mm: compaction: reset cached scanner pfn's before reading them
[deliverable/linux.git] / mm / migrate.c
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
40
41 #include <asm/tlbflush.h>
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/migrate.h>
45
46 #include "internal.h"
47
48 /*
49 * migrate_prep() needs to be called before we start compiling a list of pages
50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51 * undesirable, use migrate_prep_local()
52 */
53 int migrate_prep(void)
54 {
55 /*
56 * Clear the LRU lists so pages can be isolated.
57 * Note that pages may be moved off the LRU after we have
58 * drained them. Those pages will fail to migrate like other
59 * pages that may be busy.
60 */
61 lru_add_drain_all();
62
63 return 0;
64 }
65
66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
67 int migrate_prep_local(void)
68 {
69 lru_add_drain();
70
71 return 0;
72 }
73
74 /*
75 * Add isolated pages on the list back to the LRU under page lock
76 * to avoid leaking evictable pages back onto unevictable list.
77 */
78 void putback_lru_pages(struct list_head *l)
79 {
80 struct page *page;
81 struct page *page2;
82
83 list_for_each_entry_safe(page, page2, l, lru) {
84 list_del(&page->lru);
85 dec_zone_page_state(page, NR_ISOLATED_ANON +
86 page_is_file_cache(page));
87 putback_lru_page(page);
88 }
89 }
90
91 /*
92 * Put previously isolated pages back onto the appropriate lists
93 * from where they were once taken off for compaction/migration.
94 *
95 * This function shall be used instead of putback_lru_pages(),
96 * whenever the isolated pageset has been built by isolate_migratepages_range()
97 */
98 void putback_movable_pages(struct list_head *l)
99 {
100 struct page *page;
101 struct page *page2;
102
103 list_for_each_entry_safe(page, page2, l, lru) {
104 if (unlikely(PageHuge(page))) {
105 putback_active_hugepage(page);
106 continue;
107 }
108 list_del(&page->lru);
109 dec_zone_page_state(page, NR_ISOLATED_ANON +
110 page_is_file_cache(page));
111 if (unlikely(isolated_balloon_page(page)))
112 balloon_page_putback(page);
113 else
114 putback_lru_page(page);
115 }
116 }
117
118 /*
119 * Restore a potential migration pte to a working pte entry
120 */
121 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
122 unsigned long addr, void *old)
123 {
124 struct mm_struct *mm = vma->vm_mm;
125 swp_entry_t entry;
126 pmd_t *pmd;
127 pte_t *ptep, pte;
128 spinlock_t *ptl;
129
130 if (unlikely(PageHuge(new))) {
131 ptep = huge_pte_offset(mm, addr);
132 if (!ptep)
133 goto out;
134 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
135 } else {
136 pmd = mm_find_pmd(mm, addr);
137 if (!pmd)
138 goto out;
139 if (pmd_trans_huge(*pmd))
140 goto out;
141
142 ptep = pte_offset_map(pmd, addr);
143
144 /*
145 * Peek to check is_swap_pte() before taking ptlock? No, we
146 * can race mremap's move_ptes(), which skips anon_vma lock.
147 */
148
149 ptl = pte_lockptr(mm, pmd);
150 }
151
152 spin_lock(ptl);
153 pte = *ptep;
154 if (!is_swap_pte(pte))
155 goto unlock;
156
157 entry = pte_to_swp_entry(pte);
158
159 if (!is_migration_entry(entry) ||
160 migration_entry_to_page(entry) != old)
161 goto unlock;
162
163 get_page(new);
164 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
165 if (pte_swp_soft_dirty(*ptep))
166 pte = pte_mksoft_dirty(pte);
167 if (is_write_migration_entry(entry))
168 pte = pte_mkwrite(pte);
169 #ifdef CONFIG_HUGETLB_PAGE
170 if (PageHuge(new)) {
171 pte = pte_mkhuge(pte);
172 pte = arch_make_huge_pte(pte, vma, new, 0);
173 }
174 #endif
175 flush_dcache_page(new);
176 set_pte_at(mm, addr, ptep, pte);
177
178 if (PageHuge(new)) {
179 if (PageAnon(new))
180 hugepage_add_anon_rmap(new, vma, addr);
181 else
182 page_dup_rmap(new);
183 } else if (PageAnon(new))
184 page_add_anon_rmap(new, vma, addr);
185 else
186 page_add_file_rmap(new);
187
188 /* No need to invalidate - it was non-present before */
189 update_mmu_cache(vma, addr, ptep);
190 unlock:
191 pte_unmap_unlock(ptep, ptl);
192 out:
193 return SWAP_AGAIN;
194 }
195
196 /*
197 * Get rid of all migration entries and replace them by
198 * references to the indicated page.
199 */
200 static void remove_migration_ptes(struct page *old, struct page *new)
201 {
202 struct rmap_walk_control rwc = {
203 .rmap_one = remove_migration_pte,
204 .arg = old,
205 };
206
207 rmap_walk(new, &rwc);
208 }
209
210 /*
211 * Something used the pte of a page under migration. We need to
212 * get to the page and wait until migration is finished.
213 * When we return from this function the fault will be retried.
214 */
215 static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
216 spinlock_t *ptl)
217 {
218 pte_t pte;
219 swp_entry_t entry;
220 struct page *page;
221
222 spin_lock(ptl);
223 pte = *ptep;
224 if (!is_swap_pte(pte))
225 goto out;
226
227 entry = pte_to_swp_entry(pte);
228 if (!is_migration_entry(entry))
229 goto out;
230
231 page = migration_entry_to_page(entry);
232
233 /*
234 * Once radix-tree replacement of page migration started, page_count
235 * *must* be zero. And, we don't want to call wait_on_page_locked()
236 * against a page without get_page().
237 * So, we use get_page_unless_zero(), here. Even failed, page fault
238 * will occur again.
239 */
240 if (!get_page_unless_zero(page))
241 goto out;
242 pte_unmap_unlock(ptep, ptl);
243 wait_on_page_locked(page);
244 put_page(page);
245 return;
246 out:
247 pte_unmap_unlock(ptep, ptl);
248 }
249
250 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
251 unsigned long address)
252 {
253 spinlock_t *ptl = pte_lockptr(mm, pmd);
254 pte_t *ptep = pte_offset_map(pmd, address);
255 __migration_entry_wait(mm, ptep, ptl);
256 }
257
258 void migration_entry_wait_huge(struct vm_area_struct *vma,
259 struct mm_struct *mm, pte_t *pte)
260 {
261 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
262 __migration_entry_wait(mm, pte, ptl);
263 }
264
265 #ifdef CONFIG_BLOCK
266 /* Returns true if all buffers are successfully locked */
267 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
268 enum migrate_mode mode)
269 {
270 struct buffer_head *bh = head;
271
272 /* Simple case, sync compaction */
273 if (mode != MIGRATE_ASYNC) {
274 do {
275 get_bh(bh);
276 lock_buffer(bh);
277 bh = bh->b_this_page;
278
279 } while (bh != head);
280
281 return true;
282 }
283
284 /* async case, we cannot block on lock_buffer so use trylock_buffer */
285 do {
286 get_bh(bh);
287 if (!trylock_buffer(bh)) {
288 /*
289 * We failed to lock the buffer and cannot stall in
290 * async migration. Release the taken locks
291 */
292 struct buffer_head *failed_bh = bh;
293 put_bh(failed_bh);
294 bh = head;
295 while (bh != failed_bh) {
296 unlock_buffer(bh);
297 put_bh(bh);
298 bh = bh->b_this_page;
299 }
300 return false;
301 }
302
303 bh = bh->b_this_page;
304 } while (bh != head);
305 return true;
306 }
307 #else
308 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
309 enum migrate_mode mode)
310 {
311 return true;
312 }
313 #endif /* CONFIG_BLOCK */
314
315 /*
316 * Replace the page in the mapping.
