selinux/nlmsg: add a build time check for rtnl/xfrm cmds
[deliverable/linux.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/export.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/ksm.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 #include <linux/syscalls.h>
93 #include <linux/ctype.h>
94 #include <linux/mm_inline.h>
95 #include <linux/mmu_notifier.h>
96 #include <linux/printk.h>
97
98 #include <asm/tlbflush.h>
99 #include <asm/uaccess.h>
100 #include <linux/random.h>
101
102 #include "internal.h"
103
104 /* Internal flags */
105 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
106 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
107
108 static struct kmem_cache *policy_cache;
109 static struct kmem_cache *sn_cache;
110
111 /* Highest zone. An specific allocation for a zone below that is not
112 policied. */
113 enum zone_type policy_zone = 0;
114
115 /*
116 * run-time system-wide default policy => local allocation
117 */
118 static struct mempolicy default_policy = {
119 .refcnt = ATOMIC_INIT(1), /* never free it */
120 .mode = MPOL_PREFERRED,
121 .flags = MPOL_F_LOCAL,
122 };
123
124 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
125
126 struct mempolicy *get_task_policy(struct task_struct *p)
127 {
128 struct mempolicy *pol = p->mempolicy;
129 int node;
130
131 if (pol)
132 return pol;
133
134 node = numa_node_id();
135 if (node != NUMA_NO_NODE) {
136 pol = &preferred_node_policy[node];
137 /* preferred_node_policy is not initialised early in boot */
138 if (pol->mode)
139 return pol;
140 }
141
142 return &default_policy;
143 }
144
145 static const struct mempolicy_operations {
146 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
147 /*
148 * If read-side task has no lock to protect task->mempolicy, write-side
149 * task will rebind the task->mempolicy by two step. The first step is
150 * setting all the newly nodes, and the second step is cleaning all the
151 * disallowed nodes. In this way, we can avoid finding no node to alloc
152 * page.
153 * If we have a lock to protect task->mempolicy in read-side, we do
154 * rebind directly.
155 *
156 * step:
157 * MPOL_REBIND_ONCE - do rebind work at once
158 * MPOL_REBIND_STEP1 - set all the newly nodes
159 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
160 */
161 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
162 enum mpol_rebind_step step);
163 } mpol_ops[MPOL_MAX];
164
165 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
166 {
167 return pol->flags & MPOL_MODE_FLAGS;
168 }
169
170 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
171 const nodemask_t *rel)
172 {
173 nodemask_t tmp;
174 nodes_fold(tmp, *orig, nodes_weight(*rel));
175 nodes_onto(*ret, tmp, *rel);
176 }
177
178 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
179 {
180 if (nodes_empty(*nodes))
181 return -EINVAL;
182 pol->v.nodes = *nodes;
183 return 0;
184 }
185
186 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
187 {
188 if (!nodes)
189 pol->flags |= MPOL_F_LOCAL; /* local allocation */
190 else if (nodes_empty(*nodes))
191 return -EINVAL; /* no allowed nodes */
192 else
193 pol->v.preferred_node = first_node(*nodes);
194 return 0;
195 }
196
197 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
198 {
199 if (nodes_empty(*nodes))
200 return -EINVAL;
201 pol->v.nodes = *nodes;
202 return 0;
203 }
204
205 /*
206 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
207 * any, for the new policy. mpol_new() has already validated the nodes
208 * parameter with respect to the policy mode and flags. But, we need to
209 * handle an empty nodemask with MPOL_PREFERRED here.
210 *
211 * Must be called holding task's alloc_lock to protect task's mems_allowed
212 * and mempolicy. May also be called holding the mmap_semaphore for write.
213 */
214 static int mpol_set_nodemask(struct mempolicy *pol,
215 const nodemask_t *nodes, struct nodemask_scratch *nsc)
216 {
217 int ret;
218
219 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
220 if (pol == NULL)
221 return 0;
222 /* Check N_MEMORY */
223 nodes_and(nsc->mask1,
224 cpuset_current_mems_allowed, node_states[N_MEMORY]);
225
226 VM_BUG_ON(!nodes);
227 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
228 nodes = NULL; /* explicit local allocation */
229 else {
230 if (pol->flags & MPOL_F_RELATIVE_NODES)
231 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
232 else
233 nodes_and(nsc->mask2, *nodes, nsc->mask1);
234
235 if (mpol_store_user_nodemask(pol))
236 pol->w.user_nodemask = *nodes;
237 else
238 pol->w.cpuset_mems_allowed =
239 cpuset_current_mems_allowed;
240 }
241
242 if (nodes)
243 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
244 else
245 ret = mpol_ops[pol->mode].create(pol, NULL);
246 return ret;
247 }
248
249 /*
250 * This function just creates a new policy, does some check and simple
251 * initialization. You must invoke mpol_set_nodemask() to set nodes.
252 */
253 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
254 nodemask_t *nodes)
255 {
256 struct mempolicy *policy;
257
258 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
259 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
260
261 if (mode == MPOL_DEFAULT) {
262 if (nodes && !nodes_empty(*nodes))
263 return ERR_PTR(-EINVAL);
264 return NULL;
265 }
266 VM_BUG_ON(!nodes);
267
268 /*
269 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
270 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
271 * All other modes require a valid pointer to a non-empty nodemask.
272 */
273 if (mode == MPOL_PREFERRED) {
274 if (nodes_empty(*nodes)) {
275 if (((flags & MPOL_F_STATIC_NODES) ||
276 (flags & MPOL_F_RELATIVE_NODES)))
277 return ERR_PTR(-EINVAL);
278 }
279 } else if (mode == MPOL_LOCAL) {
280 if (!nodes_empty(*nodes))
281 return ERR_PTR(-EINVAL);
282 mode = MPOL_PREFERRED;
283 } else if (nodes_empty(*nodes))
284 return ERR_PTR(-EINVAL);
285 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
286 if (!policy)
287 return ERR_PTR(-ENOMEM);
288 atomic_set(&policy->refcnt, 1);
289 policy->mode = mode;
290 policy->flags = flags;
291
292 return policy;
293 }
294
295 /* Slow path of a mpol destructor. */
296 void __mpol_put(struct mempolicy *p)
297 {
298 if (!atomic_dec_and_test(&p->refcnt))
299 return;
300 kmem_cache_free(policy_cache, p);
301 }
302
303 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
304 enum mpol_rebind_step step)
305 {
306 }
307
308 /*
309 * step:
310 * MPOL_REBIND_ONCE - do rebind work at once
311 * MPOL_REBIND_STEP1 - set all the newly nodes
312 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
313 */
314 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
315 enum mpol_rebind_step step)
316 {
317 nodemask_t tmp;
318
319 if (pol->flags & MPOL_F_STATIC_NODES)
320 nodes_and(tmp, pol->w.user_nodemask, *nodes);
321 else if (pol->flags & MPOL_F_RELATIVE_NODES)
322 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
323 else {
324 /*
325 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
326 * result
327 */
328 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
329 nodes_remap(tmp, pol->v.nodes,
330 pol->w.cpuset_mems_allowed, *nodes);
331 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
332 } else if (step == MPOL_REBIND_STEP2) {
333 tmp = pol->w.cpuset_mems_allowed;
334 pol->w.cpuset_mems_allowed = *nodes;
335 } else
336 BUG();
337 }
338
339 if (nodes_empty(tmp))
340 tmp = *nodes;
341
342 if (step == MPOL_REBIND_STEP1)
343 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
344 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
345 pol->v.nodes = tmp;
346 else
347 BUG();
348
349 if (!node_isset(current->il_next, tmp)) {
350 current->il_next = next_node(current->il_next, tmp);
351 if (current->il_next >= MAX_NUMNODES)
352 current->il_next = first_node(tmp);
353 if (current->il_next >= MAX_NUMNODES)
354 current->il_next = numa_node_id();
355 }
356 }
357
358 static void mpol_rebind_preferred(struct mempolicy *pol,
359 const nodemask_t *nodes,
360 enum mpol_rebind_step step)
361 {
362 nodemask_t tmp;
363
364 if (pol->flags & MPOL_F_STATIC_NODES) {
365 int node = first_node(pol->w.user_nodemask);
366
367 if (node_isset(node, *nodes)) {
368 pol->v.preferred_node = node;
369 pol->flags &= ~MPOL_F_LOCAL;
370 } else
371 pol->flags |= MPOL_F_LOCAL;
372 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
373 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
374 pol->v.preferred_node = first_node(tmp);
375 } else if (!(pol->flags & MPOL_F_LOCAL)) {
376 pol->v.preferred_node = node_remap(pol->v.preferred_node,
377 pol->w.cpuset_mems_allowed,
378 *nodes);
379 pol->w.cpuset_mems_allowed = *nodes;
380 }
381 }
382
383 /*
384 * mpol_rebind_policy - Migrate a policy to a different set of nodes
385 *
386 * If read-side task has no lock to protect task->mempolicy, write-side
387 * task will rebind the task->mempolicy by two step. The first step is
388 * setting all the newly nodes, and the second step is cleaning all the
389 * disallowed nodes. In this way, we can avoid finding no node to alloc
390 * page.
391 * If we have a lock to protect task->mempolicy in read-side, we do
392 * rebind directly.
393 *
394 * step:
395 * MPOL_REBIND_ONCE - do rebind work at once
396 * MPOL_REBIND_STEP1 - set all the newly nodes
397 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
398 */
399 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
400 enum mpol_rebind_step step)
401 {
402 if (!pol)
403 return;
404 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
405 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
406 return;
407
408 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
409 return;
410
411 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
412 BUG();
413
414 if (step == MPOL_REBIND_STEP1)
415 pol->flags |= MPOL_F_REBINDING;
416 else if (step == MPOL_REBIND_STEP2)
417 pol->flags &= ~MPOL_F_REBINDING;
418 else if (step >= MPOL_REBIND_NSTEP)
419 BUG();
420
421 mpol_ops[pol->mode].rebind(pol, newmask, step);
422 }
423
424 /*
425 * Wrapper for mpol_rebind_policy() that just requires task
426 * pointer, and updates task mempolicy.
