tools: Allow tools to be installed in a user specified location
[deliverable/linux.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33 #include <linux/uprobes.h>
34
35 #include <asm/uaccess.h>
36 #include <asm/cacheflush.h>
37 #include <asm/tlb.h>
38 #include <asm/mmu_context.h>
39
40 #include "internal.h"
41
42 #ifndef arch_mmap_check
43 #define arch_mmap_check(addr, len, flags) (0)
44 #endif
45
46 #ifndef arch_rebalance_pgtables
47 #define arch_rebalance_pgtables(addr, len) (addr)
48 #endif
49
50 static void unmap_region(struct mm_struct *mm,
51 struct vm_area_struct *vma, struct vm_area_struct *prev,
52 unsigned long start, unsigned long end);
53
54 /* description of effects of mapping type and prot in current implementation.
55 * this is due to the limited x86 page protection hardware. The expected
56 * behavior is in parens:
57 *
58 * map_type prot
59 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
60 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
61 * w: (no) no w: (no) no w: (yes) yes w: (no) no
62 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
63 *
64 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
65 * w: (no) no w: (no) no w: (copy) copy w: (no) no
66 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
67 *
68 */
69 pgprot_t protection_map[16] = {
70 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
71 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
72 };
73
74 pgprot_t vm_get_page_prot(unsigned long vm_flags)
75 {
76 return __pgprot(pgprot_val(protection_map[vm_flags &
77 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
78 pgprot_val(arch_vm_get_page_prot(vm_flags)));
79 }
80 EXPORT_SYMBOL(vm_get_page_prot);
81
82 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
83 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
84 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
85 /*
86 * Make sure vm_committed_as in one cacheline and not cacheline shared with
87 * other variables. It can be updated by several CPUs frequently.
88 */
89 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
90
91 /*
92 * Check that a process has enough memory to allocate a new virtual
93 * mapping. 0 means there is enough memory for the allocation to
94 * succeed and -ENOMEM implies there is not.
95 *
96 * We currently support three overcommit policies, which are set via the
97 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
98 *
99 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
100 * Additional code 2002 Jul 20 by Robert Love.
101 *
102 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
103 *
104 * Note this is a helper function intended to be used by LSMs which
105 * wish to use this logic.
106 */
107 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
108 {
109 unsigned long free, allowed;
110
111 vm_acct_memory(pages);
112
113 /*
114 * Sometimes we want to use more memory than we have
115 */
116 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
117 return 0;
118
119 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
120 free = global_page_state(NR_FREE_PAGES);
121 free += global_page_state(NR_FILE_PAGES);
122
123 /*
124 * shmem pages shouldn't be counted as free in this
125 * case, they can't be purged, only swapped out, and
126 * that won't affect the overall amount of available
127 * memory in the system.
128 */
129 free -= global_page_state(NR_SHMEM);
130
131 free += nr_swap_pages;
132
133 /*
134 * Any slabs which are created with the
135 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
136 * which are reclaimable, under pressure. The dentry
137 * cache and most inode caches should fall into this
138 */
139 free += global_page_state(NR_SLAB_RECLAIMABLE);
140
141 /*
142 * Leave reserved pages. The pages are not for anonymous pages.
143 */
144 if (free <= totalreserve_pages)
145 goto error;
146 else
147 free -= totalreserve_pages;
148
149 /*
150 * Leave the last 3% for root
151 */
152 if (!cap_sys_admin)
153 free -= free / 32;
154
155 if (free > pages)
156 return 0;
157
158 goto error;
159 }
160
161 allowed = (totalram_pages - hugetlb_total_pages())
162 * sysctl_overcommit_ratio / 100;
163 /*
164 * Leave the last 3% for root
165 */
166 if (!cap_sys_admin)
167 allowed -= allowed / 32;
168 allowed += total_swap_pages;
169
170 /* Don't let a single process grow too big:
171 leave 3% of the size of this process for other processes */
172 if (mm)
173 allowed -= mm->total_vm / 32;
174
175 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
176 return 0;
177 error:
178 vm_unacct_memory(pages);
179
180 return -ENOMEM;
181 }
182
183 /*
184 * Requires inode->i_mapping->i_mmap_mutex
185 */
186 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
187 struct file *file, struct address_space *mapping)
188 {
189 if (vma->vm_flags & VM_DENYWRITE)
190 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
191 if (vma->vm_flags & VM_SHARED)
192 mapping->i_mmap_writable--;
193
194 flush_dcache_mmap_lock(mapping);
195 if (unlikely(vma->vm_flags & VM_NONLINEAR))
196 list_del_init(&vma->shared.nonlinear);
197 else
198 vma_interval_tree_remove(vma, &mapping->i_mmap);
199 flush_dcache_mmap_unlock(mapping);
200 }
201
202 /*
203 * Unlink a file-based vm structure from its interval tree, to hide
204 * vma from rmap and vmtruncate before freeing its page tables.
205 */
206 void unlink_file_vma(struct vm_area_struct *vma)
207 {
208 struct file *file = vma->vm_file;
209
210 if (file) {
211 struct address_space *mapping = file->f_mapping;
212 mutex_lock(&mapping->i_mmap_mutex);
213 __remove_shared_vm_struct(vma, file, mapping);
214 mutex_unlock(&mapping->i_mmap_mutex);
215 }
216 }
217
218 /*
219 * Close a vm structure and free it, returning the next.
220 */
221 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
222 {
223 struct vm_area_struct *next = vma->vm_next;
224
225 might_sleep();
226 if (vma->vm_ops && vma->vm_ops->close)
227 vma->vm_ops->close(vma);
228 if (vma->vm_file)
229 fput(vma->vm_file);
230 mpol_put(vma_policy(vma));
231 kmem_cache_free(vm_area_cachep, vma);
232 return next;
233 }
234
235 static unsigned long do_brk(unsigned long addr, unsigned long len);
236
237 SYSCALL_DEFINE1(brk, unsigned long, brk)
238 {
239 unsigned long rlim, retval;
240 unsigned long newbrk, oldbrk;
241 struct mm_struct *mm = current->mm;
242 unsigned long min_brk;
243
244 down_write(&mm->mmap_sem);
245
246 #ifdef CONFIG_COMPAT_BRK
247 /*
248 * CONFIG_COMPAT_BRK can still be overridden by setting
249 * randomize_va_space to 2, which will still cause mm->start_brk
250 * to be arbitrarily shifted
251 */
252 if (current->brk_randomized)
253 min_brk = mm->start_brk;
254 else
255 min_brk = mm->end_data;
256 #else
257 min_brk = mm->start_brk;
258 #endif
259 if (brk < min_brk)
260 goto out;
261
262 /*
263 * Check against rlimit here. If this check is done later after the test
264 * of oldbrk with newbrk then it can escape the test and let the data
265 * segment grow beyond its set limit the in case where the limit is
266 * not page aligned -Ram Gupta
267 */
268 rlim = rlimit(RLIMIT_DATA);
269 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
270 (mm->end_data - mm->start_data) > rlim)
271 goto out;
272
273 newbrk = PAGE_ALIGN(brk);
274 oldbrk = PAGE_ALIGN(mm->brk);
275 if (oldbrk == newbrk)
276 goto set_brk;
277
278 /* Always allow shrinking brk. */
279 if (brk <= mm->brk) {
280 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
281 goto set_brk;
282 goto out;
283 }
284
285 /* Check against existing mmap mappings. */
286 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
287 goto out;
288
289 /* Ok, looks good - let it rip. */
290 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
291 goto out;
292 set_brk:
293 mm->brk = brk;
294 out:
295 retval = mm->brk;
296 up_write(&mm->mmap_sem);
297 return retval;
298 }
299
300 #ifdef CONFIG_DEBUG_VM_RB
301 static int browse_rb(struct rb_root *root)
302 {
303 int i = 0, j;
304 struct rb_node *nd, *pn = NULL;
305 unsigned long prev = 0, pend = 0;
306
307 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
308 struct vm_area_struct *vma;
309 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
310 if (vma->vm_start < prev)
311 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
312 if (vma->vm_start < pend)
313 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
314 if (vma->vm_start > vma->vm_end)
315 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
316 i++;
317 pn = nd;
318 prev = vma->vm_start;
319 pend = vma->vm_end;
320 }
321 j = 0;
322 for (nd = pn; nd; nd = rb_prev(nd)) {
323 j++;
324 }
325 if (i != j)
326 printk("backwards %d, forwards %d\n", j, i), i = 0;
327 return i;
328 }
329
330 void validate_mm(struct mm_struct *mm)
331 {
332 int bug = 0;
333 int i = 0;
334 struct vm_area_struct *vma = mm->mmap;
335 while (vma) {
336 struct anon_vma_chain *avc;
337 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
338 anon_vma_interval_tree_verify(avc);
339 vma = vma->vm_next;
340 i++;
341 }
342 if (i != mm->map_count)
343 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
344 i = browse_rb(&mm->mm_rb);
345 if (i != mm->map_count)
346 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
347 BUG_ON(bug);
348 }
349 #else
350 #define validate_mm(mm) do { } while (0)
351 #endif
352
353 /*
354 * vma has some anon_vma assigned, and is already inserted on that
355 * anon_vma's interval trees.
356 *
357 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
358 * vma must be removed from the anon_vma's interval trees using
359 * anon_vma_interval_tree_pre_update_vma().
