shmem: fix splicing from a hole while it's punched
[deliverable/linux.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/export.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/ksm.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 #include <linux/syscalls.h>
93 #include <linux/ctype.h>
94 #include <linux/mm_inline.h>
95 #include <linux/mmu_notifier.h>
96 #include <linux/printk.h>
97
98 #include <asm/tlbflush.h>
99 #include <asm/uaccess.h>
100 #include <linux/random.h>
101
102 #include "internal.h"
103
104 /* Internal flags */
105 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
106 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
107
108 static struct kmem_cache *policy_cache;
109 static struct kmem_cache *sn_cache;
110
111 /* Highest zone. An specific allocation for a zone below that is not
112 policied. */
113 enum zone_type policy_zone = 0;
114
115 /*
116 * run-time system-wide default policy => local allocation
117 */
118 static struct mempolicy default_policy = {
119 .refcnt = ATOMIC_INIT(1), /* never free it */
120 .mode = MPOL_PREFERRED,
121 .flags = MPOL_F_LOCAL,
122 };
123
124 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
125
126 static struct mempolicy *get_task_policy(struct task_struct *p)
127 {
128 struct mempolicy *pol = p->mempolicy;
129
130 if (!pol) {
131 int node = numa_node_id();
132
133 if (node != NUMA_NO_NODE) {
134 pol = &preferred_node_policy[node];
135 /*
136 * preferred_node_policy is not initialised early in
137 * boot
138 */
139 if (!pol->mode)
140 pol = NULL;
141 }
142 }
143
144 return pol;
145 }
146
147 static const struct mempolicy_operations {
148 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
149 /*
150 * If read-side task has no lock to protect task->mempolicy, write-side
151 * task will rebind the task->mempolicy by two step. The first step is
152 * setting all the newly nodes, and the second step is cleaning all the
153 * disallowed nodes. In this way, we can avoid finding no node to alloc
154 * page.
155 * If we have a lock to protect task->mempolicy in read-side, we do
156 * rebind directly.
157 *
158 * step:
159 * MPOL_REBIND_ONCE - do rebind work at once
160 * MPOL_REBIND_STEP1 - set all the newly nodes
161 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
162 */
163 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
164 enum mpol_rebind_step step);
165 } mpol_ops[MPOL_MAX];
166
167 /* Check that the nodemask contains at least one populated zone */
168 static int is_valid_nodemask(const nodemask_t *nodemask)
169 {
170 return nodes_intersects(*nodemask, node_states[N_MEMORY]);
171 }
172
173 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
174 {
175 return pol->flags & MPOL_MODE_FLAGS;
176 }
177
178 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
179 const nodemask_t *rel)
180 {
181 nodemask_t tmp;
182 nodes_fold(tmp, *orig, nodes_weight(*rel));
183 nodes_onto(*ret, tmp, *rel);
184 }
185
186 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
187 {
188 if (nodes_empty(*nodes))
189 return -EINVAL;
190 pol->v.nodes = *nodes;
191 return 0;
192 }
193
194 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
195 {
196 if (!nodes)
197 pol->flags |= MPOL_F_LOCAL; /* local allocation */
198 else if (nodes_empty(*nodes))
199 return -EINVAL; /* no allowed nodes */
200 else
201 pol->v.preferred_node = first_node(*nodes);
202 return 0;
203 }
204
205 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
206 {
207 if (!is_valid_nodemask(nodes))
208 return -EINVAL;
209 pol->v.nodes = *nodes;
210 return 0;
211 }
212
213 /*
214 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
215 * any, for the new policy. mpol_new() has already validated the nodes
216 * parameter with respect to the policy mode and flags. But, we need to
217 * handle an empty nodemask with MPOL_PREFERRED here.
218 *
219 * Must be called holding task's alloc_lock to protect task's mems_allowed
220 * and mempolicy. May also be called holding the mmap_semaphore for write.
221 */
222 static int mpol_set_nodemask(struct mempolicy *pol,
223 const nodemask_t *nodes, struct nodemask_scratch *nsc)
224 {
225 int ret;
226
227 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
228 if (pol == NULL)
229 return 0;
230 /* Check N_MEMORY */
231 nodes_and(nsc->mask1,
232 cpuset_current_mems_allowed, node_states[N_MEMORY]);
233
234 VM_BUG_ON(!nodes);
235 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
236 nodes = NULL; /* explicit local allocation */
237 else {
238 if (pol->flags & MPOL_F_RELATIVE_NODES)
239 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
240 else
241 nodes_and(nsc->mask2, *nodes, nsc->mask1);
242
243 if (mpol_store_user_nodemask(pol))
244 pol->w.user_nodemask = *nodes;
245 else
246 pol->w.cpuset_mems_allowed =
247 cpuset_current_mems_allowed;
248 }
249
250 if (nodes)
251 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
252 else
253 ret = mpol_ops[pol->mode].create(pol, NULL);
254 return ret;
255 }
256
257 /*
258 * This function just creates a new policy, does some check and simple
259 * initialization. You must invoke mpol_set_nodemask() to set nodes.
260 */
261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
262 nodemask_t *nodes)
263 {
264 struct mempolicy *policy;
265
266 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
267 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
268
269 if (mode == MPOL_DEFAULT) {
270 if (nodes && !nodes_empty(*nodes))
271 return ERR_PTR(-EINVAL);
272 return NULL;
273 }
274 VM_BUG_ON(!nodes);
275
276 /*
277 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
278 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
279 * All other modes require a valid pointer to a non-empty nodemask.
280 */
281 if (mode == MPOL_PREFERRED) {
282 if (nodes_empty(*nodes)) {
283 if (((flags & MPOL_F_STATIC_NODES) ||
284 (flags & MPOL_F_RELATIVE_NODES)))
285 return ERR_PTR(-EINVAL);
286 }
287 } else if (mode == MPOL_LOCAL) {
288 if (!nodes_empty(*nodes))
289 return ERR_PTR(-EINVAL);
290 mode = MPOL_PREFERRED;
291 } else if (nodes_empty(*nodes))
292 return ERR_PTR(-EINVAL);
293 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
294 if (!policy)
295 return ERR_PTR(-ENOMEM);
296 atomic_set(&policy->refcnt, 1);
297 policy->mode = mode;
298 policy->flags = flags;
299
300 return policy;
301 }
302
303 /* Slow path of a mpol destructor. */
304 void __mpol_put(struct mempolicy *p)
305 {
306 if (!atomic_dec_and_test(&p->refcnt))
307 return;
308 kmem_cache_free(policy_cache, p);
309 }
310
311 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
312 enum mpol_rebind_step step)
313 {
314 }
315
316 /*
317 * step:
318 * MPOL_REBIND_ONCE - do rebind work at once
319 * MPOL_REBIND_STEP1 - set all the newly nodes
320 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
321 */
322 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
323 enum mpol_rebind_step step)
324 {
325 nodemask_t tmp;
326
327 if (pol->flags & MPOL_F_STATIC_NODES)
328 nodes_and(tmp, pol->w.user_nodemask, *nodes);
329 else if (pol->flags & MPOL_F_RELATIVE_NODES)
330 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
331 else {
332 /*
333 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
334 * result
335 */
336 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
337 nodes_remap(tmp, pol->v.nodes,
338 pol->w.cpuset_mems_allowed, *nodes);
339 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
340 } else if (step == MPOL_REBIND_STEP2) {
341 tmp = pol->w.cpuset_mems_allowed;
342 pol->w.cpuset_mems_allowed = *nodes;
343 } else
344 BUG();
345 }
346
347 if (nodes_empty(tmp))
348 tmp = *nodes;
349
350 if (step == MPOL_REBIND_STEP1)
351 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
352 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
353 pol->v.nodes = tmp;
354 else
355 BUG();
356
357 if (!node_isset(current->il_next, tmp)) {
358 current->il_next = next_node(current->il_next, tmp);
359 if (current->il_next >= MAX_NUMNODES)
360 current->il_next = first_node(tmp);
361 if (current->il_next >= MAX_NUMNODES)
362 current->il_next = numa_node_id();
363 }
364 }
365
366 static void mpol_rebind_preferred(struct mempolicy *pol,
367 const nodemask_t *nodes,
368 enum mpol_rebind_step step)
369 {
370 nodemask_t tmp;
371
372 if (pol->flags & MPOL_F_STATIC_NODES) {
373 int node = first_node(pol->w.user_nodemask);
374
375 if (node_isset(node, *nodes)) {
376 pol->v.preferred_node = node;
377 pol->flags &= ~MPOL_F_LOCAL;
378 } else
379 pol->flags |= MPOL_F_LOCAL;
380 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
381 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
382 pol->v.preferred_node = first_node(tmp);
383 } else if (!(pol->flags & MPOL_F_LOCAL)) {
384 pol->v.preferred_node = node_remap(pol->v.preferred_node,
385 pol->w.cpuset_mems_allowed,
386 *nodes);
387 pol->w.cpuset_mems_allowed = *nodes;
388 }
389 }
390
391 /*
392 * mpol_rebind_policy - Migrate a policy to a different set of nodes
393 *
394 * If read-side task has no lock to protect task->mempolicy, write-side
395 * task will rebind the task->mempolicy by two step. The first step is
396 * setting all the newly nodes, and the second step is cleaning all the
397 * disallowed nodes. In this way, we can avoid finding no node to alloc
398 * page.
399 * If we have a lock to protect task->mempolicy in read-side, we do
400 * rebind directly.
401 *
402 * step:
403 * MPOL_REBIND_ONCE - do rebind work at once
404 * MPOL_REBIND_STEP1 - set all the newly nodes
405 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
406 */
407 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
408 enum mpol_rebind_step step)
409 {
410 if (!pol)
411 return;
412 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
413 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
414 return;
415
416 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
417 return;
418
419 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
420 BUG();
421
422 if (step == MPOL_REBIND_STEP1)
423 pol->flags |= MPOL_F_REBINDING;
424 else if (step == MPOL_REBIND_STEP2)
425 pol->flags &= ~MPOL_F_REBINDING;
426 else if (step >= MPOL_REBIND_NSTEP)
427 BUG();
428
429 mpol_ops[pol->mode].rebind(pol, newmask, step);
430 }
431
432 /*
433 * Wrapper for mpol_rebind_policy() that just requires task
434 * pointer, and updates task mempolicy.
