task<->page relation. By using a two-stage filter we
2359 * remove short/unlikely relations.
2360 *
2361 * Using P(p) ~ n_p / n_t as per frequentist
2362 * probability, we can equate a task's usage of a
2363 * particular page (n_p) per total usage of this
2364 * page (n_t) (in a given time-span) to a probability.
2365 *
2366 * Our periodic faults will sample this probability and
2367 * getting the same result twice in a row, given these
2368 * samples are fully independent, is then given by
2369 * P(n)^2, provided our sample period is sufficiently
2370 * short compared to the usage pattern.
2371 *
2372 * This quadric squishes small probabilities, making
2373 * it less likely we act on an unlikely task<->page
2374 * relation.
2375 */
2376 last_nid = page_nid_xchg_last(page, polnid);
2377 if (last_nid != polnid)
2378 goto out;
2379 }
2380
2381 if (curnid != polnid)
2382 ret = polnid;
2383 out:
2384 mpol_cond_put(pol);
2385
2386 return ret;
2387 }
2388
2389 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2390 {
2391 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2392 rb_erase(&n->nd, &sp->root);
2393 sp_free(n);
2394 }
2395
2396 static void sp_node_init(struct sp_node *node, unsigned long start,
2397 unsigned long end, struct mempolicy *pol)
2398 {
2399 node->start = start;
2400 node->end = end;
2401 node->policy = pol;
2402 }
2403
2404 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2405 struct mempolicy *pol)
2406 {
2407 struct sp_node *n;
2408 struct mempolicy *newpol;
2409
2410 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2411 if (!n)
2412 return NULL;
2413
2414 newpol = mpol_dup(pol);
2415 if (IS_ERR(newpol)) {
2416 kmem_cache_free(sn_cache, n);
2417 return NULL;
2418 }
2419 newpol->flags |= MPOL_F_SHARED;
2420 sp_node_init(n, start, end, newpol);
2421
2422 return n;
2423 }
2424
2425 /* Replace a policy range. */
2426 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2427 unsigned long end, struct sp_node *new)
2428 {
2429 struct sp_node *n;
2430 struct sp_node *n_new = NULL;
2431 struct mempolicy *mpol_new = NULL;
2432 int ret = 0;
2433
2434 restart:
2435 spin_lock(&sp->lock);
2436 n = sp_lookup(sp, start, end);
2437 /* Take care of old policies in the same range. */
2438 while (n && n->start < end) {
2439 struct rb_node *next = rb_next(&n->nd);
2440 if (n->start >= start) {
2441 if (n->end <= end)
2442 sp_delete(sp, n);
2443 else
2444 n->start = end;
2445 } else {
2446 /* Old policy spanning whole new range. */
2447 if (n->end > end) {
2448 if (!n_new)
2449 goto alloc_new;
2450
2451 *mpol_new = *n->policy;
2452 atomic_set(&mpol_new->refcnt, 1);
2453 sp_node_init(n_new, end, n->end, mpol_new);
2454 n->end = start;
2455 sp_insert(sp, n_new);
2456 n_new = NULL;
2457 mpol_new = NULL;
2458 break;
2459 } else
2460 n->end = start;
2461 }
2462 if (!next)
2463 break;
2464 n = rb_entry(next, struct sp_node, nd);
2465 }
2466 if (new)
2467 sp_insert(sp, new);
2468 spin_unlock(&sp->lock);
2469 ret = 0;
2470
2471 err_out:
2472 if (mpol_new)
2473 mpol_put(mpol_new);
2474 if (n_new)
2475 kmem_cache_free(sn_cache, n_new);
2476
2477 return ret;
2478
2479 alloc_new:
2480 spin_unlock(&sp->lock);
2481 ret = -ENOMEM;
2482 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2483 if (!n_new)
2484 goto err_out;
2485 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2486 if (!mpol_new)
2487 goto err_out;
2488 goto restart;
2489 }
2490
2491 /**
2492 * mpol_shared_policy_init - initialize shared policy for inode
2493 * @sp: pointer to inode shared policy
2494 * @mpol: struct mempolicy to install
2495 *
2496 * Install non-NULL @mpol in inode's shared policy rb-tree.
2497 * On entry, the current task has a reference on a non-NULL @mpol.
2498 * This must be released on exit.
