x86, fpu: Extend the use of static_cpu_has_safe
[deliverable/linux.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/export.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
93 #include <linux/mmu_notifier.h>
94
95 #include <asm/tlbflush.h>
96 #include <asm/uaccess.h>
97 #include <linux/random.h>
98
99 #include "internal.h"
100
101 /* Internal flags */
102 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
103 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
104
105 static struct kmem_cache *policy_cache;
106 static struct kmem_cache *sn_cache;
107
108 /* Highest zone. An specific allocation for a zone below that is not
109 policied. */
110 enum zone_type policy_zone = 0;
111
112 /*
113 * run-time system-wide default policy => local allocation
114 */
115 static struct mempolicy default_policy = {
116 .refcnt = ATOMIC_INIT(1), /* never free it */
117 .mode = MPOL_PREFERRED,
118 .flags = MPOL_F_LOCAL,
119 };
120
121 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
122
123 static struct mempolicy *get_task_policy(struct task_struct *p)
124 {
125 struct mempolicy *pol = p->mempolicy;
126
127 if (!pol) {
128 int node = numa_node_id();
129
130 if (node != NUMA_NO_NODE) {
131 pol = &preferred_node_policy[node];
132 /*
133 * preferred_node_policy is not initialised early in
134 * boot
135 */
136 if (!pol->mode)
137 pol = NULL;
138 }
139 }
140
141 return pol;
142 }
143
144 static const struct mempolicy_operations {
145 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
146 /*
147 * If read-side task has no lock to protect task->mempolicy, write-side
148 * task will rebind the task->mempolicy by two step. The first step is
149 * setting all the newly nodes, and the second step is cleaning all the
150 * disallowed nodes. In this way, we can avoid finding no node to alloc
151 * page.
152 * If we have a lock to protect task->mempolicy in read-side, we do
153 * rebind directly.
154 *
155 * step:
156 * MPOL_REBIND_ONCE - do rebind work at once
157 * MPOL_REBIND_STEP1 - set all the newly nodes
158 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
159 */
160 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
161 enum mpol_rebind_step step);
162 } mpol_ops[MPOL_MAX];
163
164 /* Check that the nodemask contains at least one populated zone */
165 static int is_valid_nodemask(const nodemask_t *nodemask)
166 {
167 return nodes_intersects(*nodemask, node_states[N_MEMORY]);
168 }
169
170 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
171 {
172 return pol->flags & MPOL_MODE_FLAGS;
173 }
174
175 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
176 const nodemask_t *rel)
177 {
178 nodemask_t tmp;
179 nodes_fold(tmp, *orig, nodes_weight(*rel));
180 nodes_onto(*ret, tmp, *rel);
181 }
182
183 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
184 {
185 if (nodes_empty(*nodes))
186 return -EINVAL;
187 pol->v.nodes = *nodes;
188 return 0;
189 }
190
191 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
192 {
193 if (!nodes)
194 pol->flags |= MPOL_F_LOCAL; /* local allocation */
195 else if (nodes_empty(*nodes))
196 return -EINVAL; /* no allowed nodes */
197 else
198 pol->v.preferred_node = first_node(*nodes);
199 return 0;
200 }
201
202 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
203 {
204 if (!is_valid_nodemask(nodes))
205 return -EINVAL;
206 pol->v.nodes = *nodes;
207 return 0;
208 }
209
210 /*
211 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
212 * any, for the new policy. mpol_new() has already validated the nodes
213 * parameter with respect to the policy mode and flags. But, we need to
214 * handle an empty nodemask with MPOL_PREFERRED here.
215 *
216 * Must be called holding task's alloc_lock to protect task's mems_allowed
217 * and mempolicy. May also be called holding the mmap_semaphore for write.
218 */
219 static int mpol_set_nodemask(struct mempolicy *pol,
220 const nodemask_t *nodes, struct nodemask_scratch *nsc)
221 {
222 int ret;
223
224 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
225 if (pol == NULL)
226 return 0;
227 /* Check N_MEMORY */
228 nodes_and(nsc->mask1,
229 cpuset_current_mems_allowed, node_states[N_MEMORY]);
230
231 VM_BUG_ON(!nodes);
232 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
233 nodes = NULL; /* explicit local allocation */
234 else {
235 if (pol->flags & MPOL_F_RELATIVE_NODES)
236 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
237 else
238 nodes_and(nsc->mask2, *nodes, nsc->mask1);
239
240 if (mpol_store_user_nodemask(pol))
241 pol->w.user_nodemask = *nodes;
242 else
243 pol->w.cpuset_mems_allowed =
244 cpuset_current_mems_allowed;
245 }
246
247 if (nodes)
248 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
249 else
250 ret = mpol_ops[pol->mode].create(pol, NULL);
251 return ret;
252 }
253
254 /*
255 * This function just creates a new policy, does some check and simple
256 * initialization. You must invoke mpol_set_nodemask() to set nodes.
257 */
258 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
259 nodemask_t *nodes)
260 {
261 struct mempolicy *policy;
262
263 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
264 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
265
266 if (mode == MPOL_DEFAULT) {
267 if (nodes && !nodes_empty(*nodes))
268 return ERR_PTR(-EINVAL);
269 return NULL;
270 }
271 VM_BUG_ON(!nodes);
272
273 /*
274 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
275 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
276 * All other modes require a valid pointer to a non-empty nodemask.
277 */
278 if (mode == MPOL_PREFERRED) {
279 if (nodes_empty(*nodes)) {
280 if (((flags & MPOL_F_STATIC_NODES) ||
281 (flags & MPOL_F_RELATIVE_NODES)))
282 return ERR_PTR(-EINVAL);
283 }
284 } else if (mode == MPOL_LOCAL) {
285 if (!nodes_empty(*nodes))
286 return ERR_PTR(-EINVAL);
287 mode = MPOL_PREFERRED;
288 } else if (nodes_empty(*nodes))
289 return ERR_PTR(-EINVAL);
290 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
291 if (!policy)
292 return ERR_PTR(-ENOMEM);
293 atomic_set(&policy->refcnt, 1);
294 policy->mode = mode;
295 policy->flags = flags;
296
297 return policy;
298 }
299
300 /* Slow path of a mpol destructor. */
301 void __mpol_put(struct mempolicy *p)
302 {
303 if (!atomic_dec_and_test(&p->refcnt))
304 return;
305 kmem_cache_free(policy_cache, p);
306 }
307
308 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
309 enum mpol_rebind_step step)
310 {
311 }
312
313 /*
314 * step:
315 * MPOL_REBIND_ONCE - do rebind work at once
316 * MPOL_REBIND_STEP1 - set all the newly nodes
317 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
318 */
319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
320 enum mpol_rebind_step step)
321 {
322 nodemask_t tmp;
323
324 if (pol->flags & MPOL_F_STATIC_NODES)
325 nodes_and(tmp, pol->w.user_nodemask, *nodes);
326 else if (pol->flags & MPOL_F_RELATIVE_NODES)
327 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
328 else {
329 /*
330 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
331 * result
332 */
333 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
334 nodes_remap(tmp, pol->v.nodes,
335 pol->w.cpuset_mems_allowed, *nodes);
336 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
337 } else if (step == MPOL_REBIND_STEP2) {
338 tmp = pol->w.cpuset_mems_allowed;
339 pol->w.cpuset_mems_allowed = *nodes;
340 } else
341 BUG();
342 }
343
344 if (nodes_empty(tmp))
345 tmp = *nodes;
346
347 if (step == MPOL_REBIND_STEP1)
348 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
349 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
350 pol->v.nodes = tmp;
351 else
352 BUG();
353
354 if (!node_isset(current->il_next, tmp)) {
355 current->il_next = next_node(current->il_next, tmp);
356 if (current->il_next >= MAX_NUMNODES)
357 current->il_next = first_node(tmp);
358 if (current->il_next >= MAX_NUMNODES)
359 current->il_next = numa_node_id();
360 }
361 }
362
363 static void mpol_rebind_preferred(struct mempolicy *pol,
364 const nodemask_t *nodes,
365 enum mpol_rebind_step step)
366 {
367 nodemask_t tmp;
368
369 if (pol->flags & MPOL_F_STATIC_NODES) {
370 int node = first_node(pol->w.user_nodemask);
371
372 if (node_isset(node, *nodes)) {
373 pol->v.preferred_node = node;
374 pol->flags &= ~MPOL_F_LOCAL;
375 } else
376 pol->flags |= MPOL_F_LOCAL;
377 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
378 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
379 pol->v.preferred_node = first_node(tmp);
380 } else if (!(pol->flags & MPOL_F_LOCAL)) {
381 pol->v.preferred_node = node_remap(pol->v.preferred_node,
382 pol->w.cpuset_mems_allowed,
383 *nodes);
384 pol->w.cpuset_mems_allowed = *nodes;
385 }
386 }
387
388 /*
389 * mpol_rebind_policy - Migrate a policy to a different set of nodes
390 *
391 * If read-side task has no lock to protect task->mempolicy, write-side
392 * task will rebind the task->mempolicy by two step. The first step is
393 * setting all the newly nodes, and the second step is cleaning all the
394 * disallowed nodes. In this way, we can avoid finding no node to alloc
395 * page.
396 * If we have a lock to protect task->mempolicy in read-side, we do
397 * rebind directly.
398 *
399 * step:
400 * MPOL_REBIND_ONCE - do rebind work at once
401 * MPOL_REBIND_STEP1 - set all the newly nodes
402 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
403 */
404 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
405 enum mpol_rebind_step step)
406 {
407 if (!pol)
408 return;
409 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
410 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
411 return;
412
413 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
414 return;
415
416 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
417 BUG();
418
419 if (step == MPOL_REBIND_STEP1)
420 pol->flags |= MPOL_F_REBINDING;
421 else if (step == MPOL_REBIND_STEP2)
422 pol->flags &= ~MPOL_F_REBINDING;
423 else if (step >= MPOL_REBIND_NSTEP)
424 BUG();
425
426 mpol_ops[pol->mode].rebind(pol, newmask, step);
427 }
428
429 /*
430 * Wrapper for mpol_rebind_policy() that just requires task
431 * pointer, and updates task mempolicy.
432 *
433 * Called with task's alloc_lock held.