427 *
428 * Called with task's alloc_lock held.
429 */
430
431 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
432 enum mpol_rebind_step step)
433 {
434 mpol_rebind_policy(tsk->mempolicy, new, step);
435 }
436
437 /*
438 * Rebind each vma in mm to new nodemask.
439 *
440 * Call holding a reference to mm. Takes mm->mmap_sem during call.
441 */
442
443 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
444 {
445 struct vm_area_struct *vma;
446
447 down_write(&mm->mmap_sem);
448 for (vma = mm->mmap; vma; vma = vma->vm_next)
449 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
450 up_write(&mm->mmap_sem);
451 }
452
453 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
454 [MPOL_DEFAULT] = {
455 .rebind = mpol_rebind_default,
456 },
457 [MPOL_INTERLEAVE] = {
458 .create = mpol_new_interleave,
459 .rebind = mpol_rebind_nodemask,
460 },
461 [MPOL_PREFERRED] = {
462 .create = mpol_new_preferred,
463 .rebind = mpol_rebind_preferred,
464 },
465 [MPOL_BIND] = {
466 .create = mpol_new_bind,
467 .rebind = mpol_rebind_nodemask,
468 },
469 };
470
471 static void migrate_page_add(struct page *page, struct list_head *pagelist,
472 unsigned long flags);
473
474 struct queue_pages {
475 struct list_head *pagelist;
476 unsigned long flags;
477 nodemask_t *nmask;
478 struct vm_area_struct *prev;
479 };
480
481 /*
482 * Scan through pages checking if pages follow certain conditions,
483 * and move them to the pagelist if they do.
484 */
485 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
486 unsigned long end, struct mm_walk *walk)
487 {
488 struct vm_area_struct *vma = walk->vma;
489 struct page *page;
490 struct queue_pages *qp = walk->private;
491 unsigned long flags = qp->flags;
492 int nid;
493 pte_t *pte;
494 spinlock_t *ptl;
495
496 split_huge_page_pmd(vma, addr, pmd);
497 if (pmd_trans_unstable(pmd))
498 return 0;
499
500 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
501 for (; addr != end; pte++, addr += PAGE_SIZE) {
502 if (!pte_present(*pte))
503 continue;
504 page = vm_normal_page(vma, addr, *pte);
505 if (!page)
506 continue;
507 /*
508 * vm_normal_page() filters out zero pages, but there might
509 * still be PageReserved pages to skip, perhaps in a VDSO.
510 */
511 if (PageReserved(page))
512 continue;
513 nid = page_to_nid(page);
514 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
515 continue;
516
517 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
518 migrate_page_add(page, qp->pagelist, flags);
519 }
520 pte_unmap_unlock(pte - 1, ptl);
521 cond_resched();
522 return 0;
523 }
524
525 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
526 unsigned long addr, unsigned long end,
527 struct mm_walk *walk)
528 {
529 #ifdef CONFIG_HUGETLB_PAGE
530 struct queue_pages *qp = walk->private;
531 unsigned long flags = qp->flags;
532 int nid;
533 struct page *page;
534 spinlock_t *ptl;
535 pte_t entry;
536
537 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
538 entry = huge_ptep_get(pte);
539 if (!pte_present(entry))
540 goto unlock;
541 page = pte_page(entry);
542 nid = page_to_nid(page);
543 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
544 goto unlock;
545 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
546 if (flags & (MPOL_MF_MOVE_ALL) ||
547 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
548 isolate_huge_page(page, qp->pagelist);
549 unlock:
550 spin_unlock(ptl);
551 #else
552 BUG();
553 #endif
554 return 0;
555 }
556
557 #ifdef CONFIG_NUMA_BALANCING
558 /*
559 * This is used to mark a range of virtual addresses to be inaccessible.
560 * These are later cleared by a NUMA hinting fault. Depending on these
561 * faults, pages may be migrated for better NUMA placement.
562 *
563 * This is assuming that NUMA faults are handled using PROT_NONE. If
564 * an architecture makes a different choice, it will need further
565 * changes to the core.
566 */
567 unsigned long change_prot_numa(struct vm_area_struct *vma,
568 unsigned long addr, unsigned long end)
569 {
570 int nr_updated;
571
572 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
573 if (nr_updated)
574 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
575
576 return nr_updated;
577 }
578 #else
579 static unsigned long change_prot_numa(struct vm_area_struct *vma,
580 unsigned long addr, unsigned long end)
581 {
582 return 0;
583 }
584 #endif /* CONFIG_NUMA_BALANCING */
585
586 static int queue_pages_test_walk(unsigned long start, unsigned long end,
587 struct mm_walk *walk)
588 {
589 struct vm_area_struct *vma = walk->vma;
590 struct queue_pages *qp = walk->private;
591 unsigned long endvma = vma->vm_end;
592 unsigned long flags = qp->flags;
593
594 if (vma->vm_flags & VM_PFNMAP)
595 return 1;
596
597 if (endvma > end)
598 endvma = end;
599 if (vma->vm_start > start)
600 start = vma->vm_start;
601
602 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
603 if (!vma->vm_next && vma->vm_end < end)
604 return -EFAULT;
605 if (qp->prev && qp->prev->vm_end < vma->vm_start)
606 return -EFAULT;
607 }
608
609 qp->prev = vma;
610
611 if (vma->vm_flags & VM_PFNMAP)
612 return 1;
613
614 if (flags & MPOL_MF_LAZY) {
615 /* Similar to task_numa_work, skip inaccessible VMAs */
616 if (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))
617 change_prot_numa(vma, start, endvma);
618 return 1;
619 }
620
621 if ((flags & MPOL_MF_STRICT) ||
622 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
623 vma_migratable(vma)))
624 /* queue pages from current vma */
625 return 0;
626 return 1;
627 }
628
629 /*
630 * Walk through page tables and collect pages to be migrated.
631 *
632 * If pages found in a given range are on a set of nodes (determined by
633 * @nodes and @flags,) it's isolated and queued to the pagelist which is
634 * passed via @private.)
635 */
636 static int
637 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
638 nodemask_t *nodes, unsigned long flags,
639 struct list_head *pagelist)
640 {
641 struct queue_pages qp = {
642 .pagelist = pagelist,
643 .flags = flags,
644 .nmask = nodes,
645 .prev = NULL,
646 };
647 struct mm_walk queue_pages_walk = {
648 .hugetlb_entry = queue_pages_hugetlb,
649 .pmd_entry = queue_pages_pte_range,
650 .test_walk = queue_pages_test_walk,
651 .mm = mm,
652 .private = &qp,
653 };
654
655 return walk_page_range(start, end, &queue_pages_walk);
656 }
657
658 /*
659 * Apply policy to a single VMA
660 * This must be called with the mmap_sem held for writing.
661 */
662 static int vma_replace_policy(struct vm_area_struct *vma,
663 struct mempolicy *pol)
664 {
665 int err;
666 struct mempolicy *old;
667 struct mempolicy *new;
668
669 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
670 vma->vm_start, vma->vm_end, vma->vm_pgoff,
671 vma->vm_ops, vma->vm_file,
672 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
673
674 new = mpol_dup(pol);
675 if (IS_ERR(new))
676 return PTR_ERR(new);
677
678 if (vma->vm_ops && vma->vm_ops->set_policy) {
679 err = vma->vm_ops->set_policy(vma, new);
680 if (err)
681 goto err_out;
682 }
683
684 old = vma->vm_policy;
685 vma->vm_policy = new; /* protected by mmap_sem */
686 mpol_put(old);
687
688 return 0;
689 err_out:
690 mpol_put(new);
691 return err;
692 }
693
694 /* Step 2: apply policy to a range and do splits. */
695 static int mbind_range(struct mm_struct *mm, unsigned long start,
696 unsigned long end, struct mempolicy *new_pol)
697 {
698 struct vm_area_struct *next;
699 struct vm_area_struct *prev;
700 struct vm_area_struct *vma;
701 int err = 0;
702 pgoff_t pgoff;
703 unsigned long vmstart;
704 unsigned long vmend;
705
706 vma = find_vma(mm, start);
707 if (!vma || vma->vm_start > start)
708 return -EFAULT;
709
710 prev = vma->vm_prev;
711 if (start > vma->vm_start)
712 prev = vma;
713
714 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
715 next = vma->vm_next;
716 vmstart = max(start, vma->vm_start);
717 vmend = min(end, vma->vm_end);
718
719 if (mpol_equal(vma_policy(vma), new_pol))
720 continue;
721
722 pgoff = vma->vm_pgoff +
723 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
724 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
725 vma->anon_vma, vma->vm_file, pgoff,
726 new_pol);
727 if (prev) {
728 vma = prev;
729 next = vma->vm_next;
730 if (mpol_equal(vma_policy(vma), new_pol))
731 continue;
732 /* vma_merge() joined vma && vma->next, case 8 */
733 goto replace;
734 }
735 if (vma->vm_start != vmstart) {
736 err = split_vma(vma->vm_mm, vma, vmstart, 1);
737 if (err)
738 goto out;
739 }
740 if (vma->vm_end != vmend) {
741 err = split_vma(vma->vm_mm, vma, vmend, 0);
742 if (err)
743 goto out;
744 }
745 replace:
746 err = vma_replace_policy(vma, new_pol);
747 if (err)
748 goto out;
749 }
750
751 out:
752 return err;
753 }
754
755 /* Set the process memory policy */
756 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
757 nodemask_t *nodes)
758 {
759 struct mempolicy *new, *old;
760 NODEMASK_SCRATCH(scratch);
761 int ret;
762
763 if (!scratch)
764 return -ENOMEM;
765
766 new = mpol_new(mode, flags, nodes);
767 if (IS_ERR(new)) {
768 ret = PTR_ERR(new);
769 goto out;
770 }
771
772 task_lock(current);
773 ret = mpol_set_nodemask(new, nodes, scratch);
774 if (ret) {
775 task_unlock(current);
776 mpol_put(new);
777 goto out;
778 }
779 old = current->mempolicy;
780 current->mempolicy = new;
781 if (new && new->mode == MPOL_INTERLEAVE &&
782 nodes_weight(new->v.nodes))
783 current->il_next = first_node(new->v.nodes);
784 task_unlock(current);
785 mpol_put(old);
786 ret = 0;
787 out:
788 NODEMASK_SCRATCH_FREE(scratch);
789 return ret;
790 }
791
792 /*
793 * Return nodemask for policy for get_mempolicy() query
794 *
795 * Called with task's alloc_lock held
796 */
797 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
798 {
799 nodes_clear(*nodes);
800 if (p == &default_policy)
801 return;
802
803 switch (p->mode) {
804 case MPOL_BIND:
805 /* Fall through */
806 case MPOL_INTERLEAVE:
807 *nodes = p->v.nodes;
808 break;
809 case MPOL_PREFERRED:
810 if (!(p->flags & MPOL_F_LOCAL))
811 node_set(p->v.preferred_node, *nodes);
812 /* else return empty node mask for local allocation */
813 break;
814 default:
815 BUG();
816 }
817 }
818
819 static int lookup_node(struct mm_struct *mm, unsigned long addr)
820 {
821 struct page *p;
822 int err;
823
824 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
825 if (err >= 0) {
826 err = page_to_nid(p);
827 put_page(p);
828 }
829 return err;
830 }
831
832 /* Retrieve NUMA policy */
833 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
834 unsigned long addr, unsigned long flags)
835 {
836 int err;
837 struct mm_struct *mm = current->mm;
838 struct vm_area_struct *vma = NULL;
839 struct mempolicy *pol = current->mempolicy;
840
841 if (flags &
842 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
843 return -EINVAL;
844
845 if (flags & MPOL_F_MEMS_ALLOWED) {
846 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
847 return -EINVAL;
848 *policy = 0; /* just so it's initialized */
849 task_lock(current);
850 *nmask = cpuset_current_mems_allowed;
851 task_unlock(current);
852 return 0;
853 }
854
855 if (flags & MPOL_F_ADDR) {
856 /*
857 * Do NOT fall back to task policy if the
858 * vma/shared policy at addr is NULL. We
859 * want to return MPOL_DEFAULT in this case.
