2 * Memory Migration functionality - linux/mm/migrate.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/page_idle.h>
42 #include <asm/tlbflush.h>
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/migrate.h>
50 * migrate_prep() needs to be called before we start compiling a list of pages
51 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
52 * undesirable, use migrate_prep_local()
54 int migrate_prep(void)
57 * Clear the LRU lists so pages can be isolated.
58 * Note that pages may be moved off the LRU after we have
59 * drained them. Those pages will fail to migrate like other
60 * pages that may be busy.
67 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
68 int migrate_prep_local(void)
76 * Put previously isolated pages back onto the appropriate lists
77 * from where they were once taken off for compaction/migration.
79 * This function shall be used whenever the isolated pageset has been
80 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
81 * and isolate_huge_page().
83 void putback_movable_pages(struct list_head
*l
)
88 list_for_each_entry_safe(page
, page2
, l
, lru
) {
89 if (unlikely(PageHuge(page
))) {
90 putback_active_hugepage(page
);
94 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
95 page_is_file_cache(page
));
96 if (unlikely(isolated_balloon_page(page
)))
97 balloon_page_putback(page
);
99 putback_lru_page(page
);
104 * Restore a potential migration pte to a working pte entry
106 static int remove_migration_pte(struct page
*new, struct vm_area_struct
*vma
,
107 unsigned long addr
, void *old
)
109 struct mm_struct
*mm
= vma
->vm_mm
;
115 if (unlikely(PageHuge(new))) {
116 ptep
= huge_pte_offset(mm
, addr
);
119 ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, ptep
);
121 pmd
= mm_find_pmd(mm
, addr
);
125 ptep
= pte_offset_map(pmd
, addr
);
128 * Peek to check is_swap_pte() before taking ptlock? No, we
129 * can race mremap's move_ptes(), which skips anon_vma lock.
132 ptl
= pte_lockptr(mm
, pmd
);
137 if (!is_swap_pte(pte
))
140 entry
= pte_to_swp_entry(pte
);
142 if (!is_migration_entry(entry
) ||
143 migration_entry_to_page(entry
) != old
)
147 pte
= pte_mkold(mk_pte(new, vma
->vm_page_prot
));
148 if (pte_swp_soft_dirty(*ptep
))
149 pte
= pte_mksoft_dirty(pte
);
151 /* Recheck VMA as permissions can change since migration started */
152 if (is_write_migration_entry(entry
))
153 pte
= maybe_mkwrite(pte
, vma
);
155 #ifdef CONFIG_HUGETLB_PAGE
157 pte
= pte_mkhuge(pte
);
158 pte
= arch_make_huge_pte(pte
, vma
, new, 0);
161 flush_dcache_page(new);
162 set_pte_at(mm
, addr
, ptep
, pte
);
166 hugepage_add_anon_rmap(new, vma
, addr
);
168 page_dup_rmap(new, true);
169 } else if (PageAnon(new))
170 page_add_anon_rmap(new, vma
, addr
, false);
172 page_add_file_rmap(new);
174 if (vma
->vm_flags
& VM_LOCKED
)
177 /* No need to invalidate - it was non-present before */
178 update_mmu_cache(vma
, addr
, ptep
);
180 pte_unmap_unlock(ptep
, ptl
);
186 * Get rid of all migration entries and replace them by
187 * references to the indicated page.
189 static void remove_migration_ptes(struct page
*old
, struct page
*new)
191 struct rmap_walk_control rwc
= {
192 .rmap_one
= remove_migration_pte
,
196 rmap_walk(new, &rwc
);
200 * Something used the pte of a page under migration. We need to
201 * get to the page and wait until migration is finished.
202 * When we return from this function the fault will be retried.
204 void __migration_entry_wait(struct mm_struct
*mm
, pte_t
*ptep
,
213 if (!is_swap_pte(pte
))
216 entry
= pte_to_swp_entry(pte
);
217 if (!is_migration_entry(entry
))
220 page
= migration_entry_to_page(entry
);
223 * Once radix-tree replacement of page migration started, page_count
224 * *must* be zero. And, we don't want to call wait_on_page_locked()
225 * against a page without get_page().
226 * So, we use get_page_unless_zero(), here. Even failed, page fault
229 if (!get_page_unless_zero(page
))
231 pte_unmap_unlock(ptep
, ptl
);
232 wait_on_page_locked(page
);
236 pte_unmap_unlock(ptep
, ptl
);
239 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
240 unsigned long address
)
242 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
243 pte_t
*ptep
= pte_offset_map(pmd
, address
);
244 __migration_entry_wait(mm
, ptep
, ptl
);
247 void migration_entry_wait_huge(struct vm_area_struct
*vma
,
248 struct mm_struct
*mm
, pte_t
*pte
)
250 spinlock_t
*ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, pte
);
251 __migration_entry_wait(mm
, pte
, ptl
);
255 /* Returns true if all buffers are successfully locked */
256 static bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
257 enum migrate_mode mode
)
259 struct buffer_head
*bh
= head
;
261 /* Simple case, sync compaction */
262 if (mode
!= MIGRATE_ASYNC
) {
266 bh
= bh
->b_this_page
;
268 } while (bh
!= head
);
273 /* async case, we cannot block on lock_buffer so use trylock_buffer */
276 if (!trylock_buffer(bh
)) {
278 * We failed to lock the buffer and cannot stall in
279 * async migration. Release the taken locks
281 struct buffer_head
*failed_bh
= bh
;
284 while (bh
!= failed_bh
) {
287 bh
= bh
->b_this_page
;
292 bh
= bh
->b_this_page
;
293 } while (bh
!= head
);
297 static inline bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
298 enum migrate_mode mode
)
302 #endif /* CONFIG_BLOCK */
305 * Replace the page in the mapping.