2499 * This is called at get_inode() calls and we can use GFP_KERNEL.
2500 */
2501 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2502 {
2503 int ret;
2504
2505 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2506 spin_lock_init(&sp->lock);
2507
2508 if (mpol) {
2509 struct vm_area_struct pvma;
2510 struct mempolicy *new;
2511 NODEMASK_SCRATCH(scratch);
2512
2513 if (!scratch)
2514 goto put_mpol;
2515 /* contextualize the tmpfs mount point mempolicy */
2516 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2517 if (IS_ERR(new))
2518 goto free_scratch; /* no valid nodemask intersection */
2519
2520 task_lock(current);
2521 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2522 task_unlock(current);
2523 if (ret)
2524 goto put_new;
2525
2526 /* Create pseudo-vma that contains just the policy */
2527 memset(&pvma, 0, sizeof(struct vm_area_struct));
2528 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2529 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2530
2531 put_new:
2532 mpol_put(new); /* drop initial ref */
2533 free_scratch:
2534 NODEMASK_SCRATCH_FREE(scratch);
2535 put_mpol:
2536 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2537 }
2538 }
2539
2540 int mpol_set_shared_policy(struct shared_policy *info,
2541 struct vm_area_struct *vma, struct mempolicy *npol)
2542 {
2543 int err;
2544 struct sp_node *new = NULL;
2545 unsigned long sz = vma_pages(vma);
2546
2547 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2548 vma->vm_pgoff,
2549 sz, npol ? npol->mode : -1,
2550 npol ? npol->flags : -1,
2551 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2552
2553 if (npol) {
2554 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2555 if (!new)
2556 return -ENOMEM;
2557 }
2558 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2559 if (err && new)
2560 sp_free(new);
2561 return err;
2562 }
2563
2564 /* Free a backing policy store on inode delete. */
2565 void mpol_free_shared_policy(struct shared_policy *p)
2566 {
2567 struct sp_node *n;
2568 struct rb_node *next;
2569
2570 if (!p->root.rb_node)
2571 return;
2572 spin_lock(&p->lock);
2573 next = rb_first(&p->root);
2574 while (next) {
2575 n = rb_entry(next, struct sp_node, nd);
2576 next = rb_next(&n->nd);
2577 sp_delete(p, n);
2578 }
2579 spin_unlock(&p->lock);
2580 }
2581
2582 #ifdef CONFIG_NUMA_BALANCING
2583 static bool __initdata numabalancing_override;
2584
2585 static void __init check_numabalancing_enable(void)
2586 {
2587 bool numabalancing_default = false;
2588
2589 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2590 numabalancing_default = true;
2591
2592 if (nr_node_ids > 1 && !numabalancing_override) {
2593 printk(KERN_INFO "Enabling automatic NUMA balancing. "
2594 "Configure with numa_balancing= or sysctl");
2595 set_numabalancing_state(numabalancing_default);
2596 }
2597 }
2598
2599 static int __init setup_numabalancing(char *str)
2600 {
2601 int ret = 0;
2602 if (!str)
2603 goto out;
2604 numabalancing_override = true;
2605
2606 if (!strcmp(str, "enable")) {
2607 set_numabalancing_state(true);
2608 ret = 1;
2609 } else if (!strcmp(str, "disable")) {
2610 set_numabalancing_state(false);
2611 ret = 1;
2612 }
2613 out:
2614 if (!ret)
2615 printk(KERN_WARNING "Unable to parse numa_balancing=\n");
2616
2617 return ret;
2618 }
2619 __setup("numa_balancing=", setup_numabalancing);
2620 #else
2621 static inline void __init check_numabalancing_enable(void)
2622 {
2623 }
2624 #endif /* CONFIG_NUMA_BALANCING */
2625
2626 /* assumes fs == KERNEL_DS */
2627 void __init numa_policy_init(void)
2628 {
2629 nodemask_t interleave_nodes;
2630 unsigned long largest = 0;
2631 int nid, prefer = 0;
2632
2633 policy_cache = kmem_cache_create("numa_policy",
2634 sizeof(struct mempolicy),
2635 0, SLAB_PANIC, NULL);
2636
2637 sn_cache = kmem_cache_create("shared_policy_node",
2638 sizeof(struct sp_node),
2639 0, SLAB_PANIC, NULL);
2640
2641 for_each_node(nid) {
2642 preferred_node_policy[nid] = (struct mempolicy) {
2643 .refcnt = ATOMIC_INIT(1),
2644 .mode = MPOL_PREFERRED,
2645 .flags = MPOL_F_MOF | MPOL_F_MORON,
2646 .v = { .preferred_node = nid, },
2647 };
2648 }
2649
2650 /*
2651 * Set interleaving policy for system init. Interleaving is only
2652 * enabled across suitably sized nodes (default is >= 16MB), or
2653 * fall back to the largest node if they're all smaller.