434 */
435
436 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
437 enum mpol_rebind_step step)
438 {
439 mpol_rebind_policy(tsk->mempolicy, new, step);
440 }
441
442 /*
443 * Rebind each vma in mm to new nodemask.
444 *
445 * Call holding a reference to mm. Takes mm->mmap_sem during call.
446 */
447
448 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
449 {
450 struct vm_area_struct *vma;
451
452 down_write(&mm->mmap_sem);
453 for (vma = mm->mmap; vma; vma = vma->vm_next)
454 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
455 up_write(&mm->mmap_sem);
456 }
457
458 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
459 [MPOL_DEFAULT] = {
460 .rebind = mpol_rebind_default,
461 },
462 [MPOL_INTERLEAVE] = {
463 .create = mpol_new_interleave,
464 .rebind = mpol_rebind_nodemask,
465 },
466 [MPOL_PREFERRED] = {
467 .create = mpol_new_preferred,
468 .rebind = mpol_rebind_preferred,
469 },
470 [MPOL_BIND] = {
471 .create = mpol_new_bind,
472 .rebind = mpol_rebind_nodemask,
473 },
474 };
475
476 static void migrate_page_add(struct page *page, struct list_head *pagelist,
477 unsigned long flags);
478
479 /*
480 * Scan through pages checking if pages follow certain conditions,
481 * and move them to the pagelist if they do.
482 */
483 static int queue_pages_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
484 unsigned long addr, unsigned long end,
485 const nodemask_t *nodes, unsigned long flags,
486 void *private)
487 {
488 pte_t *orig_pte;
489 pte_t *pte;
490 spinlock_t *ptl;
491
492 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
493 do {
494 struct page *page;
495 int nid;
496
497 if (!pte_present(*pte))
498 continue;
499 page = vm_normal_page(vma, addr, *pte);
500 if (!page)
501 continue;
502 /*
503 * vm_normal_page() filters out zero pages, but there might
504 * still be PageReserved pages to skip, perhaps in a VDSO.
505 */
506 if (PageReserved(page))
507 continue;
508 nid = page_to_nid(page);
509 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
510 continue;
511
512 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
513 migrate_page_add(page, private, flags);
514 else
515 break;
516 } while (pte++, addr += PAGE_SIZE, addr != end);
517 pte_unmap_unlock(orig_pte, ptl);
518 return addr != end;
519 }
520
521 static void queue_pages_hugetlb_pmd_range(struct vm_area_struct *vma,
522 pmd_t *pmd, const nodemask_t *nodes, unsigned long flags,
523 void *private)
524 {
525 #ifdef CONFIG_HUGETLB_PAGE
526 int nid;
527 struct page *page;
528 spinlock_t *ptl;
529
530 ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, (pte_t *)pmd);
531 page = pte_page(huge_ptep_get((pte_t *)pmd));
532 nid = page_to_nid(page);
533 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
534 goto unlock;
535 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
536 if (flags & (MPOL_MF_MOVE_ALL) ||
537 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
538 isolate_huge_page(page, private);
539 unlock:
540 spin_unlock(ptl);
541 #else
542 BUG();
543 #endif
544 }
545
546 static inline int queue_pages_pmd_range(struct vm_area_struct *vma, pud_t *pud,
547 unsigned long addr, unsigned long end,
548 const nodemask_t *nodes, unsigned long flags,
549 void *private)
550 {
551 pmd_t *pmd;
552 unsigned long next;
553
554 pmd = pmd_offset(pud, addr);
555 do {
556 next = pmd_addr_end(addr, end);
557 if (!pmd_present(*pmd))
558 continue;
559 if (pmd_huge(*pmd) && is_vm_hugetlb_page(vma)) {
560 queue_pages_hugetlb_pmd_range(vma, pmd, nodes,
561 flags, private);
562 continue;
563 }
564 split_huge_page_pmd(vma, addr, pmd);
565 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
566 continue;
567 if (queue_pages_pte_range(vma, pmd, addr, next, nodes,
568 flags, private))
569 return -EIO;
570 } while (pmd++, addr = next, addr != end);
571 return 0;
572 }
573
574 static inline int queue_pages_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
575 unsigned long addr, unsigned long end,
576 const nodemask_t *nodes, unsigned long flags,
577 void *private)
578 {
579 pud_t *pud;
580 unsigned long next;
581
582 pud = pud_offset(pgd, addr);
583 do {
584 next = pud_addr_end(addr, end);
585 if (pud_huge(*pud) && is_vm_hugetlb_page(vma))
586 continue;
587 if (pud_none_or_clear_bad(pud))
588 continue;
589 if (queue_pages_pmd_range(vma, pud, addr, next, nodes,
590 flags, private))
591 return -EIO;
592 } while (pud++, addr = next, addr != end);
593 return 0;
594 }
595
596 static inline int queue_pages_pgd_range(struct vm_area_struct *vma,
597 unsigned long addr, unsigned long end,
598 const nodemask_t *nodes, unsigned long flags,
599 void *private)
600 {
601 pgd_t *pgd;
602 unsigned long next;
603
604 pgd = pgd_offset(vma->vm_mm, addr);
605 do {
606 next = pgd_addr_end(addr, end);
607 if (pgd_none_or_clear_bad(pgd))
608 continue;
609 if (queue_pages_pud_range(vma, pgd, addr, next, nodes,
610 flags, private))
611 return -EIO;
612 } while (pgd++, addr = next, addr != end);
613 return 0;
614 }
615
616 #ifdef CONFIG_NUMA_BALANCING
617 /*
618 * This is used to mark a range of virtual addresses to be inaccessible.
619 * These are later cleared by a NUMA hinting fault. Depending on these
620 * faults, pages may be migrated for better NUMA placement.
621 *
622 * This is assuming that NUMA faults are handled using PROT_NONE. If
623 * an architecture makes a different choice, it will need further
624 * changes to the core.
625 */
626 unsigned long change_prot_numa(struct vm_area_struct *vma,
627 unsigned long addr, unsigned long end)
628 {
629 int nr_updated;
630
631 nr_updated = change_protection(vma, addr, end, vma->vm_page_prot, 0, 1);
632 if (nr_updated)
633 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
634
635 return nr_updated;
636 }
637 #else
638 static unsigned long change_prot_numa(struct vm_area_struct *vma,
639 unsigned long addr, unsigned long end)
640 {
641 return 0;
642 }
643 #endif /* CONFIG_NUMA_BALANCING */
644
645 /*
646 * Walk through page tables and collect pages to be migrated.
647 *
648 * If pages found in a given range are on a set of nodes (determined by
649 * @nodes and @flags,) it's isolated and queued to the pagelist which is
650 * passed via @private.)
651 */
652 static struct vm_area_struct *
653 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
654 const nodemask_t *nodes, unsigned long flags, void *private)
655 {
656 int err;
657 struct vm_area_struct *first, *vma, *prev;
658
659
660 first = find_vma(mm, start);
661 if (!first)
662 return ERR_PTR(-EFAULT);
663 prev = NULL;
664 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
665 unsigned long endvma = vma->vm_end;
666
667 if (endvma > end)
668 endvma = end;
669 if (vma->vm_start > start)
670 start = vma->vm_start;
671
672 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
673 if (!vma->vm_next && vma->vm_end < end)
674 return ERR_PTR(-EFAULT);
675 if (prev && prev->vm_end < vma->vm_start)
676 return ERR_PTR(-EFAULT);
677 }
678
679 if (flags & MPOL_MF_LAZY) {
680 change_prot_numa(vma, start, endvma);
681 goto next;
682 }
683
684 if ((flags & MPOL_MF_STRICT) ||
685 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
686 vma_migratable(vma))) {
687
688 err = queue_pages_pgd_range(vma, start, endvma, nodes,
689 flags, private);
690 if (err) {
691 first = ERR_PTR(err);
692 break;
693 }
694 }
695 next:
696 prev = vma;
697 }
698 return first;
699 }
700
701 /*
702 * Apply policy to a single VMA
703 * This must be called with the mmap_sem held for writing.
704 */
705 static int vma_replace_policy(struct vm_area_struct *vma,
706 struct mempolicy *pol)
707 {
708 int err;
709 struct mempolicy *old;
710 struct mempolicy *new;
711
712 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
713 vma->vm_start, vma->vm_end, vma->vm_pgoff,
714 vma->vm_ops, vma->vm_file,
715 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
716
717 new = mpol_dup(pol);
718 if (IS_ERR(new))
719 return PTR_ERR(new);
720
721 if (vma->vm_ops && vma->vm_ops->set_policy) {
722 err = vma->vm_ops->set_policy(vma, new);
723 if (err)
724 goto err_out;
725 }
726
727 old = vma->vm_policy;
728 vma->vm_policy = new; /* protected by mmap_sem */
729 mpol_put(old);
730
731 return 0;
732 err_out:
733 mpol_put(new);
734 return err;
735 }
736
737 /* Step 2: apply policy to a range and do splits. */
738 static int mbind_range(struct mm_struct *mm, unsigned long start,
739 unsigned long end, struct mempolicy *new_pol)
740 {
741 struct vm_area_struct *next;
742 struct vm_area_struct *prev;
743 struct vm_area_struct *vma;
744 int err = 0;
745 pgoff_t pgoff;
746 unsigned long vmstart;
747 unsigned long vmend;
748
749 vma = find_vma(mm, start);
750 if (!vma || vma->vm_start > start)
751 return -EFAULT;
752
753 prev = vma->vm_prev;
754 if (start > vma->vm_start)
755 prev = vma;
756
757 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
758 next = vma->vm_next;
759 vmstart = max(start, vma->vm_start);
760 vmend = min(end, vma->vm_end);
761
762 if (mpol_equal(vma_policy(vma), new_pol))
763 continue;
764
765 pgoff = vma->vm_pgoff +
766 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
767 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
768 vma->anon_vma, vma->vm_file, pgoff,
769 new_pol);
770 if (prev) {
771 vma = prev;
772 next = vma->vm_next;
773 if (mpol_equal(vma_policy(vma), new_pol))
774 continue;
775 /* vma_merge() joined vma && vma->next, case 8 */
776 goto replace;
777 }
778 if (vma->vm_start != vmstart) {
779 err = split_vma(vma->vm_mm, vma, vmstart, 1);
780 if (err)
781 goto out;
782 }
783 if (vma->vm_end != vmend) {
784 err = split_vma(vma->vm_mm, vma, vmend, 0);
785 if (err)
786 goto out;
787 }
788 replace:
789 err = vma_replace_policy(vma, new_pol);
790 if (err)
791 goto out;
792 }
793
794 out:
795 return err;
796 }
797
798 /* Set the process memory policy */
799 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
800 nodemask_t *nodes)
801 {
802 struct mempolicy *new, *old;
803 struct mm_struct *mm = current->mm;
804 NODEMASK_SCRATCH(scratch);
805 int ret;
806
807 if (!scratch)
808 return -ENOMEM;
809
810 new = mpol_new(mode, flags, nodes);
811 if (IS_ERR(new)) {
812 ret = PTR_ERR(new);
813 goto out;
814 }
815 /*
816 * prevent changing our mempolicy while show_numa_maps()
817 * is using it.