360 *
361 * After the update, the vma will be reinserted using
362 * anon_vma_interval_tree_post_update_vma().
363 *
364 * The entire update must be protected by exclusive mmap_sem and by
365 * the root anon_vma's mutex.
366 */
367 static inline void
368 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
369 {
370 struct anon_vma_chain *avc;
371
372 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
373 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
374 }
375
376 static inline void
377 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
378 {
379 struct anon_vma_chain *avc;
380
381 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
382 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
383 }
384
385 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
386 unsigned long end, struct vm_area_struct **pprev,
387 struct rb_node ***rb_link, struct rb_node **rb_parent)
388 {
389 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
390
391 __rb_link = &mm->mm_rb.rb_node;
392 rb_prev = __rb_parent = NULL;
393
394 while (*__rb_link) {
395 struct vm_area_struct *vma_tmp;
396
397 __rb_parent = *__rb_link;
398 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
399
400 if (vma_tmp->vm_end > addr) {
401 /* Fail if an existing vma overlaps the area */
402 if (vma_tmp->vm_start < end)
403 return -ENOMEM;
404 __rb_link = &__rb_parent->rb_left;
405 } else {
406 rb_prev = __rb_parent;
407 __rb_link = &__rb_parent->rb_right;
408 }
409 }
410
411 *pprev = NULL;
412 if (rb_prev)
413 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
414 *rb_link = __rb_link;
415 *rb_parent = __rb_parent;
416 return 0;
417 }
418
419 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
420 struct rb_node **rb_link, struct rb_node *rb_parent)
421 {
422 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
423 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
424 }
425
426 static void __vma_link_file(struct vm_area_struct *vma)
427 {
428 struct file *file;
429
430 file = vma->vm_file;
431 if (file) {
432 struct address_space *mapping = file->f_mapping;
433
434 if (vma->vm_flags & VM_DENYWRITE)
435 atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
436 if (vma->vm_flags & VM_SHARED)
437 mapping->i_mmap_writable++;
438
439 flush_dcache_mmap_lock(mapping);
440 if (unlikely(vma->vm_flags & VM_NONLINEAR))
441 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
442 else
443 vma_interval_tree_insert(vma, &mapping->i_mmap);
444 flush_dcache_mmap_unlock(mapping);
445 }
446 }
447
448 static void
449 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
450 struct vm_area_struct *prev, struct rb_node **rb_link,
451 struct rb_node *rb_parent)
452 {
453 __vma_link_list(mm, vma, prev, rb_parent);
454 __vma_link_rb(mm, vma, rb_link, rb_parent);
455 }
456
457 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
458 struct vm_area_struct *prev, struct rb_node **rb_link,
459 struct rb_node *rb_parent)
460 {
461 struct address_space *mapping = NULL;
462
463 if (vma->vm_file)
464 mapping = vma->vm_file->f_mapping;
465
466 if (mapping)
467 mutex_lock(&mapping->i_mmap_mutex);
468
469 __vma_link(mm, vma, prev, rb_link, rb_parent);
470 __vma_link_file(vma);
471
472 if (mapping)
473 mutex_unlock(&mapping->i_mmap_mutex);
474
475 mm->map_count++;
476 validate_mm(mm);
477 }
478
479 /*
480 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
481 * mm's list and rbtree. It has already been inserted into the interval tree.
482 */
483 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
484 {
485 struct vm_area_struct *prev;
486 struct rb_node **rb_link, *rb_parent;
487
488 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
489 &prev, &rb_link, &rb_parent))
490 BUG();
491 __vma_link(mm, vma, prev, rb_link, rb_parent);
492 mm->map_count++;
493 }
494
495 static inline void
496 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
497 struct vm_area_struct *prev)
498 {
499 struct vm_area_struct *next = vma->vm_next;
500
501 prev->vm_next = next;
502 if (next)
503 next->vm_prev = prev;
504 rb_erase(&vma->vm_rb, &mm->mm_rb);
505 if (mm->mmap_cache == vma)
506 mm->mmap_cache = prev;
507 }
508
509 /*
510 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
511 * is already present in an i_mmap tree without adjusting the tree.
512 * The following helper function should be used when such adjustments
513 * are necessary. The "insert" vma (if any) is to be inserted
514 * before we drop the necessary locks.
515 */
516 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
517 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
518 {
519 struct mm_struct *mm = vma->vm_mm;
520 struct vm_area_struct *next = vma->vm_next;
521 struct vm_area_struct *importer = NULL;
522 struct address_space *mapping = NULL;
523 struct rb_root *root = NULL;
524 struct anon_vma *anon_vma = NULL;
525 struct file *file = vma->vm_file;
526 long adjust_next = 0;
527 int remove_next = 0;
528
529 if (next && !insert) {
530 struct vm_area_struct *exporter = NULL;
531
532 if (end >= next->vm_end) {
533 /*
534 * vma expands, overlapping all the next, and
535 * perhaps the one after too (mprotect case 6).
536 */
537 again: remove_next = 1 + (end > next->vm_end);
538 end = next->vm_end;
539 exporter = next;
540 importer = vma;
541 } else if (end > next->vm_start) {
542 /*
543 * vma expands, overlapping part of the next:
544 * mprotect case 5 shifting the boundary up.
545 */
546 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
547 exporter = next;
548 importer = vma;
549 } else if (end < vma->vm_end) {
550 /*
551 * vma shrinks, and !insert tells it's not
552 * split_vma inserting another: so it must be
553 * mprotect case 4 shifting the boundary down.
554 */
555 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
556 exporter = vma;
557 importer = next;
558 }
559
560 /*
561 * Easily overlooked: when mprotect shifts the boundary,
562 * make sure the expanding vma has anon_vma set if the
563 * shrinking vma had, to cover any anon pages imported.
564 */
565 if (exporter && exporter->anon_vma && !importer->anon_vma) {
566 if (anon_vma_clone(importer, exporter))
567 return -ENOMEM;
568 importer->anon_vma = exporter->anon_vma;
569 }
570 }
571
572 if (file) {
573 mapping = file->f_mapping;
574 if (!(vma->vm_flags & VM_NONLINEAR)) {
575 root = &mapping->i_mmap;
576 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
577
578 if (adjust_next)
579 uprobe_munmap(next, next->vm_start,
580 next->vm_end);
581 }
582
583 mutex_lock(&mapping->i_mmap_mutex);
584 if (insert) {
585 /*
586 * Put into interval tree now, so instantiated pages
587 * are visible to arm/parisc __flush_dcache_page
588 * throughout; but we cannot insert into address
589 * space until vma start or end is updated.
590 */
591 __vma_link_file(insert);
592 }
593 }
594
595 vma_adjust_trans_huge(vma, start, end, adjust_next);
596
597 anon_vma = vma->anon_vma;
598 if (!anon_vma && adjust_next)
599 anon_vma = next->anon_vma;
600 if (anon_vma) {
601 VM_BUG_ON(adjust_next && next->anon_vma &&
602 anon_vma != next->anon_vma);
603 anon_vma_lock(anon_vma);
604 anon_vma_interval_tree_pre_update_vma(vma);
605 if (adjust_next)
606 anon_vma_interval_tree_pre_update_vma(next);
607 }
608
609 if (root) {
610 flush_dcache_mmap_lock(mapping);
611 vma_interval_tree_remove(vma, root);
612 if (adjust_next)
613 vma_interval_tree_remove(next, root);
614 }
615
616 vma->vm_start = start;
617 vma->vm_end = end;
618 vma->vm_pgoff = pgoff;
619 if (adjust_next) {
620 next->vm_start += adjust_next << PAGE_SHIFT;
621 next->vm_pgoff += adjust_next;
622 }
623
624 if (root) {
625 if (adjust_next)
626 vma_interval_tree_insert(next, root);
627 vma_interval_tree_insert(vma, root);
628 flush_dcache_mmap_unlock(mapping);
629 }
630
631 if (remove_next) {
632 /*
633 * vma_merge has merged next into vma, and needs
634 * us to remove next before dropping the locks.
635 */
636 __vma_unlink(mm, next, vma);
637 if (file)
638 __remove_shared_vm_struct(next, file, mapping);
639 } else if (insert) {
640 /*
641 * split_vma has split insert from vma, and needs
642 * us to insert it before dropping the locks
643 * (it may either follow vma or precede it).
644 */
645 __insert_vm_struct(mm, insert);
646 }
647
648 if (anon_vma) {
649 anon_vma_interval_tree_post_update_vma(vma);
650 if (adjust_next)
651 anon_vma_interval_tree_post_update_vma(next);
652 anon_vma_unlock(anon_vma);
653 }
654 if (mapping)
655 mutex_unlock(&mapping->i_mmap_mutex);
656
657 if (root) {
658 uprobe_mmap(vma);
659
660 if (adjust_next)
661 uprobe_mmap(next);
662 }
663
664 if (remove_next) {
665 if (file) {
666 uprobe_munmap(next, next->vm_start, next->vm_end);
667 fput(file);
668 }
669 if (next->anon_vma)
670 anon_vma_merge(vma, next);
671 mm->map_count--;
672 mpol_put(vma_policy(next));
673 kmem_cache_free(vm_area_cachep, next);
674 /*
675 * In mprotect's case 6 (see comments on vma_merge),
676 * we must remove another next too. It would clutter
677 * up the code too much to do both in one go.