2654 */
2655 nodes_clear(interleave_nodes);
2656 for_each_node_state(nid, N_MEMORY) {
2657 unsigned long total_pages = node_present_pages(nid);
2658
2659 /* Preserve the largest node */
2660 if (largest < total_pages) {
2661 largest = total_pages;
2662 prefer = nid;
2663 }
2664
2665 /* Interleave this node? */
2666 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2667 node_set(nid, interleave_nodes);
2668 }
2669
2670 /* All too small, use the largest */
2671 if (unlikely(nodes_empty(interleave_nodes)))
2672 node_set(prefer, interleave_nodes);
2673
2674 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2675 printk("numa_policy_init: interleaving failed\n");
2676
2677 check_numabalancing_enable();
2678 }
2679
2680 /* Reset policy of current process to default */
2681 void numa_default_policy(void)
2682 {
2683 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2684 }
2685
2686 /*
2687 * Parse and format mempolicy from/to strings
2688 */
2689
2690 /*
2691 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2692 */
2693 static const char * const policy_modes[] =
2694 {
2695 [MPOL_DEFAULT] = "default",
2696 [MPOL_PREFERRED] = "prefer",
2697 [MPOL_BIND] = "bind",
2698 [MPOL_INTERLEAVE] = "interleave",
2699 [MPOL_LOCAL] = "local",
2700 };
2701
2702
2703 #ifdef CONFIG_TMPFS
2704 /**
2705 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2706 * @str: string containing mempolicy to parse
2707 * @mpol: pointer to struct mempolicy pointer, returned on success.
2708 *
2709 * Format of input:
2710 * <mode>[=<flags>][:<nodelist>]
2711 *
2712 * On success, returns 0, else 1
2713 */
2714 int mpol_parse_str(char *str, struct mempolicy **mpol)
2715 {
2716 struct mempolicy *new = NULL;
2717 unsigned short mode;
2718 unsigned short mode_flags;
2719 nodemask_t nodes;
2720 char *nodelist = strchr(str, ':');
2721 char *flags = strchr(str, '=');
2722 int err = 1;
2723
2724 if (nodelist) {
2725 /* NUL-terminate mode or flags string */
2726 *nodelist++ = '\0';
2727 if (nodelist_parse(nodelist, nodes))
2728 goto out;
2729 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2730 goto out;
2731 } else
2732 nodes_clear(nodes);
2733
2734 if (flags)
2735 *flags++ = '\0'; /* terminate mode string */
2736
2737 for (mode = 0; mode < MPOL_MAX; mode++) {
2738 if (!strcmp(str, policy_modes[mode])) {
2739 break;
2740 }
2741 }
2742 if (mode >= MPOL_MAX)
2743 goto out;
2744
2745 switch (mode) {
2746 case MPOL_PREFERRED:
2747 /*
2748 * Insist on a nodelist of one node only
2749 */
2750 if (nodelist) {
2751 char *rest = nodelist;
2752 while (isdigit(*rest))
2753 rest++;
2754 if (*rest)
2755 goto out;
2756 }
2757 break;
2758 case MPOL_INTERLEAVE:
2759 /*
2760 * Default to online nodes with memory if no nodelist
2761 */
2762 if (!nodelist)
2763 nodes = node_states[N_MEMORY];
2764 break;
2765 case MPOL_LOCAL:
2766 /*
2767 * Don't allow a nodelist; mpol_new() checks flags
2768 */
2769 if (nodelist)
2770 goto out;
2771 mode = MPOL_PREFERRED;
2772 break;
2773 case MPOL_DEFAULT:
2774 /*
2775 * Insist on a empty nodelist
2776 */
2777 if (!nodelist)
2778 err = 0;
2779 goto out;
2780 case MPOL_BIND:
2781 /*
2782 * Insist on a nodelist
2783 */
2784 if (!nodelist)
2785 goto out;
2786 }
2787
2788 mode_flags = 0;
2789 if (flags) {
2790 /*
2791 * Currently, we only support two mutually exclusive
2792 * mode flags.