435 *
436 * Called with task's alloc_lock held.
437 */
438
439 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
440 enum mpol_rebind_step step)
441 {
442 mpol_rebind_policy(tsk->mempolicy, new, step);
443 }
444
445 /*
446 * Rebind each vma in mm to new nodemask.
447 *
448 * Call holding a reference to mm. Takes mm->mmap_sem during call.
449 */
450
451 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
452 {
453 struct vm_area_struct *vma;
454
455 down_write(&mm->mmap_sem);
456 for (vma = mm->mmap; vma; vma = vma->vm_next)
457 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
458 up_write(&mm->mmap_sem);
459 }
460
461 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
462 [MPOL_DEFAULT] = {
463 .rebind = mpol_rebind_default,
464 },
465 [MPOL_INTERLEAVE] = {
466 .create = mpol_new_interleave,
467 .rebind = mpol_rebind_nodemask,
468 },
469 [MPOL_PREFERRED] = {
470 .create = mpol_new_preferred,
471 .rebind = mpol_rebind_preferred,
472 },
473 [MPOL_BIND] = {
474 .create = mpol_new_bind,
475 .rebind = mpol_rebind_nodemask,
476 },
477 };
478
479 static void migrate_page_add(struct page *page, struct list_head *pagelist,
480 unsigned long flags);
481
482 /*
483 * Scan through pages checking if pages follow certain conditions,
484 * and move them to the pagelist if they do.
485 */
486 static int queue_pages_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
487 unsigned long addr, unsigned long end,
488 const nodemask_t *nodes, unsigned long flags,
489 void *private)
490 {
491 pte_t *orig_pte;
492 pte_t *pte;
493 spinlock_t *ptl;
494
495 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
496 do {
497 struct page *page;
498 int nid;
499
500 if (!pte_present(*pte))
501 continue;
502 page = vm_normal_page(vma, addr, *pte);
503 if (!page)
504 continue;
505 /*
506 * vm_normal_page() filters out zero pages, but there might
507 * still be PageReserved pages to skip, perhaps in a VDSO.
508 */
509 if (PageReserved(page))
510 continue;
511 nid = page_to_nid(page);
512 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
513 continue;
514
515 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
516 migrate_page_add(page, private, flags);
517 else
518 break;
519 } while (pte++, addr += PAGE_SIZE, addr != end);
520 pte_unmap_unlock(orig_pte, ptl);
521 return addr != end;
522 }
523
524 static void queue_pages_hugetlb_pmd_range(struct vm_area_struct *vma,
525 pmd_t *pmd, const nodemask_t *nodes, unsigned long flags,
526 void *private)
527 {
528 #ifdef CONFIG_HUGETLB_PAGE
529 int nid;
530 struct page *page;
531 spinlock_t *ptl;
532 pte_t entry;
533
534 ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, (pte_t *)pmd);
535 entry = huge_ptep_get((pte_t *)pmd);
536 if (!pte_present(entry))
537 goto unlock;
538 page = pte_page(entry);
539 nid = page_to_nid(page);
540 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
541 goto unlock;
542 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
543 if (flags & (MPOL_MF_MOVE_ALL) ||
544 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
545 isolate_huge_page(page, private);
546 unlock:
547 spin_unlock(ptl);
548 #else
549 BUG();
550 #endif
551 }
552
553 static inline int queue_pages_pmd_range(struct vm_area_struct *vma, pud_t *pud,
554 unsigned long addr, unsigned long end,
555 const nodemask_t *nodes, unsigned long flags,
556 void *private)
557 {
558 pmd_t *pmd;
559 unsigned long next;
560
561 pmd = pmd_offset(pud, addr);
562 do {
563 next = pmd_addr_end(addr, end);
564 if (!pmd_present(*pmd))
565 continue;
566 if (pmd_huge(*pmd) && is_vm_hugetlb_page(vma)) {
567 queue_pages_hugetlb_pmd_range(vma, pmd, nodes,
568 flags, private);
569 continue;
570 }
571 split_huge_page_pmd(vma, addr, pmd);
572 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
573 continue;
574 if (queue_pages_pte_range(vma, pmd, addr, next, nodes,
575 flags, private))
576 return -EIO;
577 } while (pmd++, addr = next, addr != end);
578 return 0;
579 }
580
581 static inline int queue_pages_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
582 unsigned long addr, unsigned long end,
583 const nodemask_t *nodes, unsigned long flags,
584 void *private)
585 {
586 pud_t *pud;
587 unsigned long next;
588
589 pud = pud_offset(pgd, addr);
590 do {
591 next = pud_addr_end(addr, end);
592 if (pud_huge(*pud) && is_vm_hugetlb_page(vma))
593 continue;
594 if (pud_none_or_clear_bad(pud))
595 continue;
596 if (queue_pages_pmd_range(vma, pud, addr, next, nodes,
597 flags, private))
598 return -EIO;
599 } while (pud++, addr = next, addr != end);
600 return 0;
601 }
602
603 static inline int queue_pages_pgd_range(struct vm_area_struct *vma,
604 unsigned long addr, unsigned long end,
605 const nodemask_t *nodes, unsigned long flags,
606 void *private)
607 {
608 pgd_t *pgd;
609 unsigned long next;
610
611 pgd = pgd_offset(vma->vm_mm, addr);
612 do {
613 next = pgd_addr_end(addr, end);
614 if (pgd_none_or_clear_bad(pgd))
615 continue;
616 if (queue_pages_pud_range(vma, pgd, addr, next, nodes,
617 flags, private))
618 return -EIO;
619 } while (pgd++, addr = next, addr != end);
620 return 0;
621 }
622
623 #ifdef CONFIG_NUMA_BALANCING
624 /*
625 * This is used to mark a range of virtual addresses to be inaccessible.
626 * These are later cleared by a NUMA hinting fault. Depending on these
627 * faults, pages may be migrated for better NUMA placement.
628 *
629 * This is assuming that NUMA faults are handled using PROT_NONE. If
630 * an architecture makes a different choice, it will need further
631 * changes to the core.
632 */
633 unsigned long change_prot_numa(struct vm_area_struct *vma,
634 unsigned long addr, unsigned long end)
635 {
636 int nr_updated;
637
638 nr_updated = change_protection(vma, addr, end, vma->vm_page_prot, 0, 1);
639 if (nr_updated)
640 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
641
642 return nr_updated;
643 }
644 #else
645 static unsigned long change_prot_numa(struct vm_area_struct *vma,
646 unsigned long addr, unsigned long end)
647 {
648 return 0;
649 }
650 #endif /* CONFIG_NUMA_BALANCING */
651
652 /*
653 * Walk through page tables and collect pages to be migrated.
654 *
655 * If pages found in a given range are on a set of nodes (determined by
656 * @nodes and @flags,) it's isolated and queued to the pagelist which is
657 * passed via @private.)
658 */
659 static int
660 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
661 const nodemask_t *nodes, unsigned long flags, void *private)
662 {
663 int err = 0;
664 struct vm_area_struct *vma, *prev;
665
666 vma = find_vma(mm, start);
667 if (!vma)
668 return -EFAULT;
669 prev = NULL;
670 for (; vma && vma->vm_start < end; vma = vma->vm_next) {
671 unsigned long endvma = vma->vm_end;
672
673 if (endvma > end)
674 endvma = end;
675 if (vma->vm_start > start)
676 start = vma->vm_start;
677
678 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
679 if (!vma->vm_next && vma->vm_end < end)
680 return -EFAULT;
681 if (prev && prev->vm_end < vma->vm_start)
682 return -EFAULT;
683 }
684
685 if (flags & MPOL_MF_LAZY) {
686 change_prot_numa(vma, start, endvma);
687 goto next;
688 }
689
690 if ((flags & MPOL_MF_STRICT) ||
691 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
692 vma_migratable(vma))) {
693
694 err = queue_pages_pgd_range(vma, start, endvma, nodes,
695 flags, private);
696 if (err)
697 break;
698 }
699 next:
700 prev = vma;
701 }
702 return err;
703 }
704
705 /*
706 * Apply policy to a single VMA
707 * This must be called with the mmap_sem held for writing.
708 */
709 static int vma_replace_policy(struct vm_area_struct *vma,
710 struct mempolicy *pol)
711 {
712 int err;
713 struct mempolicy *old;
714 struct mempolicy *new;
715
716 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
717 vma->vm_start, vma->vm_end, vma->vm_pgoff,
718 vma->vm_ops, vma->vm_file,
719 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
720
721 new = mpol_dup(pol);
722 if (IS_ERR(new))
723 return PTR_ERR(new);
724
725 if (vma->vm_ops && vma->vm_ops->set_policy) {
726 err = vma->vm_ops->set_policy(vma, new);
727 if (err)
728 goto err_out;
729 }
730
731 old = vma->vm_policy;
732 vma->vm_policy = new; /* protected by mmap_sem */
733 mpol_put(old);
734
735 return 0;
736 err_out:
737 mpol_put(new);
738 return err;
739 }
740
741 /* Step 2: apply policy to a range and do splits. */
742 static int mbind_range(struct mm_struct *mm, unsigned long start,
743 unsigned long end, struct mempolicy *new_pol)
744 {
745 struct vm_area_struct *next;
746 struct vm_area_struct *prev;
747 struct vm_area_struct *vma;
748 int err = 0;
749 pgoff_t pgoff;
750 unsigned long vmstart;
751 unsigned long vmend;
752
753 vma = find_vma(mm, start);
754 if (!vma || vma->vm_start > start)
755 return -EFAULT;
756
757 prev = vma->vm_prev;
758 if (start > vma->vm_start)
759 prev = vma;
760
761 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
762 next = vma->vm_next;
763 vmstart = max(start, vma->vm_start);
764 vmend = min(end, vma->vm_end);
765
766 if (mpol_equal(vma_policy(vma), new_pol))
767 continue;
768
769 pgoff = vma->vm_pgoff +
770 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
771 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
772 vma->anon_vma, vma->vm_file, pgoff,
773 new_pol);
774 if (prev) {
775 vma = prev;
776 next = vma->vm_next;
777 if (mpol_equal(vma_policy(vma), new_pol))
778 continue;
779 /* vma_merge() joined vma && vma->next, case 8 */
780 goto replace;
781 }
782 if (vma->vm_start != vmstart) {
783 err = split_vma(vma->vm_mm, vma, vmstart, 1);
784 if (err)
785 goto out;
786 }
787 if (vma->vm_end != vmend) {
788 err = split_vma(vma->vm_mm, vma, vmend, 0);
789 if (err)
790 goto out;
791 }
792 replace:
793 err = vma_replace_policy(vma, new_pol);
794 if (err)
795 goto out;
796 }
797
798 out:
799 return err;
800 }
801
802 /* Set the process memory policy */
803 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
804 nodemask_t *nodes)
805 {
806 struct mempolicy *new, *old;
807 struct mm_struct *mm = current->mm;
808 NODEMASK_SCRATCH(scratch);
809 int ret;
810
811 if (!scratch)
812 return -ENOMEM;
813
814 new = mpol_new(mode, flags, nodes);
815 if (IS_ERR(new)) {
816 ret = PTR_ERR(new);
817 goto out;
818 }
819 /*
820 * prevent changing our mempolicy while show_numa_maps()
821 * is using it.