307 * The number of remaining references must be:
308 * 1 for anonymous pages without a mapping
309 * 2 for pages with a mapping
310 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
312 int migrate_page_move_mapping(struct address_space
*mapping
,
313 struct page
*newpage
, struct page
*page
,
314 struct buffer_head
*head
, enum migrate_mode mode
,
317 struct zone
*oldzone
, *newzone
;
319 int expected_count
= 1 + extra_count
;
323 /* Anonymous page without mapping */
324 if (page_count(page
) != expected_count
)
327 /* No turning back from here */
328 set_page_memcg(newpage
, page_memcg(page
));
329 newpage
->index
= page
->index
;
330 newpage
->mapping
= page
->mapping
;
331 if (PageSwapBacked(page
))
332 SetPageSwapBacked(newpage
);
334 return MIGRATEPAGE_SUCCESS
;
337 oldzone
= page_zone(page
);
338 newzone
= page_zone(newpage
);
340 spin_lock_irq(&mapping
->tree_lock
);
342 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
345 expected_count
+= 1 + page_has_private(page
);
346 if (page_count(page
) != expected_count
||
347 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
348 spin_unlock_irq(&mapping
->tree_lock
);
352 if (!page_freeze_refs(page
, expected_count
)) {
353 spin_unlock_irq(&mapping
->tree_lock
);
358 * In the async migration case of moving a page with buffers, lock the
359 * buffers using trylock before the mapping is moved. If the mapping
360 * was moved, we later failed to lock the buffers and could not move
361 * the mapping back due to an elevated page count, we would have to
362 * block waiting on other references to be dropped.
364 if (mode
== MIGRATE_ASYNC
&& head
&&
365 !buffer_migrate_lock_buffers(head
, mode
)) {
366 page_unfreeze_refs(page
, expected_count
);
367 spin_unlock_irq(&mapping
->tree_lock
);
372 * Now we know that no one else is looking at the page:
373 * no turning back from here.
375 set_page_memcg(newpage
, page_memcg(page
));
376 newpage
->index
= page
->index
;
377 newpage
->mapping
= page
->mapping
;
378 if (PageSwapBacked(page
))
379 SetPageSwapBacked(newpage
);
381 get_page(newpage
); /* add cache reference */
382 if (PageSwapCache(page
)) {
383 SetPageSwapCache(newpage
);
384 set_page_private(newpage
, page_private(page
));
387 /* Move dirty while page refs frozen and newpage not yet exposed */
388 dirty
= PageDirty(page
);
390 ClearPageDirty(page
);
391 SetPageDirty(newpage
);
394 radix_tree_replace_slot(pslot
, newpage
);
397 * Drop cache reference from old page by unfreezing
398 * to one less reference.
399 * We know this isn't the last reference.
401 page_unfreeze_refs(page
, expected_count
- 1);
403 spin_unlock(&mapping
->tree_lock
);
404 /* Leave irq disabled to prevent preemption while updating stats */
407 * If moved to a different zone then also account
408 * the page for that zone. Other VM counters will be
409 * taken care of when we establish references to the
410 * new page and drop references to the old page.
412 * Note that anonymous pages are accounted for
413 * via NR_FILE_PAGES and NR_ANON_PAGES if they
414 * are mapped to swap space.
416 if (newzone
!= oldzone
) {
417 __dec_zone_state(oldzone
, NR_FILE_PAGES
);
418 __inc_zone_state(newzone
, NR_FILE_PAGES
);
419 if (PageSwapBacked(page
) && !PageSwapCache(page
)) {
420 __dec_zone_state(oldzone
, NR_SHMEM
);
421 __inc_zone_state(newzone
, NR_SHMEM
);
423 if (dirty
&& mapping_cap_account_dirty(mapping
)) {
424 __dec_zone_state(oldzone
, NR_FILE_DIRTY
);
425 __inc_zone_state(newzone
, NR_FILE_DIRTY
);
430 return MIGRATEPAGE_SUCCESS
;
434 * The expected number of remaining references is the same as that
435 * of migrate_page_move_mapping().
437 int migrate_huge_page_move_mapping(struct address_space
*mapping
,
438 struct page
*newpage
, struct page
*page
)
443 spin_lock_irq(&mapping
->tree_lock
);
445 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
448 expected_count
= 2 + page_has_private(page
);
449 if (page_count(page
) != expected_count
||
450 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
451 spin_unlock_irq(&mapping
->tree_lock
);
455 if (!page_freeze_refs(page
, expected_count
)) {
456 spin_unlock_irq(&mapping
->tree_lock
);
460 set_page_memcg(newpage
, page_memcg(page
));
461 newpage
->index
= page
->index
;
462 newpage
->mapping
= page
->mapping
;
465 radix_tree_replace_slot(pslot
, newpage
);
467 page_unfreeze_refs(page
, expected_count
- 1);
469 spin_unlock_irq(&mapping
->tree_lock
);
470 return MIGRATEPAGE_SUCCESS
;
474 * Gigantic pages are so large that we do not guarantee that page++ pointer
475 * arithmetic will work across the entire page. We need something more
478 static void __copy_gigantic_page(struct page
*dst
, struct page
*src
,
482 struct page
*dst_base
= dst
;
483 struct page
*src_base
= src
;
485 for (i
= 0; i
< nr_pages
; ) {
487 copy_highpage(dst
, src
);
490 dst
= mem_map_next(dst
, dst_base
, i
);
491 src
= mem_map_next(src
, src_base
, i
);
495 static void copy_huge_page(struct page
*dst
, struct page
*src
)
502 struct hstate
*h
= page_hstate(src
);
503 nr_pages
= pages_per_huge_page(h
);
505 if (unlikely(nr_pages
> MAX_ORDER_NR_PAGES
)) {
506 __copy_gigantic_page(dst
, src
, nr_pages
);
511 BUG_ON(!PageTransHuge(src
));
512 nr_pages
= hpage_nr_pages(src
);
515 for (i
= 0; i
< nr_pages
; i
++) {
517 copy_highpage(dst
+ i
, src
+ i
);
522 * Copy the page to its new location
524 void migrate_page_copy(struct page
*newpage
, struct page
*page
)
528 if (PageHuge(page
) || PageTransHuge(page
))
529 copy_huge_page(newpage
, page
);
531 copy_highpage(newpage
, page
);
534 SetPageError(newpage
);
535 if (PageReferenced(page
))
536 SetPageReferenced(newpage
);
537 if (PageUptodate(page
))
538 SetPageUptodate(newpage
);
539 if (TestClearPageActive(page
)) {
540 VM_BUG_ON_PAGE(PageUnevictable(page
), page
);
541 SetPageActive(newpage
);
542 } else if (TestClearPageUnevictable(page
))
543 SetPageUnevictable(newpage
);
544 if (PageChecked(page
))
545 SetPageChecked(newpage
);
546 if (PageMappedToDisk(page
))
547 SetPageMappedToDisk(newpage
);
549 /* Move dirty on pages not done by migrate_page_move_mapping() */
551 SetPageDirty(newpage
);
553 if (page_is_young(page
))
554 set_page_young(newpage
);
555 if (page_is_idle(page
))
556 set_page_idle(newpage
);
559 * Copy NUMA information to the new page, to prevent over-eager
560 * future migrations of this same page.