818 * Note: do_set_mempolicy() can be called at init time
819 * with no 'mm'.
820 */
821 if (mm)
822 down_write(&mm->mmap_sem);
823 task_lock(current);
824 ret = mpol_set_nodemask(new, nodes, scratch);
825 if (ret) {
826 task_unlock(current);
827 if (mm)
828 up_write(&mm->mmap_sem);
829 mpol_put(new);
830 goto out;
831 }
832 old = current->mempolicy;
833 current->mempolicy = new;
834 if (new && new->mode == MPOL_INTERLEAVE &&
835 nodes_weight(new->v.nodes))
836 current->il_next = first_node(new->v.nodes);
837 task_unlock(current);
838 if (mm)
839 up_write(&mm->mmap_sem);
840
841 mpol_put(old);
842 ret = 0;
843 out:
844 NODEMASK_SCRATCH_FREE(scratch);
845 return ret;
846 }
847
848 /*
849 * Return nodemask for policy for get_mempolicy() query
850 *
851 * Called with task's alloc_lock held
852 */
853 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
854 {
855 nodes_clear(*nodes);
856 if (p == &default_policy)
857 return;
858
859 switch (p->mode) {
860 case MPOL_BIND:
861 /* Fall through */
862 case MPOL_INTERLEAVE:
863 *nodes = p->v.nodes;
864 break;
865 case MPOL_PREFERRED:
866 if (!(p->flags & MPOL_F_LOCAL))
867 node_set(p->v.preferred_node, *nodes);
868 /* else return empty node mask for local allocation */
869 break;
870 default:
871 BUG();
872 }
873 }
874
875 static int lookup_node(struct mm_struct *mm, unsigned long addr)
876 {
877 struct page *p;
878 int err;
879
880 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
881 if (err >= 0) {
882 err = page_to_nid(p);
883 put_page(p);
884 }
885 return err;
886 }
887
888 /* Retrieve NUMA policy */
889 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
890 unsigned long addr, unsigned long flags)
891 {
892 int err;
893 struct mm_struct *mm = current->mm;
894 struct vm_area_struct *vma = NULL;
895 struct mempolicy *pol = current->mempolicy;
896
897 if (flags &
898 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
899 return -EINVAL;
900
901 if (flags & MPOL_F_MEMS_ALLOWED) {
902 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
903 return -EINVAL;
904 *policy = 0; /* just so it's initialized */
905 task_lock(current);
906 *nmask = cpuset_current_mems_allowed;
907 task_unlock(current);
908 return 0;
909 }
910
911 if (flags & MPOL_F_ADDR) {
912 /*
913 * Do NOT fall back to task policy if the
914 * vma/shared policy at addr is NULL. We
915 * want to return MPOL_DEFAULT in this case.
916 */
917 down_read(&mm->mmap_sem);
918 vma = find_vma_intersection(mm, addr, addr+1);
919 if (!vma) {
920 up_read(&mm->mmap_sem);
921 return -EFAULT;
922 }
923 if (vma->vm_ops && vma->vm_ops->get_policy)
924 pol = vma->vm_ops->get_policy(vma, addr);
925 else
926 pol = vma->vm_policy;
927 } else if (addr)
928 return -EINVAL;
929
930 if (!pol)
931 pol = &default_policy; /* indicates default behavior */
932
933 if (flags & MPOL_F_NODE) {
934 if (flags & MPOL_F_ADDR) {
935 err = lookup_node(mm, addr);
936 if (err < 0)
937 goto out;
938 *policy = err;
939 } else if (pol == current->mempolicy &&
940 pol->mode == MPOL_INTERLEAVE) {
941 *policy = current->il_next;
942 } else {
943 err = -EINVAL;
944 goto out;
945 }
946 } else {
947 *policy = pol == &default_policy ? MPOL_DEFAULT :
948 pol->mode;
949 /*
950 * Internal mempolicy flags must be masked off before exposing
951 * the policy to userspace.
952 */
953 *policy |= (pol->flags & MPOL_MODE_FLAGS);
954 }
955
956 if (vma) {
957 up_read(&current->mm->mmap_sem);
958 vma = NULL;
959 }
960
961 err = 0;
962 if (nmask) {
963 if (mpol_store_user_nodemask(pol)) {
964 *nmask = pol->w.user_nodemask;
965 } else {
966 task_lock(current);
967 get_policy_nodemask(pol, nmask);
968 task_unlock(current);
969 }
970 }
971
972 out:
973 mpol_cond_put(pol);
974 if (vma)
975 up_read(&current->mm->mmap_sem);
976 return err;
977 }
978
979 #ifdef CONFIG_MIGRATION
980 /*
981 * page migration
982 */
983 static void migrate_page_add(struct page *page, struct list_head *pagelist,
984 unsigned long flags)
985 {
986 /*
987 * Avoid migrating a page that is shared with others.
988 */
989 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
990 if (!isolate_lru_page(page)) {
991 list_add_tail(&page->lru, pagelist);
992 inc_zone_page_state(page, NR_ISOLATED_ANON +
993 page_is_file_cache(page));
994 }
995 }
996 }
997
998 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
999 {
1000 if (PageHuge(page))
1001 return alloc_huge_page_node(page_hstate(compound_head(page)),
1002 node);
1003 else
1004 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
1005 }
1006
1007 /*
1008 * Migrate pages from one node to a target node.
1009 * Returns error or the number of pages not migrated.
1010 */
1011 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1012 int flags)
1013 {
1014 nodemask_t nmask;
1015 LIST_HEAD(pagelist);
1016 int err = 0;
1017
1018 nodes_clear(nmask);
1019 node_set(source, nmask);
1020
1021 /*
1022 * This does not "check" the range but isolates all pages that
1023 * need migration. Between passing in the full user address
1024 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1025 */
1026 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1027 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1028 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1029
1030 if (!list_empty(&pagelist)) {
1031 err = migrate_pages(&pagelist, new_node_page, dest,
1032 MIGRATE_SYNC, MR_SYSCALL);
1033 if (err)
1034 putback_movable_pages(&pagelist);
1035 }
1036
1037 return err;
1038 }
1039
1040 /*
1041 * Move pages between the two nodesets so as to preserve the physical
1042 * layout as much as possible.
1043 *
1044 * Returns the number of page that could not be moved.
1045 */
1046 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1047 const nodemask_t *to, int flags)
1048 {
1049 int busy = 0;
1050 int err;
1051 nodemask_t tmp;
1052
1053 err = migrate_prep();
1054 if (err)
1055 return err;
1056
1057 down_read(&mm->mmap_sem);
1058
1059 err = migrate_vmas(mm, from, to, flags);
1060 if (err)
1061 goto out;
1062
1063 /*
1064 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1065 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1066 * bit in 'tmp', and return that <source, dest> pair for migration.
1067 * The pair of nodemasks 'to' and 'from' define the map.
1068 *
1069 * If no pair of bits is found that way, fallback to picking some
1070 * pair of 'source' and 'dest' bits that are not the same. If the
1071 * 'source' and 'dest' bits are the same, this represents a node
1072 * that will be migrating to itself, so no pages need move.
1073 *
1074 * If no bits are left in 'tmp', or if all remaining bits left
1075 * in 'tmp' correspond to the same bit in 'to', return false
1076 * (nothing left to migrate).
1077 *
1078 * This lets us pick a pair of nodes to migrate between, such that
1079 * if possible the dest node is not already occupied by some other
1080 * source node, minimizing the risk of overloading the memory on a
1081 * node that would happen if we migrated incoming memory to a node
1082 * before migrating outgoing memory source that same node.
1083 *
1084 * A single scan of tmp is sufficient. As we go, we remember the
1085 * most recent <s, d> pair that moved (s != d). If we find a pair
1086 * that not only moved, but what's better, moved to an empty slot
1087 * (d is not set in tmp), then we break out then, with that pair.
1088 * Otherwise when we finish scanning from_tmp, we at least have the
1089 * most recent <s, d> pair that moved. If we get all the way through
1090 * the scan of tmp without finding any node that moved, much less
1091 * moved to an empty node, then there is nothing left worth migrating.
1092 */
1093
1094 tmp = *from;
1095 while (!nodes_empty(tmp)) {
1096 int s,d;
1097 int source = NUMA_NO_NODE;
1098 int dest = 0;
1099
1100 for_each_node_mask(s, tmp) {
1101
1102 /*
1103 * do_migrate_pages() tries to maintain the relative
1104 * node relationship of the pages established between
1105 * threads and memory areas.
1106 *
1107 * However if the number of source nodes is not equal to
1108 * the number of destination nodes we can not preserve
1109 * this node relative relationship. In that case, skip
1110 * copying memory from a node that is in the destination
1111 * mask.
1112 *
1113 * Example: [2,3,4] -> [3,4,5] moves everything.
1114 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1115 */
1116
1117 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1118 (node_isset(s, *to)))
1119 continue;
1120
1121 d = node_remap(s, *from, *to);
1122 if (s == d)
1123 continue;
1124
1125 source = s; /* Node moved. Memorize */
1126 dest = d;
1127
1128 /* dest not in remaining from nodes? */
1129 if (!node_isset(dest, tmp))
1130 break;
1131 }
1132 if (source == NUMA_NO_NODE)
1133 break;
1134
1135 node_clear(source, tmp);
1136 err = migrate_to_node(mm, source, dest, flags);
1137 if (err > 0)
1138 busy += err;
1139 if (err < 0)
1140 break;
1141 }
1142 out:
1143 up_read(&mm->mmap_sem);
1144 if (err < 0)
1145 return err;
1146 return busy;
1147
1148 }
1149
1150 /*
1151 * Allocate a new page for page migration based on vma policy.