860 */
861 down_read(&mm->mmap_sem);
862 vma = find_vma_intersection(mm, addr, addr+1);
863 if (!vma) {
864 up_read(&mm->mmap_sem);
865 return -EFAULT;
866 }
867 if (vma->vm_ops && vma->vm_ops->get_policy)
868 pol = vma->vm_ops->get_policy(vma, addr);
869 else
870 pol = vma->vm_policy;
871 } else if (addr)
872 return -EINVAL;
873
874 if (!pol)
875 pol = &default_policy; /* indicates default behavior */
876
877 if (flags & MPOL_F_NODE) {
878 if (flags & MPOL_F_ADDR) {
879 err = lookup_node(mm, addr);
880 if (err < 0)
881 goto out;
882 *policy = err;
883 } else if (pol == current->mempolicy &&
884 pol->mode == MPOL_INTERLEAVE) {
885 *policy = current->il_next;
886 } else {
887 err = -EINVAL;
888 goto out;
889 }
890 } else {
891 *policy = pol == &default_policy ? MPOL_DEFAULT :
892 pol->mode;
893 /*
894 * Internal mempolicy flags must be masked off before exposing
895 * the policy to userspace.
896 */
897 *policy |= (pol->flags & MPOL_MODE_FLAGS);
898 }
899
900 if (vma) {
901 up_read(&current->mm->mmap_sem);
902 vma = NULL;
903 }
904
905 err = 0;
906 if (nmask) {
907 if (mpol_store_user_nodemask(pol)) {
908 *nmask = pol->w.user_nodemask;
909 } else {
910 task_lock(current);
911 get_policy_nodemask(pol, nmask);
912 task_unlock(current);
913 }
914 }
915
916 out:
917 mpol_cond_put(pol);
918 if (vma)
919 up_read(&current->mm->mmap_sem);
920 return err;
921 }
922
923 #ifdef CONFIG_MIGRATION
924 /*
925 * page migration
926 */
927 static void migrate_page_add(struct page *page, struct list_head *pagelist,
928 unsigned long flags)
929 {
930 /*
931 * Avoid migrating a page that is shared with others.
932 */
933 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
934 if (!isolate_lru_page(page)) {
935 list_add_tail(&page->lru, pagelist);
936 inc_zone_page_state(page, NR_ISOLATED_ANON +
937 page_is_file_cache(page));
938 }
939 }
940 }
941
942 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
943 {
944 if (PageHuge(page))
945 return alloc_huge_page_node(page_hstate(compound_head(page)),
946 node);
947 else
948 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
949 }
950
951 /*
952 * Migrate pages from one node to a target node.
953 * Returns error or the number of pages not migrated.
954 */
955 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
956 int flags)
957 {
958 nodemask_t nmask;
959 LIST_HEAD(pagelist);
960 int err = 0;
961
962 nodes_clear(nmask);
963 node_set(source, nmask);
964
965 /*
966 * This does not "check" the range but isolates all pages that
967 * need migration. Between passing in the full user address
968 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
969 */
970 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
971 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
972 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
973
974 if (!list_empty(&pagelist)) {
975 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
976 MIGRATE_SYNC, MR_SYSCALL);
977 if (err)
978 putback_movable_pages(&pagelist);
979 }
980
981 return err;
982 }
983
984 /*
985 * Move pages between the two nodesets so as to preserve the physical
986 * layout as much as possible.
987 *
988 * Returns the number of page that could not be moved.
989 */
990 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
991 const nodemask_t *to, int flags)
992 {
993 int busy = 0;
994 int err;
995 nodemask_t tmp;
996
997 err = migrate_prep();
998 if (err)
999 return err;
1000
1001 down_read(&mm->mmap_sem);
1002
1003 /*
1004 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1005 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1006 * bit in 'tmp', and return that <source, dest> pair for migration.
1007 * The pair of nodemasks 'to' and 'from' define the map.
1008 *
1009 * If no pair of bits is found that way, fallback to picking some
1010 * pair of 'source' and 'dest' bits that are not the same. If the
1011 * 'source' and 'dest' bits are the same, this represents a node
1012 * that will be migrating to itself, so no pages need move.
1013 *
1014 * If no bits are left in 'tmp', or if all remaining bits left
1015 * in 'tmp' correspond to the same bit in 'to', return false
1016 * (nothing left to migrate).
1017 *
1018 * This lets us pick a pair of nodes to migrate between, such that
1019 * if possible the dest node is not already occupied by some other
1020 * source node, minimizing the risk of overloading the memory on a
1021 * node that would happen if we migrated incoming memory to a node
1022 * before migrating outgoing memory source that same node.
1023 *
1024 * A single scan of tmp is sufficient. As we go, we remember the
1025 * most recent <s, d> pair that moved (s != d). If we find a pair
1026 * that not only moved, but what's better, moved to an empty slot
1027 * (d is not set in tmp), then we break out then, with that pair.
1028 * Otherwise when we finish scanning from_tmp, we at least have the
1029 * most recent <s, d> pair that moved. If we get all the way through
1030 * the scan of tmp without finding any node that moved, much less
1031 * moved to an empty node, then there is nothing left worth migrating.
1032 */
1033
1034 tmp = *from;
1035 while (!nodes_empty(tmp)) {
1036 int s,d;
1037 int source = NUMA_NO_NODE;
1038 int dest = 0;
1039
1040 for_each_node_mask(s, tmp) {
1041
1042 /*
1043 * do_migrate_pages() tries to maintain the relative
1044 * node relationship of the pages established between
1045 * threads and memory areas.
1046 *
1047 * However if the number of source nodes is not equal to
1048 * the number of destination nodes we can not preserve
1049 * this node relative relationship. In that case, skip
1050 * copying memory from a node that is in the destination
1051 * mask.
1052 *
1053 * Example: [2,3,4] -> [3,4,5] moves everything.
1054 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1055 */
1056
1057 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1058 (node_isset(s, *to)))
1059 continue;
1060
1061 d = node_remap(s, *from, *to);
1062 if (s == d)
1063 continue;
1064
1065 source = s; /* Node moved. Memorize */
1066 dest = d;
1067
1068 /* dest not in remaining from nodes? */
1069 if (!node_isset(dest, tmp))
1070 break;
1071 }
1072 if (source == NUMA_NO_NODE)
1073 break;
1074
1075 node_clear(source, tmp);
1076 err = migrate_to_node(mm, source, dest, flags);
1077 if (err > 0)
1078 busy += err;
1079 if (err < 0)
1080 break;
1081 }
1082 up_read(&mm->mmap_sem);
1083 if (err < 0)
1084 return err;
1085 return busy;
1086
1087 }
1088
1089 /*
1090 * Allocate a new page for page migration based on vma policy.
1091 * Start by assuming the page is mapped by the same vma as contains @start.
1092 * Search forward from there, if not. N.B., this assumes that the
1093 * list of pages handed to migrate_pages()--which is how we get here--
1094 * is in virtual address order.