562 cpupid
= page_cpupid_xchg_last(page
, -1);
563 page_cpupid_xchg_last(newpage
, cpupid
);
565 ksm_migrate_page(newpage
, page
);
567 * Please do not reorder this without considering how mm/ksm.c's
568 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
570 if (PageSwapCache(page
))
571 ClearPageSwapCache(page
);
572 ClearPagePrivate(page
);
573 set_page_private(page
, 0);
576 * If any waiters have accumulated on the new page then
579 if (PageWriteback(newpage
))
580 end_page_writeback(newpage
);
583 /************************************************************
584 * Migration functions
585 ***********************************************************/
588 * Common logic to directly migrate a single page suitable for
589 * pages that do not use PagePrivate/PagePrivate2.
591 * Pages are locked upon entry and exit.
593 int migrate_page(struct address_space
*mapping
,
594 struct page
*newpage
, struct page
*page
,
595 enum migrate_mode mode
)
599 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
601 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, NULL
, mode
, 0);
603 if (rc
!= MIGRATEPAGE_SUCCESS
)
606 migrate_page_copy(newpage
, page
);
607 return MIGRATEPAGE_SUCCESS
;
609 EXPORT_SYMBOL(migrate_page
);
613 * Migration function for pages with buffers. This function can only be used
614 * if the underlying filesystem guarantees that no other references to "page"
617 int buffer_migrate_page(struct address_space
*mapping
,
618 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
620 struct buffer_head
*bh
, *head
;
623 if (!page_has_buffers(page
))
624 return migrate_page(mapping
, newpage
, page
, mode
);
626 head
= page_buffers(page
);
628 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, head
, mode
, 0);
630 if (rc
!= MIGRATEPAGE_SUCCESS
)
634 * In the async case, migrate_page_move_mapping locked the buffers
635 * with an IRQ-safe spinlock held. In the sync case, the buffers
636 * need to be locked now
638 if (mode
!= MIGRATE_ASYNC
)
639 BUG_ON(!buffer_migrate_lock_buffers(head
, mode
));
641 ClearPagePrivate(page
);
642 set_page_private(newpage
, page_private(page
));
643 set_page_private(page
, 0);
649 set_bh_page(bh
, newpage
, bh_offset(bh
));
650 bh
= bh
->b_this_page
;
652 } while (bh
!= head
);
654 SetPagePrivate(newpage
);
656 migrate_page_copy(newpage
, page
);
662 bh
= bh
->b_this_page
;
664 } while (bh
!= head
);
666 return MIGRATEPAGE_SUCCESS
;
668 EXPORT_SYMBOL(buffer_migrate_page
);
672 * Writeback a page to clean the dirty state
674 static int writeout(struct address_space
*mapping
, struct page
*page
)
676 struct writeback_control wbc
= {
677 .sync_mode
= WB_SYNC_NONE
,
680 .range_end
= LLONG_MAX
,
685 if (!mapping
->a_ops
->writepage
)
686 /* No write method for the address space */
689 if (!clear_page_dirty_for_io(page
))
690 /* Someone else already triggered a write */
694 * A dirty page may imply that the underlying filesystem has
695 * the page on some queue. So the page must be clean for
696 * migration. Writeout may mean we loose the lock and the
697 * page state is no longer what we checked for earlier.
698 * At this point we know that the migration attempt cannot
701 remove_migration_ptes(page
, page
);
703 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
705 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
706 /* unlocked. Relock */
709 return (rc
< 0) ? -EIO
: -EAGAIN
;
713 * Default handling if a filesystem does not provide a migration function.
715 static int fallback_migrate_page(struct address_space
*mapping
,
716 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
718 if (PageDirty(page
)) {
719 /* Only writeback pages in full synchronous migration */
720 if (mode
!= MIGRATE_SYNC
)
722 return writeout(mapping
, page
);
726 * Buffers may be managed in a filesystem specific way.
727 * We must have no buffers or drop them.
729 if (page_has_private(page
) &&
730 !try_to_release_page(page
, GFP_KERNEL
))
733 return migrate_page(mapping
, newpage
, page
, mode
);
737 * Move a page to a newly allocated page
738 * The page is locked and all ptes have been successfully removed.
740 * The new page will have replaced the old page if this function
745 * MIGRATEPAGE_SUCCESS - success
747 static int move_to_new_page(struct page
*newpage
, struct page
*page
,
748 enum migrate_mode mode
)
750 struct address_space
*mapping
;
753 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
754 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
756 mapping
= page_mapping(page
);
758 rc
= migrate_page(mapping
, newpage
, page
, mode
);
759 else if (mapping
->a_ops
->migratepage
)
761 * Most pages have a mapping and most filesystems provide a
762 * migratepage callback. Anonymous pages are part of swap
763 * space which also has its own migratepage callback. This
764 * is the most common path for page migration.
766 rc
= mapping
->a_ops
->migratepage(mapping
, newpage
, page
, mode
);
768 rc
= fallback_migrate_page(mapping
, newpage
, page
, mode
);
771 * When successful, old pagecache page->mapping must be cleared before
772 * page is freed; but stats require that PageAnon be left as PageAnon.
