staging: unisys: unify businst attributes into visorbus_main.c
[deliverable/linux.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/export.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/ksm.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 #include <linux/syscalls.h>
93 #include <linux/ctype.h>
94 #include <linux/mm_inline.h>
95 #include <linux/mmu_notifier.h>
96 #include <linux/printk.h>
97
98 #include <asm/tlbflush.h>
99 #include <asm/uaccess.h>
100 #include <linux/random.h>
101
102 #include "internal.h"
103
104 /* Internal flags */
105 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
106 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
107
108 static struct kmem_cache *policy_cache;
109 static struct kmem_cache *sn_cache;
110
111 /* Highest zone. An specific allocation for a zone below that is not
112 policied. */
113 enum zone_type policy_zone = 0;
114
115 /*
116 * run-time system-wide default policy => local allocation
117 */
118 static struct mempolicy default_policy = {
119 .refcnt = ATOMIC_INIT(1), /* never free it */
120 .mode = MPOL_PREFERRED,
121 .flags = MPOL_F_LOCAL,
122 };
123
124 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
125
126 struct mempolicy *get_task_policy(struct task_struct *p)
127 {
128 struct mempolicy *pol = p->mempolicy;
129 int node;
130
131 if (pol)
132 return pol;
133
134 node = numa_node_id();
135 if (node != NUMA_NO_NODE) {
136 pol = &preferred_node_policy[node];
137 /* preferred_node_policy is not initialised early in boot */
138 if (pol->mode)
139 return pol;
140 }
141
142 return &default_policy;
143 }
144
145 static const struct mempolicy_operations {
146 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
147 /*
148 * If read-side task has no lock to protect task->mempolicy, write-side
149 * task will rebind the task->mempolicy by two step. The first step is
150 * setting all the newly nodes, and the second step is cleaning all the
151 * disallowed nodes. In this way, we can avoid finding no node to alloc
152 * page.
153 * If we have a lock to protect task->mempolicy in read-side, we do
154 * rebind directly.
155 *
156 * step:
157 * MPOL_REBIND_ONCE - do rebind work at once
158 * MPOL_REBIND_STEP1 - set all the newly nodes
159 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
160 */
161 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
162 enum mpol_rebind_step step);
163 } mpol_ops[MPOL_MAX];
164
165 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
166 {
167 return pol->flags & MPOL_MODE_FLAGS;
168 }
169
170 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
171 const nodemask_t *rel)
172 {
173 nodemask_t tmp;
174 nodes_fold(tmp, *orig, nodes_weight(*rel));
175 nodes_onto(*ret, tmp, *rel);
176 }
177
178 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
179 {
180 if (nodes_empty(*nodes))
181 return -EINVAL;
182 pol->v.nodes = *nodes;
183 return 0;
184 }
185
186 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
187 {
188 if (!nodes)
189 pol->flags |= MPOL_F_LOCAL; /* local allocation */
190 else if (nodes_empty(*nodes))
191 return -EINVAL; /* no allowed nodes */
192 else
193 pol->v.preferred_node = first_node(*nodes);
194 return 0;
195 }
196
197 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
198 {
199 if (nodes_empty(*nodes))
200 return -EINVAL;
201 pol->v.nodes = *nodes;
202 return 0;
203 }
204
205 /*
206 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
207 * any, for the new policy. mpol_new() has already validated the nodes
208 * parameter with respect to the policy mode and flags. But, we need to
209 * handle an empty nodemask with MPOL_PREFERRED here.
210 *
211 * Must be called holding task's alloc_lock to protect task's mems_allowed
212 * and mempolicy. May also be called holding the mmap_semaphore for write.
213 */
214 static int mpol_set_nodemask(struct mempolicy *pol,
215 const nodemask_t *nodes, struct nodemask_scratch *nsc)
216 {
217 int ret;
218
219 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
220 if (pol == NULL)
221 return 0;
222 /* Check N_MEMORY */
223 nodes_and(nsc->mask1,
224 cpuset_current_mems_allowed, node_states[N_MEMORY]);
225
226 VM_BUG_ON(!nodes);
227 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
228 nodes = NULL; /* explicit local allocation */
229 else {
230 if (pol->flags & MPOL_F_RELATIVE_NODES)
231 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
232 else
233 nodes_and(nsc->mask2, *nodes, nsc->mask1);
234
235 if (mpol_store_user_nodemask(pol))
236 pol->w.user_nodemask = *nodes;
237 else
238 pol->w.cpuset_mems_allowed =
239 cpuset_current_mems_allowed;
240 }
241
242 if (nodes)
243 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
244 else
245 ret = mpol_ops[pol->mode].create(pol, NULL);
246 return ret;
247 }
248
249 /*
250 * This function just creates a new policy, does some check and simple
251 * initialization. You must invoke mpol_set_nodemask() to set nodes.
252 */
253 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
254 nodemask_t *nodes)
255 {
256 struct mempolicy *policy;
257
258 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
259 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
260
261 if (mode == MPOL_DEFAULT) {
262 if (nodes && !nodes_empty(*nodes))
263 return ERR_PTR(-EINVAL);
264 return NULL;
265 }
266 VM_BUG_ON(!nodes);
267
268 /*
269 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
270 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
271 * All other modes require a valid pointer to a non-empty nodemask.
272 */
273 if (mode == MPOL_PREFERRED) {
274 if (nodes_empty(*nodes)) {
275 if (((flags & MPOL_F_STATIC_NODES) ||
276 (flags & MPOL_F_RELATIVE_NODES)))
277 return ERR_PTR(-EINVAL);
278 }
279 } else if (mode == MPOL_LOCAL) {
280 if (!nodes_empty(*nodes))
281 return ERR_PTR(-EINVAL);
282 mode = MPOL_PREFERRED;
283 } else if (nodes_empty(*nodes))
284 return ERR_PTR(-EINVAL);
285 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
286 if (!policy)
287 return ERR_PTR(-ENOMEM);
288 atomic_set(&policy->refcnt, 1);
289 policy->mode = mode;
290 policy->flags = flags;
291
292 return policy;
293 }
294
295 /* Slow path of a mpol destructor. */
296 void __mpol_put(struct mempolicy *p)
297 {
298 if (!atomic_dec_and_test(&p->refcnt))
299 return;
300 kmem_cache_free(policy_cache, p);
301 }
302
303 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
304 enum mpol_rebind_step step)
305 {
306 }
307
308 /*
309 * step:
310 * MPOL_REBIND_ONCE - do rebind work at once
311 * MPOL_REBIND_STEP1 - set all the newly nodes
312 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
313 */
314 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
315 enum mpol_rebind_step step)
316 {
317 nodemask_t tmp;
318
319 if (pol->flags & MPOL_F_STATIC_NODES)
320 nodes_and(tmp, pol->w.user_nodemask, *nodes);
321 else if (pol->flags & MPOL_F_RELATIVE_NODES)
322 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
323 else {
324 /*
325 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
326 * result
327 */
328 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
329 nodes_remap(tmp, pol->v.nodes,
330 pol->w.cpuset_mems_allowed, *nodes);
331 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
332 } else if (step == MPOL_REBIND_STEP2) {
333 tmp = pol->w.cpuset_mems_allowed;
334 pol->w.cpuset_mems_allowed = *nodes;
335 } else
336 BUG();
337 }
338
339 if (nodes_empty(tmp))
340 tmp = *nodes;
341
342 if (step == MPOL_REBIND_STEP1)
343 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
344 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
345 pol->v.nodes = tmp;
346 else
347 BUG();
348
349 if (!node_isset(current->il_next, tmp)) {
350 current->il_next = next_node(current->il_next, tmp);
351 if (current->il_next >= MAX_NUMNODES)
352 current->il_next = first_node(tmp);
353 if (current->il_next >= MAX_NUMNODES)
354 current->il_next = numa_node_id();
355 }
356 }
357
358 static void mpol_rebind_preferred(struct mempolicy *pol,
359 const nodemask_t *nodes,
360 enum mpol_rebind_step step)
361 {
362 nodemask_t tmp;
363
364 if (pol->flags & MPOL_F_STATIC_NODES) {
365 int node = first_node(pol->w.user_nodemask);
366
367 if (node_isset(node, *nodes)) {
368 pol->v.preferred_node = node;
369 pol->flags &= ~MPOL_F_LOCAL;
370 } else
371 pol->flags |= MPOL_F_LOCAL;
372 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
373 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
374 pol->v.preferred_node = first_node(tmp);
375 } else if (!(pol->flags & MPOL_F_LOCAL)) {
376 pol->v.preferred_node = node_remap(pol->v.preferred_node,
377 pol->w.cpuset_mems_allowed,
378 *nodes);
379 pol->w.cpuset_mems_allowed = *nodes;
380 }
381 }
382
383 /*
384 * mpol_rebind_policy - Migrate a policy to a different set of nodes
385 *
386 * If read-side task has no lock to protect task->mempolicy, write-side
387 * task will rebind the task->mempolicy by two step. The first step is
388 * setting all the newly nodes, and the second step is cleaning all the
389 * disallowed nodes. In this way, we can avoid finding no node to alloc
390 * page.
391 * If we have a lock to protect task->mempolicy in read-side, we do
392 * rebind directly.
393 *
394 * step:
395 * MPOL_REBIND_ONCE - do rebind work at once
396 * MPOL_REBIND_STEP1 - set all the newly nodes
397 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
398 */
399 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
400 enum mpol_rebind_step step)
401 {
402 if (!pol)
403 return;
404 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
405 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
406 return;
407
408 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
409 return;
410
411 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
412 BUG();
413
414 if (step == MPOL_REBIND_STEP1)
415 pol->flags |= MPOL_F_REBINDING;
416 else if (step == MPOL_REBIND_STEP2)
417 pol->flags &= ~MPOL_F_REBINDING;
418 else if (step >= MPOL_REBIND_NSTEP)
419 BUG();
420
421 mpol_ops[pol->mode].rebind(pol, newmask, step);
422 }
423
424 /*
425 * Wrapper for mpol_rebind_policy() that just requires task
426 * pointer, and updates task mempolicy.