1095 */
1096 static struct page *new_page(struct page *page, unsigned long start, int **x)
1097 {
1098 struct vm_area_struct *vma;
1099 unsigned long uninitialized_var(address);
1100
1101 vma = find_vma(current->mm, start);
1102 while (vma) {
1103 address = page_address_in_vma(page, vma);
1104 if (address != -EFAULT)
1105 break;
1106 vma = vma->vm_next;
1107 }
1108
1109 if (PageHuge(page)) {
1110 BUG_ON(!vma);
1111 return alloc_huge_page_noerr(vma, address, 1);
1112 }
1113 /*
1114 * if !vma, alloc_page_vma() will use task or system default policy
1115 */
1116 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1117 }
1118 #else
1119
1120 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1121 unsigned long flags)
1122 {
1123 }
1124
1125 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1126 const nodemask_t *to, int flags)
1127 {
1128 return -ENOSYS;
1129 }
1130
1131 static struct page *new_page(struct page *page, unsigned long start, int **x)
1132 {
1133 return NULL;
1134 }
1135 #endif
1136
1137 static long do_mbind(unsigned long start, unsigned long len,
1138 unsigned short mode, unsigned short mode_flags,
1139 nodemask_t *nmask, unsigned long flags)
1140 {
1141 struct mm_struct *mm = current->mm;
1142 struct mempolicy *new;
1143 unsigned long end;
1144 int err;
1145 LIST_HEAD(pagelist);
1146
1147 if (flags & ~(unsigned long)MPOL_MF_VALID)
1148 return -EINVAL;
1149 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1150 return -EPERM;
1151
1152 if (start & ~PAGE_MASK)
1153 return -EINVAL;
1154
1155 if (mode == MPOL_DEFAULT)
1156 flags &= ~MPOL_MF_STRICT;
1157
1158 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1159 end = start + len;
1160
1161 if (end < start)
1162 return -EINVAL;
1163 if (end == start)
1164 return 0;
1165
1166 new = mpol_new(mode, mode_flags, nmask);
1167 if (IS_ERR(new))
1168 return PTR_ERR(new);
1169
1170 if (flags & MPOL_MF_LAZY)
1171 new->flags |= MPOL_F_MOF;
1172
1173 /*
1174 * If we are using the default policy then operation
1175 * on discontinuous address spaces is okay after all
1176 */
1177 if (!new)
1178 flags |= MPOL_MF_DISCONTIG_OK;
1179
1180 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1181 start, start + len, mode, mode_flags,
1182 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1183
1184 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1185
1186 err = migrate_prep();
1187 if (err)
1188 goto mpol_out;
1189 }
1190 {
1191 NODEMASK_SCRATCH(scratch);
1192 if (scratch) {
1193 down_write(&mm->mmap_sem);
1194 task_lock(current);
1195 err = mpol_set_nodemask(new, nmask, scratch);
1196 task_unlock(current);
1197 if (err)
1198 up_write(&mm->mmap_sem);
1199 } else
1200 err = -ENOMEM;
1201 NODEMASK_SCRATCH_FREE(scratch);
1202 }
1203 if (err)
1204 goto mpol_out;
1205
1206 err = queue_pages_range(mm, start, end, nmask,
1207 flags | MPOL_MF_INVERT, &pagelist);
1208 if (!err)
1209 err = mbind_range(mm, start, end, new);
1210
1211 if (!err) {
1212 int nr_failed = 0;
1213
1214 if (!list_empty(&pagelist)) {
1215 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1216 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1217 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1218 if (nr_failed)
1219 putback_movable_pages(&pagelist);
1220 }
1221
1222 if (nr_failed && (flags & MPOL_MF_STRICT))
1223 err = -EIO;
1224 } else
1225 putback_movable_pages(&pagelist);
1226
1227 up_write(&mm->mmap_sem);
1228 mpol_out:
1229 mpol_put(new);
1230 return err;
1231 }
1232
1233 /*
1234 * User space interface with variable sized bitmaps for nodelists.
1235 */
1236
1237 /* Copy a node mask from user space. */
1238 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1239 unsigned long maxnode)
1240 {
1241 unsigned long k;
1242 unsigned long nlongs;
1243 unsigned long endmask;
1244
1245 --maxnode;
1246 nodes_clear(*nodes);
1247 if (maxnode == 0 || !nmask)
1248 return 0;
1249 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1250 return -EINVAL;
1251
1252 nlongs = BITS_TO_LONGS(maxnode);
1253 if ((maxnode % BITS_PER_LONG) == 0)
1254 endmask = ~0UL;
1255 else
1256 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1257
1258 /* When the user specified more nodes than supported just check
1259 if the non supported part is all zero. */
1260 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1261 if (nlongs > PAGE_SIZE/sizeof(long))
1262 return -EINVAL;
1263 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1264 unsigned long t;
1265 if (get_user(t, nmask + k))
1266 return -EFAULT;
1267 if (k == nlongs - 1) {
1268 if (t & endmask)
1269 return -EINVAL;
1270 } else if (t)
1271 return -EINVAL;
1272 }
1273 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1274 endmask = ~0UL;
1275 }
1276
1277 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1278 return -EFAULT;
1279 nodes_addr(*nodes)[nlongs-1] &= endmask;
1280 return 0;
1281 }
1282
1283 /* Copy a kernel node mask to user space */
1284 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1285 nodemask_t *nodes)
1286 {
1287 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1288 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1289
1290 if (copy > nbytes) {
1291 if (copy > PAGE_SIZE)
1292 return -EINVAL;
1293 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1294 return -EFAULT;
1295 copy = nbytes;
1296 }
1297 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1298 }
1299
1300 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1301 unsigned long, mode, const unsigned long __user *, nmask,
1302 unsigned long, maxnode, unsigned, flags)
1303 {
1304 nodemask_t nodes;
1305 int err;
1306 unsigned short mode_flags;
1307
1308 mode_flags = mode & MPOL_MODE_FLAGS;
1309 mode &= ~MPOL_MODE_FLAGS;
1310 if (mode >= MPOL_MAX)
1311 return -EINVAL;
1312 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1313 (mode_flags & MPOL_F_RELATIVE_NODES))
1314 return -EINVAL;
1315 err = get_nodes(&nodes, nmask, maxnode);
1316 if (err)
1317 return err;
1318 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1319 }
1320
1321 /* Set the process memory policy */
1322 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1323 unsigned long, maxnode)
1324 {
1325 int err;
1326 nodemask_t nodes;
1327 unsigned short flags;
1328
1329 flags = mode & MPOL_MODE_FLAGS;
1330 mode &= ~MPOL_MODE_FLAGS;
1331 if ((unsigned int)mode >= MPOL_MAX)
1332 return -EINVAL;
1333 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1334 return -EINVAL;
1335 err = get_nodes(&nodes, nmask, maxnode);
1336 if (err)
1337 return err;
1338 return do_set_mempolicy(mode, flags, &nodes);
1339 }
1340
1341 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1342 const unsigned long __user *, old_nodes,
1343 const unsigned long __user *, new_nodes)
1344 {
1345 const struct cred *cred = current_cred(), *tcred;
1346 struct mm_struct *mm = NULL;
1347 struct task_struct *task;
1348 nodemask_t task_nodes;
1349 int err;
1350 nodemask_t *old;
1351 nodemask_t *new;
1352 NODEMASK_SCRATCH(scratch);
1353
1354 if (!scratch)
1355 return -ENOMEM;
1356
1357 old = &scratch->mask1;
1358 new = &scratch->mask2;
1359
1360 err = get_nodes(old, old_nodes, maxnode);
1361 if (err)
1362 goto out;
1363
1364 err = get_nodes(new, new_nodes, maxnode);
1365 if (err)
1366 goto out;
1367
1368 /* Find the mm_struct */
1369 rcu_read_lock();
1370 task = pid ? find_task_by_vpid(pid) : current;
1371 if (!task) {
1372 rcu_read_unlock();
1373 err = -ESRCH;
1374 goto out;
1375 }
1376 get_task_struct(task);
1377
1378 err = -EINVAL;
1379
1380 /*
1381 * Check if this process has the right to modify the specified
1382 * process. The right exists if the process has administrative
1383 * capabilities, superuser privileges or the same
1384 * userid as the target process.
1385 */
1386 tcred = __task_cred(task);
1387 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1388 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1389 !capable(CAP_SYS_NICE)) {
1390 rcu_read_unlock();
1391 err = -EPERM;
1392 goto out_put;
1393 }
1394 rcu_read_unlock();
1395
1396 task_nodes = cpuset_mems_allowed(task);
1397 /* Is the user allowed to access the target nodes? */
1398 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1399 err = -EPERM;
1400 goto out_put;
1401 }
1402
1403 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1404 err = -EINVAL;
1405 goto out_put;
1406 }
1407
1408 err = security_task_movememory(task);
1409 if (err)
1410 goto out_put;
1411
1412 mm = get_task_mm(task);
1413 put_task_struct(task);
1414
1415 if (!mm) {
1416 err = -EINVAL;
1417 goto out;
1418 }
1419
1420 err = do_migrate_pages(mm, old, new,
1421 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1422
1423 mmput(mm);
1424 out:
1425 NODEMASK_SCRATCH_FREE(scratch);
1426
1427 return err;
1428
1429 out_put:
1430 put_task_struct(task);
1431 goto out;
1432
1433 }
1434
1435
1436 /* Retrieve NUMA policy */
1437 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1438 unsigned long __user *, nmask, unsigned long, maxnode,
1439 unsigned long, addr, unsigned long, flags)
1440 {
1441 int err;
1442 int uninitialized_var(pval);
1443 nodemask_t nodes;
1444
1445 if (nmask != NULL && maxnode < MAX_NUMNODES)
1446 return -EINVAL;
1447
1448 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1449
1450 if (err)
1451 return err;
1452
1453 if (policy && put_user(pval, policy))
1454 return -EFAULT;
1455
1456 if (nmask)
1457 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1458
1459 return err;
1460 }
1461
1462 #ifdef CONFIG_COMPAT
1463
1464 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1465 compat_ulong_t __user *, nmask,
1466 compat_ulong_t, maxnode,
1467 compat_ulong_t, addr, compat_ulong_t, flags)
1468 {
1469 long err;
1470 unsigned long __user *nm = NULL;
1471 unsigned long nr_bits, alloc_size;
1472 DECLARE_BITMAP(bm, MAX_NUMNODES);
1473
1474 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1475 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1476
1477 if (nmask)
1478 nm = compat_alloc_user_space(alloc_size);
1479
1480 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1481
1482 if (!err && nmask) {
1483 unsigned long copy_size;
1484 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1485 err = copy_from_user(bm, nm, copy_size);
1486 /* ensure entire bitmap is zeroed */
1487 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1488 err |= compat_put_bitmap(nmask, bm, nr_bits);
1489 }
1490
1491 return err;
1492 }
1493
1494 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1495 compat_ulong_t, maxnode)
1496 {
1497 long err = 0;
1498 unsigned long __user *nm = NULL;
1499 unsigned long nr_bits, alloc_size;
1500 DECLARE_BITMAP(bm, MAX_NUMNODES);
1501
1502 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1503 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1504
1505 if (nmask) {
1506 err = compat_get_bitmap(bm, nmask, nr_bits);
1507 nm = compat_alloc_user_space(alloc_size);
1508 err |= copy_to_user(nm, bm, alloc_size);
1509 }
1510
1511 if (err)
1512 return -EFAULT;
1513
1514 return sys_set_mempolicy(mode, nm, nr_bits+1);
1515 }
1516
1517 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1518 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1519 compat_ulong_t, maxnode, compat_ulong_t, flags)
1520 {
1521 long err = 0;
1522 unsigned long __user *nm = NULL;
1523 unsigned long nr_bits, alloc_size;
1524 nodemask_t bm;
1525
1526 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1527 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1528
1529 if (nmask) {
1530 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1531 nm = compat_alloc_user_space(alloc_size);
1532 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1533 }
1534
1535 if (err)
1536 return -EFAULT;
1537
1538 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1539 }
1540
1541 #endif
1542
1543 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1544 unsigned long addr)
1545 {
1546 struct mempolicy *pol = NULL;
1547
1548 if (vma) {
1549 if (vma->vm_ops && vma->vm_ops->get_policy) {
1550 pol = vma->vm_ops->get_policy(vma, addr);
1551 } else if (vma->vm_policy) {
1552 pol = vma->vm_policy;
1553
1554 /*
1555 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1556 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1557 * count on these policies which will be dropped by
1558 * mpol_cond_put() later
1559 */
1560 if (mpol_needs_cond_ref(pol))
1561 mpol_get(pol);
1562 }
1563 }
1564
1565 return pol;
1566 }
1567
1568 /*
1569 * get_vma_policy(@vma, @addr)
1570 * @vma: virtual memory area whose policy is sought
1571 * @addr: address in @vma for shared policy lookup
1572 *
1573 * Returns effective policy for a VMA at specified address.