822 * Note: do_set_mempolicy() can be called at init time
823 * with no 'mm'.
824 */
825 if (mm)
826 down_write(&mm->mmap_sem);
827 task_lock(current);
828 ret = mpol_set_nodemask(new, nodes, scratch);
829 if (ret) {
830 task_unlock(current);
831 if (mm)
832 up_write(&mm->mmap_sem);
833 mpol_put(new);
834 goto out;
835 }
836 old = current->mempolicy;
837 current->mempolicy = new;
838 if (new && new->mode == MPOL_INTERLEAVE &&
839 nodes_weight(new->v.nodes))
840 current->il_next = first_node(new->v.nodes);
841 task_unlock(current);
842 if (mm)
843 up_write(&mm->mmap_sem);
844
845 mpol_put(old);
846 ret = 0;
847 out:
848 NODEMASK_SCRATCH_FREE(scratch);
849 return ret;
850 }
851
852 /*
853 * Return nodemask for policy for get_mempolicy() query
854 *
855 * Called with task's alloc_lock held
856 */
857 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
858 {
859 nodes_clear(*nodes);
860 if (p == &default_policy)
861 return;
862
863 switch (p->mode) {
864 case MPOL_BIND:
865 /* Fall through */
866 case MPOL_INTERLEAVE:
867 *nodes = p->v.nodes;
868 break;
869 case MPOL_PREFERRED:
870 if (!(p->flags & MPOL_F_LOCAL))
871 node_set(p->v.preferred_node, *nodes);
872 /* else return empty node mask for local allocation */
873 break;
874 default:
875 BUG();
876 }
877 }
878
879 static int lookup_node(struct mm_struct *mm, unsigned long addr)
880 {
881 struct page *p;
882 int err;
883
884 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
885 if (err >= 0) {
886 err = page_to_nid(p);
887 put_page(p);
888 }
889 return err;
890 }
891
892 /* Retrieve NUMA policy */
893 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
894 unsigned long addr, unsigned long flags)
895 {
896 int err;
897 struct mm_struct *mm = current->mm;
898 struct vm_area_struct *vma = NULL;
899 struct mempolicy *pol = current->mempolicy;
900
901 if (flags &
902 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
903 return -EINVAL;
904
905 if (flags & MPOL_F_MEMS_ALLOWED) {
906 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
907 return -EINVAL;
908 *policy = 0; /* just so it's initialized */
909 task_lock(current);
910 *nmask = cpuset_current_mems_allowed;
911 task_unlock(current);
912 return 0;
913 }
914
915 if (flags & MPOL_F_ADDR) {
916 /*
917 * Do NOT fall back to task policy if the
918 * vma/shared policy at addr is NULL. We
919 * want to return MPOL_DEFAULT in this case.
920 */
921 down_read(&mm->mmap_sem);
922 vma = find_vma_intersection(mm, addr, addr+1);
923 if (!vma) {
924 up_read(&mm->mmap_sem);
925 return -EFAULT;
926 }
927 if (vma->vm_ops && vma->vm_ops->get_policy)
928 pol = vma->vm_ops->get_policy(vma, addr);
929 else
930 pol = vma->vm_policy;
931 } else if (addr)
932 return -EINVAL;
933
934 if (!pol)
935 pol = &default_policy; /* indicates default behavior */
936
937 if (flags & MPOL_F_NODE) {
938 if (flags & MPOL_F_ADDR) {
939 err = lookup_node(mm, addr);
940 if (err < 0)
941 goto out;
942 *policy = err;
943 } else if (pol == current->mempolicy &&
944 pol->mode == MPOL_INTERLEAVE) {
945 *policy = current->il_next;
946 } else {
947 err = -EINVAL;
948 goto out;
949 }
950 } else {
951 *policy = pol == &default_policy ? MPOL_DEFAULT :
952 pol->mode;
953 /*
954 * Internal mempolicy flags must be masked off before exposing
955 * the policy to userspace.
956 */
957 *policy |= (pol->flags & MPOL_MODE_FLAGS);
958 }
959
960 if (vma) {
961 up_read(&current->mm->mmap_sem);
962 vma = NULL;
963 }
964
965 err = 0;
966 if (nmask) {
967 if (mpol_store_user_nodemask(pol)) {
968 *nmask = pol->w.user_nodemask;
969 } else {
970 task_lock(current);
971 get_policy_nodemask(pol, nmask);
972 task_unlock(current);
973 }
974 }
975
976 out:
977 mpol_cond_put(pol);
978 if (vma)
979 up_read(&current->mm->mmap_sem);
980 return err;
981 }
982
983 #ifdef CONFIG_MIGRATION
984 /*
985 * page migration
986 */
987 static void migrate_page_add(struct page *page, struct list_head *pagelist,
988 unsigned long flags)
989 {
990 /*
991 * Avoid migrating a page that is shared with others.
992 */
993 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
994 if (!isolate_lru_page(page)) {
995 list_add_tail(&page->lru, pagelist);
996 inc_zone_page_state(page, NR_ISOLATED_ANON +
997 page_is_file_cache(page));
998 }
999 }
1000 }
1001
1002 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
1003 {
1004 if (PageHuge(page))
1005 return alloc_huge_page_node(page_hstate(compound_head(page)),
1006 node);
1007 else
1008 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
1009 }
1010
1011 /*
1012 * Migrate pages from one node to a target node.
1013 * Returns error or the number of pages not migrated.
1014 */
1015 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1016 int flags)
1017 {
1018 nodemask_t nmask;
1019 LIST_HEAD(pagelist);
1020 int err = 0;
1021
1022 nodes_clear(nmask);
1023 node_set(source, nmask);
1024
1025 /*
1026 * This does not "check" the range but isolates all pages that
1027 * need migration. Between passing in the full user address
1028 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1029 */
1030 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1031 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1032 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1033
1034 if (!list_empty(&pagelist)) {
1035 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
1036 MIGRATE_SYNC, MR_SYSCALL);
1037 if (err)
1038 putback_movable_pages(&pagelist);
1039 }
1040
1041 return err;
1042 }
1043
1044 /*
1045 * Move pages between the two nodesets so as to preserve the physical
1046 * layout as much as possible.
1047 *
1048 * Returns the number of page that could not be moved.
1049 */
1050 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1051 const nodemask_t *to, int flags)
1052 {
1053 int busy = 0;
1054 int err;
1055 nodemask_t tmp;
1056
1057 err = migrate_prep();
1058 if (err)
1059 return err;
1060
1061 down_read(&mm->mmap_sem);
1062
1063 err = migrate_vmas(mm, from, to, flags);
1064 if (err)
1065 goto out;
1066
1067 /*
1068 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1069 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1070 * bit in 'tmp', and return that <source, dest> pair for migration.
1071 * The pair of nodemasks 'to' and 'from' define the map.
1072 *
1073 * If no pair of bits is found that way, fallback to picking some
1074 * pair of 'source' and 'dest' bits that are not the same. If the
1075 * 'source' and 'dest' bits are the same, this represents a node
1076 * that will be migrating to itself, so no pages need move.
1077 *
1078 * If no bits are left in 'tmp', or if all remaining bits left
1079 * in 'tmp' correspond to the same bit in 'to', return false
1080 * (nothing left to migrate).
1081 *
1082 * This lets us pick a pair of nodes to migrate between, such that
1083 * if possible the dest node is not already occupied by some other
1084 * source node, minimizing the risk of overloading the memory on a
1085 * node that would happen if we migrated incoming memory to a node
1086 * before migrating outgoing memory source that same node.
1087 *
1088 * A single scan of tmp is sufficient. As we go, we remember the
1089 * most recent <s, d> pair that moved (s != d). If we find a pair
1090 * that not only moved, but what's better, moved to an empty slot
1091 * (d is not set in tmp), then we break out then, with that pair.
1092 * Otherwise when we finish scanning from_tmp, we at least have the
1093 * most recent <s, d> pair that moved. If we get all the way through
1094 * the scan of tmp without finding any node that moved, much less
1095 * moved to an empty node, then there is nothing left worth migrating.
1096 */
1097
1098 tmp = *from;
1099 while (!nodes_empty(tmp)) {
1100 int s,d;
1101 int source = NUMA_NO_NODE;
1102 int dest = 0;
1103
1104 for_each_node_mask(s, tmp) {
1105
1106 /*
1107 * do_migrate_pages() tries to maintain the relative
1108 * node relationship of the pages established between
1109 * threads and memory areas.
1110 *
1111 * However if the number of source nodes is not equal to
1112 * the number of destination nodes we can not preserve
1113 * this node relative relationship. In that case, skip
1114 * copying memory from a node that is in the destination
1115 * mask.
1116 *
1117 * Example: [2,3,4] -> [3,4,5] moves everything.
1118 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1119 */
1120
1121 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1122 (node_isset(s, *to)))
1123 continue;
1124
1125 d = node_remap(s, *from, *to);
1126 if (s == d)
1127 continue;
1128
1129 source = s; /* Node moved. Memorize */
1130 dest = d;
1131
1132 /* dest not in remaining from nodes? */
1133 if (!node_isset(dest, tmp))
1134 break;
1135 }
1136 if (source == NUMA_NO_NODE)
1137 break;
1138
1139 node_clear(source, tmp);
1140 err = migrate_to_node(mm, source, dest, flags);
1141 if (err > 0)
1142 busy += err;
1143 if (err < 0)
1144 break;
1145 }
1146 out:
1147 up_read(&mm->mmap_sem);
1148 if (err < 0)
1149 return err;
1150 return busy;
1151
1152 }
1153
1154 /*
1155 * Allocate a new page for page migration based on vma policy.
