mm, CMA: clean-up CMA allocation error path
[deliverable/linux.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/perf_event.h>
35 #include <linux/audit.h>
36 #include <linux/khugepaged.h>
37 #include <linux/uprobes.h>
38 #include <linux/rbtree_augmented.h>
39 #include <linux/sched/sysctl.h>
40 #include <linux/notifier.h>
41 #include <linux/memory.h>
42 #include <linux/printk.h>
43
44 #include <asm/uaccess.h>
45 #include <asm/cacheflush.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48
49 #include "internal.h"
50
51 #ifndef arch_mmap_check
52 #define arch_mmap_check(addr, len, flags) (0)
53 #endif
54
55 #ifndef arch_rebalance_pgtables
56 #define arch_rebalance_pgtables(addr, len) (addr)
57 #endif
58
59 static void unmap_region(struct mm_struct *mm,
60 struct vm_area_struct *vma, struct vm_area_struct *prev,
61 unsigned long start, unsigned long end);
62
63 /* description of effects of mapping type and prot in current implementation.
64 * this is due to the limited x86 page protection hardware. The expected
65 * behavior is in parens:
66 *
67 * map_type prot
68 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
69 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
70 * w: (no) no w: (no) no w: (yes) yes w: (no) no
71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
72 *
73 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
74 * w: (no) no w: (no) no w: (copy) copy w: (no) no
75 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
76 *
77 */
78 pgprot_t protection_map[16] = {
79 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
80 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
81 };
82
83 pgprot_t vm_get_page_prot(unsigned long vm_flags)
84 {
85 return __pgprot(pgprot_val(protection_map[vm_flags &
86 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
87 pgprot_val(arch_vm_get_page_prot(vm_flags)));
88 }
89 EXPORT_SYMBOL(vm_get_page_prot);
90
91 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
92 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
93 unsigned long sysctl_overcommit_kbytes __read_mostly;
94 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
95 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
96 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
97 /*
98 * Make sure vm_committed_as in one cacheline and not cacheline shared with
99 * other variables. It can be updated by several CPUs frequently.
100 */
101 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
102
103 /*
104 * The global memory commitment made in the system can be a metric
105 * that can be used to drive ballooning decisions when Linux is hosted
106 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
107 * balancing memory across competing virtual machines that are hosted.
108 * Several metrics drive this policy engine including the guest reported
109 * memory commitment.
110 */
111 unsigned long vm_memory_committed(void)
112 {
113 return percpu_counter_read_positive(&vm_committed_as);
114 }
115 EXPORT_SYMBOL_GPL(vm_memory_committed);
116
117 /*
118 * Check that a process has enough memory to allocate a new virtual
119 * mapping. 0 means there is enough memory for the allocation to
120 * succeed and -ENOMEM implies there is not.
121 *
122 * We currently support three overcommit policies, which are set via the
123 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
124 *
125 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
126 * Additional code 2002 Jul 20 by Robert Love.
127 *
128 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
129 *
130 * Note this is a helper function intended to be used by LSMs which
131 * wish to use this logic.
132 */
133 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
134 {
135 unsigned long free, allowed, reserve;
136
137 vm_acct_memory(pages);
138
139 /*
140 * Sometimes we want to use more memory than we have
141 */
142 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
143 return 0;
144
145 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
146 free = global_page_state(NR_FREE_PAGES);
147 free += global_page_state(NR_FILE_PAGES);
148
149 /*
150 * shmem pages shouldn't be counted as free in this
151 * case, they can't be purged, only swapped out, and
152 * that won't affect the overall amount of available
153 * memory in the system.
154 */
155 free -= global_page_state(NR_SHMEM);
156
157 free += get_nr_swap_pages();
158
159 /*
160 * Any slabs which are created with the
161 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
162 * which are reclaimable, under pressure. The dentry
163 * cache and most inode caches should fall into this
164 */
165 free += global_page_state(NR_SLAB_RECLAIMABLE);
166
167 /*
168 * Leave reserved pages. The pages are not for anonymous pages.
169 */
170 if (free <= totalreserve_pages)
171 goto error;
172 else
173 free -= totalreserve_pages;
174
175 /*
176 * Reserve some for root
177 */
178 if (!cap_sys_admin)
179 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
180
181 if (free > pages)
182 return 0;
183
184 goto error;
185 }
186
187 allowed = vm_commit_limit();
188 /*
189 * Reserve some for root
190 */
191 if (!cap_sys_admin)
192 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
193
194 /*
195 * Don't let a single process grow so big a user can't recover
196 */
197 if (mm) {
198 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
199 allowed -= min(mm->total_vm / 32, reserve);
200 }
201
202 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
203 return 0;
204 error:
205 vm_unacct_memory(pages);
206
207 return -ENOMEM;
208 }
209
210 /*
211 * Requires inode->i_mapping->i_mmap_mutex
212 */
213 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
214 struct file *file, struct address_space *mapping)
215 {
216 if (vma->vm_flags & VM_DENYWRITE)
217 atomic_inc(&file_inode(file)->i_writecount);
218 if (vma->vm_flags & VM_SHARED)
219 mapping->i_mmap_writable--;
220
221 flush_dcache_mmap_lock(mapping);
222 if (unlikely(vma->vm_flags & VM_NONLINEAR))
223 list_del_init(&vma->shared.nonlinear);
224 else
225 vma_interval_tree_remove(vma, &mapping->i_mmap);
226 flush_dcache_mmap_unlock(mapping);
227 }
228
229 /*
230 * Unlink a file-based vm structure from its interval tree, to hide
231 * vma from rmap and vmtruncate before freeing its page tables.
232 */
233 void unlink_file_vma(struct vm_area_struct *vma)
234 {
235 struct file *file = vma->vm_file;
236
237 if (file) {
238 struct address_space *mapping = file->f_mapping;
239 mutex_lock(&mapping->i_mmap_mutex);
240 __remove_shared_vm_struct(vma, file, mapping);
241 mutex_unlock(&mapping->i_mmap_mutex);
242 }
243 }
244
245 /*
246 * Close a vm structure and free it, returning the next.
247 */
248 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
249 {
250 struct vm_area_struct *next = vma->vm_next;
251
252 might_sleep();
253 if (vma->vm_ops && vma->vm_ops->close)
254 vma->vm_ops->close(vma);
255 if (vma->vm_file)
256 fput(vma->vm_file);
257 mpol_put(vma_policy(vma));
258 kmem_cache_free(vm_area_cachep, vma);
259 return next;
260 }
261
262 static unsigned long do_brk(unsigned long addr, unsigned long len);
263
264 SYSCALL_DEFINE1(brk, unsigned long, brk)
265 {
266 unsigned long rlim, retval;
267 unsigned long newbrk, oldbrk;
268 struct mm_struct *mm = current->mm;
269 unsigned long min_brk;
270 bool populate;
271
272 down_write(&mm->mmap_sem);
273
274 #ifdef CONFIG_COMPAT_BRK
275 /*
276 * CONFIG_COMPAT_BRK can still be overridden by setting
277 * randomize_va_space to 2, which will still cause mm->start_brk
278 * to be arbitrarily shifted
279 */
280 if (current->brk_randomized)
281 min_brk = mm->start_brk;
282 else
283 min_brk = mm->end_data;
284 #else
285 min_brk = mm->start_brk;
286 #endif
287 if (brk < min_brk)
288 goto out;
289
290 /*
291 * Check against rlimit here. If this check is done later after the test
292 * of oldbrk with newbrk then it can escape the test and let the data
293 * segment grow beyond its set limit the in case where the limit is
294 * not page aligned -Ram Gupta
295 */
296 rlim = rlimit(RLIMIT_DATA);
297 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
298 (mm->end_data - mm->start_data) > rlim)
299 goto out;
300
301 newbrk = PAGE_ALIGN(brk);
302 oldbrk = PAGE_ALIGN(mm->brk);
303 if (oldbrk == newbrk)
304 goto set_brk;
305
306 /* Always allow shrinking brk. */
307 if (brk <= mm->brk) {
308 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
309 goto set_brk;
310 goto out;
311 }
312
313 /* Check against existing mmap mappings. */
314 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
315 goto out;
316
317 /* Ok, looks good - let it rip. */
318 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
319 goto out;
320
321 set_brk:
322 mm->brk = brk;
323 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
324 up_write(&mm->mmap_sem);
325 if (populate)
326 mm_populate(oldbrk, newbrk - oldbrk);
327 return brk;
328
329 out:
330 retval = mm->brk;
331 up_write(&mm->mmap_sem);
332 return retval;
333 }
334
335 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
336 {
337 unsigned long max, subtree_gap;
338 max = vma->vm_start;
339 if (vma->vm_prev)
340 max -= vma->vm_prev->vm_end;
341 if (vma->vm_rb.rb_left) {
342 subtree_gap = rb_entry(vma->vm_rb.rb_left,
343 struct vm_area_struct, vm_rb)->rb_subtree_gap;
344 if (subtree_gap > max)
345 max = subtree_gap;
346 }
347 if (vma->vm_rb.rb_right) {
348 subtree_gap = rb_entry(vma->vm_rb.rb_right,
349 struct vm_area_struct, vm_rb)->rb_subtree_gap;
350 if (subtree_gap > max)
351 max = subtree_gap;
352 }
353 return max;
354 }
355
356 #ifdef CONFIG_DEBUG_VM_RB
357 static int browse_rb(struct rb_root *root)
358 {
359 int i = 0, j, bug = 0;
360 struct rb_node *nd, *pn = NULL;
361 unsigned long prev = 0, pend = 0;
362
363 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
364 struct vm_area_struct *vma;
365 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
366 if (vma->vm_start < prev) {
367 pr_info("vm_start %lx prev %lx\n", vma->vm_start, prev);
368 bug = 1;
369 }
370 if (vma->vm_start < pend) {
371 pr_info("vm_start %lx pend %lx\n", vma->vm_start, pend);
372 bug = 1;
373 }
374 if (vma->vm_start > vma->vm_end) {
375 pr_info("vm_end %lx < vm_start %lx\n",
376 vma->vm_end, vma->vm_start);
377 bug = 1;
378 }
379 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
380 pr_info("free gap %lx, correct %lx\n",
381 vma->rb_subtree_gap,
382 vma_compute_subtree_gap(vma));
383 bug = 1;
384 }
385 i++;
386 pn = nd;
387 prev = vma->vm_start;
388 pend = vma->vm_end;
389 }
390 j = 0;
391 for (nd = pn; nd; nd = rb_prev(nd))
392 j++;
393 if (i != j) {
394 pr_info("backwards %d, forwards %d\n", j, i);
395 bug = 1;
396 }
397 return bug ? -1 : i;
398 }
399
400 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
401 {
402 struct rb_node *nd;
403
404 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
405 struct vm_area_struct *vma;
406 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
407 BUG_ON(vma != ignore &&
408 vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
409 }
410 }
411
412 static void validate_mm(struct mm_struct *mm)
413 {
414 int bug = 0;
415 int i = 0;
416 unsigned long highest_address = 0;
417 struct vm_area_struct *vma = mm->mmap;
418 while (vma) {
419 struct anon_vma_chain *avc;
420 vma_lock_anon_vma(vma);
421 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
422 anon_vma_interval_tree_verify(avc);
423 vma_unlock_anon_vma(vma);
424 highest_address = vma->vm_end;
425 vma = vma->vm_next;
426 i++;
427 }
428 if (i != mm->map_count) {
429 pr_info("map_count %d vm_next %d\n", mm->map_count, i);
430 bug = 1;
431 }
432 if (highest_address != mm->highest_vm_end) {
433 pr_info("mm->highest_vm_end %lx, found %lx\n",
434 mm->highest_vm_end, highest_address);
435 bug = 1;
436 }
437 i = browse_rb(&mm->mm_rb);
438 if (i != mm->map_count) {
439 pr_info("map_count %d rb %d\n", mm->map_count, i);
440 bug = 1;
441 }
442 BUG_ON(bug);
443 }
444 #else
445 #define validate_mm_rb(root, ignore) do { } while (0)
446 #define validate_mm(mm) do { } while (0)
447 #endif
448
449 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
450 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
451
452 /*
453 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
454 * vma->vm_prev->vm_end values changed, without modifying the vma's position
455 * in the rbtree.
456 */
457 static void vma_gap_update(struct vm_area_struct *vma)
458 {
459 /*
460 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
461 * function that does exacltly what we want.