1574 * Falls back to current->mempolicy or system default policy, as necessary.
1575 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1576 * count--added by the get_policy() vm_op, as appropriate--to protect against
1577 * freeing by another task. It is the caller's responsibility to free the
1578 * extra reference for shared policies.
1579 */
1580 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1581 unsigned long addr)
1582 {
1583 struct mempolicy *pol = __get_vma_policy(vma, addr);
1584
1585 if (!pol)
1586 pol = get_task_policy(current);
1587
1588 return pol;
1589 }
1590
1591 bool vma_policy_mof(struct vm_area_struct *vma)
1592 {
1593 struct mempolicy *pol;
1594
1595 if (vma->vm_ops && vma->vm_ops->get_policy) {
1596 bool ret = false;
1597
1598 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1599 if (pol && (pol->flags & MPOL_F_MOF))
1600 ret = true;
1601 mpol_cond_put(pol);
1602
1603 return ret;
1604 }
1605
1606 pol = vma->vm_policy;
1607 if (!pol)
1608 pol = get_task_policy(current);
1609
1610 return pol->flags & MPOL_F_MOF;
1611 }
1612
1613 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1614 {
1615 enum zone_type dynamic_policy_zone = policy_zone;
1616
1617 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1618
1619 /*
1620 * if policy->v.nodes has movable memory only,
1621 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1622 *
1623 * policy->v.nodes is intersect with node_states[N_MEMORY].
1624 * so if the following test faile, it implies
1625 * policy->v.nodes has movable memory only.
1626 */
1627 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1628 dynamic_policy_zone = ZONE_MOVABLE;
1629
1630 return zone >= dynamic_policy_zone;
1631 }
1632
1633 /*
1634 * Return a nodemask representing a mempolicy for filtering nodes for
1635 * page allocation
1636 */
1637 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1638 {
1639 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1640 if (unlikely(policy->mode == MPOL_BIND) &&
1641 apply_policy_zone(policy, gfp_zone(gfp)) &&
1642 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1643 return &policy->v.nodes;
1644
1645 return NULL;
1646 }
1647
1648 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1649 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1650 int nd)
1651 {
1652 switch (policy->mode) {
1653 case MPOL_PREFERRED:
1654 if (!(policy->flags & MPOL_F_LOCAL))
1655 nd = policy->v.preferred_node;
1656 break;
1657 case MPOL_BIND:
1658 /*
1659 * Normally, MPOL_BIND allocations are node-local within the
1660 * allowed nodemask. However, if __GFP_THISNODE is set and the
1661 * current node isn't part of the mask, we use the zonelist for
1662 * the first node in the mask instead.
1663 */
1664 if (unlikely(gfp & __GFP_THISNODE) &&
1665 unlikely(!node_isset(nd, policy->v.nodes)))
1666 nd = first_node(policy->v.nodes);
1667 break;
1668 default:
1669 BUG();
1670 }
1671 return node_zonelist(nd, gfp);
1672 }
1673
1674 /* Do dynamic interleaving for a process */
1675 static unsigned interleave_nodes(struct mempolicy *policy)
1676 {
1677 unsigned nid, next;
1678 struct task_struct *me = current;
1679
1680 nid = me->il_next;
1681 next = next_node(nid, policy->v.nodes);
1682 if (next >= MAX_NUMNODES)
1683 next = first_node(policy->v.nodes);
1684 if (next < MAX_NUMNODES)
1685 me->il_next = next;
1686 return nid;
1687 }
1688
1689 /*
1690 * Depending on the memory policy provide a node from which to allocate the
1691 * next slab entry.
1692 */
1693 unsigned int mempolicy_slab_node(void)
1694 {
1695 struct mempolicy *policy;
1696 int node = numa_mem_id();
1697
1698 if (in_interrupt())
1699 return node;
1700
1701 policy = current->mempolicy;
1702 if (!policy || policy->flags & MPOL_F_LOCAL)
1703 return node;
1704
1705 switch (policy->mode) {
1706 case MPOL_PREFERRED:
1707 /*
1708 * handled MPOL_F_LOCAL above
1709 */
1710 return policy->v.preferred_node;
1711
1712 case MPOL_INTERLEAVE:
1713 return interleave_nodes(policy);
1714
1715 case MPOL_BIND: {
1716 /*
1717 * Follow bind policy behavior and start allocation at the
1718 * first node.
1719 */
1720 struct zonelist *zonelist;
1721 struct zone *zone;
1722 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1723 zonelist = &NODE_DATA(node)->node_zonelists[0];
1724 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1725 &policy->v.nodes,
1726 &zone);
1727 return zone ? zone->node : node;
1728 }
1729
1730 default:
1731 BUG();
1732 }
1733 }
1734
1735 /* Do static interleaving for a VMA with known offset. */
1736 static unsigned offset_il_node(struct mempolicy *pol,
1737 struct vm_area_struct *vma, unsigned long off)
1738 {
1739 unsigned nnodes = nodes_weight(pol->v.nodes);
1740 unsigned target;
1741 int c;
1742 int nid = NUMA_NO_NODE;
1743
1744 if (!nnodes)
1745 return numa_node_id();
1746 target = (unsigned int)off % nnodes;
1747 c = 0;
1748 do {
1749 nid = next_node(nid, pol->v.nodes);
1750 c++;
1751 } while (c <= target);
1752 return nid;
1753 }
1754
1755 /* Determine a node number for interleave */
1756 static inline unsigned interleave_nid(struct mempolicy *pol,
1757 struct vm_area_struct *vma, unsigned long addr, int shift)
1758 {
1759 if (vma) {
1760 unsigned long off;
1761
1762 /*
1763 * for small pages, there is no difference between
1764 * shift and PAGE_SHIFT, so the bit-shift is safe.
1765 * for huge pages, since vm_pgoff is in units of small
1766 * pages, we need to shift off the always 0 bits to get
1767 * a useful offset.
1768 */
1769 BUG_ON(shift < PAGE_SHIFT);
1770 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1771 off += (addr - vma->vm_start) >> shift;
1772 return offset_il_node(pol, vma, off);
1773 } else
1774 return interleave_nodes(pol);
1775 }
1776
1777 /*
1778 * Return the bit number of a random bit set in the nodemask.
1779 * (returns NUMA_NO_NODE if nodemask is empty)
1780 */
1781 int node_random(const nodemask_t *maskp)
1782 {
1783 int w, bit = NUMA_NO_NODE;
1784
1785 w = nodes_weight(*maskp);
1786 if (w)
1787 bit = bitmap_ord_to_pos(maskp->bits,
1788 get_random_int() % w, MAX_NUMNODES);
1789 return bit;
1790 }
1791
1792 #ifdef CONFIG_HUGETLBFS
1793 /*
1794 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1795 * @vma: virtual memory area whose policy is sought
1796 * @addr: address in @vma for shared policy lookup and interleave policy
1797 * @gfp_flags: for requested zone
1798 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1799 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1800 *
1801 * Returns a zonelist suitable for a huge page allocation and a pointer
1802 * to the struct mempolicy for conditional unref after allocation.
1803 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1804 * @nodemask for filtering the zonelist.
1805 *
1806 * Must be protected by read_mems_allowed_begin()
1807 */
1808 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1809 gfp_t gfp_flags, struct mempolicy **mpol,
1810 nodemask_t **nodemask)
1811 {
1812 struct zonelist *zl;
1813
1814 *mpol = get_vma_policy(vma, addr);
1815 *nodemask = NULL; /* assume !MPOL_BIND */
1816
1817 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1818 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1819 huge_page_shift(hstate_vma(vma))), gfp_flags);
1820 } else {
1821 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1822 if ((*mpol)->mode == MPOL_BIND)
1823 *nodemask = &(*mpol)->v.nodes;
1824 }
1825 return zl;
1826 }
1827
1828 /*
1829 * init_nodemask_of_mempolicy
1830 *
1831 * If the current task's mempolicy is "default" [NULL], return 'false'
1832 * to indicate default policy. Otherwise, extract the policy nodemask
1833 * for 'bind' or 'interleave' policy into the argument nodemask, or
1834 * initialize the argument nodemask to contain the single node for
1835 * 'preferred' or 'local' policy and return 'true' to indicate presence
1836 * of non-default mempolicy.