427 *
428 * Called with task's alloc_lock held.
429 */
430
431 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
432 enum mpol_rebind_step step)
433 {
434 mpol_rebind_policy(tsk->mempolicy, new, step);
435 }
436
437 /*
438 * Rebind each vma in mm to new nodemask.
439 *
440 * Call holding a reference to mm. Takes mm->mmap_sem during call.
441 */
442
443 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
444 {
445 struct vm_area_struct *vma;
446
447 down_write(&mm->mmap_sem);
448 for (vma = mm->mmap; vma; vma = vma->vm_next)
449 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
450 up_write(&mm->mmap_sem);
451 }
452
453 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
454 [MPOL_DEFAULT] = {
455 .rebind = mpol_rebind_default,
456 },
457 [MPOL_INTERLEAVE] = {
458 .create = mpol_new_interleave,
459 .rebind = mpol_rebind_nodemask,
460 },
461 [MPOL_PREFERRED] = {
462 .create = mpol_new_preferred,
463 .rebind = mpol_rebind_preferred,
464 },
465 [MPOL_BIND] = {
466 .create = mpol_new_bind,
467 .rebind = mpol_rebind_nodemask,
468 },
469 };
470
471 static void migrate_page_add(struct page *page, struct list_head *pagelist,
472 unsigned long flags);
473
474 struct queue_pages {
475 struct list_head *pagelist;
476 unsigned long flags;
477 nodemask_t *nmask;
478 struct vm_area_struct *prev;
479 };
480
481 /*
482 * Scan through pages checking if pages follow certain conditions,
483 * and move them to the pagelist if they do.
484 */
485 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
486 unsigned long end, struct mm_walk *walk)
487 {
488 struct vm_area_struct *vma = walk->vma;
489 struct page *page;
490 struct queue_pages *qp = walk->private;
491 unsigned long flags = qp->flags;
492 int nid;
493 pte_t *pte;
494 spinlock_t *ptl;
495
496 split_huge_page_pmd(vma, addr, pmd);
497 if (pmd_trans_unstable(pmd))
498 return 0;
499
500 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
501 for (; addr != end; pte++, addr += PAGE_SIZE) {
502 if (!pte_present(*pte))
503 continue;
504 page = vm_normal_page(vma, addr, *pte);
505 if (!page)
506 continue;
507 /*
508 * vm_normal_page() filters out zero pages, but there might
509 * still be PageReserved pages to skip, perhaps in a VDSO.
510 */
511 if (PageReserved(page))
512 continue;
513 nid = page_to_nid(page);
514 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
515 continue;
516
517 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
518 migrate_page_add(page, qp->pagelist, flags);
519 }
520 pte_unmap_unlock(pte - 1, ptl);
521 cond_resched();
522 return 0;
523 }
524
525 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
526 unsigned long addr, unsigned long end,
527 struct mm_walk *walk)
528 {
529 #ifdef CONFIG_HUGETLB_PAGE
530 struct queue_pages *qp = walk->private;
531 unsigned long flags = qp->flags;
532 int nid;
533 struct page *page;
534 spinlock_t *ptl;
535 pte_t entry;
536
537 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
538 entry = huge_ptep_get(pte);
539 if (!pte_present(entry))
540 goto unlock;
541 page = pte_page(entry);
542 nid = page_to_nid(page);
543 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
544 goto unlock;
545 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
546 if (flags & (MPOL_MF_MOVE_ALL) ||
547 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
548 isolate_huge_page(page, qp->pagelist);
549 unlock:
550 spin_unlock(ptl);
551 #else
552 BUG();
553 #endif
554 return 0;
555 }
556
557 #ifdef CONFIG_NUMA_BALANCING
558 /*
559 * This is used to mark a range of virtual addresses to be inaccessible.
560 * These are later cleared by a NUMA hinting fault. Depending on these
561 * faults, pages may be migrated for better NUMA placement.
562 *
563 * This is assuming that NUMA faults are handled using PROT_NONE. If
564 * an architecture makes a different choice, it will need further
565 * changes to the core.
566 */
567 unsigned long change_prot_numa(struct vm_area_struct *vma,
568 unsigned long addr, unsigned long end)
569 {
570 int nr_updated;
571
572 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
573 if (nr_updated)
574 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
575
576 return nr_updated;
577 }
578 #else
579 static unsigned long change_prot_numa(struct vm_area_struct *vma,
580 unsigned long addr, unsigned long end)
581 {
582 return 0;
583 }
584 #endif /* CONFIG_NUMA_BALANCING */
585
586 static int queue_pages_test_walk(unsigned long start, unsigned long end,
587 struct mm_walk *walk)
588 {
589 struct vm_area_struct *vma = walk->vma;
590 struct queue_pages *qp = walk->private;
591 unsigned long endvma = vma->vm_end;
592 unsigned long flags = qp->flags;
593
594 if (vma->vm_flags & VM_PFNMAP)
595 return 1;
596
597 if (endvma > end)
598 endvma = end;
599 if (vma->vm_start > start)
600 start = vma->vm_start;
601
602 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
603 if (!vma->vm_next && vma->vm_end < end)
604 return -EFAULT;
605 if (qp->prev && qp->prev->vm_end < vma->vm_start)
606 return -EFAULT;
607 }
608
609 qp->prev = vma;
610
611 if (vma->vm_flags & VM_PFNMAP)
612 return 1;
613
614 if (flags & MPOL_MF_LAZY) {
615 /* Similar to task_numa_work, skip inaccessible VMAs */
616 if (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))
617 change_prot_numa(vma, start, endvma);
618 return 1;
619 }
620
621 if ((flags & MPOL_MF_STRICT) ||
622 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
623 vma_migratable(vma)))
624 /* queue pages from current vma */
625 return 0;
626 return 1;
627 }
628
629 /*
630 * Walk through page tables and collect pages to be migrated.
631 *
632 * If pages found in a given range are on a set of nodes (determined by
633 * @nodes and @flags,) it's isolated and queued to the pagelist which is
634 * passed via @private.)
635 */
636 static int
637 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
638 nodemask_t *nodes, unsigned long flags,
639 struct list_head *pagelist)
640 {
641 struct queue_pages qp = {
642 .pagelist = pagelist,
643 .flags = flags,
644 .nmask = nodes,
645 .prev = NULL,
646 };
647 struct mm_walk queue_pages_walk = {
648 .hugetlb_entry = queue_pages_hugetlb,
649 .pmd_entry = queue_pages_pte_range,
650 .test_walk = queue_pages_test_walk,
651 .mm = mm,
652 .private = &qp,
653 };
654
655 return walk_page_range(start, end, &queue_pages_walk);
656 }
657
658 /*
659 * Apply policy to a single VMA
660 * This must be called with the mmap_sem held for writing.
661 */
662 static int vma_replace_policy(struct vm_area_struct *vma,
663 struct mempolicy *pol)
664 {
665 int err;
666 struct mempolicy *old;
667 struct mempolicy *new;
668
669 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
670 vma->vm_start, vma->vm_end, vma->vm_pgoff,
671 vma->vm_ops, vma->vm_file,
672 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
673
674 new = mpol_dup(pol);
675 if (IS_ERR(new))
676 return PTR_ERR(new);
677
678 if (vma->vm_ops && vma->vm_ops->set_policy) {
679 err = vma->vm_ops->set_policy(vma, new);
680 if (err)
681 goto err_out;
682 }
683
684 old = vma->vm_policy;
685 vma->vm_policy = new; /* protected by mmap_sem */
686 mpol_put(old);
687
688 return 0;
689 err_out:
690 mpol_put(new);
691 return err;
692 }
693
694 /* Step 2: apply policy to a range and do splits. */
695 static int mbind_range(struct mm_struct *mm, unsigned long start,
696 unsigned long end, struct mempolicy *new_pol)
697 {
698 struct vm_area_struct *next;
699 struct vm_area_struct *prev;
700 struct vm_area_struct *vma;
701 int err = 0;
702 pgoff_t pgoff;
703 unsigned long vmstart;
704 unsigned long vmend;
705
706 vma = find_vma(mm, start);
707 if (!vma || vma->vm_start > start)
708 return -EFAULT;
709
710 prev = vma->vm_prev;
711 if (start > vma->vm_start)
712 prev = vma;
713
714 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
715 next = vma->vm_next;
716 vmstart = max(start, vma->vm_start);
717 vmend = min(end, vma->vm_end);
718
719 if (mpol_equal(vma_policy(vma), new_pol))
720 continue;
721
722 pgoff = vma->vm_pgoff +
723 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
724 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
725 vma->anon_vma, vma->vm_file, pgoff,
726 new_pol);
727 if (prev) {
728 vma = prev;
729 next = vma->vm_next;
730 if (mpol_equal(vma_policy(vma), new_pol))
731 continue;
732 /* vma_merge() joined vma && vma->next, case 8 */
733 goto replace;
734 }
735 if (vma->vm_start != vmstart) {
736 err = split_vma(vma->vm_mm, vma, vmstart, 1);
737 if (err)
738 goto out;
739 }
740 if (vma->vm_end != vmend) {
741 err = split_vma(vma->vm_mm, vma, vmend, 0);
742 if (err)
743 goto out;
744 }
745 replace:
746 err = vma_replace_policy(vma, new_pol);
747 if (err)
748 goto out;
749 }
750
751 out:
752 return err;
753 }
754
755 /* Set the process memory policy */
756 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
757 nodemask_t *nodes)
758 {
759 struct mempolicy *new, *old;
760 NODEMASK_SCRATCH(scratch);
761 int ret;
762
763 if (!scratch)
764 return -ENOMEM;
765
766 new = mpol_new(mode, flags, nodes);
767 if (IS_ERR(new)) {
768 ret = PTR_ERR(new);
769 goto out;
770 }
771
772 task_lock(current);
773 ret = mpol_set_nodemask(new, nodes, scratch);
774 if (ret) {
775 task_unlock(current);
776 mpol_put(new);
777 goto out;
778 }
779 old = current->mempolicy;
780 current->mempolicy = new;
781 if (new && new->mode == MPOL_INTERLEAVE &&
782 nodes_weight(new->v.nodes))
783 current->il_next = first_node(new->v.nodes);
784 task_unlock(current);
785 mpol_put(old);
786 ret = 0;
787 out:
788 NODEMASK_SCRATCH_FREE(scratch);
789 return ret;
790 }
791
792 /*
793 * Return nodemask for policy for get_mempolicy() query
794 *
795 * Called with task's alloc_lock held
796 */
797 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
798 {
799 nodes_clear(*nodes);
800 if (p == &default_policy)
801 return;
802
803 switch (p->mode) {
804 case MPOL_BIND:
805 /* Fall through */
806 case MPOL_INTERLEAVE:
807 *nodes = p->v.nodes;
808 break;
809 case MPOL_PREFERRED:
810 if (!(p->flags & MPOL_F_LOCAL))
811 node_set(p->v.preferred_node, *nodes);
812 /* else return empty node mask for local allocation */
813 break;
814 default:
815 BUG();
816 }
817 }
818
819 static int lookup_node(struct mm_struct *mm, unsigned long addr)
820 {
821 struct page *p;
822 int err;
823
824 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
825 if (err >= 0) {
826 err = page_to_nid(p);
827 put_page(p);
828 }
829 return err;
830 }
831
832 /* Retrieve NUMA policy */
833 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
834 unsigned long addr, unsigned long flags)
835 {
836 int err;
837 struct mm_struct *mm = current->mm;
838 struct vm_area_struct *vma = NULL;
839 struct mempolicy *pol = current->mempolicy;
840
841 if (flags &
842 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
843 return -EINVAL;
844
845 if (flags & MPOL_F_MEMS_ALLOWED) {
846 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
847 return -EINVAL;
848 *policy = 0; /* just so it's initialized */
849 task_lock(current);
850 *nmask = cpuset_current_mems_allowed;
851 task_unlock(current);
852 return 0;
853 }
854
855 if (flags & MPOL_F_ADDR) {
856 /*
857 * Do NOT fall back to task policy if the
858 * vma/shared policy at addr is NULL. We
859 * want to return MPOL_DEFAULT in this case.
