mm/memcg: iteration skip memcgs not yet fully initialized
[deliverable/linux.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/backing-dev.h>
12 #include <linux/mm.h>
13 #include <linux/shm.h>
14 #include <linux/mman.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <linux/syscalls.h>
18 #include <linux/capability.h>
19 #include <linux/init.h>
20 #include <linux/file.h>
21 #include <linux/fs.h>
22 #include <linux/personality.h>
23 #include <linux/security.h>
24 #include <linux/hugetlb.h>
25 #include <linux/profile.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/mempolicy.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/perf_event.h>
32 #include <linux/audit.h>
33 #include <linux/khugepaged.h>
34 #include <linux/uprobes.h>
35 #include <linux/rbtree_augmented.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/notifier.h>
38 #include <linux/memory.h>
39
40 #include <asm/uaccess.h>
41 #include <asm/cacheflush.h>
42 #include <asm/tlb.h>
43 #include <asm/mmu_context.h>
44
45 #include "internal.h"
46
47 #ifndef arch_mmap_check
48 #define arch_mmap_check(addr, len, flags) (0)
49 #endif
50
51 #ifndef arch_rebalance_pgtables
52 #define arch_rebalance_pgtables(addr, len) (addr)
53 #endif
54
55 static void unmap_region(struct mm_struct *mm,
56 struct vm_area_struct *vma, struct vm_area_struct *prev,
57 unsigned long start, unsigned long end);
58
59 /* description of effects of mapping type and prot in current implementation.
60 * this is due to the limited x86 page protection hardware. The expected
61 * behavior is in parens:
62 *
63 * map_type prot
64 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
65 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
66 * w: (no) no w: (no) no w: (yes) yes w: (no) no
67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
68 *
69 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
70 * w: (no) no w: (no) no w: (copy) copy w: (no) no
71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
72 *
73 */
74 pgprot_t protection_map[16] = {
75 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77 };
78
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
80 {
81 return __pgprot(pgprot_val(protection_map[vm_flags &
82 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83 pgprot_val(arch_vm_get_page_prot(vm_flags)));
84 }
85 EXPORT_SYMBOL(vm_get_page_prot);
86
87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
89 unsigned long sysctl_overcommit_kbytes __read_mostly;
90 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
91 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
92 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
93 /*
94 * Make sure vm_committed_as in one cacheline and not cacheline shared with
95 * other variables. It can be updated by several CPUs frequently.
96 */
97 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
98
99 /*
100 * The global memory commitment made in the system can be a metric
101 * that can be used to drive ballooning decisions when Linux is hosted
102 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
103 * balancing memory across competing virtual machines that are hosted.
104 * Several metrics drive this policy engine including the guest reported
105 * memory commitment.
106 */
107 unsigned long vm_memory_committed(void)
108 {
109 return percpu_counter_read_positive(&vm_committed_as);
110 }
111 EXPORT_SYMBOL_GPL(vm_memory_committed);
112
113 /*
114 * Check that a process has enough memory to allocate a new virtual
115 * mapping. 0 means there is enough memory for the allocation to
116 * succeed and -ENOMEM implies there is not.
117 *
118 * We currently support three overcommit policies, which are set via the
119 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
120 *
121 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
122 * Additional code 2002 Jul 20 by Robert Love.
123 *
124 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
125 *
126 * Note this is a helper function intended to be used by LSMs which
127 * wish to use this logic.
128 */
129 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
130 {
131 unsigned long free, allowed, reserve;
132
133 vm_acct_memory(pages);
134
135 /*
136 * Sometimes we want to use more memory than we have
137 */
138 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
139 return 0;
140
141 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
142 free = global_page_state(NR_FREE_PAGES);
143 free += global_page_state(NR_FILE_PAGES);
144
145 /*
146 * shmem pages shouldn't be counted as free in this
147 * case, they can't be purged, only swapped out, and
148 * that won't affect the overall amount of available
149 * memory in the system.
150 */
151 free -= global_page_state(NR_SHMEM);
152
153 free += get_nr_swap_pages();
154
155 /*
156 * Any slabs which are created with the
157 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
158 * which are reclaimable, under pressure. The dentry
159 * cache and most inode caches should fall into this
160 */
161 free += global_page_state(NR_SLAB_RECLAIMABLE);
162
163 /*
164 * Leave reserved pages. The pages are not for anonymous pages.
165 */
166 if (free <= totalreserve_pages)
167 goto error;
168 else
169 free -= totalreserve_pages;
170
171 /*
172 * Reserve some for root
173 */
174 if (!cap_sys_admin)
175 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
176
177 if (free > pages)
178 return 0;
179
180 goto error;
181 }
182
183 allowed = vm_commit_limit();
184 /*
185 * Reserve some for root
186 */
187 if (!cap_sys_admin)
188 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
189
190 /*
191 * Don't let a single process grow so big a user can't recover
192 */
193 if (mm) {
194 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
195 allowed -= min(mm->total_vm / 32, reserve);
196 }
197
198 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
199 return 0;
200 error:
201 vm_unacct_memory(pages);
202
203 return -ENOMEM;
204 }
205
206 /*
207 * Requires inode->i_mapping->i_mmap_mutex
208 */
209 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
210 struct file *file, struct address_space *mapping)
211 {
212 if (vma->vm_flags & VM_DENYWRITE)
213 atomic_inc(&file_inode(file)->i_writecount);
214 if (vma->vm_flags & VM_SHARED)
215 mapping->i_mmap_writable--;
216
217 flush_dcache_mmap_lock(mapping);
218 if (unlikely(vma->vm_flags & VM_NONLINEAR))
219 list_del_init(&vma->shared.nonlinear);
220 else
221 vma_interval_tree_remove(vma, &mapping->i_mmap);
222 flush_dcache_mmap_unlock(mapping);
223 }
224
225 /*
226 * Unlink a file-based vm structure from its interval tree, to hide
227 * vma from rmap and vmtruncate before freeing its page tables.
228 */
229 void unlink_file_vma(struct vm_area_struct *vma)
230 {
231 struct file *file = vma->vm_file;
232
233 if (file) {
234 struct address_space *mapping = file->f_mapping;
235 mutex_lock(&mapping->i_mmap_mutex);
236 __remove_shared_vm_struct(vma, file, mapping);
237 mutex_unlock(&mapping->i_mmap_mutex);
238 }
239 }
240
241 /*
242 * Close a vm structure and free it, returning the next.
243 */
244 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
245 {
246 struct vm_area_struct *next = vma->vm_next;
247
248 might_sleep();
249 if (vma->vm_ops && vma->vm_ops->close)
250 vma->vm_ops->close(vma);
251 if (vma->vm_file)
252 fput(vma->vm_file);
253 mpol_put(vma_policy(vma));
254 kmem_cache_free(vm_area_cachep, vma);
255 return next;
256 }
257
258 static unsigned long do_brk(unsigned long addr, unsigned long len);
259
260 SYSCALL_DEFINE1(brk, unsigned long, brk)
261 {
262 unsigned long rlim, retval;
263 unsigned long newbrk, oldbrk;
264 struct mm_struct *mm = current->mm;
265 unsigned long min_brk;
266 bool populate;
267
268 down_write(&mm->mmap_sem);
269
270 #ifdef CONFIG_COMPAT_BRK
271 /*
272 * CONFIG_COMPAT_BRK can still be overridden by setting
273 * randomize_va_space to 2, which will still cause mm->start_brk
274 * to be arbitrarily shifted
275 */
276 if (current->brk_randomized)
277 min_brk = mm->start_brk;
278 else
279 min_brk = mm->end_data;
280 #else
281 min_brk = mm->start_brk;
282 #endif
283 if (brk < min_brk)
284 goto out;
285
286 /*
287 * Check against rlimit here. If this check is done later after the test
288 * of oldbrk with newbrk then it can escape the test and let the data
289 * segment grow beyond its set limit the in case where the limit is
290 * not page aligned -Ram Gupta
291 */
292 rlim = rlimit(RLIMIT_DATA);
293 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
294 (mm->end_data - mm->start_data) > rlim)
295 goto out;
296
297 newbrk = PAGE_ALIGN(brk);
298 oldbrk = PAGE_ALIGN(mm->brk);
299 if (oldbrk == newbrk)
300 goto set_brk;
301
302 /* Always allow shrinking brk. */
303 if (brk <= mm->brk) {
304 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
305 goto set_brk;
306 goto out;
307 }
308
309 /* Check against existing mmap mappings. */
310 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
311 goto out;
312
313 /* Ok, looks good - let it rip. */
314 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
315 goto out;
316
317 set_brk:
318 mm->brk = brk;
319 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
320 up_write(&mm->mmap_sem);
321 if (populate)
322 mm_populate(oldbrk, newbrk - oldbrk);
323 return brk;
324
325 out:
326 retval = mm->brk;
327 up_write(&mm->mmap_sem);
328 return retval;
329 }
330
331 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
332 {
333 unsigned long max, subtree_gap;
334 max = vma->vm_start;
335 if (vma->vm_prev)
336 max -= vma->vm_prev->vm_end;
337 if (vma->vm_rb.rb_left) {
338 subtree_gap = rb_entry(vma->vm_rb.rb_left,
339 struct vm_area_struct, vm_rb)->rb_subtree_gap;
340 if (subtree_gap > max)
341 max = subtree_gap;
342 }
343 if (vma->vm_rb.rb_right) {
344 subtree_gap = rb_entry(vma->vm_rb.rb_right,
345 struct vm_area_struct, vm_rb)->rb_subtree_gap;
346 if (subtree_gap > max)
347 max = subtree_gap;
348 }
349 return max;
350 }
351
352 #ifdef CONFIG_DEBUG_VM_RB
353 static int browse_rb(struct rb_root *root)
354 {
355 int i = 0, j, bug = 0;
356 struct rb_node *nd, *pn = NULL;
357 unsigned long prev = 0, pend = 0;
358
359 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
360 struct vm_area_struct *vma;
361 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
362 if (vma->vm_start < prev) {
363 printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
364 bug = 1;
365 }
366 if (vma->vm_start < pend) {
367 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
368 bug = 1;
369 }
370 if (vma->vm_start > vma->vm_end) {
371 printk("vm_end %lx < vm_start %lx\n",
372 vma->vm_end, vma->vm_start);
373 bug = 1;
374 }
375 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
376 printk("free gap %lx, correct %lx\n",
377 vma->rb_subtree_gap,
378 vma_compute_subtree_gap(vma));
379 bug = 1;
380 }
381 i++;
382 pn = nd;
383 prev = vma->vm_start;
384 pend = vma->vm_end;
385 }
386 j = 0;
387 for (nd = pn; nd; nd = rb_prev(nd))
388 j++;
389 if (i != j) {
390 printk("backwards %d, forwards %d\n", j, i);
391 bug = 1;
392 }
393 return bug ? -1 : i;
394 }
395
396 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
397 {
398 struct rb_node *nd;
399
400 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
401 struct vm_area_struct *vma;
402 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
403 BUG_ON(vma != ignore &&
404 vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
405 }
406 }
407
408 void validate_mm(struct mm_struct *mm)
409 {
410 int bug = 0;
411 int i = 0;
412 unsigned long highest_address = 0;
413 struct vm_area_struct *vma = mm->mmap;
414 while (vma) {
415 struct anon_vma_chain *avc;
416 vma_lock_anon_vma(vma);
417 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
418 anon_vma_interval_tree_verify(avc);
419 vma_unlock_anon_vma(vma);
420 highest_address = vma->vm_end;
421 vma = vma->vm_next;
422 i++;
423 }
424 if (i != mm->map_count) {
425 printk("map_count %d vm_next %d\n", mm->map_count, i);
426 bug = 1;
427 }
428 if (highest_address != mm->highest_vm_end) {
429 printk("mm->highest_vm_end %lx, found %lx\n",
430 mm->highest_vm_end, highest_address);
431 bug = 1;
432 }
433 i = browse_rb(&mm->mm_rb);
434 if (i != mm->map_count) {
435 printk("map_count %d rb %d\n", mm->map_count, i);
436 bug = 1;
437 }
438 BUG_ON(bug);
439 }
440 #else
441 #define validate_mm_rb(root, ignore) do { } while (0)
442 #define validate_mm(mm) do { } while (0)
443 #endif
444
445 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
446 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
447
448 /*
449 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
450 * vma->vm_prev->vm_end values changed, without modifying the vma's position
451 * in the rbtree.