1156 * Start by assuming the page is mapped by the same vma as contains @start.
1157 * Search forward from there, if not. N.B., this assumes that the
1158 * list of pages handed to migrate_pages()--which is how we get here--
1159 * is in virtual address order.
1160 */
1161 static struct page *new_page(struct page *page, unsigned long start, int **x)
1162 {
1163 struct vm_area_struct *vma;
1164 unsigned long uninitialized_var(address);
1165
1166 vma = find_vma(current->mm, start);
1167 while (vma) {
1168 address = page_address_in_vma(page, vma);
1169 if (address != -EFAULT)
1170 break;
1171 vma = vma->vm_next;
1172 }
1173
1174 if (PageHuge(page)) {
1175 BUG_ON(!vma);
1176 return alloc_huge_page_noerr(vma, address, 1);
1177 }
1178 /*
1179 * if !vma, alloc_page_vma() will use task or system default policy
1180 */
1181 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1182 }
1183 #else
1184
1185 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1186 unsigned long flags)
1187 {
1188 }
1189
1190 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1191 const nodemask_t *to, int flags)
1192 {
1193 return -ENOSYS;
1194 }
1195
1196 static struct page *new_page(struct page *page, unsigned long start, int **x)
1197 {
1198 return NULL;
1199 }
1200 #endif
1201
1202 static long do_mbind(unsigned long start, unsigned long len,
1203 unsigned short mode, unsigned short mode_flags,
1204 nodemask_t *nmask, unsigned long flags)
1205 {
1206 struct mm_struct *mm = current->mm;
1207 struct mempolicy *new;
1208 unsigned long end;
1209 int err;
1210 LIST_HEAD(pagelist);
1211
1212 if (flags & ~(unsigned long)MPOL_MF_VALID)
1213 return -EINVAL;
1214 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1215 return -EPERM;
1216
1217 if (start & ~PAGE_MASK)
1218 return -EINVAL;
1219
1220 if (mode == MPOL_DEFAULT)
1221 flags &= ~MPOL_MF_STRICT;
1222
1223 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1224 end = start + len;
1225
1226 if (end < start)
1227 return -EINVAL;
1228 if (end == start)
1229 return 0;
1230
1231 new = mpol_new(mode, mode_flags, nmask);
1232 if (IS_ERR(new))
1233 return PTR_ERR(new);
1234
1235 if (flags & MPOL_MF_LAZY)
1236 new->flags |= MPOL_F_MOF;
1237
1238 /*
1239 * If we are using the default policy then operation
1240 * on discontinuous address spaces is okay after all
1241 */
1242 if (!new)
1243 flags |= MPOL_MF_DISCONTIG_OK;
1244
1245 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1246 start, start + len, mode, mode_flags,
1247 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1248
1249 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1250
1251 err = migrate_prep();
1252 if (err)
1253 goto mpol_out;
1254 }
1255 {
1256 NODEMASK_SCRATCH(scratch);
1257 if (scratch) {
1258 down_write(&mm->mmap_sem);
1259 task_lock(current);
1260 err = mpol_set_nodemask(new, nmask, scratch);
1261 task_unlock(current);
1262 if (err)
1263 up_write(&mm->mmap_sem);
1264 } else
1265 err = -ENOMEM;
1266 NODEMASK_SCRATCH_FREE(scratch);
1267 }
1268 if (err)
1269 goto mpol_out;
1270
1271 err = queue_pages_range(mm, start, end, nmask,
1272 flags | MPOL_MF_INVERT, &pagelist);
1273 if (!err)
1274 err = mbind_range(mm, start, end, new);
1275
1276 if (!err) {
1277 int nr_failed = 0;
1278
1279 if (!list_empty(&pagelist)) {
1280 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1281 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1282 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1283 if (nr_failed)
1284 putback_movable_pages(&pagelist);
1285 }
1286
1287 if (nr_failed && (flags & MPOL_MF_STRICT))
1288 err = -EIO;
1289 } else
1290 putback_movable_pages(&pagelist);
1291
1292 up_write(&mm->mmap_sem);
1293 mpol_out:
1294 mpol_put(new);
1295 return err;
1296 }
1297
1298 /*
1299 * User space interface with variable sized bitmaps for nodelists.
1300 */
1301
1302 /* Copy a node mask from user space. */
1303 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1304 unsigned long maxnode)
1305 {
1306 unsigned long k;
1307 unsigned long nlongs;
1308 unsigned long endmask;
1309
1310 --maxnode;
1311 nodes_clear(*nodes);
1312 if (maxnode == 0 || !nmask)
1313 return 0;
1314 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1315 return -EINVAL;
1316
1317 nlongs = BITS_TO_LONGS(maxnode);
1318 if ((maxnode % BITS_PER_LONG) == 0)
1319 endmask = ~0UL;
1320 else
1321 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1322
1323 /* When the user specified more nodes than supported just check
1324 if the non supported part is all zero. */
1325 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1326 if (nlongs > PAGE_SIZE/sizeof(long))
1327 return -EINVAL;
1328 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1329 unsigned long t;
1330 if (get_user(t, nmask + k))
1331 return -EFAULT;
1332 if (k == nlongs - 1) {
1333 if (t & endmask)
1334 return -EINVAL;
1335 } else if (t)
1336 return -EINVAL;
1337 }
1338 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1339 endmask = ~0UL;
1340 }
1341
1342 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1343 return -EFAULT;
1344 nodes_addr(*nodes)[nlongs-1] &= endmask;
1345 return 0;
1346 }
1347
1348 /* Copy a kernel node mask to user space */
1349 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1350 nodemask_t *nodes)
1351 {
1352 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1353 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1354
1355 if (copy > nbytes) {
1356 if (copy > PAGE_SIZE)
1357 return -EINVAL;
1358 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1359 return -EFAULT;
1360 copy = nbytes;
1361 }
1362 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1363 }
1364
1365 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1366 unsigned long, mode, const unsigned long __user *, nmask,
1367 unsigned long, maxnode, unsigned, flags)
1368 {
1369 nodemask_t nodes;
1370 int err;
1371 unsigned short mode_flags;
1372
1373 mode_flags = mode & MPOL_MODE_FLAGS;
1374 mode &= ~MPOL_MODE_FLAGS;
1375 if (mode >= MPOL_MAX)
1376 return -EINVAL;
1377 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1378 (mode_flags & MPOL_F_RELATIVE_NODES))
1379 return -EINVAL;
1380 err = get_nodes(&nodes, nmask, maxnode);
1381 if (err)
1382 return err;
1383 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1384 }
1385
1386 /* Set the process memory policy */
1387 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1388 unsigned long, maxnode)
1389 {
1390 int err;
1391 nodemask_t nodes;
1392 unsigned short flags;
1393
1394 flags = mode & MPOL_MODE_FLAGS;
1395 mode &= ~MPOL_MODE_FLAGS;
1396 if ((unsigned int)mode >= MPOL_MAX)
1397 return -EINVAL;
1398 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1399 return -EINVAL;
1400 err = get_nodes(&nodes, nmask, maxnode);
1401 if (err)
1402 return err;
1403 return do_set_mempolicy(mode, flags, &nodes);
1404 }
1405
1406 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1407 const unsigned long __user *, old_nodes,
1408 const unsigned long __user *, new_nodes)
1409 {
1410 const struct cred *cred = current_cred(), *tcred;
1411 struct mm_struct *mm = NULL;
1412 struct task_struct *task;
1413 nodemask_t task_nodes;
1414 int err;
1415 nodemask_t *old;
1416 nodemask_t *new;
1417 NODEMASK_SCRATCH(scratch);
1418
1419 if (!scratch)
1420 return -ENOMEM;
1421
1422 old = &scratch->mask1;
1423 new = &scratch->mask2;
1424
1425 err = get_nodes(old, old_nodes, maxnode);
1426 if (err)
1427 goto out;
1428
1429 err = get_nodes(new, new_nodes, maxnode);
1430 if (err)
1431 goto out;
1432
1433 /* Find the mm_struct */
1434 rcu_read_lock();
1435 task = pid ? find_task_by_vpid(pid) : current;
1436 if (!task) {
1437 rcu_read_unlock();
1438 err = -ESRCH;
1439 goto out;
1440 }
1441 get_task_struct(task);
1442
1443 err = -EINVAL;
1444
1445 /*
1446 * Check if this process has the right to modify the specified
1447 * process. The right exists if the process has administrative
1448 * capabilities, superuser privileges or the same
1449 * userid as the target process.