462 */
463 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
464 }
465
466 static inline void vma_rb_insert(struct vm_area_struct *vma,
467 struct rb_root *root)
468 {
469 /* All rb_subtree_gap values must be consistent prior to insertion */
470 validate_mm_rb(root, NULL);
471
472 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
473 }
474
475 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
476 {
477 /*
478 * All rb_subtree_gap values must be consistent prior to erase,
479 * with the possible exception of the vma being erased.
480 */
481 validate_mm_rb(root, vma);
482
483 /*
484 * Note rb_erase_augmented is a fairly large inline function,
485 * so make sure we instantiate it only once with our desired
486 * augmented rbtree callbacks.
487 */
488 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
489 }
490
491 /*
492 * vma has some anon_vma assigned, and is already inserted on that
493 * anon_vma's interval trees.
494 *
495 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
496 * vma must be removed from the anon_vma's interval trees using
497 * anon_vma_interval_tree_pre_update_vma().
498 *
499 * After the update, the vma will be reinserted using
500 * anon_vma_interval_tree_post_update_vma().
501 *
502 * The entire update must be protected by exclusive mmap_sem and by
503 * the root anon_vma's mutex.
504 */
505 static inline void
506 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
507 {
508 struct anon_vma_chain *avc;
509
510 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
511 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
512 }
513
514 static inline void
515 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
516 {
517 struct anon_vma_chain *avc;
518
519 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
520 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
521 }
522
523 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
524 unsigned long end, struct vm_area_struct **pprev,
525 struct rb_node ***rb_link, struct rb_node **rb_parent)
526 {
527 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
528
529 __rb_link = &mm->mm_rb.rb_node;
530 rb_prev = __rb_parent = NULL;
531
532 while (*__rb_link) {
533 struct vm_area_struct *vma_tmp;
534
535 __rb_parent = *__rb_link;
536 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
537
538 if (vma_tmp->vm_end > addr) {
539 /* Fail if an existing vma overlaps the area */
540 if (vma_tmp->vm_start < end)
541 return -ENOMEM;
542 __rb_link = &__rb_parent->rb_left;
543 } else {
544 rb_prev = __rb_parent;
545 __rb_link = &__rb_parent->rb_right;
546 }
547 }
548
549 *pprev = NULL;
550 if (rb_prev)
551 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
552 *rb_link = __rb_link;
553 *rb_parent = __rb_parent;
554 return 0;
555 }
556
557 static unsigned long count_vma_pages_range(struct mm_struct *mm,
558 unsigned long addr, unsigned long end)
559 {
560 unsigned long nr_pages = 0;
561 struct vm_area_struct *vma;
562
563 /* Find first overlaping mapping */
564 vma = find_vma_intersection(mm, addr, end);
565 if (!vma)
566 return 0;
567
568 nr_pages = (min(end, vma->vm_end) -
569 max(addr, vma->vm_start)) >> PAGE_SHIFT;
570
571 /* Iterate over the rest of the overlaps */
572 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
573 unsigned long overlap_len;
574
575 if (vma->vm_start > end)
576 break;
577
578 overlap_len = min(end, vma->vm_end) - vma->vm_start;
579 nr_pages += overlap_len >> PAGE_SHIFT;
580 }
581
582 return nr_pages;
583 }
584
585 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
586 struct rb_node **rb_link, struct rb_node *rb_parent)
587 {
588 /* Update tracking information for the gap following the new vma. */
589 if (vma->vm_next)
590 vma_gap_update(vma->vm_next);
591 else
592 mm->highest_vm_end = vma->vm_end;
593
594 /*
595 * vma->vm_prev wasn't known when we followed the rbtree to find the
596 * correct insertion point for that vma. As a result, we could not
597 * update the vma vm_rb parents rb_subtree_gap values on the way down.
598 * So, we first insert the vma with a zero rb_subtree_gap value
599 * (to be consistent with what we did on the way down), and then
600 * immediately update the gap to the correct value. Finally we
601 * rebalance the rbtree after all augmented values have been set.
602 */
603 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
604 vma->rb_subtree_gap = 0;
605 vma_gap_update(vma);
606 vma_rb_insert(vma, &mm->mm_rb);
607 }
608
609 static void __vma_link_file(struct vm_area_struct *vma)
610 {
611 struct file *file;
612
613 file = vma->vm_file;
614 if (file) {
615 struct address_space *mapping = file->f_mapping;
616
617 if (vma->vm_flags & VM_DENYWRITE)
618 atomic_dec(&file_inode(file)->i_writecount);
619 if (vma->vm_flags & VM_SHARED)
620 mapping->i_mmap_writable++;
621
622 flush_dcache_mmap_lock(mapping);
623 if (unlikely(vma->vm_flags & VM_NONLINEAR))
624 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
625 else
626 vma_interval_tree_insert(vma, &mapping->i_mmap);
627 flush_dcache_mmap_unlock(mapping);
628 }
629 }
630
631 static void
632 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
633 struct vm_area_struct *prev, struct rb_node **rb_link,
634 struct rb_node *rb_parent)
635 {
636 __vma_link_list(mm, vma, prev, rb_parent);
637 __vma_link_rb(mm, vma, rb_link, rb_parent);
638 }
639
640 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
641 struct vm_area_struct *prev, struct rb_node **rb_link,
642 struct rb_node *rb_parent)
643 {
644 struct address_space *mapping = NULL;
645
646 if (vma->vm_file) {
647 mapping = vma->vm_file->f_mapping;
648 mutex_lock(&mapping->i_mmap_mutex);
649 }
650
651 __vma_link(mm, vma, prev, rb_link, rb_parent);
652 __vma_link_file(vma);
653
654 if (mapping)
655 mutex_unlock(&mapping->i_mmap_mutex);
656
657 mm->map_count++;
658 validate_mm(mm);
659 }
660
661 /*
662 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
663 * mm's list and rbtree. It has already been inserted into the interval tree.
664 */
665 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
666 {
667 struct vm_area_struct *prev;
668 struct rb_node **rb_link, *rb_parent;
669
670 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
671 &prev, &rb_link, &rb_parent))
672 BUG();
673 __vma_link(mm, vma, prev, rb_link, rb_parent);
674 mm->map_count++;
675 }
676
677 static inline void
678 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
679 struct vm_area_struct *prev)
680 {
681 struct vm_area_struct *next;
682
683 vma_rb_erase(vma, &mm->mm_rb);
684 prev->vm_next = next = vma->vm_next;
685 if (next)
686 next->vm_prev = prev;
687
688 /* Kill the cache */
689 vmacache_invalidate(mm);
690 }
691
692 /*
693 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
694 * is already present in an i_mmap tree without adjusting the tree.
695 * The following helper function should be used when such adjustments
696 * are necessary. The "insert" vma (if any) is to be inserted
697 * before we drop the necessary locks.
698 */
699 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
700 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
701 {
702 struct mm_struct *mm = vma->vm_mm;
703 struct vm_area_struct *next = vma->vm_next;
704 struct vm_area_struct *importer = NULL;
705 struct address_space *mapping = NULL;
706 struct rb_root *root = NULL;
707 struct anon_vma *anon_vma = NULL;
708 struct file *file = vma->vm_file;
709 bool start_changed = false, end_changed = false;
710 long adjust_next = 0;
711 int remove_next = 0;
712
713 if (next && !insert) {
714 struct vm_area_struct *exporter = NULL;
715
716 if (end >= next->vm_end) {
717 /*
718 * vma expands, overlapping all the next, and
719 * perhaps the one after too (mprotect case 6).
720 */
721 again: remove_next = 1 + (end > next->vm_end);
722 end = next->vm_end;
723 exporter = next;
724 importer = vma;
725 } else if (end > next->vm_start) {
726 /*
727 * vma expands, overlapping part of the next:
728 * mprotect case 5 shifting the boundary up.
729 */
730 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
731 exporter = next;
732 importer = vma;
733 } else if (end < vma->vm_end) {
734 /*
735 * vma shrinks, and !insert tells it's not
736 * split_vma inserting another: so it must be
737 * mprotect case 4 shifting the boundary down.
738 */
739 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
740 exporter = vma;
741 importer = next;
742 }
743
744 /*
745 * Easily overlooked: when mprotect shifts the boundary,
746 * make sure the expanding vma has anon_vma set if the
747 * shrinking vma had, to cover any anon pages imported.
748 */
749 if (exporter && exporter->anon_vma && !importer->anon_vma) {
750 if (anon_vma_clone(importer, exporter))
751 return -ENOMEM;
752 importer->anon_vma = exporter->anon_vma;
753 }
754 }
755
756 if (file) {
757 mapping = file->f_mapping;
758 if (!(vma->vm_flags & VM_NONLINEAR)) {
759 root = &mapping->i_mmap;
760 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
761
762 if (adjust_next)
763 uprobe_munmap(next, next->vm_start,
764 next->vm_end);
765 }
766
767 mutex_lock(&mapping->i_mmap_mutex);
768 if (insert) {
769 /*
770 * Put into interval tree now, so instantiated pages
771 * are visible to arm/parisc __flush_dcache_page
772 * throughout; but we cannot insert into address
773 * space until vma start or end is updated.
774 */
775 __vma_link_file(insert);
776 }
777 }
778
779 vma_adjust_trans_huge(vma, start, end, adjust_next);
780
781 anon_vma = vma->anon_vma;
782 if (!anon_vma && adjust_next)
783 anon_vma = next->anon_vma;
784 if (anon_vma) {
785 VM_BUG_ON(adjust_next && next->anon_vma &&
786 anon_vma != next->anon_vma);
787 anon_vma_lock_write(anon_vma);
788 anon_vma_interval_tree_pre_update_vma(vma);
789 if (adjust_next)
790 anon_vma_interval_tree_pre_update_vma(next);
791 }
792
793 if (root) {
794 flush_dcache_mmap_lock(mapping);
795 vma_interval_tree_remove(vma, root);
796 if (adjust_next)
797 vma_interval_tree_remove(next, root);
798 }
799
800 if (start != vma->vm_start) {
801 vma->vm_start = start;
802 start_changed = true;
803 }
804 if (end != vma->vm_end) {
805 vma->vm_end = end;
806 end_changed = true;
807 }
808 vma->vm_pgoff = pgoff;
809 if (adjust_next) {
810 next->vm_start += adjust_next << PAGE_SHIFT;
811 next->vm_pgoff += adjust_next;
812 }
813
814 if (root) {
815 if (adjust_next)
816 vma_interval_tree_insert(next, root);
817 vma_interval_tree_insert(vma, root);
818 flush_dcache_mmap_unlock(mapping);
819 }
820
821 if (remove_next) {
822 /*
823 * vma_merge has merged next into vma, and needs
824 * us to remove next before dropping the locks.
825 */
826 __vma_unlink(mm, next, vma);
827 if (file)
828 __remove_shared_vm_struct(next, file, mapping);
829 } else if (insert) {
830 /*
831 * split_vma has split insert from vma, and needs
832 * us to insert it before dropping the locks
833 * (it may either follow vma or precede it).
834 */
835 __insert_vm_struct(mm, insert);
836 } else {
837 if (start_changed)
838 vma_gap_update(vma);
839 if (end_changed) {
840 if (!next)
841 mm->highest_vm_end = end;
842 else if (!adjust_next)
843 vma_gap_update(next);
844 }
845 }
846
847 if (anon_vma) {
848 anon_vma_interval_tree_post_update_vma(vma);
849 if (adjust_next)
850 anon_vma_interval_tree_post_update_vma(next);
851 anon_vma_unlock_write(anon_vma);
852 }
853 if (mapping)
854 mutex_unlock(&mapping->i_mmap_mutex);
855
856 if (root) {
857 uprobe_mmap(vma);
858
859 if (adjust_next)
860 uprobe_mmap(next);
861 }
862
863 if (remove_next) {
864 if (file) {
865 uprobe_munmap(next, next->vm_start, next->vm_end);
866 fput(file);
867 }
868 if (next->anon_vma)
869 anon_vma_merge(vma, next);
870 mm->map_count--;
871 mpol_put(vma_policy(next));
872 kmem_cache_free(vm_area_cachep, next);
873 /*
874 * In mprotect's case 6 (see comments on vma_merge),
875 * we must remove another next too. It would clutter
876 * up the code too much to do both in one go.
877 */
878 next = vma->vm_next;
879 if (remove_next == 2)
880 goto again;
881 else if (next)
882 vma_gap_update(next);
883 else
884 mm->highest_vm_end = end;
885 }
886 if (insert && file)
887 uprobe_mmap(insert);
888
889 validate_mm(mm);
890
891 return 0;
892 }
893
894 /*
895 * If the vma has a ->close operation then the driver probably needs to release
896 * per-vma resources, so we don't attempt to merge those.