678 */
679 if (remove_next == 2) {
680 next = vma->vm_next;
681 goto again;
682 }
683 }
684 if (insert && file)
685 uprobe_mmap(insert);
686
687 validate_mm(mm);
688
689 return 0;
690 }
691
692 /*
693 * If the vma has a ->close operation then the driver probably needs to release
694 * per-vma resources, so we don't attempt to merge those.
695 */
696 static inline int is_mergeable_vma(struct vm_area_struct *vma,
697 struct file *file, unsigned long vm_flags)
698 {
699 if (vma->vm_flags ^ vm_flags)
700 return 0;
701 if (vma->vm_file != file)
702 return 0;
703 if (vma->vm_ops && vma->vm_ops->close)
704 return 0;
705 return 1;
706 }
707
708 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
709 struct anon_vma *anon_vma2,
710 struct vm_area_struct *vma)
711 {
712 /*
713 * The list_is_singular() test is to avoid merging VMA cloned from
714 * parents. This can improve scalability caused by anon_vma lock.
715 */
716 if ((!anon_vma1 || !anon_vma2) && (!vma ||
717 list_is_singular(&vma->anon_vma_chain)))
718 return 1;
719 return anon_vma1 == anon_vma2;
720 }
721
722 /*
723 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
724 * in front of (at a lower virtual address and file offset than) the vma.
725 *
726 * We cannot merge two vmas if they have differently assigned (non-NULL)
727 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
728 *
729 * We don't check here for the merged mmap wrapping around the end of pagecache
730 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
731 * wrap, nor mmaps which cover the final page at index -1UL.
732 */
733 static int
734 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
735 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
736 {
737 if (is_mergeable_vma(vma, file, vm_flags) &&
738 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
739 if (vma->vm_pgoff == vm_pgoff)
740 return 1;
741 }
742 return 0;
743 }
744
745 /*
746 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
747 * beyond (at a higher virtual address and file offset than) the vma.
748 *
749 * We cannot merge two vmas if they have differently assigned (non-NULL)
750 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
751 */
752 static int
753 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
754 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
755 {
756 if (is_mergeable_vma(vma, file, vm_flags) &&
757 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
758 pgoff_t vm_pglen;
759 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
760 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
761 return 1;
762 }
763 return 0;
764 }
765
766 /*
767 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
768 * whether that can be merged with its predecessor or its successor.
769 * Or both (it neatly fills a hole).
770 *
771 * In most cases - when called for mmap, brk or mremap - [addr,end) is
772 * certain not to be mapped by the time vma_merge is called; but when
773 * called for mprotect, it is certain to be already mapped (either at
774 * an offset within prev, or at the start of next), and the flags of
775 * this area are about to be changed to vm_flags - and the no-change
776 * case has already been eliminated.
777 *
778 * The following mprotect cases have to be considered, where AAAA is
779 * the area passed down from mprotect_fixup, never extending beyond one
780 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
781 *
782 * AAAA AAAA AAAA AAAA
783 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
784 * cannot merge might become might become might become
785 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
786 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
787 * mremap move: PPPPNNNNNNNN 8
788 * AAAA
789 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
790 * might become case 1 below case 2 below case 3 below
791 *
792 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
793 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
794 */
795 struct vm_area_struct *vma_merge(struct mm_struct *mm,
796 struct vm_area_struct *prev, unsigned long addr,
797 unsigned long end, unsigned long vm_flags,
798 struct anon_vma *anon_vma, struct file *file,
799 pgoff_t pgoff, struct mempolicy *policy)
800 {
801 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
802 struct vm_area_struct *area, *next;
803 int err;
804
805 /*
806 * We later require that vma->vm_flags == vm_flags,
807 * so this tests vma->vm_flags & VM_SPECIAL, too.
808 */
809 if (vm_flags & VM_SPECIAL)
810 return NULL;
811
812 if (prev)
813 next = prev->vm_next;
814 else
815 next = mm->mmap;
816 area = next;
817 if (next && next->vm_end == end) /* cases 6, 7, 8 */
818 next = next->vm_next;
819
820 /*
821 * Can it merge with the predecessor?
822 */
823 if (prev && prev->vm_end == addr &&
824 mpol_equal(vma_policy(prev), policy) &&
825 can_vma_merge_after(prev, vm_flags,
826 anon_vma, file, pgoff)) {
827 /*
828 * OK, it can. Can we now merge in the successor as well?
829 */
830 if (next && end == next->vm_start &&
831 mpol_equal(policy, vma_policy(next)) &&
832 can_vma_merge_before(next, vm_flags,
833 anon_vma, file, pgoff+pglen) &&
834 is_mergeable_anon_vma(prev->anon_vma,
835 next->anon_vma, NULL)) {
836 /* cases 1, 6 */
837 err = vma_adjust(prev, prev->vm_start,
838 next->vm_end, prev->vm_pgoff, NULL);
839 } else /* cases 2, 5, 7 */
840 err = vma_adjust(prev, prev->vm_start,
841 end, prev->vm_pgoff, NULL);
842 if (err)
843 return NULL;
844 khugepaged_enter_vma_merge(prev);
845 return prev;
846 }
847
848 /*
849 * Can this new request be merged in front of next?
850 */
851 if (next && end == next->vm_start &&
852 mpol_equal(policy, vma_policy(next)) &&
853 can_vma_merge_before(next, vm_flags,
854 anon_vma, file, pgoff+pglen)) {
855 if (prev && addr < prev->vm_end) /* case 4 */
856 err = vma_adjust(prev, prev->vm_start,
857 addr, prev->vm_pgoff, NULL);
858 else /* cases 3, 8 */
859 err = vma_adjust(area, addr, next->vm_end,
860 next->vm_pgoff - pglen, NULL);
861 if (err)
862 return NULL;
863 khugepaged_enter_vma_merge(area);
864 return area;
865 }
866
867 return NULL;
868 }
869
870 /*
871 * Rough compatbility check to quickly see if it's even worth looking
872 * at sharing an anon_vma.
873 *
874 * They need to have the same vm_file, and the flags can only differ
875 * in things that mprotect may change.
876 *
877 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
878 * we can merge the two vma's. For example, we refuse to merge a vma if
879 * there is a vm_ops->close() function, because that indicates that the
880 * driver is doing some kind of reference counting. But that doesn't
881 * really matter for the anon_vma sharing case.
882 */
883 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
884 {
885 return a->vm_end == b->vm_start &&
886 mpol_equal(vma_policy(a), vma_policy(b)) &&
887 a->vm_file == b->vm_file &&
888 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
889 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
890 }
891
892 /*
893 * Do some basic sanity checking to see if we can re-use the anon_vma
894 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
895 * the same as 'old', the other will be the new one that is trying
896 * to share the anon_vma.
897 *
898 * NOTE! This runs with mm_sem held for reading, so it is possible that
899 * the anon_vma of 'old' is concurrently in the process of being set up
900 * by another page fault trying to merge _that_. But that's ok: if it
901 * is being set up, that automatically means that it will be a singleton
902 * acceptable for merging, so we can do all of this optimistically. But
903 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
904 *
905 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
906 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
907 * is to return an anon_vma that is "complex" due to having gone through
908 * a fork).
909 *
910 * We also make sure that the two vma's are compatible (adjacent,
911 * and with the same memory policies). That's all stable, even with just
912 * a read lock on the mm_sem.
913 */
914 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
915 {
916 if (anon_vma_compatible(a, b)) {
917 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
918
919 if (anon_vma && list_is_singular(&old->anon_vma_chain))
920 return anon_vma;
921 }
922 return NULL;
923 }
924
925 /*
926 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
927 * neighbouring vmas for a suitable anon_vma, before it goes off
928 * to allocate a new anon_vma. It checks because a repetitive
929 * sequence of mprotects and faults may otherwise lead to distinct
930 * anon_vmas being allocated, preventing vma merge in subsequent
931 * mprotect.
932 */
933 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
934 {
935 struct anon_vma *anon_vma;
936 struct vm_area_struct *near;
937
938 near = vma->vm_next;
939 if (!near)
940 goto try_prev;
941
942 anon_vma = reusable_anon_vma(near, vma, near);
943 if (anon_vma)
944 return anon_vma;
945 try_prev:
946 near = vma->vm_prev;
947 if (!near)
948 goto none;
949
950 anon_vma = reusable_anon_vma(near, near, vma);
951 if (anon_vma)
952 return anon_vma;
953 none:
954 /*
955 * There's no absolute need to look only at touching neighbours:
956 * we could search further afield for "compatible" anon_vmas.
957 * But it would probably just be a waste of time searching,
958 * or lead to too many vmas hanging off the same anon_vma.
959 * We're trying to allow mprotect remerging later on,
960 * not trying to minimize memory used for anon_vmas.
961 */
962 return NULL;
963 }
964
965 #ifdef CONFIG_PROC_FS
966 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
967 struct file *file, long pages)
968 {
969 const unsigned long stack_flags
970 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
971
972 mm->total_vm += pages;
973
974 if (file) {
975 mm->shared_vm += pages;
976 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
977 mm->exec_vm += pages;
978 } else if (flags & stack_flags)
979 mm->stack_vm += pages;
980 }
981 #endif /* CONFIG_PROC_FS */
982
983 /*
984 * If a hint addr is less than mmap_min_addr change hint to be as
985 * low as possible but still greater than mmap_min_addr
986 */
987 static inline unsigned long round_hint_to_min(unsigned long hint)
988 {
989 hint &= PAGE_MASK;
990 if (((void *)hint != NULL) &&
991 (hint < mmap_min_addr))
992 return PAGE_ALIGN(mmap_min_addr);
993 return hint;
994 }
995
996 /*
997 * The caller must hold down_write(&current->mm->mmap_sem).