1450 */
1451 tcred = __task_cred(task);
1452 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1453 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1454 !capable(CAP_SYS_NICE)) {
1455 rcu_read_unlock();
1456 err = -EPERM;
1457 goto out_put;
1458 }
1459 rcu_read_unlock();
1460
1461 task_nodes = cpuset_mems_allowed(task);
1462 /* Is the user allowed to access the target nodes? */
1463 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1464 err = -EPERM;
1465 goto out_put;
1466 }
1467
1468 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1469 err = -EINVAL;
1470 goto out_put;
1471 }
1472
1473 err = security_task_movememory(task);
1474 if (err)
1475 goto out_put;
1476
1477 mm = get_task_mm(task);
1478 put_task_struct(task);
1479
1480 if (!mm) {
1481 err = -EINVAL;
1482 goto out;
1483 }
1484
1485 err = do_migrate_pages(mm, old, new,
1486 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1487
1488 mmput(mm);
1489 out:
1490 NODEMASK_SCRATCH_FREE(scratch);
1491
1492 return err;
1493
1494 out_put:
1495 put_task_struct(task);
1496 goto out;
1497
1498 }
1499
1500
1501 /* Retrieve NUMA policy */
1502 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1503 unsigned long __user *, nmask, unsigned long, maxnode,
1504 unsigned long, addr, unsigned long, flags)
1505 {
1506 int err;
1507 int uninitialized_var(pval);
1508 nodemask_t nodes;
1509
1510 if (nmask != NULL && maxnode < MAX_NUMNODES)
1511 return -EINVAL;
1512
1513 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1514
1515 if (err)
1516 return err;
1517
1518 if (policy && put_user(pval, policy))
1519 return -EFAULT;
1520
1521 if (nmask)
1522 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1523
1524 return err;
1525 }
1526
1527 #ifdef CONFIG_COMPAT
1528
1529 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1530 compat_ulong_t __user *, nmask,
1531 compat_ulong_t, maxnode,
1532 compat_ulong_t, addr, compat_ulong_t, flags)
1533 {
1534 long err;
1535 unsigned long __user *nm = NULL;
1536 unsigned long nr_bits, alloc_size;
1537 DECLARE_BITMAP(bm, MAX_NUMNODES);
1538
1539 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1540 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1541
1542 if (nmask)
1543 nm = compat_alloc_user_space(alloc_size);
1544
1545 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1546
1547 if (!err && nmask) {
1548 unsigned long copy_size;
1549 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1550 err = copy_from_user(bm, nm, copy_size);
1551 /* ensure entire bitmap is zeroed */
1552 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1553 err |= compat_put_bitmap(nmask, bm, nr_bits);
1554 }
1555
1556 return err;
1557 }
1558
1559 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1560 compat_ulong_t, maxnode)
1561 {
1562 long err = 0;
1563 unsigned long __user *nm = NULL;
1564 unsigned long nr_bits, alloc_size;
1565 DECLARE_BITMAP(bm, MAX_NUMNODES);
1566
1567 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1568 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1569
1570 if (nmask) {
1571 err = compat_get_bitmap(bm, nmask, nr_bits);
1572 nm = compat_alloc_user_space(alloc_size);
1573 err |= copy_to_user(nm, bm, alloc_size);
1574 }
1575
1576 if (err)
1577 return -EFAULT;
1578
1579 return sys_set_mempolicy(mode, nm, nr_bits+1);
1580 }
1581
1582 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1583 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1584 compat_ulong_t, maxnode, compat_ulong_t, flags)
1585 {
1586 long err = 0;
1587 unsigned long __user *nm = NULL;
1588 unsigned long nr_bits, alloc_size;
1589 nodemask_t bm;
1590
1591 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1592 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1593
1594 if (nmask) {
1595 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1596 nm = compat_alloc_user_space(alloc_size);
1597 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1598 }
1599
1600 if (err)
1601 return -EFAULT;
1602
1603 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1604 }
1605
1606 #endif
1607
1608 /*
1609 * get_vma_policy(@task, @vma, @addr)
1610 * @task: task for fallback if vma policy == default
1611 * @vma: virtual memory area whose policy is sought
1612 * @addr: address in @vma for shared policy lookup
1613 *
1614 * Returns effective policy for a VMA at specified address.
1615 * Falls back to @task or system default policy, as necessary.
1616 * Current or other task's task mempolicy and non-shared vma policies must be
1617 * protected by task_lock(task) by the caller.
1618 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1619 * count--added by the get_policy() vm_op, as appropriate--to protect against
1620 * freeing by another task. It is the caller's responsibility to free the
1621 * extra reference for shared policies.
1622 */
1623 struct mempolicy *get_vma_policy(struct task_struct *task,
1624 struct vm_area_struct *vma, unsigned long addr)
1625 {
1626 struct mempolicy *pol = get_task_policy(task);
1627
1628 if (vma) {
1629 if (vma->vm_ops && vma->vm_ops->get_policy) {
1630 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1631 addr);
1632 if (vpol)
1633 pol = vpol;
1634 } else if (vma->vm_policy) {
1635 pol = vma->vm_policy;
1636
1637 /*
1638 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1639 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1640 * count on these policies which will be dropped by
1641 * mpol_cond_put() later
1642 */
1643 if (mpol_needs_cond_ref(pol))
1644 mpol_get(pol);
1645 }
1646 }
1647 if (!pol)
1648 pol = &default_policy;
1649 return pol;
1650 }
1651
1652 bool vma_policy_mof(struct task_struct *task, struct vm_area_struct *vma)
1653 {
1654 struct mempolicy *pol = get_task_policy(task);
1655 if (vma) {
1656 if (vma->vm_ops && vma->vm_ops->get_policy) {
1657 bool ret = false;
1658
1659 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1660 if (pol && (pol->flags & MPOL_F_MOF))
1661 ret = true;
1662 mpol_cond_put(pol);
1663
1664 return ret;
1665 } else if (vma->vm_policy) {
1666 pol = vma->vm_policy;
1667 }
1668 }
1669
1670 if (!pol)
1671 return default_policy.flags & MPOL_F_MOF;
1672
1673 return pol->flags & MPOL_F_MOF;
1674 }
1675
1676 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1677 {
1678 enum zone_type dynamic_policy_zone = policy_zone;
1679
1680 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1681
1682 /*
1683 * if policy->v.nodes has movable memory only,
1684 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1685 *
1686 * policy->v.nodes is intersect with node_states[N_MEMORY].
1687 * so if the following test faile, it implies
1688 * policy->v.nodes has movable memory only.
1689 */
1690 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1691 dynamic_policy_zone = ZONE_MOVABLE;
1692
1693 return zone >= dynamic_policy_zone;
1694 }
1695
1696 /*
1697 * Return a nodemask representing a mempolicy for filtering nodes for
1698 * page allocation
1699 */
1700 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1701 {
1702 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1703 if (unlikely(policy->mode == MPOL_BIND) &&
1704 apply_policy_zone(policy, gfp_zone(gfp)) &&
1705 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1706 return &policy->v.nodes;
1707
1708 return NULL;
1709 }
1710
1711 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1712 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1713 int nd)
1714 {
1715 switch (policy->mode) {
1716 case MPOL_PREFERRED:
1717 if (!(policy->flags & MPOL_F_LOCAL))
1718 nd = policy->v.preferred_node;
1719 break;
1720 case MPOL_BIND:
1721 /*
1722 * Normally, MPOL_BIND allocations are node-local within the
1723 * allowed nodemask. However, if __GFP_THISNODE is set and the
1724 * current node isn't part of the mask, we use the zonelist for
1725 * the first node in the mask instead.
1726 */
1727 if (unlikely(gfp & __GFP_THISNODE) &&
1728 unlikely(!node_isset(nd, policy->v.nodes)))
1729 nd = first_node(policy->v.nodes);
1730 break;
1731 default:
1732 BUG();
1733 }
1734 return node_zonelist(nd, gfp);
1735 }
1736
1737 /* Do dynamic interleaving for a process */
1738 static unsigned interleave_nodes(struct mempolicy *policy)
1739 {
1740 unsigned nid, next;
1741 struct task_struct *me = current;
1742
1743 nid = me->il_next;
1744 next = next_node(nid, policy->v.nodes);
1745 if (next >= MAX_NUMNODES)
1746 next = first_node(policy->v.nodes);
1747 if (next < MAX_NUMNODES)
1748 me->il_next = next;
1749 return nid;
1750 }
1751
1752 /*
1753 * Depending on the memory policy provide a node from which to allocate the
1754 * next slab entry.
1755 */
1756 unsigned int mempolicy_slab_node(void)
1757 {
1758 struct mempolicy *policy;
1759 int node = numa_mem_id();
1760
1761 if (in_interrupt())
1762 return node;
1763
1764 policy = current->mempolicy;
1765 if (!policy || policy->flags & MPOL_F_LOCAL)
1766 return node;
1767
1768 switch (policy->mode) {
1769 case MPOL_PREFERRED:
1770 /*
1771 * handled MPOL_F_LOCAL above
1772 */
1773 return policy->v.preferred_node;
1774
1775 case MPOL_INTERLEAVE:
1776 return interleave_nodes(policy);
1777
1778 case MPOL_BIND: {
1779 /*
1780 * Follow bind policy behavior and start allocation at the
1781 * first node.
1782 */
1783 struct zonelist *zonelist;
1784 struct zone *zone;
1785 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1786 zonelist = &NODE_DATA(node)->node_zonelists[0];
1787 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1788 &policy->v.nodes,
1789 &zone);
1790 return zone ? zone->node : node;
1791 }
1792
1793 default:
1794 BUG();
1795 }
1796 }
1797
1798 /* Do static interleaving for a VMA with known offset. */
1799 static unsigned offset_il_node(struct mempolicy *pol,
1800 struct vm_area_struct *vma, unsigned long off)
1801 {
1802 unsigned nnodes = nodes_weight(pol->v.nodes);
1803 unsigned target;
1804 int c;
1805 int nid = NUMA_NO_NODE;
1806
1807 if (!nnodes)
1808 return numa_node_id();
1809 target = (unsigned int)off % nnodes;
1810 c = 0;
1811 do {
1812 nid = next_node(nid, pol->v.nodes);
1813 c++;
1814 } while (c <= target);
1815 return nid;
1816 }
1817
1818 /* Determine a node number for interleave */
1819 static inline unsigned interleave_nid(struct mempolicy *pol,
1820 struct vm_area_struct *vma, unsigned long addr, int shift)
1821 {
1822 if (vma) {
1823 unsigned long off;
1824
1825 /*
1826 * for small pages, there is no difference between
1827 * shift and PAGE_SHIFT, so the bit-shift is safe.
1828 * for huge pages, since vm_pgoff is in units of small
1829 * pages, we need to shift off the always 0 bits to get
1830 * a useful offset.
1831 */
1832 BUG_ON(shift < PAGE_SHIFT);
1833 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1834 off += (addr - vma->vm_start) >> shift;
1835 return offset_il_node(pol, vma, off);
1836 } else
1837 return interleave_nodes(pol);
1838 }
1839
1840 /*
1841 * Return the bit number of a random bit set in the nodemask.
1842 * (returns NUMA_NO_NODE if nodemask is empty)
1843 */
1844 int node_random(const nodemask_t *maskp)
1845 {
1846 int w, bit = NUMA_NO_NODE;
1847
1848 w = nodes_weight(*maskp);
1849 if (w)
1850 bit = bitmap_ord_to_pos(maskp->bits,
1851 get_random_int() % w, MAX_NUMNODES);
1852 return bit;
1853 }
1854
1855 #ifdef CONFIG_HUGETLBFS
1856 /*
1857 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1858 * @vma: virtual memory area whose policy is sought
1859 * @addr: address in @vma for shared policy lookup and interleave policy
1860 * @gfp_flags: for requested zone
1861 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1862 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1863 *
1864 * Returns a zonelist suitable for a huge page allocation and a pointer
1865 * to the struct mempolicy for conditional unref after allocation.