317 *
318 * The number of remaining references must be:
319 * 1 for anonymous pages without a mapping
320 * 2 for pages with a mapping
321 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
322 */
323 int migrate_page_move_mapping(struct address_space *mapping,
324 struct page *newpage, struct page *page,
325 struct buffer_head *head, enum migrate_mode mode,
326 int extra_count)
327 {
328 int expected_count = 1 + extra_count;
329 void **pslot;
330
331 if (!mapping) {
332 /* Anonymous page without mapping */
333 if (page_count(page) != expected_count)
334 return -EAGAIN;
335 return MIGRATEPAGE_SUCCESS;
336 }
337
338 spin_lock_irq(&mapping->tree_lock);
339
340 pslot = radix_tree_lookup_slot(&mapping->page_tree,
341 page_index(page));
342
343 expected_count += 1 + page_has_private(page);
344 if (page_count(page) != expected_count ||
345 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
346 spin_unlock_irq(&mapping->tree_lock);
347 return -EAGAIN;
348 }
349
350 if (!page_freeze_refs(page, expected_count)) {
351 spin_unlock_irq(&mapping->tree_lock);
352 return -EAGAIN;
353 }
354
355 /*
356 * In the async migration case of moving a page with buffers, lock the
357 * buffers using trylock before the mapping is moved. If the mapping
358 * was moved, we later failed to lock the buffers and could not move
359 * the mapping back due to an elevated page count, we would have to
360 * block waiting on other references to be dropped.
361 */
362 if (mode == MIGRATE_ASYNC && head &&
363 !buffer_migrate_lock_buffers(head, mode)) {
364 page_unfreeze_refs(page, expected_count);
365 spin_unlock_irq(&mapping->tree_lock);
366 return -EAGAIN;
367 }
368
369 /*
370 * Now we know that no one else is looking at the page.
371 */
372 get_page(newpage); /* add cache reference */
373 if (PageSwapCache(page)) {
374 SetPageSwapCache(newpage);
375 set_page_private(newpage, page_private(page));
376 }
377
378 radix_tree_replace_slot(pslot, newpage);
379
380 /*
381 * Drop cache reference from old page by unfreezing
382 * to one less reference.
383 * We know this isn't the last reference.
384 */
385 page_unfreeze_refs(page, expected_count - 1);
386
387 /*
388 * If moved to a different zone then also account
389 * the page for that zone. Other VM counters will be
390 * taken care of when we establish references to the
391 * new page and drop references to the old page.
392 *
393 * Note that anonymous pages are accounted for
394 * via NR_FILE_PAGES and NR_ANON_PAGES if they
395 * are mapped to swap space.
396 */
397 __dec_zone_page_state(page, NR_FILE_PAGES);
398 __inc_zone_page_state(newpage, NR_FILE_PAGES);
399 if (!PageSwapCache(page) && PageSwapBacked(page)) {
400 __dec_zone_page_state(page, NR_SHMEM);
401 __inc_zone_page_state(newpage, NR_SHMEM);
402 }
403 spin_unlock_irq(&mapping->tree_lock);
404
405 return MIGRATEPAGE_SUCCESS;
406 }
407
408 /*
409 * The expected number of remaining references is the same as that
410 * of migrate_page_move_mapping().
411 */
412 int migrate_huge_page_move_mapping(struct address_space *mapping,
413 struct page *newpage, struct page *page)
414 {
415 int expected_count;
416 void **pslot;
417
418 if (!mapping) {
419 if (page_count(page) != 1)
420 return -EAGAIN;
421 return MIGRATEPAGE_SUCCESS;
422 }
423
424 spin_lock_irq(&mapping->tree_lock);
425
426 pslot = radix_tree_lookup_slot(&mapping->page_tree,
427 page_index(page));
428
429 expected_count = 2 + page_has_private(page);
430 if (page_count(page) != expected_count ||
431 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
432 spin_unlock_irq(&mapping->tree_lock);
433 return -EAGAIN;
434 }
435
436 if (!page_freeze_refs(page, expected_count)) {
437 spin_unlock_irq(&mapping->tree_lock);
438 return -EAGAIN;
439 }
440
441 get_page(newpage);
442
443 radix_tree_replace_slot(pslot, newpage);
444
445 page_unfreeze_refs(page, expected_count - 1);
446
447 spin_unlock_irq(&mapping->tree_lock);
448 return MIGRATEPAGE_SUCCESS;
449 }
450
451 /*
452 * Gigantic pages are so large that we do not guarantee that page++ pointer
453 * arithmetic will work across the entire page. We need something more
454 * specialized.
455 */
456 static void __copy_gigantic_page(struct page *dst, struct page *src,
457 int nr_pages)
458 {
459 int i;
460 struct page *dst_base = dst;
461 struct page *src_base = src;
462
463 for (i = 0; i < nr_pages; ) {
464 cond_resched();
465 copy_highpage(dst, src);
466
467 i++;
468 dst = mem_map_next(dst, dst_base, i);
469 src = mem_map_next(src, src_base, i);
470 }
471 }
472
473 static void copy_huge_page(struct page *dst, struct page *src)
474 {
475 int i;
476 int nr_pages;
477
478 if (PageHuge(src)) {
479 /* hugetlbfs page */
480 struct hstate *h = page_hstate(src);
481 nr_pages = pages_per_huge_page(h);
482
483 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
484 __copy_gigantic_page(dst, src, nr_pages);
485 return;
486 }
487 } else {
488 /* thp page */
489 BUG_ON(!PageTransHuge(src));
490 nr_pages = hpage_nr_pages(src);
491 }
492
493 for (i = 0; i < nr_pages; i++) {
494 cond_resched();
495 copy_highpage(dst + i, src + i);
496 }
497 }
498
499 /*
500 * Copy the page to its new location
501 */
502 void migrate_page_copy(struct page *newpage, struct page *page)
503 {
504 int cpupid;
505
506 if (PageHuge(page) || PageTransHuge(page))
507 copy_huge_page(newpage, page);
508 else
509 copy_highpage(newpage, page);
510
511 if (PageError(page))
512 SetPageError(newpage);
513 if (PageReferenced(page))
514 SetPageReferenced(newpage);
515 if (PageUptodate(page))
516 SetPageUptodate(newpage);
517 if (TestClearPageActive(page)) {
518 VM_BUG_ON(PageUnevictable(page));
519 SetPageActive(newpage);
520 } else if (TestClearPageUnevictable(page))
521 SetPageUnevictable(newpage);
522 if (PageChecked(page))
523 SetPageChecked(newpage);
524 if (PageMappedToDisk(page))
525 SetPageMappedToDisk(newpage);
526
527 if (PageDirty(page)) {
528 clear_page_dirty_for_io(page);
529 /*
530 * Want to mark the page and the radix tree as dirty, and
531 * redo the accounting that clear_page_dirty_for_io undid,
532 * but we can't use set_page_dirty because that function
533 * is actually a signal that all of the page has become dirty.