897 */
898 static inline int is_mergeable_vma(struct vm_area_struct *vma,
899 struct file *file, unsigned long vm_flags)
900 {
901 /*
902 * VM_SOFTDIRTY should not prevent from VMA merging, if we
903 * match the flags but dirty bit -- the caller should mark
904 * merged VMA as dirty. If dirty bit won't be excluded from
905 * comparison, we increase pressue on the memory system forcing
906 * the kernel to generate new VMAs when old one could be
907 * extended instead.
908 */
909 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
910 return 0;
911 if (vma->vm_file != file)
912 return 0;
913 if (vma->vm_ops && vma->vm_ops->close)
914 return 0;
915 return 1;
916 }
917
918 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
919 struct anon_vma *anon_vma2,
920 struct vm_area_struct *vma)
921 {
922 /*
923 * The list_is_singular() test is to avoid merging VMA cloned from
924 * parents. This can improve scalability caused by anon_vma lock.
925 */
926 if ((!anon_vma1 || !anon_vma2) && (!vma ||
927 list_is_singular(&vma->anon_vma_chain)))
928 return 1;
929 return anon_vma1 == anon_vma2;
930 }
931
932 /*
933 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
934 * in front of (at a lower virtual address and file offset than) the vma.
935 *
936 * We cannot merge two vmas if they have differently assigned (non-NULL)
937 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
938 *
939 * We don't check here for the merged mmap wrapping around the end of pagecache
940 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
941 * wrap, nor mmaps which cover the final page at index -1UL.
942 */
943 static int
944 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
945 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
946 {
947 if (is_mergeable_vma(vma, file, vm_flags) &&
948 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
949 if (vma->vm_pgoff == vm_pgoff)
950 return 1;
951 }
952 return 0;
953 }
954
955 /*
956 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
957 * beyond (at a higher virtual address and file offset than) the vma.
958 *
959 * We cannot merge two vmas if they have differently assigned (non-NULL)
960 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
961 */
962 static int
963 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
964 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
965 {
966 if (is_mergeable_vma(vma, file, vm_flags) &&
967 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
968 pgoff_t vm_pglen;
969 vm_pglen = vma_pages(vma);
970 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
971 return 1;
972 }
973 return 0;
974 }
975
976 /*
977 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
978 * whether that can be merged with its predecessor or its successor.
979 * Or both (it neatly fills a hole).
980 *
981 * In most cases - when called for mmap, brk or mremap - [addr,end) is
982 * certain not to be mapped by the time vma_merge is called; but when
983 * called for mprotect, it is certain to be already mapped (either at
984 * an offset within prev, or at the start of next), and the flags of
985 * this area are about to be changed to vm_flags - and the no-change
986 * case has already been eliminated.
987 *
988 * The following mprotect cases have to be considered, where AAAA is
989 * the area passed down from mprotect_fixup, never extending beyond one
990 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
991 *
992 * AAAA AAAA AAAA AAAA
993 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
994 * cannot merge might become might become might become
995 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
996 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
997 * mremap move: PPPPNNNNNNNN 8
998 * AAAA
999 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1000 * might become case 1 below case 2 below case 3 below
1001 *
1002 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1003 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1004 */
1005 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1006 struct vm_area_struct *prev, unsigned long addr,
1007 unsigned long end, unsigned long vm_flags,
1008 struct anon_vma *anon_vma, struct file *file,
1009 pgoff_t pgoff, struct mempolicy *policy)
1010 {
1011 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1012 struct vm_area_struct *area, *next;
1013 int err;
1014
1015 /*
1016 * We later require that vma->vm_flags == vm_flags,
1017 * so this tests vma->vm_flags & VM_SPECIAL, too.
1018 */
1019 if (vm_flags & VM_SPECIAL)
1020 return NULL;
1021
1022 if (prev)
1023 next = prev->vm_next;
1024 else
1025 next = mm->mmap;
1026 area = next;
1027 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1028 next = next->vm_next;
1029
1030 /*
1031 * Can it merge with the predecessor?
1032 */
1033 if (prev && prev->vm_end == addr &&
1034 mpol_equal(vma_policy(prev), policy) &&
1035 can_vma_merge_after(prev, vm_flags,
1036 anon_vma, file, pgoff)) {
1037 /*
1038 * OK, it can. Can we now merge in the successor as well?
1039 */
1040 if (next && end == next->vm_start &&
1041 mpol_equal(policy, vma_policy(next)) &&
1042 can_vma_merge_before(next, vm_flags,
1043 anon_vma, file, pgoff+pglen) &&
1044 is_mergeable_anon_vma(prev->anon_vma,
1045 next->anon_vma, NULL)) {
1046 /* cases 1, 6 */
1047 err = vma_adjust(prev, prev->vm_start,
1048 next->vm_end, prev->vm_pgoff, NULL);
1049 } else /* cases 2, 5, 7 */
1050 err = vma_adjust(prev, prev->vm_start,
1051 end, prev->vm_pgoff, NULL);
1052 if (err)
1053 return NULL;
1054 khugepaged_enter_vma_merge(prev);
1055 return prev;
1056 }
1057
1058 /*
1059 * Can this new request be merged in front of next?
1060 */
1061 if (next && end == next->vm_start &&
1062 mpol_equal(policy, vma_policy(next)) &&
1063 can_vma_merge_before(next, vm_flags,
1064 anon_vma, file, pgoff+pglen)) {
1065 if (prev && addr < prev->vm_end) /* case 4 */
1066 err = vma_adjust(prev, prev->vm_start,
1067 addr, prev->vm_pgoff, NULL);
1068 else /* cases 3, 8 */
1069 err = vma_adjust(area, addr, next->vm_end,
1070 next->vm_pgoff - pglen, NULL);
1071 if (err)
1072 return NULL;
1073 khugepaged_enter_vma_merge(area);
1074 return area;
1075 }
1076
1077 return NULL;
1078 }
1079
1080 /*
1081 * Rough compatbility check to quickly see if it's even worth looking
1082 * at sharing an anon_vma.
1083 *
1084 * They need to have the same vm_file, and the flags can only differ
1085 * in things that mprotect may change.
1086 *
1087 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1088 * we can merge the two vma's. For example, we refuse to merge a vma if
1089 * there is a vm_ops->close() function, because that indicates that the
1090 * driver is doing some kind of reference counting. But that doesn't
1091 * really matter for the anon_vma sharing case.
1092 */
1093 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1094 {
1095 return a->vm_end == b->vm_start &&
1096 mpol_equal(vma_policy(a), vma_policy(b)) &&
1097 a->vm_file == b->vm_file &&
1098 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1099 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1100 }
1101
1102 /*
1103 * Do some basic sanity checking to see if we can re-use the anon_vma
1104 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1105 * the same as 'old', the other will be the new one that is trying
1106 * to share the anon_vma.
1107 *
1108 * NOTE! This runs with mm_sem held for reading, so it is possible that
1109 * the anon_vma of 'old' is concurrently in the process of being set up
1110 * by another page fault trying to merge _that_. But that's ok: if it
1111 * is being set up, that automatically means that it will be a singleton
1112 * acceptable for merging, so we can do all of this optimistically. But
1113 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1114 *
1115 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1116 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1117 * is to return an anon_vma that is "complex" due to having gone through
1118 * a fork).
1119 *
1120 * We also make sure that the two vma's are compatible (adjacent,
1121 * and with the same memory policies). That's all stable, even with just
1122 * a read lock on the mm_sem.
1123 */
1124 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1125 {
1126 if (anon_vma_compatible(a, b)) {
1127 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1128
1129 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1130 return anon_vma;
1131 }
1132 return NULL;
1133 }
1134
1135 /*
1136 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1137 * neighbouring vmas for a suitable anon_vma, before it goes off
1138 * to allocate a new anon_vma. It checks because a repetitive
1139 * sequence of mprotects and faults may otherwise lead to distinct
1140 * anon_vmas being allocated, preventing vma merge in subsequent
1141 * mprotect.
1142 */
1143 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1144 {
1145 struct anon_vma *anon_vma;
1146 struct vm_area_struct *near;
1147
1148 near = vma->vm_next;
1149 if (!near)
1150 goto try_prev;
1151
1152 anon_vma = reusable_anon_vma(near, vma, near);
1153 if (anon_vma)
1154 return anon_vma;
1155 try_prev:
1156 near = vma->vm_prev;
1157 if (!near)
1158 goto none;
1159
1160 anon_vma = reusable_anon_vma(near, near, vma);
1161 if (anon_vma)
1162 return anon_vma;
1163 none:
1164 /*
1165 * There's no absolute need to look only at touching neighbours:
1166 * we could search further afield for "compatible" anon_vmas.
1167 * But it would probably just be a waste of time searching,
1168 * or lead to too many vmas hanging off the same anon_vma.
1169 * We're trying to allow mprotect remerging later on,
1170 * not trying to minimize memory used for anon_vmas.
1171 */
1172 return NULL;
1173 }
1174
1175 #ifdef CONFIG_PROC_FS
1176 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1177 struct file *file, long pages)
1178 {
1179 const unsigned long stack_flags
1180 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1181
1182 mm->total_vm += pages;
1183
1184 if (file) {
1185 mm->shared_vm += pages;
1186 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1187 mm->exec_vm += pages;
1188 } else if (flags & stack_flags)
1189 mm->stack_vm += pages;
1190 }
1191 #endif /* CONFIG_PROC_FS */
1192
1193 /*
1194 * If a hint addr is less than mmap_min_addr change hint to be as
1195 * low as possible but still greater than mmap_min_addr
1196 */
1197 static inline unsigned long round_hint_to_min(unsigned long hint)
1198 {
1199 hint &= PAGE_MASK;
1200 if (((void *)hint != NULL) &&
1201 (hint < mmap_min_addr))
1202 return PAGE_ALIGN(mmap_min_addr);
1203 return hint;
1204 }
1205
1206 static inline int mlock_future_check(struct mm_struct *mm,
1207 unsigned long flags,
1208 unsigned long len)
1209 {
1210 unsigned long locked, lock_limit;
1211
1212 /* mlock MCL_FUTURE? */
1213 if (flags & VM_LOCKED) {
1214 locked = len >> PAGE_SHIFT;
1215 locked += mm->locked_vm;
1216 lock_limit = rlimit(RLIMIT_MEMLOCK);
1217 lock_limit >>= PAGE_SHIFT;
1218 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1219 return -EAGAIN;
1220 }
1221 return 0;
1222 }
1223
1224 /*
1225 * The caller must hold down_write(&current->mm->mmap_sem).
1226 */
1227
1228 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1229 unsigned long len, unsigned long prot,
1230 unsigned long flags, unsigned long pgoff,
1231 unsigned long *populate)
1232 {
1233 struct mm_struct * mm = current->mm;
1234 vm_flags_t vm_flags;
1235
1236 *populate = 0;
1237
1238 /*
1239 * Does the application expect PROT_READ to imply PROT_EXEC?
1240 *
1241 * (the exception is when the underlying filesystem is noexec
1242 * mounted, in which case we dont add PROT_EXEC.)
1243 */
1244 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1245 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1246 prot |= PROT_EXEC;
1247
1248 if (!len)
1249 return -EINVAL;
1250
1251 if (!(flags & MAP_FIXED))
1252 addr = round_hint_to_min(addr);
1253
1254 /* Careful about overflows.. */
1255 len = PAGE_ALIGN(len);
1256 if (!len)
1257 return -ENOMEM;
1258
1259 /* offset overflow? */
1260 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1261 return -EOVERFLOW;
1262
1263 /* Too many mappings? */
1264 if (mm->map_count > sysctl_max_map_count)
1265 return -ENOMEM;
1266
1267 /* Obtain the address to map to. we verify (or select) it and ensure
1268 * that it represents a valid section of the address space.
1269 */
1270 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1271 if (addr & ~PAGE_MASK)
1272 return addr;
1273
1274 /* Do simple checking here so the lower-level routines won't have
1275 * to. we assume access permissions have been handled by the open
1276 * of the memory object, so we don't do any here.