1837 *
1838 * We don't bother with reference counting the mempolicy [mpol_get/put]
1839 * because the current task is examining it's own mempolicy and a task's
1840 * mempolicy is only ever changed by the task itself.
1841 *
1842 * N.B., it is the caller's responsibility to free a returned nodemask.
1843 */
1844 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1845 {
1846 struct mempolicy *mempolicy;
1847 int nid;
1848
1849 if (!(mask && current->mempolicy))
1850 return false;
1851
1852 task_lock(current);
1853 mempolicy = current->mempolicy;
1854 switch (mempolicy->mode) {
1855 case MPOL_PREFERRED:
1856 if (mempolicy->flags & MPOL_F_LOCAL)
1857 nid = numa_node_id();
1858 else
1859 nid = mempolicy->v.preferred_node;
1860 init_nodemask_of_node(mask, nid);
1861 break;
1862
1863 case MPOL_BIND:
1864 /* Fall through */
1865 case MPOL_INTERLEAVE:
1866 *mask = mempolicy->v.nodes;
1867 break;
1868
1869 default:
1870 BUG();
1871 }
1872 task_unlock(current);
1873
1874 return true;
1875 }
1876 #endif
1877
1878 /*
1879 * mempolicy_nodemask_intersects
1880 *
1881 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1882 * policy. Otherwise, check for intersection between mask and the policy
1883 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1884 * policy, always return true since it may allocate elsewhere on fallback.
1885 *
1886 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1887 */
1888 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1889 const nodemask_t *mask)
1890 {
1891 struct mempolicy *mempolicy;
1892 bool ret = true;
1893
1894 if (!mask)
1895 return ret;
1896 task_lock(tsk);
1897 mempolicy = tsk->mempolicy;
1898 if (!mempolicy)
1899 goto out;
1900
1901 switch (mempolicy->mode) {
1902 case MPOL_PREFERRED:
1903 /*
1904 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1905 * allocate from, they may fallback to other nodes when oom.
1906 * Thus, it's possible for tsk to have allocated memory from
1907 * nodes in mask.
1908 */
1909 break;
1910 case MPOL_BIND:
1911 case MPOL_INTERLEAVE:
1912 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1913 break;
1914 default:
1915 BUG();
1916 }
1917 out:
1918 task_unlock(tsk);
1919 return ret;
1920 }
1921
1922 /* Allocate a page in interleaved policy.
1923 Own path because it needs to do special accounting. */
1924 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1925 unsigned nid)
1926 {
1927 struct zonelist *zl;
1928 struct page *page;
1929
1930 zl = node_zonelist(nid, gfp);
1931 page = __alloc_pages(gfp, order, zl);
1932 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1933 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1934 return page;
1935 }
1936
1937 /**
1938 * alloc_pages_vma - Allocate a page for a VMA.
1939 *
1940 * @gfp:
1941 * %GFP_USER user allocation.
1942 * %GFP_KERNEL kernel allocations,
1943 * %GFP_HIGHMEM highmem/user allocations,
1944 * %GFP_FS allocation should not call back into a file system.
1945 * %GFP_ATOMIC don't sleep.
1946 *
1947 * @order:Order of the GFP allocation.
1948 * @vma: Pointer to VMA or NULL if not available.
1949 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1950 * @node: Which node to prefer for allocation (modulo policy).
1951 * @hugepage: for hugepages try only the preferred node if possible
1952 *
1953 * This function allocates a page from the kernel page pool and applies
1954 * a NUMA policy associated with the VMA or the current process.
1955 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1956 * mm_struct of the VMA to prevent it from going away. Should be used for
1957 * all allocations for pages that will be mapped into user space. Returns
1958 * NULL when no page can be allocated.
1959 */
1960 struct page *
1961 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1962 unsigned long addr, int node, bool hugepage)
1963 {
1964 struct mempolicy *pol;
1965 struct page *page;
1966 unsigned int cpuset_mems_cookie;
1967 struct zonelist *zl;
1968 nodemask_t *nmask;
1969
1970 retry_cpuset:
1971 pol = get_vma_policy(vma, addr);
1972 cpuset_mems_cookie = read_mems_allowed_begin();
1973
1974 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage &&
1975 pol->mode != MPOL_INTERLEAVE)) {
1976 /*
1977 * For hugepage allocation and non-interleave policy which
1978 * allows the current node, we only try to allocate from the
1979 * current node and don't fall back to other nodes, as the
1980 * cost of remote accesses would likely offset THP benefits.
1981 *
1982 * If the policy is interleave, or does not allow the current
1983 * node in its nodemask, we allocate the standard way.
1984 */
1985 nmask = policy_nodemask(gfp, pol);
1986 if (!nmask || node_isset(node, *nmask)) {
1987 mpol_cond_put(pol);
1988 page = alloc_pages_exact_node(node, gfp, order);
1989 goto out;
1990 }
1991 }
1992
1993 if (pol->mode == MPOL_INTERLEAVE) {
1994 unsigned nid;
1995
1996 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1997 mpol_cond_put(pol);
1998 page = alloc_page_interleave(gfp, order, nid);
1999 goto out;
2000 }
2001
2002 nmask = policy_nodemask(gfp, pol);
2003 zl = policy_zonelist(gfp, pol, node);
2004 mpol_cond_put(pol);
2005 page = __alloc_pages_nodemask(gfp, order, zl, nmask);
2006 out:
2007 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2008 goto retry_cpuset;
2009 return page;
2010 }
2011
2012 /**
2013 * alloc_pages_current - Allocate pages.
2014 *
2015 * @gfp:
2016 * %GFP_USER user allocation,
2017 * %GFP_KERNEL kernel allocation,
2018 * %GFP_HIGHMEM highmem allocation,
2019 * %GFP_FS don't call back into a file system.
2020 * %GFP_ATOMIC don't sleep.
2021 * @order: Power of two of allocation size in pages. 0 is a single page.
2022 *
2023 * Allocate a page from the kernel page pool. When not in
2024 * interrupt context and apply the current process NUMA policy.
2025 * Returns NULL when no page can be allocated.
2026 *
2027 * Don't call cpuset_update_task_memory_state() unless
2028 * 1) it's ok to take cpuset_sem (can WAIT), and
2029 * 2) allocating for current task (not interrupt).
2030 */
2031 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2032 {
2033 struct mempolicy *pol = &default_policy;
2034 struct page *page;
2035 unsigned int cpuset_mems_cookie;
2036
2037 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2038 pol = get_task_policy(current);
2039
2040 retry_cpuset:
2041 cpuset_mems_cookie = read_mems_allowed_begin();
2042
2043 /*
2044 * No reference counting needed for current->mempolicy
2045 * nor system default_policy
2046 */
2047 if (pol->mode == MPOL_INTERLEAVE)
2048 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2049 else
2050 page = __alloc_pages_nodemask(gfp, order,
2051 policy_zonelist(gfp, pol, numa_node_id()),
2052 policy_nodemask(gfp, pol));
2053
2054 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2055 goto retry_cpuset;
2056
2057 return page;
2058 }
2059 EXPORT_SYMBOL(alloc_pages_current);
2060
2061 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2062 {
2063 struct mempolicy *pol = mpol_dup(vma_policy(src));
2064
2065 if (IS_ERR(pol))
2066 return PTR_ERR(pol);
2067 dst->vm_policy = pol;
2068 return 0;
2069 }
2070
2071 /*
2072 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2073 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2074 * with the mems_allowed returned by cpuset_mems_allowed(). This
2075 * keeps mempolicies cpuset relative after its cpuset moves. See
2076 * further kernel/cpuset.c update_nodemask().
2077 *
2078 * current's mempolicy may be rebinded by the other task(the task that changes
2079 * cpuset's mems), so we needn't do rebind work for current task.
2080 */
2081
2082 /* Slow path of a mempolicy duplicate */
2083 struct mempolicy *__mpol_dup(struct mempolicy *old)
2084 {
2085 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2086
2087 if (!new)
2088 return ERR_PTR(-ENOMEM);
2089
2090 /* task's mempolicy is protected by alloc_lock */
2091 if (old == current->mempolicy) {
2092 task_lock(current);
2093 *new = *old;
2094 task_unlock(current);
2095 } else
2096 *new = *old;
2097
2098 if (current_cpuset_is_being_rebound()) {
2099 nodemask_t mems = cpuset_mems_allowed(current);
2100 if (new->flags & MPOL_F_REBINDING)
2101 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2102 else
2103 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2104 }
2105 atomic_set(&new->refcnt, 1);
2106 return new;
2107 }
2108
2109 /* Slow path of a mempolicy comparison */
2110 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2111 {
2112 if (!a || !b)
2113 return false;
2114 if (a->mode != b->mode)
2115 return false;
2116 if (a->flags != b->flags)
2117 return false;
2118 if (mpol_store_user_nodemask(a))
2119 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2120 return false;
2121
2122 switch (a->mode) {
2123 case MPOL_BIND:
2124 /* Fall through */
2125 case MPOL_INTERLEAVE:
2126 return !!nodes_equal(a->v.nodes, b->v.nodes);
2127 case MPOL_PREFERRED:
2128 return a->v.preferred_node == b->v.preferred_node;
2129 default:
2130 BUG();
2131 return false;
2132 }
2133 }
2134
2135 /*
2136 * Shared memory backing store policy support.
2137 *
2138 * Remember policies even when nobody has shared memory mapped.
2139 * The policies are kept in Red-Black tree linked from the inode.
2140 * They are protected by the sp->lock spinlock, which should be held
2141 * for any accesses to the tree.