534 * Whereas only part of our page may be dirty.
535 */
536 if (PageSwapBacked(page))
537 SetPageDirty(newpage);
538 else
539 __set_page_dirty_nobuffers(newpage);
540 }
541
542 /*
543 * Copy NUMA information to the new page, to prevent over-eager
544 * future migrations of this same page.
545 */
546 cpupid = page_cpupid_xchg_last(page, -1);
547 page_cpupid_xchg_last(newpage, cpupid);
548
549 mlock_migrate_page(newpage, page);
550 ksm_migrate_page(newpage, page);
551 /*
552 * Please do not reorder this without considering how mm/ksm.c's
553 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
554 */
555 ClearPageSwapCache(page);
556 ClearPagePrivate(page);
557 set_page_private(page, 0);
558
559 /*
560 * If any waiters have accumulated on the new page then
561 * wake them up.
562 */
563 if (PageWriteback(newpage))
564 end_page_writeback(newpage);
565 }
566
567 /************************************************************
568 * Migration functions
569 ***********************************************************/
570
571 /* Always fail migration. Used for mappings that are not movable */
572 int fail_migrate_page(struct address_space *mapping,
573 struct page *newpage, struct page *page)
574 {
575 return -EIO;
576 }
577 EXPORT_SYMBOL(fail_migrate_page);
578
579 /*
580 * Common logic to directly migrate a single page suitable for
581 * pages that do not use PagePrivate/PagePrivate2.
582 *
583 * Pages are locked upon entry and exit.
584 */
585 int migrate_page(struct address_space *mapping,
586 struct page *newpage, struct page *page,
587 enum migrate_mode mode)
588 {
589 int rc;
590
591 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
592
593 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
594
595 if (rc != MIGRATEPAGE_SUCCESS)
596 return rc;
597
598 migrate_page_copy(newpage, page);
599 return MIGRATEPAGE_SUCCESS;
600 }
601 EXPORT_SYMBOL(migrate_page);
602
603 #ifdef CONFIG_BLOCK
604 /*
605 * Migration function for pages with buffers. This function can only be used
606 * if the underlying filesystem guarantees that no other references to "page"
607 * exist.
608 */
609 int buffer_migrate_page(struct address_space *mapping,
610 struct page *newpage, struct page *page, enum migrate_mode mode)
611 {
612 struct buffer_head *bh, *head;
613 int rc;
614
615 if (!page_has_buffers(page))
616 return migrate_page(mapping, newpage, page, mode);
617
618 head = page_buffers(page);
619
620 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
621
622 if (rc != MIGRATEPAGE_SUCCESS)
623 return rc;
624
625 /*
626 * In the async case, migrate_page_move_mapping locked the buffers
627 * with an IRQ-safe spinlock held. In the sync case, the buffers
628 * need to be locked now
629 */
630 if (mode != MIGRATE_ASYNC)
631 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
632
633 ClearPagePrivate(page);
634 set_page_private(newpage, page_private(page));
635 set_page_private(page, 0);
636 put_page(page);
637 get_page(newpage);
638
639 bh = head;
640 do {
641 set_bh_page(bh, newpage, bh_offset(bh));
642 bh = bh->b_this_page;
643
644 } while (bh != head);
645
646 SetPagePrivate(newpage);
647
648 migrate_page_copy(newpage, page);
649
650 bh = head;
651 do {
652 unlock_buffer(bh);
653 put_bh(bh);
654 bh = bh->b_this_page;
655
656 } while (bh != head);
657
658 return MIGRATEPAGE_SUCCESS;
659 }
660 EXPORT_SYMBOL(buffer_migrate_page);
661 #endif
662
663 /*
664 * Writeback a page to clean the dirty state
665 */
666 static int writeout(struct address_space *mapping, struct page *page)
667 {
668 struct writeback_control wbc = {
669 .sync_mode = WB_SYNC_NONE,
670 .nr_to_write = 1,
671 .range_start = 0,
672 .range_end = LLONG_MAX,
673 .for_reclaim = 1
674 };
675 int rc;
676
677 if (!mapping->a_ops->writepage)
678 /* No write method for the address space */
679 return -EINVAL;
680
681 if (!clear_page_dirty_for_io(page))
682 /* Someone else already triggered a write */
683 return -EAGAIN;
684
685 /*
686 * A dirty page may imply that the underlying filesystem has
687 * the page on some queue. So the page must be clean for
688 * migration. Writeout may mean we loose the lock and the
689 * page state is no longer what we checked for earlier.
690 * At this point we know that the migration attempt cannot
691 * be successful.
692 */
693 remove_migration_ptes(page, page);
694
695 rc = mapping->a_ops->writepage(page, &wbc);
696
697 if (rc != AOP_WRITEPAGE_ACTIVATE)
698 /* unlocked. Relock */
699 lock_page(page);
700
701 return (rc < 0) ? -EIO : -EAGAIN;
702 }
703
704 /*
705 * Default handling if a filesystem does not provide a migration function.
706 */
707 static int fallback_migrate_page(struct address_space *mapping,
708 struct page *newpage, struct page *page, enum migrate_mode mode)
709 {
710 if (PageDirty(page)) {
711 /* Only writeback pages in full synchronous migration */
712 if (mode != MIGRATE_SYNC)
713 return -EBUSY;
714 return writeout(mapping, page);
715 }
716
717 /*
718 * Buffers may be managed in a filesystem specific way.
719 * We must have no buffers or drop them.
720 */
721 if (page_has_private(page) &&
722 !try_to_release_page(page, GFP_KERNEL))
723 return -EAGAIN;
724
725 return migrate_page(mapping, newpage, page, mode);
726 }
727
728 /*
729 * Move a page to a newly allocated page
730 * The page is locked and all ptes have been successfully removed.
731 *
732 * The new page will have replaced the old page if this function
733 * is successful.
734 *
735 * Return value:
736 * < 0 - error code
737 * MIGRATEPAGE_SUCCESS - success
738 */
739 static int move_to_new_page(struct page *newpage, struct page *page,
740 int remap_swapcache, enum migrate_mode mode)
741 {
742 struct address_space *mapping;
743 int rc;
744
745 /*
746 * Block others from accessing the page when we get around to
747 * establishing additional references. We are the only one
748 * holding a reference to the new page at this point.