1277 */
1278 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1279 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1280
1281 if (flags & MAP_LOCKED)
1282 if (!can_do_mlock())
1283 return -EPERM;
1284
1285 if (mlock_future_check(mm, vm_flags, len))
1286 return -EAGAIN;
1287
1288 if (file) {
1289 struct inode *inode = file_inode(file);
1290
1291 switch (flags & MAP_TYPE) {
1292 case MAP_SHARED:
1293 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1294 return -EACCES;
1295
1296 /*
1297 * Make sure we don't allow writing to an append-only
1298 * file..
1299 */
1300 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1301 return -EACCES;
1302
1303 /*
1304 * Make sure there are no mandatory locks on the file.
1305 */
1306 if (locks_verify_locked(file))
1307 return -EAGAIN;
1308
1309 vm_flags |= VM_SHARED | VM_MAYSHARE;
1310 if (!(file->f_mode & FMODE_WRITE))
1311 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1312
1313 /* fall through */
1314 case MAP_PRIVATE:
1315 if (!(file->f_mode & FMODE_READ))
1316 return -EACCES;
1317 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1318 if (vm_flags & VM_EXEC)
1319 return -EPERM;
1320 vm_flags &= ~VM_MAYEXEC;
1321 }
1322
1323 if (!file->f_op->mmap)
1324 return -ENODEV;
1325 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1326 return -EINVAL;
1327 break;
1328
1329 default:
1330 return -EINVAL;
1331 }
1332 } else {
1333 switch (flags & MAP_TYPE) {
1334 case MAP_SHARED:
1335 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1336 return -EINVAL;
1337 /*
1338 * Ignore pgoff.
1339 */
1340 pgoff = 0;
1341 vm_flags |= VM_SHARED | VM_MAYSHARE;
1342 break;
1343 case MAP_PRIVATE:
1344 /*
1345 * Set pgoff according to addr for anon_vma.
1346 */
1347 pgoff = addr >> PAGE_SHIFT;
1348 break;
1349 default:
1350 return -EINVAL;
1351 }
1352 }
1353
1354 /*
1355 * Set 'VM_NORESERVE' if we should not account for the
1356 * memory use of this mapping.
1357 */
1358 if (flags & MAP_NORESERVE) {
1359 /* We honor MAP_NORESERVE if allowed to overcommit */
1360 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1361 vm_flags |= VM_NORESERVE;
1362
1363 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1364 if (file && is_file_hugepages(file))
1365 vm_flags |= VM_NORESERVE;
1366 }
1367
1368 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1369 if (!IS_ERR_VALUE(addr) &&
1370 ((vm_flags & VM_LOCKED) ||
1371 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1372 *populate = len;
1373 return addr;
1374 }
1375
1376 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1377 unsigned long, prot, unsigned long, flags,
1378 unsigned long, fd, unsigned long, pgoff)
1379 {
1380 struct file *file = NULL;
1381 unsigned long retval = -EBADF;
1382
1383 if (!(flags & MAP_ANONYMOUS)) {
1384 audit_mmap_fd(fd, flags);
1385 file = fget(fd);
1386 if (!file)
1387 goto out;
1388 if (is_file_hugepages(file))
1389 len = ALIGN(len, huge_page_size(hstate_file(file)));
1390 retval = -EINVAL;
1391 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1392 goto out_fput;
1393 } else if (flags & MAP_HUGETLB) {
1394 struct user_struct *user = NULL;
1395 struct hstate *hs;
1396
1397 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1398 if (!hs)
1399 return -EINVAL;
1400
1401 len = ALIGN(len, huge_page_size(hs));
1402 /*
1403 * VM_NORESERVE is used because the reservations will be
1404 * taken when vm_ops->mmap() is called
1405 * A dummy user value is used because we are not locking
1406 * memory so no accounting is necessary
1407 */
1408 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1409 VM_NORESERVE,
1410 &user, HUGETLB_ANONHUGE_INODE,
1411 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1412 if (IS_ERR(file))
1413 return PTR_ERR(file);
1414 }
1415
1416 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1417
1418 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1419 out_fput:
1420 if (file)
1421 fput(file);
1422 out:
1423 return retval;
1424 }
1425
1426 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1427 struct mmap_arg_struct {
1428 unsigned long addr;
1429 unsigned long len;
1430 unsigned long prot;
1431 unsigned long flags;
1432 unsigned long fd;
1433 unsigned long offset;
1434 };
1435
1436 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1437 {
1438 struct mmap_arg_struct a;
1439
1440 if (copy_from_user(&a, arg, sizeof(a)))
1441 return -EFAULT;
1442 if (a.offset & ~PAGE_MASK)
1443 return -EINVAL;
1444
1445 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1446 a.offset >> PAGE_SHIFT);
1447 }
1448 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1449
1450 /*
1451 * Some shared mappigns will want the pages marked read-only
1452 * to track write events. If so, we'll downgrade vm_page_prot
1453 * to the private version (using protection_map[] without the
1454 * VM_SHARED bit).
1455 */
1456 int vma_wants_writenotify(struct vm_area_struct *vma)
1457 {
1458 vm_flags_t vm_flags = vma->vm_flags;
1459
1460 /* If it was private or non-writable, the write bit is already clear */
1461 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1462 return 0;
1463
1464 /* The backer wishes to know when pages are first written to? */
1465 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1466 return 1;
1467
1468 /* The open routine did something to the protections already? */
1469 if (pgprot_val(vma->vm_page_prot) !=
1470 pgprot_val(vm_get_page_prot(vm_flags)))
1471 return 0;
1472
1473 /* Specialty mapping? */
1474 if (vm_flags & VM_PFNMAP)
1475 return 0;
1476
1477 /* Can the mapping track the dirty pages? */
1478 return vma->vm_file && vma->vm_file->f_mapping &&
1479 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1480 }
1481
1482 /*
1483 * We account for memory if it's a private writeable mapping,
1484 * not hugepages and VM_NORESERVE wasn't set.
1485 */
1486 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1487 {
1488 /*
1489 * hugetlb has its own accounting separate from the core VM
1490 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1491 */
1492 if (file && is_file_hugepages(file))
1493 return 0;
1494
1495 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1496 }
1497
1498 unsigned long mmap_region(struct file *file, unsigned long addr,
1499 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1500 {
1501 struct mm_struct *mm = current->mm;
1502 struct vm_area_struct *vma, *prev;
1503 int error;
1504 struct rb_node **rb_link, *rb_parent;
1505 unsigned long charged = 0;
1506
1507 /* Check against address space limit. */
1508 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1509 unsigned long nr_pages;
1510
1511 /*
1512 * MAP_FIXED may remove pages of mappings that intersects with
1513 * requested mapping. Account for the pages it would unmap.
1514 */
1515 if (!(vm_flags & MAP_FIXED))
1516 return -ENOMEM;
1517
1518 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1519
1520 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1521 return -ENOMEM;
1522 }
1523
1524 /* Clear old maps */
1525 error = -ENOMEM;
1526 munmap_back:
1527 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1528 if (do_munmap(mm, addr, len))
1529 return -ENOMEM;
1530 goto munmap_back;
1531 }
1532
1533 /*
1534 * Private writable mapping: check memory availability
1535 */
1536 if (accountable_mapping(file, vm_flags)) {
1537 charged = len >> PAGE_SHIFT;
1538 if (security_vm_enough_memory_mm(mm, charged))
1539 return -ENOMEM;
1540 vm_flags |= VM_ACCOUNT;
1541 }
1542
1543 /*
1544 * Can we just expand an old mapping?
1545 */
1546 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1547 if (vma)
1548 goto out;
1549
1550 /*
1551 * Determine the object being mapped and call the appropriate
1552 * specific mapper. the address has already been validated, but
1553 * not unmapped, but the maps are removed from the list.
1554 */
1555 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1556 if (!vma) {
1557 error = -ENOMEM;
1558 goto unacct_error;
1559 }
1560
1561 vma->vm_mm = mm;
1562 vma->vm_start = addr;
1563 vma->vm_end = addr + len;
1564 vma->vm_flags = vm_flags;
1565 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1566 vma->vm_pgoff = pgoff;
1567 INIT_LIST_HEAD(&vma->anon_vma_chain);
1568
1569 if (file) {
1570 if (vm_flags & VM_DENYWRITE) {
1571 error = deny_write_access(file);
1572 if (error)
1573 goto free_vma;
1574 }
1575 vma->vm_file = get_file(file);
1576 error = file->f_op->mmap(file, vma);
1577 if (error)
1578 goto unmap_and_free_vma;
1579
1580 /* Can addr have changed??
1581 *
1582 * Answer: Yes, several device drivers can do it in their
1583 * f_op->mmap method. -DaveM
1584 * Bug: If addr is changed, prev, rb_link, rb_parent should
1585 * be updated for vma_link()
1586 */
1587 WARN_ON_ONCE(addr != vma->vm_start);
1588
1589 addr = vma->vm_start;
1590 vm_flags = vma->vm_flags;
1591 } else if (vm_flags & VM_SHARED) {
1592 error = shmem_zero_setup(vma);
1593 if (error)
1594 goto free_vma;
1595 }
1596
1597 if (vma_wants_writenotify(vma)) {
1598 pgprot_t pprot = vma->vm_page_prot;
1599
1600 /* Can vma->vm_page_prot have changed??
1601 *
1602 * Answer: Yes, drivers may have changed it in their
1603 * f_op->mmap method.
1604 *
1605 * Ensures that vmas marked as uncached stay that way.
1606 */
1607 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1608 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1609 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1610 }
1611
1612 vma_link(mm, vma, prev, rb_link, rb_parent);
1613 /* Once vma denies write, undo our temporary denial count */
1614 if (vm_flags & VM_DENYWRITE)
1615 allow_write_access(file);
1616 file = vma->vm_file;
1617 out:
1618 perf_event_mmap(vma);
1619
1620 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1621 if (vm_flags & VM_LOCKED) {
1622 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1623 vma == get_gate_vma(current->mm)))
1624 mm->locked_vm += (len >> PAGE_SHIFT);
1625 else
1626 vma->vm_flags &= ~VM_LOCKED;
1627 }
1628
1629 if (file)
1630 uprobe_mmap(vma);
1631
1632 /*
1633 * New (or expanded) vma always get soft dirty status.
1634 * Otherwise user-space soft-dirty page tracker won't
1635 * be able to distinguish situation when vma area unmapped,
1636 * then new mapped in-place (which must be aimed as
1637 * a completely new data area).
1638 */
1639 vma->vm_flags |= VM_SOFTDIRTY;
1640
1641 return addr;
1642
1643 unmap_and_free_vma:
1644 if (vm_flags & VM_DENYWRITE)
1645 allow_write_access(file);
1646 vma->vm_file = NULL;
1647 fput(file);
1648
1649 /* Undo any partial mapping done by a device driver. */
1650 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1651 charged = 0;
1652 free_vma:
1653 kmem_cache_free(vm_area_cachep, vma);
1654 unacct_error:
1655 if (charged)
1656 vm_unacct_memory(charged);
1657 return error;
1658 }
1659
1660 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1661 {
1662 /*
1663 * We implement the search by looking for an rbtree node that
1664 * immediately follows a suitable gap. That is,
1665 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1666 * - gap_end = vma->vm_start >= info->low_limit + length;
1667 * - gap_end - gap_start >= length
1668 */
1669
1670 struct mm_struct *mm = current->mm;
1671 struct vm_area_struct *vma;
1672 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1673
1674 /* Adjust search length to account for worst case alignment overhead */
1675 length = info->length + info->align_mask;
1676 if (length < info->length)
1677 return -ENOMEM;
1678
1679 /* Adjust search limits by the desired length */
1680 if (info->high_limit < length)
1681 return -ENOMEM;
1682 high_limit = info->high_limit - length;
1683
1684 if (info->low_limit > high_limit)
1685 return -ENOMEM;
1686 low_limit = info->low_limit + length;
1687
1688 /* Check if rbtree root looks promising */
1689 if (RB_EMPTY_ROOT(&mm->mm_rb))
1690 goto check_highest;
1691 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1692 if (vma->rb_subtree_gap < length)
1693 goto check_highest;
1694
1695 while (true) {
1696 /* Visit left subtree if it looks promising */
1697 gap_end = vma->vm_start;
1698 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1699 struct vm_area_struct *left =
1700 rb_entry(vma->vm_rb.rb_left,
1701 struct vm_area_struct, vm_rb);
1702 if (left->rb_subtree_gap >= length) {
1703 vma = left;
1704 continue;
1705 }
1706 }
1707
1708 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1709 check_current:
1710 /* Check if current node has a suitable gap */
1711 if (gap_start > high_limit)
1712 return -ENOMEM;
1713 if (gap_end >= low_limit && gap_end - gap_start >= length)
1714 goto found;
1715
1716 /* Visit right subtree if it looks promising */
1717 if (vma->vm_rb.rb_right) {
1718 struct vm_area_struct *right =
1719 rb_entry(vma->vm_rb.rb_right,
1720 struct vm_area_struct, vm_rb);
1721 if (right->rb_subtree_gap >= length) {
1722 vma = right;
1723 continue;
1724 }
1725 }
1726
1727 /* Go back up the rbtree to find next candidate node */
1728 while (true) {
1729 struct rb_node *prev = &vma->vm_rb;
1730 if (!rb_parent(prev))
1731 goto check_highest;
1732 vma = rb_entry(rb_parent(prev),
1733 struct vm_area_struct, vm_rb);
1734 if (prev == vma->vm_rb.rb_left) {
1735 gap_start = vma->vm_prev->vm_end;
1736 gap_end = vma->vm_start;
1737 goto check_current;
1738 }
1739 }
1740 }
1741
1742 check_highest:
1743 /* Check highest gap, which does not precede any rbtree node */
1744 gap_start = mm->highest_vm_end;
1745 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1746 if (gap_start > high_limit)
1747 return -ENOMEM;
1748
1749 found:
1750 /* We found a suitable gap. Clip it with the original low_limit. */
1751 if (gap_start < info->low_limit)
1752 gap_start = info->low_limit;
1753
1754 /* Adjust gap address to the desired alignment */
1755 gap_start += (info->align_offset - gap_start) & info->align_mask;
1756
1757 VM_BUG_ON(gap_start + info->length > info->high_limit);
1758 VM_BUG_ON(gap_start + info->length > gap_end);
1759 return gap_start;
1760 }
1761
1762 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1763 {
1764 struct mm_struct *mm = current->mm;
1765 struct vm_area_struct *vma;
1766 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1767
1768 /* Adjust search length to account for worst case alignment overhead */
1769 length = info->length + info->align_mask;
1770 if (length < info->length)
1771 return -ENOMEM;
1772
1773 /*
1774 * Adjust search limits by the desired length.