774 if (rc
== MIGRATEPAGE_SUCCESS
) {
775 set_page_memcg(page
, NULL
);
777 page
->mapping
= NULL
;
782 static int __unmap_and_move(struct page
*page
, struct page
*newpage
,
783 int force
, enum migrate_mode mode
)
786 int page_was_mapped
= 0;
787 struct anon_vma
*anon_vma
= NULL
;
789 if (!trylock_page(page
)) {
790 if (!force
|| mode
== MIGRATE_ASYNC
)
794 * It's not safe for direct compaction to call lock_page.
795 * For example, during page readahead pages are added locked
796 * to the LRU. Later, when the IO completes the pages are
797 * marked uptodate and unlocked. However, the queueing
798 * could be merging multiple pages for one bio (e.g.
799 * mpage_readpages). If an allocation happens for the
800 * second or third page, the process can end up locking
801 * the same page twice and deadlocking. Rather than
802 * trying to be clever about what pages can be locked,
803 * avoid the use of lock_page for direct compaction
806 if (current
->flags
& PF_MEMALLOC
)
812 if (PageWriteback(page
)) {
814 * Only in the case of a full synchronous migration is it
815 * necessary to wait for PageWriteback. In the async case,
816 * the retry loop is too short and in the sync-light case,
817 * the overhead of stalling is too much
819 if (mode
!= MIGRATE_SYNC
) {
825 wait_on_page_writeback(page
);
829 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
830 * we cannot notice that anon_vma is freed while we migrates a page.
831 * This get_anon_vma() delays freeing anon_vma pointer until the end
832 * of migration. File cache pages are no problem because of page_lock()
833 * File Caches may use write_page() or lock_page() in migration, then,
834 * just care Anon page here.
836 * Only page_get_anon_vma() understands the subtleties of
837 * getting a hold on an anon_vma from outside one of its mms.
838 * But if we cannot get anon_vma, then we won't need it anyway,
839 * because that implies that the anon page is no longer mapped
840 * (and cannot be remapped so long as we hold the page lock).
842 if (PageAnon(page
) && !PageKsm(page
))
843 anon_vma
= page_get_anon_vma(page
);
846 * Block others from accessing the new page when we get around to
847 * establishing additional references. We are usually the only one
848 * holding a reference to newpage at this point. We used to have a BUG
849 * here if trylock_page(newpage) fails, but would like to allow for
850 * cases where there might be a race with the previous use of newpage.
851 * This is much like races on refcount of oldpage: just don't BUG().
853 if (unlikely(!trylock_page(newpage
)))
856 if (unlikely(isolated_balloon_page(page
))) {
858 * A ballooned page does not need any special attention from
859 * physical to virtual reverse mapping procedures.
860 * Skip any attempt to unmap PTEs or to remap swap cache,
861 * in order to avoid burning cycles at rmap level, and perform
862 * the page migration right away (proteced by page lock).
864 rc
= balloon_page_migrate(newpage
, page
, mode
);
865 goto out_unlock_both
;
869 * Corner case handling:
870 * 1. When a new swap-cache page is read into, it is added to the LRU
871 * and treated as swapcache but it has no rmap yet.
872 * Calling try_to_unmap() against a page->mapping==NULL page will
873 * trigger a BUG. So handle it here.
874 * 2. An orphaned page (see truncate_complete_page) might have
875 * fs-private metadata. The page can be picked up due to memory
876 * offlining. Everywhere else except page reclaim, the page is
877 * invisible to the vm, so the page can not be migrated. So try to
878 * free the metadata, so the page can be freed.
880 if (!page
->mapping
) {
881 VM_BUG_ON_PAGE(PageAnon(page
), page
);
882 if (page_has_private(page
)) {
883 try_to_free_buffers(page
);
884 goto out_unlock_both
;
886 } else if (page_mapped(page
)) {
887 /* Establish migration ptes */
888 VM_BUG_ON_PAGE(PageAnon(page
) && !PageKsm(page
) && !anon_vma
,
891 TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
895 if (!page_mapped(page
))
896 rc
= move_to_new_page(newpage
, page
, mode
);
899 remove_migration_ptes(page
,
900 rc
== MIGRATEPAGE_SUCCESS
? newpage
: page
);
903 unlock_page(newpage
);
905 /* Drop an anon_vma reference if we took one */
907 put_anon_vma(anon_vma
);
914 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
917 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
918 #define ICE_noinline noinline
924 * Obtain the lock on page, remove all ptes and migrate the page
925 * to the newly allocated page in newpage.
927 static ICE_noinline
int unmap_and_move(new_page_t get_new_page
,
928 free_page_t put_new_page
,
929 unsigned long private, struct page
*page
,
930 int force
, enum migrate_mode mode
,
931 enum migrate_reason reason
)
933 int rc
= MIGRATEPAGE_SUCCESS
;
935 struct page
*newpage
;
937 newpage
= get_new_page(page
, private, &result
);
941 if (page_count(page
) == 1) {
942 /* page was freed from under us. So we are done. */
946 if (unlikely(PageTransHuge(page
))) {
948 rc
= split_huge_page(page
);
954 rc
= __unmap_and_move(page
, newpage
, force
, mode
);
955 if (rc
== MIGRATEPAGE_SUCCESS
)
961 * A page that has been migrated has all references
962 * removed and will be freed. A page that has not been
963 * migrated will have kepts its references and be
966 list_del(&page
->lru
);
967 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
968 page_is_file_cache(page
));
969 /* Soft-offlined page shouldn't go through lru cache list */
970 if (reason
== MR_MEMORY_FAILURE
) {
972 if (!test_set_page_hwpoison(page
))
973 num_poisoned_pages_inc();
975 putback_lru_page(page
);
979 * If migration was not successful and there's a freeing callback, use
980 * it. Otherwise, putback_lru_page() will drop the reference grabbed
984 put_new_page(newpage
, private);
985 else if (unlikely(__is_movable_balloon_page(newpage
))) {
986 /* drop our reference, page already in the balloon */
989 putback_lru_page(newpage
);
995 *result
= page_to_nid(newpage
);
1001 * Counterpart of unmap_and_move_page() for hugepage migration.
1003 * This function doesn't wait the completion of hugepage I/O
1004 * because there is no race between I/O and migration for hugepage.