452 */
453 static void vma_gap_update(struct vm_area_struct *vma)
454 {
455 /*
456 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
457 * function that does exacltly what we want.
458 */
459 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
460 }
461
462 static inline void vma_rb_insert(struct vm_area_struct *vma,
463 struct rb_root *root)
464 {
465 /* All rb_subtree_gap values must be consistent prior to insertion */
466 validate_mm_rb(root, NULL);
467
468 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
469 }
470
471 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
472 {
473 /*
474 * All rb_subtree_gap values must be consistent prior to erase,
475 * with the possible exception of the vma being erased.
476 */
477 validate_mm_rb(root, vma);
478
479 /*
480 * Note rb_erase_augmented is a fairly large inline function,
481 * so make sure we instantiate it only once with our desired
482 * augmented rbtree callbacks.
483 */
484 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
485 }
486
487 /*
488 * vma has some anon_vma assigned, and is already inserted on that
489 * anon_vma's interval trees.
490 *
491 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
492 * vma must be removed from the anon_vma's interval trees using
493 * anon_vma_interval_tree_pre_update_vma().
494 *
495 * After the update, the vma will be reinserted using
496 * anon_vma_interval_tree_post_update_vma().
497 *
498 * The entire update must be protected by exclusive mmap_sem and by
499 * the root anon_vma's mutex.
500 */
501 static inline void
502 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
503 {
504 struct anon_vma_chain *avc;
505
506 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
507 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
508 }
509
510 static inline void
511 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
512 {
513 struct anon_vma_chain *avc;
514
515 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
516 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
517 }
518
519 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
520 unsigned long end, struct vm_area_struct **pprev,
521 struct rb_node ***rb_link, struct rb_node **rb_parent)
522 {
523 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
524
525 __rb_link = &mm->mm_rb.rb_node;
526 rb_prev = __rb_parent = NULL;
527
528 while (*__rb_link) {
529 struct vm_area_struct *vma_tmp;
530
531 __rb_parent = *__rb_link;
532 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
533
534 if (vma_tmp->vm_end > addr) {
535 /* Fail if an existing vma overlaps the area */
536 if (vma_tmp->vm_start < end)
537 return -ENOMEM;
538 __rb_link = &__rb_parent->rb_left;
539 } else {
540 rb_prev = __rb_parent;
541 __rb_link = &__rb_parent->rb_right;
542 }
543 }
544
545 *pprev = NULL;
546 if (rb_prev)
547 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
548 *rb_link = __rb_link;
549 *rb_parent = __rb_parent;
550 return 0;
551 }
552
553 static unsigned long count_vma_pages_range(struct mm_struct *mm,
554 unsigned long addr, unsigned long end)
555 {
556 unsigned long nr_pages = 0;
557 struct vm_area_struct *vma;
558
559 /* Find first overlaping mapping */
560 vma = find_vma_intersection(mm, addr, end);
561 if (!vma)
562 return 0;
563
564 nr_pages = (min(end, vma->vm_end) -
565 max(addr, vma->vm_start)) >> PAGE_SHIFT;
566
567 /* Iterate over the rest of the overlaps */
568 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
569 unsigned long overlap_len;
570
571 if (vma->vm_start > end)
572 break;
573
574 overlap_len = min(end, vma->vm_end) - vma->vm_start;
575 nr_pages += overlap_len >> PAGE_SHIFT;
576 }
577
578 return nr_pages;
579 }
580
581 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
582 struct rb_node **rb_link, struct rb_node *rb_parent)
583 {
584 /* Update tracking information for the gap following the new vma. */
585 if (vma->vm_next)
586 vma_gap_update(vma->vm_next);
587 else
588 mm->highest_vm_end = vma->vm_end;
589
590 /*
591 * vma->vm_prev wasn't known when we followed the rbtree to find the
592 * correct insertion point for that vma. As a result, we could not
593 * update the vma vm_rb parents rb_subtree_gap values on the way down.
594 * So, we first insert the vma with a zero rb_subtree_gap value
595 * (to be consistent with what we did on the way down), and then
596 * immediately update the gap to the correct value. Finally we
597 * rebalance the rbtree after all augmented values have been set.
598 */
599 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
600 vma->rb_subtree_gap = 0;
601 vma_gap_update(vma);
602 vma_rb_insert(vma, &mm->mm_rb);
603 }
604
605 static void __vma_link_file(struct vm_area_struct *vma)
606 {
607 struct file *file;
608
609 file = vma->vm_file;
610 if (file) {
611 struct address_space *mapping = file->f_mapping;
612
613 if (vma->vm_flags & VM_DENYWRITE)
614 atomic_dec(&file_inode(file)->i_writecount);
615 if (vma->vm_flags & VM_SHARED)
616 mapping->i_mmap_writable++;
617
618 flush_dcache_mmap_lock(mapping);
619 if (unlikely(vma->vm_flags & VM_NONLINEAR))
620 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
621 else
622 vma_interval_tree_insert(vma, &mapping->i_mmap);
623 flush_dcache_mmap_unlock(mapping);
624 }
625 }
626
627 static void
628 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
629 struct vm_area_struct *prev, struct rb_node **rb_link,
630 struct rb_node *rb_parent)
631 {
632 __vma_link_list(mm, vma, prev, rb_parent);
633 __vma_link_rb(mm, vma, rb_link, rb_parent);
634 }
635
636 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
637 struct vm_area_struct *prev, struct rb_node **rb_link,
638 struct rb_node *rb_parent)
639 {
640 struct address_space *mapping = NULL;
641
642 if (vma->vm_file)
643 mapping = vma->vm_file->f_mapping;
644
645 if (mapping)
646 mutex_lock(&mapping->i_mmap_mutex);
647
648 __vma_link(mm, vma, prev, rb_link, rb_parent);
649 __vma_link_file(vma);
650
651 if (mapping)
652 mutex_unlock(&mapping->i_mmap_mutex);
653
654 mm->map_count++;
655 validate_mm(mm);
656 }
657
658 /*
659 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
660 * mm's list and rbtree. It has already been inserted into the interval tree.
661 */
662 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
663 {
664 struct vm_area_struct *prev;
665 struct rb_node **rb_link, *rb_parent;
666
667 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
668 &prev, &rb_link, &rb_parent))
669 BUG();
670 __vma_link(mm, vma, prev, rb_link, rb_parent);
671 mm->map_count++;
672 }
673
674 static inline void
675 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
676 struct vm_area_struct *prev)
677 {
678 struct vm_area_struct *next;
679
680 vma_rb_erase(vma, &mm->mm_rb);
681 prev->vm_next = next = vma->vm_next;
682 if (next)
683 next->vm_prev = prev;
684 if (mm->mmap_cache == vma)
685 mm->mmap_cache = prev;
686 }
687
688 /*
689 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
690 * is already present in an i_mmap tree without adjusting the tree.
691 * The following helper function should be used when such adjustments
692 * are necessary. The "insert" vma (if any) is to be inserted
693 * before we drop the necessary locks.
694 */
695 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
696 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
697 {
698 struct mm_struct *mm = vma->vm_mm;
699 struct vm_area_struct *next = vma->vm_next;
700 struct vm_area_struct *importer = NULL;
701 struct address_space *mapping = NULL;
702 struct rb_root *root = NULL;
703 struct anon_vma *anon_vma = NULL;
704 struct file *file = vma->vm_file;
705 bool start_changed = false, end_changed = false;
706 long adjust_next = 0;
707 int remove_next = 0;
708
709 if (next && !insert) {
710 struct vm_area_struct *exporter = NULL;
711
712 if (end >= next->vm_end) {
713 /*
714 * vma expands, overlapping all the next, and
715 * perhaps the one after too (mprotect case 6).
716 */
717 again: remove_next = 1 + (end > next->vm_end);
718 end = next->vm_end;
719 exporter = next;
720 importer = vma;
721 } else if (end > next->vm_start) {
722 /*
723 * vma expands, overlapping part of the next:
724 * mprotect case 5 shifting the boundary up.
725 */
726 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
727 exporter = next;
728 importer = vma;
729 } else if (end < vma->vm_end) {
730 /*
731 * vma shrinks, and !insert tells it's not
732 * split_vma inserting another: so it must be
733 * mprotect case 4 shifting the boundary down.
734 */
735 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
736 exporter = vma;
737 importer = next;
738 }
739
740 /*
741 * Easily overlooked: when mprotect shifts the boundary,
742 * make sure the expanding vma has anon_vma set if the
743 * shrinking vma had, to cover any anon pages imported.
744 */
745 if (exporter && exporter->anon_vma && !importer->anon_vma) {
746 if (anon_vma_clone(importer, exporter))
747 return -ENOMEM;
748 importer->anon_vma = exporter->anon_vma;
749 }
750 }
751
752 if (file) {
753 mapping = file->f_mapping;
754 if (!(vma->vm_flags & VM_NONLINEAR)) {
755 root = &mapping->i_mmap;
756 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
757
758 if (adjust_next)
759 uprobe_munmap(next, next->vm_start,
760 next->vm_end);
761 }
762
763 mutex_lock(&mapping->i_mmap_mutex);
764 if (insert) {
765 /*
766 * Put into interval tree now, so instantiated pages
767 * are visible to arm/parisc __flush_dcache_page
768 * throughout; but we cannot insert into address
769 * space until vma start or end is updated.
770 */
771 __vma_link_file(insert);
772 }
773 }
774
775 vma_adjust_trans_huge(vma, start, end, adjust_next);
776
777 anon_vma = vma->anon_vma;
778 if (!anon_vma && adjust_next)
779 anon_vma = next->anon_vma;
780 if (anon_vma) {
781 VM_BUG_ON(adjust_next && next->anon_vma &&
782 anon_vma != next->anon_vma);
783 anon_vma_lock_write(anon_vma);
784 anon_vma_interval_tree_pre_update_vma(vma);
785 if (adjust_next)
786 anon_vma_interval_tree_pre_update_vma(next);
787 }
788
789 if (root) {
790 flush_dcache_mmap_lock(mapping);
791 vma_interval_tree_remove(vma, root);
792 if (adjust_next)
793 vma_interval_tree_remove(next, root);
794 }
795
796 if (start != vma->vm_start) {
797 vma->vm_start = start;
798 start_changed = true;
799 }
800 if (end != vma->vm_end) {
801 vma->vm_end = end;
802 end_changed = true;
803 }
804 vma->vm_pgoff = pgoff;
805 if (adjust_next) {
806 next->vm_start += adjust_next << PAGE_SHIFT;
807 next->vm_pgoff += adjust_next;
808 }
809
810 if (root) {
811 if (adjust_next)
812 vma_interval_tree_insert(next, root);
813 vma_interval_tree_insert(vma, root);
814 flush_dcache_mmap_unlock(mapping);
815 }
816
817 if (remove_next) {
818 /*
819 * vma_merge has merged next into vma, and needs
820 * us to remove next before dropping the locks.
821 */
822 __vma_unlink(mm, next, vma);
823 if (file)
824 __remove_shared_vm_struct(next, file, mapping);
825 } else if (insert) {
826 /*
827 * split_vma has split insert from vma, and needs
828 * us to insert it before dropping the locks
829 * (it may either follow vma or precede it).
830 */
831 __insert_vm_struct(mm, insert);
832 } else {
833 if (start_changed)
834 vma_gap_update(vma);
835 if (end_changed) {
836 if (!next)
837 mm->highest_vm_end = end;
838 else if (!adjust_next)
839 vma_gap_update(next);
840 }
841 }
842
843 if (anon_vma) {
844 anon_vma_interval_tree_post_update_vma(vma);
845 if (adjust_next)
846 anon_vma_interval_tree_post_update_vma(next);
847 anon_vma_unlock_write(anon_vma);
848 }
849 if (mapping)
850 mutex_unlock(&mapping->i_mmap_mutex);
851
852 if (root) {
853 uprobe_mmap(vma);
854
855 if (adjust_next)
856 uprobe_mmap(next);
857 }
858
859 if (remove_next) {
860 if (file) {
861 uprobe_munmap(next, next->vm_start, next->vm_end);
862 fput(file);
863 }
864 if (next->anon_vma)
865 anon_vma_merge(vma, next);
866 mm->map_count--;
867 mpol_put(vma_policy(next));
868 kmem_cache_free(vm_area_cachep, next);
869 /*
870 * In mprotect's case 6 (see comments on vma_merge),
871 * we must remove another next too. It would clutter
872 * up the code too much to do both in one go.