1775 * See implementation comment at top of unmapped_area().
1776 */
1777 gap_end = info->high_limit;
1778 if (gap_end < length)
1779 return -ENOMEM;
1780 high_limit = gap_end - length;
1781
1782 if (info->low_limit > high_limit)
1783 return -ENOMEM;
1784 low_limit = info->low_limit + length;
1785
1786 /* Check highest gap, which does not precede any rbtree node */
1787 gap_start = mm->highest_vm_end;
1788 if (gap_start <= high_limit)
1789 goto found_highest;
1790
1791 /* Check if rbtree root looks promising */
1792 if (RB_EMPTY_ROOT(&mm->mm_rb))
1793 return -ENOMEM;
1794 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1795 if (vma->rb_subtree_gap < length)
1796 return -ENOMEM;
1797
1798 while (true) {
1799 /* Visit right subtree if it looks promising */
1800 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1801 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1802 struct vm_area_struct *right =
1803 rb_entry(vma->vm_rb.rb_right,
1804 struct vm_area_struct, vm_rb);
1805 if (right->rb_subtree_gap >= length) {
1806 vma = right;
1807 continue;
1808 }
1809 }
1810
1811 check_current:
1812 /* Check if current node has a suitable gap */
1813 gap_end = vma->vm_start;
1814 if (gap_end < low_limit)
1815 return -ENOMEM;
1816 if (gap_start <= high_limit && gap_end - gap_start >= length)
1817 goto found;
1818
1819 /* Visit left subtree if it looks promising */
1820 if (vma->vm_rb.rb_left) {
1821 struct vm_area_struct *left =
1822 rb_entry(vma->vm_rb.rb_left,
1823 struct vm_area_struct, vm_rb);
1824 if (left->rb_subtree_gap >= length) {
1825 vma = left;
1826 continue;
1827 }
1828 }
1829
1830 /* Go back up the rbtree to find next candidate node */
1831 while (true) {
1832 struct rb_node *prev = &vma->vm_rb;
1833 if (!rb_parent(prev))
1834 return -ENOMEM;
1835 vma = rb_entry(rb_parent(prev),
1836 struct vm_area_struct, vm_rb);
1837 if (prev == vma->vm_rb.rb_right) {
1838 gap_start = vma->vm_prev ?
1839 vma->vm_prev->vm_end : 0;
1840 goto check_current;
1841 }
1842 }
1843 }
1844
1845 found:
1846 /* We found a suitable gap. Clip it with the original high_limit. */
1847 if (gap_end > info->high_limit)
1848 gap_end = info->high_limit;
1849
1850 found_highest:
1851 /* Compute highest gap address at the desired alignment */
1852 gap_end -= info->length;
1853 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1854
1855 VM_BUG_ON(gap_end < info->low_limit);
1856 VM_BUG_ON(gap_end < gap_start);
1857 return gap_end;
1858 }
1859
1860 /* Get an address range which is currently unmapped.
1861 * For shmat() with addr=0.
1862 *
1863 * Ugly calling convention alert:
1864 * Return value with the low bits set means error value,
1865 * ie
1866 * if (ret & ~PAGE_MASK)
1867 * error = ret;
1868 *
1869 * This function "knows" that -ENOMEM has the bits set.
1870 */
1871 #ifndef HAVE_ARCH_UNMAPPED_AREA
1872 unsigned long
1873 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1874 unsigned long len, unsigned long pgoff, unsigned long flags)
1875 {
1876 struct mm_struct *mm = current->mm;
1877 struct vm_area_struct *vma;
1878 struct vm_unmapped_area_info info;
1879
1880 if (len > TASK_SIZE - mmap_min_addr)
1881 return -ENOMEM;
1882
1883 if (flags & MAP_FIXED)
1884 return addr;
1885
1886 if (addr) {
1887 addr = PAGE_ALIGN(addr);
1888 vma = find_vma(mm, addr);
1889 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1890 (!vma || addr + len <= vma->vm_start))
1891 return addr;
1892 }
1893
1894 info.flags = 0;
1895 info.length = len;
1896 info.low_limit = mm->mmap_base;
1897 info.high_limit = TASK_SIZE;
1898 info.align_mask = 0;
1899 return vm_unmapped_area(&info);
1900 }
1901 #endif
1902
1903 /*
1904 * This mmap-allocator allocates new areas top-down from below the
1905 * stack's low limit (the base):
1906 */
1907 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1908 unsigned long
1909 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1910 const unsigned long len, const unsigned long pgoff,
1911 const unsigned long flags)
1912 {
1913 struct vm_area_struct *vma;
1914 struct mm_struct *mm = current->mm;
1915 unsigned long addr = addr0;
1916 struct vm_unmapped_area_info info;
1917
1918 /* requested length too big for entire address space */
1919 if (len > TASK_SIZE - mmap_min_addr)
1920 return -ENOMEM;
1921
1922 if (flags & MAP_FIXED)
1923 return addr;
1924
1925 /* requesting a specific address */
1926 if (addr) {
1927 addr = PAGE_ALIGN(addr);
1928 vma = find_vma(mm, addr);
1929 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1930 (!vma || addr + len <= vma->vm_start))
1931 return addr;
1932 }
1933
1934 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1935 info.length = len;
1936 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1937 info.high_limit = mm->mmap_base;
1938 info.align_mask = 0;
1939 addr = vm_unmapped_area(&info);
1940
1941 /*
1942 * A failed mmap() very likely causes application failure,
1943 * so fall back to the bottom-up function here. This scenario
1944 * can happen with large stack limits and large mmap()
1945 * allocations.
1946 */
1947 if (addr & ~PAGE_MASK) {
1948 VM_BUG_ON(addr != -ENOMEM);
1949 info.flags = 0;
1950 info.low_limit = TASK_UNMAPPED_BASE;
1951 info.high_limit = TASK_SIZE;
1952 addr = vm_unmapped_area(&info);
1953 }
1954
1955 return addr;
1956 }
1957 #endif
1958
1959 unsigned long
1960 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1961 unsigned long pgoff, unsigned long flags)
1962 {
1963 unsigned long (*get_area)(struct file *, unsigned long,
1964 unsigned long, unsigned long, unsigned long);
1965
1966 unsigned long error = arch_mmap_check(addr, len, flags);
1967 if (error)
1968 return error;
1969
1970 /* Careful about overflows.. */
1971 if (len > TASK_SIZE)
1972 return -ENOMEM;
1973
1974 get_area = current->mm->get_unmapped_area;
1975 if (file && file->f_op->get_unmapped_area)
1976 get_area = file->f_op->get_unmapped_area;
1977 addr = get_area(file, addr, len, pgoff, flags);
1978 if (IS_ERR_VALUE(addr))
1979 return addr;
1980
1981 if (addr > TASK_SIZE - len)
1982 return -ENOMEM;
1983 if (addr & ~PAGE_MASK)
1984 return -EINVAL;
1985
1986 addr = arch_rebalance_pgtables(addr, len);
1987 error = security_mmap_addr(addr);
1988 return error ? error : addr;
1989 }
1990
1991 EXPORT_SYMBOL(get_unmapped_area);
1992
1993 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1994 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1995 {
1996 struct rb_node *rb_node;
1997 struct vm_area_struct *vma;
1998
1999 /* Check the cache first. */
2000 vma = vmacache_find(mm, addr);
2001 if (likely(vma))
2002 return vma;
2003
2004 rb_node = mm->mm_rb.rb_node;
2005 vma = NULL;
2006
2007 while (rb_node) {
2008 struct vm_area_struct *tmp;
2009
2010 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2011
2012 if (tmp->vm_end > addr) {
2013 vma = tmp;
2014 if (tmp->vm_start <= addr)
2015 break;
2016 rb_node = rb_node->rb_left;
2017 } else
2018 rb_node = rb_node->rb_right;
2019 }
2020
2021 if (vma)
2022 vmacache_update(addr, vma);
2023 return vma;
2024 }
2025
2026 EXPORT_SYMBOL(find_vma);
2027
2028 /*
2029 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2030 */
2031 struct vm_area_struct *
2032 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2033 struct vm_area_struct **pprev)
2034 {
2035 struct vm_area_struct *vma;
2036
2037 vma = find_vma(mm, addr);
2038 if (vma) {
2039 *pprev = vma->vm_prev;
2040 } else {
2041 struct rb_node *rb_node = mm->mm_rb.rb_node;
2042 *pprev = NULL;
2043 while (rb_node) {
2044 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2045 rb_node = rb_node->rb_right;
2046 }
2047 }
2048 return vma;
2049 }
2050
2051 /*
2052 * Verify that the stack growth is acceptable and
2053 * update accounting. This is shared with both the
2054 * grow-up and grow-down cases.
2055 */
2056 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2057 {
2058 struct mm_struct *mm = vma->vm_mm;
2059 struct rlimit *rlim = current->signal->rlim;
2060 unsigned long new_start;
2061
2062 /* address space limit tests */
2063 if (!may_expand_vm(mm, grow))
2064 return -ENOMEM;
2065
2066 /* Stack limit test */
2067 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2068 return -ENOMEM;
2069
2070 /* mlock limit tests */
2071 if (vma->vm_flags & VM_LOCKED) {
2072 unsigned long locked;
2073 unsigned long limit;
2074 locked = mm->locked_vm + grow;
2075 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2076 limit >>= PAGE_SHIFT;
2077 if (locked > limit && !capable(CAP_IPC_LOCK))
2078 return -ENOMEM;
2079 }
2080
2081 /* Check to ensure the stack will not grow into a hugetlb-only region */
2082 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2083 vma->vm_end - size;
2084 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2085 return -EFAULT;
2086
2087 /*
2088 * Overcommit.. This must be the final test, as it will
2089 * update security statistics.
2090 */
2091 if (security_vm_enough_memory_mm(mm, grow))
2092 return -ENOMEM;
2093
2094 /* Ok, everything looks good - let it rip */
2095 if (vma->vm_flags & VM_LOCKED)
2096 mm->locked_vm += grow;
2097 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2098 return 0;
2099 }
2100
2101 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2102 /*
2103 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2104 * vma is the last one with address > vma->vm_end. Have to extend vma.
2105 */
2106 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2107 {
2108 int error;
2109
2110 if (!(vma->vm_flags & VM_GROWSUP))
2111 return -EFAULT;
2112
2113 /*
2114 * We must make sure the anon_vma is allocated
2115 * so that the anon_vma locking is not a noop.