749 */
750 if (!trylock_page(newpage))
751 BUG();
752
753 /* Prepare mapping for the new page.*/
754 newpage->index = page->index;
755 newpage->mapping = page->mapping;
756 if (PageSwapBacked(page))
757 SetPageSwapBacked(newpage);
758
759 mapping = page_mapping(page);
760 if (!mapping)
761 rc = migrate_page(mapping, newpage, page, mode);
762 else if (mapping->a_ops->migratepage)
763 /*
764 * Most pages have a mapping and most filesystems provide a
765 * migratepage callback. Anonymous pages are part of swap
766 * space which also has its own migratepage callback. This
767 * is the most common path for page migration.
768 */
769 rc = mapping->a_ops->migratepage(mapping,
770 newpage, page, mode);
771 else
772 rc = fallback_migrate_page(mapping, newpage, page, mode);
773
774 if (rc != MIGRATEPAGE_SUCCESS) {
775 newpage->mapping = NULL;
776 } else {
777 if (remap_swapcache)
778 remove_migration_ptes(page, newpage);
779 page->mapping = NULL;
780 }
781
782 unlock_page(newpage);
783
784 return rc;
785 }
786
787 static int __unmap_and_move(struct page *page, struct page *newpage,
788 int force, enum migrate_mode mode)
789 {
790 int rc = -EAGAIN;
791 int remap_swapcache = 1;
792 struct mem_cgroup *mem;
793 struct anon_vma *anon_vma = NULL;
794
795 if (!trylock_page(page)) {
796 if (!force || mode == MIGRATE_ASYNC)
797 goto out;
798
799 /*
800 * It's not safe for direct compaction to call lock_page.
801 * For example, during page readahead pages are added locked
802 * to the LRU. Later, when the IO completes the pages are
803 * marked uptodate and unlocked. However, the queueing
804 * could be merging multiple pages for one bio (e.g.
805 * mpage_readpages). If an allocation happens for the
806 * second or third page, the process can end up locking
807 * the same page twice and deadlocking. Rather than
808 * trying to be clever about what pages can be locked,
809 * avoid the use of lock_page for direct compaction
810 * altogether.
811 */
812 if (current->flags & PF_MEMALLOC)
813 goto out;
814
815 lock_page(page);
816 }
817
818 /* charge against new page */
819 mem_cgroup_prepare_migration(page, newpage, &mem);
820
821 if (PageWriteback(page)) {
822 /*
823 * Only in the case of a full synchronous migration is it
824 * necessary to wait for PageWriteback. In the async case,
825 * the retry loop is too short and in the sync-light case,
826 * the overhead of stalling is too much
827 */
828 if (mode != MIGRATE_SYNC) {
829 rc = -EBUSY;
830 goto uncharge;
831 }
832 if (!force)
833 goto uncharge;
834 wait_on_page_writeback(page);
835 }
836 /*
837 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
838 * we cannot notice that anon_vma is freed while we migrates a page.
839 * This get_anon_vma() delays freeing anon_vma pointer until the end
840 * of migration. File cache pages are no problem because of page_lock()
841 * File Caches may use write_page() or lock_page() in migration, then,
842 * just care Anon page here.
843 */
844 if (PageAnon(page) && !PageKsm(page)) {
845 /*
846 * Only page_lock_anon_vma_read() understands the subtleties of
847 * getting a hold on an anon_vma from outside one of its mms.
848 */
849 anon_vma = page_get_anon_vma(page);
850 if (anon_vma) {
851 /*
852 * Anon page
853 */
854 } else if (PageSwapCache(page)) {
855 /*
856 * We cannot be sure that the anon_vma of an unmapped
857 * swapcache page is safe to use because we don't
858 * know in advance if the VMA that this page belonged
859 * to still exists. If the VMA and others sharing the
860 * data have been freed, then the anon_vma could
861 * already be invalid.
862 *
863 * To avoid this possibility, swapcache pages get
864 * migrated but are not remapped when migration
865 * completes
866 */
867 remap_swapcache = 0;
868 } else {
869 goto uncharge;
870 }
871 }
872
873 if (unlikely(balloon_page_movable(page))) {
874 /*
875 * A ballooned page does not need any special attention from
876 * physical to virtual reverse mapping procedures.
877 * Skip any attempt to unmap PTEs or to remap swap cache,
878 * in order to avoid burning cycles at rmap level, and perform
879 * the page migration right away (proteced by page lock).
880 */
881 rc = balloon_page_migrate(newpage, page, mode);
882 goto uncharge;
883 }
884
885 /*
886 * Corner case handling:
887 * 1. When a new swap-cache page is read into, it is added to the LRU
888 * and treated as swapcache but it has no rmap yet.
889 * Calling try_to_unmap() against a page->mapping==NULL page will
890 * trigger a BUG. So handle it here.
891 * 2. An orphaned page (see truncate_complete_page) might have
892 * fs-private metadata. The page can be picked up due to memory
893 * offlining. Everywhere else except page reclaim, the page is
894 * invisible to the vm, so the page can not be migrated. So try to
895 * free the metadata, so the page can be freed.
896 */
897 if (!page->mapping) {
898 VM_BUG_ON(PageAnon(page));
899 if (page_has_private(page)) {
900 try_to_free_buffers(page);
901 goto uncharge;
902 }
903 goto skip_unmap;
904 }
905
906 /* Establish migration ptes or remove ptes */
907 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
908
909 skip_unmap:
910 if (!page_mapped(page))
911 rc = move_to_new_page(newpage, page, remap_swapcache, mode);
912
913 if (rc && remap_swapcache)
914 remove_migration_ptes(page, page);
915
916 /* Drop an anon_vma reference if we took one */
917 if (anon_vma)
918 put_anon_vma(anon_vma);
919
920 uncharge:
921 mem_cgroup_end_migration(mem, page, newpage,
922 (rc == MIGRATEPAGE_SUCCESS ||
923 rc == MIGRATEPAGE_BALLOON_SUCCESS));
924 unlock_page(page);
925 out:
926 return rc;
927 }
928
929 /*
930 * Obtain the lock on page, remove all ptes and migrate the page
931 * to the newly allocated page in newpage.
932 */
933 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
934 struct page *page, int force, enum migrate_mode mode)
935 {
936 int rc = 0;
937 int *result = NULL;
938 struct page *newpage = get_new_page(page, private, &result);
939
940 if (!newpage)
941 return -ENOMEM;
942
943 if (page_count(page) == 1) {
944 /* page was freed from under us. So we are done. */
945 goto out;
946 }
947
948 if (unlikely(PageTransHuge(page)))
949 if (unlikely(split_huge_page(page)))
950 goto out;
951
952 rc = __unmap_and_move(page, newpage, force, mode);
953
954 if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
955 /*
956 * A ballooned page has been migrated already.
957 * Now, it's the time to wrap-up counters,
958 * handle the page back to Buddy and return.
959 */
960 dec_zone_page_state(page, NR_ISOLATED_ANON +
961 page_is_file_cache(page));
962 balloon_page_free(page);
963 return MIGRATEPAGE_SUCCESS;
964 }
965 out:
966 if (rc != -EAGAIN) {
967 /*
968 * A page that has been migrated has all references
969 * removed and will be freed. A page that has not been
970 * migrated will have kepts its references and be
971 * restored.