1152 * Start assuming that page is mapped by vma pointed to by @private.
1153 * Search forward from there, if not. N.B., this assumes that the
1154 * list of pages handed to migrate_pages()--which is how we get here--
1155 * is in virtual address order.
1156 */
1157 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1158 {
1159 struct vm_area_struct *vma = (struct vm_area_struct *)private;
1160 unsigned long uninitialized_var(address);
1161
1162 while (vma) {
1163 address = page_address_in_vma(page, vma);
1164 if (address != -EFAULT)
1165 break;
1166 vma = vma->vm_next;
1167 }
1168
1169 if (PageHuge(page)) {
1170 BUG_ON(!vma);
1171 return alloc_huge_page_noerr(vma, address, 1);
1172 }
1173 /*
1174 * if !vma, alloc_page_vma() will use task or system default policy
1175 */
1176 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1177 }
1178 #else
1179
1180 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1181 unsigned long flags)
1182 {
1183 }
1184
1185 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1186 const nodemask_t *to, int flags)
1187 {
1188 return -ENOSYS;
1189 }
1190
1191 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1192 {
1193 return NULL;
1194 }
1195 #endif
1196
1197 static long do_mbind(unsigned long start, unsigned long len,
1198 unsigned short mode, unsigned short mode_flags,
1199 nodemask_t *nmask, unsigned long flags)
1200 {
1201 struct vm_area_struct *vma;
1202 struct mm_struct *mm = current->mm;
1203 struct mempolicy *new;
1204 unsigned long end;
1205 int err;
1206 LIST_HEAD(pagelist);
1207
1208 if (flags & ~(unsigned long)MPOL_MF_VALID)
1209 return -EINVAL;
1210 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1211 return -EPERM;
1212
1213 if (start & ~PAGE_MASK)
1214 return -EINVAL;
1215
1216 if (mode == MPOL_DEFAULT)
1217 flags &= ~MPOL_MF_STRICT;
1218
1219 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1220 end = start + len;
1221
1222 if (end < start)
1223 return -EINVAL;
1224 if (end == start)
1225 return 0;
1226
1227 new = mpol_new(mode, mode_flags, nmask);
1228 if (IS_ERR(new))
1229 return PTR_ERR(new);
1230
1231 if (flags & MPOL_MF_LAZY)
1232 new->flags |= MPOL_F_MOF;
1233
1234 /*
1235 * If we are using the default policy then operation
1236 * on discontinuous address spaces is okay after all
1237 */
1238 if (!new)
1239 flags |= MPOL_MF_DISCONTIG_OK;
1240
1241 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1242 start, start + len, mode, mode_flags,
1243 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1244
1245 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1246
1247 err = migrate_prep();
1248 if (err)
1249 goto mpol_out;
1250 }
1251 {
1252 NODEMASK_SCRATCH(scratch);
1253 if (scratch) {
1254 down_write(&mm->mmap_sem);
1255 task_lock(current);
1256 err = mpol_set_nodemask(new, nmask, scratch);
1257 task_unlock(current);
1258 if (err)
1259 up_write(&mm->mmap_sem);
1260 } else
1261 err = -ENOMEM;
1262 NODEMASK_SCRATCH_FREE(scratch);
1263 }
1264 if (err)
1265 goto mpol_out;
1266
1267 vma = queue_pages_range(mm, start, end, nmask,
1268 flags | MPOL_MF_INVERT, &pagelist);
1269
1270 err = PTR_ERR(vma); /* maybe ... */
1271 if (!IS_ERR(vma))
1272 err = mbind_range(mm, start, end, new);
1273
1274 if (!err) {
1275 int nr_failed = 0;
1276
1277 if (!list_empty(&pagelist)) {
1278 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1279 nr_failed = migrate_pages(&pagelist, new_vma_page,
1280 (unsigned long)vma,
1281 MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1282 if (nr_failed)
1283 putback_movable_pages(&pagelist);
1284 }
1285
1286 if (nr_failed && (flags & MPOL_MF_STRICT))
1287 err = -EIO;
1288 } else
1289 putback_movable_pages(&pagelist);
1290
1291 up_write(&mm->mmap_sem);
1292 mpol_out:
1293 mpol_put(new);
1294 return err;
1295 }
1296
1297 /*
1298 * User space interface with variable sized bitmaps for nodelists.
1299 */
1300
1301 /* Copy a node mask from user space. */
1302 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1303 unsigned long maxnode)
1304 {
1305 unsigned long k;
1306 unsigned long nlongs;
1307 unsigned long endmask;
1308
1309 --maxnode;
1310 nodes_clear(*nodes);
1311 if (maxnode == 0 || !nmask)
1312 return 0;
1313 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1314 return -EINVAL;
1315
1316 nlongs = BITS_TO_LONGS(maxnode);
1317 if ((maxnode % BITS_PER_LONG) == 0)
1318 endmask = ~0UL;
1319 else
1320 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1321
1322 /* When the user specified more nodes than supported just check
1323 if the non supported part is all zero. */
1324 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1325 if (nlongs > PAGE_SIZE/sizeof(long))
1326 return -EINVAL;
1327 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1328 unsigned long t;
1329 if (get_user(t, nmask + k))
1330 return -EFAULT;
1331 if (k == nlongs - 1) {
1332 if (t & endmask)
1333 return -EINVAL;
1334 } else if (t)
1335 return -EINVAL;
1336 }
1337 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1338 endmask = ~0UL;
1339 }
1340
1341 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1342 return -EFAULT;
1343 nodes_addr(*nodes)[nlongs-1] &= endmask;
1344 return 0;
1345 }
1346
1347 /* Copy a kernel node mask to user space */
1348 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1349 nodemask_t *nodes)
1350 {
1351 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1352 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1353
1354 if (copy > nbytes) {
1355 if (copy > PAGE_SIZE)
1356 return -EINVAL;
1357 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1358 return -EFAULT;
1359 copy = nbytes;
1360 }
1361 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1362 }
1363
1364 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1365 unsigned long, mode, unsigned long __user *, nmask,
1366 unsigned long, maxnode, unsigned, flags)
1367 {
1368 nodemask_t nodes;
1369 int err;
1370 unsigned short mode_flags;
1371
1372 mode_flags = mode & MPOL_MODE_FLAGS;
1373 mode &= ~MPOL_MODE_FLAGS;
1374 if (mode >= MPOL_MAX)
1375 return -EINVAL;
1376 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1377 (mode_flags & MPOL_F_RELATIVE_NODES))
1378 return -EINVAL;
1379 err = get_nodes(&nodes, nmask, maxnode);
1380 if (err)
1381 return err;
1382 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1383 }
1384
1385 /* Set the process memory policy */
1386 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1387 unsigned long, maxnode)
1388 {
1389 int err;
1390 nodemask_t nodes;
1391 unsigned short flags;
1392
1393 flags = mode & MPOL_MODE_FLAGS;
1394 mode &= ~MPOL_MODE_FLAGS;
1395 if ((unsigned int)mode >= MPOL_MAX)
1396 return -EINVAL;
1397 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1398 return -EINVAL;
1399 err = get_nodes(&nodes, nmask, maxnode);
1400 if (err)
1401 return err;
1402 return do_set_mempolicy(mode, flags, &nodes);
1403 }
1404
1405 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1406 const unsigned long __user *, old_nodes,
1407 const unsigned long __user *, new_nodes)
1408 {
1409 const struct cred *cred = current_cred(), *tcred;
1410 struct mm_struct *mm = NULL;
1411 struct task_struct *task;
1412 nodemask_t task_nodes;
1413 int err;
1414 nodemask_t *old;
1415 nodemask_t *new;
1416 NODEMASK_SCRATCH(scratch);
1417
1418 if (!scratch)
1419 return -ENOMEM;
1420
1421 old = &scratch->mask1;
1422 new = &scratch->mask2;
1423
1424 err = get_nodes(old, old_nodes, maxnode);
1425 if (err)
1426 goto out;
1427
1428 err = get_nodes(new, new_nodes, maxnode);
1429 if (err)
1430 goto out;
1431
1432 /* Find the mm_struct */
1433 rcu_read_lock();
1434 task = pid ? find_task_by_vpid(pid) : current;
1435 if (!task) {
1436 rcu_read_unlock();
1437 err = -ESRCH;
1438 goto out;
1439 }
1440 get_task_struct(task);
1441
1442 err = -EINVAL;
1443
1444 /*
1445 * Check if this process has the right to modify the specified
1446 * process. The right exists if the process has administrative
1447 * capabilities, superuser privileges or the same
1448 * userid as the target process.