1005 * Note that currently hugepage I/O occurs only in direct I/O
1006 * where no lock is held and PG_writeback is irrelevant,
1007 * and writeback status of all subpages are counted in the reference
1008 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1009 * under direct I/O, the reference of the head page is 512 and a bit more.)
1010 * This means that when we try to migrate hugepage whose subpages are
1011 * doing direct I/O, some references remain after try_to_unmap() and
1012 * hugepage migration fails without data corruption.
1014 * There is also no race when direct I/O is issued on the page under migration,
1015 * because then pte is replaced with migration swap entry and direct I/O code
1016 * will wait in the page fault for migration to complete.
1018 static int unmap_and_move_huge_page(new_page_t get_new_page
,
1019 free_page_t put_new_page
, unsigned long private,
1020 struct page
*hpage
, int force
,
1021 enum migrate_mode mode
)
1025 int page_was_mapped
= 0;
1026 struct page
*new_hpage
;
1027 struct anon_vma
*anon_vma
= NULL
;
1030 * Movability of hugepages depends on architectures and hugepage size.
1031 * This check is necessary because some callers of hugepage migration
1032 * like soft offline and memory hotremove don't walk through page
1033 * tables or check whether the hugepage is pmd-based or not before
1034 * kicking migration.
1036 if (!hugepage_migration_supported(page_hstate(hpage
))) {
1037 putback_active_hugepage(hpage
);
1041 new_hpage
= get_new_page(hpage
, private, &result
);
1045 if (!trylock_page(hpage
)) {
1046 if (!force
|| mode
!= MIGRATE_SYNC
)
1051 if (PageAnon(hpage
))
1052 anon_vma
= page_get_anon_vma(hpage
);
1054 if (unlikely(!trylock_page(new_hpage
)))
1057 if (page_mapped(hpage
)) {
1059 TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
1060 page_was_mapped
= 1;
1063 if (!page_mapped(hpage
))
1064 rc
= move_to_new_page(new_hpage
, hpage
, mode
);
1066 if (page_was_mapped
)
1067 remove_migration_ptes(hpage
,
1068 rc
== MIGRATEPAGE_SUCCESS
? new_hpage
: hpage
);
1070 unlock_page(new_hpage
);
1074 put_anon_vma(anon_vma
);
1076 if (rc
== MIGRATEPAGE_SUCCESS
) {
1077 hugetlb_cgroup_migrate(hpage
, new_hpage
);
1078 put_new_page
= NULL
;
1084 putback_active_hugepage(hpage
);
1087 * If migration was not successful and there's a freeing callback, use
1088 * it. Otherwise, put_page() will drop the reference grabbed during
1092 put_new_page(new_hpage
, private);
1094 putback_active_hugepage(new_hpage
);
1100 *result
= page_to_nid(new_hpage
);
1106 * migrate_pages - migrate the pages specified in a list, to the free pages
1107 * supplied as the target for the page migration
1109 * @from: The list of pages to be migrated.
1110 * @get_new_page: The function used to allocate free pages to be used
1111 * as the target of the page migration.
1112 * @put_new_page: The function used to free target pages if migration
1113 * fails, or NULL if no special handling is necessary.
1114 * @private: Private data to be passed on to get_new_page()
1115 * @mode: The migration mode that specifies the constraints for
1116 * page migration, if any.
1117 * @reason: The reason for page migration.
1119 * The function returns after 10 attempts or if no pages are movable any more
1120 * because the list has become empty or no retryable pages exist any more.
1121 * The caller should call putback_movable_pages() to return pages to the LRU
1122 * or free list only if ret != 0.
1124 * Returns the number of pages that were not migrated, or an error code.
1126 int migrate_pages(struct list_head
*from
, new_page_t get_new_page
,
1127 free_page_t put_new_page
, unsigned long private,
1128 enum migrate_mode mode
, int reason
)
1132 int nr_succeeded
= 0;
1136 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
1140 current
->flags
|= PF_SWAPWRITE
;
1142 for(pass
= 0; pass
< 10 && retry
; pass
++) {
1145 list_for_each_entry_safe(page
, page2
, from
, lru
) {
1149 rc
= unmap_and_move_huge_page(get_new_page
,
1150 put_new_page
, private, page
,
1153 rc
= unmap_and_move(get_new_page
, put_new_page
,
1154 private, page
, pass
> 2, mode
,
1163 case MIGRATEPAGE_SUCCESS
:
1168 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1169 * unlike -EAGAIN case, the failed page is
1170 * removed from migration page list and not
1171 * retried in the next outer loop.
1182 count_vm_events(PGMIGRATE_SUCCESS
, nr_succeeded
);
1184 count_vm_events(PGMIGRATE_FAIL
, nr_failed
);
1185 trace_mm_migrate_pages(nr_succeeded
, nr_failed
, mode
, reason
);
1188 current
->flags
&= ~PF_SWAPWRITE
;
1195 * Move a list of individual pages
1197 struct page_to_node
{
1204 static struct page
*new_page_node(struct page
*p
, unsigned long private,
1207 struct page_to_node
*pm
= (struct page_to_node
*)private;
1209 while (pm
->node
!= MAX_NUMNODES
&& pm
->page
!= p
)
1212 if (pm
->node
== MAX_NUMNODES
)
1215 *result
= &pm
->status
;
1218 return alloc_huge_page_node(page_hstate(compound_head(p
)),
1221 return __alloc_pages_node(pm
->node
,
1222 GFP_HIGHUSER_MOVABLE
| __GFP_THISNODE
, 0);
1226 * Move a set of pages as indicated in the pm array. The addr
1227 * field must be set to the virtual address of the page to be moved
1228 * and the node number must contain a valid target node.
1229 * The pm array ends with node = MAX_NUMNODES.