2116 */
2117 if (unlikely(anon_vma_prepare(vma)))
2118 return -ENOMEM;
2119 vma_lock_anon_vma(vma);
2120
2121 /*
2122 * vma->vm_start/vm_end cannot change under us because the caller
2123 * is required to hold the mmap_sem in read mode. We need the
2124 * anon_vma lock to serialize against concurrent expand_stacks.
2125 * Also guard against wrapping around to address 0.
2126 */
2127 if (address < PAGE_ALIGN(address+4))
2128 address = PAGE_ALIGN(address+4);
2129 else {
2130 vma_unlock_anon_vma(vma);
2131 return -ENOMEM;
2132 }
2133 error = 0;
2134
2135 /* Somebody else might have raced and expanded it already */
2136 if (address > vma->vm_end) {
2137 unsigned long size, grow;
2138
2139 size = address - vma->vm_start;
2140 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2141
2142 error = -ENOMEM;
2143 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2144 error = acct_stack_growth(vma, size, grow);
2145 if (!error) {
2146 /*
2147 * vma_gap_update() doesn't support concurrent
2148 * updates, but we only hold a shared mmap_sem
2149 * lock here, so we need to protect against
2150 * concurrent vma expansions.
2151 * vma_lock_anon_vma() doesn't help here, as
2152 * we don't guarantee that all growable vmas
2153 * in a mm share the same root anon vma.
2154 * So, we reuse mm->page_table_lock to guard
2155 * against concurrent vma expansions.
2156 */
2157 spin_lock(&vma->vm_mm->page_table_lock);
2158 anon_vma_interval_tree_pre_update_vma(vma);
2159 vma->vm_end = address;
2160 anon_vma_interval_tree_post_update_vma(vma);
2161 if (vma->vm_next)
2162 vma_gap_update(vma->vm_next);
2163 else
2164 vma->vm_mm->highest_vm_end = address;
2165 spin_unlock(&vma->vm_mm->page_table_lock);
2166
2167 perf_event_mmap(vma);
2168 }
2169 }
2170 }
2171 vma_unlock_anon_vma(vma);
2172 khugepaged_enter_vma_merge(vma);
2173 validate_mm(vma->vm_mm);
2174 return error;
2175 }
2176 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2177
2178 /*
2179 * vma is the first one with address < vma->vm_start. Have to extend vma.
2180 */
2181 int expand_downwards(struct vm_area_struct *vma,
2182 unsigned long address)
2183 {
2184 int error;
2185
2186 /*
2187 * We must make sure the anon_vma is allocated
2188 * so that the anon_vma locking is not a noop.
2189 */
2190 if (unlikely(anon_vma_prepare(vma)))
2191 return -ENOMEM;
2192
2193 address &= PAGE_MASK;
2194 error = security_mmap_addr(address);
2195 if (error)
2196 return error;
2197
2198 vma_lock_anon_vma(vma);
2199
2200 /*
2201 * vma->vm_start/vm_end cannot change under us because the caller
2202 * is required to hold the mmap_sem in read mode. We need the
2203 * anon_vma lock to serialize against concurrent expand_stacks.
2204 */
2205
2206 /* Somebody else might have raced and expanded it already */
2207 if (address < vma->vm_start) {
2208 unsigned long size, grow;
2209
2210 size = vma->vm_end - address;
2211 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2212
2213 error = -ENOMEM;
2214 if (grow <= vma->vm_pgoff) {
2215 error = acct_stack_growth(vma, size, grow);
2216 if (!error) {
2217 /*
2218 * vma_gap_update() doesn't support concurrent
2219 * updates, but we only hold a shared mmap_sem
2220 * lock here, so we need to protect against
2221 * concurrent vma expansions.
2222 * vma_lock_anon_vma() doesn't help here, as
2223 * we don't guarantee that all growable vmas
2224 * in a mm share the same root anon vma.
2225 * So, we reuse mm->page_table_lock to guard
2226 * against concurrent vma expansions.
2227 */
2228 spin_lock(&vma->vm_mm->page_table_lock);
2229 anon_vma_interval_tree_pre_update_vma(vma);
2230 vma->vm_start = address;
2231 vma->vm_pgoff -= grow;
2232 anon_vma_interval_tree_post_update_vma(vma);
2233 vma_gap_update(vma);
2234 spin_unlock(&vma->vm_mm->page_table_lock);
2235
2236 perf_event_mmap(vma);
2237 }
2238 }
2239 }
2240 vma_unlock_anon_vma(vma);
2241 khugepaged_enter_vma_merge(vma);
2242 validate_mm(vma->vm_mm);
2243 return error;
2244 }
2245
2246 /*
2247 * Note how expand_stack() refuses to expand the stack all the way to
2248 * abut the next virtual mapping, *unless* that mapping itself is also
2249 * a stack mapping. We want to leave room for a guard page, after all
2250 * (the guard page itself is not added here, that is done by the
2251 * actual page faulting logic)
2252 *
2253 * This matches the behavior of the guard page logic (see mm/memory.c:
2254 * check_stack_guard_page()), which only allows the guard page to be
2255 * removed under these circumstances.
2256 */
2257 #ifdef CONFIG_STACK_GROWSUP
2258 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2259 {
2260 struct vm_area_struct *next;
2261
2262 address &= PAGE_MASK;
2263 next = vma->vm_next;
2264 if (next && next->vm_start == address + PAGE_SIZE) {
2265 if (!(next->vm_flags & VM_GROWSUP))
2266 return -ENOMEM;
2267 }
2268 return expand_upwards(vma, address);
2269 }
2270
2271 struct vm_area_struct *
2272 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2273 {
2274 struct vm_area_struct *vma, *prev;
2275
2276 addr &= PAGE_MASK;
2277 vma = find_vma_prev(mm, addr, &prev);
2278 if (vma && (vma->vm_start <= addr))
2279 return vma;
2280 if (!prev || expand_stack(prev, addr))
2281 return NULL;
2282 if (prev->vm_flags & VM_LOCKED)
2283 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2284 return prev;
2285 }
2286 #else
2287 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2288 {
2289 struct vm_area_struct *prev;
2290
2291 address &= PAGE_MASK;
2292 prev = vma->vm_prev;
2293 if (prev && prev->vm_end == address) {
2294 if (!(prev->vm_flags & VM_GROWSDOWN))
2295 return -ENOMEM;
2296 }
2297 return expand_downwards(vma, address);
2298 }
2299
2300 struct vm_area_struct *
2301 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2302 {
2303 struct vm_area_struct * vma;
2304 unsigned long start;
2305
2306 addr &= PAGE_MASK;
2307 vma = find_vma(mm,addr);
2308 if (!vma)
2309 return NULL;
2310 if (vma->vm_start <= addr)
2311 return vma;
2312 if (!(vma->vm_flags & VM_GROWSDOWN))
2313 return NULL;
2314 start = vma->vm_start;
2315 if (expand_stack(vma, addr))
2316 return NULL;
2317 if (vma->vm_flags & VM_LOCKED)
2318 __mlock_vma_pages_range(vma, addr, start, NULL);
2319 return vma;
2320 }
2321 #endif
2322
2323 /*
2324 * Ok - we have the memory areas we should free on the vma list,
2325 * so release them, and do the vma updates.
2326 *
2327 * Called with the mm semaphore held.
2328 */
2329 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2330 {
2331 unsigned long nr_accounted = 0;
2332
2333 /* Update high watermark before we lower total_vm */
2334 update_hiwater_vm(mm);
2335 do {
2336 long nrpages = vma_pages(vma);
2337
2338 if (vma->vm_flags & VM_ACCOUNT)
2339 nr_accounted += nrpages;
2340 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2341 vma = remove_vma(vma);
2342 } while (vma);
2343 vm_unacct_memory(nr_accounted);
2344 validate_mm(mm);
2345 }
2346
2347 /*
2348 * Get rid of page table information in the indicated region.
2349 *
2350 * Called with the mm semaphore held.
2351 */
2352 static void unmap_region(struct mm_struct *mm,
2353 struct vm_area_struct *vma, struct vm_area_struct *prev,
2354 unsigned long start, unsigned long end)
2355 {
2356 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2357 struct mmu_gather tlb;
2358
2359 lru_add_drain();
2360 tlb_gather_mmu(&tlb, mm, start, end);
2361 update_hiwater_rss(mm);
2362 unmap_vmas(&tlb, vma, start, end);
2363 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2364 next ? next->vm_start : USER_PGTABLES_CEILING);
2365 tlb_finish_mmu(&tlb, start, end);
2366 }
2367
2368 /*
2369 * Create a list of vma's touched by the unmap, removing them from the mm's
2370 * vma list as we go..
2371 */
2372 static void
2373 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2374 struct vm_area_struct *prev, unsigned long end)
2375 {
2376 struct vm_area_struct **insertion_point;
2377 struct vm_area_struct *tail_vma = NULL;
2378
2379 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2380 vma->vm_prev = NULL;
2381 do {
2382 vma_rb_erase(vma, &mm->mm_rb);
2383 mm->map_count--;
2384 tail_vma = vma;
2385 vma = vma->vm_next;
2386 } while (vma && vma->vm_start < end);
2387 *insertion_point = vma;
2388 if (vma) {
2389 vma->vm_prev = prev;
2390 vma_gap_update(vma);
2391 } else
2392 mm->highest_vm_end = prev ? prev->vm_end : 0;
2393 tail_vma->vm_next = NULL;
2394
2395 /* Kill the cache */
2396 vmacache_invalidate(mm);
2397 }
2398
2399 /*
2400 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2401 * munmap path where it doesn't make sense to fail.
2402 */
2403 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2404 unsigned long addr, int new_below)
2405 {
2406 struct vm_area_struct *new;
2407 int err = -ENOMEM;
2408
2409 if (is_vm_hugetlb_page(vma) && (addr &
2410 ~(huge_page_mask(hstate_vma(vma)))))
2411 return -EINVAL;
2412
2413 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2414 if (!new)
2415 goto out_err;
2416
2417 /* most fields are the same, copy all, and then fixup */
2418 *new = *vma;
2419
2420 INIT_LIST_HEAD(&new->anon_vma_chain);
2421
2422 if (new_below)
2423 new->vm_end = addr;
2424 else {
2425 new->vm_start = addr;
2426 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2427 }
2428
2429 err = vma_dup_policy(vma, new);
2430 if (err)
2431 goto out_free_vma;
2432
2433 if (anon_vma_clone(new, vma))
2434 goto out_free_mpol;
2435
2436 if (new->vm_file)
2437 get_file(new->vm_file);
2438
2439 if (new->vm_ops && new->vm_ops->open)
2440 new->vm_ops->open(new);
2441
2442 if (new_below)
2443 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2444 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2445 else
2446 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2447
2448 /* Success. */
2449 if (!err)
2450 return 0;
2451
2452 /* Clean everything up if vma_adjust failed. */
2453 if (new->vm_ops && new->vm_ops->close)
2454 new->vm_ops->close(new);
2455 if (new->vm_file)
2456 fput(new->vm_file);
2457 unlink_anon_vmas(new);
2458 out_free_mpol:
2459 mpol_put(vma_policy(new));
2460 out_free_vma:
2461 kmem_cache_free(vm_area_cachep, new);
2462 out_err:
2463 return err;
2464 }
2465
2466 /*
2467 * Split a vma into two pieces at address 'addr', a new vma is allocated
2468 * either for the first part or the tail.
2469 */
2470 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2471 unsigned long addr, int new_below)
2472 {
2473 if (mm->map_count >= sysctl_max_map_count)
2474 return -ENOMEM;
2475
2476 return __split_vma(mm, vma, addr, new_below);
2477 }
2478
2479 /* Munmap is split into 2 main parts -- this part which finds
2480 * what needs doing, and the areas themselves, which do the
2481 * work. This now handles partial unmappings.
2482 * Jeremy Fitzhardinge <jeremy@goop.org>
2483 */
2484 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2485 {
2486 unsigned long end;
2487 struct vm_area_struct *vma, *prev, *last;
2488
2489 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2490 return -EINVAL;
2491
2492 if ((len = PAGE_ALIGN(len)) == 0)
2493 return -EINVAL;
2494
2495 /* Find the first overlapping VMA */
2496 vma = find_vma(mm, start);
2497 if (!vma)
2498 return 0;
2499 prev = vma->vm_prev;
2500 /* we have start < vma->vm_end */
2501
2502 /* if it doesn't overlap, we have nothing.. */
2503 end = start + len;
2504 if (vma->vm_start >= end)
2505 return 0;
2506
2507 /*
2508 * If we need to split any vma, do it now to save pain later.