1449 */
1450 tcred = __task_cred(task);
1451 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1452 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1453 !capable(CAP_SYS_NICE)) {
1454 rcu_read_unlock();
1455 err = -EPERM;
1456 goto out_put;
1457 }
1458 rcu_read_unlock();
1459
1460 task_nodes = cpuset_mems_allowed(task);
1461 /* Is the user allowed to access the target nodes? */
1462 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1463 err = -EPERM;
1464 goto out_put;
1465 }
1466
1467 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1468 err = -EINVAL;
1469 goto out_put;
1470 }
1471
1472 err = security_task_movememory(task);
1473 if (err)
1474 goto out_put;
1475
1476 mm = get_task_mm(task);
1477 put_task_struct(task);
1478
1479 if (!mm) {
1480 err = -EINVAL;
1481 goto out;
1482 }
1483
1484 err = do_migrate_pages(mm, old, new,
1485 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1486
1487 mmput(mm);
1488 out:
1489 NODEMASK_SCRATCH_FREE(scratch);
1490
1491 return err;
1492
1493 out_put:
1494 put_task_struct(task);
1495 goto out;
1496
1497 }
1498
1499
1500 /* Retrieve NUMA policy */
1501 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1502 unsigned long __user *, nmask, unsigned long, maxnode,
1503 unsigned long, addr, unsigned long, flags)
1504 {
1505 int err;
1506 int uninitialized_var(pval);
1507 nodemask_t nodes;
1508
1509 if (nmask != NULL && maxnode < MAX_NUMNODES)
1510 return -EINVAL;
1511
1512 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1513
1514 if (err)
1515 return err;
1516
1517 if (policy && put_user(pval, policy))
1518 return -EFAULT;
1519
1520 if (nmask)
1521 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1522
1523 return err;
1524 }
1525
1526 #ifdef CONFIG_COMPAT
1527
1528 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1529 compat_ulong_t __user *, nmask,
1530 compat_ulong_t, maxnode,
1531 compat_ulong_t, addr, compat_ulong_t, flags)
1532 {
1533 long err;
1534 unsigned long __user *nm = NULL;
1535 unsigned long nr_bits, alloc_size;
1536 DECLARE_BITMAP(bm, MAX_NUMNODES);
1537
1538 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1539 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1540
1541 if (nmask)
1542 nm = compat_alloc_user_space(alloc_size);
1543
1544 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1545
1546 if (!err && nmask) {
1547 unsigned long copy_size;
1548 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1549 err = copy_from_user(bm, nm, copy_size);
1550 /* ensure entire bitmap is zeroed */
1551 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1552 err |= compat_put_bitmap(nmask, bm, nr_bits);
1553 }
1554
1555 return err;
1556 }
1557
1558 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1559 compat_ulong_t, maxnode)
1560 {
1561 long err = 0;
1562 unsigned long __user *nm = NULL;
1563 unsigned long nr_bits, alloc_size;
1564 DECLARE_BITMAP(bm, MAX_NUMNODES);
1565
1566 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1567 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1568
1569 if (nmask) {
1570 err = compat_get_bitmap(bm, nmask, nr_bits);
1571 nm = compat_alloc_user_space(alloc_size);
1572 err |= copy_to_user(nm, bm, alloc_size);
1573 }
1574
1575 if (err)
1576 return -EFAULT;
1577
1578 return sys_set_mempolicy(mode, nm, nr_bits+1);
1579 }
1580
1581 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1582 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1583 compat_ulong_t, maxnode, compat_ulong_t, flags)
1584 {
1585 long err = 0;
1586 unsigned long __user *nm = NULL;
1587 unsigned long nr_bits, alloc_size;
1588 nodemask_t bm;
1589
1590 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1591 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1592
1593 if (nmask) {
1594 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1595 nm = compat_alloc_user_space(alloc_size);
1596 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1597 }
1598
1599 if (err)
1600 return -EFAULT;
1601
1602 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1603 }
1604
1605 #endif
1606
1607 /*
1608 * get_vma_policy(@task, @vma, @addr)
1609 * @task - task for fallback if vma policy == default
1610 * @vma - virtual memory area whose policy is sought
1611 * @addr - address in @vma for shared policy lookup
1612 *
1613 * Returns effective policy for a VMA at specified address.
1614 * Falls back to @task or system default policy, as necessary.
1615 * Current or other task's task mempolicy and non-shared vma policies must be
1616 * protected by task_lock(task) by the caller.
1617 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1618 * count--added by the get_policy() vm_op, as appropriate--to protect against
1619 * freeing by another task. It is the caller's responsibility to free the
1620 * extra reference for shared policies.
1621 */
1622 struct mempolicy *get_vma_policy(struct task_struct *task,
1623 struct vm_area_struct *vma, unsigned long addr)
1624 {
1625 struct mempolicy *pol = get_task_policy(task);
1626
1627 if (vma) {
1628 if (vma->vm_ops && vma->vm_ops->get_policy) {
1629 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1630 addr);
1631 if (vpol)
1632 pol = vpol;
1633 } else if (vma->vm_policy) {
1634 pol = vma->vm_policy;
1635
1636 /*
1637 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1638 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1639 * count on these policies which will be dropped by
1640 * mpol_cond_put() later
1641 */
1642 if (mpol_needs_cond_ref(pol))
1643 mpol_get(pol);
1644 }
1645 }
1646 if (!pol)
1647 pol = &default_policy;
1648 return pol;
1649 }
1650
1651 bool vma_policy_mof(struct task_struct *task, struct vm_area_struct *vma)
1652 {
1653 struct mempolicy *pol = get_task_policy(task);
1654 if (vma) {
1655 if (vma->vm_ops && vma->vm_ops->get_policy) {
1656 bool ret = false;
1657
1658 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1659 if (pol && (pol->flags & MPOL_F_MOF))
1660 ret = true;
1661 mpol_cond_put(pol);
1662
1663 return ret;
1664 } else if (vma->vm_policy) {
1665 pol = vma->vm_policy;
1666 }
1667 }
1668
1669 if (!pol)
1670 return default_policy.flags & MPOL_F_MOF;
1671
1672 return pol->flags & MPOL_F_MOF;
1673 }
1674
1675 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1676 {
1677 enum zone_type dynamic_policy_zone = policy_zone;
1678
1679 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1680
1681 /*
1682 * if policy->v.nodes has movable memory only,
1683 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1684 *
1685 * policy->v.nodes is intersect with node_states[N_MEMORY].
1686 * so if the following test faile, it implies
1687 * policy->v.nodes has movable memory only.
1688 */
1689 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1690 dynamic_policy_zone = ZONE_MOVABLE;
1691
1692 return zone >= dynamic_policy_zone;
1693 }
1694
1695 /*
1696 * Return a nodemask representing a mempolicy for filtering nodes for
1697 * page allocation
1698 */
1699 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1700 {
1701 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1702 if (unlikely(policy->mode == MPOL_BIND) &&
1703 apply_policy_zone(policy, gfp_zone(gfp)) &&
1704 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1705 return &policy->v.nodes;
1706
1707 return NULL;
1708 }
1709
1710 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1711 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1712 int nd)
1713 {
1714 switch (policy->mode) {
1715 case MPOL_PREFERRED:
1716 if (!(policy->flags & MPOL_F_LOCAL))
1717 nd = policy->v.preferred_node;
1718 break;
1719 case MPOL_BIND:
1720 /*
1721 * Normally, MPOL_BIND allocations are node-local within the
1722 * allowed nodemask. However, if __GFP_THISNODE is set and the
1723 * current node isn't part of the mask, we use the zonelist for
1724 * the first node in the mask instead.
1725 */
1726 if (unlikely(gfp & __GFP_THISNODE) &&
1727 unlikely(!node_isset(nd, policy->v.nodes)))
1728 nd = first_node(policy->v.nodes);
1729 break;
1730 default:
1731 BUG();
1732 }
1733 return node_zonelist(nd, gfp);
1734 }
1735
1736 /* Do dynamic interleaving for a process */
1737 static unsigned interleave_nodes(struct mempolicy *policy)
1738 {
1739 unsigned nid, next;
1740 struct task_struct *me = current;
1741
1742 nid = me->il_next;
1743 next = next_node(nid, policy->v.nodes);
1744 if (next >= MAX_NUMNODES)
1745 next = first_node(policy->v.nodes);
1746 if (next < MAX_NUMNODES)
1747 me->il_next = next;
1748 return nid;
1749 }
1750
1751 /*
1752 * Depending on the memory policy provide a node from which to allocate the
1753 * next slab entry.
1754 */
1755 unsigned int mempolicy_slab_node(void)
1756 {
1757 struct mempolicy *policy;
1758 int node = numa_mem_id();
1759
1760 if (in_interrupt())
1761 return node;
1762
1763 policy = current->mempolicy;
1764 if (!policy || policy->flags & MPOL_F_LOCAL)
1765 return node;
1766
1767 switch (policy->mode) {
1768 case MPOL_PREFERRED:
1769 /*
1770 * handled MPOL_F_LOCAL above
1771 */
1772 return policy->v.preferred_node;
1773
1774 case MPOL_INTERLEAVE:
1775 return interleave_nodes(policy);
1776
1777 case MPOL_BIND: {
1778 /*
1779 * Follow bind policy behavior and start allocation at the
1780 * first node.
1781 */
1782 struct zonelist *zonelist;
1783 struct zone *zone;
1784 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1785 zonelist = &NODE_DATA(node)->node_zonelists[0];
1786 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1787 &policy->v.nodes,
1788 &zone);
1789 return zone ? zone->node : node;
1790 }
1791
1792 default:
1793 BUG();
1794 }
1795 }
1796
1797 /* Do static interleaving for a VMA with known offset. */
1798 static unsigned offset_il_node(struct mempolicy *pol,
1799 struct vm_area_struct *vma, unsigned long off)
1800 {
1801 unsigned nnodes = nodes_weight(pol->v.nodes);
1802 unsigned target;
1803 int c;
1804 int nid = NUMA_NO_NODE;
1805
1806 if (!nnodes)
1807 return numa_node_id();
1808 target = (unsigned int)off % nnodes;
1809 c = 0;
1810 do {
1811 nid = next_node(nid, pol->v.nodes);
1812 c++;
1813 } while (c <= target);
1814 return nid;
1815 }
1816
1817 /* Determine a node number for interleave */
1818 static inline unsigned interleave_nid(struct mempolicy *pol,
1819 struct vm_area_struct *vma, unsigned long addr, int shift)
1820 {
1821 if (vma) {
1822 unsigned long off;
1823
1824 /*
1825 * for small pages, there is no difference between
1826 * shift and PAGE_SHIFT, so the bit-shift is safe.
1827 * for huge pages, since vm_pgoff is in units of small
1828 * pages, we need to shift off the always 0 bits to get
1829 * a useful offset.
1830 */
1831 BUG_ON(shift < PAGE_SHIFT);
1832 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1833 off += (addr - vma->vm_start) >> shift;
1834 return offset_il_node(pol, vma, off);
1835 } else
1836 return interleave_nodes(pol);
1837 }
1838
1839 /*
1840 * Return the bit number of a random bit set in the nodemask.
1841 * (returns NUMA_NO_NODE if nodemask is empty)
1842 */
1843 int node_random(const nodemask_t *maskp)
1844 {
1845 int w, bit = NUMA_NO_NODE;
1846
1847 w = nodes_weight(*maskp);
1848 if (w)
1849 bit = bitmap_ord_to_pos(maskp->bits,
1850 get_random_int() % w, MAX_NUMNODES);
1851 return bit;
1852 }
1853
1854 #ifdef CONFIG_HUGETLBFS
1855 /*
1856 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1857 * @vma = virtual memory area whose policy is sought
1858 * @addr = address in @vma for shared policy lookup and interleave policy
1859 * @gfp_flags = for requested zone
1860 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1861 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1862 *
1863 * Returns a zonelist suitable for a huge page allocation and a pointer
1864 * to the struct mempolicy for conditional unref after allocation.