873 */
874 next = vma->vm_next;
875 if (remove_next == 2)
876 goto again;
877 else if (next)
878 vma_gap_update(next);
879 else
880 mm->highest_vm_end = end;
881 }
882 if (insert && file)
883 uprobe_mmap(insert);
884
885 validate_mm(mm);
886
887 return 0;
888 }
889
890 /*
891 * If the vma has a ->close operation then the driver probably needs to release
892 * per-vma resources, so we don't attempt to merge those.
893 */
894 static inline int is_mergeable_vma(struct vm_area_struct *vma,
895 struct file *file, unsigned long vm_flags)
896 {
897 if (vma->vm_flags ^ vm_flags)
898 return 0;
899 if (vma->vm_file != file)
900 return 0;
901 if (vma->vm_ops && vma->vm_ops->close)
902 return 0;
903 return 1;
904 }
905
906 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
907 struct anon_vma *anon_vma2,
908 struct vm_area_struct *vma)
909 {
910 /*
911 * The list_is_singular() test is to avoid merging VMA cloned from
912 * parents. This can improve scalability caused by anon_vma lock.
913 */
914 if ((!anon_vma1 || !anon_vma2) && (!vma ||
915 list_is_singular(&vma->anon_vma_chain)))
916 return 1;
917 return anon_vma1 == anon_vma2;
918 }
919
920 /*
921 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
922 * in front of (at a lower virtual address and file offset than) the vma.
923 *
924 * We cannot merge two vmas if they have differently assigned (non-NULL)
925 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
926 *
927 * We don't check here for the merged mmap wrapping around the end of pagecache
928 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
929 * wrap, nor mmaps which cover the final page at index -1UL.
930 */
931 static int
932 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
933 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
934 {
935 if (is_mergeable_vma(vma, file, vm_flags) &&
936 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
937 if (vma->vm_pgoff == vm_pgoff)
938 return 1;
939 }
940 return 0;
941 }
942
943 /*
944 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
945 * beyond (at a higher virtual address and file offset than) the vma.
946 *
947 * We cannot merge two vmas if they have differently assigned (non-NULL)
948 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
949 */
950 static int
951 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
952 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
953 {
954 if (is_mergeable_vma(vma, file, vm_flags) &&
955 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
956 pgoff_t vm_pglen;
957 vm_pglen = vma_pages(vma);
958 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
959 return 1;
960 }
961 return 0;
962 }
963
964 /*
965 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
966 * whether that can be merged with its predecessor or its successor.
967 * Or both (it neatly fills a hole).
968 *
969 * In most cases - when called for mmap, brk or mremap - [addr,end) is
970 * certain not to be mapped by the time vma_merge is called; but when
971 * called for mprotect, it is certain to be already mapped (either at
972 * an offset within prev, or at the start of next), and the flags of
973 * this area are about to be changed to vm_flags - and the no-change
974 * case has already been eliminated.
975 *
976 * The following mprotect cases have to be considered, where AAAA is
977 * the area passed down from mprotect_fixup, never extending beyond one
978 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
979 *
980 * AAAA AAAA AAAA AAAA
981 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
982 * cannot merge might become might become might become
983 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
984 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
985 * mremap move: PPPPNNNNNNNN 8
986 * AAAA
987 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
988 * might become case 1 below case 2 below case 3 below
989 *
990 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
991 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
992 */
993 struct vm_area_struct *vma_merge(struct mm_struct *mm,
994 struct vm_area_struct *prev, unsigned long addr,
995 unsigned long end, unsigned long vm_flags,
996 struct anon_vma *anon_vma, struct file *file,
997 pgoff_t pgoff, struct mempolicy *policy)
998 {
999 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1000 struct vm_area_struct *area, *next;
1001 int err;
1002
1003 /*
1004 * We later require that vma->vm_flags == vm_flags,
1005 * so this tests vma->vm_flags & VM_SPECIAL, too.
1006 */
1007 if (vm_flags & VM_SPECIAL)
1008 return NULL;
1009
1010 if (prev)
1011 next = prev->vm_next;
1012 else
1013 next = mm->mmap;
1014 area = next;
1015 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1016 next = next->vm_next;
1017
1018 /*
1019 * Can it merge with the predecessor?
1020 */
1021 if (prev && prev->vm_end == addr &&
1022 mpol_equal(vma_policy(prev), policy) &&
1023 can_vma_merge_after(prev, vm_flags,
1024 anon_vma, file, pgoff)) {
1025 /*
1026 * OK, it can. Can we now merge in the successor as well?
1027 */
1028 if (next && end == next->vm_start &&
1029 mpol_equal(policy, vma_policy(next)) &&
1030 can_vma_merge_before(next, vm_flags,
1031 anon_vma, file, pgoff+pglen) &&
1032 is_mergeable_anon_vma(prev->anon_vma,
1033 next->anon_vma, NULL)) {
1034 /* cases 1, 6 */
1035 err = vma_adjust(prev, prev->vm_start,
1036 next->vm_end, prev->vm_pgoff, NULL);
1037 } else /* cases 2, 5, 7 */
1038 err = vma_adjust(prev, prev->vm_start,
1039 end, prev->vm_pgoff, NULL);
1040 if (err)
1041 return NULL;
1042 khugepaged_enter_vma_merge(prev);
1043 return prev;
1044 }
1045
1046 /*
1047 * Can this new request be merged in front of next?
1048 */
1049 if (next && end == next->vm_start &&
1050 mpol_equal(policy, vma_policy(next)) &&
1051 can_vma_merge_before(next, vm_flags,
1052 anon_vma, file, pgoff+pglen)) {
1053 if (prev && addr < prev->vm_end) /* case 4 */
1054 err = vma_adjust(prev, prev->vm_start,
1055 addr, prev->vm_pgoff, NULL);
1056 else /* cases 3, 8 */
1057 err = vma_adjust(area, addr, next->vm_end,
1058 next->vm_pgoff - pglen, NULL);
1059 if (err)
1060 return NULL;
1061 khugepaged_enter_vma_merge(area);
1062 return area;
1063 }
1064
1065 return NULL;
1066 }
1067
1068 /*
1069 * Rough compatbility check to quickly see if it's even worth looking
1070 * at sharing an anon_vma.
1071 *
1072 * They need to have the same vm_file, and the flags can only differ
1073 * in things that mprotect may change.
1074 *
1075 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1076 * we can merge the two vma's. For example, we refuse to merge a vma if
1077 * there is a vm_ops->close() function, because that indicates that the
1078 * driver is doing some kind of reference counting. But that doesn't
1079 * really matter for the anon_vma sharing case.
1080 */
1081 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1082 {
1083 return a->vm_end == b->vm_start &&
1084 mpol_equal(vma_policy(a), vma_policy(b)) &&
1085 a->vm_file == b->vm_file &&
1086 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
1087 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1088 }
1089
1090 /*
1091 * Do some basic sanity checking to see if we can re-use the anon_vma
1092 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1093 * the same as 'old', the other will be the new one that is trying
1094 * to share the anon_vma.
1095 *
1096 * NOTE! This runs with mm_sem held for reading, so it is possible that
1097 * the anon_vma of 'old' is concurrently in the process of being set up
1098 * by another page fault trying to merge _that_. But that's ok: if it
1099 * is being set up, that automatically means that it will be a singleton
1100 * acceptable for merging, so we can do all of this optimistically. But
1101 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1102 *
1103 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1104 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1105 * is to return an anon_vma that is "complex" due to having gone through
1106 * a fork).
1107 *
1108 * We also make sure that the two vma's are compatible (adjacent,
1109 * and with the same memory policies). That's all stable, even with just
1110 * a read lock on the mm_sem.
1111 */
1112 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1113 {
1114 if (anon_vma_compatible(a, b)) {
1115 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1116
1117 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1118 return anon_vma;
1119 }
1120 return NULL;
1121 }
1122
1123 /*
1124 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1125 * neighbouring vmas for a suitable anon_vma, before it goes off
1126 * to allocate a new anon_vma. It checks because a repetitive
1127 * sequence of mprotects and faults may otherwise lead to distinct
1128 * anon_vmas being allocated, preventing vma merge in subsequent
1129 * mprotect.
1130 */
1131 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1132 {
1133 struct anon_vma *anon_vma;
1134 struct vm_area_struct *near;
1135
1136 near = vma->vm_next;
1137 if (!near)
1138 goto try_prev;
1139
1140 anon_vma = reusable_anon_vma(near, vma, near);
1141 if (anon_vma)
1142 return anon_vma;
1143 try_prev:
1144 near = vma->vm_prev;
1145 if (!near)
1146 goto none;
1147
1148 anon_vma = reusable_anon_vma(near, near, vma);
1149 if (anon_vma)
1150 return anon_vma;
1151 none:
1152 /*
1153 * There's no absolute need to look only at touching neighbours:
1154 * we could search further afield for "compatible" anon_vmas.
1155 * But it would probably just be a waste of time searching,
1156 * or lead to too many vmas hanging off the same anon_vma.
1157 * We're trying to allow mprotect remerging later on,
1158 * not trying to minimize memory used for anon_vmas.
1159 */
1160 return NULL;
1161 }
1162
1163 #ifdef CONFIG_PROC_FS
1164 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1165 struct file *file, long pages)
1166 {
1167 const unsigned long stack_flags
1168 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1169
1170 mm->total_vm += pages;
1171
1172 if (file) {
1173 mm->shared_vm += pages;
1174 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1175 mm->exec_vm += pages;
1176 } else if (flags & stack_flags)
1177 mm->stack_vm += pages;
1178 }
1179 #endif /* CONFIG_PROC_FS */
1180
1181 /*
1182 * If a hint addr is less than mmap_min_addr change hint to be as
1183 * low as possible but still greater than mmap_min_addr
1184 */
1185 static inline unsigned long round_hint_to_min(unsigned long hint)
1186 {
1187 hint &= PAGE_MASK;
1188 if (((void *)hint != NULL) &&
1189 (hint < mmap_min_addr))
1190 return PAGE_ALIGN(mmap_min_addr);
1191 return hint;
1192 }
1193
1194 static inline int mlock_future_check(struct mm_struct *mm,
1195 unsigned long flags,
1196 unsigned long len)
1197 {
1198 unsigned long locked, lock_limit;
1199
1200 /* mlock MCL_FUTURE? */
1201 if (flags & VM_LOCKED) {
1202 locked = len >> PAGE_SHIFT;
1203 locked += mm->locked_vm;
1204 lock_limit = rlimit(RLIMIT_MEMLOCK);
1205 lock_limit >>= PAGE_SHIFT;
1206 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1207 return -EAGAIN;
1208 }
1209 return 0;
1210 }
1211
1212 /*
1213 * The caller must hold down_write(&current->mm->mmap_sem).
1214 */
1215
1216 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1217 unsigned long len, unsigned long prot,
1218 unsigned long flags, unsigned long pgoff,
1219 unsigned long *populate)
1220 {
1221 struct mm_struct * mm = current->mm;
1222 vm_flags_t vm_flags;
1223
1224 *populate = 0;
1225
1226 /*
1227 * Does the application expect PROT_READ to imply PROT_EXEC?
1228 *
1229 * (the exception is when the underlying filesystem is noexec
1230 * mounted, in which case we dont add PROT_EXEC.)
1231 */
1232 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1233 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1234 prot |= PROT_EXEC;
1235
1236 if (!len)
1237 return -EINVAL;
1238
1239 if (!(flags & MAP_FIXED))
1240 addr = round_hint_to_min(addr);
1241
1242 /* Careful about overflows.. */
1243 len = PAGE_ALIGN(len);
1244 if (!len)
1245 return -ENOMEM;
1246
1247 /* offset overflow? */
1248 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1249 return -EOVERFLOW;
1250
1251 /* Too many mappings? */
1252 if (mm->map_count > sysctl_max_map_count)
1253 return -ENOMEM;
1254
1255 /* Obtain the address to map to. we verify (or select) it and ensure
1256 * that it represents a valid section of the address space.