998 */
999
1000 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1001 unsigned long len, unsigned long prot,
1002 unsigned long flags, unsigned long pgoff)
1003 {
1004 struct mm_struct * mm = current->mm;
1005 struct inode *inode;
1006 vm_flags_t vm_flags;
1007
1008 /*
1009 * Does the application expect PROT_READ to imply PROT_EXEC?
1010 *
1011 * (the exception is when the underlying filesystem is noexec
1012 * mounted, in which case we dont add PROT_EXEC.)
1013 */
1014 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1015 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1016 prot |= PROT_EXEC;
1017
1018 if (!len)
1019 return -EINVAL;
1020
1021 if (!(flags & MAP_FIXED))
1022 addr = round_hint_to_min(addr);
1023
1024 /* Careful about overflows.. */
1025 len = PAGE_ALIGN(len);
1026 if (!len)
1027 return -ENOMEM;
1028
1029 /* offset overflow? */
1030 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1031 return -EOVERFLOW;
1032
1033 /* Too many mappings? */
1034 if (mm->map_count > sysctl_max_map_count)
1035 return -ENOMEM;
1036
1037 /* Obtain the address to map to. we verify (or select) it and ensure
1038 * that it represents a valid section of the address space.
1039 */
1040 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1041 if (addr & ~PAGE_MASK)
1042 return addr;
1043
1044 /* Do simple checking here so the lower-level routines won't have
1045 * to. we assume access permissions have been handled by the open
1046 * of the memory object, so we don't do any here.
1047 */
1048 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1049 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1050
1051 if (flags & MAP_LOCKED)
1052 if (!can_do_mlock())
1053 return -EPERM;
1054
1055 /* mlock MCL_FUTURE? */
1056 if (vm_flags & VM_LOCKED) {
1057 unsigned long locked, lock_limit;
1058 locked = len >> PAGE_SHIFT;
1059 locked += mm->locked_vm;
1060 lock_limit = rlimit(RLIMIT_MEMLOCK);
1061 lock_limit >>= PAGE_SHIFT;
1062 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1063 return -EAGAIN;
1064 }
1065
1066 inode = file ? file->f_path.dentry->d_inode : NULL;
1067
1068 if (file) {
1069 switch (flags & MAP_TYPE) {
1070 case MAP_SHARED:
1071 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1072 return -EACCES;
1073
1074 /*
1075 * Make sure we don't allow writing to an append-only
1076 * file..
1077 */
1078 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1079 return -EACCES;
1080
1081 /*
1082 * Make sure there are no mandatory locks on the file.
1083 */
1084 if (locks_verify_locked(inode))
1085 return -EAGAIN;
1086
1087 vm_flags |= VM_SHARED | VM_MAYSHARE;
1088 if (!(file->f_mode & FMODE_WRITE))
1089 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1090
1091 /* fall through */
1092 case MAP_PRIVATE:
1093 if (!(file->f_mode & FMODE_READ))
1094 return -EACCES;
1095 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1096 if (vm_flags & VM_EXEC)
1097 return -EPERM;
1098 vm_flags &= ~VM_MAYEXEC;
1099 }
1100
1101 if (!file->f_op || !file->f_op->mmap)
1102 return -ENODEV;
1103 break;
1104
1105 default:
1106 return -EINVAL;
1107 }
1108 } else {
1109 switch (flags & MAP_TYPE) {
1110 case MAP_SHARED:
1111 /*
1112 * Ignore pgoff.
1113 */
1114 pgoff = 0;
1115 vm_flags |= VM_SHARED | VM_MAYSHARE;
1116 break;
1117 case MAP_PRIVATE:
1118 /*
1119 * Set pgoff according to addr for anon_vma.
1120 */
1121 pgoff = addr >> PAGE_SHIFT;
1122 break;
1123 default:
1124 return -EINVAL;
1125 }
1126 }
1127
1128 return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1129 }
1130
1131 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1132 unsigned long, prot, unsigned long, flags,
1133 unsigned long, fd, unsigned long, pgoff)
1134 {
1135 struct file *file = NULL;
1136 unsigned long retval = -EBADF;
1137
1138 if (!(flags & MAP_ANONYMOUS)) {
1139 audit_mmap_fd(fd, flags);
1140 if (unlikely(flags & MAP_HUGETLB))
1141 return -EINVAL;
1142 file = fget(fd);
1143 if (!file)
1144 goto out;
1145 } else if (flags & MAP_HUGETLB) {
1146 struct user_struct *user = NULL;
1147 /*
1148 * VM_NORESERVE is used because the reservations will be
1149 * taken when vm_ops->mmap() is called
1150 * A dummy user value is used because we are not locking
1151 * memory so no accounting is necessary
1152 */
1153 file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len,
1154 VM_NORESERVE, &user,
1155 HUGETLB_ANONHUGE_INODE);
1156 if (IS_ERR(file))
1157 return PTR_ERR(file);
1158 }
1159
1160 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1161
1162 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1163 if (file)
1164 fput(file);
1165 out:
1166 return retval;
1167 }
1168
1169 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1170 struct mmap_arg_struct {
1171 unsigned long addr;
1172 unsigned long len;
1173 unsigned long prot;
1174 unsigned long flags;
1175 unsigned long fd;
1176 unsigned long offset;
1177 };
1178
1179 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1180 {
1181 struct mmap_arg_struct a;
1182
1183 if (copy_from_user(&a, arg, sizeof(a)))
1184 return -EFAULT;
1185 if (a.offset & ~PAGE_MASK)
1186 return -EINVAL;
1187
1188 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1189 a.offset >> PAGE_SHIFT);
1190 }
1191 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1192
1193 /*
1194 * Some shared mappigns will want the pages marked read-only
1195 * to track write events. If so, we'll downgrade vm_page_prot
1196 * to the private version (using protection_map[] without the
1197 * VM_SHARED bit).
1198 */
1199 int vma_wants_writenotify(struct vm_area_struct *vma)
1200 {
1201 vm_flags_t vm_flags = vma->vm_flags;
1202
1203 /* If it was private or non-writable, the write bit is already clear */
1204 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1205 return 0;
1206
1207 /* The backer wishes to know when pages are first written to? */
1208 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1209 return 1;
1210
1211 /* The open routine did something to the protections already? */
1212 if (pgprot_val(vma->vm_page_prot) !=
1213 pgprot_val(vm_get_page_prot(vm_flags)))
1214 return 0;
1215
1216 /* Specialty mapping? */
1217 if (vm_flags & VM_PFNMAP)
1218 return 0;
1219
1220 /* Can the mapping track the dirty pages? */
1221 return vma->vm_file && vma->vm_file->f_mapping &&
1222 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1223 }
1224
1225 /*
1226 * We account for memory if it's a private writeable mapping,
1227 * not hugepages and VM_NORESERVE wasn't set.
1228 */
1229 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1230 {
1231 /*
1232 * hugetlb has its own accounting separate from the core VM
1233 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1234 */
1235 if (file && is_file_hugepages(file))
1236 return 0;
1237
1238 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1239 }
1240
1241 unsigned long mmap_region(struct file *file, unsigned long addr,
1242 unsigned long len, unsigned long flags,
1243 vm_flags_t vm_flags, unsigned long pgoff)
1244 {
1245 struct mm_struct *mm = current->mm;
1246 struct vm_area_struct *vma, *prev;
1247 int correct_wcount = 0;
1248 int error;
1249 struct rb_node **rb_link, *rb_parent;
1250 unsigned long charged = 0;
1251 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1252
1253 /* Clear old maps */
1254 error = -ENOMEM;
1255 munmap_back:
1256 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1257 if (do_munmap(mm, addr, len))
1258 return -ENOMEM;
1259 goto munmap_back;
1260 }
1261
1262 /* Check against address space limit. */
1263 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1264 return -ENOMEM;
1265
1266 /*
1267 * Set 'VM_NORESERVE' if we should not account for the
1268 * memory use of this mapping.
1269 */
1270 if ((flags & MAP_NORESERVE)) {
1271 /* We honor MAP_NORESERVE if allowed to overcommit */
1272 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1273 vm_flags |= VM_NORESERVE;
1274
1275 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1276 if (file && is_file_hugepages(file))
1277 vm_flags |= VM_NORESERVE;
1278 }
1279
1280 /*
1281 * Private writable mapping: check memory availability
1282 */
1283 if (accountable_mapping(file, vm_flags)) {
1284 charged = len >> PAGE_SHIFT;
1285 if (security_vm_enough_memory_mm(mm, charged))
1286 return -ENOMEM;
1287 vm_flags |= VM_ACCOUNT;
1288 }
1289
1290 /*
1291 * Can we just expand an old mapping?
1292 */
1293 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1294 if (vma)
1295 goto out;
1296
1297 /*
1298 * Determine the object being mapped and call the appropriate
1299 * specific mapper. the address has already been validated, but
1300 * not unmapped, but the maps are removed from the list.