2509 *
2510 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2511 * unmapped vm_area_struct will remain in use: so lower split_vma
2512 * places tmp vma above, and higher split_vma places tmp vma below.
2513 */
2514 if (start > vma->vm_start) {
2515 int error;
2516
2517 /*
2518 * Make sure that map_count on return from munmap() will
2519 * not exceed its limit; but let map_count go just above
2520 * its limit temporarily, to help free resources as expected.
2521 */
2522 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2523 return -ENOMEM;
2524
2525 error = __split_vma(mm, vma, start, 0);
2526 if (error)
2527 return error;
2528 prev = vma;
2529 }
2530
2531 /* Does it split the last one? */
2532 last = find_vma(mm, end);
2533 if (last && end > last->vm_start) {
2534 int error = __split_vma(mm, last, end, 1);
2535 if (error)
2536 return error;
2537 }
2538 vma = prev? prev->vm_next: mm->mmap;
2539
2540 /*
2541 * unlock any mlock()ed ranges before detaching vmas
2542 */
2543 if (mm->locked_vm) {
2544 struct vm_area_struct *tmp = vma;
2545 while (tmp && tmp->vm_start < end) {
2546 if (tmp->vm_flags & VM_LOCKED) {
2547 mm->locked_vm -= vma_pages(tmp);
2548 munlock_vma_pages_all(tmp);
2549 }
2550 tmp = tmp->vm_next;
2551 }
2552 }
2553
2554 /*
2555 * Remove the vma's, and unmap the actual pages
2556 */
2557 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2558 unmap_region(mm, vma, prev, start, end);
2559
2560 /* Fix up all other VM information */
2561 remove_vma_list(mm, vma);
2562
2563 return 0;
2564 }
2565
2566 int vm_munmap(unsigned long start, size_t len)
2567 {
2568 int ret;
2569 struct mm_struct *mm = current->mm;
2570
2571 down_write(&mm->mmap_sem);
2572 ret = do_munmap(mm, start, len);
2573 up_write(&mm->mmap_sem);
2574 return ret;
2575 }
2576 EXPORT_SYMBOL(vm_munmap);
2577
2578 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2579 {
2580 profile_munmap(addr);
2581 return vm_munmap(addr, len);
2582 }
2583
2584 static inline void verify_mm_writelocked(struct mm_struct *mm)
2585 {
2586 #ifdef CONFIG_DEBUG_VM
2587 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2588 WARN_ON(1);
2589 up_read(&mm->mmap_sem);
2590 }
2591 #endif
2592 }
2593
2594 /*
2595 * this is really a simplified "do_mmap". it only handles
2596 * anonymous maps. eventually we may be able to do some
2597 * brk-specific accounting here.
2598 */
2599 static unsigned long do_brk(unsigned long addr, unsigned long len)
2600 {
2601 struct mm_struct * mm = current->mm;
2602 struct vm_area_struct * vma, * prev;
2603 unsigned long flags;
2604 struct rb_node ** rb_link, * rb_parent;
2605 pgoff_t pgoff = addr >> PAGE_SHIFT;
2606 int error;
2607
2608 len = PAGE_ALIGN(len);
2609 if (!len)
2610 return addr;
2611
2612 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2613
2614 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2615 if (error & ~PAGE_MASK)
2616 return error;
2617
2618 error = mlock_future_check(mm, mm->def_flags, len);
2619 if (error)
2620 return error;
2621
2622 /*
2623 * mm->mmap_sem is required to protect against another thread
2624 * changing the mappings in case we sleep.
2625 */
2626 verify_mm_writelocked(mm);
2627
2628 /*
2629 * Clear old maps. this also does some error checking for us
2630 */
2631 munmap_back:
2632 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2633 if (do_munmap(mm, addr, len))
2634 return -ENOMEM;
2635 goto munmap_back;
2636 }
2637
2638 /* Check against address space limits *after* clearing old maps... */
2639 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2640 return -ENOMEM;
2641
2642 if (mm->map_count > sysctl_max_map_count)
2643 return -ENOMEM;
2644
2645 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2646 return -ENOMEM;
2647
2648 /* Can we just expand an old private anonymous mapping? */
2649 vma = vma_merge(mm, prev, addr, addr + len, flags,
2650 NULL, NULL, pgoff, NULL);
2651 if (vma)
2652 goto out;
2653
2654 /*
2655 * create a vma struct for an anonymous mapping
2656 */
2657 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2658 if (!vma) {
2659 vm_unacct_memory(len >> PAGE_SHIFT);
2660 return -ENOMEM;
2661 }
2662
2663 INIT_LIST_HEAD(&vma->anon_vma_chain);
2664 vma->vm_mm = mm;
2665 vma->vm_start = addr;
2666 vma->vm_end = addr + len;
2667 vma->vm_pgoff = pgoff;
2668 vma->vm_flags = flags;
2669 vma->vm_page_prot = vm_get_page_prot(flags);
2670 vma_link(mm, vma, prev, rb_link, rb_parent);
2671 out:
2672 perf_event_mmap(vma);
2673 mm->total_vm += len >> PAGE_SHIFT;
2674 if (flags & VM_LOCKED)
2675 mm->locked_vm += (len >> PAGE_SHIFT);
2676 vma->vm_flags |= VM_SOFTDIRTY;
2677 return addr;
2678 }
2679
2680 unsigned long vm_brk(unsigned long addr, unsigned long len)
2681 {
2682 struct mm_struct *mm = current->mm;
2683 unsigned long ret;
2684 bool populate;
2685
2686 down_write(&mm->mmap_sem);
2687 ret = do_brk(addr, len);
2688 populate = ((mm->def_flags & VM_LOCKED) != 0);
2689 up_write(&mm->mmap_sem);
2690 if (populate)
2691 mm_populate(addr, len);
2692 return ret;
2693 }
2694 EXPORT_SYMBOL(vm_brk);
2695
2696 /* Release all mmaps. */
2697 void exit_mmap(struct mm_struct *mm)
2698 {
2699 struct mmu_gather tlb;
2700 struct vm_area_struct *vma;
2701 unsigned long nr_accounted = 0;
2702
2703 /* mm's last user has gone, and its about to be pulled down */
2704 mmu_notifier_release(mm);
2705
2706 if (mm->locked_vm) {
2707 vma = mm->mmap;
2708 while (vma) {
2709 if (vma->vm_flags & VM_LOCKED)
2710 munlock_vma_pages_all(vma);
2711 vma = vma->vm_next;
2712 }
2713 }
2714
2715 arch_exit_mmap(mm);
2716
2717 vma = mm->mmap;
2718 if (!vma) /* Can happen if dup_mmap() received an OOM */
2719 return;
2720
2721 lru_add_drain();
2722 flush_cache_mm(mm);
2723 tlb_gather_mmu(&tlb, mm, 0, -1);
2724 /* update_hiwater_rss(mm) here? but nobody should be looking */
2725 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2726 unmap_vmas(&tlb, vma, 0, -1);
2727
2728 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2729 tlb_finish_mmu(&tlb, 0, -1);
2730
2731 /*
2732 * Walk the list again, actually closing and freeing it,
2733 * with preemption enabled, without holding any MM locks.
2734 */
2735 while (vma) {
2736 if (vma->vm_flags & VM_ACCOUNT)
2737 nr_accounted += vma_pages(vma);
2738 vma = remove_vma(vma);
2739 }
2740 vm_unacct_memory(nr_accounted);
2741
2742 WARN_ON(atomic_long_read(&mm->nr_ptes) >
2743 (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2744 }
2745
2746 /* Insert vm structure into process list sorted by address
2747 * and into the inode's i_mmap tree. If vm_file is non-NULL
2748 * then i_mmap_mutex is taken here.
2749 */
2750 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2751 {
2752 struct vm_area_struct *prev;
2753 struct rb_node **rb_link, *rb_parent;
2754
2755 /*
2756 * The vm_pgoff of a purely anonymous vma should be irrelevant
2757 * until its first write fault, when page's anon_vma and index
2758 * are set. But now set the vm_pgoff it will almost certainly
2759 * end up with (unless mremap moves it elsewhere before that
2760 * first wfault), so /proc/pid/maps tells a consistent story.
2761 *
2762 * By setting it to reflect the virtual start address of the
2763 * vma, merges and splits can happen in a seamless way, just
2764 * using the existing file pgoff checks and manipulations.
2765 * Similarly in do_mmap_pgoff and in do_brk.
2766 */
2767 if (!vma->vm_file) {
2768 BUG_ON(vma->anon_vma);
2769 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2770 }
2771 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2772 &prev, &rb_link, &rb_parent))
2773 return -ENOMEM;
2774 if ((vma->vm_flags & VM_ACCOUNT) &&
2775 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2776 return -ENOMEM;
2777
2778 vma_link(mm, vma, prev, rb_link, rb_parent);
2779 return 0;
2780 }
2781
2782 /*
2783 * Copy the vma structure to a new location in the same mm,
2784 * prior to moving page table entries, to effect an mremap move.
2785 */
2786 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2787 unsigned long addr, unsigned long len, pgoff_t pgoff,
2788 bool *need_rmap_locks)
2789 {
2790 struct vm_area_struct *vma = *vmap;
2791 unsigned long vma_start = vma->vm_start;
2792 struct mm_struct *mm = vma->vm_mm;
2793 struct vm_area_struct *new_vma, *prev;
2794 struct rb_node **rb_link, *rb_parent;
2795 bool faulted_in_anon_vma = true;
2796
2797 /*
2798 * If anonymous vma has not yet been faulted, update new pgoff
2799 * to match new location, to increase its chance of merging.
2800 */
2801 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2802 pgoff = addr >> PAGE_SHIFT;
2803 faulted_in_anon_vma = false;
2804 }
2805
2806 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2807 return NULL; /* should never get here */
2808 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2809 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2810 if (new_vma) {
2811 /*
2812 * Source vma may have been merged into new_vma
2813 */
2814 if (unlikely(vma_start >= new_vma->vm_start &&
2815 vma_start < new_vma->vm_end)) {
2816 /*
2817 * The only way we can get a vma_merge with
2818 * self during an mremap is if the vma hasn't
2819 * been faulted in yet and we were allowed to
2820 * reset the dst vma->vm_pgoff to the
2821 * destination address of the mremap to allow
2822 * the merge to happen. mremap must change the
2823 * vm_pgoff linearity between src and dst vmas
2824 * (in turn preventing a vma_merge) to be
2825 * safe. It is only safe to keep the vm_pgoff
2826 * linear if there are no pages mapped yet.
2827 */
2828 VM_BUG_ON(faulted_in_anon_vma);
2829 *vmap = vma = new_vma;
2830 }
2831 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2832 } else {
2833 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2834 if (new_vma) {
2835 *new_vma = *vma;
2836 new_vma->vm_start = addr;
2837 new_vma->vm_end = addr + len;
2838 new_vma->vm_pgoff = pgoff;
2839 if (vma_dup_policy(vma, new_vma))
2840 goto out_free_vma;
2841 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2842 if (anon_vma_clone(new_vma, vma))
2843 goto out_free_mempol;
2844 if (new_vma->vm_file)
2845 get_file(new_vma->vm_file);
2846 if (new_vma->vm_ops && new_vma->vm_ops->open)
2847 new_vma->vm_ops->open(new_vma);
2848 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2849 *need_rmap_locks = false;
2850 }
2851 }
2852 return new_vma;
2853
2854 out_free_mempol:
2855 mpol_put(vma_policy(new_vma));
2856 out_free_vma:
2857 kmem_cache_free(vm_area_cachep, new_vma);
2858 return NULL;
2859 }
2860
2861 /*
2862 * Return true if the calling process may expand its vm space by the passed
2863 * number of pages
2864 */
2865 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2866 {
2867 unsigned long cur = mm->total_vm; /* pages */
2868 unsigned long lim;
2869
2870 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2871
2872 if (cur + npages > lim)
2873 return 0;
2874 return 1;
2875 }
2876
2877 static int special_mapping_fault(struct vm_area_struct *vma,
2878 struct vm_fault *vmf);
2879
2880 /*
2881 * Having a close hook prevents vma merging regardless of flags.