1257 */
1258 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1259 if (addr & ~PAGE_MASK)
1260 return addr;
1261
1262 /* Do simple checking here so the lower-level routines won't have
1263 * to. we assume access permissions have been handled by the open
1264 * of the memory object, so we don't do any here.
1265 */
1266 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1267 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1268
1269 if (flags & MAP_LOCKED)
1270 if (!can_do_mlock())
1271 return -EPERM;
1272
1273 if (mlock_future_check(mm, vm_flags, len))
1274 return -EAGAIN;
1275
1276 if (file) {
1277 struct inode *inode = file_inode(file);
1278
1279 switch (flags & MAP_TYPE) {
1280 case MAP_SHARED:
1281 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1282 return -EACCES;
1283
1284 /*
1285 * Make sure we don't allow writing to an append-only
1286 * file..
1287 */
1288 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1289 return -EACCES;
1290
1291 /*
1292 * Make sure there are no mandatory locks on the file.
1293 */
1294 if (locks_verify_locked(inode))
1295 return -EAGAIN;
1296
1297 vm_flags |= VM_SHARED | VM_MAYSHARE;
1298 if (!(file->f_mode & FMODE_WRITE))
1299 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1300
1301 /* fall through */
1302 case MAP_PRIVATE:
1303 if (!(file->f_mode & FMODE_READ))
1304 return -EACCES;
1305 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1306 if (vm_flags & VM_EXEC)
1307 return -EPERM;
1308 vm_flags &= ~VM_MAYEXEC;
1309 }
1310
1311 if (!file->f_op->mmap)
1312 return -ENODEV;
1313 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1314 return -EINVAL;
1315 break;
1316
1317 default:
1318 return -EINVAL;
1319 }
1320 } else {
1321 switch (flags & MAP_TYPE) {
1322 case MAP_SHARED:
1323 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1324 return -EINVAL;
1325 /*
1326 * Ignore pgoff.
1327 */
1328 pgoff = 0;
1329 vm_flags |= VM_SHARED | VM_MAYSHARE;
1330 break;
1331 case MAP_PRIVATE:
1332 /*
1333 * Set pgoff according to addr for anon_vma.
1334 */
1335 pgoff = addr >> PAGE_SHIFT;
1336 break;
1337 default:
1338 return -EINVAL;
1339 }
1340 }
1341
1342 /*
1343 * Set 'VM_NORESERVE' if we should not account for the
1344 * memory use of this mapping.
1345 */
1346 if (flags & MAP_NORESERVE) {
1347 /* We honor MAP_NORESERVE if allowed to overcommit */
1348 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1349 vm_flags |= VM_NORESERVE;
1350
1351 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1352 if (file && is_file_hugepages(file))
1353 vm_flags |= VM_NORESERVE;
1354 }
1355
1356 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1357 if (!IS_ERR_VALUE(addr) &&
1358 ((vm_flags & VM_LOCKED) ||
1359 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1360 *populate = len;
1361 return addr;
1362 }
1363
1364 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1365 unsigned long, prot, unsigned long, flags,
1366 unsigned long, fd, unsigned long, pgoff)
1367 {
1368 struct file *file = NULL;
1369 unsigned long retval = -EBADF;
1370
1371 if (!(flags & MAP_ANONYMOUS)) {
1372 audit_mmap_fd(fd, flags);
1373 file = fget(fd);
1374 if (!file)
1375 goto out;
1376 if (is_file_hugepages(file))
1377 len = ALIGN(len, huge_page_size(hstate_file(file)));
1378 retval = -EINVAL;
1379 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1380 goto out_fput;
1381 } else if (flags & MAP_HUGETLB) {
1382 struct user_struct *user = NULL;
1383 struct hstate *hs;
1384
1385 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1386 if (!hs)
1387 return -EINVAL;
1388
1389 len = ALIGN(len, huge_page_size(hs));
1390 /*
1391 * VM_NORESERVE is used because the reservations will be
1392 * taken when vm_ops->mmap() is called
1393 * A dummy user value is used because we are not locking
1394 * memory so no accounting is necessary
1395 */
1396 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1397 VM_NORESERVE,
1398 &user, HUGETLB_ANONHUGE_INODE,
1399 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1400 if (IS_ERR(file))
1401 return PTR_ERR(file);
1402 }
1403
1404 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1405
1406 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1407 out_fput:
1408 if (file)
1409 fput(file);
1410 out:
1411 return retval;
1412 }
1413
1414 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1415 struct mmap_arg_struct {
1416 unsigned long addr;
1417 unsigned long len;
1418 unsigned long prot;
1419 unsigned long flags;
1420 unsigned long fd;
1421 unsigned long offset;
1422 };
1423
1424 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1425 {
1426 struct mmap_arg_struct a;
1427
1428 if (copy_from_user(&a, arg, sizeof(a)))
1429 return -EFAULT;
1430 if (a.offset & ~PAGE_MASK)
1431 return -EINVAL;
1432
1433 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1434 a.offset >> PAGE_SHIFT);
1435 }
1436 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1437
1438 /*
1439 * Some shared mappigns will want the pages marked read-only
1440 * to track write events. If so, we'll downgrade vm_page_prot
1441 * to the private version (using protection_map[] without the
1442 * VM_SHARED bit).
1443 */
1444 int vma_wants_writenotify(struct vm_area_struct *vma)
1445 {
1446 vm_flags_t vm_flags = vma->vm_flags;
1447
1448 /* If it was private or non-writable, the write bit is already clear */
1449 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1450 return 0;
1451
1452 /* The backer wishes to know when pages are first written to? */
1453 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1454 return 1;
1455
1456 /* The open routine did something to the protections already? */
1457 if (pgprot_val(vma->vm_page_prot) !=
1458 pgprot_val(vm_get_page_prot(vm_flags)))
1459 return 0;
1460
1461 /* Specialty mapping? */
1462 if (vm_flags & VM_PFNMAP)
1463 return 0;
1464
1465 /* Can the mapping track the dirty pages? */
1466 return vma->vm_file && vma->vm_file->f_mapping &&
1467 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1468 }
1469
1470 /*
1471 * We account for memory if it's a private writeable mapping,
1472 * not hugepages and VM_NORESERVE wasn't set.
1473 */
1474 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1475 {
1476 /*
1477 * hugetlb has its own accounting separate from the core VM
1478 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1479 */
1480 if (file && is_file_hugepages(file))
1481 return 0;
1482
1483 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1484 }
1485
1486 unsigned long mmap_region(struct file *file, unsigned long addr,
1487 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1488 {
1489 struct mm_struct *mm = current->mm;
1490 struct vm_area_struct *vma, *prev;
1491 int error;
1492 struct rb_node **rb_link, *rb_parent;
1493 unsigned long charged = 0;
1494
1495 /* Check against address space limit. */
1496 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1497 unsigned long nr_pages;
1498
1499 /*
1500 * MAP_FIXED may remove pages of mappings that intersects with
1501 * requested mapping. Account for the pages it would unmap.
1502 */
1503 if (!(vm_flags & MAP_FIXED))
1504 return -ENOMEM;
1505
1506 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1507
1508 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1509 return -ENOMEM;
1510 }
1511
1512 /* Clear old maps */
1513 error = -ENOMEM;
1514 munmap_back:
1515 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1516 if (do_munmap(mm, addr, len))
1517 return -ENOMEM;
1518 goto munmap_back;
1519 }
1520
1521 /*
1522 * Private writable mapping: check memory availability
1523 */
1524 if (accountable_mapping(file, vm_flags)) {
1525 charged = len >> PAGE_SHIFT;
1526 if (security_vm_enough_memory_mm(mm, charged))
1527 return -ENOMEM;
1528 vm_flags |= VM_ACCOUNT;
1529 }
1530
1531 /*
1532 * Can we just expand an old mapping?
1533 */
1534 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1535 if (vma)
1536 goto out;
1537
1538 /*
1539 * Determine the object being mapped and call the appropriate
1540 * specific mapper. the address has already been validated, but
1541 * not unmapped, but the maps are removed from the list.
1542 */
1543 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1544 if (!vma) {
1545 error = -ENOMEM;
1546 goto unacct_error;
1547 }
1548
1549 vma->vm_mm = mm;
1550 vma->vm_start = addr;
1551 vma->vm_end = addr + len;
1552 vma->vm_flags = vm_flags;
1553 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1554 vma->vm_pgoff = pgoff;
1555 INIT_LIST_HEAD(&vma->anon_vma_chain);
1556
1557 if (file) {
1558 if (vm_flags & VM_DENYWRITE) {
1559 error = deny_write_access(file);
1560 if (error)
1561 goto free_vma;
1562 }
1563 vma->vm_file = get_file(file);
1564 error = file->f_op->mmap(file, vma);
1565 if (error)
1566 goto unmap_and_free_vma;
1567
1568 /* Can addr have changed??
1569 *
1570 * Answer: Yes, several device drivers can do it in their
1571 * f_op->mmap method. -DaveM
1572 * Bug: If addr is changed, prev, rb_link, rb_parent should
1573 * be updated for vma_link()
1574 */
1575 WARN_ON_ONCE(addr != vma->vm_start);
1576
1577 addr = vma->vm_start;
1578 vm_flags = vma->vm_flags;
1579 } else if (vm_flags & VM_SHARED) {
1580 error = shmem_zero_setup(vma);
1581 if (error)
1582 goto free_vma;
1583 }
1584
1585 if (vma_wants_writenotify(vma)) {
1586 pgprot_t pprot = vma->vm_page_prot;
1587
1588 /* Can vma->vm_page_prot have changed??
1589 *
1590 * Answer: Yes, drivers may have changed it in their
1591 * f_op->mmap method.
1592 *
1593 * Ensures that vmas marked as uncached stay that way.
1594 */
1595 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1596 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1597 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1598 }
1599
1600 vma_link(mm, vma, prev, rb_link, rb_parent);
1601 /* Once vma denies write, undo our temporary denial count */
1602 if (vm_flags & VM_DENYWRITE)
1603 allow_write_access(file);
1604 file = vma->vm_file;
1605 out:
1606 perf_event_mmap(vma);
1607
1608 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1609 if (vm_flags & VM_LOCKED) {
1610 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1611 vma == get_gate_vma(current->mm)))
1612 mm->locked_vm += (len >> PAGE_SHIFT);
1613 else
1614 vma->vm_flags &= ~VM_LOCKED;
1615 }
1616
1617 if (file)
1618 uprobe_mmap(vma);
1619
1620 /*
1621 * New (or expanded) vma always get soft dirty status.
1622 * Otherwise user-space soft-dirty page tracker won't
1623 * be able to distinguish situation when vma area unmapped,
1624 * then new mapped in-place (which must be aimed as
1625 * a completely new data area).