2142 */
2143
2144 /* lookup first element intersecting start-end */
2145 /* Caller holds sp->lock */
2146 static struct sp_node *
2147 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2148 {
2149 struct rb_node *n = sp->root.rb_node;
2150
2151 while (n) {
2152 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2153
2154 if (start >= p->end)
2155 n = n->rb_right;
2156 else if (end <= p->start)
2157 n = n->rb_left;
2158 else
2159 break;
2160 }
2161 if (!n)
2162 return NULL;
2163 for (;;) {
2164 struct sp_node *w = NULL;
2165 struct rb_node *prev = rb_prev(n);
2166 if (!prev)
2167 break;
2168 w = rb_entry(prev, struct sp_node, nd);
2169 if (w->end <= start)
2170 break;
2171 n = prev;
2172 }
2173 return rb_entry(n, struct sp_node, nd);
2174 }
2175
2176 /* Insert a new shared policy into the list. */
2177 /* Caller holds sp->lock */
2178 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2179 {
2180 struct rb_node **p = &sp->root.rb_node;
2181 struct rb_node *parent = NULL;
2182 struct sp_node *nd;
2183
2184 while (*p) {
2185 parent = *p;
2186 nd = rb_entry(parent, struct sp_node, nd);
2187 if (new->start < nd->start)
2188 p = &(*p)->rb_left;
2189 else if (new->end > nd->end)
2190 p = &(*p)->rb_right;
2191 else
2192 BUG();
2193 }
2194 rb_link_node(&new->nd, parent, p);
2195 rb_insert_color(&new->nd, &sp->root);
2196 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2197 new->policy ? new->policy->mode : 0);
2198 }
2199
2200 /* Find shared policy intersecting idx */
2201 struct mempolicy *
2202 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2203 {
2204 struct mempolicy *pol = NULL;
2205 struct sp_node *sn;
2206
2207 if (!sp->root.rb_node)
2208 return NULL;
2209 spin_lock(&sp->lock);
2210 sn = sp_lookup(sp, idx, idx+1);
2211 if (sn) {
2212 mpol_get(sn->policy);
2213 pol = sn->policy;
2214 }
2215 spin_unlock(&sp->lock);
2216 return pol;
2217 }
2218
2219 static void sp_free(struct sp_node *n)
2220 {
2221 mpol_put(n->policy);
2222 kmem_cache_free(sn_cache, n);
2223 }
2224
2225 /**
2226 * mpol_misplaced - check whether current page node is valid in policy
2227 *
2228 * @page: page to be checked
2229 * @vma: vm area where page mapped
2230 * @addr: virtual address where page mapped
2231 *
2232 * Lookup current policy node id for vma,addr and "compare to" page's
2233 * node id.
2234 *
2235 * Returns:
2236 * -1 - not misplaced, page is in the right node
2237 * node - node id where the page should be
2238 *
2239 * Policy determination "mimics" alloc_page_vma().
2240 * Called from fault path where we know the vma and faulting address.
2241 */
2242 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2243 {
2244 struct mempolicy *pol;
2245 struct zone *zone;
2246 int curnid = page_to_nid(page);
2247 unsigned long pgoff;
2248 int thiscpu = raw_smp_processor_id();
2249 int thisnid = cpu_to_node(thiscpu);
2250 int polnid = -1;
2251 int ret = -1;
2252
2253 BUG_ON(!vma);
2254
2255 pol = get_vma_policy(vma, addr);
2256 if (!(pol->flags & MPOL_F_MOF))
2257 goto out;
2258
2259 switch (pol->mode) {
2260 case MPOL_INTERLEAVE:
2261 BUG_ON(addr >= vma->vm_end);
2262 BUG_ON(addr < vma->vm_start);
2263
2264 pgoff = vma->vm_pgoff;
2265 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2266 polnid = offset_il_node(pol, vma, pgoff);
2267 break;
2268
2269 case MPOL_PREFERRED:
2270 if (pol->flags & MPOL_F_LOCAL)
2271 polnid = numa_node_id();
2272 else
2273 polnid = pol->v.preferred_node;
2274 break;
2275
2276 case MPOL_BIND:
2277 /*
2278 * allows binding to multiple nodes.
2279 * use current page if in policy nodemask,
2280 * else select nearest allowed node, if any.
2281 * If no allowed nodes, use current [!misplaced].
2282 */
2283 if (node_isset(curnid, pol->v.nodes))
2284 goto out;
2285 (void)first_zones_zonelist(
2286 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2287 gfp_zone(GFP_HIGHUSER),
2288 &pol->v.nodes, &zone);
2289 polnid = zone->node;
2290 break;
2291
2292 default:
2293 BUG();
2294 }
2295
2296 /* Migrate the page towards the node whose CPU is referencing it */
2297 if (pol->flags & MPOL_F_MORON) {
2298 polnid = thisnid;
2299
2300 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2301 goto out;
2302 }
2303
2304 if (curnid != polnid)
2305 ret = polnid;
2306 out:
2307 mpol_cond_put(pol);
2308
2309 return ret;
2310 }
2311
2312 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2313 {
2314 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2315 rb_erase(&n->nd, &sp->root);
2316 sp_free(n);
2317 }
2318
2319 static void sp_node_init(struct sp_node *node, unsigned long start,
2320 unsigned long end, struct mempolicy *pol)
2321 {
2322 node->start = start;
2323 node->end = end;
2324 node->policy = pol;
2325 }
2326
2327 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2328 struct mempolicy *pol)
2329 {
2330 struct sp_node *n;
2331 struct mempolicy *newpol;
2332
2333 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2334 if (!n)
2335 return NULL;
2336
2337 newpol = mpol_dup(pol);
2338 if (IS_ERR(newpol)) {
2339 kmem_cache_free(sn_cache, n);
2340 return NULL;
2341 }
2342 newpol->flags |= MPOL_F_SHARED;
2343 sp_node_init(n, start, end, newpol);
2344
2345 return n;
2346 }
2347
2348 /* Replace a policy range. */
2349 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2350 unsigned long end, struct sp_node *new)
2351 {
2352 struct sp_node *n;
2353 struct sp_node *n_new = NULL;
2354 struct mempolicy *mpol_new = NULL;
2355 int ret = 0;
2356
2357 restart:
2358 spin_lock(&sp->lock);
2359 n = sp_lookup(sp, start, end);
2360 /* Take care of old policies in the same range. */
2361 while (n && n->start < end) {
2362 struct rb_node *next = rb_next(&n->nd);
2363 if (n->start >= start) {
2364 if (n->end <= end)
2365 sp_delete(sp, n);
2366 else
2367 n->start = end;
2368 } else {
2369 /* Old policy spanning whole new range. */
2370 if (n->end > end) {
2371 if (!n_new)
2372 goto alloc_new;
2373
2374 *mpol_new = *n->policy;
2375 atomic_set(&mpol_new->refcnt, 1);
2376 sp_node_init(n_new, end, n->end, mpol_new);
2377 n->end = start;
2378 sp_insert(sp, n_new);
2379 n_new = NULL;
2380 mpol_new = NULL;
2381 break;
2382 } else
2383 n->end = start;
2384 }
2385 if (!next)
2386 break;
2387 n = rb_entry(next, struct sp_node, nd);
2388 }
2389 if (new)
2390 sp_insert(sp, new);
2391 spin_unlock(&sp->lock);
2392 ret = 0;
2393
2394 err_out:
2395 if (mpol_new)
2396 mpol_put(mpol_new);
2397 if (n_new)
2398 kmem_cache_free(sn_cache, n_new);
2399
2400 return ret;
2401
2402 alloc_new:
2403 spin_unlock(&sp->lock);
2404 ret = -ENOMEM;
2405 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2406 if (!n_new)
2407 goto err_out;
2408 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2409 if (!mpol_new)
2410 goto err_out;
2411 goto restart;
2412 }
2413
2414 /**
2415 * mpol_shared_policy_init - initialize shared policy for inode
2416 * @sp: pointer to inode shared policy
2417 * @mpol: struct mempolicy to install
2418 *
2419 * Install non-NULL @mpol in inode's shared policy rb-tree.
2420 * On entry, the current task has a reference on a non-NULL @mpol.
2421 * This must be released on exit.
2422 * This is called at get_inode() calls and we can use GFP_KERNEL.