1865 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1866 * @nodemask for filtering the zonelist.
1867 *
1868 * Must be protected by read_mems_allowed_begin()
1869 */
1870 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1871 gfp_t gfp_flags, struct mempolicy **mpol,
1872 nodemask_t **nodemask)
1873 {
1874 struct zonelist *zl;
1875
1876 *mpol = get_vma_policy(current, vma, addr);
1877 *nodemask = NULL; /* assume !MPOL_BIND */
1878
1879 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1880 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1881 huge_page_shift(hstate_vma(vma))), gfp_flags);
1882 } else {
1883 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1884 if ((*mpol)->mode == MPOL_BIND)
1885 *nodemask = &(*mpol)->v.nodes;
1886 }
1887 return zl;
1888 }
1889
1890 /*
1891 * init_nodemask_of_mempolicy
1892 *
1893 * If the current task's mempolicy is "default" [NULL], return 'false'
1894 * to indicate default policy. Otherwise, extract the policy nodemask
1895 * for 'bind' or 'interleave' policy into the argument nodemask, or
1896 * initialize the argument nodemask to contain the single node for
1897 * 'preferred' or 'local' policy and return 'true' to indicate presence
1898 * of non-default mempolicy.
1899 *
1900 * We don't bother with reference counting the mempolicy [mpol_get/put]
1901 * because the current task is examining it's own mempolicy and a task's
1902 * mempolicy is only ever changed by the task itself.
1903 *
1904 * N.B., it is the caller's responsibility to free a returned nodemask.
1905 */
1906 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1907 {
1908 struct mempolicy *mempolicy;
1909 int nid;
1910
1911 if (!(mask && current->mempolicy))
1912 return false;
1913
1914 task_lock(current);
1915 mempolicy = current->mempolicy;
1916 switch (mempolicy->mode) {
1917 case MPOL_PREFERRED:
1918 if (mempolicy->flags & MPOL_F_LOCAL)
1919 nid = numa_node_id();
1920 else
1921 nid = mempolicy->v.preferred_node;
1922 init_nodemask_of_node(mask, nid);
1923 break;
1924
1925 case MPOL_BIND:
1926 /* Fall through */
1927 case MPOL_INTERLEAVE:
1928 *mask = mempolicy->v.nodes;
1929 break;
1930
1931 default:
1932 BUG();
1933 }
1934 task_unlock(current);
1935
1936 return true;
1937 }
1938 #endif
1939
1940 /*
1941 * mempolicy_nodemask_intersects
1942 *
1943 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1944 * policy. Otherwise, check for intersection between mask and the policy
1945 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1946 * policy, always return true since it may allocate elsewhere on fallback.
1947 *
1948 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1949 */
1950 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1951 const nodemask_t *mask)
1952 {
1953 struct mempolicy *mempolicy;
1954 bool ret = true;
1955
1956 if (!mask)
1957 return ret;
1958 task_lock(tsk);
1959 mempolicy = tsk->mempolicy;
1960 if (!mempolicy)
1961 goto out;
1962
1963 switch (mempolicy->mode) {
1964 case MPOL_PREFERRED:
1965 /*
1966 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1967 * allocate from, they may fallback to other nodes when oom.
1968 * Thus, it's possible for tsk to have allocated memory from
1969 * nodes in mask.
1970 */
1971 break;
1972 case MPOL_BIND:
1973 case MPOL_INTERLEAVE:
1974 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1975 break;
1976 default:
1977 BUG();
1978 }
1979 out:
1980 task_unlock(tsk);
1981 return ret;
1982 }
1983
1984 /* Allocate a page in interleaved policy.
1985 Own path because it needs to do special accounting. */
1986 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1987 unsigned nid)
1988 {
1989 struct zonelist *zl;
1990 struct page *page;
1991
1992 zl = node_zonelist(nid, gfp);
1993 page = __alloc_pages(gfp, order, zl);
1994 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1995 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1996 return page;
1997 }
1998
1999 /**
2000 * alloc_pages_vma - Allocate a page for a VMA.
2001 *
2002 * @gfp:
2003 * %GFP_USER user allocation.
2004 * %GFP_KERNEL kernel allocations,
2005 * %GFP_HIGHMEM highmem/user allocations,
2006 * %GFP_FS allocation should not call back into a file system.
2007 * %GFP_ATOMIC don't sleep.
2008 *
2009 * @order:Order of the GFP allocation.
2010 * @vma: Pointer to VMA or NULL if not available.
2011 * @addr: Virtual Address of the allocation. Must be inside the VMA.
2012 *
2013 * This function allocates a page from the kernel page pool and applies
2014 * a NUMA policy associated with the VMA or the current process.
2015 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
2016 * mm_struct of the VMA to prevent it from going away. Should be used for
2017 * all allocations for pages that will be mapped into
2018 * user space. Returns NULL when no page can be allocated.
2019 *
2020 * Should be called with the mm_sem of the vma hold.
2021 */
2022 struct page *
2023 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2024 unsigned long addr, int node)
2025 {
2026 struct mempolicy *pol;
2027 struct page *page;
2028 unsigned int cpuset_mems_cookie;
2029
2030 retry_cpuset:
2031 pol = get_vma_policy(current, vma, addr);
2032 cpuset_mems_cookie = read_mems_allowed_begin();
2033
2034 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
2035 unsigned nid;
2036
2037 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2038 mpol_cond_put(pol);
2039 page = alloc_page_interleave(gfp, order, nid);
2040 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2041 goto retry_cpuset;
2042
2043 return page;
2044 }
2045 page = __alloc_pages_nodemask(gfp, order,
2046 policy_zonelist(gfp, pol, node),
2047 policy_nodemask(gfp, pol));
2048 if (unlikely(mpol_needs_cond_ref(pol)))
2049 __mpol_put(pol);
2050 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2051 goto retry_cpuset;
2052 return page;
2053 }
2054
2055 /**
2056 * alloc_pages_current - Allocate pages.
2057 *
2058 * @gfp:
2059 * %GFP_USER user allocation,
2060 * %GFP_KERNEL kernel allocation,
2061 * %GFP_HIGHMEM highmem allocation,
2062 * %GFP_FS don't call back into a file system.
2063 * %GFP_ATOMIC don't sleep.
2064 * @order: Power of two of allocation size in pages. 0 is a single page.
2065 *
2066 * Allocate a page from the kernel page pool. When not in
2067 * interrupt context and apply the current process NUMA policy.
2068 * Returns NULL when no page can be allocated.
2069 *
2070 * Don't call cpuset_update_task_memory_state() unless
2071 * 1) it's ok to take cpuset_sem (can WAIT), and
2072 * 2) allocating for current task (not interrupt).
2073 */
2074 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2075 {
2076 struct mempolicy *pol = get_task_policy(current);
2077 struct page *page;
2078 unsigned int cpuset_mems_cookie;
2079
2080 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
2081 pol = &default_policy;
2082
2083 retry_cpuset:
2084 cpuset_mems_cookie = read_mems_allowed_begin();
2085
2086 /*
2087 * No reference counting needed for current->mempolicy
2088 * nor system default_policy
2089 */
2090 if (pol->mode == MPOL_INTERLEAVE)
2091 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2092 else
2093 page = __alloc_pages_nodemask(gfp, order,
2094 policy_zonelist(gfp, pol, numa_node_id()),
2095 policy_nodemask(gfp, pol));
2096
2097 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2098 goto retry_cpuset;
2099
2100 return page;
2101 }
2102 EXPORT_SYMBOL(alloc_pages_current);
2103
2104 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2105 {
2106 struct mempolicy *pol = mpol_dup(vma_policy(src));
2107
2108 if (IS_ERR(pol))
2109 return PTR_ERR(pol);
2110 dst->vm_policy = pol;
2111 return 0;
2112 }
2113
2114 /*
2115 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2116 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2117 * with the mems_allowed returned by cpuset_mems_allowed(). This
2118 * keeps mempolicies cpuset relative after its cpuset moves. See
2119 * further kernel/cpuset.c update_nodemask().
2120 *
2121 * current's mempolicy may be rebinded by the other task(the task that changes
2122 * cpuset's mems), so we needn't do rebind work for current task.
2123 */
2124
2125 /* Slow path of a mempolicy duplicate */
2126 struct mempolicy *__mpol_dup(struct mempolicy *old)
2127 {
2128 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2129
2130 if (!new)
2131 return ERR_PTR(-ENOMEM);
2132
2133 /* task's mempolicy is protected by alloc_lock */
2134 if (old == current->mempolicy) {
2135 task_lock(current);
2136 *new = *old;
2137 task_unlock(current);
2138 } else
2139 *new = *old;
2140
2141 rcu_read_lock();
2142 if (current_cpuset_is_being_rebound()) {
2143 nodemask_t mems = cpuset_mems_allowed(current);
2144 if (new->flags & MPOL_F_REBINDING)
2145 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2146 else
2147 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2148 }
2149 rcu_read_unlock();
2150 atomic_set(&new->refcnt, 1);
2151 return new;
2152 }
2153
2154 /* Slow path of a mempolicy comparison */
2155 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2156 {
2157 if (!a || !b)
2158 return false;
2159 if (a->mode != b->mode)
2160 return false;
2161 if (a->flags != b->flags)
2162 return false;
2163 if (mpol_store_user_nodemask(a))
2164 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2165 return false;
2166
2167 switch (a->mode) {
2168 case MPOL_BIND:
2169 /* Fall through */
2170 case MPOL_INTERLEAVE:
2171 return !!nodes_equal(a->v.nodes, b->v.nodes);
2172 case MPOL_PREFERRED:
2173 return a->v.preferred_node == b->v.preferred_node;
2174 default:
2175 BUG();
2176 return false;
2177 }
2178 }
2179
2180 /*
2181 * Shared memory backing store policy support.
2182 *
2183 * Remember policies even when nobody has shared memory mapped.
2184 * The policies are kept in Red-Black tree linked from the inode.