1626 */
1627 vma->vm_flags |= VM_SOFTDIRTY;
1628
1629 return addr;
1630
1631 unmap_and_free_vma:
1632 if (vm_flags & VM_DENYWRITE)
1633 allow_write_access(file);
1634 vma->vm_file = NULL;
1635 fput(file);
1636
1637 /* Undo any partial mapping done by a device driver. */
1638 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1639 charged = 0;
1640 free_vma:
1641 kmem_cache_free(vm_area_cachep, vma);
1642 unacct_error:
1643 if (charged)
1644 vm_unacct_memory(charged);
1645 return error;
1646 }
1647
1648 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1649 {
1650 /*
1651 * We implement the search by looking for an rbtree node that
1652 * immediately follows a suitable gap. That is,
1653 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1654 * - gap_end = vma->vm_start >= info->low_limit + length;
1655 * - gap_end - gap_start >= length
1656 */
1657
1658 struct mm_struct *mm = current->mm;
1659 struct vm_area_struct *vma;
1660 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1661
1662 /* Adjust search length to account for worst case alignment overhead */
1663 length = info->length + info->align_mask;
1664 if (length < info->length)
1665 return -ENOMEM;
1666
1667 /* Adjust search limits by the desired length */
1668 if (info->high_limit < length)
1669 return -ENOMEM;
1670 high_limit = info->high_limit - length;
1671
1672 if (info->low_limit > high_limit)
1673 return -ENOMEM;
1674 low_limit = info->low_limit + length;
1675
1676 /* Check if rbtree root looks promising */
1677 if (RB_EMPTY_ROOT(&mm->mm_rb))
1678 goto check_highest;
1679 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1680 if (vma->rb_subtree_gap < length)
1681 goto check_highest;
1682
1683 while (true) {
1684 /* Visit left subtree if it looks promising */
1685 gap_end = vma->vm_start;
1686 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1687 struct vm_area_struct *left =
1688 rb_entry(vma->vm_rb.rb_left,
1689 struct vm_area_struct, vm_rb);
1690 if (left->rb_subtree_gap >= length) {
1691 vma = left;
1692 continue;
1693 }
1694 }
1695
1696 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1697 check_current:
1698 /* Check if current node has a suitable gap */
1699 if (gap_start > high_limit)
1700 return -ENOMEM;
1701 if (gap_end >= low_limit && gap_end - gap_start >= length)
1702 goto found;
1703
1704 /* Visit right subtree if it looks promising */
1705 if (vma->vm_rb.rb_right) {
1706 struct vm_area_struct *right =
1707 rb_entry(vma->vm_rb.rb_right,
1708 struct vm_area_struct, vm_rb);
1709 if (right->rb_subtree_gap >= length) {
1710 vma = right;
1711 continue;
1712 }
1713 }
1714
1715 /* Go back up the rbtree to find next candidate node */
1716 while (true) {
1717 struct rb_node *prev = &vma->vm_rb;
1718 if (!rb_parent(prev))
1719 goto check_highest;
1720 vma = rb_entry(rb_parent(prev),
1721 struct vm_area_struct, vm_rb);
1722 if (prev == vma->vm_rb.rb_left) {
1723 gap_start = vma->vm_prev->vm_end;
1724 gap_end = vma->vm_start;
1725 goto check_current;
1726 }
1727 }
1728 }
1729
1730 check_highest:
1731 /* Check highest gap, which does not precede any rbtree node */
1732 gap_start = mm->highest_vm_end;
1733 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1734 if (gap_start > high_limit)
1735 return -ENOMEM;
1736
1737 found:
1738 /* We found a suitable gap. Clip it with the original low_limit. */
1739 if (gap_start < info->low_limit)
1740 gap_start = info->low_limit;
1741
1742 /* Adjust gap address to the desired alignment */
1743 gap_start += (info->align_offset - gap_start) & info->align_mask;
1744
1745 VM_BUG_ON(gap_start + info->length > info->high_limit);
1746 VM_BUG_ON(gap_start + info->length > gap_end);
1747 return gap_start;
1748 }
1749
1750 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1751 {
1752 struct mm_struct *mm = current->mm;
1753 struct vm_area_struct *vma;
1754 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1755
1756 /* Adjust search length to account for worst case alignment overhead */
1757 length = info->length + info->align_mask;
1758 if (length < info->length)
1759 return -ENOMEM;
1760
1761 /*
1762 * Adjust search limits by the desired length.
1763 * See implementation comment at top of unmapped_area().
1764 */
1765 gap_end = info->high_limit;
1766 if (gap_end < length)
1767 return -ENOMEM;
1768 high_limit = gap_end - length;
1769
1770 if (info->low_limit > high_limit)
1771 return -ENOMEM;
1772 low_limit = info->low_limit + length;
1773
1774 /* Check highest gap, which does not precede any rbtree node */
1775 gap_start = mm->highest_vm_end;
1776 if (gap_start <= high_limit)
1777 goto found_highest;
1778
1779 /* Check if rbtree root looks promising */
1780 if (RB_EMPTY_ROOT(&mm->mm_rb))
1781 return -ENOMEM;
1782 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1783 if (vma->rb_subtree_gap < length)
1784 return -ENOMEM;
1785
1786 while (true) {
1787 /* Visit right subtree if it looks promising */
1788 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1789 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1790 struct vm_area_struct *right =
1791 rb_entry(vma->vm_rb.rb_right,
1792 struct vm_area_struct, vm_rb);
1793 if (right->rb_subtree_gap >= length) {
1794 vma = right;
1795 continue;
1796 }
1797 }
1798
1799 check_current:
1800 /* Check if current node has a suitable gap */
1801 gap_end = vma->vm_start;
1802 if (gap_end < low_limit)
1803 return -ENOMEM;
1804 if (gap_start <= high_limit && gap_end - gap_start >= length)
1805 goto found;
1806
1807 /* Visit left subtree if it looks promising */
1808 if (vma->vm_rb.rb_left) {
1809 struct vm_area_struct *left =
1810 rb_entry(vma->vm_rb.rb_left,
1811 struct vm_area_struct, vm_rb);
1812 if (left->rb_subtree_gap >= length) {
1813 vma = left;
1814 continue;
1815 }
1816 }
1817
1818 /* Go back up the rbtree to find next candidate node */
1819 while (true) {
1820 struct rb_node *prev = &vma->vm_rb;
1821 if (!rb_parent(prev))
1822 return -ENOMEM;
1823 vma = rb_entry(rb_parent(prev),
1824 struct vm_area_struct, vm_rb);
1825 if (prev == vma->vm_rb.rb_right) {
1826 gap_start = vma->vm_prev ?
1827 vma->vm_prev->vm_end : 0;
1828 goto check_current;
1829 }
1830 }
1831 }
1832
1833 found:
1834 /* We found a suitable gap. Clip it with the original high_limit. */
1835 if (gap_end > info->high_limit)
1836 gap_end = info->high_limit;
1837
1838 found_highest:
1839 /* Compute highest gap address at the desired alignment */
1840 gap_end -= info->length;
1841 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1842
1843 VM_BUG_ON(gap_end < info->low_limit);
1844 VM_BUG_ON(gap_end < gap_start);
1845 return gap_end;
1846 }
1847
1848 /* Get an address range which is currently unmapped.
1849 * For shmat() with addr=0.
1850 *
1851 * Ugly calling convention alert:
1852 * Return value with the low bits set means error value,
1853 * ie
1854 * if (ret & ~PAGE_MASK)
1855 * error = ret;
1856 *
1857 * This function "knows" that -ENOMEM has the bits set.
1858 */
1859 #ifndef HAVE_ARCH_UNMAPPED_AREA
1860 unsigned long
1861 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1862 unsigned long len, unsigned long pgoff, unsigned long flags)
1863 {
1864 struct mm_struct *mm = current->mm;
1865 struct vm_area_struct *vma;
1866 struct vm_unmapped_area_info info;
1867
1868 if (len > TASK_SIZE - mmap_min_addr)
1869 return -ENOMEM;
1870
1871 if (flags & MAP_FIXED)
1872 return addr;
1873
1874 if (addr) {
1875 addr = PAGE_ALIGN(addr);
1876 vma = find_vma(mm, addr);
1877 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1878 (!vma || addr + len <= vma->vm_start))
1879 return addr;
1880 }
1881
1882 info.flags = 0;
1883 info.length = len;
1884 info.low_limit = mm->mmap_base;
1885 info.high_limit = TASK_SIZE;
1886 info.align_mask = 0;
1887 return vm_unmapped_area(&info);
1888 }
1889 #endif
1890
1891 /*
1892 * This mmap-allocator allocates new areas top-down from below the
1893 * stack's low limit (the base):
1894 */
1895 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1896 unsigned long
1897 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1898 const unsigned long len, const unsigned long pgoff,
1899 const unsigned long flags)
1900 {
1901 struct vm_area_struct *vma;
1902 struct mm_struct *mm = current->mm;
1903 unsigned long addr = addr0;
1904 struct vm_unmapped_area_info info;
1905
1906 /* requested length too big for entire address space */
1907 if (len > TASK_SIZE - mmap_min_addr)
1908 return -ENOMEM;
1909
1910 if (flags & MAP_FIXED)
1911 return addr;
1912
1913 /* requesting a specific address */
1914 if (addr) {
1915 addr = PAGE_ALIGN(addr);
1916 vma = find_vma(mm, addr);
1917 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1918 (!vma || addr + len <= vma->vm_start))
1919 return addr;
1920 }
1921
1922 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1923 info.length = len;
1924 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1925 info.high_limit = mm->mmap_base;
1926 info.align_mask = 0;
1927 addr = vm_unmapped_area(&info);
1928
1929 /*
1930 * A failed mmap() very likely causes application failure,
1931 * so fall back to the bottom-up function here. This scenario
1932 * can happen with large stack limits and large mmap()
1933 * allocations.
1934 */
1935 if (addr & ~PAGE_MASK) {
1936 VM_BUG_ON(addr != -ENOMEM);
1937 info.flags = 0;
1938 info.low_limit = TASK_UNMAPPED_BASE;
1939 info.high_limit = TASK_SIZE;
1940 addr = vm_unmapped_area(&info);
1941 }
1942
1943 return addr;
1944 }
1945 #endif
1946
1947 unsigned long
1948 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1949 unsigned long pgoff, unsigned long flags)
1950 {
1951 unsigned long (*get_area)(struct file *, unsigned long,
1952 unsigned long, unsigned long, unsigned long);
1953
1954 unsigned long error = arch_mmap_check(addr, len, flags);
1955 if (error)
1956 return error;
1957
1958 /* Careful about overflows.. */
1959 if (len > TASK_SIZE)
1960 return -ENOMEM;
1961
1962 get_area = current->mm->get_unmapped_area;
1963 if (file && file->f_op->get_unmapped_area)
1964 get_area = file->f_op->get_unmapped_area;
1965 addr = get_area(file, addr, len, pgoff, flags);
1966 if (IS_ERR_VALUE(addr))
1967 return addr;
1968
1969 if (addr > TASK_SIZE - len)
1970 return -ENOMEM;
1971 if (addr & ~PAGE_MASK)
1972 return -EINVAL;
1973
1974 addr = arch_rebalance_pgtables(addr, len);
1975 error = security_mmap_addr(addr);
1976 return error ? error : addr;
1977 }
1978
1979 EXPORT_SYMBOL(get_unmapped_area);
1980
1981 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1982 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1983 {
1984 struct vm_area_struct *vma = NULL;
1985
1986 /* Check the cache first. */
1987 /* (Cache hit rate is typically around 35%.) */
1988 vma = ACCESS_ONCE(mm->mmap_cache);
1989 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1990 struct rb_node *rb_node;
1991
1992 rb_node = mm->mm_rb.rb_node;
1993 vma = NULL;
1994
1995 while (rb_node) {
1996 struct vm_area_struct *vma_tmp;
1997
1998 vma_tmp = rb_entry(rb_node,
1999 struct vm_area_struct, vm_rb);
2000
2001 if (vma_tmp->vm_end > addr) {
2002 vma = vma_tmp;
2003 if (vma_tmp->vm_start <= addr)
2004 break;
2005 rb_node = rb_node->rb_left;
2006 } else
2007 rb_node = rb_node->rb_right;
2008 }
2009 if (vma)
2010 mm->mmap_cache = vma;
2011 }
2012 return vma;
2013 }
2014
2015 EXPORT_SYMBOL(find_vma);
2016
2017 /*
2018 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2019 */
2020 struct vm_area_struct *
2021 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2022 struct vm_area_struct **pprev)
2023 {
2024 struct vm_area_struct *vma;
2025
2026 vma = find_vma(mm, addr);
2027 if (vma) {
2028 *pprev = vma->vm_prev;
2029 } else {
2030 struct rb_node *rb_node = mm->mm_rb.rb_node;
2031 *pprev = NULL;
2032 while (rb_node) {
2033 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2034 rb_node = rb_node->rb_right;
2035 }
2036 }
2037 return vma;
2038 }
2039
2040 /*
2041 * Verify that the stack growth is acceptable and
2042 * update accounting. This is shared with both the
2043 * grow-up and grow-down cases.
2044 */
2045 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2046 {
2047 struct mm_struct *mm = vma->vm_mm;
2048 struct rlimit *rlim = current->signal->rlim;
2049 unsigned long new_start;
2050
2051 /* address space limit tests */
2052 if (!may_expand_vm(mm, grow))
2053 return -ENOMEM;
2054
2055 /* Stack limit test */
2056 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2057 return -ENOMEM;
2058
2059 /* mlock limit tests */
2060 if (vma->vm_flags & VM_LOCKED) {
2061 unsigned long locked;
2062 unsigned long limit;
2063 locked = mm->locked_vm + grow;
2064 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2065 limit >>= PAGE_SHIFT;
2066 if (locked > limit && !capable(CAP_IPC_LOCK))
2067 return -ENOMEM;
2068 }
2069
2070 /* Check to ensure the stack will not grow into a hugetlb-only region */
2071 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2072 vma->vm_end - size;
2073 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2074 return -EFAULT;
2075
2076 /*
2077 * Overcommit.. This must be the final test, as it will
2078 * update security statistics.