860 */
861 down_read(&mm->mmap_sem);
862 vma = find_vma_intersection(mm, addr, addr+1);
863 if (!vma) {
864 up_read(&mm->mmap_sem);
865 return -EFAULT;
866 }
867 if (vma->vm_ops && vma->vm_ops->get_policy)
868 pol = vma->vm_ops->get_policy(vma, addr);
869 else
870 pol = vma->vm_policy;
871 } else if (addr)
872 return -EINVAL;
873
874 if (!pol)
875 pol = &default_policy; /* indicates default behavior */
876
877 if (flags & MPOL_F_NODE) {
878 if (flags & MPOL_F_ADDR) {
879 err = lookup_node(mm, addr);
880 if (err < 0)
881 goto out;
882 *policy = err;
883 } else if (pol == current->mempolicy &&
884 pol->mode == MPOL_INTERLEAVE) {
885 *policy = current->il_next;
886 } else {
887 err = -EINVAL;
888 goto out;
889 }
890 } else {
891 *policy = pol == &default_policy ? MPOL_DEFAULT :
892 pol->mode;
893 /*
894 * Internal mempolicy flags must be masked off before exposing
895 * the policy to userspace.
896 */
897 *policy |= (pol->flags & MPOL_MODE_FLAGS);
898 }
899
900 if (vma) {
901 up_read(&current->mm->mmap_sem);
902 vma = NULL;
903 }
904
905 err = 0;
906 if (nmask) {
907 if (mpol_store_user_nodemask(pol)) {
908 *nmask = pol->w.user_nodemask;
909 } else {
910 task_lock(current);
911 get_policy_nodemask(pol, nmask);
912 task_unlock(current);
913 }
914 }
915
916 out:
917 mpol_cond_put(pol);
918 if (vma)
919 up_read(&current->mm->mmap_sem);
920 return err;
921 }
922
923 #ifdef CONFIG_MIGRATION
924 /*
925 * page migration
926 */
927 static void migrate_page_add(struct page *page, struct list_head *pagelist,
928 unsigned long flags)
929 {
930 /*
931 * Avoid migrating a page that is shared with others.
932 */
933 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
934 if (!isolate_lru_page(page)) {
935 list_add_tail(&page->lru, pagelist);
936 inc_zone_page_state(page, NR_ISOLATED_ANON +
937 page_is_file_cache(page));
938 }
939 }
940 }
941
942 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
943 {
944 if (PageHuge(page))
945 return alloc_huge_page_node(page_hstate(compound_head(page)),
946 node);
947 else
948 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE |
949 __GFP_THISNODE, 0);
950 }
951
952 /*
953 * Migrate pages from one node to a target node.
954 * Returns error or the number of pages not migrated.
955 */
956 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
957 int flags)
958 {
959 nodemask_t nmask;
960 LIST_HEAD(pagelist);
961 int err = 0;
962
963 nodes_clear(nmask);
964 node_set(source, nmask);
965
966 /*
967 * This does not "check" the range but isolates all pages that
968 * need migration. Between passing in the full user address
969 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
970 */
971 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
972 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
973 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
974
975 if (!list_empty(&pagelist)) {
976 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
977 MIGRATE_SYNC, MR_SYSCALL);
978 if (err)
979 putback_movable_pages(&pagelist);
980 }
981
982 return err;
983 }
984
985 /*
986 * Move pages between the two nodesets so as to preserve the physical
987 * layout as much as possible.
988 *
989 * Returns the number of page that could not be moved.
990 */
991 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
992 const nodemask_t *to, int flags)
993 {
994 int busy = 0;
995 int err;
996 nodemask_t tmp;
997
998 err = migrate_prep();
999 if (err)
1000 return err;
1001
1002 down_read(&mm->mmap_sem);
1003
1004 /*
1005 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1006 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1007 * bit in 'tmp', and return that <source, dest> pair for migration.
1008 * The pair of nodemasks 'to' and 'from' define the map.
1009 *
1010 * If no pair of bits is found that way, fallback to picking some
1011 * pair of 'source' and 'dest' bits that are not the same. If the
1012 * 'source' and 'dest' bits are the same, this represents a node
1013 * that will be migrating to itself, so no pages need move.
1014 *
1015 * If no bits are left in 'tmp', or if all remaining bits left
1016 * in 'tmp' correspond to the same bit in 'to', return false
1017 * (nothing left to migrate).
1018 *
1019 * This lets us pick a pair of nodes to migrate between, such that
1020 * if possible the dest node is not already occupied by some other
1021 * source node, minimizing the risk of overloading the memory on a
1022 * node that would happen if we migrated incoming memory to a node
1023 * before migrating outgoing memory source that same node.
1024 *
1025 * A single scan of tmp is sufficient. As we go, we remember the
1026 * most recent <s, d> pair that moved (s != d). If we find a pair
1027 * that not only moved, but what's better, moved to an empty slot
1028 * (d is not set in tmp), then we break out then, with that pair.
1029 * Otherwise when we finish scanning from_tmp, we at least have the
1030 * most recent <s, d> pair that moved. If we get all the way through
1031 * the scan of tmp without finding any node that moved, much less
1032 * moved to an empty node, then there is nothing left worth migrating.
1033 */
1034
1035 tmp = *from;
1036 while (!nodes_empty(tmp)) {
1037 int s,d;
1038 int source = NUMA_NO_NODE;
1039 int dest = 0;
1040
1041 for_each_node_mask(s, tmp) {
1042
1043 /*
1044 * do_migrate_pages() tries to maintain the relative
1045 * node relationship of the pages established between
1046 * threads and memory areas.
1047 *
1048 * However if the number of source nodes is not equal to
1049 * the number of destination nodes we can not preserve
1050 * this node relative relationship. In that case, skip
1051 * copying memory from a node that is in the destination
1052 * mask.
1053 *
1054 * Example: [2,3,4] -> [3,4,5] moves everything.
1055 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1056 */
1057
1058 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1059 (node_isset(s, *to)))
1060 continue;
1061
1062 d = node_remap(s, *from, *to);
1063 if (s == d)
1064 continue;
1065
1066 source = s; /* Node moved. Memorize */
1067 dest = d;
1068
1069 /* dest not in remaining from nodes? */
1070 if (!node_isset(dest, tmp))
1071 break;
1072 }
1073 if (source == NUMA_NO_NODE)
1074 break;
1075
1076 node_clear(source, tmp);
1077 err = migrate_to_node(mm, source, dest, flags);
1078 if (err > 0)
1079 busy += err;
1080 if (err < 0)
1081 break;
1082 }
1083 up_read(&mm->mmap_sem);
1084 if (err < 0)
1085 return err;
1086 return busy;
1087
1088 }
1089
1090 /*
1091 * Allocate a new page for page migration based on vma policy.
1092 * Start by assuming the page is mapped by the same vma as contains @start.
1093 * Search forward from there, if not. N.B., this assumes that the
1094 * list of pages handed to migrate_pages()--which is how we get here--
1095 * is in virtual address order.