2185 * They are protected by the sp->lock spinlock, which should be held
2186 * for any accesses to the tree.
2187 */
2188
2189 /* lookup first element intersecting start-end */
2190 /* Caller holds sp->lock */
2191 static struct sp_node *
2192 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2193 {
2194 struct rb_node *n = sp->root.rb_node;
2195
2196 while (n) {
2197 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2198
2199 if (start >= p->end)
2200 n = n->rb_right;
2201 else if (end <= p->start)
2202 n = n->rb_left;
2203 else
2204 break;
2205 }
2206 if (!n)
2207 return NULL;
2208 for (;;) {
2209 struct sp_node *w = NULL;
2210 struct rb_node *prev = rb_prev(n);
2211 if (!prev)
2212 break;
2213 w = rb_entry(prev, struct sp_node, nd);
2214 if (w->end <= start)
2215 break;
2216 n = prev;
2217 }
2218 return rb_entry(n, struct sp_node, nd);
2219 }
2220
2221 /* Insert a new shared policy into the list. */
2222 /* Caller holds sp->lock */
2223 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2224 {
2225 struct rb_node **p = &sp->root.rb_node;
2226 struct rb_node *parent = NULL;
2227 struct sp_node *nd;
2228
2229 while (*p) {
2230 parent = *p;
2231 nd = rb_entry(parent, struct sp_node, nd);
2232 if (new->start < nd->start)
2233 p = &(*p)->rb_left;
2234 else if (new->end > nd->end)
2235 p = &(*p)->rb_right;
2236 else
2237 BUG();
2238 }
2239 rb_link_node(&new->nd, parent, p);
2240 rb_insert_color(&new->nd, &sp->root);
2241 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2242 new->policy ? new->policy->mode : 0);
2243 }
2244
2245 /* Find shared policy intersecting idx */
2246 struct mempolicy *
2247 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2248 {
2249 struct mempolicy *pol = NULL;
2250 struct sp_node *sn;
2251
2252 if (!sp->root.rb_node)
2253 return NULL;
2254 spin_lock(&sp->lock);
2255 sn = sp_lookup(sp, idx, idx+1);
2256 if (sn) {
2257 mpol_get(sn->policy);
2258 pol = sn->policy;
2259 }
2260 spin_unlock(&sp->lock);
2261 return pol;
2262 }
2263
2264 static void sp_free(struct sp_node *n)
2265 {
2266 mpol_put(n->policy);
2267 kmem_cache_free(sn_cache, n);
2268 }
2269
2270 /**
2271 * mpol_misplaced - check whether current page node is valid in policy
2272 *
2273 * @page - page to be checked
2274 * @vma - vm area where page mapped
2275 * @addr - virtual address where page mapped
2276 *
2277 * Lookup current policy node id for vma,addr and "compare to" page's
2278 * node id.
2279 *
2280 * Returns:
2281 * -1 - not misplaced, page is in the right node
2282 * node - node id where the page should be
2283 *
2284 * Policy determination "mimics" alloc_page_vma().
2285 * Called from fault path where we know the vma and faulting address.
2286 */
2287 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2288 {
2289 struct mempolicy *pol;
2290 struct zone *zone;
2291 int curnid = page_to_nid(page);
2292 unsigned long pgoff;
2293 int thiscpu = raw_smp_processor_id();
2294 int thisnid = cpu_to_node(thiscpu);
2295 int polnid = -1;
2296 int ret = -1;
2297
2298 BUG_ON(!vma);
2299
2300 pol = get_vma_policy(current, vma, addr);
2301 if (!(pol->flags & MPOL_F_MOF))
2302 goto out;
2303
2304 switch (pol->mode) {
2305 case MPOL_INTERLEAVE:
2306 BUG_ON(addr >= vma->vm_end);
2307 BUG_ON(addr < vma->vm_start);
2308
2309 pgoff = vma->vm_pgoff;
2310 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2311 polnid = offset_il_node(pol, vma, pgoff);
2312 break;
2313
2314 case MPOL_PREFERRED:
2315 if (pol->flags & MPOL_F_LOCAL)
2316 polnid = numa_node_id();
2317 else
2318 polnid = pol->v.preferred_node;
2319 break;
2320
2321 case MPOL_BIND:
2322 /*
2323 * allows binding to multiple nodes.
2324 * use current page if in policy nodemask,
2325 * else select nearest allowed node, if any.
2326 * If no allowed nodes, use current [!misplaced].
2327 */
2328 if (node_isset(curnid, pol->v.nodes))
2329 goto out;
2330 (void)first_zones_zonelist(
2331 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2332 gfp_zone(GFP_HIGHUSER),
2333 &pol->v.nodes, &zone);
2334 polnid = zone->node;
2335 break;
2336
2337 default:
2338 BUG();
2339 }
2340
2341 /* Migrate the page towards the node whose CPU is referencing it */
2342 if (pol->flags & MPOL_F_MORON) {
2343 polnid = thisnid;
2344
2345 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2346 goto out;
2347 }
2348
2349 if (curnid != polnid)
2350 ret = polnid;
2351 out:
2352 mpol_cond_put(pol);
2353
2354 return ret;
2355 }
2356
2357 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2358 {
2359 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2360 rb_erase(&n->nd, &sp->root);
2361 sp_free(n);
2362 }
2363
2364 static void sp_node_init(struct sp_node *node, unsigned long start,
2365 unsigned long end, struct mempolicy *pol)
2366 {
2367 node->start = start;
2368 node->end = end;
2369 node->policy = pol;
2370 }
2371
2372 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2373 struct mempolicy *pol)
2374 {
2375 struct sp_node *n;
2376 struct mempolicy *newpol;
2377
2378 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2379 if (!n)
2380 return NULL;
2381
2382 newpol = mpol_dup(pol);
2383 if (IS_ERR(newpol)) {
2384 kmem_cache_free(sn_cache, n);
2385 return NULL;
2386 }
2387 newpol->flags |= MPOL_F_SHARED;
2388 sp_node_init(n, start, end, newpol);
2389
2390 return n;
2391 }
2392
2393 /* Replace a policy range. */
2394 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2395 unsigned long end, struct sp_node *new)
2396 {
2397 struct sp_node *n;
2398 struct sp_node *n_new = NULL;
2399 struct mempolicy *mpol_new = NULL;
2400 int ret = 0;
2401
2402 restart:
2403 spin_lock(&sp->lock);
2404 n = sp_lookup(sp, start, end);
2405 /* Take care of old policies in the same range. */
2406 while (n && n->start < end) {
2407 struct rb_node *next = rb_next(&n->nd);
2408 if (n->start >= start) {
2409 if (n->end <= end)
2410 sp_delete(sp, n);
2411 else
2412 n->start = end;
2413 } else {
2414 /* Old policy spanning whole new range. */
2415 if (n->end > end) {
2416 if (!n_new)
2417 goto alloc_new;
2418
2419 *mpol_new = *n->policy;
2420 atomic_set(&mpol_new->refcnt, 1);
2421 sp_node_init(n_new, end, n->end, mpol_new);
2422 n->end = start;
2423 sp_insert(sp, n_new);
2424 n_new = NULL;
2425 mpol_new = NULL;
2426 break;
2427 } else
2428 n->end = start;
2429 }
2430 if (!next)
2431 break;
2432 n = rb_entry(next, struct sp_node, nd);
2433 }
2434 if (new)
2435 sp_insert(sp, new);
2436 spin_unlock(&sp->lock);
2437 ret = 0;
2438
2439 err_out:
2440 if (mpol_new)
2441 mpol_put(mpol_new);
2442 if (n_new)
2443 kmem_cache_free(sn_cache, n_new);
2444
2445 return ret;
2446
2447 alloc_new:
2448 spin_unlock(&sp->lock);
2449 ret = -ENOMEM;
2450 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2451 if (!n_new)
2452 goto err_out;
2453 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2454 if (!mpol_new)
2455 goto err_out;
2456 goto restart;
2457 }
2458
2459 /**
2460 * mpol_shared_policy_init - initialize shared policy for inode
2461 * @sp: pointer to inode shared policy
2462 * @mpol: struct mempolicy to install
2463 *
2464 * Install non-NULL @mpol in inode's shared policy rb-tree.
2465 * On entry, the current task has a reference on a non-NULL @mpol.
2466 * This must be released on exit.
2467 * This is called at get_inode() calls and we can use GFP_KERNEL.