2079 */
2080 if (security_vm_enough_memory_mm(mm, grow))
2081 return -ENOMEM;
2082
2083 /* Ok, everything looks good - let it rip */
2084 if (vma->vm_flags & VM_LOCKED)
2085 mm->locked_vm += grow;
2086 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2087 return 0;
2088 }
2089
2090 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2091 /*
2092 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2093 * vma is the last one with address > vma->vm_end. Have to extend vma.
2094 */
2095 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2096 {
2097 int error;
2098
2099 if (!(vma->vm_flags & VM_GROWSUP))
2100 return -EFAULT;
2101
2102 /*
2103 * We must make sure the anon_vma is allocated
2104 * so that the anon_vma locking is not a noop.
2105 */
2106 if (unlikely(anon_vma_prepare(vma)))
2107 return -ENOMEM;
2108 vma_lock_anon_vma(vma);
2109
2110 /*
2111 * vma->vm_start/vm_end cannot change under us because the caller
2112 * is required to hold the mmap_sem in read mode. We need the
2113 * anon_vma lock to serialize against concurrent expand_stacks.
2114 * Also guard against wrapping around to address 0.
2115 */
2116 if (address < PAGE_ALIGN(address+4))
2117 address = PAGE_ALIGN(address+4);
2118 else {
2119 vma_unlock_anon_vma(vma);
2120 return -ENOMEM;
2121 }
2122 error = 0;
2123
2124 /* Somebody else might have raced and expanded it already */
2125 if (address > vma->vm_end) {
2126 unsigned long size, grow;
2127
2128 size = address - vma->vm_start;
2129 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2130
2131 error = -ENOMEM;
2132 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2133 error = acct_stack_growth(vma, size, grow);
2134 if (!error) {
2135 /*
2136 * vma_gap_update() doesn't support concurrent
2137 * updates, but we only hold a shared mmap_sem
2138 * lock here, so we need to protect against
2139 * concurrent vma expansions.
2140 * vma_lock_anon_vma() doesn't help here, as
2141 * we don't guarantee that all growable vmas
2142 * in a mm share the same root anon vma.
2143 * So, we reuse mm->page_table_lock to guard
2144 * against concurrent vma expansions.
2145 */
2146 spin_lock(&vma->vm_mm->page_table_lock);
2147 anon_vma_interval_tree_pre_update_vma(vma);
2148 vma->vm_end = address;
2149 anon_vma_interval_tree_post_update_vma(vma);
2150 if (vma->vm_next)
2151 vma_gap_update(vma->vm_next);
2152 else
2153 vma->vm_mm->highest_vm_end = address;
2154 spin_unlock(&vma->vm_mm->page_table_lock);
2155
2156 perf_event_mmap(vma);
2157 }
2158 }
2159 }
2160 vma_unlock_anon_vma(vma);
2161 khugepaged_enter_vma_merge(vma);
2162 validate_mm(vma->vm_mm);
2163 return error;
2164 }
2165 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2166
2167 /*
2168 * vma is the first one with address < vma->vm_start. Have to extend vma.
2169 */
2170 int expand_downwards(struct vm_area_struct *vma,
2171 unsigned long address)
2172 {
2173 int error;
2174
2175 /*
2176 * We must make sure the anon_vma is allocated
2177 * so that the anon_vma locking is not a noop.
2178 */
2179 if (unlikely(anon_vma_prepare(vma)))
2180 return -ENOMEM;
2181
2182 address &= PAGE_MASK;
2183 error = security_mmap_addr(address);
2184 if (error)
2185 return error;
2186
2187 vma_lock_anon_vma(vma);
2188
2189 /*
2190 * vma->vm_start/vm_end cannot change under us because the caller
2191 * is required to hold the mmap_sem in read mode. We need the
2192 * anon_vma lock to serialize against concurrent expand_stacks.
2193 */
2194
2195 /* Somebody else might have raced and expanded it already */
2196 if (address < vma->vm_start) {
2197 unsigned long size, grow;
2198
2199 size = vma->vm_end - address;
2200 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2201
2202 error = -ENOMEM;
2203 if (grow <= vma->vm_pgoff) {
2204 error = acct_stack_growth(vma, size, grow);
2205 if (!error) {
2206 /*
2207 * vma_gap_update() doesn't support concurrent
2208 * updates, but we only hold a shared mmap_sem
2209 * lock here, so we need to protect against
2210 * concurrent vma expansions.
2211 * vma_lock_anon_vma() doesn't help here, as
2212 * we don't guarantee that all growable vmas
2213 * in a mm share the same root anon vma.
2214 * So, we reuse mm->page_table_lock to guard
2215 * against concurrent vma expansions.
2216 */
2217 spin_lock(&vma->vm_mm->page_table_lock);
2218 anon_vma_interval_tree_pre_update_vma(vma);
2219 vma->vm_start = address;
2220 vma->vm_pgoff -= grow;
2221 anon_vma_interval_tree_post_update_vma(vma);
2222 vma_gap_update(vma);
2223 spin_unlock(&vma->vm_mm->page_table_lock);
2224
2225 perf_event_mmap(vma);
2226 }
2227 }
2228 }
2229 vma_unlock_anon_vma(vma);
2230 khugepaged_enter_vma_merge(vma);
2231 validate_mm(vma->vm_mm);
2232 return error;
2233 }
2234
2235 /*
2236 * Note how expand_stack() refuses to expand the stack all the way to
2237 * abut the next virtual mapping, *unless* that mapping itself is also
2238 * a stack mapping. We want to leave room for a guard page, after all
2239 * (the guard page itself is not added here, that is done by the
2240 * actual page faulting logic)
2241 *
2242 * This matches the behavior of the guard page logic (see mm/memory.c:
2243 * check_stack_guard_page()), which only allows the guard page to be
2244 * removed under these circumstances.
2245 */
2246 #ifdef CONFIG_STACK_GROWSUP
2247 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2248 {
2249 struct vm_area_struct *next;
2250
2251 address &= PAGE_MASK;
2252 next = vma->vm_next;
2253 if (next && next->vm_start == address + PAGE_SIZE) {
2254 if (!(next->vm_flags & VM_GROWSUP))
2255 return -ENOMEM;
2256 }
2257 return expand_upwards(vma, address);
2258 }
2259
2260 struct vm_area_struct *
2261 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2262 {
2263 struct vm_area_struct *vma, *prev;
2264
2265 addr &= PAGE_MASK;
2266 vma = find_vma_prev(mm, addr, &prev);
2267 if (vma && (vma->vm_start <= addr))
2268 return vma;
2269 if (!prev || expand_stack(prev, addr))
2270 return NULL;
2271 if (prev->vm_flags & VM_LOCKED)
2272 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2273 return prev;
2274 }
2275 #else
2276 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2277 {
2278 struct vm_area_struct *prev;
2279
2280 address &= PAGE_MASK;
2281 prev = vma->vm_prev;
2282 if (prev && prev->vm_end == address) {
2283 if (!(prev->vm_flags & VM_GROWSDOWN))
2284 return -ENOMEM;
2285 }
2286 return expand_downwards(vma, address);
2287 }
2288
2289 struct vm_area_struct *
2290 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2291 {
2292 struct vm_area_struct * vma;
2293 unsigned long start;
2294
2295 addr &= PAGE_MASK;
2296 vma = find_vma(mm,addr);
2297 if (!vma)
2298 return NULL;
2299 if (vma->vm_start <= addr)
2300 return vma;
2301 if (!(vma->vm_flags & VM_GROWSDOWN))
2302 return NULL;
2303 start = vma->vm_start;
2304 if (expand_stack(vma, addr))
2305 return NULL;
2306 if (vma->vm_flags & VM_LOCKED)
2307 __mlock_vma_pages_range(vma, addr, start, NULL);
2308 return vma;
2309 }
2310 #endif
2311
2312 /*
2313 * Ok - we have the memory areas we should free on the vma list,
2314 * so release them, and do the vma updates.
2315 *
2316 * Called with the mm semaphore held.
2317 */
2318 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2319 {
2320 unsigned long nr_accounted = 0;
2321
2322 /* Update high watermark before we lower total_vm */
2323 update_hiwater_vm(mm);
2324 do {
2325 long nrpages = vma_pages(vma);
2326
2327 if (vma->vm_flags & VM_ACCOUNT)
2328 nr_accounted += nrpages;
2329 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2330 vma = remove_vma(vma);
2331 } while (vma);
2332 vm_unacct_memory(nr_accounted);
2333 validate_mm(mm);
2334 }
2335
2336 /*
2337 * Get rid of page table information in the indicated region.
2338 *
2339 * Called with the mm semaphore held.
2340 */
2341 static void unmap_region(struct mm_struct *mm,
2342 struct vm_area_struct *vma, struct vm_area_struct *prev,
2343 unsigned long start, unsigned long end)
2344 {
2345 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2346 struct mmu_gather tlb;
2347
2348 lru_add_drain();
2349 tlb_gather_mmu(&tlb, mm, start, end);
2350 update_hiwater_rss(mm);
2351 unmap_vmas(&tlb, vma, start, end);
2352 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2353 next ? next->vm_start : USER_PGTABLES_CEILING);
2354 tlb_finish_mmu(&tlb, start, end);
2355 }
2356
2357 /*
2358 * Create a list of vma's touched by the unmap, removing them from the mm's
2359 * vma list as we go..
2360 */
2361 static void
2362 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2363 struct vm_area_struct *prev, unsigned long end)
2364 {
2365 struct vm_area_struct **insertion_point;
2366 struct vm_area_struct *tail_vma = NULL;
2367
2368 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2369 vma->vm_prev = NULL;
2370 do {
2371 vma_rb_erase(vma, &mm->mm_rb);
2372 mm->map_count--;
2373 tail_vma = vma;
2374 vma = vma->vm_next;
2375 } while (vma && vma->vm_start < end);
2376 *insertion_point = vma;
2377 if (vma) {
2378 vma->vm_prev = prev;
2379 vma_gap_update(vma);
2380 } else
2381 mm->highest_vm_end = prev ? prev->vm_end : 0;
2382 tail_vma->vm_next = NULL;
2383 mm->mmap_cache = NULL; /* Kill the cache. */
2384 }
2385
2386 /*
2387 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2388 * munmap path where it doesn't make sense to fail.
2389 */
2390 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2391 unsigned long addr, int new_below)
2392 {
2393 struct vm_area_struct *new;
2394 int err = -ENOMEM;
2395
2396 if (is_vm_hugetlb_page(vma) && (addr &
2397 ~(huge_page_mask(hstate_vma(vma)))))
2398 return -EINVAL;
2399
2400 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2401 if (!new)
2402 goto out_err;
2403
2404 /* most fields are the same, copy all, and then fixup */
2405 *new = *vma;
2406
2407 INIT_LIST_HEAD(&new->anon_vma_chain);
2408
2409 if (new_below)
2410 new->vm_end = addr;
2411 else {
2412 new->vm_start = addr;
2413 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2414 }
2415
2416 err = vma_dup_policy(vma, new);
2417 if (err)
2418 goto out_free_vma;
2419
2420 if (anon_vma_clone(new, vma))
2421 goto out_free_mpol;
2422
2423 if (new->vm_file)
2424 get_file(new->vm_file);
2425
2426 if (new->vm_ops && new->vm_ops->open)
2427 new->vm_ops->open(new);
2428
2429 if (new_below)
2430 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2431 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2432 else
2433 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2434
2435 /* Success. */
2436 if (!err)
2437 return 0;
2438
2439 /* Clean everything up if vma_adjust failed. */
2440 if (new->vm_ops && new->vm_ops->close)
2441 new->vm_ops->close(new);
2442 if (new->vm_file)
2443 fput(new->vm_file);
2444 unlink_anon_vmas(new);
2445 out_free_mpol:
2446 mpol_put(vma_policy(new));
2447 out_free_vma:
2448 kmem_cache_free(vm_area_cachep, new);
2449 out_err:
2450 return err;
2451 }
2452
2453 /*
2454 * Split a vma into two pieces at address 'addr', a new vma is allocated
2455 * either for the first part or the tail.