1301 */
1302 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1303 if (!vma) {
1304 error = -ENOMEM;
1305 goto unacct_error;
1306 }
1307
1308 vma->vm_mm = mm;
1309 vma->vm_start = addr;
1310 vma->vm_end = addr + len;
1311 vma->vm_flags = vm_flags;
1312 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1313 vma->vm_pgoff = pgoff;
1314 INIT_LIST_HEAD(&vma->anon_vma_chain);
1315
1316 error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1317
1318 if (file) {
1319 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1320 goto free_vma;
1321 if (vm_flags & VM_DENYWRITE) {
1322 error = deny_write_access(file);
1323 if (error)
1324 goto free_vma;
1325 correct_wcount = 1;
1326 }
1327 vma->vm_file = get_file(file);
1328 error = file->f_op->mmap(file, vma);
1329 if (error)
1330 goto unmap_and_free_vma;
1331
1332 /* Can addr have changed??
1333 *
1334 * Answer: Yes, several device drivers can do it in their
1335 * f_op->mmap method. -DaveM
1336 */
1337 addr = vma->vm_start;
1338 pgoff = vma->vm_pgoff;
1339 vm_flags = vma->vm_flags;
1340 } else if (vm_flags & VM_SHARED) {
1341 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1342 goto free_vma;
1343 error = shmem_zero_setup(vma);
1344 if (error)
1345 goto free_vma;
1346 }
1347
1348 if (vma_wants_writenotify(vma)) {
1349 pgprot_t pprot = vma->vm_page_prot;
1350
1351 /* Can vma->vm_page_prot have changed??
1352 *
1353 * Answer: Yes, drivers may have changed it in their
1354 * f_op->mmap method.
1355 *
1356 * Ensures that vmas marked as uncached stay that way.
1357 */
1358 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1359 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1360 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1361 }
1362
1363 vma_link(mm, vma, prev, rb_link, rb_parent);
1364 file = vma->vm_file;
1365
1366 /* Once vma denies write, undo our temporary denial count */
1367 if (correct_wcount)
1368 atomic_inc(&inode->i_writecount);
1369 out:
1370 perf_event_mmap(vma);
1371
1372 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1373 if (vm_flags & VM_LOCKED) {
1374 if (!mlock_vma_pages_range(vma, addr, addr + len))
1375 mm->locked_vm += (len >> PAGE_SHIFT);
1376 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1377 make_pages_present(addr, addr + len);
1378
1379 if (file)
1380 uprobe_mmap(vma);
1381
1382 return addr;
1383
1384 unmap_and_free_vma:
1385 if (correct_wcount)
1386 atomic_inc(&inode->i_writecount);
1387 vma->vm_file = NULL;
1388 fput(file);
1389
1390 /* Undo any partial mapping done by a device driver. */
1391 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1392 charged = 0;
1393 free_vma:
1394 kmem_cache_free(vm_area_cachep, vma);
1395 unacct_error:
1396 if (charged)
1397 vm_unacct_memory(charged);
1398 return error;
1399 }
1400
1401 /* Get an address range which is currently unmapped.
1402 * For shmat() with addr=0.
1403 *
1404 * Ugly calling convention alert:
1405 * Return value with the low bits set means error value,
1406 * ie
1407 * if (ret & ~PAGE_MASK)
1408 * error = ret;
1409 *
1410 * This function "knows" that -ENOMEM has the bits set.
1411 */
1412 #ifndef HAVE_ARCH_UNMAPPED_AREA
1413 unsigned long
1414 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1415 unsigned long len, unsigned long pgoff, unsigned long flags)
1416 {
1417 struct mm_struct *mm = current->mm;
1418 struct vm_area_struct *vma;
1419 unsigned long start_addr;
1420
1421 if (len > TASK_SIZE)
1422 return -ENOMEM;
1423
1424 if (flags & MAP_FIXED)
1425 return addr;
1426
1427 if (addr) {
1428 addr = PAGE_ALIGN(addr);
1429 vma = find_vma(mm, addr);
1430 if (TASK_SIZE - len >= addr &&
1431 (!vma || addr + len <= vma->vm_start))
1432 return addr;
1433 }
1434 if (len > mm->cached_hole_size) {
1435 start_addr = addr = mm->free_area_cache;
1436 } else {
1437 start_addr = addr = TASK_UNMAPPED_BASE;
1438 mm->cached_hole_size = 0;
1439 }
1440
1441 full_search:
1442 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1443 /* At this point: (!vma || addr < vma->vm_end). */
1444 if (TASK_SIZE - len < addr) {
1445 /*
1446 * Start a new search - just in case we missed
1447 * some holes.
1448 */
1449 if (start_addr != TASK_UNMAPPED_BASE) {
1450 addr = TASK_UNMAPPED_BASE;
1451 start_addr = addr;
1452 mm->cached_hole_size = 0;
1453 goto full_search;
1454 }
1455 return -ENOMEM;
1456 }
1457 if (!vma || addr + len <= vma->vm_start) {
1458 /*
1459 * Remember the place where we stopped the search:
1460 */
1461 mm->free_area_cache = addr + len;
1462 return addr;
1463 }
1464 if (addr + mm->cached_hole_size < vma->vm_start)
1465 mm->cached_hole_size = vma->vm_start - addr;
1466 addr = vma->vm_end;
1467 }
1468 }
1469 #endif
1470
1471 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1472 {
1473 /*
1474 * Is this a new hole at the lowest possible address?
1475 */
1476 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1477 mm->free_area_cache = addr;
1478 }
1479
1480 /*
1481 * This mmap-allocator allocates new areas top-down from below the
1482 * stack's low limit (the base):
1483 */
1484 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1485 unsigned long
1486 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1487 const unsigned long len, const unsigned long pgoff,
1488 const unsigned long flags)
1489 {
1490 struct vm_area_struct *vma;
1491 struct mm_struct *mm = current->mm;
1492 unsigned long addr = addr0, start_addr;
1493
1494 /* requested length too big for entire address space */
1495 if (len > TASK_SIZE)
1496 return -ENOMEM;
1497
1498 if (flags & MAP_FIXED)
1499 return addr;
1500
1501 /* requesting a specific address */
1502 if (addr) {
1503 addr = PAGE_ALIGN(addr);
1504 vma = find_vma(mm, addr);
1505 if (TASK_SIZE - len >= addr &&
1506 (!vma || addr + len <= vma->vm_start))
1507 return addr;
1508 }
1509
1510 /* check if free_area_cache is useful for us */
1511 if (len <= mm->cached_hole_size) {
1512 mm->cached_hole_size = 0;
1513 mm->free_area_cache = mm->mmap_base;
1514 }
1515
1516 try_again:
1517 /* either no address requested or can't fit in requested address hole */
1518 start_addr = addr = mm->free_area_cache;
1519
1520 if (addr < len)
1521 goto fail;
1522
1523 addr -= len;
1524 do {
1525 /*
1526 * Lookup failure means no vma is above this address,
1527 * else if new region fits below vma->vm_start,
1528 * return with success:
1529 */
1530 vma = find_vma(mm, addr);
1531 if (!vma || addr+len <= vma->vm_start)
1532 /* remember the address as a hint for next time */
1533 return (mm->free_area_cache = addr);
1534
1535 /* remember the largest hole we saw so far */
1536 if (addr + mm->cached_hole_size < vma->vm_start)
1537 mm->cached_hole_size = vma->vm_start - addr;
1538
1539 /* try just below the current vma->vm_start */
1540 addr = vma->vm_start-len;
1541 } while (len < vma->vm_start);
1542
1543 fail:
1544 /*
1545 * if hint left us with no space for the requested
1546 * mapping then try again:
1547 *
1548 * Note: this is different with the case of bottomup
1549 * which does the fully line-search, but we use find_vma
1550 * here that causes some holes skipped.
1551 */
1552 if (start_addr != mm->mmap_base) {
1553 mm->free_area_cache = mm->mmap_base;
1554 mm->cached_hole_size = 0;
1555 goto try_again;
1556 }
1557
1558 /*
1559 * A failed mmap() very likely causes application failure,
1560 * so fall back to the bottom-up function here. This scenario
1561 * can happen with large stack limits and large mmap()
1562 * allocations.
1563 */
1564 mm->cached_hole_size = ~0UL;
1565 mm->free_area_cache = TASK_UNMAPPED_BASE;
1566 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1567 /*
1568 * Restore the topdown base:
1569 */
1570 mm->free_area_cache = mm->mmap_base;
1571 mm->cached_hole_size = ~0UL;
1572
1573 return addr;
1574 }
1575 #endif
1576
1577 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1578 {
1579 /*
1580 * Is this a new hole at the highest possible address?