972 */
973 list_del(&page->lru);
974 dec_zone_page_state(page, NR_ISOLATED_ANON +
975 page_is_file_cache(page));
976 putback_lru_page(page);
977 }
978 /*
979 * Move the new page to the LRU. If migration was not successful
980 * then this will free the page.
981 */
982 putback_lru_page(newpage);
983 if (result) {
984 if (rc)
985 *result = rc;
986 else
987 *result = page_to_nid(newpage);
988 }
989 return rc;
990 }
991
992 /*
993 * Counterpart of unmap_and_move_page() for hugepage migration.
994 *
995 * This function doesn't wait the completion of hugepage I/O
996 * because there is no race between I/O and migration for hugepage.
997 * Note that currently hugepage I/O occurs only in direct I/O
998 * where no lock is held and PG_writeback is irrelevant,
999 * and writeback status of all subpages are counted in the reference
1000 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1001 * under direct I/O, the reference of the head page is 512 and a bit more.)
1002 * This means that when we try to migrate hugepage whose subpages are
1003 * doing direct I/O, some references remain after try_to_unmap() and
1004 * hugepage migration fails without data corruption.
1005 *
1006 * There is also no race when direct I/O is issued on the page under migration,
1007 * because then pte is replaced with migration swap entry and direct I/O code
1008 * will wait in the page fault for migration to complete.
1009 */
1010 static int unmap_and_move_huge_page(new_page_t get_new_page,
1011 unsigned long private, struct page *hpage,
1012 int force, enum migrate_mode mode)
1013 {
1014 int rc = 0;
1015 int *result = NULL;
1016 struct page *new_hpage = get_new_page(hpage, private, &result);
1017 struct anon_vma *anon_vma = NULL;
1018
1019 /*
1020 * Movability of hugepages depends on architectures and hugepage size.
1021 * This check is necessary because some callers of hugepage migration
1022 * like soft offline and memory hotremove don't walk through page
1023 * tables or check whether the hugepage is pmd-based or not before
1024 * kicking migration.
1025 */
1026 if (!hugepage_migration_support(page_hstate(hpage)))
1027 return -ENOSYS;
1028
1029 if (!new_hpage)
1030 return -ENOMEM;
1031
1032 rc = -EAGAIN;
1033
1034 if (!trylock_page(hpage)) {
1035 if (!force || mode != MIGRATE_SYNC)
1036 goto out;
1037 lock_page(hpage);
1038 }
1039
1040 if (PageAnon(hpage))
1041 anon_vma = page_get_anon_vma(hpage);
1042
1043 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1044
1045 if (!page_mapped(hpage))
1046 rc = move_to_new_page(new_hpage, hpage, 1, mode);
1047
1048 if (rc)
1049 remove_migration_ptes(hpage, hpage);
1050
1051 if (anon_vma)
1052 put_anon_vma(anon_vma);
1053
1054 if (!rc)
1055 hugetlb_cgroup_migrate(hpage, new_hpage);
1056
1057 unlock_page(hpage);
1058 out:
1059 if (rc != -EAGAIN)
1060 putback_active_hugepage(hpage);
1061 put_page(new_hpage);
1062 if (result) {
1063 if (rc)
1064 *result = rc;
1065 else
1066 *result = page_to_nid(new_hpage);
1067 }
1068 return rc;
1069 }
1070
1071 /*
1072 * migrate_pages - migrate the pages specified in a list, to the free pages
1073 * supplied as the target for the page migration
1074 *
1075 * @from: The list of pages to be migrated.
1076 * @get_new_page: The function used to allocate free pages to be used
1077 * as the target of the page migration.
1078 * @private: Private data to be passed on to get_new_page()
1079 * @mode: The migration mode that specifies the constraints for
1080 * page migration, if any.
1081 * @reason: The reason for page migration.
1082 *
1083 * The function returns after 10 attempts or if no pages are movable any more
1084 * because the list has become empty or no retryable pages exist any more.
1085 * The caller should call putback_lru_pages() to return pages to the LRU
1086 * or free list only if ret != 0.
1087 *
1088 * Returns the number of pages that were not migrated, or an error code.
1089 */
1090 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1091 unsigned long private, enum migrate_mode mode, int reason)
1092 {
1093 int retry = 1;
1094 int nr_failed = 0;
1095 int nr_succeeded = 0;
1096 int pass = 0;
1097 struct page *page;
1098 struct page *page2;
1099 int swapwrite = current->flags & PF_SWAPWRITE;
1100 int rc;
1101
1102 if (!swapwrite)
1103 current->flags |= PF_SWAPWRITE;
1104
1105 for(pass = 0; pass < 10 && retry; pass++) {
1106 retry = 0;
1107
1108 list_for_each_entry_safe(page, page2, from, lru) {
1109 cond_resched();
1110
1111 if (PageHuge(page))
1112 rc = unmap_and_move_huge_page(get_new_page,
1113 private, page, pass > 2, mode);
1114 else
1115 rc = unmap_and_move(get_new_page, private,
1116 page, pass > 2, mode);
1117
1118 switch(rc) {
1119 case -ENOMEM:
1120 goto out;
1121 case -EAGAIN:
1122 retry++;
1123 break;
1124 case MIGRATEPAGE_SUCCESS:
1125 nr_succeeded++;
1126 break;
1127 default:
1128 /* Permanent failure */
1129 nr_failed++;
1130 break;
1131 }
1132 }
1133 }
1134 rc = nr_failed + retry;
1135 out:
1136 if (nr_succeeded)
1137 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1138 if (nr_failed)
1139 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1140 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1141
1142 if (!swapwrite)
1143 current->flags &= ~PF_SWAPWRITE;
1144
1145 return rc;
1146 }
1147
1148 #ifdef CONFIG_NUMA
1149 /*
1150 * Move a list of individual pages
1151 */
1152 struct page_to_node {
1153 unsigned long addr;
1154 struct page *page;
1155 int node;
1156 int status;
1157 };
1158
1159 static struct page *new_page_node(struct page *p, unsigned long private,
1160 int **result)
1161 {
1162 struct page_to_node *pm = (struct page_to_node *)private;
1163
1164 while (pm->node != MAX_NUMNODES && pm->page != p)
1165 pm++;
1166
1167 if (pm->node == MAX_NUMNODES)
1168 return NULL;
1169
1170 *result = &pm->status;
1171
1172 if (PageHuge(p))
1173 return alloc_huge_page_node(page_hstate(compound_head(p)),
1174 pm->node);
1175 else
1176 return alloc_pages_exact_node(pm->node,
1177 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1178 }
1179
1180 /*
1181 * Move a set of pages as indicated in the pm array. The addr
1182 * field must be set to the virtual address of the page to be moved
1183 * and the node number must contain a valid target node.
1184 * The pm array ends with node = MAX_NUMNODES.