1096 */
1097 static struct page *new_page(struct page *page, unsigned long start, int **x)
1098 {
1099 struct vm_area_struct *vma;
1100 unsigned long uninitialized_var(address);
1101
1102 vma = find_vma(current->mm, start);
1103 while (vma) {
1104 address = page_address_in_vma(page, vma);
1105 if (address != -EFAULT)
1106 break;
1107 vma = vma->vm_next;
1108 }
1109
1110 if (PageHuge(page)) {
1111 BUG_ON(!vma);
1112 return alloc_huge_page_noerr(vma, address, 1);
1113 }
1114 /*
1115 * if !vma, alloc_page_vma() will use task or system default policy
1116 */
1117 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1118 }
1119 #else
1120
1121 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1122 unsigned long flags)
1123 {
1124 }
1125
1126 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1127 const nodemask_t *to, int flags)
1128 {
1129 return -ENOSYS;
1130 }
1131
1132 static struct page *new_page(struct page *page, unsigned long start, int **x)
1133 {
1134 return NULL;
1135 }
1136 #endif
1137
1138 static long do_mbind(unsigned long start, unsigned long len,
1139 unsigned short mode, unsigned short mode_flags,
1140 nodemask_t *nmask, unsigned long flags)
1141 {
1142 struct mm_struct *mm = current->mm;
1143 struct mempolicy *new;
1144 unsigned long end;
1145 int err;
1146 LIST_HEAD(pagelist);
1147
1148 if (flags & ~(unsigned long)MPOL_MF_VALID)
1149 return -EINVAL;
1150 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1151 return -EPERM;
1152
1153 if (start & ~PAGE_MASK)
1154 return -EINVAL;
1155
1156 if (mode == MPOL_DEFAULT)
1157 flags &= ~MPOL_MF_STRICT;
1158
1159 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1160 end = start + len;
1161
1162 if (end < start)
1163 return -EINVAL;
1164 if (end == start)
1165 return 0;
1166
1167 new = mpol_new(mode, mode_flags, nmask);
1168 if (IS_ERR(new))
1169 return PTR_ERR(new);
1170
1171 if (flags & MPOL_MF_LAZY)
1172 new->flags |= MPOL_F_MOF;
1173
1174 /*
1175 * If we are using the default policy then operation
1176 * on discontinuous address spaces is okay after all
1177 */
1178 if (!new)
1179 flags |= MPOL_MF_DISCONTIG_OK;
1180
1181 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1182 start, start + len, mode, mode_flags,
1183 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1184
1185 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1186
1187 err = migrate_prep();
1188 if (err)
1189 goto mpol_out;
1190 }
1191 {
1192 NODEMASK_SCRATCH(scratch);
1193 if (scratch) {
1194 down_write(&mm->mmap_sem);
1195 task_lock(current);
1196 err = mpol_set_nodemask(new, nmask, scratch);
1197 task_unlock(current);
1198 if (err)
1199 up_write(&mm->mmap_sem);
1200 } else
1201 err = -ENOMEM;
1202 NODEMASK_SCRATCH_FREE(scratch);
1203 }
1204 if (err)
1205 goto mpol_out;
1206
1207 err = queue_pages_range(mm, start, end, nmask,
1208 flags | MPOL_MF_INVERT, &pagelist);
1209 if (!err)
1210 err = mbind_range(mm, start, end, new);
1211
1212 if (!err) {
1213 int nr_failed = 0;
1214
1215 if (!list_empty(&pagelist)) {
1216 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1217 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1218 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1219 if (nr_failed)
1220 putback_movable_pages(&pagelist);
1221 }
1222
1223 if (nr_failed && (flags & MPOL_MF_STRICT))
1224 err = -EIO;
1225 } else
1226 putback_movable_pages(&pagelist);
1227
1228 up_write(&mm->mmap_sem);
1229 mpol_out:
1230 mpol_put(new);
1231 return err;
1232 }
1233
1234 /*
1235 * User space interface with variable sized bitmaps for nodelists.
1236 */
1237
1238 /* Copy a node mask from user space. */
1239 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1240 unsigned long maxnode)
1241 {
1242 unsigned long k;
1243 unsigned long nlongs;
1244 unsigned long endmask;
1245
1246 --maxnode;
1247 nodes_clear(*nodes);
1248 if (maxnode == 0 || !nmask)
1249 return 0;
1250 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1251 return -EINVAL;
1252
1253 nlongs = BITS_TO_LONGS(maxnode);
1254 if ((maxnode % BITS_PER_LONG) == 0)
1255 endmask = ~0UL;
1256 else
1257 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1258
1259 /* When the user specified more nodes than supported just check
1260 if the non supported part is all zero. */
1261 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1262 if (nlongs > PAGE_SIZE/sizeof(long))
1263 return -EINVAL;
1264 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1265 unsigned long t;
1266 if (get_user(t, nmask + k))
1267 return -EFAULT;
1268 if (k == nlongs - 1) {
1269 if (t & endmask)
1270 return -EINVAL;
1271 } else if (t)
1272 return -EINVAL;
1273 }
1274 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1275 endmask = ~0UL;
1276 }
1277
1278 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1279 return -EFAULT;
1280 nodes_addr(*nodes)[nlongs-1] &= endmask;
1281 return 0;
1282 }
1283
1284 /* Copy a kernel node mask to user space */
1285 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1286 nodemask_t *nodes)
1287 {
1288 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1289 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1290
1291 if (copy > nbytes) {
1292 if (copy > PAGE_SIZE)
1293 return -EINVAL;
1294 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1295 return -EFAULT;
1296 copy = nbytes;
1297 }
1298 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1299 }
1300
1301 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1302 unsigned long, mode, const unsigned long __user *, nmask,
1303 unsigned long, maxnode, unsigned, flags)
1304 {
1305 nodemask_t nodes;
1306 int err;
1307 unsigned short mode_flags;
1308
1309 mode_flags = mode & MPOL_MODE_FLAGS;
1310 mode &= ~MPOL_MODE_FLAGS;
1311 if (mode >= MPOL_MAX)
1312 return -EINVAL;
1313 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1314 (mode_flags & MPOL_F_RELATIVE_NODES))
1315 return -EINVAL;
1316 err = get_nodes(&nodes, nmask, maxnode);
1317 if (err)
1318 return err;
1319 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1320 }
1321
1322 /* Set the process memory policy */
1323 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1324 unsigned long, maxnode)
1325 {
1326 int err;
1327 nodemask_t nodes;
1328 unsigned short flags;
1329
1330 flags = mode & MPOL_MODE_FLAGS;
1331 mode &= ~MPOL_MODE_FLAGS;
1332 if ((unsigned int)mode >= MPOL_MAX)
1333 return -EINVAL;
1334 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1335 return -EINVAL;
1336 err = get_nodes(&nodes, nmask, maxnode);
1337 if (err)
1338 return err;
1339 return do_set_mempolicy(mode, flags, &nodes);
1340 }
1341
1342 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1343 const unsigned long __user *, old_nodes,
1344 const unsigned long __user *, new_nodes)
1345 {
1346 const struct cred *cred = current_cred(), *tcred;
1347 struct mm_struct *mm = NULL;
1348 struct task_struct *task;
1349 nodemask_t task_nodes;
1350 int err;
1351 nodemask_t *old;
1352 nodemask_t *new;
1353 NODEMASK_SCRATCH(scratch);
1354
1355 if (!scratch)
1356 return -ENOMEM;
1357
1358 old = &scratch->mask1;
1359 new = &scratch->mask2;
1360
1361 err = get_nodes(old, old_nodes, maxnode);
1362 if (err)
1363 goto out;
1364
1365 err = get_nodes(new, new_nodes, maxnode);
1366 if (err)
1367 goto out;
1368
1369 /* Find the mm_struct */
1370 rcu_read_lock();
1371 task = pid ? find_task_by_vpid(pid) : current;
1372 if (!task) {
1373 rcu_read_unlock();
1374 err = -ESRCH;
1375 goto out;
1376 }
1377 get_task_struct(task);
1378
1379 err = -EINVAL;
1380
1381 /*
1382 * Check if this process has the right to modify the specified
1383 * process. The right exists if the process has administrative
1384 * capabilities, superuser privileges or the same
1385 * userid as the target process.
1386 */
1387 tcred = __task_cred(task);
1388 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1389 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1390 !capable(CAP_SYS_NICE)) {
1391 rcu_read_unlock();
1392 err = -EPERM;
1393 goto out_put;
1394 }
1395 rcu_read_unlock();
1396
1397 task_nodes = cpuset_mems_allowed(task);
1398 /* Is the user allowed to access the target nodes? */
1399 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1400 err = -EPERM;
1401 goto out_put;
1402 }
1403
1404 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1405 err = -EINVAL;
1406 goto out_put;
1407 }
1408
1409 err = security_task_movememory(task);
1410 if (err)
1411 goto out_put;
1412
1413 mm = get_task_mm(task);
1414 put_task_struct(task);
1415
1416 if (!mm) {
1417 err = -EINVAL;
1418 goto out;
1419 }
1420
1421 err = do_migrate_pages(mm, old, new,
1422 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1423
1424 mmput(mm);
1425 out:
1426 NODEMASK_SCRATCH_FREE(scratch);
1427
1428 return err;
1429
1430 out_put:
1431 put_task_struct(task);
1432 goto out;
1433
1434 }
1435
1436
1437 /* Retrieve NUMA policy */
1438 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1439 unsigned long __user *, nmask, unsigned long, maxnode,
1440 unsigned long, addr, unsigned long, flags)
1441 {
1442 int err;
1443 int uninitialized_var(pval);
1444 nodemask_t nodes;
1445
1446 if (nmask != NULL && maxnode < MAX_NUMNODES)
1447 return -EINVAL;
1448
1449 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1450
1451 if (err)
1452 return err;
1453
1454 if (policy && put_user(pval, policy))
1455 return -EFAULT;
1456
1457 if (nmask)
1458 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1459
1460 return err;
1461 }
1462
1463 #ifdef CONFIG_COMPAT
1464
1465 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1466 compat_ulong_t __user *, nmask,
1467 compat_ulong_t, maxnode,
1468 compat_ulong_t, addr, compat_ulong_t, flags)
1469 {
1470 long err;
1471 unsigned long __user *nm = NULL;
1472 unsigned long nr_bits, alloc_size;
1473 DECLARE_BITMAP(bm, MAX_NUMNODES);
1474
1475 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1476 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1477
1478 if (nmask)
1479 nm = compat_alloc_user_space(alloc_size);
1480
1481 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1482
1483 if (!err && nmask) {
1484 unsigned long copy_size;
1485 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1486 err = copy_from_user(bm, nm, copy_size);
1487 /* ensure entire bitmap is zeroed */
1488 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1489 err |= compat_put_bitmap(nmask, bm, nr_bits);
1490 }
1491
1492 return err;
1493 }
1494
1495 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1496 compat_ulong_t, maxnode)
1497 {
1498 long err = 0;
1499 unsigned long __user *nm = NULL;
1500 unsigned long nr_bits, alloc_size;
1501 DECLARE_BITMAP(bm, MAX_NUMNODES);
1502
1503 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1504 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1505
1506 if (nmask) {
1507 err = compat_get_bitmap(bm, nmask, nr_bits);
1508 nm = compat_alloc_user_space(alloc_size);
1509 err |= copy_to_user(nm, bm, alloc_size);
1510 }
1511
1512 if (err)
1513 return -EFAULT;
1514
1515 return sys_set_mempolicy(mode, nm, nr_bits+1);
1516 }
1517
1518 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1519 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1520 compat_ulong_t, maxnode, compat_ulong_t, flags)
1521 {
1522 long err = 0;
1523 unsigned long __user *nm = NULL;
1524 unsigned long nr_bits, alloc_size;
1525 nodemask_t bm;
1526
1527 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1528 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1529
1530 if (nmask) {
1531 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1532 nm = compat_alloc_user_space(alloc_size);
1533 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1534 }
1535
1536 if (err)
1537 return -EFAULT;
1538
1539 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1540 }
1541
1542 #endif
1543
1544 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1545 unsigned long addr)
1546 {
1547 struct mempolicy *pol = NULL;
1548
1549 if (vma) {
1550 if (vma->vm_ops && vma->vm_ops->get_policy) {
1551 pol = vma->vm_ops->get_policy(vma, addr);
1552 } else if (vma->vm_policy) {
1553 pol = vma->vm_policy;
1554
1555 /*
1556 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1557 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1558 * count on these policies which will be dropped by
1559 * mpol_cond_put() later
1560 */
1561 if (mpol_needs_cond_ref(pol))
1562 mpol_get(pol);
1563 }
1564 }
1565
1566 return pol;
1567 }
1568
1569 /*
1570 * get_vma_policy(@vma, @addr)
1571 * @vma: virtual memory area whose policy is sought
1572 * @addr: address in @vma for shared policy lookup
1573 *
1574 * Returns effective policy for a VMA at specified address.