2456 */
2457 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2458 unsigned long addr, int new_below)
2459 {
2460 if (mm->map_count >= sysctl_max_map_count)
2461 return -ENOMEM;
2462
2463 return __split_vma(mm, vma, addr, new_below);
2464 }
2465
2466 /* Munmap is split into 2 main parts -- this part which finds
2467 * what needs doing, and the areas themselves, which do the
2468 * work. This now handles partial unmappings.
2469 * Jeremy Fitzhardinge <jeremy@goop.org>
2470 */
2471 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2472 {
2473 unsigned long end;
2474 struct vm_area_struct *vma, *prev, *last;
2475
2476 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2477 return -EINVAL;
2478
2479 if ((len = PAGE_ALIGN(len)) == 0)
2480 return -EINVAL;
2481
2482 /* Find the first overlapping VMA */
2483 vma = find_vma(mm, start);
2484 if (!vma)
2485 return 0;
2486 prev = vma->vm_prev;
2487 /* we have start < vma->vm_end */
2488
2489 /* if it doesn't overlap, we have nothing.. */
2490 end = start + len;
2491 if (vma->vm_start >= end)
2492 return 0;
2493
2494 /*
2495 * If we need to split any vma, do it now to save pain later.
2496 *
2497 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2498 * unmapped vm_area_struct will remain in use: so lower split_vma
2499 * places tmp vma above, and higher split_vma places tmp vma below.
2500 */
2501 if (start > vma->vm_start) {
2502 int error;
2503
2504 /*
2505 * Make sure that map_count on return from munmap() will
2506 * not exceed its limit; but let map_count go just above
2507 * its limit temporarily, to help free resources as expected.
2508 */
2509 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2510 return -ENOMEM;
2511
2512 error = __split_vma(mm, vma, start, 0);
2513 if (error)
2514 return error;
2515 prev = vma;
2516 }
2517
2518 /* Does it split the last one? */
2519 last = find_vma(mm, end);
2520 if (last && end > last->vm_start) {
2521 int error = __split_vma(mm, last, end, 1);
2522 if (error)
2523 return error;
2524 }
2525 vma = prev? prev->vm_next: mm->mmap;
2526
2527 /*
2528 * unlock any mlock()ed ranges before detaching vmas
2529 */
2530 if (mm->locked_vm) {
2531 struct vm_area_struct *tmp = vma;
2532 while (tmp && tmp->vm_start < end) {
2533 if (tmp->vm_flags & VM_LOCKED) {
2534 mm->locked_vm -= vma_pages(tmp);
2535 munlock_vma_pages_all(tmp);
2536 }
2537 tmp = tmp->vm_next;
2538 }
2539 }
2540
2541 /*
2542 * Remove the vma's, and unmap the actual pages
2543 */
2544 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2545 unmap_region(mm, vma, prev, start, end);
2546
2547 /* Fix up all other VM information */
2548 remove_vma_list(mm, vma);
2549
2550 return 0;
2551 }
2552
2553 int vm_munmap(unsigned long start, size_t len)
2554 {
2555 int ret;
2556 struct mm_struct *mm = current->mm;
2557
2558 down_write(&mm->mmap_sem);
2559 ret = do_munmap(mm, start, len);
2560 up_write(&mm->mmap_sem);
2561 return ret;
2562 }
2563 EXPORT_SYMBOL(vm_munmap);
2564
2565 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2566 {
2567 profile_munmap(addr);
2568 return vm_munmap(addr, len);
2569 }
2570
2571 static inline void verify_mm_writelocked(struct mm_struct *mm)
2572 {
2573 #ifdef CONFIG_DEBUG_VM
2574 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2575 WARN_ON(1);
2576 up_read(&mm->mmap_sem);
2577 }
2578 #endif
2579 }
2580
2581 /*
2582 * this is really a simplified "do_mmap". it only handles
2583 * anonymous maps. eventually we may be able to do some
2584 * brk-specific accounting here.
2585 */
2586 static unsigned long do_brk(unsigned long addr, unsigned long len)
2587 {
2588 struct mm_struct * mm = current->mm;
2589 struct vm_area_struct * vma, * prev;
2590 unsigned long flags;
2591 struct rb_node ** rb_link, * rb_parent;
2592 pgoff_t pgoff = addr >> PAGE_SHIFT;
2593 int error;
2594
2595 len = PAGE_ALIGN(len);
2596 if (!len)
2597 return addr;
2598
2599 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2600
2601 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2602 if (error & ~PAGE_MASK)
2603 return error;
2604
2605 error = mlock_future_check(mm, mm->def_flags, len);
2606 if (error)
2607 return error;
2608
2609 /*
2610 * mm->mmap_sem is required to protect against another thread
2611 * changing the mappings in case we sleep.
2612 */
2613 verify_mm_writelocked(mm);
2614
2615 /*
2616 * Clear old maps. this also does some error checking for us
2617 */
2618 munmap_back:
2619 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2620 if (do_munmap(mm, addr, len))
2621 return -ENOMEM;
2622 goto munmap_back;
2623 }
2624
2625 /* Check against address space limits *after* clearing old maps... */
2626 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2627 return -ENOMEM;
2628
2629 if (mm->map_count > sysctl_max_map_count)
2630 return -ENOMEM;
2631
2632 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2633 return -ENOMEM;
2634
2635 /* Can we just expand an old private anonymous mapping? */
2636 vma = vma_merge(mm, prev, addr, addr + len, flags,
2637 NULL, NULL, pgoff, NULL);
2638 if (vma)
2639 goto out;
2640
2641 /*
2642 * create a vma struct for an anonymous mapping
2643 */
2644 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2645 if (!vma) {
2646 vm_unacct_memory(len >> PAGE_SHIFT);
2647 return -ENOMEM;
2648 }
2649
2650 INIT_LIST_HEAD(&vma->anon_vma_chain);
2651 vma->vm_mm = mm;
2652 vma->vm_start = addr;
2653 vma->vm_end = addr + len;
2654 vma->vm_pgoff = pgoff;
2655 vma->vm_flags = flags;
2656 vma->vm_page_prot = vm_get_page_prot(flags);
2657 vma_link(mm, vma, prev, rb_link, rb_parent);
2658 out:
2659 perf_event_mmap(vma);
2660 mm->total_vm += len >> PAGE_SHIFT;
2661 if (flags & VM_LOCKED)
2662 mm->locked_vm += (len >> PAGE_SHIFT);
2663 vma->vm_flags |= VM_SOFTDIRTY;
2664 return addr;
2665 }
2666
2667 unsigned long vm_brk(unsigned long addr, unsigned long len)
2668 {
2669 struct mm_struct *mm = current->mm;
2670 unsigned long ret;
2671 bool populate;
2672
2673 down_write(&mm->mmap_sem);
2674 ret = do_brk(addr, len);
2675 populate = ((mm->def_flags & VM_LOCKED) != 0);
2676 up_write(&mm->mmap_sem);
2677 if (populate)
2678 mm_populate(addr, len);
2679 return ret;
2680 }
2681 EXPORT_SYMBOL(vm_brk);
2682
2683 /* Release all mmaps. */
2684 void exit_mmap(struct mm_struct *mm)
2685 {
2686 struct mmu_gather tlb;
2687 struct vm_area_struct *vma;
2688 unsigned long nr_accounted = 0;
2689
2690 /* mm's last user has gone, and its about to be pulled down */
2691 mmu_notifier_release(mm);
2692
2693 if (mm->locked_vm) {
2694 vma = mm->mmap;
2695 while (vma) {
2696 if (vma->vm_flags & VM_LOCKED)
2697 munlock_vma_pages_all(vma);
2698 vma = vma->vm_next;
2699 }
2700 }
2701
2702 arch_exit_mmap(mm);
2703
2704 vma = mm->mmap;
2705 if (!vma) /* Can happen if dup_mmap() received an OOM */
2706 return;
2707
2708 lru_add_drain();
2709 flush_cache_mm(mm);
2710 tlb_gather_mmu(&tlb, mm, 0, -1);
2711 /* update_hiwater_rss(mm) here? but nobody should be looking */
2712 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2713 unmap_vmas(&tlb, vma, 0, -1);
2714
2715 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2716 tlb_finish_mmu(&tlb, 0, -1);
2717
2718 /*
2719 * Walk the list again, actually closing and freeing it,
2720 * with preemption enabled, without holding any MM locks.
2721 */
2722 while (vma) {
2723 if (vma->vm_flags & VM_ACCOUNT)
2724 nr_accounted += vma_pages(vma);
2725 vma = remove_vma(vma);
2726 }
2727 vm_unacct_memory(nr_accounted);
2728
2729 WARN_ON(atomic_long_read(&mm->nr_ptes) >
2730 (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2731 }
2732
2733 /* Insert vm structure into process list sorted by address
2734 * and into the inode's i_mmap tree. If vm_file is non-NULL
2735 * then i_mmap_mutex is taken here.
2736 */
2737 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2738 {
2739 struct vm_area_struct *prev;
2740 struct rb_node **rb_link, *rb_parent;
2741
2742 /*
2743 * The vm_pgoff of a purely anonymous vma should be irrelevant
2744 * until its first write fault, when page's anon_vma and index
2745 * are set. But now set the vm_pgoff it will almost certainly
2746 * end up with (unless mremap moves it elsewhere before that
2747 * first wfault), so /proc/pid/maps tells a consistent story.
2748 *
2749 * By setting it to reflect the virtual start address of the
2750 * vma, merges and splits can happen in a seamless way, just
2751 * using the existing file pgoff checks and manipulations.
2752 * Similarly in do_mmap_pgoff and in do_brk.
2753 */
2754 if (!vma->vm_file) {
2755 BUG_ON(vma->anon_vma);
2756 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2757 }
2758 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2759 &prev, &rb_link, &rb_parent))
2760 return -ENOMEM;
2761 if ((vma->vm_flags & VM_ACCOUNT) &&
2762 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2763 return -ENOMEM;
2764
2765 vma_link(mm, vma, prev, rb_link, rb_parent);
2766 return 0;
2767 }
2768
2769 /*
2770 * Copy the vma structure to a new location in the same mm,
2771 * prior to moving page table entries, to effect an mremap move.
2772 */
2773 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2774 unsigned long addr, unsigned long len, pgoff_t pgoff,
2775 bool *need_rmap_locks)
2776 {
2777 struct vm_area_struct *vma = *vmap;
2778 unsigned long vma_start = vma->vm_start;
2779 struct mm_struct *mm = vma->vm_mm;
2780 struct vm_area_struct *new_vma, *prev;
2781 struct rb_node **rb_link, *rb_parent;
2782 bool faulted_in_anon_vma = true;
2783
2784 /*
2785 * If anonymous vma has not yet been faulted, update new pgoff
2786 * to match new location, to increase its chance of merging.
2787 */
2788 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2789 pgoff = addr >> PAGE_SHIFT;
2790 faulted_in_anon_vma = false;
2791 }
2792
2793 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2794 return NULL; /* should never get here */
2795 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2796 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2797 if (new_vma) {
2798 /*
2799 * Source vma may have been merged into new_vma
2800 */
2801 if (unlikely(vma_start >= new_vma->vm_start &&
2802 vma_start < new_vma->vm_end)) {
2803 /*
2804 * The only way we can get a vma_merge with
2805 * self during an mremap is if the vma hasn't
2806 * been faulted in yet and we were allowed to
2807 * reset the dst vma->vm_pgoff to the
2808 * destination address of the mremap to allow
2809 * the merge to happen. mremap must change the
2810 * vm_pgoff linearity between src and dst vmas
2811 * (in turn preventing a vma_merge) to be
2812 * safe. It is only safe to keep the vm_pgoff
2813 * linear if there are no pages mapped yet.