1185 */
1186 static int do_move_page_to_node_array(struct mm_struct *mm,
1187 struct page_to_node *pm,
1188 int migrate_all)
1189 {
1190 int err;
1191 struct page_to_node *pp;
1192 LIST_HEAD(pagelist);
1193
1194 down_read(&mm->mmap_sem);
1195
1196 /*
1197 * Build a list of pages to migrate
1198 */
1199 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1200 struct vm_area_struct *vma;
1201 struct page *page;
1202
1203 err = -EFAULT;
1204 vma = find_vma(mm, pp->addr);
1205 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1206 goto set_status;
1207
1208 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1209
1210 err = PTR_ERR(page);
1211 if (IS_ERR(page))
1212 goto set_status;
1213
1214 err = -ENOENT;
1215 if (!page)
1216 goto set_status;
1217
1218 /* Use PageReserved to check for zero page */
1219 if (PageReserved(page))
1220 goto put_and_set;
1221
1222 pp->page = page;
1223 err = page_to_nid(page);
1224
1225 if (err == pp->node)
1226 /*
1227 * Node already in the right place
1228 */
1229 goto put_and_set;
1230
1231 err = -EACCES;
1232 if (page_mapcount(page) > 1 &&
1233 !migrate_all)
1234 goto put_and_set;
1235
1236 if (PageHuge(page)) {
1237 isolate_huge_page(page, &pagelist);
1238 goto put_and_set;
1239 }
1240
1241 err = isolate_lru_page(page);
1242 if (!err) {
1243 list_add_tail(&page->lru, &pagelist);
1244 inc_zone_page_state(page, NR_ISOLATED_ANON +
1245 page_is_file_cache(page));
1246 }
1247 put_and_set:
1248 /*
1249 * Either remove the duplicate refcount from
1250 * isolate_lru_page() or drop the page ref if it was
1251 * not isolated.
1252 */
1253 put_page(page);
1254 set_status:
1255 pp->status = err;
1256 }
1257
1258 err = 0;
1259 if (!list_empty(&pagelist)) {
1260 err = migrate_pages(&pagelist, new_page_node,
1261 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1262 if (err)
1263 putback_movable_pages(&pagelist);
1264 }
1265
1266 up_read(&mm->mmap_sem);
1267 return err;
1268 }
1269
1270 /*
1271 * Migrate an array of page address onto an array of nodes and fill
1272 * the corresponding array of status.
1273 */
1274 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1275 unsigned long nr_pages,
1276 const void __user * __user *pages,
1277 const int __user *nodes,
1278 int __user *status, int flags)
1279 {
1280 struct page_to_node *pm;
1281 unsigned long chunk_nr_pages;
1282 unsigned long chunk_start;
1283 int err;
1284
1285 err = -ENOMEM;
1286 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1287 if (!pm)
1288 goto out;
1289
1290 migrate_prep();
1291
1292 /*
1293 * Store a chunk of page_to_node array in a page,
1294 * but keep the last one as a marker
1295 */
1296 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1297
1298 for (chunk_start = 0;
1299 chunk_start < nr_pages;
1300 chunk_start += chunk_nr_pages) {
1301 int j;
1302
1303 if (chunk_start + chunk_nr_pages > nr_pages)
1304 chunk_nr_pages = nr_pages - chunk_start;
1305
1306 /* fill the chunk pm with addrs and nodes from user-space */
1307 for (j = 0; j < chunk_nr_pages; j++) {
1308 const void __user *p;
1309 int node;
1310
1311 err = -EFAULT;
1312 if (get_user(p, pages + j + chunk_start))
1313 goto out_pm;
1314 pm[j].addr = (unsigned long) p;
1315
1316 if (get_user(node, nodes + j + chunk_start))
1317 goto out_pm;
1318
1319 err = -ENODEV;
1320 if (node < 0 || node >= MAX_NUMNODES)
1321 goto out_pm;
1322
1323 if (!node_state(node, N_MEMORY))
1324 goto out_pm;
1325
1326 err = -EACCES;
1327 if (!node_isset(node, task_nodes))
1328 goto out_pm;
1329
1330 pm[j].node = node;
1331 }
1332
1333 /* End marker for this chunk */
1334 pm[chunk_nr_pages].node = MAX_NUMNODES;
1335
1336 /* Migrate this chunk */
1337 err = do_move_page_to_node_array(mm, pm,
1338 flags & MPOL_MF_MOVE_ALL);
1339 if (err < 0)
1340 goto out_pm;
1341
1342 /* Return status information */
1343 for (j = 0; j < chunk_nr_pages; j++)
1344 if (put_user(pm[j].status, status + j + chunk_start)) {
1345 err = -EFAULT;
1346 goto out_pm;
1347 }
1348 }
1349 err = 0;
1350
1351 out_pm:
1352 free_page((unsigned long)pm);
1353 out:
1354 return err;
1355 }
1356
1357 /*
1358 * Determine the nodes of an array of pages and store it in an array of status.
1359 */
1360 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1361 const void __user **pages, int *status)
1362 {
1363 unsigned long i;
1364
1365 down_read(&mm->mmap_sem);
1366
1367 for (i = 0; i < nr_pages; i++) {
1368 unsigned long addr = (unsigned long)(*pages);
1369 struct vm_area_struct *vma;
1370 struct page *page;
1371 int err = -EFAULT;
1372
1373 vma = find_vma(mm, addr);
1374 if (!vma || addr < vma->vm_start)
1375 goto set_status;
1376
1377 page = follow_page(vma, addr, 0);
1378
1379 err = PTR_ERR(page);
1380 if (IS_ERR(page))
1381 goto set_status;
1382
1383 err = -ENOENT;
1384 /* Use PageReserved to check for zero page */
1385 if (!page || PageReserved(page))
1386 goto set_status;
1387
1388 err = page_to_nid(page);
1389 set_status:
1390 *status = err;
1391
1392 pages++;
1393 status++;
1394 }
1395
1396 up_read(&mm->mmap_sem);
1397 }
1398
1399 /*
1400 * Determine the nodes of a user array of pages and store it in
1401 * a user array of status.
1402 */
1403 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1404 const void __user * __user *pages,
1405 int __user *status)
1406 {
1407 #define DO_PAGES_STAT_CHUNK_NR 16
1408 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1409 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1410
1411 while (nr_pages) {
1412 unsigned long chunk_nr;
1413
1414 chunk_nr = nr_pages;
1415 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1416 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1417
1418 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1419 break;
1420
1421 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1422
1423 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1424 break;
1425
1426 pages += chunk_nr;
1427 status += chunk_nr;
1428 nr_pages -= chunk_nr;
1429 }
1430 return nr_pages ? -EFAULT : 0;
1431 }
1432
1433 /*
1434 * Move a list of pages in the address space of the currently executing
1435 * process.