1575 * Falls back to current->mempolicy or system default policy, as necessary.
1576 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1577 * count--added by the get_policy() vm_op, as appropriate--to protect against
1578 * freeing by another task. It is the caller's responsibility to free the
1579 * extra reference for shared policies.
1580 */
1581 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1582 unsigned long addr)
1583 {
1584 struct mempolicy *pol = __get_vma_policy(vma, addr);
1585
1586 if (!pol)
1587 pol = get_task_policy(current);
1588
1589 return pol;
1590 }
1591
1592 bool vma_policy_mof(struct vm_area_struct *vma)
1593 {
1594 struct mempolicy *pol;
1595
1596 if (vma->vm_ops && vma->vm_ops->get_policy) {
1597 bool ret = false;
1598
1599 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1600 if (pol && (pol->flags & MPOL_F_MOF))
1601 ret = true;
1602 mpol_cond_put(pol);
1603
1604 return ret;
1605 }
1606
1607 pol = vma->vm_policy;
1608 if (!pol)
1609 pol = get_task_policy(current);
1610
1611 return pol->flags & MPOL_F_MOF;
1612 }
1613
1614 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1615 {
1616 enum zone_type dynamic_policy_zone = policy_zone;
1617
1618 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1619
1620 /*
1621 * if policy->v.nodes has movable memory only,
1622 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1623 *
1624 * policy->v.nodes is intersect with node_states[N_MEMORY].
1625 * so if the following test faile, it implies
1626 * policy->v.nodes has movable memory only.
1627 */
1628 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1629 dynamic_policy_zone = ZONE_MOVABLE;
1630
1631 return zone >= dynamic_policy_zone;
1632 }
1633
1634 /*
1635 * Return a nodemask representing a mempolicy for filtering nodes for
1636 * page allocation
1637 */
1638 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1639 {
1640 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1641 if (unlikely(policy->mode == MPOL_BIND) &&
1642 apply_policy_zone(policy, gfp_zone(gfp)) &&
1643 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1644 return &policy->v.nodes;
1645
1646 return NULL;
1647 }
1648
1649 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1650 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1651 int nd)
1652 {
1653 switch (policy->mode) {
1654 case MPOL_PREFERRED:
1655 if (!(policy->flags & MPOL_F_LOCAL))
1656 nd = policy->v.preferred_node;
1657 break;
1658 case MPOL_BIND:
1659 /*
1660 * Normally, MPOL_BIND allocations are node-local within the
1661 * allowed nodemask. However, if __GFP_THISNODE is set and the
1662 * current node isn't part of the mask, we use the zonelist for
1663 * the first node in the mask instead.
1664 */
1665 if (unlikely(gfp & __GFP_THISNODE) &&
1666 unlikely(!node_isset(nd, policy->v.nodes)))
1667 nd = first_node(policy->v.nodes);
1668 break;
1669 default:
1670 BUG();
1671 }
1672 return node_zonelist(nd, gfp);
1673 }
1674
1675 /* Do dynamic interleaving for a process */
1676 static unsigned interleave_nodes(struct mempolicy *policy)
1677 {
1678 unsigned nid, next;
1679 struct task_struct *me = current;
1680
1681 nid = me->il_next;
1682 next = next_node(nid, policy->v.nodes);
1683 if (next >= MAX_NUMNODES)
1684 next = first_node(policy->v.nodes);
1685 if (next < MAX_NUMNODES)
1686 me->il_next = next;
1687 return nid;
1688 }
1689
1690 /*
1691 * Depending on the memory policy provide a node from which to allocate the
1692 * next slab entry.
1693 */
1694 unsigned int mempolicy_slab_node(void)
1695 {
1696 struct mempolicy *policy;
1697 int node = numa_mem_id();
1698
1699 if (in_interrupt())
1700 return node;
1701
1702 policy = current->mempolicy;
1703 if (!policy || policy->flags & MPOL_F_LOCAL)
1704 return node;
1705
1706 switch (policy->mode) {
1707 case MPOL_PREFERRED:
1708 /*
1709 * handled MPOL_F_LOCAL above
1710 */
1711 return policy->v.preferred_node;
1712
1713 case MPOL_INTERLEAVE:
1714 return interleave_nodes(policy);
1715
1716 case MPOL_BIND: {
1717 /*
1718 * Follow bind policy behavior and start allocation at the
1719 * first node.
1720 */
1721 struct zonelist *zonelist;
1722 struct zone *zone;
1723 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1724 zonelist = &NODE_DATA(node)->node_zonelists[0];
1725 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1726 &policy->v.nodes,
1727 &zone);
1728 return zone ? zone->node : node;
1729 }
1730
1731 default:
1732 BUG();
1733 }
1734 }
1735
1736 /* Do static interleaving for a VMA with known offset. */
1737 static unsigned offset_il_node(struct mempolicy *pol,
1738 struct vm_area_struct *vma, unsigned long off)
1739 {
1740 unsigned nnodes = nodes_weight(pol->v.nodes);
1741 unsigned target;
1742 int c;
1743 int nid = NUMA_NO_NODE;
1744
1745 if (!nnodes)
1746 return numa_node_id();
1747 target = (unsigned int)off % nnodes;
1748 c = 0;
1749 do {
1750 nid = next_node(nid, pol->v.nodes);
1751 c++;
1752 } while (c <= target);
1753 return nid;
1754 }
1755
1756 /* Determine a node number for interleave */
1757 static inline unsigned interleave_nid(struct mempolicy *pol,
1758 struct vm_area_struct *vma, unsigned long addr, int shift)
1759 {
1760 if (vma) {
1761 unsigned long off;
1762
1763 /*
1764 * for small pages, there is no difference between
1765 * shift and PAGE_SHIFT, so the bit-shift is safe.
1766 * for huge pages, since vm_pgoff is in units of small
1767 * pages, we need to shift off the always 0 bits to get
1768 * a useful offset.
1769 */
1770 BUG_ON(shift < PAGE_SHIFT);
1771 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1772 off += (addr - vma->vm_start) >> shift;
1773 return offset_il_node(pol, vma, off);
1774 } else
1775 return interleave_nodes(pol);
1776 }
1777
1778 /*
1779 * Return the bit number of a random bit set in the nodemask.
1780 * (returns NUMA_NO_NODE if nodemask is empty)
1781 */
1782 int node_random(const nodemask_t *maskp)
1783 {
1784 int w, bit = NUMA_NO_NODE;
1785
1786 w = nodes_weight(*maskp);
1787 if (w)
1788 bit = bitmap_ord_to_pos(maskp->bits,
1789 get_random_int() % w, MAX_NUMNODES);
1790 return bit;
1791 }
1792
1793 #ifdef CONFIG_HUGETLBFS
1794 /*
1795 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1796 * @vma: virtual memory area whose policy is sought
1797 * @addr: address in @vma for shared policy lookup and interleave policy
1798 * @gfp_flags: for requested zone
1799 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1800 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1801 *
1802 * Returns a zonelist suitable for a huge page allocation and a pointer
1803 * to the struct mempolicy for conditional unref after allocation.
1804 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1805 * @nodemask for filtering the zonelist.
1806 *
1807 * Must be protected by read_mems_allowed_begin()
1808 */
1809 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1810 gfp_t gfp_flags, struct mempolicy **mpol,
1811 nodemask_t **nodemask)
1812 {
1813 struct zonelist *zl;
1814
1815 *mpol = get_vma_policy(vma, addr);
1816 *nodemask = NULL; /* assume !MPOL_BIND */
1817
1818 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1819 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1820 huge_page_shift(hstate_vma(vma))), gfp_flags);
1821 } else {
1822 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1823 if ((*mpol)->mode == MPOL_BIND)
1824 *nodemask = &(*mpol)->v.nodes;
1825 }
1826 return zl;
1827 }
1828
1829 /*
1830 * init_nodemask_of_mempolicy
1831 *
1832 * If the current task's mempolicy is "default" [NULL], return 'false'
1833 * to indicate default policy. Otherwise, extract the policy nodemask
1834 * for 'bind' or 'interleave' policy into the argument nodemask, or
1835 * initialize the argument nodemask to contain the single node for
1836 * 'preferred' or 'local' policy and return 'true' to indicate presence
1837 * of non-default mempolicy.