1866 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1867 * @nodemask for filtering the zonelist.
1868 *
1869 * Must be protected by read_mems_allowed_begin()
1870 */
1871 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1872 gfp_t gfp_flags, struct mempolicy **mpol,
1873 nodemask_t **nodemask)
1874 {
1875 struct zonelist *zl;
1876
1877 *mpol = get_vma_policy(current, vma, addr);
1878 *nodemask = NULL; /* assume !MPOL_BIND */
1879
1880 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1881 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1882 huge_page_shift(hstate_vma(vma))), gfp_flags);
1883 } else {
1884 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1885 if ((*mpol)->mode == MPOL_BIND)
1886 *nodemask = &(*mpol)->v.nodes;
1887 }
1888 return zl;
1889 }
1890
1891 /*
1892 * init_nodemask_of_mempolicy
1893 *
1894 * If the current task's mempolicy is "default" [NULL], return 'false'
1895 * to indicate default policy. Otherwise, extract the policy nodemask
1896 * for 'bind' or 'interleave' policy into the argument nodemask, or
1897 * initialize the argument nodemask to contain the single node for
1898 * 'preferred' or 'local' policy and return 'true' to indicate presence
1899 * of non-default mempolicy.
1900 *
1901 * We don't bother with reference counting the mempolicy [mpol_get/put]
1902 * because the current task is examining it's own mempolicy and a task's
1903 * mempolicy is only ever changed by the task itself.
1904 *
1905 * N.B., it is the caller's responsibility to free a returned nodemask.
1906 */
1907 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1908 {
1909 struct mempolicy *mempolicy;
1910 int nid;
1911
1912 if (!(mask && current->mempolicy))
1913 return false;
1914
1915 task_lock(current);
1916 mempolicy = current->mempolicy;
1917 switch (mempolicy->mode) {
1918 case MPOL_PREFERRED:
1919 if (mempolicy->flags & MPOL_F_LOCAL)
1920 nid = numa_node_id();
1921 else
1922 nid = mempolicy->v.preferred_node;
1923 init_nodemask_of_node(mask, nid);
1924 break;
1925
1926 case MPOL_BIND:
1927 /* Fall through */
1928 case MPOL_INTERLEAVE:
1929 *mask = mempolicy->v.nodes;
1930 break;
1931
1932 default:
1933 BUG();
1934 }
1935 task_unlock(current);
1936
1937 return true;
1938 }
1939 #endif
1940
1941 /*
1942 * mempolicy_nodemask_intersects
1943 *
1944 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1945 * policy. Otherwise, check for intersection between mask and the policy
1946 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1947 * policy, always return true since it may allocate elsewhere on fallback.
1948 *
1949 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1950 */
1951 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1952 const nodemask_t *mask)
1953 {
1954 struct mempolicy *mempolicy;
1955 bool ret = true;
1956
1957 if (!mask)
1958 return ret;
1959 task_lock(tsk);
1960 mempolicy = tsk->mempolicy;
1961 if (!mempolicy)
1962 goto out;
1963
1964 switch (mempolicy->mode) {
1965 case MPOL_PREFERRED:
1966 /*
1967 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1968 * allocate from, they may fallback to other nodes when oom.
1969 * Thus, it's possible for tsk to have allocated memory from
1970 * nodes in mask.
1971 */
1972 break;
1973 case MPOL_BIND:
1974 case MPOL_INTERLEAVE:
1975 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1976 break;
1977 default:
1978 BUG();
1979 }
1980 out:
1981 task_unlock(tsk);
1982 return ret;
1983 }
1984
1985 /* Allocate a page in interleaved policy.
1986 Own path because it needs to do special accounting. */
1987 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1988 unsigned nid)
1989 {
1990 struct zonelist *zl;
1991 struct page *page;
1992
1993 zl = node_zonelist(nid, gfp);
1994 page = __alloc_pages(gfp, order, zl);
1995 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1996 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1997 return page;
1998 }
1999
2000 /**
2001 * alloc_pages_vma - Allocate a page for a VMA.
2002 *
2003 * @gfp:
2004 * %GFP_USER user allocation.
2005 * %GFP_KERNEL kernel allocations,
2006 * %GFP_HIGHMEM highmem/user allocations,
2007 * %GFP_FS allocation should not call back into a file system.
2008 * %GFP_ATOMIC don't sleep.
2009 *
2010 * @order:Order of the GFP allocation.
2011 * @vma: Pointer to VMA or NULL if not available.
2012 * @addr: Virtual Address of the allocation. Must be inside the VMA.
2013 *
2014 * This function allocates a page from the kernel page pool and applies
2015 * a NUMA policy associated with the VMA or the current process.
2016 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
2017 * mm_struct of the VMA to prevent it from going away. Should be used for
2018 * all allocations for pages that will be mapped into
2019 * user space. Returns NULL when no page can be allocated.
2020 *
2021 * Should be called with the mm_sem of the vma hold.
2022 */
2023 struct page *
2024 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2025 unsigned long addr, int node)
2026 {
2027 struct mempolicy *pol;
2028 struct page *page;
2029 unsigned int cpuset_mems_cookie;
2030
2031 retry_cpuset:
2032 pol = get_vma_policy(current, vma, addr);
2033 cpuset_mems_cookie = read_mems_allowed_begin();
2034
2035 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
2036 unsigned nid;
2037
2038 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2039 mpol_cond_put(pol);
2040 page = alloc_page_interleave(gfp, order, nid);
2041 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2042 goto retry_cpuset;
2043
2044 return page;
2045 }
2046 page = __alloc_pages_nodemask(gfp, order,
2047 policy_zonelist(gfp, pol, node),
2048 policy_nodemask(gfp, pol));
2049 if (unlikely(mpol_needs_cond_ref(pol)))
2050 __mpol_put(pol);
2051 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2052 goto retry_cpuset;
2053 return page;
2054 }
2055
2056 /**
2057 * alloc_pages_current - Allocate pages.
2058 *
2059 * @gfp:
2060 * %GFP_USER user allocation,
2061 * %GFP_KERNEL kernel allocation,
2062 * %GFP_HIGHMEM highmem allocation,
2063 * %GFP_FS don't call back into a file system.
2064 * %GFP_ATOMIC don't sleep.
2065 * @order: Power of two of allocation size in pages. 0 is a single page.
2066 *
2067 * Allocate a page from the kernel page pool. When not in
2068 * interrupt context and apply the current process NUMA policy.
2069 * Returns NULL when no page can be allocated.
2070 *
2071 * Don't call cpuset_update_task_memory_state() unless
2072 * 1) it's ok to take cpuset_sem (can WAIT), and
2073 * 2) allocating for current task (not interrupt).
2074 */
2075 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2076 {
2077 struct mempolicy *pol = get_task_policy(current);
2078 struct page *page;
2079 unsigned int cpuset_mems_cookie;
2080
2081 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
2082 pol = &default_policy;
2083
2084 retry_cpuset:
2085 cpuset_mems_cookie = read_mems_allowed_begin();
2086
2087 /*
2088 * No reference counting needed for current->mempolicy
2089 * nor system default_policy
2090 */
2091 if (pol->mode == MPOL_INTERLEAVE)
2092 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2093 else
2094 page = __alloc_pages_nodemask(gfp, order,
2095 policy_zonelist(gfp, pol, numa_node_id()),
2096 policy_nodemask(gfp, pol));
2097
2098 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2099 goto retry_cpuset;
2100
2101 return page;
2102 }
2103 EXPORT_SYMBOL(alloc_pages_current);
2104
2105 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2106 {
2107 struct mempolicy *pol = mpol_dup(vma_policy(src));
2108
2109 if (IS_ERR(pol))
2110 return PTR_ERR(pol);
2111 dst->vm_policy = pol;
2112 return 0;
2113 }
2114
2115 /*
2116 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2117 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2118 * with the mems_allowed returned by cpuset_mems_allowed(). This
2119 * keeps mempolicies cpuset relative after its cpuset moves. See
2120 * further kernel/cpuset.c update_nodemask().
2121 *
2122 * current's mempolicy may be rebinded by the other task(the task that changes
2123 * cpuset's mems), so we needn't do rebind work for current task.
2124 */
2125
2126 /* Slow path of a mempolicy duplicate */
2127 struct mempolicy *__mpol_dup(struct mempolicy *old)
2128 {
2129 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2130
2131 if (!new)
2132 return ERR_PTR(-ENOMEM);
2133
2134 /* task's mempolicy is protected by alloc_lock */
2135 if (old == current->mempolicy) {
2136 task_lock(current);
2137 *new = *old;
2138 task_unlock(current);
2139 } else
2140 *new = *old;
2141
2142 if (current_cpuset_is_being_rebound()) {
2143 nodemask_t mems = cpuset_mems_allowed(current);
2144 if (new->flags & MPOL_F_REBINDING)
2145 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2146 else
2147 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2148 }
2149 atomic_set(&new->refcnt, 1);
2150 return new;
2151 }
2152
2153 /* Slow path of a mempolicy comparison */
2154 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2155 {
2156 if (!a || !b)
2157 return false;
2158 if (a->mode != b->mode)
2159 return false;
2160 if (a->flags != b->flags)
2161 return false;
2162 if (mpol_store_user_nodemask(a))
2163 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2164 return false;
2165
2166 switch (a->mode) {
2167 case MPOL_BIND:
2168 /* Fall through */
2169 case MPOL_INTERLEAVE:
2170 return !!nodes_equal(a->v.nodes, b->v.nodes);
2171 case MPOL_PREFERRED:
2172 return a->v.preferred_node == b->v.preferred_node;
2173 default:
2174 BUG();
2175 return false;
2176 }
2177 }
2178
2179 /*
2180 * Shared memory backing store policy support.
2181 *
2182 * Remember policies even when nobody has shared memory mapped.
2183 * The policies are kept in Red-Black tree linked from the inode.