2882 */
2883 static void special_mapping_close(struct vm_area_struct *vma)
2884 {
2885 }
2886
2887 static const char *special_mapping_name(struct vm_area_struct *vma)
2888 {
2889 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2890 }
2891
2892 static const struct vm_operations_struct special_mapping_vmops = {
2893 .close = special_mapping_close,
2894 .fault = special_mapping_fault,
2895 .name = special_mapping_name,
2896 };
2897
2898 static const struct vm_operations_struct legacy_special_mapping_vmops = {
2899 .close = special_mapping_close,
2900 .fault = special_mapping_fault,
2901 };
2902
2903 static int special_mapping_fault(struct vm_area_struct *vma,
2904 struct vm_fault *vmf)
2905 {
2906 pgoff_t pgoff;
2907 struct page **pages;
2908
2909 /*
2910 * special mappings have no vm_file, and in that case, the mm
2911 * uses vm_pgoff internally. So we have to subtract it from here.
2912 * We are allowed to do this because we are the mm; do not copy
2913 * this code into drivers!
2914 */
2915 pgoff = vmf->pgoff - vma->vm_pgoff;
2916
2917 if (vma->vm_ops == &legacy_special_mapping_vmops)
2918 pages = vma->vm_private_data;
2919 else
2920 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
2921 pages;
2922
2923 for (; pgoff && *pages; ++pages)
2924 pgoff--;
2925
2926 if (*pages) {
2927 struct page *page = *pages;
2928 get_page(page);
2929 vmf->page = page;
2930 return 0;
2931 }
2932
2933 return VM_FAULT_SIGBUS;
2934 }
2935
2936 static struct vm_area_struct *__install_special_mapping(
2937 struct mm_struct *mm,
2938 unsigned long addr, unsigned long len,
2939 unsigned long vm_flags, const struct vm_operations_struct *ops,
2940 void *priv)
2941 {
2942 int ret;
2943 struct vm_area_struct *vma;
2944
2945 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2946 if (unlikely(vma == NULL))
2947 return ERR_PTR(-ENOMEM);
2948
2949 INIT_LIST_HEAD(&vma->anon_vma_chain);
2950 vma->vm_mm = mm;
2951 vma->vm_start = addr;
2952 vma->vm_end = addr + len;
2953
2954 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2955 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2956
2957 vma->vm_ops = ops;
2958 vma->vm_private_data = priv;
2959
2960 ret = insert_vm_struct(mm, vma);
2961 if (ret)
2962 goto out;
2963
2964 mm->total_vm += len >> PAGE_SHIFT;
2965
2966 perf_event_mmap(vma);
2967
2968 return vma;
2969
2970 out:
2971 kmem_cache_free(vm_area_cachep, vma);
2972 return ERR_PTR(ret);
2973 }
2974
2975 /*
2976 * Called with mm->mmap_sem held for writing.
2977 * Insert a new vma covering the given region, with the given flags.
2978 * Its pages are supplied by the given array of struct page *.
2979 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2980 * The region past the last page supplied will always produce SIGBUS.
2981 * The array pointer and the pages it points to are assumed to stay alive
2982 * for as long as this mapping might exist.
2983 */
2984 struct vm_area_struct *_install_special_mapping(
2985 struct mm_struct *mm,
2986 unsigned long addr, unsigned long len,
2987 unsigned long vm_flags, const struct vm_special_mapping *spec)
2988 {
2989 return __install_special_mapping(mm, addr, len, vm_flags,
2990 &special_mapping_vmops, (void *)spec);
2991 }
2992
2993 int install_special_mapping(struct mm_struct *mm,
2994 unsigned long addr, unsigned long len,
2995 unsigned long vm_flags, struct page **pages)
2996 {
2997 struct vm_area_struct *vma = __install_special_mapping(
2998 mm, addr, len, vm_flags, &legacy_special_mapping_vmops,
2999 (void *)pages);
3000
3001 return PTR_ERR_OR_ZERO(vma);
3002 }
3003
3004 static DEFINE_MUTEX(mm_all_locks_mutex);
3005
3006 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3007 {
3008 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3009 /*
3010 * The LSB of head.next can't change from under us
3011 * because we hold the mm_all_locks_mutex.
3012 */
3013 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3014 /*
3015 * We can safely modify head.next after taking the
3016 * anon_vma->root->rwsem. If some other vma in this mm shares
3017 * the same anon_vma we won't take it again.
3018 *
3019 * No need of atomic instructions here, head.next
3020 * can't change from under us thanks to the
3021 * anon_vma->root->rwsem.
3022 */
3023 if (__test_and_set_bit(0, (unsigned long *)
3024 &anon_vma->root->rb_root.rb_node))
3025 BUG();
3026 }
3027 }
3028
3029 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3030 {
3031 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3032 /*
3033 * AS_MM_ALL_LOCKS can't change from under us because
3034 * we hold the mm_all_locks_mutex.
3035 *
3036 * Operations on ->flags have to be atomic because
3037 * even if AS_MM_ALL_LOCKS is stable thanks to the
3038 * mm_all_locks_mutex, there may be other cpus
3039 * changing other bitflags in parallel to us.
3040 */
3041 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3042 BUG();
3043 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3044 }
3045 }
3046
3047 /*
3048 * This operation locks against the VM for all pte/vma/mm related
3049 * operations that could ever happen on a certain mm. This includes
3050 * vmtruncate, try_to_unmap, and all page faults.
3051 *
3052 * The caller must take the mmap_sem in write mode before calling
3053 * mm_take_all_locks(). The caller isn't allowed to release the
3054 * mmap_sem until mm_drop_all_locks() returns.
3055 *
3056 * mmap_sem in write mode is required in order to block all operations
3057 * that could modify pagetables and free pages without need of
3058 * altering the vma layout (for example populate_range() with
3059 * nonlinear vmas). It's also needed in write mode to avoid new
3060 * anon_vmas to be associated with existing vmas.
3061 *
3062 * A single task can't take more than one mm_take_all_locks() in a row
3063 * or it would deadlock.
3064 *
3065 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3066 * mapping->flags avoid to take the same lock twice, if more than one
3067 * vma in this mm is backed by the same anon_vma or address_space.
3068 *
3069 * We can take all the locks in random order because the VM code
3070 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3071 * takes more than one of them in a row. Secondly we're protected
3072 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3073 *
3074 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3075 * that may have to take thousand of locks.
3076 *
3077 * mm_take_all_locks() can fail if it's interrupted by signals.
3078 */
3079 int mm_take_all_locks(struct mm_struct *mm)
3080 {
3081 struct vm_area_struct *vma;
3082 struct anon_vma_chain *avc;
3083
3084 BUG_ON(down_read_trylock(&mm->mmap_sem));
3085
3086 mutex_lock(&mm_all_locks_mutex);
3087
3088 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3089 if (signal_pending(current))
3090 goto out_unlock;
3091 if (vma->vm_file && vma->vm_file->f_mapping)
3092 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3093 }
3094
3095 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3096 if (signal_pending(current))
3097 goto out_unlock;
3098 if (vma->anon_vma)
3099 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3100 vm_lock_anon_vma(mm, avc->anon_vma);
3101 }
3102
3103 return 0;
3104
3105 out_unlock:
3106 mm_drop_all_locks(mm);
3107 return -EINTR;
3108 }
3109
3110 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3111 {
3112 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3113 /*
3114 * The LSB of head.next can't change to 0 from under
3115 * us because we hold the mm_all_locks_mutex.
3116 *
3117 * We must however clear the bitflag before unlocking
3118 * the vma so the users using the anon_vma->rb_root will
3119 * never see our bitflag.
3120 *
3121 * No need of atomic instructions here, head.next
3122 * can't change from under us until we release the
3123 * anon_vma->root->rwsem.
3124 */
3125 if (!__test_and_clear_bit(0, (unsigned long *)
3126 &anon_vma->root->rb_root.rb_node))
3127 BUG();
3128 anon_vma_unlock_write(anon_vma);
3129 }
3130 }
3131
3132 static void vm_unlock_mapping(struct address_space *mapping)
3133 {
3134 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3135 /*
3136 * AS_MM_ALL_LOCKS can't change to 0 from under us
3137 * because we hold the mm_all_locks_mutex.
3138 */
3139 mutex_unlock(&mapping->i_mmap_mutex);
3140 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3141 &mapping->flags))
3142 BUG();
3143 }
3144 }
3145
3146 /*
3147 * The mmap_sem cannot be released by the caller until
3148 * mm_drop_all_locks() returns.
3149 */
3150 void mm_drop_all_locks(struct mm_struct *mm)
3151 {
3152 struct vm_area_struct *vma;
3153 struct anon_vma_chain *avc;
3154
3155 BUG_ON(down_read_trylock(&mm->mmap_sem));
3156 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3157
3158 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3159 if (vma->anon_vma)
3160 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3161 vm_unlock_anon_vma(avc->anon_vma);
3162 if (vma->vm_file && vma->vm_file->f_mapping)
3163 vm_unlock_mapping(vma->vm_file->f_mapping);
3164 }
3165
3166 mutex_unlock(&mm_all_locks_mutex);
3167 }
3168
3169 /*
3170 * initialise the VMA slab
3171 */
3172 void __init mmap_init(void)
3173 {
3174 int ret;
3175
3176 ret = percpu_counter_init(&vm_committed_as, 0);
3177 VM_BUG_ON(ret);
3178 }
3179
3180 /*
3181 * Initialise sysctl_user_reserve_kbytes.
3182 *
3183 * This is intended to prevent a user from starting a single memory hogging
3184 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3185 * mode.
3186 *
3187 * The default value is min(3% of free memory, 128MB)
3188 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3189 */
3190 static int init_user_reserve(void)
3191 {
3192 unsigned long free_kbytes;
3193
3194 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3195
3196 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3197 return 0;
3198 }
3199 subsys_initcall(init_user_reserve);
3200
3201 /*
3202 * Initialise sysctl_admin_reserve_kbytes.
3203 *
3204 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3205 * to log in and kill a memory hogging process.
3206 *
3207 * Systems with more than 256MB will reserve 8MB, enough to recover
3208 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3209 * only reserve 3% of free pages by default.
3210 */
3211 static int init_admin_reserve(void)
3212 {
3213 unsigned long free_kbytes;
3214
3215 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3216
3217 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3218 return 0;
3219 }
3220 subsys_initcall(init_admin_reserve);
3221
3222 /*
3223 * Reinititalise user and admin reserves if memory is added or removed.
3224 *
3225 * The default user reserve max is 128MB, and the default max for the
3226 * admin reserve is 8MB. These are usually, but not always, enough to
3227 * enable recovery from a memory hogging process using login/sshd, a shell,
3228 * and tools like top. It may make sense to increase or even disable the
3229 * reserve depending on the existence of swap or variations in the recovery
3230 * tools. So, the admin may have changed them.
3231 *
3232 * If memory is added and the reserves have been eliminated or increased above
3233 * the default max, then we'll trust the admin.
3234 *
3235 * If memory is removed and there isn't enough free memory, then we
3236 * need to reset the reserves.
3237 *
3238 * Otherwise keep the reserve set by the admin.
3239 */
3240 static int reserve_mem_notifier(struct notifier_block *nb,
3241 unsigned long action, void *data)
3242 {
3243 unsigned long tmp, free_kbytes;
3244
3245 switch (action) {
3246 case MEM_ONLINE:
3247 /* Default max is 128MB. Leave alone if modified by operator. */
3248 tmp = sysctl_user_reserve_kbytes;
3249 if (0 < tmp && tmp < (1UL << 17))
3250 init_user_reserve();
3251
3252 /* Default max is 8MB. Leave alone if modified by operator. */
3253 tmp = sysctl_admin_reserve_kbytes;
3254 if (0 < tmp && tmp < (1UL << 13))
3255 init_admin_reserve();
3256
3257 break;
3258 case MEM_OFFLINE:
3259 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3260
3261 if (sysctl_user_reserve_kbytes > free_kbytes) {
3262 init_user_reserve();
3263 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3264 sysctl_user_reserve_kbytes);
3265 }
3266
3267 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3268 init_admin_reserve();
3269 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3270 sysctl_admin_reserve_kbytes);
3271 }
3272 break;
3273 default:
3274 break;
3275 }
3276 return NOTIFY_OK;
3277 }
3278
3279 static struct notifier_block reserve_mem_nb = {
3280 .notifier_call = reserve_mem_notifier,
3281 };
3282
3283 static int __meminit init_reserve_notifier(void)
3284 {
3285 if (register_hotmemory_notifier(&reserve_mem_nb))
3286 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3287
3288 return 0;
3289 }
3290 subsys_initcall(init_reserve_notifier);
This page took 0.108727 seconds and 5 git commands to generate.