1581 */
1582 if (addr > mm->free_area_cache)
1583 mm->free_area_cache = addr;
1584
1585 /* dont allow allocations above current base */
1586 if (mm->free_area_cache > mm->mmap_base)
1587 mm->free_area_cache = mm->mmap_base;
1588 }
1589
1590 unsigned long
1591 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1592 unsigned long pgoff, unsigned long flags)
1593 {
1594 unsigned long (*get_area)(struct file *, unsigned long,
1595 unsigned long, unsigned long, unsigned long);
1596
1597 unsigned long error = arch_mmap_check(addr, len, flags);
1598 if (error)
1599 return error;
1600
1601 /* Careful about overflows.. */
1602 if (len > TASK_SIZE)
1603 return -ENOMEM;
1604
1605 get_area = current->mm->get_unmapped_area;
1606 if (file && file->f_op && file->f_op->get_unmapped_area)
1607 get_area = file->f_op->get_unmapped_area;
1608 addr = get_area(file, addr, len, pgoff, flags);
1609 if (IS_ERR_VALUE(addr))
1610 return addr;
1611
1612 if (addr > TASK_SIZE - len)
1613 return -ENOMEM;
1614 if (addr & ~PAGE_MASK)
1615 return -EINVAL;
1616
1617 addr = arch_rebalance_pgtables(addr, len);
1618 error = security_mmap_addr(addr);
1619 return error ? error : addr;
1620 }
1621
1622 EXPORT_SYMBOL(get_unmapped_area);
1623
1624 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1625 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1626 {
1627 struct vm_area_struct *vma = NULL;
1628
1629 if (WARN_ON_ONCE(!mm)) /* Remove this in linux-3.6 */
1630 return NULL;
1631
1632 /* Check the cache first. */
1633 /* (Cache hit rate is typically around 35%.) */
1634 vma = mm->mmap_cache;
1635 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1636 struct rb_node *rb_node;
1637
1638 rb_node = mm->mm_rb.rb_node;
1639 vma = NULL;
1640
1641 while (rb_node) {
1642 struct vm_area_struct *vma_tmp;
1643
1644 vma_tmp = rb_entry(rb_node,
1645 struct vm_area_struct, vm_rb);
1646
1647 if (vma_tmp->vm_end > addr) {
1648 vma = vma_tmp;
1649 if (vma_tmp->vm_start <= addr)
1650 break;
1651 rb_node = rb_node->rb_left;
1652 } else
1653 rb_node = rb_node->rb_right;
1654 }
1655 if (vma)
1656 mm->mmap_cache = vma;
1657 }
1658 return vma;
1659 }
1660
1661 EXPORT_SYMBOL(find_vma);
1662
1663 /*
1664 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1665 */
1666 struct vm_area_struct *
1667 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1668 struct vm_area_struct **pprev)
1669 {
1670 struct vm_area_struct *vma;
1671
1672 vma = find_vma(mm, addr);
1673 if (vma) {
1674 *pprev = vma->vm_prev;
1675 } else {
1676 struct rb_node *rb_node = mm->mm_rb.rb_node;
1677 *pprev = NULL;
1678 while (rb_node) {
1679 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1680 rb_node = rb_node->rb_right;
1681 }
1682 }
1683 return vma;
1684 }
1685
1686 /*
1687 * Verify that the stack growth is acceptable and
1688 * update accounting. This is shared with both the
1689 * grow-up and grow-down cases.
1690 */
1691 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1692 {
1693 struct mm_struct *mm = vma->vm_mm;
1694 struct rlimit *rlim = current->signal->rlim;
1695 unsigned long new_start;
1696
1697 /* address space limit tests */
1698 if (!may_expand_vm(mm, grow))
1699 return -ENOMEM;
1700
1701 /* Stack limit test */
1702 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1703 return -ENOMEM;
1704
1705 /* mlock limit tests */
1706 if (vma->vm_flags & VM_LOCKED) {
1707 unsigned long locked;
1708 unsigned long limit;
1709 locked = mm->locked_vm + grow;
1710 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1711 limit >>= PAGE_SHIFT;
1712 if (locked > limit && !capable(CAP_IPC_LOCK))
1713 return -ENOMEM;
1714 }
1715
1716 /* Check to ensure the stack will not grow into a hugetlb-only region */
1717 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1718 vma->vm_end - size;
1719 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1720 return -EFAULT;
1721
1722 /*
1723 * Overcommit.. This must be the final test, as it will
1724 * update security statistics.
1725 */
1726 if (security_vm_enough_memory_mm(mm, grow))
1727 return -ENOMEM;
1728
1729 /* Ok, everything looks good - let it rip */
1730 if (vma->vm_flags & VM_LOCKED)
1731 mm->locked_vm += grow;
1732 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1733 return 0;
1734 }
1735
1736 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1737 /*
1738 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1739 * vma is the last one with address > vma->vm_end. Have to extend vma.
1740 */
1741 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1742 {
1743 int error;
1744
1745 if (!(vma->vm_flags & VM_GROWSUP))
1746 return -EFAULT;
1747
1748 /*
1749 * We must make sure the anon_vma is allocated
1750 * so that the anon_vma locking is not a noop.
1751 */
1752 if (unlikely(anon_vma_prepare(vma)))
1753 return -ENOMEM;
1754 vma_lock_anon_vma(vma);
1755
1756 /*
1757 * vma->vm_start/vm_end cannot change under us because the caller
1758 * is required to hold the mmap_sem in read mode. We need the
1759 * anon_vma lock to serialize against concurrent expand_stacks.
1760 * Also guard against wrapping around to address 0.
1761 */
1762 if (address < PAGE_ALIGN(address+4))
1763 address = PAGE_ALIGN(address+4);
1764 else {
1765 vma_unlock_anon_vma(vma);
1766 return -ENOMEM;
1767 }
1768 error = 0;
1769
1770 /* Somebody else might have raced and expanded it already */
1771 if (address > vma->vm_end) {
1772 unsigned long size, grow;
1773
1774 size = address - vma->vm_start;
1775 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1776
1777 error = -ENOMEM;
1778 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1779 error = acct_stack_growth(vma, size, grow);
1780 if (!error) {
1781 anon_vma_interval_tree_pre_update_vma(vma);
1782 vma->vm_end = address;
1783 anon_vma_interval_tree_post_update_vma(vma);
1784 perf_event_mmap(vma);
1785 }
1786 }
1787 }
1788 vma_unlock_anon_vma(vma);
1789 khugepaged_enter_vma_merge(vma);
1790 validate_mm(vma->vm_mm);
1791 return error;
1792 }
1793 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1794
1795 /*
1796 * vma is the first one with address < vma->vm_start. Have to extend vma.
1797 */
1798 int expand_downwards(struct vm_area_struct *vma,
1799 unsigned long address)
1800 {
1801 int error;
1802
1803 /*
1804 * We must make sure the anon_vma is allocated
1805 * so that the anon_vma locking is not a noop.
1806 */
1807 if (unlikely(anon_vma_prepare(vma)))
1808 return -ENOMEM;
1809
1810 address &= PAGE_MASK;
1811 error = security_mmap_addr(address);
1812 if (error)
1813 return error;
1814
1815 vma_lock_anon_vma(vma);
1816
1817 /*
1818 * vma->vm_start/vm_end cannot change under us because the caller
1819 * is required to hold the mmap_sem in read mode. We need the
1820 * anon_vma lock to serialize against concurrent expand_stacks.
1821 */
1822
1823 /* Somebody else might have raced and expanded it already */
1824 if (address < vma->vm_start) {
1825 unsigned long size, grow;
1826
1827 size = vma->vm_end - address;
1828 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1829
1830 error = -ENOMEM;
1831 if (grow <= vma->vm_pgoff) {
1832 error = acct_stack_growth(vma, size, grow);
1833 if (!error) {
1834 anon_vma_interval_tree_pre_update_vma(vma);
1835 vma->vm_start = address;
1836 vma->vm_pgoff -= grow;
1837 anon_vma_interval_tree_post_update_vma(vma);
1838 perf_event_mmap(vma);
1839 }
1840 }
1841 }
1842 vma_unlock_anon_vma(vma);
1843 khugepaged_enter_vma_merge(vma);
1844 validate_mm(vma->vm_mm);
1845 return error;
1846 }
1847
1848 #ifdef CONFIG_STACK_GROWSUP
1849 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1850 {
1851 return expand_upwards(vma, address);
1852 }
1853
1854 struct vm_area_struct *
1855 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1856 {
1857 struct vm_area_struct *vma, *prev;
1858
1859 addr &= PAGE_MASK;
1860 vma = find_vma_prev(mm, addr, &prev);
1861 if (vma && (vma->vm_start <= addr))
1862 return vma;
1863 if (!prev || expand_stack(prev, addr))
1864 return NULL;
1865 if (prev->vm_flags & VM_LOCKED) {
1866 mlock_vma_pages_range(prev, addr, prev->vm_end);
1867 }
1868 return prev;
1869 }
1870 #else
1871 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1872 {
1873 return expand_downwards(vma, address);
1874 }
1875
1876 struct vm_area_struct *
1877 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1878 {
1879 struct vm_area_struct * vma;
1880 unsigned long start;
1881
1882 addr &= PAGE_MASK;
1883 vma = find_vma(mm,addr);
1884 if (!vma)
1885 return NULL;
1886 if (vma->vm_start <= addr)
1887 return vma;
1888 if (!(vma->vm_flags & VM_GROWSDOWN))
1889 return NULL;
1890 start = vma->vm_start;
1891 if (expand_stack(vma, addr))
1892 return NULL;
1893 if (vma->vm_flags & VM_LOCKED) {
1894 mlock_vma_pages_range(vma, addr, start);
1895 }
1896 return vma;
1897 }
1898 #endif
1899
1900 /*
1901 * Ok - we have the memory areas we should free on the vma list,
1902 * so release them, and do the vma updates.
1903 *
1904 * Called with the mm semaphore held.