2184 * They are protected by the sp->lock spinlock, which should be held
2185 * for any accesses to the tree.
2186 */
2187
2188 /* lookup first element intersecting start-end */
2189 /* Caller holds sp->lock */
2190 static struct sp_node *
2191 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2192 {
2193 struct rb_node *n = sp->root.rb_node;
2194
2195 while (n) {
2196 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2197
2198 if (start >= p->end)
2199 n = n->rb_right;
2200 else if (end <= p->start)
2201 n = n->rb_left;
2202 else
2203 break;
2204 }
2205 if (!n)
2206 return NULL;
2207 for (;;) {
2208 struct sp_node *w = NULL;
2209 struct rb_node *prev = rb_prev(n);
2210 if (!prev)
2211 break;
2212 w = rb_entry(prev, struct sp_node, nd);
2213 if (w->end <= start)
2214 break;
2215 n = prev;
2216 }
2217 return rb_entry(n, struct sp_node, nd);
2218 }
2219
2220 /* Insert a new shared policy into the list. */
2221 /* Caller holds sp->lock */
2222 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2223 {
2224 struct rb_node **p = &sp->root.rb_node;
2225 struct rb_node *parent = NULL;
2226 struct sp_node *nd;
2227
2228 while (*p) {
2229 parent = *p;
2230 nd = rb_entry(parent, struct sp_node, nd);
2231 if (new->start < nd->start)
2232 p = &(*p)->rb_left;
2233 else if (new->end > nd->end)
2234 p = &(*p)->rb_right;
2235 else
2236 BUG();
2237 }
2238 rb_link_node(&new->nd, parent, p);
2239 rb_insert_color(&new->nd, &sp->root);
2240 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2241 new->policy ? new->policy->mode : 0);
2242 }
2243
2244 /* Find shared policy intersecting idx */
2245 struct mempolicy *
2246 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2247 {
2248 struct mempolicy *pol = NULL;
2249 struct sp_node *sn;
2250
2251 if (!sp->root.rb_node)
2252 return NULL;
2253 spin_lock(&sp->lock);
2254 sn = sp_lookup(sp, idx, idx+1);
2255 if (sn) {
2256 mpol_get(sn->policy);
2257 pol = sn->policy;
2258 }
2259 spin_unlock(&sp->lock);
2260 return pol;
2261 }
2262
2263 static void sp_free(struct sp_node *n)
2264 {
2265 mpol_put(n->policy);
2266 kmem_cache_free(sn_cache, n);
2267 }
2268
2269 /**
2270 * mpol_misplaced - check whether current page node is valid in policy
2271 *
2272 * @page: page to be checked
2273 * @vma: vm area where page mapped
2274 * @addr: virtual address where page mapped
2275 *
2276 * Lookup current policy node id for vma,addr and "compare to" page's
2277 * node id.
2278 *
2279 * Returns:
2280 * -1 - not misplaced, page is in the right node
2281 * node - node id where the page should be
2282 *
2283 * Policy determination "mimics" alloc_page_vma().
2284 * Called from fault path where we know the vma and faulting address.
2285 */
2286 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2287 {
2288 struct mempolicy *pol;
2289 struct zone *zone;
2290 int curnid = page_to_nid(page);
2291 unsigned long pgoff;
2292 int thiscpu = raw_smp_processor_id();
2293 int thisnid = cpu_to_node(thiscpu);
2294 int polnid = -1;
2295 int ret = -1;
2296
2297 BUG_ON(!vma);
2298
2299 pol = get_vma_policy(current, vma, addr);
2300 if (!(pol->flags & MPOL_F_MOF))
2301 goto out;
2302
2303 switch (pol->mode) {
2304 case MPOL_INTERLEAVE:
2305 BUG_ON(addr >= vma->vm_end);
2306 BUG_ON(addr < vma->vm_start);
2307
2308 pgoff = vma->vm_pgoff;
2309 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2310 polnid = offset_il_node(pol, vma, pgoff);
2311 break;
2312
2313 case MPOL_PREFERRED:
2314 if (pol->flags & MPOL_F_LOCAL)
2315 polnid = numa_node_id();
2316 else
2317 polnid = pol->v.preferred_node;
2318 break;
2319
2320 case MPOL_BIND:
2321 /*
2322 * allows binding to multiple nodes.
2323 * use current page if in policy nodemask,
2324 * else select nearest allowed node, if any.
2325 * If no allowed nodes, use current [!misplaced].
2326 */
2327 if (node_isset(curnid, pol->v.nodes))
2328 goto out;
2329 (void)first_zones_zonelist(
2330 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2331 gfp_zone(GFP_HIGHUSER),
2332 &pol->v.nodes, &zone);
2333 polnid = zone->node;
2334 break;
2335
2336 default:
2337 BUG();
2338 }
2339
2340 /* Migrate the page towards the node whose CPU is referencing it */
2341 if (pol->flags & MPOL_F_MORON) {
2342 polnid = thisnid;
2343
2344 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2345 goto out;
2346 }
2347
2348 if (curnid != polnid)
2349 ret = polnid;
2350 out:
2351 mpol_cond_put(pol);
2352
2353 return ret;
2354 }
2355
2356 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2357 {
2358 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2359 rb_erase(&n->nd, &sp->root);
2360 sp_free(n);
2361 }
2362
2363 static void sp_node_init(struct sp_node *node, unsigned long start,
2364 unsigned long end, struct mempolicy *pol)
2365 {
2366 node->start = start;
2367 node->end = end;
2368 node->policy = pol;
2369 }
2370
2371 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2372 struct mempolicy *pol)
2373 {
2374 struct sp_node *n;
2375 struct mempolicy *newpol;
2376
2377 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2378 if (!n)
2379 return NULL;
2380
2381 newpol = mpol_dup(pol);
2382 if (IS_ERR(newpol)) {
2383 kmem_cache_free(sn_cache, n);
2384 return NULL;
2385 }
2386 newpol->flags |= MPOL_F_SHARED;
2387 sp_node_init(n, start, end, newpol);
2388
2389 return n;
2390 }
2391
2392 /* Replace a policy range. */
2393 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2394 unsigned long end, struct sp_node *new)
2395 {
2396 struct sp_node *n;
2397 struct sp_node *n_new = NULL;
2398 struct mempolicy *mpol_new = NULL;
2399 int ret = 0;
2400
2401 restart:
2402 spin_lock(&sp->lock);
2403 n = sp_lookup(sp, start, end);
2404 /* Take care of old policies in the same range. */
2405 while (n && n->start < end) {
2406 struct rb_node *next = rb_next(&n->nd);
2407 if (n->start >= start) {
2408 if (n->end <= end)
2409 sp_delete(sp, n);
2410 else
2411 n->start = end;
2412 } else {
2413 /* Old policy spanning whole new range. */
2414 if (n->end > end) {
2415 if (!n_new)
2416 goto alloc_new;
2417
2418 *mpol_new = *n->policy;
2419 atomic_set(&mpol_new->refcnt, 1);
2420 sp_node_init(n_new, end, n->end, mpol_new);
2421 n->end = start;
2422 sp_insert(sp, n_new);
2423 n_new = NULL;
2424 mpol_new = NULL;
2425 break;
2426 } else
2427 n->end = start;
2428 }
2429 if (!next)
2430 break;
2431 n = rb_entry(next, struct sp_node, nd);
2432 }
2433 if (new)
2434 sp_insert(sp, new);
2435 spin_unlock(&sp->lock);
2436 ret = 0;
2437
2438 err_out:
2439 if (mpol_new)
2440 mpol_put(mpol_new);
2441 if (n_new)
2442 kmem_cache_free(sn_cache, n_new);
2443
2444 return ret;
2445
2446 alloc_new:
2447 spin_unlock(&sp->lock);
2448 ret = -ENOMEM;
2449 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2450 if (!n_new)
2451 goto err_out;
2452 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2453 if (!mpol_new)
2454 goto err_out;
2455 goto restart;
2456 }
2457
2458 /**
2459 * mpol_shared_policy_init - initialize shared policy for inode
2460 * @sp: pointer to inode shared policy
2461 * @mpol: struct mempolicy to install
2462 *
2463 * Install non-NULL @mpol in inode's shared policy rb-tree.
2464 * On entry, the current task has a reference on a non-NULL @mpol.
2465 * This must be released on exit.
2466 * This is called at get_inode() calls and we can use GFP_KERNEL.