1838 *
1839 * We don't bother with reference counting the mempolicy [mpol_get/put]
1840 * because the current task is examining it's own mempolicy and a task's
1841 * mempolicy is only ever changed by the task itself.
1842 *
1843 * N.B., it is the caller's responsibility to free a returned nodemask.
1844 */
1845 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1846 {
1847 struct mempolicy *mempolicy;
1848 int nid;
1849
1850 if (!(mask && current->mempolicy))
1851 return false;
1852
1853 task_lock(current);
1854 mempolicy = current->mempolicy;
1855 switch (mempolicy->mode) {
1856 case MPOL_PREFERRED:
1857 if (mempolicy->flags & MPOL_F_LOCAL)
1858 nid = numa_node_id();
1859 else
1860 nid = mempolicy->v.preferred_node;
1861 init_nodemask_of_node(mask, nid);
1862 break;
1863
1864 case MPOL_BIND:
1865 /* Fall through */
1866 case MPOL_INTERLEAVE:
1867 *mask = mempolicy->v.nodes;
1868 break;
1869
1870 default:
1871 BUG();
1872 }
1873 task_unlock(current);
1874
1875 return true;
1876 }
1877 #endif
1878
1879 /*
1880 * mempolicy_nodemask_intersects
1881 *
1882 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1883 * policy. Otherwise, check for intersection between mask and the policy
1884 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1885 * policy, always return true since it may allocate elsewhere on fallback.
1886 *
1887 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1888 */
1889 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1890 const nodemask_t *mask)
1891 {
1892 struct mempolicy *mempolicy;
1893 bool ret = true;
1894
1895 if (!mask)
1896 return ret;
1897 task_lock(tsk);
1898 mempolicy = tsk->mempolicy;
1899 if (!mempolicy)
1900 goto out;
1901
1902 switch (mempolicy->mode) {
1903 case MPOL_PREFERRED:
1904 /*
1905 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1906 * allocate from, they may fallback to other nodes when oom.
1907 * Thus, it's possible for tsk to have allocated memory from
1908 * nodes in mask.
1909 */
1910 break;
1911 case MPOL_BIND:
1912 case MPOL_INTERLEAVE:
1913 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1914 break;
1915 default:
1916 BUG();
1917 }
1918 out:
1919 task_unlock(tsk);
1920 return ret;
1921 }
1922
1923 /* Allocate a page in interleaved policy.
1924 Own path because it needs to do special accounting. */
1925 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1926 unsigned nid)
1927 {
1928 struct zonelist *zl;
1929 struct page *page;
1930
1931 zl = node_zonelist(nid, gfp);
1932 page = __alloc_pages(gfp, order, zl);
1933 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1934 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1935 return page;
1936 }
1937
1938 /**
1939 * alloc_pages_vma - Allocate a page for a VMA.
1940 *
1941 * @gfp:
1942 * %GFP_USER user allocation.
1943 * %GFP_KERNEL kernel allocations,
1944 * %GFP_HIGHMEM highmem/user allocations,
1945 * %GFP_FS allocation should not call back into a file system.
1946 * %GFP_ATOMIC don't sleep.
1947 *
1948 * @order:Order of the GFP allocation.
1949 * @vma: Pointer to VMA or NULL if not available.
1950 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1951 * @node: Which node to prefer for allocation (modulo policy).
1952 * @hugepage: for hugepages try only the preferred node if possible
1953 *
1954 * This function allocates a page from the kernel page pool and applies
1955 * a NUMA policy associated with the VMA or the current process.
1956 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1957 * mm_struct of the VMA to prevent it from going away. Should be used for
1958 * all allocations for pages that will be mapped into user space. Returns
1959 * NULL when no page can be allocated.
1960 */
1961 struct page *
1962 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1963 unsigned long addr, int node, bool hugepage)
1964 {
1965 struct mempolicy *pol;
1966 struct page *page;
1967 unsigned int cpuset_mems_cookie;
1968 struct zonelist *zl;
1969 nodemask_t *nmask;
1970
1971 retry_cpuset:
1972 pol = get_vma_policy(vma, addr);
1973 cpuset_mems_cookie = read_mems_allowed_begin();
1974
1975 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage &&
1976 pol->mode != MPOL_INTERLEAVE)) {
1977 /*
1978 * For hugepage allocation and non-interleave policy which
1979 * allows the current node, we only try to allocate from the
1980 * current node and don't fall back to other nodes, as the
1981 * cost of remote accesses would likely offset THP benefits.
1982 *
1983 * If the policy is interleave, or does not allow the current
1984 * node in its nodemask, we allocate the standard way.
1985 */
1986 nmask = policy_nodemask(gfp, pol);
1987 if (!nmask || node_isset(node, *nmask)) {
1988 mpol_cond_put(pol);
1989 page = alloc_pages_exact_node(node,
1990 gfp | __GFP_THISNODE, order);
1991 goto out;
1992 }
1993 }
1994
1995 if (pol->mode == MPOL_INTERLEAVE) {
1996 unsigned nid;
1997
1998 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1999 mpol_cond_put(pol);
2000 page = alloc_page_interleave(gfp, order, nid);
2001 goto out;
2002 }
2003
2004 nmask = policy_nodemask(gfp, pol);
2005 zl = policy_zonelist(gfp, pol, node);
2006 mpol_cond_put(pol);
2007 page = __alloc_pages_nodemask(gfp, order, zl, nmask);
2008 out:
2009 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2010 goto retry_cpuset;
2011 return page;
2012 }
2013
2014 /**
2015 * alloc_pages_current - Allocate pages.
2016 *
2017 * @gfp:
2018 * %GFP_USER user allocation,
2019 * %GFP_KERNEL kernel allocation,
2020 * %GFP_HIGHMEM highmem allocation,
2021 * %GFP_FS don't call back into a file system.
2022 * %GFP_ATOMIC don't sleep.
2023 * @order: Power of two of allocation size in pages. 0 is a single page.
2024 *
2025 * Allocate a page from the kernel page pool. When not in
2026 * interrupt context and apply the current process NUMA policy.
2027 * Returns NULL when no page can be allocated.
2028 *
2029 * Don't call cpuset_update_task_memory_state() unless
2030 * 1) it's ok to take cpuset_sem (can WAIT), and
2031 * 2) allocating for current task (not interrupt).
2032 */
2033 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2034 {
2035 struct mempolicy *pol = &default_policy;
2036 struct page *page;
2037 unsigned int cpuset_mems_cookie;
2038
2039 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2040 pol = get_task_policy(current);
2041
2042 retry_cpuset:
2043 cpuset_mems_cookie = read_mems_allowed_begin();
2044
2045 /*
2046 * No reference counting needed for current->mempolicy
2047 * nor system default_policy
2048 */
2049 if (pol->mode == MPOL_INTERLEAVE)
2050 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2051 else
2052 page = __alloc_pages_nodemask(gfp, order,
2053 policy_zonelist(gfp, pol, numa_node_id()),
2054 policy_nodemask(gfp, pol));
2055
2056 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2057 goto retry_cpuset;
2058
2059 return page;
2060 }
2061 EXPORT_SYMBOL(alloc_pages_current);
2062
2063 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2064 {
2065 struct mempolicy *pol = mpol_dup(vma_policy(src));
2066
2067 if (IS_ERR(pol))
2068 return PTR_ERR(pol);
2069 dst->vm_policy = pol;
2070 return 0;
2071 }
2072
2073 /*
2074 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2075 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2076 * with the mems_allowed returned by cpuset_mems_allowed(). This
2077 * keeps mempolicies cpuset relative after its cpuset moves. See
2078 * further kernel/cpuset.c update_nodemask().
2079 *
2080 * current's mempolicy may be rebinded by the other task(the task that changes
2081 * cpuset's mems), so we needn't do rebind work for current task.
2082 */
2083
2084 /* Slow path of a mempolicy duplicate */
2085 struct mempolicy *__mpol_dup(struct mempolicy *old)
2086 {
2087 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2088
2089 if (!new)
2090 return ERR_PTR(-ENOMEM);
2091
2092 /* task's mempolicy is protected by alloc_lock */
2093 if (old == current->mempolicy) {
2094 task_lock(current);
2095 *new = *old;
2096 task_unlock(current);
2097 } else
2098 *new = *old;
2099
2100 if (current_cpuset_is_being_rebound()) {
2101 nodemask_t mems = cpuset_mems_allowed(current);
2102 if (new->flags & MPOL_F_REBINDING)
2103 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2104 else
2105 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2106 }
2107 atomic_set(&new->refcnt, 1);
2108 return new;
2109 }
2110
2111 /* Slow path of a mempolicy comparison */
2112 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2113 {
2114 if (!a || !b)
2115 return false;
2116 if (a->mode != b->mode)
2117 return false;
2118 if (a->flags != b->flags)
2119 return false;
2120 if (mpol_store_user_nodemask(a))
2121 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2122 return false;
2123
2124 switch (a->mode) {
2125 case MPOL_BIND:
2126 /* Fall through */
2127 case MPOL_INTERLEAVE:
2128 return !!nodes_equal(a->v.nodes, b->v.nodes);
2129 case MPOL_PREFERRED:
2130 return a->v.preferred_node == b->v.preferred_node;
2131 default:
2132 BUG();
2133 return false;
2134 }
2135 }
2136
2137 /*
2138 * Shared memory backing store policy support.
2139 *
2140 * Remember policies even when nobody has shared memory mapped.
2141 * The policies are kept in Red-Black tree linked from the inode.
2142 * They are protected by the sp->lock spinlock, which should be held
2143 * for any accesses to the tree.