1231 static int do_move_page_to_node_array(struct mm_struct
*mm
,
1232 struct page_to_node
*pm
,
1236 struct page_to_node
*pp
;
1237 LIST_HEAD(pagelist
);
1239 down_read(&mm
->mmap_sem
);
1242 * Build a list of pages to migrate
1244 for (pp
= pm
; pp
->node
!= MAX_NUMNODES
; pp
++) {
1245 struct vm_area_struct
*vma
;
1249 vma
= find_vma(mm
, pp
->addr
);
1250 if (!vma
|| pp
->addr
< vma
->vm_start
|| !vma_migratable(vma
))
1253 /* FOLL_DUMP to ignore special (like zero) pages */
1254 page
= follow_page(vma
, pp
->addr
,
1255 FOLL_GET
| FOLL_SPLIT
| FOLL_DUMP
);
1257 err
= PTR_ERR(page
);
1266 err
= page_to_nid(page
);
1268 if (err
== pp
->node
)
1270 * Node already in the right place
1275 if (page_mapcount(page
) > 1 &&
1279 if (PageHuge(page
)) {
1281 isolate_huge_page(page
, &pagelist
);
1285 err
= isolate_lru_page(page
);
1287 list_add_tail(&page
->lru
, &pagelist
);
1288 inc_zone_page_state(page
, NR_ISOLATED_ANON
+
1289 page_is_file_cache(page
));
1293 * Either remove the duplicate refcount from
1294 * isolate_lru_page() or drop the page ref if it was
1303 if (!list_empty(&pagelist
)) {
1304 err
= migrate_pages(&pagelist
, new_page_node
, NULL
,
1305 (unsigned long)pm
, MIGRATE_SYNC
, MR_SYSCALL
);
1307 putback_movable_pages(&pagelist
);
1310 up_read(&mm
->mmap_sem
);
1315 * Migrate an array of page address onto an array of nodes and fill
1316 * the corresponding array of status.
1318 static int do_pages_move(struct mm_struct
*mm
, nodemask_t task_nodes
,
1319 unsigned long nr_pages
,
1320 const void __user
* __user
*pages
,
1321 const int __user
*nodes
,
1322 int __user
*status
, int flags
)
1324 struct page_to_node
*pm
;
1325 unsigned long chunk_nr_pages
;
1326 unsigned long chunk_start
;
1330 pm
= (struct page_to_node
*)__get_free_page(GFP_KERNEL
);
1337 * Store a chunk of page_to_node array in a page,
1338 * but keep the last one as a marker
1340 chunk_nr_pages
= (PAGE_SIZE
/ sizeof(struct page_to_node
)) - 1;
1342 for (chunk_start
= 0;
1343 chunk_start
< nr_pages
;
1344 chunk_start
+= chunk_nr_pages
) {
1347 if (chunk_start
+ chunk_nr_pages
> nr_pages
)
1348 chunk_nr_pages
= nr_pages
- chunk_start
;
1350 /* fill the chunk pm with addrs and nodes from user-space */
1351 for (j
= 0; j
< chunk_nr_pages
; j
++) {
1352 const void __user
*p
;
1356 if (get_user(p
, pages
+ j
+ chunk_start
))
1358 pm
[j
].addr
= (unsigned long) p
;
1360 if (get_user(node
, nodes
+ j
+ chunk_start
))
1364 if (node
< 0 || node
>= MAX_NUMNODES
)
1367 if (!node_state(node
, N_MEMORY
))
1371 if (!node_isset(node
, task_nodes
))
1377 /* End marker for this chunk */
1378 pm
[chunk_nr_pages
].node
= MAX_NUMNODES
;
1380 /* Migrate this chunk */
1381 err
= do_move_page_to_node_array(mm
, pm
,
1382 flags
& MPOL_MF_MOVE_ALL
);
1386 /* Return status information */
1387 for (j
= 0; j
< chunk_nr_pages
; j
++)
1388 if (put_user(pm
[j
].status
, status
+ j
+ chunk_start
)) {
1396 free_page((unsigned long)pm
);
1402 * Determine the nodes of an array of pages and store it in an array of status.
1404 static void do_pages_stat_array(struct mm_struct
*mm
, unsigned long nr_pages
,
1405 const void __user
**pages
, int *status
)
1409 down_read(&mm
->mmap_sem
);
1411 for (i
= 0; i
< nr_pages
; i
++) {
1412 unsigned long addr
= (unsigned long)(*pages
);
1413 struct vm_area_struct
*vma
;
1417 vma
= find_vma(mm
, addr
);
1418 if (!vma
|| addr
< vma
->vm_start
)
1421 /* FOLL_DUMP to ignore special (like zero) pages */
1422 page
= follow_page(vma
, addr
, FOLL_DUMP
);
1424 err
= PTR_ERR(page
);
1428 err
= page
? page_to_nid(page
) : -ENOENT
;
1436 up_read(&mm
->mmap_sem
);
1440 * Determine the nodes of a user array of pages and store it in
1441 * a user array of status.
1443 static int do_pages_stat(struct mm_struct
*mm
, unsigned long nr_pages
,
1444 const void __user
* __user
*pages
,
1447 #define DO_PAGES_STAT_CHUNK_NR 16
1448 const void __user
*chunk_pages
[DO_PAGES_STAT_CHUNK_NR
];
1449 int chunk_status
[DO_PAGES_STAT_CHUNK_NR
];
1452 unsigned long chunk_nr
;
1454 chunk_nr
= nr_pages
;
1455 if (chunk_nr
> DO_PAGES_STAT_CHUNK_NR
)
1456 chunk_nr
= DO_PAGES_STAT_CHUNK_NR
;
1458 if (copy_from_user(chunk_pages
, pages
, chunk_nr
* sizeof(*chunk_pages
)))
1461 do_pages_stat_array(mm
, chunk_nr
, chunk_pages
, chunk_status
);
1463 if (copy_to_user(status
, chunk_status
, chunk_nr
* sizeof(*status
)))
1468 nr_pages
-= chunk_nr
;
1470 return nr_pages
? -EFAULT
: 0;
1474 * Move a list of pages in the address space of the currently executing
1477 SYSCALL_DEFINE6(move_pages
, pid_t
, pid
, unsigned long, nr_pages
,
1478 const void __user
* __user
*, pages
,
1479 const int __user
*, nodes
,
1480 int __user
*, status
, int, flags
)
1482 const struct cred
*cred
= current_cred(), *tcred
;
1483 struct task_struct
*task
;
1484 struct mm_struct
*mm
;
1486 nodemask_t task_nodes
;
1489 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
1492 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1495 /* Find the mm_struct */
1497 task
= pid
? find_task_by_vpid(pid
) : current
;
1502 get_task_struct(task
);
1505 * Check if this process has the right to modify the specified
1506 * process. The right exists if the process has administrative
1507 * capabilities, superuser privileges or the same
1508 * userid as the target process.