1905 */
1906 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1907 {
1908 unsigned long nr_accounted = 0;
1909
1910 /* Update high watermark before we lower total_vm */
1911 update_hiwater_vm(mm);
1912 do {
1913 long nrpages = vma_pages(vma);
1914
1915 if (vma->vm_flags & VM_ACCOUNT)
1916 nr_accounted += nrpages;
1917 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1918 vma = remove_vma(vma);
1919 } while (vma);
1920 vm_unacct_memory(nr_accounted);
1921 validate_mm(mm);
1922 }
1923
1924 /*
1925 * Get rid of page table information in the indicated region.
1926 *
1927 * Called with the mm semaphore held.
1928 */
1929 static void unmap_region(struct mm_struct *mm,
1930 struct vm_area_struct *vma, struct vm_area_struct *prev,
1931 unsigned long start, unsigned long end)
1932 {
1933 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1934 struct mmu_gather tlb;
1935
1936 lru_add_drain();
1937 tlb_gather_mmu(&tlb, mm, 0);
1938 update_hiwater_rss(mm);
1939 unmap_vmas(&tlb, vma, start, end);
1940 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1941 next ? next->vm_start : 0);
1942 tlb_finish_mmu(&tlb, start, end);
1943 }
1944
1945 /*
1946 * Create a list of vma's touched by the unmap, removing them from the mm's
1947 * vma list as we go..
1948 */
1949 static void
1950 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1951 struct vm_area_struct *prev, unsigned long end)
1952 {
1953 struct vm_area_struct **insertion_point;
1954 struct vm_area_struct *tail_vma = NULL;
1955 unsigned long addr;
1956
1957 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1958 vma->vm_prev = NULL;
1959 do {
1960 rb_erase(&vma->vm_rb, &mm->mm_rb);
1961 mm->map_count--;
1962 tail_vma = vma;
1963 vma = vma->vm_next;
1964 } while (vma && vma->vm_start < end);
1965 *insertion_point = vma;
1966 if (vma)
1967 vma->vm_prev = prev;
1968 tail_vma->vm_next = NULL;
1969 if (mm->unmap_area == arch_unmap_area)
1970 addr = prev ? prev->vm_end : mm->mmap_base;
1971 else
1972 addr = vma ? vma->vm_start : mm->mmap_base;
1973 mm->unmap_area(mm, addr);
1974 mm->mmap_cache = NULL; /* Kill the cache. */
1975 }
1976
1977 /*
1978 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
1979 * munmap path where it doesn't make sense to fail.
1980 */
1981 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1982 unsigned long addr, int new_below)
1983 {
1984 struct mempolicy *pol;
1985 struct vm_area_struct *new;
1986 int err = -ENOMEM;
1987
1988 if (is_vm_hugetlb_page(vma) && (addr &
1989 ~(huge_page_mask(hstate_vma(vma)))))
1990 return -EINVAL;
1991
1992 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1993 if (!new)
1994 goto out_err;
1995
1996 /* most fields are the same, copy all, and then fixup */
1997 *new = *vma;
1998
1999 INIT_LIST_HEAD(&new->anon_vma_chain);
2000
2001 if (new_below)
2002 new->vm_end = addr;
2003 else {
2004 new->vm_start = addr;
2005 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2006 }
2007
2008 pol = mpol_dup(vma_policy(vma));
2009 if (IS_ERR(pol)) {
2010 err = PTR_ERR(pol);
2011 goto out_free_vma;
2012 }
2013 vma_set_policy(new, pol);
2014
2015 if (anon_vma_clone(new, vma))
2016 goto out_free_mpol;
2017
2018 if (new->vm_file)
2019 get_file(new->vm_file);
2020
2021 if (new->vm_ops && new->vm_ops->open)
2022 new->vm_ops->open(new);
2023
2024 if (new_below)
2025 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2026 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2027 else
2028 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2029
2030 /* Success. */
2031 if (!err)
2032 return 0;
2033
2034 /* Clean everything up if vma_adjust failed. */
2035 if (new->vm_ops && new->vm_ops->close)
2036 new->vm_ops->close(new);
2037 if (new->vm_file)
2038 fput(new->vm_file);
2039 unlink_anon_vmas(new);
2040 out_free_mpol:
2041 mpol_put(pol);
2042 out_free_vma:
2043 kmem_cache_free(vm_area_cachep, new);
2044 out_err:
2045 return err;
2046 }
2047
2048 /*
2049 * Split a vma into two pieces at address 'addr', a new vma is allocated
2050 * either for the first part or the tail.
2051 */
2052 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2053 unsigned long addr, int new_below)
2054 {
2055 if (mm->map_count >= sysctl_max_map_count)
2056 return -ENOMEM;
2057
2058 return __split_vma(mm, vma, addr, new_below);
2059 }
2060
2061 /* Munmap is split into 2 main parts -- this part which finds
2062 * what needs doing, and the areas themselves, which do the
2063 * work. This now handles partial unmappings.
2064 * Jeremy Fitzhardinge <jeremy@goop.org>
2065 */
2066 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2067 {
2068 unsigned long end;
2069 struct vm_area_struct *vma, *prev, *last;
2070
2071 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2072 return -EINVAL;
2073
2074 if ((len = PAGE_ALIGN(len)) == 0)
2075 return -EINVAL;
2076
2077 /* Find the first overlapping VMA */
2078 vma = find_vma(mm, start);
2079 if (!vma)
2080 return 0;
2081 prev = vma->vm_prev;
2082 /* we have start < vma->vm_end */
2083
2084 /* if it doesn't overlap, we have nothing.. */
2085 end = start + len;
2086 if (vma->vm_start >= end)
2087 return 0;
2088
2089 /*
2090 * If we need to split any vma, do it now to save pain later.
2091 *
2092 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2093 * unmapped vm_area_struct will remain in use: so lower split_vma
2094 * places tmp vma above, and higher split_vma places tmp vma below.
2095 */
2096 if (start > vma->vm_start) {
2097 int error;
2098
2099 /*
2100 * Make sure that map_count on return from munmap() will
2101 * not exceed its limit; but let map_count go just above
2102 * its limit temporarily, to help free resources as expected.
2103 */
2104 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2105 return -ENOMEM;
2106
2107 error = __split_vma(mm, vma, start, 0);
2108 if (error)
2109 return error;
2110 prev = vma;
2111 }
2112
2113 /* Does it split the last one? */
2114 last = find_vma(mm, end);
2115 if (last && end > last->vm_start) {
2116 int error = __split_vma(mm, last, end, 1);
2117 if (error)
2118 return error;
2119 }
2120 vma = prev? prev->vm_next: mm->mmap;
2121
2122 /*
2123 * unlock any mlock()ed ranges before detaching vmas
2124 */
2125 if (mm->locked_vm) {
2126 struct vm_area_struct *tmp = vma;
2127 while (tmp && tmp->vm_start < end) {
2128 if (tmp->vm_flags & VM_LOCKED) {
2129 mm->locked_vm -= vma_pages(tmp);
2130 munlock_vma_pages_all(tmp);
2131 }
2132 tmp = tmp->vm_next;
2133 }
2134 }
2135
2136 /*
2137 * Remove the vma's, and unmap the actual pages
2138 */
2139 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2140 unmap_region(mm, vma, prev, start, end);
2141
2142 /* Fix up all other VM information */
2143 remove_vma_list(mm, vma);
2144
2145 return 0;
2146 }
2147
2148 int vm_munmap(unsigned long start, size_t len)
2149 {
2150 int ret;
2151 struct mm_struct *mm = current->mm;
2152
2153 down_write(&mm->mmap_sem);
2154 ret = do_munmap(mm, start, len);
2155 up_write(&mm->mmap_sem);
2156 return ret;
2157 }
2158 EXPORT_SYMBOL(vm_munmap);
2159
2160 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2161 {
2162 profile_munmap(addr);
2163 return vm_munmap(addr, len);
2164 }
2165
2166 static inline void verify_mm_writelocked(struct mm_struct *mm)
2167 {
2168 #ifdef CONFIG_DEBUG_VM
2169 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2170 WARN_ON(1);
2171 up_read(&mm->mmap_sem);
2172 }
2173 #endif
2174 }
2175
2176 /*
2177 * this is really a simplified "do_mmap". it only handles
2178 * anonymous maps. eventually we may be able to do some
2179 * brk-specific accounting here.
2180 */
2181 static unsigned long do_brk(unsigned long addr, unsigned long len)
2182 {
2183 struct mm_struct * mm = current->mm;
2184 struct vm_area_struct * vma, * prev;
2185 unsigned long flags;
2186 struct rb_node ** rb_link, * rb_parent;
2187 pgoff_t pgoff = addr >> PAGE_SHIFT;
2188 int error;
2189
2190 len = PAGE_ALIGN(len);
2191 if (!len)
2192 return addr;
2193
2194 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2195
2196 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2197 if (error & ~PAGE_MASK)
2198 return error;
2199
2200 /*
2201 * mlock MCL_FUTURE?
2202 */
2203 if (mm->def_flags & VM_LOCKED) {
2204 unsigned long locked, lock_limit;
2205 locked = len >> PAGE_SHIFT;
2206 locked += mm->locked_vm;
2207 lock_limit = rlimit(RLIMIT_MEMLOCK);
2208 lock_limit >>= PAGE_SHIFT;
2209 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2210 return -EAGAIN;
2211 }
2212
2213 /*
2214 * mm->mmap_sem is required to protect against another thread
2215 * changing the mappings in case we sleep.