2144 */
2145
2146 /* lookup first element intersecting start-end */
2147 /* Caller holds sp->lock */
2148 static struct sp_node *
2149 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2150 {
2151 struct rb_node *n = sp->root.rb_node;
2152
2153 while (n) {
2154 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2155
2156 if (start >= p->end)
2157 n = n->rb_right;
2158 else if (end <= p->start)
2159 n = n->rb_left;
2160 else
2161 break;
2162 }
2163 if (!n)
2164 return NULL;
2165 for (;;) {
2166 struct sp_node *w = NULL;
2167 struct rb_node *prev = rb_prev(n);
2168 if (!prev)
2169 break;
2170 w = rb_entry(prev, struct sp_node, nd);
2171 if (w->end <= start)
2172 break;
2173 n = prev;
2174 }
2175 return rb_entry(n, struct sp_node, nd);
2176 }
2177
2178 /* Insert a new shared policy into the list. */
2179 /* Caller holds sp->lock */
2180 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2181 {
2182 struct rb_node **p = &sp->root.rb_node;
2183 struct rb_node *parent = NULL;
2184 struct sp_node *nd;
2185
2186 while (*p) {
2187 parent = *p;
2188 nd = rb_entry(parent, struct sp_node, nd);
2189 if (new->start < nd->start)
2190 p = &(*p)->rb_left;
2191 else if (new->end > nd->end)
2192 p = &(*p)->rb_right;
2193 else
2194 BUG();
2195 }
2196 rb_link_node(&new->nd, parent, p);
2197 rb_insert_color(&new->nd, &sp->root);
2198 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2199 new->policy ? new->policy->mode : 0);
2200 }
2201
2202 /* Find shared policy intersecting idx */
2203 struct mempolicy *
2204 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2205 {
2206 struct mempolicy *pol = NULL;
2207 struct sp_node *sn;
2208
2209 if (!sp->root.rb_node)
2210 return NULL;
2211 spin_lock(&sp->lock);
2212 sn = sp_lookup(sp, idx, idx+1);
2213 if (sn) {
2214 mpol_get(sn->policy);
2215 pol = sn->policy;
2216 }
2217 spin_unlock(&sp->lock);
2218 return pol;
2219 }
2220
2221 static void sp_free(struct sp_node *n)
2222 {
2223 mpol_put(n->policy);
2224 kmem_cache_free(sn_cache, n);
2225 }
2226
2227 /**
2228 * mpol_misplaced - check whether current page node is valid in policy
2229 *
2230 * @page: page to be checked
2231 * @vma: vm area where page mapped
2232 * @addr: virtual address where page mapped
2233 *
2234 * Lookup current policy node id for vma,addr and "compare to" page's
2235 * node id.
2236 *
2237 * Returns:
2238 * -1 - not misplaced, page is in the right node
2239 * node - node id where the page should be
2240 *
2241 * Policy determination "mimics" alloc_page_vma().
2242 * Called from fault path where we know the vma and faulting address.
2243 */
2244 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2245 {
2246 struct mempolicy *pol;
2247 struct zone *zone;
2248 int curnid = page_to_nid(page);
2249 unsigned long pgoff;
2250 int thiscpu = raw_smp_processor_id();
2251 int thisnid = cpu_to_node(thiscpu);
2252 int polnid = -1;
2253 int ret = -1;
2254
2255 BUG_ON(!vma);
2256
2257 pol = get_vma_policy(vma, addr);
2258 if (!(pol->flags & MPOL_F_MOF))
2259 goto out;
2260
2261 switch (pol->mode) {
2262 case MPOL_INTERLEAVE:
2263 BUG_ON(addr >= vma->vm_end);
2264 BUG_ON(addr < vma->vm_start);
2265
2266 pgoff = vma->vm_pgoff;
2267 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2268 polnid = offset_il_node(pol, vma, pgoff);
2269 break;
2270
2271 case MPOL_PREFERRED:
2272 if (pol->flags & MPOL_F_LOCAL)
2273 polnid = numa_node_id();
2274 else
2275 polnid = pol->v.preferred_node;
2276 break;
2277
2278 case MPOL_BIND:
2279 /*
2280 * allows binding to multiple nodes.
2281 * use current page if in policy nodemask,
2282 * else select nearest allowed node, if any.
2283 * If no allowed nodes, use current [!misplaced].
2284 */
2285 if (node_isset(curnid, pol->v.nodes))
2286 goto out;
2287 (void)first_zones_zonelist(
2288 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2289 gfp_zone(GFP_HIGHUSER),
2290 &pol->v.nodes, &zone);
2291 polnid = zone->node;
2292 break;
2293
2294 default:
2295 BUG();
2296 }
2297
2298 /* Migrate the page towards the node whose CPU is referencing it */
2299 if (pol->flags & MPOL_F_MORON) {
2300 polnid = thisnid;
2301
2302 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2303 goto out;
2304 }
2305
2306 if (curnid != polnid)
2307 ret = polnid;
2308 out:
2309 mpol_cond_put(pol);
2310
2311 return ret;
2312 }
2313
2314 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2315 {
2316 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2317 rb_erase(&n->nd, &sp->root);
2318 sp_free(n);
2319 }
2320
2321 static void sp_node_init(struct sp_node *node, unsigned long start,
2322 unsigned long end, struct mempolicy *pol)
2323 {
2324 node->start = start;
2325 node->end = end;
2326 node->policy = pol;
2327 }
2328
2329 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2330 struct mempolicy *pol)
2331 {
2332 struct sp_node *n;
2333 struct mempolicy *newpol;
2334
2335 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2336 if (!n)
2337 return NULL;
2338
2339 newpol = mpol_dup(pol);
2340 if (IS_ERR(newpol)) {
2341 kmem_cache_free(sn_cache, n);
2342 return NULL;
2343 }
2344 newpol->flags |= MPOL_F_SHARED;
2345 sp_node_init(n, start, end, newpol);
2346
2347 return n;
2348 }
2349
2350 /* Replace a policy range. */
2351 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2352 unsigned long end, struct sp_node *new)
2353 {
2354 struct sp_node *n;
2355 struct sp_node *n_new = NULL;
2356 struct mempolicy *mpol_new = NULL;
2357 int ret = 0;
2358
2359 restart:
2360 spin_lock(&sp->lock);
2361 n = sp_lookup(sp, start, end);
2362 /* Take care of old policies in the same range. */
2363 while (n && n->start < end) {
2364 struct rb_node *next = rb_next(&n->nd);
2365 if (n->start >= start) {
2366 if (n->end <= end)
2367 sp_delete(sp, n);
2368 else
2369 n->start = end;
2370 } else {
2371 /* Old policy spanning whole new range. */
2372 if (n->end > end) {
2373 if (!n_new)
2374 goto alloc_new;
2375
2376 *mpol_new = *n->policy;
2377 atomic_set(&mpol_new->refcnt, 1);
2378 sp_node_init(n_new, end, n->end, mpol_new);
2379 n->end = start;
2380 sp_insert(sp, n_new);
2381 n_new = NULL;
2382 mpol_new = NULL;
2383 break;
2384 } else
2385 n->end = start;
2386 }
2387 if (!next)
2388 break;
2389 n = rb_entry(next, struct sp_node, nd);
2390 }
2391 if (new)
2392 sp_insert(sp, new);
2393 spin_unlock(&sp->lock);
2394 ret = 0;
2395
2396 err_out:
2397 if (mpol_new)
2398 mpol_put(mpol_new);
2399 if (n_new)
2400 kmem_cache_free(sn_cache, n_new);
2401
2402 return ret;
2403
2404 alloc_new:
2405 spin_unlock(&sp->lock);
2406 ret = -ENOMEM;
2407 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2408 if (!n_new)
2409 goto err_out;
2410 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2411 if (!mpol_new)
2412 goto err_out;
2413 goto restart;
2414 }
2415
2416 /**
2417 * mpol_shared_policy_init - initialize shared policy for inode
2418 * @sp: pointer to inode shared policy
2419 * @mpol: struct mempolicy to install
2420 *
2421 * Install non-NULL @mpol in inode's shared policy rb-tree.
2422 * On entry, the current task has a reference on a non-NULL @mpol.
2423 * This must be released on exit.
2424 * This is called at get_inode() calls and we can use GFP_KERNEL.