1510 tcred
= __task_cred(task
);
1511 if (!uid_eq(cred
->euid
, tcred
->suid
) && !uid_eq(cred
->euid
, tcred
->uid
) &&
1512 !uid_eq(cred
->uid
, tcred
->suid
) && !uid_eq(cred
->uid
, tcred
->uid
) &&
1513 !capable(CAP_SYS_NICE
)) {
1520 err
= security_task_movememory(task
);
1524 task_nodes
= cpuset_mems_allowed(task
);
1525 mm
= get_task_mm(task
);
1526 put_task_struct(task
);
1532 err
= do_pages_move(mm
, task_nodes
, nr_pages
, pages
,
1533 nodes
, status
, flags
);
1535 err
= do_pages_stat(mm
, nr_pages
, pages
, status
);
1541 put_task_struct(task
);
1545 #ifdef CONFIG_NUMA_BALANCING
1547 * Returns true if this is a safe migration target node for misplaced NUMA
1548 * pages. Currently it only checks the watermarks which crude
1550 static bool migrate_balanced_pgdat(struct pglist_data
*pgdat
,
1551 unsigned long nr_migrate_pages
)
1554 for (z
= pgdat
->nr_zones
- 1; z
>= 0; z
--) {
1555 struct zone
*zone
= pgdat
->node_zones
+ z
;
1557 if (!populated_zone(zone
))
1560 if (!zone_reclaimable(zone
))
1563 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1564 if (!zone_watermark_ok(zone
, 0,
1565 high_wmark_pages(zone
) +
1574 static struct page
*alloc_misplaced_dst_page(struct page
*page
,
1578 int nid
= (int) data
;
1579 struct page
*newpage
;
1581 newpage
= __alloc_pages_node(nid
,
1582 (GFP_HIGHUSER_MOVABLE
|
1583 __GFP_THISNODE
| __GFP_NOMEMALLOC
|
1584 __GFP_NORETRY
| __GFP_NOWARN
) &
1585 ~(__GFP_IO
| __GFP_FS
), 0);
1591 * page migration rate limiting control.
1592 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1593 * window of time. Default here says do not migrate more than 1280M per second.
1595 static unsigned int migrate_interval_millisecs __read_mostly
= 100;
1596 static unsigned int ratelimit_pages __read_mostly
= 128 << (20 - PAGE_SHIFT
);
1598 /* Returns true if the node is migrate rate-limited after the update */
1599 static bool numamigrate_update_ratelimit(pg_data_t
*pgdat
,
1600 unsigned long nr_pages
)
1603 * Rate-limit the amount of data that is being migrated to a node.
1604 * Optimal placement is no good if the memory bus is saturated and
1605 * all the time is being spent migrating!
1607 if (time_after(jiffies
, pgdat
->numabalancing_migrate_next_window
)) {
1608 spin_lock(&pgdat
->numabalancing_migrate_lock
);
1609 pgdat
->numabalancing_migrate_nr_pages
= 0;
1610 pgdat
->numabalancing_migrate_next_window
= jiffies
+
1611 msecs_to_jiffies(migrate_interval_millisecs
);
1612 spin_unlock(&pgdat
->numabalancing_migrate_lock
);
1614 if (pgdat
->numabalancing_migrate_nr_pages
> ratelimit_pages
) {
1615 trace_mm_numa_migrate_ratelimit(current
, pgdat
->node_id
,
1621 * This is an unlocked non-atomic update so errors are possible.
1622 * The consequences are failing to migrate when we potentiall should
1623 * have which is not severe enough to warrant locking. If it is ever
1624 * a problem, it can be converted to a per-cpu counter.
1626 pgdat
->numabalancing_migrate_nr_pages
+= nr_pages
;
1630 static int numamigrate_isolate_page(pg_data_t
*pgdat
, struct page
*page
)
1634 VM_BUG_ON_PAGE(compound_order(page
) && !PageTransHuge(page
), page
);
1636 /* Avoid migrating to a node that is nearly full */
1637 if (!migrate_balanced_pgdat(pgdat
, 1UL << compound_order(page
)))
1640 if (isolate_lru_page(page
))
1644 * migrate_misplaced_transhuge_page() skips page migration's usual
1645 * check on page_count(), so we must do it here, now that the page
1646 * has been isolated: a GUP pin, or any other pin, prevents migration.
1647 * The expected page count is 3: 1 for page's mapcount and 1 for the
1648 * caller's pin and 1 for the reference taken by isolate_lru_page().
1650 if (PageTransHuge(page
) && page_count(page
) != 3) {
1651 putback_lru_page(page
);
1655 page_lru
= page_is_file_cache(page
);
1656 mod_zone_page_state(page_zone(page
), NR_ISOLATED_ANON
+ page_lru
,
1657 hpage_nr_pages(page
));
1660 * Isolating the page has taken another reference, so the
1661 * caller's reference can be safely dropped without the page
1662 * disappearing underneath us during migration.
1668 bool pmd_trans_migrating(pmd_t pmd
)
1670 struct page
*page
= pmd_page(pmd
);
1671 return PageLocked(page
);
1675 * Attempt to migrate a misplaced page to the specified destination
1676 * node. Caller is expected to have an elevated reference count on
1677 * the page that will be dropped by this function before returning.
1679 int migrate_misplaced_page(struct page
*page
, struct vm_area_struct
*vma
,
1682 pg_data_t
*pgdat
= NODE_DATA(node
);
1685 LIST_HEAD(migratepages
);
1688 * Don't migrate file pages that are mapped in multiple processes
1689 * with execute permissions as they are probably shared libraries.
1691 if (page_mapcount(page
) != 1 && page_is_file_cache(page
) &&
1692 (vma
->vm_flags
& VM_EXEC
))
1696 * Rate-limit the amount of data that is being migrated to a node.
1697 * Optimal placement is no good if the memory bus is saturated and
1698 * all the time is being spent migrating!