2793 */
2794 if (!strcmp(flags, "static"))
2795 mode_flags |= MPOL_F_STATIC_NODES;
2796 else if (!strcmp(flags, "relative"))
2797 mode_flags |= MPOL_F_RELATIVE_NODES;
2798 else
2799 goto out;
2800 }
2801
2802 new = mpol_new(mode, mode_flags, &nodes);
2803 if (IS_ERR(new))
2804 goto out;
2805
2806 /*
2807 * Save nodes for mpol_to_str() to show the tmpfs mount options
2808 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2809 */
2810 if (mode != MPOL_PREFERRED)
2811 new->v.nodes = nodes;
2812 else if (nodelist)
2813 new->v.preferred_node = first_node(nodes);
2814 else
2815 new->flags |= MPOL_F_LOCAL;
2816
2817 /*
2818 * Save nodes for contextualization: this will be used to "clone"
2819 * the mempolicy in a specific context [cpuset] at a later time.
2820 */
2821 new->w.user_nodemask = nodes;
2822
2823 err = 0;
2824
2825 out:
2826 /* Restore string for error message */
2827 if (nodelist)
2828 *--nodelist = ':';
2829 if (flags)
2830 *--flags = '=';
2831 if (!err)
2832 *mpol = new;
2833 return err;
2834 }
2835 #endif /* CONFIG_TMPFS */
2836
2837 /**
2838 * mpol_to_str - format a mempolicy structure for printing
2839 * @buffer: to contain formatted mempolicy string
2840 * @maxlen: length of @buffer
2841 * @pol: pointer to mempolicy to be formatted
2842 *
2843 * Convert a mempolicy into a string.
2844 * Returns the number of characters in buffer (if positive)
2845 * or an error (negative)
2846 */
2847 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2848 {
2849 char *p = buffer;
2850 int l;
2851 nodemask_t nodes;
2852 unsigned short mode;
2853 unsigned short flags = pol ? pol->flags : 0;
2854
2855 /*
2856 * Sanity check: room for longest mode, flag and some nodes
2857 */
2858 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2859
2860 if (!pol || pol == &default_policy)
2861 mode = MPOL_DEFAULT;
2862 else
2863 mode = pol->mode;
2864
2865 switch (mode) {
2866 case MPOL_DEFAULT:
2867 nodes_clear(nodes);
2868 break;
2869
2870 case MPOL_PREFERRED:
2871 nodes_clear(nodes);
2872 if (flags & MPOL_F_LOCAL)
2873 mode = MPOL_LOCAL;
2874 else
2875 node_set(pol->v.preferred_node, nodes);
2876 break;
2877
2878 case MPOL_BIND:
2879 /* Fall through */
2880 case MPOL_INTERLEAVE:
2881 nodes = pol->v.nodes;
2882 break;
2883
2884 default:
2885 return -EINVAL;
2886 }
2887
2888 l = strlen(policy_modes[mode]);
2889 if (buffer + maxlen < p + l + 1)
2890 return -ENOSPC;
2891
2892 strcpy(p, policy_modes[mode]);
2893 p += l;
2894
2895 if (flags & MPOL_MODE_FLAGS) {
2896 if (buffer + maxlen < p + 2)
2897 return -ENOSPC;
2898 *p++ = '=';
2899
2900 /*
2901 * Currently, the only defined flags are mutually exclusive
2902 */
2903 if (flags & MPOL_F_STATIC_NODES)
2904 p += snprintf(p, buffer + maxlen - p, "static");
2905 else if (flags & MPOL_F_RELATIVE_NODES)
2906 p += snprintf(p, buffer + maxlen - p, "relative");
2907 }
2908
2909 if (!nodes_empty(nodes)) {
2910 if (buffer + maxlen < p + 2)
2911 return -ENOSPC;
2912 *p++ = ':';
2913 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2914 }
2915 return p - buffer;
2916 }
This page took 0.097435 seconds and 5 git commands to generate.