2425 */
2426 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2427 {
2428 int ret;
2429
2430 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2431 spin_lock_init(&sp->lock);
2432
2433 if (mpol) {
2434 struct vm_area_struct pvma;
2435 struct mempolicy *new;
2436 NODEMASK_SCRATCH(scratch);
2437
2438 if (!scratch)
2439 goto put_mpol;
2440 /* contextualize the tmpfs mount point mempolicy */
2441 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2442 if (IS_ERR(new))
2443 goto free_scratch; /* no valid nodemask intersection */
2444
2445 task_lock(current);
2446 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2447 task_unlock(current);
2448 if (ret)
2449 goto put_new;
2450
2451 /* Create pseudo-vma that contains just the policy */
2452 memset(&pvma, 0, sizeof(struct vm_area_struct));
2453 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2454 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2455
2456 put_new:
2457 mpol_put(new); /* drop initial ref */
2458 free_scratch:
2459 NODEMASK_SCRATCH_FREE(scratch);
2460 put_mpol:
2461 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2462 }
2463 }
2464
2465 int mpol_set_shared_policy(struct shared_policy *info,
2466 struct vm_area_struct *vma, struct mempolicy *npol)
2467 {
2468 int err;
2469 struct sp_node *new = NULL;
2470 unsigned long sz = vma_pages(vma);
2471
2472 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2473 vma->vm_pgoff,
2474 sz, npol ? npol->mode : -1,
2475 npol ? npol->flags : -1,
2476 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2477
2478 if (npol) {
2479 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2480 if (!new)
2481 return -ENOMEM;
2482 }
2483 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2484 if (err && new)
2485 sp_free(new);
2486 return err;
2487 }
2488
2489 /* Free a backing policy store on inode delete. */
2490 void mpol_free_shared_policy(struct shared_policy *p)
2491 {
2492 struct sp_node *n;
2493 struct rb_node *next;
2494
2495 if (!p->root.rb_node)
2496 return;
2497 spin_lock(&p->lock);
2498 next = rb_first(&p->root);
2499 while (next) {
2500 n = rb_entry(next, struct sp_node, nd);
2501 next = rb_next(&n->nd);
2502 sp_delete(p, n);
2503 }
2504 spin_unlock(&p->lock);
2505 }
2506
2507 #ifdef CONFIG_NUMA_BALANCING
2508 static int __initdata numabalancing_override;
2509
2510 static void __init check_numabalancing_enable(void)
2511 {
2512 bool numabalancing_default = false;
2513
2514 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2515 numabalancing_default = true;
2516
2517 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2518 if (numabalancing_override)
2519 set_numabalancing_state(numabalancing_override == 1);
2520
2521 if (nr_node_ids > 1 && !numabalancing_override) {
2522 pr_info("%s automatic NUMA balancing. "
2523 "Configure with numa_balancing= or the "
2524 "kernel.numa_balancing sysctl",
2525 numabalancing_default ? "Enabling" : "Disabling");
2526 set_numabalancing_state(numabalancing_default);
2527 }
2528 }
2529
2530 static int __init setup_numabalancing(char *str)
2531 {
2532 int ret = 0;
2533 if (!str)
2534 goto out;
2535
2536 if (!strcmp(str, "enable")) {
2537 numabalancing_override = 1;
2538 ret = 1;
2539 } else if (!strcmp(str, "disable")) {
2540 numabalancing_override = -1;
2541 ret = 1;
2542 }
2543 out:
2544 if (!ret)
2545 pr_warn("Unable to parse numa_balancing=\n");
2546
2547 return ret;
2548 }
2549 __setup("numa_balancing=", setup_numabalancing);
2550 #else
2551 static inline void __init check_numabalancing_enable(void)
2552 {
2553 }
2554 #endif /* CONFIG_NUMA_BALANCING */
2555
2556 /* assumes fs == KERNEL_DS */
2557 void __init numa_policy_init(void)
2558 {
2559 nodemask_t interleave_nodes;
2560 unsigned long largest = 0;
2561 int nid, prefer = 0;
2562
2563 policy_cache = kmem_cache_create("numa_policy",
2564 sizeof(struct mempolicy),
2565 0, SLAB_PANIC, NULL);
2566
2567 sn_cache = kmem_cache_create("shared_policy_node",
2568 sizeof(struct sp_node),
2569 0, SLAB_PANIC, NULL);
2570
2571 for_each_node(nid) {
2572 preferred_node_policy[nid] = (struct mempolicy) {
2573 .refcnt = ATOMIC_INIT(1),
2574 .mode = MPOL_PREFERRED,
2575 .flags = MPOL_F_MOF | MPOL_F_MORON,
2576 .v = { .preferred_node = nid, },
2577 };
2578 }
2579
2580 /*
2581 * Set interleaving policy for system init. Interleaving is only
2582 * enabled across suitably sized nodes (default is >= 16MB), or
2583 * fall back to the largest node if they're all smaller.
2584 */
2585 nodes_clear(interleave_nodes);
2586 for_each_node_state(nid, N_MEMORY) {
2587 unsigned long total_pages = node_present_pages(nid);
2588
2589 /* Preserve the largest node */
2590 if (largest < total_pages) {
2591 largest = total_pages;
2592 prefer = nid;
2593 }
2594
2595 /* Interleave this node? */
2596 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2597 node_set(nid, interleave_nodes);
2598 }
2599
2600 /* All too small, use the largest */
2601 if (unlikely(nodes_empty(interleave_nodes)))
2602 node_set(prefer, interleave_nodes);
2603
2604 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2605 pr_err("%s: interleaving failed\n", __func__);
2606
2607 check_numabalancing_enable();
2608 }
2609
2610 /* Reset policy of current process to default */
2611 void numa_default_policy(void)
2612 {
2613 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2614 }
2615
2616 /*
2617 * Parse and format mempolicy from/to strings
2618 */
2619
2620 /*
2621 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2622 */
2623 static const char * const policy_modes[] =
2624 {
2625 [MPOL_DEFAULT] = "default",
2626 [MPOL_PREFERRED] = "prefer",
2627 [MPOL_BIND] = "bind",
2628 [MPOL_INTERLEAVE] = "interleave",
2629 [MPOL_LOCAL] = "local",
2630 };
2631
2632
2633 #ifdef CONFIG_TMPFS
2634 /**
2635 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2636 * @str: string containing mempolicy to parse
2637 * @mpol: pointer to struct mempolicy pointer, returned on success.
2638 *
2639 * Format of input:
2640 * <mode>[=<flags>][:<nodelist>]
2641 *
2642 * On success, returns 0, else 1
2643 */
2644 int mpol_parse_str(char *str, struct mempolicy **mpol)
2645 {
2646 struct mempolicy *new = NULL;
2647 unsigned short mode;
2648 unsigned short mode_flags;
2649 nodemask_t nodes;
2650 char *nodelist = strchr(str, ':');
2651 char *flags = strchr(str, '=');
2652 int err = 1;
2653
2654 if (nodelist) {
2655 /* NUL-terminate mode or flags string */
2656 *nodelist++ = '\0';
2657 if (nodelist_parse(nodelist, nodes))
2658 goto out;
2659 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2660 goto out;
2661 } else
2662 nodes_clear(nodes);
2663
2664 if (flags)
2665 *flags++ = '\0'; /* terminate mode string */
2666
2667 for (mode = 0; mode < MPOL_MAX; mode++) {
2668 if (!strcmp(str, policy_modes[mode])) {
2669 break;
2670 }
2671 }
2672 if (mode >= MPOL_MAX)
2673 goto out;
2674
2675 switch (mode) {
2676 case MPOL_PREFERRED:
2677 /*
2678 * Insist on a nodelist of one node only
2679 */
2680 if (nodelist) {
2681 char *rest = nodelist;
2682 while (isdigit(*rest))
2683 rest++;
2684 if (*rest)
2685 goto out;
2686 }
2687 break;
2688 case MPOL_INTERLEAVE:
2689 /*
2690 * Default to online nodes with memory if no nodelist
2691 */
2692 if (!nodelist)
2693 nodes = node_states[N_MEMORY];
2694 break;
2695 case MPOL_LOCAL:
2696 /*
2697 * Don't allow a nodelist; mpol_new() checks flags
2698 */
2699 if (nodelist)
2700 goto out;
2701 mode = MPOL_PREFERRED;
2702 break;
2703 case MPOL_DEFAULT:
2704 /*
2705 * Insist on a empty nodelist
2706 */
2707 if (!nodelist)
2708 err = 0;
2709 goto out;
2710 case MPOL_BIND:
2711 /*
2712 * Insist on a nodelist
2713 */
2714 if (!nodelist)
2715 goto out;
2716 }
2717
2718 mode_flags = 0;
2719 if (flags) {
2720 /*
2721 * Currently, we only support two mutually exclusive
2722 * mode flags.
2723 */
2724 if (!strcmp(flags, "static"))
2725 mode_flags |= MPOL_F_STATIC_NODES;
2726 else if (!strcmp(flags, "relative"))
2727 mode_flags |= MPOL_F_RELATIVE_NODES;
2728 else
2729 goto out;
2730 }
2731
2732 new = mpol_new(mode, mode_flags, &nodes);
2733 if (IS_ERR(new))
2734 goto out;
2735
2736 /*
2737 * Save nodes for mpol_to_str() to show the tmpfs mount options
2738 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2739 */
2740 if (mode != MPOL_PREFERRED)
2741 new->v.nodes = nodes;
2742 else if (nodelist)
2743 new->v.preferred_node = first_node(nodes);
2744 else
2745 new->flags |= MPOL_F_LOCAL;
2746
2747 /*
2748 * Save nodes for contextualization: this will be used to "clone"
2749 * the mempolicy in a specific context [cpuset] at a later time.
2750 */
2751 new->w.user_nodemask = nodes;
2752
2753 err = 0;
2754
2755 out:
2756 /* Restore string for error message */
2757 if (nodelist)
2758 *--nodelist = ':';
2759 if (flags)
2760 *--flags = '=';
2761 if (!err)
2762 *mpol = new;
2763 return err;
2764 }
2765 #endif /* CONFIG_TMPFS */
2766
2767 /**
2768 * mpol_to_str - format a mempolicy structure for printing
2769 * @buffer: to contain formatted mempolicy string
2770 * @maxlen: length of @buffer
2771 * @pol: pointer to mempolicy to be formatted
2772 *
2773 * Convert @pol into a string. If @buffer is too short, truncate the string.
2774 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2775 * longest flag, "relative", and to display at least a few node ids.
2776 */
2777 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2778 {
2779 char *p = buffer;
2780 nodemask_t nodes = NODE_MASK_NONE;
2781 unsigned short mode = MPOL_DEFAULT;
2782 unsigned short flags = 0;
2783
2784 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2785 mode = pol->mode;
2786 flags = pol->flags;
2787 }
2788
2789 switch (mode) {
2790 case MPOL_DEFAULT:
2791 break;
2792 case MPOL_PREFERRED:
2793 if (flags & MPOL_F_LOCAL)
2794 mode = MPOL_LOCAL;
2795 else
2796 node_set(pol->v.preferred_node, nodes);
2797 break;
2798 case MPOL_BIND:
2799 case MPOL_INTERLEAVE:
2800 nodes = pol->v.nodes;
2801 break;
2802 default:
2803 WARN_ON_ONCE(1);
2804 snprintf(p, maxlen, "unknown");
2805 return;
2806 }
2807
2808 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2809
2810 if (flags & MPOL_MODE_FLAGS) {
2811 p += snprintf(p, buffer + maxlen - p, "=");
2812
2813 /*
2814 * Currently, the only defined flags are mutually exclusive
2815 */
2816 if (flags & MPOL_F_STATIC_NODES)
2817 p += snprintf(p, buffer + maxlen - p, "static");
2818 else if (flags & MPOL_F_RELATIVE_NODES)
2819 p += snprintf(p, buffer + maxlen - p, "relative");
2820 }
2821
2822 if (!nodes_empty(nodes))
2823 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2824 nodemask_pr_args(&nodes));
2825 }
This page took 0.090193 seconds and 5 git commands to generate.