2423 */
2424 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2425 {
2426 int ret;
2427
2428 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2429 spin_lock_init(&sp->lock);
2430
2431 if (mpol) {
2432 struct vm_area_struct pvma;
2433 struct mempolicy *new;
2434 NODEMASK_SCRATCH(scratch);
2435
2436 if (!scratch)
2437 goto put_mpol;
2438 /* contextualize the tmpfs mount point mempolicy */
2439 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2440 if (IS_ERR(new))
2441 goto free_scratch; /* no valid nodemask intersection */
2442
2443 task_lock(current);
2444 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2445 task_unlock(current);
2446 if (ret)
2447 goto put_new;
2448
2449 /* Create pseudo-vma that contains just the policy */
2450 memset(&pvma, 0, sizeof(struct vm_area_struct));
2451 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2452 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2453
2454 put_new:
2455 mpol_put(new); /* drop initial ref */
2456 free_scratch:
2457 NODEMASK_SCRATCH_FREE(scratch);
2458 put_mpol:
2459 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2460 }
2461 }
2462
2463 int mpol_set_shared_policy(struct shared_policy *info,
2464 struct vm_area_struct *vma, struct mempolicy *npol)
2465 {
2466 int err;
2467 struct sp_node *new = NULL;
2468 unsigned long sz = vma_pages(vma);
2469
2470 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2471 vma->vm_pgoff,
2472 sz, npol ? npol->mode : -1,
2473 npol ? npol->flags : -1,
2474 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2475
2476 if (npol) {
2477 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2478 if (!new)
2479 return -ENOMEM;
2480 }
2481 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2482 if (err && new)
2483 sp_free(new);
2484 return err;
2485 }
2486
2487 /* Free a backing policy store on inode delete. */
2488 void mpol_free_shared_policy(struct shared_policy *p)
2489 {
2490 struct sp_node *n;
2491 struct rb_node *next;
2492
2493 if (!p->root.rb_node)
2494 return;
2495 spin_lock(&p->lock);
2496 next = rb_first(&p->root);
2497 while (next) {
2498 n = rb_entry(next, struct sp_node, nd);
2499 next = rb_next(&n->nd);
2500 sp_delete(p, n);
2501 }
2502 spin_unlock(&p->lock);
2503 }
2504
2505 #ifdef CONFIG_NUMA_BALANCING
2506 static int __initdata numabalancing_override;
2507
2508 static void __init check_numabalancing_enable(void)
2509 {
2510 bool numabalancing_default = false;
2511
2512 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2513 numabalancing_default = true;
2514
2515 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2516 if (numabalancing_override)
2517 set_numabalancing_state(numabalancing_override == 1);
2518
2519 if (nr_node_ids > 1 && !numabalancing_override) {
2520 pr_info("%s automatic NUMA balancing. "
2521 "Configure with numa_balancing= or the "
2522 "kernel.numa_balancing sysctl",
2523 numabalancing_default ? "Enabling" : "Disabling");
2524 set_numabalancing_state(numabalancing_default);
2525 }
2526 }
2527
2528 static int __init setup_numabalancing(char *str)
2529 {
2530 int ret = 0;
2531 if (!str)
2532 goto out;
2533
2534 if (!strcmp(str, "enable")) {
2535 numabalancing_override = 1;
2536 ret = 1;
2537 } else if (!strcmp(str, "disable")) {
2538 numabalancing_override = -1;
2539 ret = 1;
2540 }
2541 out:
2542 if (!ret)
2543 pr_warn("Unable to parse numa_balancing=\n");
2544
2545 return ret;
2546 }
2547 __setup("numa_balancing=", setup_numabalancing);
2548 #else
2549 static inline void __init check_numabalancing_enable(void)
2550 {
2551 }
2552 #endif /* CONFIG_NUMA_BALANCING */
2553
2554 /* assumes fs == KERNEL_DS */
2555 void __init numa_policy_init(void)
2556 {
2557 nodemask_t interleave_nodes;
2558 unsigned long largest = 0;
2559 int nid, prefer = 0;
2560
2561 policy_cache = kmem_cache_create("numa_policy",
2562 sizeof(struct mempolicy),
2563 0, SLAB_PANIC, NULL);
2564
2565 sn_cache = kmem_cache_create("shared_policy_node",
2566 sizeof(struct sp_node),
2567 0, SLAB_PANIC, NULL);
2568
2569 for_each_node(nid) {
2570 preferred_node_policy[nid] = (struct mempolicy) {
2571 .refcnt = ATOMIC_INIT(1),
2572 .mode = MPOL_PREFERRED,
2573 .flags = MPOL_F_MOF | MPOL_F_MORON,
2574 .v = { .preferred_node = nid, },
2575 };
2576 }
2577
2578 /*
2579 * Set interleaving policy for system init. Interleaving is only
2580 * enabled across suitably sized nodes (default is >= 16MB), or
2581 * fall back to the largest node if they're all smaller.
2582 */
2583 nodes_clear(interleave_nodes);
2584 for_each_node_state(nid, N_MEMORY) {
2585 unsigned long total_pages = node_present_pages(nid);
2586
2587 /* Preserve the largest node */
2588 if (largest < total_pages) {
2589 largest = total_pages;
2590 prefer = nid;
2591 }
2592
2593 /* Interleave this node? */
2594 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2595 node_set(nid, interleave_nodes);
2596 }
2597
2598 /* All too small, use the largest */
2599 if (unlikely(nodes_empty(interleave_nodes)))
2600 node_set(prefer, interleave_nodes);
2601
2602 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2603 pr_err("%s: interleaving failed\n", __func__);
2604
2605 check_numabalancing_enable();
2606 }
2607
2608 /* Reset policy of current process to default */
2609 void numa_default_policy(void)
2610 {
2611 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2612 }
2613
2614 /*
2615 * Parse and format mempolicy from/to strings
2616 */
2617
2618 /*
2619 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2620 */
2621 static const char * const policy_modes[] =
2622 {
2623 [MPOL_DEFAULT] = "default",
2624 [MPOL_PREFERRED] = "prefer",
2625 [MPOL_BIND] = "bind",
2626 [MPOL_INTERLEAVE] = "interleave",
2627 [MPOL_LOCAL] = "local",
2628 };
2629
2630
2631 #ifdef CONFIG_TMPFS
2632 /**
2633 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2634 * @str: string containing mempolicy to parse
2635 * @mpol: pointer to struct mempolicy pointer, returned on success.
2636 *
2637 * Format of input:
2638 * <mode>[=<flags>][:<nodelist>]
2639 *
2640 * On success, returns 0, else 1
2641 */
2642 int mpol_parse_str(char *str, struct mempolicy **mpol)
2643 {
2644 struct mempolicy *new = NULL;
2645 unsigned short mode;
2646 unsigned short mode_flags;
2647 nodemask_t nodes;
2648 char *nodelist = strchr(str, ':');
2649 char *flags = strchr(str, '=');
2650 int err = 1;
2651
2652 if (nodelist) {
2653 /* NUL-terminate mode or flags string */
2654 *nodelist++ = '\0';
2655 if (nodelist_parse(nodelist, nodes))
2656 goto out;
2657 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2658 goto out;
2659 } else
2660 nodes_clear(nodes);
2661
2662 if (flags)
2663 *flags++ = '\0'; /* terminate mode string */
2664
2665 for (mode = 0; mode < MPOL_MAX; mode++) {
2666 if (!strcmp(str, policy_modes[mode])) {
2667 break;
2668 }
2669 }
2670 if (mode >= MPOL_MAX)
2671 goto out;
2672
2673 switch (mode) {
2674 case MPOL_PREFERRED:
2675 /*
2676 * Insist on a nodelist of one node only
2677 */
2678 if (nodelist) {
2679 char *rest = nodelist;
2680 while (isdigit(*rest))
2681 rest++;
2682 if (*rest)
2683 goto out;
2684 }
2685 break;
2686 case MPOL_INTERLEAVE:
2687 /*
2688 * Default to online nodes with memory if no nodelist
2689 */
2690 if (!nodelist)
2691 nodes = node_states[N_MEMORY];
2692 break;
2693 case MPOL_LOCAL:
2694 /*
2695 * Don't allow a nodelist; mpol_new() checks flags
2696 */
2697 if (nodelist)
2698 goto out;
2699 mode = MPOL_PREFERRED;
2700 break;
2701 case MPOL_DEFAULT:
2702 /*
2703 * Insist on a empty nodelist
2704 */
2705 if (!nodelist)
2706 err = 0;
2707 goto out;
2708 case MPOL_BIND:
2709 /*
2710 * Insist on a nodelist
2711 */
2712 if (!nodelist)
2713 goto out;
2714 }
2715
2716 mode_flags = 0;
2717 if (flags) {
2718 /*
2719 * Currently, we only support two mutually exclusive
2720 * mode flags.
2721 */
2722 if (!strcmp(flags, "static"))
2723 mode_flags |= MPOL_F_STATIC_NODES;
2724 else if (!strcmp(flags, "relative"))
2725 mode_flags |= MPOL_F_RELATIVE_NODES;
2726 else
2727 goto out;
2728 }
2729
2730 new = mpol_new(mode, mode_flags, &nodes);
2731 if (IS_ERR(new))
2732 goto out;
2733
2734 /*
2735 * Save nodes for mpol_to_str() to show the tmpfs mount options
2736 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2737 */
2738 if (mode != MPOL_PREFERRED)
2739 new->v.nodes = nodes;
2740 else if (nodelist)
2741 new->v.preferred_node = first_node(nodes);
2742 else
2743 new->flags |= MPOL_F_LOCAL;
2744
2745 /*
2746 * Save nodes for contextualization: this will be used to "clone"
2747 * the mempolicy in a specific context [cpuset] at a later time.
2748 */
2749 new->w.user_nodemask = nodes;
2750
2751 err = 0;
2752
2753 out:
2754 /* Restore string for error message */
2755 if (nodelist)
2756 *--nodelist = ':';
2757 if (flags)
2758 *--flags = '=';
2759 if (!err)
2760 *mpol = new;
2761 return err;
2762 }
2763 #endif /* CONFIG_TMPFS */
2764
2765 /**
2766 * mpol_to_str - format a mempolicy structure for printing
2767 * @buffer: to contain formatted mempolicy string
2768 * @maxlen: length of @buffer
2769 * @pol: pointer to mempolicy to be formatted
2770 *
2771 * Convert @pol into a string. If @buffer is too short, truncate the string.
2772 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2773 * longest flag, "relative", and to display at least a few node ids.
2774 */
2775 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2776 {
2777 char *p = buffer;
2778 nodemask_t nodes = NODE_MASK_NONE;
2779 unsigned short mode = MPOL_DEFAULT;
2780 unsigned short flags = 0;
2781
2782 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2783 mode = pol->mode;
2784 flags = pol->flags;
2785 }
2786
2787 switch (mode) {
2788 case MPOL_DEFAULT:
2789 break;
2790 case MPOL_PREFERRED:
2791 if (flags & MPOL_F_LOCAL)
2792 mode = MPOL_LOCAL;
2793 else
2794 node_set(pol->v.preferred_node, nodes);
2795 break;
2796 case MPOL_BIND:
2797 case MPOL_INTERLEAVE:
2798 nodes = pol->v.nodes;
2799 break;
2800 default:
2801 WARN_ON_ONCE(1);
2802 snprintf(p, maxlen, "unknown");
2803 return;
2804 }
2805
2806 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2807
2808 if (flags & MPOL_MODE_FLAGS) {
2809 p += snprintf(p, buffer + maxlen - p, "=");
2810
2811 /*
2812 * Currently, the only defined flags are mutually exclusive
2813 */
2814 if (flags & MPOL_F_STATIC_NODES)
2815 p += snprintf(p, buffer + maxlen - p, "static");
2816 else if (flags & MPOL_F_RELATIVE_NODES)
2817 p += snprintf(p, buffer + maxlen - p, "relative");
2818 }
2819
2820 if (!nodes_empty(nodes))
2821 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2822 nodemask_pr_args(&nodes));
2823 }
This page took 0.089096 seconds and 5 git commands to generate.