2467 */
2468 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2469 {
2470 int ret;
2471
2472 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2473 spin_lock_init(&sp->lock);
2474
2475 if (mpol) {
2476 struct vm_area_struct pvma;
2477 struct mempolicy *new;
2478 NODEMASK_SCRATCH(scratch);
2479
2480 if (!scratch)
2481 goto put_mpol;
2482 /* contextualize the tmpfs mount point mempolicy */
2483 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2484 if (IS_ERR(new))
2485 goto free_scratch; /* no valid nodemask intersection */
2486
2487 task_lock(current);
2488 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2489 task_unlock(current);
2490 if (ret)
2491 goto put_new;
2492
2493 /* Create pseudo-vma that contains just the policy */
2494 memset(&pvma, 0, sizeof(struct vm_area_struct));
2495 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2496 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2497
2498 put_new:
2499 mpol_put(new); /* drop initial ref */
2500 free_scratch:
2501 NODEMASK_SCRATCH_FREE(scratch);
2502 put_mpol:
2503 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2504 }
2505 }
2506
2507 int mpol_set_shared_policy(struct shared_policy *info,
2508 struct vm_area_struct *vma, struct mempolicy *npol)
2509 {
2510 int err;
2511 struct sp_node *new = NULL;
2512 unsigned long sz = vma_pages(vma);
2513
2514 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2515 vma->vm_pgoff,
2516 sz, npol ? npol->mode : -1,
2517 npol ? npol->flags : -1,
2518 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2519
2520 if (npol) {
2521 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2522 if (!new)
2523 return -ENOMEM;
2524 }
2525 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2526 if (err && new)
2527 sp_free(new);
2528 return err;
2529 }
2530
2531 /* Free a backing policy store on inode delete. */
2532 void mpol_free_shared_policy(struct shared_policy *p)
2533 {
2534 struct sp_node *n;
2535 struct rb_node *next;
2536
2537 if (!p->root.rb_node)
2538 return;
2539 spin_lock(&p->lock);
2540 next = rb_first(&p->root);
2541 while (next) {
2542 n = rb_entry(next, struct sp_node, nd);
2543 next = rb_next(&n->nd);
2544 sp_delete(p, n);
2545 }
2546 spin_unlock(&p->lock);
2547 }
2548
2549 #ifdef CONFIG_NUMA_BALANCING
2550 static int __initdata numabalancing_override;
2551
2552 static void __init check_numabalancing_enable(void)
2553 {
2554 bool numabalancing_default = false;
2555
2556 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2557 numabalancing_default = true;
2558
2559 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2560 if (numabalancing_override)
2561 set_numabalancing_state(numabalancing_override == 1);
2562
2563 if (nr_node_ids > 1 && !numabalancing_override) {
2564 pr_info("%s automatic NUMA balancing. "
2565 "Configure with numa_balancing= or the "
2566 "kernel.numa_balancing sysctl",
2567 numabalancing_default ? "Enabling" : "Disabling");
2568 set_numabalancing_state(numabalancing_default);
2569 }
2570 }
2571
2572 static int __init setup_numabalancing(char *str)
2573 {
2574 int ret = 0;
2575 if (!str)
2576 goto out;
2577
2578 if (!strcmp(str, "enable")) {
2579 numabalancing_override = 1;
2580 ret = 1;
2581 } else if (!strcmp(str, "disable")) {
2582 numabalancing_override = -1;
2583 ret = 1;
2584 }
2585 out:
2586 if (!ret)
2587 pr_warn("Unable to parse numa_balancing=\n");
2588
2589 return ret;
2590 }
2591 __setup("numa_balancing=", setup_numabalancing);
2592 #else
2593 static inline void __init check_numabalancing_enable(void)
2594 {
2595 }
2596 #endif /* CONFIG_NUMA_BALANCING */
2597
2598 /* assumes fs == KERNEL_DS */
2599 void __init numa_policy_init(void)
2600 {
2601 nodemask_t interleave_nodes;
2602 unsigned long largest = 0;
2603 int nid, prefer = 0;
2604
2605 policy_cache = kmem_cache_create("numa_policy",
2606 sizeof(struct mempolicy),
2607 0, SLAB_PANIC, NULL);
2608
2609 sn_cache = kmem_cache_create("shared_policy_node",
2610 sizeof(struct sp_node),
2611 0, SLAB_PANIC, NULL);
2612
2613 for_each_node(nid) {
2614 preferred_node_policy[nid] = (struct mempolicy) {
2615 .refcnt = ATOMIC_INIT(1),
2616 .mode = MPOL_PREFERRED,
2617 .flags = MPOL_F_MOF | MPOL_F_MORON,
2618 .v = { .preferred_node = nid, },
2619 };
2620 }
2621
2622 /*
2623 * Set interleaving policy for system init. Interleaving is only
2624 * enabled across suitably sized nodes (default is >= 16MB), or
2625 * fall back to the largest node if they're all smaller.
2626 */
2627 nodes_clear(interleave_nodes);
2628 for_each_node_state(nid, N_MEMORY) {
2629 unsigned long total_pages = node_present_pages(nid);
2630
2631 /* Preserve the largest node */
2632 if (largest < total_pages) {
2633 largest = total_pages;
2634 prefer = nid;
2635 }
2636
2637 /* Interleave this node? */
2638 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2639 node_set(nid, interleave_nodes);
2640 }
2641
2642 /* All too small, use the largest */
2643 if (unlikely(nodes_empty(interleave_nodes)))
2644 node_set(prefer, interleave_nodes);
2645
2646 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2647 pr_err("%s: interleaving failed\n", __func__);
2648
2649 check_numabalancing_enable();
2650 }
2651
2652 /* Reset policy of current process to default */
2653 void numa_default_policy(void)
2654 {
2655 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2656 }
2657
2658 /*
2659 * Parse and format mempolicy from/to strings
2660 */
2661
2662 /*
2663 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2664 */
2665 static const char * const policy_modes[] =
2666 {
2667 [MPOL_DEFAULT] = "default",
2668 [MPOL_PREFERRED] = "prefer",
2669 [MPOL_BIND] = "bind",
2670 [MPOL_INTERLEAVE] = "interleave",
2671 [MPOL_LOCAL] = "local",
2672 };
2673
2674
2675 #ifdef CONFIG_TMPFS
2676 /**
2677 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2678 * @str: string containing mempolicy to parse
2679 * @mpol: pointer to struct mempolicy pointer, returned on success.
2680 *
2681 * Format of input:
2682 * <mode>[=<flags>][:<nodelist>]
2683 *
2684 * On success, returns 0, else 1
2685 */
2686 int mpol_parse_str(char *str, struct mempolicy **mpol)
2687 {
2688 struct mempolicy *new = NULL;
2689 unsigned short mode;
2690 unsigned short mode_flags;
2691 nodemask_t nodes;
2692 char *nodelist = strchr(str, ':');
2693 char *flags = strchr(str, '=');
2694 int err = 1;
2695
2696 if (nodelist) {
2697 /* NUL-terminate mode or flags string */
2698 *nodelist++ = '\0';
2699 if (nodelist_parse(nodelist, nodes))
2700 goto out;
2701 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2702 goto out;
2703 } else
2704 nodes_clear(nodes);
2705
2706 if (flags)
2707 *flags++ = '\0'; /* terminate mode string */
2708
2709 for (mode = 0; mode < MPOL_MAX; mode++) {
2710 if (!strcmp(str, policy_modes[mode])) {
2711 break;
2712 }
2713 }
2714 if (mode >= MPOL_MAX)
2715 goto out;
2716
2717 switch (mode) {
2718 case MPOL_PREFERRED:
2719 /*
2720 * Insist on a nodelist of one node only
2721 */
2722 if (nodelist) {
2723 char *rest = nodelist;
2724 while (isdigit(*rest))
2725 rest++;
2726 if (*rest)
2727 goto out;
2728 }
2729 break;
2730 case MPOL_INTERLEAVE:
2731 /*
2732 * Default to online nodes with memory if no nodelist
2733 */
2734 if (!nodelist)
2735 nodes = node_states[N_MEMORY];
2736 break;
2737 case MPOL_LOCAL:
2738 /*
2739 * Don't allow a nodelist; mpol_new() checks flags
2740 */
2741 if (nodelist)
2742 goto out;
2743 mode = MPOL_PREFERRED;
2744 break;
2745 case MPOL_DEFAULT:
2746 /*
2747 * Insist on a empty nodelist
2748 */
2749 if (!nodelist)
2750 err = 0;
2751 goto out;
2752 case MPOL_BIND:
2753 /*
2754 * Insist on a nodelist
2755 */
2756 if (!nodelist)
2757 goto out;
2758 }
2759
2760 mode_flags = 0;
2761 if (flags) {
2762 /*
2763 * Currently, we only support two mutually exclusive
2764 * mode flags.
2765 */
2766 if (!strcmp(flags, "static"))
2767 mode_flags |= MPOL_F_STATIC_NODES;
2768 else if (!strcmp(flags, "relative"))
2769 mode_flags |= MPOL_F_RELATIVE_NODES;
2770 else
2771 goto out;
2772 }
2773
2774 new = mpol_new(mode, mode_flags, &nodes);
2775 if (IS_ERR(new))
2776 goto out;
2777
2778 /*
2779 * Save nodes for mpol_to_str() to show the tmpfs mount options
2780 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2781 */
2782 if (mode != MPOL_PREFERRED)
2783 new->v.nodes = nodes;
2784 else if (nodelist)
2785 new->v.preferred_node = first_node(nodes);
2786 else
2787 new->flags |= MPOL_F_LOCAL;
2788
2789 /*
2790 * Save nodes for contextualization: this will be used to "clone"
2791 * the mempolicy in a specific context [cpuset] at a later time.
2792 */
2793 new->w.user_nodemask = nodes;
2794
2795 err = 0;
2796
2797 out:
2798 /* Restore string for error message */
2799 if (nodelist)
2800 *--nodelist = ':';
2801 if (flags)
2802 *--flags = '=';
2803 if (!err)
2804 *mpol = new;
2805 return err;
2806 }
2807 #endif /* CONFIG_TMPFS */
2808
2809 /**
2810 * mpol_to_str - format a mempolicy structure for printing
2811 * @buffer: to contain formatted mempolicy string
2812 * @maxlen: length of @buffer
2813 * @pol: pointer to mempolicy to be formatted
2814 *
2815 * Convert @pol into a string. If @buffer is too short, truncate the string.
2816 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2817 * longest flag, "relative", and to display at least a few node ids.
2818 */
2819 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2820 {
2821 char *p = buffer;
2822 nodemask_t nodes = NODE_MASK_NONE;
2823 unsigned short mode = MPOL_DEFAULT;
2824 unsigned short flags = 0;
2825
2826 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2827 mode = pol->mode;
2828 flags = pol->flags;
2829 }
2830
2831 switch (mode) {
2832 case MPOL_DEFAULT:
2833 break;
2834 case MPOL_PREFERRED:
2835 if (flags & MPOL_F_LOCAL)
2836 mode = MPOL_LOCAL;
2837 else
2838 node_set(pol->v.preferred_node, nodes);
2839 break;
2840 case MPOL_BIND:
2841 case MPOL_INTERLEAVE:
2842 nodes = pol->v.nodes;
2843 break;
2844 default:
2845 WARN_ON_ONCE(1);
2846 snprintf(p, maxlen, "unknown");
2847 return;
2848 }
2849
2850 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2851
2852 if (flags & MPOL_MODE_FLAGS) {
2853 p += snprintf(p, buffer + maxlen - p, "=");
2854
2855 /*
2856 * Currently, the only defined flags are mutually exclusive
2857 */
2858 if (flags & MPOL_F_STATIC_NODES)
2859 p += snprintf(p, buffer + maxlen - p, "static");
2860 else if (flags & MPOL_F_RELATIVE_NODES)
2861 p += snprintf(p, buffer + maxlen - p, "relative");
2862 }
2863
2864 if (!nodes_empty(nodes)) {
2865 p += snprintf(p, buffer + maxlen - p, ":");
2866 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2867 }
2868 }
This page took 0.096034 seconds and 5 git commands to generate.