2814 */
2815 VM_BUG_ON(faulted_in_anon_vma);
2816 *vmap = vma = new_vma;
2817 }
2818 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2819 } else {
2820 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2821 if (new_vma) {
2822 *new_vma = *vma;
2823 new_vma->vm_start = addr;
2824 new_vma->vm_end = addr + len;
2825 new_vma->vm_pgoff = pgoff;
2826 if (vma_dup_policy(vma, new_vma))
2827 goto out_free_vma;
2828 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2829 if (anon_vma_clone(new_vma, vma))
2830 goto out_free_mempol;
2831 if (new_vma->vm_file)
2832 get_file(new_vma->vm_file);
2833 if (new_vma->vm_ops && new_vma->vm_ops->open)
2834 new_vma->vm_ops->open(new_vma);
2835 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2836 *need_rmap_locks = false;
2837 }
2838 }
2839 return new_vma;
2840
2841 out_free_mempol:
2842 mpol_put(vma_policy(new_vma));
2843 out_free_vma:
2844 kmem_cache_free(vm_area_cachep, new_vma);
2845 return NULL;
2846 }
2847
2848 /*
2849 * Return true if the calling process may expand its vm space by the passed
2850 * number of pages
2851 */
2852 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2853 {
2854 unsigned long cur = mm->total_vm; /* pages */
2855 unsigned long lim;
2856
2857 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2858
2859 if (cur + npages > lim)
2860 return 0;
2861 return 1;
2862 }
2863
2864
2865 static int special_mapping_fault(struct vm_area_struct *vma,
2866 struct vm_fault *vmf)
2867 {
2868 pgoff_t pgoff;
2869 struct page **pages;
2870
2871 /*
2872 * special mappings have no vm_file, and in that case, the mm
2873 * uses vm_pgoff internally. So we have to subtract it from here.
2874 * We are allowed to do this because we are the mm; do not copy
2875 * this code into drivers!
2876 */
2877 pgoff = vmf->pgoff - vma->vm_pgoff;
2878
2879 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2880 pgoff--;
2881
2882 if (*pages) {
2883 struct page *page = *pages;
2884 get_page(page);
2885 vmf->page = page;
2886 return 0;
2887 }
2888
2889 return VM_FAULT_SIGBUS;
2890 }
2891
2892 /*
2893 * Having a close hook prevents vma merging regardless of flags.
2894 */
2895 static void special_mapping_close(struct vm_area_struct *vma)
2896 {
2897 }
2898
2899 static const struct vm_operations_struct special_mapping_vmops = {
2900 .close = special_mapping_close,
2901 .fault = special_mapping_fault,
2902 };
2903
2904 /*
2905 * Called with mm->mmap_sem held for writing.
2906 * Insert a new vma covering the given region, with the given flags.
2907 * Its pages are supplied by the given array of struct page *.
2908 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2909 * The region past the last page supplied will always produce SIGBUS.
2910 * The array pointer and the pages it points to are assumed to stay alive
2911 * for as long as this mapping might exist.
2912 */
2913 int install_special_mapping(struct mm_struct *mm,
2914 unsigned long addr, unsigned long len,
2915 unsigned long vm_flags, struct page **pages)
2916 {
2917 int ret;
2918 struct vm_area_struct *vma;
2919
2920 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2921 if (unlikely(vma == NULL))
2922 return -ENOMEM;
2923
2924 INIT_LIST_HEAD(&vma->anon_vma_chain);
2925 vma->vm_mm = mm;
2926 vma->vm_start = addr;
2927 vma->vm_end = addr + len;
2928
2929 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2930 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2931
2932 vma->vm_ops = &special_mapping_vmops;
2933 vma->vm_private_data = pages;
2934
2935 ret = insert_vm_struct(mm, vma);
2936 if (ret)
2937 goto out;
2938
2939 mm->total_vm += len >> PAGE_SHIFT;
2940
2941 perf_event_mmap(vma);
2942
2943 return 0;
2944
2945 out:
2946 kmem_cache_free(vm_area_cachep, vma);
2947 return ret;
2948 }
2949
2950 static DEFINE_MUTEX(mm_all_locks_mutex);
2951
2952 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2953 {
2954 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2955 /*
2956 * The LSB of head.next can't change from under us
2957 * because we hold the mm_all_locks_mutex.
2958 */
2959 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
2960 /*
2961 * We can safely modify head.next after taking the
2962 * anon_vma->root->rwsem. If some other vma in this mm shares
2963 * the same anon_vma we won't take it again.
2964 *
2965 * No need of atomic instructions here, head.next
2966 * can't change from under us thanks to the
2967 * anon_vma->root->rwsem.
2968 */
2969 if (__test_and_set_bit(0, (unsigned long *)
2970 &anon_vma->root->rb_root.rb_node))
2971 BUG();
2972 }
2973 }
2974
2975 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2976 {
2977 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2978 /*
2979 * AS_MM_ALL_LOCKS can't change from under us because
2980 * we hold the mm_all_locks_mutex.
2981 *
2982 * Operations on ->flags have to be atomic because
2983 * even if AS_MM_ALL_LOCKS is stable thanks to the
2984 * mm_all_locks_mutex, there may be other cpus
2985 * changing other bitflags in parallel to us.
2986 */
2987 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2988 BUG();
2989 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2990 }
2991 }
2992
2993 /*
2994 * This operation locks against the VM for all pte/vma/mm related
2995 * operations that could ever happen on a certain mm. This includes
2996 * vmtruncate, try_to_unmap, and all page faults.
2997 *
2998 * The caller must take the mmap_sem in write mode before calling
2999 * mm_take_all_locks(). The caller isn't allowed to release the
3000 * mmap_sem until mm_drop_all_locks() returns.
3001 *
3002 * mmap_sem in write mode is required in order to block all operations
3003 * that could modify pagetables and free pages without need of
3004 * altering the vma layout (for example populate_range() with
3005 * nonlinear vmas). It's also needed in write mode to avoid new
3006 * anon_vmas to be associated with existing vmas.
3007 *
3008 * A single task can't take more than one mm_take_all_locks() in a row
3009 * or it would deadlock.
3010 *
3011 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3012 * mapping->flags avoid to take the same lock twice, if more than one
3013 * vma in this mm is backed by the same anon_vma or address_space.
3014 *
3015 * We can take all the locks in random order because the VM code
3016 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3017 * takes more than one of them in a row. Secondly we're protected
3018 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3019 *
3020 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3021 * that may have to take thousand of locks.
3022 *
3023 * mm_take_all_locks() can fail if it's interrupted by signals.
3024 */
3025 int mm_take_all_locks(struct mm_struct *mm)
3026 {
3027 struct vm_area_struct *vma;
3028 struct anon_vma_chain *avc;
3029
3030 BUG_ON(down_read_trylock(&mm->mmap_sem));
3031
3032 mutex_lock(&mm_all_locks_mutex);
3033
3034 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3035 if (signal_pending(current))
3036 goto out_unlock;
3037 if (vma->vm_file && vma->vm_file->f_mapping)
3038 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3039 }
3040
3041 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3042 if (signal_pending(current))
3043 goto out_unlock;
3044 if (vma->anon_vma)
3045 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3046 vm_lock_anon_vma(mm, avc->anon_vma);
3047 }
3048
3049 return 0;
3050
3051 out_unlock:
3052 mm_drop_all_locks(mm);
3053 return -EINTR;
3054 }
3055
3056 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3057 {
3058 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3059 /*
3060 * The LSB of head.next can't change to 0 from under
3061 * us because we hold the mm_all_locks_mutex.
3062 *
3063 * We must however clear the bitflag before unlocking
3064 * the vma so the users using the anon_vma->rb_root will
3065 * never see our bitflag.
3066 *
3067 * No need of atomic instructions here, head.next
3068 * can't change from under us until we release the
3069 * anon_vma->root->rwsem.
3070 */
3071 if (!__test_and_clear_bit(0, (unsigned long *)
3072 &anon_vma->root->rb_root.rb_node))
3073 BUG();
3074 anon_vma_unlock_write(anon_vma);
3075 }
3076 }
3077
3078 static void vm_unlock_mapping(struct address_space *mapping)
3079 {
3080 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3081 /*
3082 * AS_MM_ALL_LOCKS can't change to 0 from under us
3083 * because we hold the mm_all_locks_mutex.
3084 */
3085 mutex_unlock(&mapping->i_mmap_mutex);
3086 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3087 &mapping->flags))
3088 BUG();
3089 }
3090 }
3091
3092 /*
3093 * The mmap_sem cannot be released by the caller until
3094 * mm_drop_all_locks() returns.
3095 */
3096 void mm_drop_all_locks(struct mm_struct *mm)
3097 {
3098 struct vm_area_struct *vma;
3099 struct anon_vma_chain *avc;
3100
3101 BUG_ON(down_read_trylock(&mm->mmap_sem));
3102 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3103
3104 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3105 if (vma->anon_vma)
3106 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3107 vm_unlock_anon_vma(avc->anon_vma);
3108 if (vma->vm_file && vma->vm_file->f_mapping)
3109 vm_unlock_mapping(vma->vm_file->f_mapping);
3110 }
3111
3112 mutex_unlock(&mm_all_locks_mutex);
3113 }
3114
3115 /*
3116 * initialise the VMA slab
3117 */
3118 void __init mmap_init(void)
3119 {
3120 int ret;
3121
3122 ret = percpu_counter_init(&vm_committed_as, 0);
3123 VM_BUG_ON(ret);
3124 }
3125
3126 /*
3127 * Initialise sysctl_user_reserve_kbytes.
3128 *
3129 * This is intended to prevent a user from starting a single memory hogging
3130 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3131 * mode.
3132 *
3133 * The default value is min(3% of free memory, 128MB)
3134 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3135 */
3136 static int init_user_reserve(void)
3137 {
3138 unsigned long free_kbytes;
3139
3140 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3141
3142 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3143 return 0;
3144 }
3145 subsys_initcall(init_user_reserve);
3146
3147 /*
3148 * Initialise sysctl_admin_reserve_kbytes.
3149 *
3150 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3151 * to log in and kill a memory hogging process.
3152 *
3153 * Systems with more than 256MB will reserve 8MB, enough to recover
3154 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3155 * only reserve 3% of free pages by default.
3156 */
3157 static int init_admin_reserve(void)
3158 {
3159 unsigned long free_kbytes;
3160
3161 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3162
3163 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3164 return 0;
3165 }
3166 subsys_initcall(init_admin_reserve);
3167
3168 /*
3169 * Reinititalise user and admin reserves if memory is added or removed.
3170 *
3171 * The default user reserve max is 128MB, and the default max for the
3172 * admin reserve is 8MB. These are usually, but not always, enough to
3173 * enable recovery from a memory hogging process using login/sshd, a shell,
3174 * and tools like top. It may make sense to increase or even disable the
3175 * reserve depending on the existence of swap or variations in the recovery
3176 * tools. So, the admin may have changed them.
3177 *
3178 * If memory is added and the reserves have been eliminated or increased above
3179 * the default max, then we'll trust the admin.
3180 *
3181 * If memory is removed and there isn't enough free memory, then we
3182 * need to reset the reserves.
3183 *
3184 * Otherwise keep the reserve set by the admin.
3185 */
3186 static int reserve_mem_notifier(struct notifier_block *nb,
3187 unsigned long action, void *data)
3188 {
3189 unsigned long tmp, free_kbytes;
3190
3191 switch (action) {
3192 case MEM_ONLINE:
3193 /* Default max is 128MB. Leave alone if modified by operator. */
3194 tmp = sysctl_user_reserve_kbytes;
3195 if (0 < tmp && tmp < (1UL << 17))
3196 init_user_reserve();
3197
3198 /* Default max is 8MB. Leave alone if modified by operator. */
3199 tmp = sysctl_admin_reserve_kbytes;
3200 if (0 < tmp && tmp < (1UL << 13))
3201 init_admin_reserve();
3202
3203 break;
3204 case MEM_OFFLINE:
3205 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3206
3207 if (sysctl_user_reserve_kbytes > free_kbytes) {
3208 init_user_reserve();
3209 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3210 sysctl_user_reserve_kbytes);
3211 }
3212
3213 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3214 init_admin_reserve();
3215 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3216 sysctl_admin_reserve_kbytes);
3217 }
3218 break;
3219 default:
3220 break;
3221 }
3222 return NOTIFY_OK;
3223 }
3224
3225 static struct notifier_block reserve_mem_nb = {
3226 .notifier_call = reserve_mem_notifier,
3227 };
3228
3229 static int __meminit init_reserve_notifier(void)
3230 {
3231 if (register_hotmemory_notifier(&reserve_mem_nb))
3232 printk("Failed registering memory add/remove notifier for admin reserve");
3233
3234 return 0;
3235 }
3236 subsys_initcall(init_reserve_notifier);
This page took 0.094939 seconds and 5 git commands to generate.