1436 */
1437 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1438 const void __user * __user *, pages,
1439 const int __user *, nodes,
1440 int __user *, status, int, flags)
1441 {
1442 const struct cred *cred = current_cred(), *tcred;
1443 struct task_struct *task;
1444 struct mm_struct *mm;
1445 int err;
1446 nodemask_t task_nodes;
1447
1448 /* Check flags */
1449 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1450 return -EINVAL;
1451
1452 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1453 return -EPERM;
1454
1455 /* Find the mm_struct */
1456 rcu_read_lock();
1457 task = pid ? find_task_by_vpid(pid) : current;
1458 if (!task) {
1459 rcu_read_unlock();
1460 return -ESRCH;
1461 }
1462 get_task_struct(task);
1463
1464 /*
1465 * Check if this process has the right to modify the specified
1466 * process. The right exists if the process has administrative
1467 * capabilities, superuser privileges or the same
1468 * userid as the target process.
1469 */
1470 tcred = __task_cred(task);
1471 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1472 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1473 !capable(CAP_SYS_NICE)) {
1474 rcu_read_unlock();
1475 err = -EPERM;
1476 goto out;
1477 }
1478 rcu_read_unlock();
1479
1480 err = security_task_movememory(task);
1481 if (err)
1482 goto out;
1483
1484 task_nodes = cpuset_mems_allowed(task);
1485 mm = get_task_mm(task);
1486 put_task_struct(task);
1487
1488 if (!mm)
1489 return -EINVAL;
1490
1491 if (nodes)
1492 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1493 nodes, status, flags);
1494 else
1495 err = do_pages_stat(mm, nr_pages, pages, status);
1496
1497 mmput(mm);
1498 return err;
1499
1500 out:
1501 put_task_struct(task);
1502 return err;
1503 }
1504
1505 /*
1506 * Call migration functions in the vma_ops that may prepare
1507 * memory in a vm for migration. migration functions may perform
1508 * the migration for vmas that do not have an underlying page struct.
1509 */
1510 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1511 const nodemask_t *from, unsigned long flags)
1512 {
1513 struct vm_area_struct *vma;
1514 int err = 0;
1515
1516 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1517 if (vma->vm_ops && vma->vm_ops->migrate) {
1518 err = vma->vm_ops->migrate(vma, to, from, flags);
1519 if (err)
1520 break;
1521 }
1522 }
1523 return err;
1524 }
1525
1526 #ifdef CONFIG_NUMA_BALANCING
1527 /*
1528 * Returns true if this is a safe migration target node for misplaced NUMA
1529 * pages. Currently it only checks the watermarks which crude
1530 */
1531 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1532 unsigned long nr_migrate_pages)
1533 {
1534 int z;
1535 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1536 struct zone *zone = pgdat->node_zones + z;
1537
1538 if (!populated_zone(zone))
1539 continue;
1540
1541 if (!zone_reclaimable(zone))
1542 continue;
1543
1544 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1545 if (!zone_watermark_ok(zone, 0,
1546 high_wmark_pages(zone) +
1547 nr_migrate_pages,
1548 0, 0))
1549 continue;
1550 return true;
1551 }
1552 return false;
1553 }
1554
1555 static struct page *alloc_misplaced_dst_page(struct page *page,
1556 unsigned long data,
1557 int **result)
1558 {
1559 int nid = (int) data;
1560 struct page *newpage;
1561
1562 newpage = alloc_pages_exact_node(nid,
1563 (GFP_HIGHUSER_MOVABLE | GFP_THISNODE |
1564 __GFP_NOMEMALLOC | __GFP_NORETRY |
1565 __GFP_NOWARN) &
1566 ~GFP_IOFS, 0);
1567 if (newpage)
1568 page_cpupid_xchg_last(newpage, page_cpupid_last(page));
1569
1570 return newpage;
1571 }
1572
1573 /*
1574 * page migration rate limiting control.
1575 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1576 * window of time. Default here says do not migrate more than 1280M per second.
1577 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1578 * as it is faults that reset the window, pte updates will happen unconditionally
1579 * if there has not been a fault since @pteupdate_interval_millisecs after the
1580 * throttle window closed.
1581 */
1582 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1583 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1584 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1585
1586 /* Returns true if NUMA migration is currently rate limited */
1587 bool migrate_ratelimited(int node)
1588 {
1589 pg_data_t *pgdat = NODE_DATA(node);
1590
1591 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1592 msecs_to_jiffies(pteupdate_interval_millisecs)))
1593 return false;
1594
1595 if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1596 return false;
1597
1598 return true;
1599 }
1600
1601 /* Returns true if the node is migrate rate-limited after the update */
1602 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1603 unsigned long nr_pages)
1604 {
1605 /*
1606 * Rate-limit the amount of data that is being migrated to a node.
1607 * Optimal placement is no good if the memory bus is saturated and
1608 * all the time is being spent migrating!
1609 */
1610 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1611 spin_lock(&pgdat->numabalancing_migrate_lock);
1612 pgdat->numabalancing_migrate_nr_pages = 0;
1613 pgdat->numabalancing_migrate_next_window = jiffies +
1614 msecs_to_jiffies(migrate_interval_millisecs);
1615 spin_unlock(&pgdat->numabalancing_migrate_lock);
1616 }
1617 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1618 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1619 nr_pages);
1620 return true;
1621 }
1622
1623 /*
1624 * This is an unlocked non-atomic update so errors are possible.
1625 * The consequences are failing to migrate when we potentiall should
1626 * have which is not severe enough to warrant locking. If it is ever
1627 * a problem, it can be converted to a per-cpu counter.
1628 */
1629 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1630 return false;
1631 }
1632
1633 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1634 {
1635 int page_lru;
1636
1637 VM_BUG_ON(compound_order(page) && !PageTransHuge(page));
1638
1639 /* Avoid migrating to a node that is nearly full */
1640 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1641 return 0;
1642
1643 if (isolate_lru_page(page))
1644 return 0;
1645
1646 /*
1647 * migrate_misplaced_transhuge_page() skips page migration's usual
1648 * check on page_count(), so we must do it here, now that the page
1649 * has been isolated: a GUP pin, or any other pin, prevents migration.
1650 * The expected page count is 3: 1 for page's mapcount and 1 for the
1651 * caller's pin and 1 for the reference taken by isolate_lru_page().
1652 */
1653 if (PageTransHuge(page) && page_count(page) != 3) {
1654 putback_lru_page(page);
1655 return 0;
1656 }
1657
1658 page_lru = page_is_file_cache(page);
1659 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1660 hpage_nr_pages(page));
1661
1662 /*
1663 * Isolating the page has taken another reference, so the
1664 * caller's reference can be safely dropped without the page
1665 * disappearing underneath us during migration.
1666 */
1667 put_page(page);
1668 return 1;
1669 }
1670
1671 bool pmd_trans_migrating(pmd_t pmd)
1672 {
1673 struct page *page = pmd_page(pmd);
1674 return PageLocked(page);
1675 }
1676
1677 void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd)
1678 {
1679 struct page *page = pmd_page(*pmd);
1680 wait_on_page_locked(page);
1681 }
1682
1683 /*
1684 * Attempt to migrate a misplaced page to the specified destination
1685 * node. Caller is expected to have an elevated reference count on
1686 * the page that will be dropped by this function before returning.