1700 if (numamigrate_update_ratelimit(pgdat
, 1))
1703 isolated
= numamigrate_isolate_page(pgdat
, page
);
1707 list_add(&page
->lru
, &migratepages
);
1708 nr_remaining
= migrate_pages(&migratepages
, alloc_misplaced_dst_page
,
1709 NULL
, node
, MIGRATE_ASYNC
,
1712 if (!list_empty(&migratepages
)) {
1713 list_del(&page
->lru
);
1714 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
1715 page_is_file_cache(page
));
1716 putback_lru_page(page
);
1720 count_vm_numa_event(NUMA_PAGE_MIGRATE
);
1721 BUG_ON(!list_empty(&migratepages
));
1728 #endif /* CONFIG_NUMA_BALANCING */
1730 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1732 * Migrates a THP to a given target node. page must be locked and is unlocked
1735 int migrate_misplaced_transhuge_page(struct mm_struct
*mm
,
1736 struct vm_area_struct
*vma
,
1737 pmd_t
*pmd
, pmd_t entry
,
1738 unsigned long address
,
1739 struct page
*page
, int node
)
1742 pg_data_t
*pgdat
= NODE_DATA(node
);
1744 struct page
*new_page
= NULL
;
1745 int page_lru
= page_is_file_cache(page
);
1746 unsigned long mmun_start
= address
& HPAGE_PMD_MASK
;
1747 unsigned long mmun_end
= mmun_start
+ HPAGE_PMD_SIZE
;
1751 * Rate-limit the amount of data that is being migrated to a node.
1752 * Optimal placement is no good if the memory bus is saturated and
1753 * all the time is being spent migrating!
1755 if (numamigrate_update_ratelimit(pgdat
, HPAGE_PMD_NR
))
1758 new_page
= alloc_pages_node(node
,
1759 (GFP_TRANSHUGE
| __GFP_THISNODE
) & ~__GFP_RECLAIM
,
1763 prep_transhuge_page(new_page
);
1765 isolated
= numamigrate_isolate_page(pgdat
, page
);
1771 if (mm_tlb_flush_pending(mm
))
1772 flush_tlb_range(vma
, mmun_start
, mmun_end
);
1774 /* Prepare a page as a migration target */
1775 __SetPageLocked(new_page
);
1776 SetPageSwapBacked(new_page
);
1778 /* anon mapping, we can simply copy page->mapping to the new page: */
1779 new_page
->mapping
= page
->mapping
;
1780 new_page
->index
= page
->index
;
1781 migrate_page_copy(new_page
, page
);
1782 WARN_ON(PageLRU(new_page
));
1784 /* Recheck the target PMD */
1785 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1786 ptl
= pmd_lock(mm
, pmd
);
1787 if (unlikely(!pmd_same(*pmd
, entry
) || page_count(page
) != 2)) {
1790 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1792 /* Reverse changes made by migrate_page_copy() */
1793 if (TestClearPageActive(new_page
))
1794 SetPageActive(page
);
1795 if (TestClearPageUnevictable(new_page
))
1796 SetPageUnevictable(page
);
1798 unlock_page(new_page
);
1799 put_page(new_page
); /* Free it */
1801 /* Retake the callers reference and putback on LRU */
1803 putback_lru_page(page
);
1804 mod_zone_page_state(page_zone(page
),
1805 NR_ISOLATED_ANON
+ page_lru
, -HPAGE_PMD_NR
);
1811 entry
= mk_pmd(new_page
, vma
->vm_page_prot
);
1812 entry
= pmd_mkhuge(entry
);
1813 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1816 * Clear the old entry under pagetable lock and establish the new PTE.
1817 * Any parallel GUP will either observe the old page blocking on the
1818 * page lock, block on the page table lock or observe the new page.
1819 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1820 * guarantee the copy is visible before the pagetable update.
1822 flush_cache_range(vma
, mmun_start
, mmun_end
);
1823 page_add_anon_rmap(new_page
, vma
, mmun_start
, true);
1824 pmdp_huge_clear_flush_notify(vma
, mmun_start
, pmd
);
1825 set_pmd_at(mm
, mmun_start
, pmd
, entry
);
1826 flush_tlb_range(vma
, mmun_start
, mmun_end
);
1827 update_mmu_cache_pmd(vma
, address
, &entry
);
1829 if (page_count(page
) != 2) {
1830 set_pmd_at(mm
, mmun_start
, pmd
, orig_entry
);
1831 flush_tlb_range(vma
, mmun_start
, mmun_end
);
1832 mmu_notifier_invalidate_range(mm
, mmun_start
, mmun_end
);
1833 update_mmu_cache_pmd(vma
, address
, &entry
);
1834 page_remove_rmap(new_page
, true);
1838 mlock_migrate_page(new_page
, page
);
1839 set_page_memcg(new_page
, page_memcg(page
));
1840 set_page_memcg(page
, NULL
);
1841 page_remove_rmap(page
, true);
1844 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1846 /* Take an "isolate" reference and put new page on the LRU. */
1848 putback_lru_page(new_page
);
1850 unlock_page(new_page
);
1852 put_page(page
); /* Drop the rmap reference */
1853 put_page(page
); /* Drop the LRU isolation reference */
1855 count_vm_events(PGMIGRATE_SUCCESS
, HPAGE_PMD_NR
);
1856 count_vm_numa_events(NUMA_PAGE_MIGRATE
, HPAGE_PMD_NR
);
1858 mod_zone_page_state(page_zone(page
),
1859 NR_ISOLATED_ANON
+ page_lru
,
1864 count_vm_events(PGMIGRATE_FAIL
, HPAGE_PMD_NR
);
1866 ptl
= pmd_lock(mm
, pmd
);
1867 if (pmd_same(*pmd
, entry
)) {
1868 entry
= pmd_modify(entry
, vma
->vm_page_prot
);
1869 set_pmd_at(mm
, mmun_start
, pmd
, entry
);
1870 update_mmu_cache_pmd(vma
, address
, &entry
);
1879 #endif /* CONFIG_NUMA_BALANCING */
1881 #endif /* CONFIG_NUMA */