2468 */
2469 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2470 {
2471 int ret;
2472
2473 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2474 spin_lock_init(&sp->lock);
2475
2476 if (mpol) {
2477 struct vm_area_struct pvma;
2478 struct mempolicy *new;
2479 NODEMASK_SCRATCH(scratch);
2480
2481 if (!scratch)
2482 goto put_mpol;
2483 /* contextualize the tmpfs mount point mempolicy */
2484 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2485 if (IS_ERR(new))
2486 goto free_scratch; /* no valid nodemask intersection */
2487
2488 task_lock(current);
2489 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2490 task_unlock(current);
2491 if (ret)
2492 goto put_new;
2493
2494 /* Create pseudo-vma that contains just the policy */
2495 memset(&pvma, 0, sizeof(struct vm_area_struct));
2496 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2497 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2498
2499 put_new:
2500 mpol_put(new); /* drop initial ref */
2501 free_scratch:
2502 NODEMASK_SCRATCH_FREE(scratch);
2503 put_mpol:
2504 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2505 }
2506 }
2507
2508 int mpol_set_shared_policy(struct shared_policy *info,
2509 struct vm_area_struct *vma, struct mempolicy *npol)
2510 {
2511 int err;
2512 struct sp_node *new = NULL;
2513 unsigned long sz = vma_pages(vma);
2514
2515 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2516 vma->vm_pgoff,
2517 sz, npol ? npol->mode : -1,
2518 npol ? npol->flags : -1,
2519 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2520
2521 if (npol) {
2522 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2523 if (!new)
2524 return -ENOMEM;
2525 }
2526 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2527 if (err && new)
2528 sp_free(new);
2529 return err;
2530 }
2531
2532 /* Free a backing policy store on inode delete. */
2533 void mpol_free_shared_policy(struct shared_policy *p)
2534 {
2535 struct sp_node *n;
2536 struct rb_node *next;
2537
2538 if (!p->root.rb_node)
2539 return;
2540 spin_lock(&p->lock);
2541 next = rb_first(&p->root);
2542 while (next) {
2543 n = rb_entry(next, struct sp_node, nd);
2544 next = rb_next(&n->nd);
2545 sp_delete(p, n);
2546 }
2547 spin_unlock(&p->lock);
2548 }
2549
2550 #ifdef CONFIG_NUMA_BALANCING
2551 static int __initdata numabalancing_override;
2552
2553 static void __init check_numabalancing_enable(void)
2554 {
2555 bool numabalancing_default = false;
2556
2557 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2558 numabalancing_default = true;
2559
2560 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2561 if (numabalancing_override)
2562 set_numabalancing_state(numabalancing_override == 1);
2563
2564 if (nr_node_ids > 1 && !numabalancing_override) {
2565 pr_info("%s automatic NUMA balancing. "
2566 "Configure with numa_balancing= or the "
2567 "kernel.numa_balancing sysctl",
2568 numabalancing_default ? "Enabling" : "Disabling");
2569 set_numabalancing_state(numabalancing_default);
2570 }
2571 }
2572
2573 static int __init setup_numabalancing(char *str)
2574 {
2575 int ret = 0;
2576 if (!str)
2577 goto out;
2578
2579 if (!strcmp(str, "enable")) {
2580 numabalancing_override = 1;
2581 ret = 1;
2582 } else if (!strcmp(str, "disable")) {
2583 numabalancing_override = -1;
2584 ret = 1;
2585 }
2586 out:
2587 if (!ret)
2588 pr_warn("Unable to parse numa_balancing=\n");
2589
2590 return ret;
2591 }
2592 __setup("numa_balancing=", setup_numabalancing);
2593 #else
2594 static inline void __init check_numabalancing_enable(void)
2595 {
2596 }
2597 #endif /* CONFIG_NUMA_BALANCING */
2598
2599 /* assumes fs == KERNEL_DS */
2600 void __init numa_policy_init(void)
2601 {
2602 nodemask_t interleave_nodes;
2603 unsigned long largest = 0;
2604 int nid, prefer = 0;
2605
2606 policy_cache = kmem_cache_create("numa_policy",
2607 sizeof(struct mempolicy),
2608 0, SLAB_PANIC, NULL);
2609
2610 sn_cache = kmem_cache_create("shared_policy_node",
2611 sizeof(struct sp_node),
2612 0, SLAB_PANIC, NULL);
2613
2614 for_each_node(nid) {
2615 preferred_node_policy[nid] = (struct mempolicy) {
2616 .refcnt = ATOMIC_INIT(1),
2617 .mode = MPOL_PREFERRED,
2618 .flags = MPOL_F_MOF | MPOL_F_MORON,
2619 .v = { .preferred_node = nid, },
2620 };
2621 }
2622
2623 /*
2624 * Set interleaving policy for system init. Interleaving is only
2625 * enabled across suitably sized nodes (default is >= 16MB), or
2626 * fall back to the largest node if they're all smaller.
2627 */
2628 nodes_clear(interleave_nodes);
2629 for_each_node_state(nid, N_MEMORY) {
2630 unsigned long total_pages = node_present_pages(nid);
2631
2632 /* Preserve the largest node */
2633 if (largest < total_pages) {
2634 largest = total_pages;
2635 prefer = nid;
2636 }
2637
2638 /* Interleave this node? */
2639 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2640 node_set(nid, interleave_nodes);
2641 }
2642
2643 /* All too small, use the largest */
2644 if (unlikely(nodes_empty(interleave_nodes)))
2645 node_set(prefer, interleave_nodes);
2646
2647 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2648 printk("numa_policy_init: interleaving failed\n");
2649
2650 check_numabalancing_enable();
2651 }
2652
2653 /* Reset policy of current process to default */
2654 void numa_default_policy(void)
2655 {
2656 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2657 }
2658
2659 /*
2660 * Parse and format mempolicy from/to strings
2661 */
2662
2663 /*
2664 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2665 */
2666 static const char * const policy_modes[] =
2667 {
2668 [MPOL_DEFAULT] = "default",
2669 [MPOL_PREFERRED] = "prefer",
2670 [MPOL_BIND] = "bind",
2671 [MPOL_INTERLEAVE] = "interleave",
2672 [MPOL_LOCAL] = "local",
2673 };
2674
2675
2676 #ifdef CONFIG_TMPFS
2677 /**
2678 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2679 * @str: string containing mempolicy to parse
2680 * @mpol: pointer to struct mempolicy pointer, returned on success.
2681 *
2682 * Format of input:
2683 * <mode>[=<flags>][:<nodelist>]
2684 *
2685 * On success, returns 0, else 1
2686 */
2687 int mpol_parse_str(char *str, struct mempolicy **mpol)
2688 {
2689 struct mempolicy *new = NULL;
2690 unsigned short mode;
2691 unsigned short mode_flags;
2692 nodemask_t nodes;
2693 char *nodelist = strchr(str, ':');
2694 char *flags = strchr(str, '=');
2695 int err = 1;
2696
2697 if (nodelist) {
2698 /* NUL-terminate mode or flags string */
2699 *nodelist++ = '\0';
2700 if (nodelist_parse(nodelist, nodes))
2701 goto out;
2702 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2703 goto out;
2704 } else
2705 nodes_clear(nodes);
2706
2707 if (flags)
2708 *flags++ = '\0'; /* terminate mode string */
2709
2710 for (mode = 0; mode < MPOL_MAX; mode++) {
2711 if (!strcmp(str, policy_modes[mode])) {
2712 break;
2713 }
2714 }
2715 if (mode >= MPOL_MAX)
2716 goto out;
2717
2718 switch (mode) {
2719 case MPOL_PREFERRED:
2720 /*
2721 * Insist on a nodelist of one node only
2722 */
2723 if (nodelist) {
2724 char *rest = nodelist;
2725 while (isdigit(*rest))
2726 rest++;
2727 if (*rest)
2728 goto out;
2729 }
2730 break;
2731 case MPOL_INTERLEAVE:
2732 /*
2733 * Default to online nodes with memory if no nodelist
2734 */
2735 if (!nodelist)
2736 nodes = node_states[N_MEMORY];
2737 break;
2738 case MPOL_LOCAL:
2739 /*
2740 * Don't allow a nodelist; mpol_new() checks flags
2741 */
2742 if (nodelist)
2743 goto out;
2744 mode = MPOL_PREFERRED;
2745 break;
2746 case MPOL_DEFAULT:
2747 /*
2748 * Insist on a empty nodelist
2749 */
2750 if (!nodelist)
2751 err = 0;
2752 goto out;
2753 case MPOL_BIND:
2754 /*
2755 * Insist on a nodelist
2756 */
2757 if (!nodelist)
2758 goto out;
2759 }
2760
2761 mode_flags = 0;
2762 if (flags) {
2763 /*
2764 * Currently, we only support two mutually exclusive
2765 * mode flags.
2766 */
2767 if (!strcmp(flags, "static"))
2768 mode_flags |= MPOL_F_STATIC_NODES;
2769 else if (!strcmp(flags, "relative"))
2770 mode_flags |= MPOL_F_RELATIVE_NODES;
2771 else
2772 goto out;
2773 }
2774
2775 new = mpol_new(mode, mode_flags, &nodes);
2776 if (IS_ERR(new))
2777 goto out;
2778
2779 /*
2780 * Save nodes for mpol_to_str() to show the tmpfs mount options
2781 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2782 */
2783 if (mode != MPOL_PREFERRED)
2784 new->v.nodes = nodes;
2785 else if (nodelist)
2786 new->v.preferred_node = first_node(nodes);
2787 else
2788 new->flags |= MPOL_F_LOCAL;
2789
2790 /*
2791 * Save nodes for contextualization: this will be used to "clone"
2792 * the mempolicy in a specific context [cpuset] at a later time.
2793 */
2794 new->w.user_nodemask = nodes;
2795
2796 err = 0;
2797
2798 out:
2799 /* Restore string for error message */
2800 if (nodelist)
2801 *--nodelist = ':';
2802 if (flags)
2803 *--flags = '=';
2804 if (!err)
2805 *mpol = new;
2806 return err;
2807 }
2808 #endif /* CONFIG_TMPFS */
2809
2810 /**
2811 * mpol_to_str - format a mempolicy structure for printing
2812 * @buffer: to contain formatted mempolicy string
2813 * @maxlen: length of @buffer
2814 * @pol: pointer to mempolicy to be formatted
2815 *
2816 * Convert @pol into a string. If @buffer is too short, truncate the string.
2817 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2818 * longest flag, "relative", and to display at least a few node ids.
2819 */
2820 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2821 {
2822 char *p = buffer;
2823 nodemask_t nodes = NODE_MASK_NONE;
2824 unsigned short mode = MPOL_DEFAULT;
2825 unsigned short flags = 0;
2826
2827 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2828 mode = pol->mode;
2829 flags = pol->flags;
2830 }
2831
2832 switch (mode) {
2833 case MPOL_DEFAULT:
2834 break;
2835 case MPOL_PREFERRED:
2836 if (flags & MPOL_F_LOCAL)
2837 mode = MPOL_LOCAL;
2838 else
2839 node_set(pol->v.preferred_node, nodes);
2840 break;
2841 case MPOL_BIND:
2842 case MPOL_INTERLEAVE:
2843 nodes = pol->v.nodes;
2844 break;
2845 default:
2846 WARN_ON_ONCE(1);
2847 snprintf(p, maxlen, "unknown");
2848 return;
2849 }
2850
2851 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2852
2853 if (flags & MPOL_MODE_FLAGS) {
2854 p += snprintf(p, buffer + maxlen - p, "=");
2855
2856 /*
2857 * Currently, the only defined flags are mutually exclusive
2858 */
2859 if (flags & MPOL_F_STATIC_NODES)
2860 p += snprintf(p, buffer + maxlen - p, "static");
2861 else if (flags & MPOL_F_RELATIVE_NODES)
2862 p += snprintf(p, buffer + maxlen - p, "relative");
2863 }
2864
2865 if (!nodes_empty(nodes)) {
2866 p += snprintf(p, buffer + maxlen - p, ":");
2867 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2868 }
2869 }
This page took 0.094814 seconds and 5 git commands to generate.