1687 */
1688 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1689 int node)
1690 {
1691 pg_data_t *pgdat = NODE_DATA(node);
1692 int isolated;
1693 int nr_remaining;
1694 LIST_HEAD(migratepages);
1695
1696 /*
1697 * Don't migrate file pages that are mapped in multiple processes
1698 * with execute permissions as they are probably shared libraries.
1699 */
1700 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1701 (vma->vm_flags & VM_EXEC))
1702 goto out;
1703
1704 /*
1705 * Rate-limit the amount of data that is being migrated to a node.
1706 * Optimal placement is no good if the memory bus is saturated and
1707 * all the time is being spent migrating!
1708 */
1709 if (numamigrate_update_ratelimit(pgdat, 1))
1710 goto out;
1711
1712 isolated = numamigrate_isolate_page(pgdat, page);
1713 if (!isolated)
1714 goto out;
1715
1716 list_add(&page->lru, &migratepages);
1717 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1718 node, MIGRATE_ASYNC, MR_NUMA_MISPLACED);
1719 if (nr_remaining) {
1720 putback_lru_pages(&migratepages);
1721 isolated = 0;
1722 } else
1723 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1724 BUG_ON(!list_empty(&migratepages));
1725 return isolated;
1726
1727 out:
1728 put_page(page);
1729 return 0;
1730 }
1731 #endif /* CONFIG_NUMA_BALANCING */
1732
1733 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1734 /*
1735 * Migrates a THP to a given target node. page must be locked and is unlocked
1736 * before returning.
1737 */
1738 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1739 struct vm_area_struct *vma,
1740 pmd_t *pmd, pmd_t entry,
1741 unsigned long address,
1742 struct page *page, int node)
1743 {
1744 spinlock_t *ptl;
1745 pg_data_t *pgdat = NODE_DATA(node);
1746 int isolated = 0;
1747 struct page *new_page = NULL;
1748 struct mem_cgroup *memcg = NULL;
1749 int page_lru = page_is_file_cache(page);
1750 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1751 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1752 pmd_t orig_entry;
1753
1754 /*
1755 * Rate-limit the amount of data that is being migrated to a node.
1756 * Optimal placement is no good if the memory bus is saturated and
1757 * all the time is being spent migrating!
1758 */
1759 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1760 goto out_dropref;
1761
1762 new_page = alloc_pages_node(node,
1763 (GFP_TRANSHUGE | GFP_THISNODE) & ~__GFP_WAIT, HPAGE_PMD_ORDER);
1764 if (!new_page)
1765 goto out_fail;
1766
1767 page_cpupid_xchg_last(new_page, page_cpupid_last(page));
1768
1769 isolated = numamigrate_isolate_page(pgdat, page);
1770 if (!isolated) {
1771 put_page(new_page);
1772 goto out_fail;
1773 }
1774
1775 if (mm_tlb_flush_pending(mm))
1776 flush_tlb_range(vma, mmun_start, mmun_end);
1777
1778 /* Prepare a page as a migration target */
1779 __set_page_locked(new_page);
1780 SetPageSwapBacked(new_page);
1781
1782 /* anon mapping, we can simply copy page->mapping to the new page: */
1783 new_page->mapping = page->mapping;
1784 new_page->index = page->index;
1785 migrate_page_copy(new_page, page);
1786 WARN_ON(PageLRU(new_page));
1787
1788 /* Recheck the target PMD */
1789 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1790 ptl = pmd_lock(mm, pmd);
1791 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1792 fail_putback:
1793 spin_unlock(ptl);
1794 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1795
1796 /* Reverse changes made by migrate_page_copy() */
1797 if (TestClearPageActive(new_page))
1798 SetPageActive(page);
1799 if (TestClearPageUnevictable(new_page))
1800 SetPageUnevictable(page);
1801 mlock_migrate_page(page, new_page);
1802
1803 unlock_page(new_page);
1804 put_page(new_page); /* Free it */
1805
1806 /* Retake the callers reference and putback on LRU */
1807 get_page(page);
1808 putback_lru_page(page);
1809 mod_zone_page_state(page_zone(page),
1810 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1811
1812 goto out_unlock;
1813 }
1814
1815 /*
1816 * Traditional migration needs to prepare the memcg charge
1817 * transaction early to prevent the old page from being
1818 * uncharged when installing migration entries. Here we can
1819 * save the potential rollback and start the charge transfer
1820 * only when migration is already known to end successfully.
1821 */
1822 mem_cgroup_prepare_migration(page, new_page, &memcg);
1823
1824 orig_entry = *pmd;
1825 entry = mk_pmd(new_page, vma->vm_page_prot);
1826 entry = pmd_mkhuge(entry);
1827 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1828
1829 /*
1830 * Clear the old entry under pagetable lock and establish the new PTE.
1831 * Any parallel GUP will either observe the old page blocking on the
1832 * page lock, block on the page table lock or observe the new page.
1833 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1834 * guarantee the copy is visible before the pagetable update.
1835 */
1836 flush_cache_range(vma, mmun_start, mmun_end);
1837 page_add_new_anon_rmap(new_page, vma, mmun_start);
1838 pmdp_clear_flush(vma, mmun_start, pmd);
1839 set_pmd_at(mm, mmun_start, pmd, entry);
1840 flush_tlb_range(vma, mmun_start, mmun_end);
1841 update_mmu_cache_pmd(vma, address, &entry);
1842
1843 if (page_count(page) != 2) {
1844 set_pmd_at(mm, mmun_start, pmd, orig_entry);
1845 flush_tlb_range(vma, mmun_start, mmun_end);
1846 update_mmu_cache_pmd(vma, address, &entry);
1847 page_remove_rmap(new_page);
1848 goto fail_putback;
1849 }
1850
1851 page_remove_rmap(page);
1852
1853 /*
1854 * Finish the charge transaction under the page table lock to
1855 * prevent split_huge_page() from dividing up the charge
1856 * before it's fully transferred to the new page.
1857 */
1858 mem_cgroup_end_migration(memcg, page, new_page, true);
1859 spin_unlock(ptl);
1860 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1861
1862 unlock_page(new_page);
1863 unlock_page(page);
1864 put_page(page); /* Drop the rmap reference */
1865 put_page(page); /* Drop the LRU isolation reference */
1866
1867 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1868 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1869
1870 mod_zone_page_state(page_zone(page),
1871 NR_ISOLATED_ANON + page_lru,
1872 -HPAGE_PMD_NR);
1873 return isolated;
1874
1875 out_fail:
1876 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1877 out_dropref:
1878 ptl = pmd_lock(mm, pmd);
1879 if (pmd_same(*pmd, entry)) {
1880 entry = pmd_mknonnuma(entry);
1881 set_pmd_at(mm, mmun_start, pmd, entry);
1882 update_mmu_cache_pmd(vma, address, &entry);
1883 }
1884 spin_unlock(ptl);
1885
1886 out_unlock:
1887 unlock_page(page);
1888 put_page(page);
1889 return 0;
1890 }
1891 #endif /* CONFIG_NUMA_BALANCING */
1892
1893 #endif /* CONFIG_NUMA */
This page took 0.181942 seconds and 5 git commands to generate.