2216 */
2217 verify_mm_writelocked(mm);
2218
2219 /*
2220 * Clear old maps. this also does some error checking for us
2221 */
2222 munmap_back:
2223 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2224 if (do_munmap(mm, addr, len))
2225 return -ENOMEM;
2226 goto munmap_back;
2227 }
2228
2229 /* Check against address space limits *after* clearing old maps... */
2230 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2231 return -ENOMEM;
2232
2233 if (mm->map_count > sysctl_max_map_count)
2234 return -ENOMEM;
2235
2236 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2237 return -ENOMEM;
2238
2239 /* Can we just expand an old private anonymous mapping? */
2240 vma = vma_merge(mm, prev, addr, addr + len, flags,
2241 NULL, NULL, pgoff, NULL);
2242 if (vma)
2243 goto out;
2244
2245 /*
2246 * create a vma struct for an anonymous mapping
2247 */
2248 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2249 if (!vma) {
2250 vm_unacct_memory(len >> PAGE_SHIFT);
2251 return -ENOMEM;
2252 }
2253
2254 INIT_LIST_HEAD(&vma->anon_vma_chain);
2255 vma->vm_mm = mm;
2256 vma->vm_start = addr;
2257 vma->vm_end = addr + len;
2258 vma->vm_pgoff = pgoff;
2259 vma->vm_flags = flags;
2260 vma->vm_page_prot = vm_get_page_prot(flags);
2261 vma_link(mm, vma, prev, rb_link, rb_parent);
2262 out:
2263 perf_event_mmap(vma);
2264 mm->total_vm += len >> PAGE_SHIFT;
2265 if (flags & VM_LOCKED) {
2266 if (!mlock_vma_pages_range(vma, addr, addr + len))
2267 mm->locked_vm += (len >> PAGE_SHIFT);
2268 }
2269 return addr;
2270 }
2271
2272 unsigned long vm_brk(unsigned long addr, unsigned long len)
2273 {
2274 struct mm_struct *mm = current->mm;
2275 unsigned long ret;
2276
2277 down_write(&mm->mmap_sem);
2278 ret = do_brk(addr, len);
2279 up_write(&mm->mmap_sem);
2280 return ret;
2281 }
2282 EXPORT_SYMBOL(vm_brk);
2283
2284 /* Release all mmaps. */
2285 void exit_mmap(struct mm_struct *mm)
2286 {
2287 struct mmu_gather tlb;
2288 struct vm_area_struct *vma;
2289 unsigned long nr_accounted = 0;
2290
2291 /* mm's last user has gone, and its about to be pulled down */
2292 mmu_notifier_release(mm);
2293
2294 if (mm->locked_vm) {
2295 vma = mm->mmap;
2296 while (vma) {
2297 if (vma->vm_flags & VM_LOCKED)
2298 munlock_vma_pages_all(vma);
2299 vma = vma->vm_next;
2300 }
2301 }
2302
2303 arch_exit_mmap(mm);
2304
2305 vma = mm->mmap;
2306 if (!vma) /* Can happen if dup_mmap() received an OOM */
2307 return;
2308
2309 lru_add_drain();
2310 flush_cache_mm(mm);
2311 tlb_gather_mmu(&tlb, mm, 1);
2312 /* update_hiwater_rss(mm) here? but nobody should be looking */
2313 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2314 unmap_vmas(&tlb, vma, 0, -1);
2315
2316 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2317 tlb_finish_mmu(&tlb, 0, -1);
2318
2319 /*
2320 * Walk the list again, actually closing and freeing it,
2321 * with preemption enabled, without holding any MM locks.
2322 */
2323 while (vma) {
2324 if (vma->vm_flags & VM_ACCOUNT)
2325 nr_accounted += vma_pages(vma);
2326 vma = remove_vma(vma);
2327 }
2328 vm_unacct_memory(nr_accounted);
2329
2330 WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2331 }
2332
2333 /* Insert vm structure into process list sorted by address
2334 * and into the inode's i_mmap tree. If vm_file is non-NULL
2335 * then i_mmap_mutex is taken here.
2336 */
2337 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2338 {
2339 struct vm_area_struct *prev;
2340 struct rb_node **rb_link, *rb_parent;
2341
2342 /*
2343 * The vm_pgoff of a purely anonymous vma should be irrelevant
2344 * until its first write fault, when page's anon_vma and index
2345 * are set. But now set the vm_pgoff it will almost certainly
2346 * end up with (unless mremap moves it elsewhere before that
2347 * first wfault), so /proc/pid/maps tells a consistent story.
2348 *
2349 * By setting it to reflect the virtual start address of the
2350 * vma, merges and splits can happen in a seamless way, just
2351 * using the existing file pgoff checks and manipulations.
2352 * Similarly in do_mmap_pgoff and in do_brk.
2353 */
2354 if (!vma->vm_file) {
2355 BUG_ON(vma->anon_vma);
2356 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2357 }
2358 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2359 &prev, &rb_link, &rb_parent))
2360 return -ENOMEM;
2361 if ((vma->vm_flags & VM_ACCOUNT) &&
2362 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2363 return -ENOMEM;
2364
2365 vma_link(mm, vma, prev, rb_link, rb_parent);
2366 return 0;
2367 }
2368
2369 /*
2370 * Copy the vma structure to a new location in the same mm,
2371 * prior to moving page table entries, to effect an mremap move.
2372 */
2373 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2374 unsigned long addr, unsigned long len, pgoff_t pgoff,
2375 bool *need_rmap_locks)
2376 {
2377 struct vm_area_struct *vma = *vmap;
2378 unsigned long vma_start = vma->vm_start;
2379 struct mm_struct *mm = vma->vm_mm;
2380 struct vm_area_struct *new_vma, *prev;
2381 struct rb_node **rb_link, *rb_parent;
2382 struct mempolicy *pol;
2383 bool faulted_in_anon_vma = true;
2384
2385 /*
2386 * If anonymous vma has not yet been faulted, update new pgoff
2387 * to match new location, to increase its chance of merging.
2388 */
2389 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2390 pgoff = addr >> PAGE_SHIFT;
2391 faulted_in_anon_vma = false;
2392 }
2393
2394 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2395 return NULL; /* should never get here */
2396 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2397 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2398 if (new_vma) {
2399 /*
2400 * Source vma may have been merged into new_vma
2401 */
2402 if (unlikely(vma_start >= new_vma->vm_start &&
2403 vma_start < new_vma->vm_end)) {
2404 /*
2405 * The only way we can get a vma_merge with
2406 * self during an mremap is if the vma hasn't
2407 * been faulted in yet and we were allowed to
2408 * reset the dst vma->vm_pgoff to the
2409 * destination address of the mremap to allow
2410 * the merge to happen. mremap must change the
2411 * vm_pgoff linearity between src and dst vmas
2412 * (in turn preventing a vma_merge) to be
2413 * safe. It is only safe to keep the vm_pgoff
2414 * linear if there are no pages mapped yet.
2415 */
2416 VM_BUG_ON(faulted_in_anon_vma);
2417 *vmap = vma = new_vma;
2418 }
2419 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2420 } else {
2421 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2422 if (new_vma) {
2423 *new_vma = *vma;
2424 new_vma->vm_start = addr;
2425 new_vma->vm_end = addr + len;
2426 new_vma->vm_pgoff = pgoff;
2427 pol = mpol_dup(vma_policy(vma));
2428 if (IS_ERR(pol))
2429 goto out_free_vma;
2430 vma_set_policy(new_vma, pol);
2431 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2432 if (anon_vma_clone(new_vma, vma))
2433 goto out_free_mempol;
2434 if (new_vma->vm_file)
2435 get_file(new_vma->vm_file);
2436 if (new_vma->vm_ops && new_vma->vm_ops->open)
2437 new_vma->vm_ops->open(new_vma);
2438 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2439 *need_rmap_locks = false;
2440 }
2441 }
2442 return new_vma;
2443
2444 out_free_mempol:
2445 mpol_put(pol);
2446 out_free_vma:
2447 kmem_cache_free(vm_area_cachep, new_vma);
2448 return NULL;
2449 }
2450
2451 /*
2452 * Return true if the calling process may expand its vm space by the passed
2453 * number of pages
2454 */
2455 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2456 {
2457 unsigned long cur = mm->total_vm; /* pages */
2458 unsigned long lim;
2459
2460 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2461
2462 if (cur + npages > lim)
2463 return 0;
2464 return 1;
2465 }
2466
2467
2468 static int special_mapping_fault(struct vm_area_struct *vma,
2469 struct vm_fault *vmf)
2470 {
2471 pgoff_t pgoff;
2472 struct page **pages;
2473
2474 /*
2475 * special mappings have no vm_file, and in that case, the mm
2476 * uses vm_pgoff internally. So we have to subtract it from here.
2477 * We are allowed to do this because we are the mm; do not copy
2478 * this code into drivers!
2479 */
2480 pgoff = vmf->pgoff - vma->vm_pgoff;
2481
2482 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2483 pgoff--;
2484
2485 if (*pages) {
2486 struct page *page = *pages;
2487 get_page(page);
2488 vmf->page = page;
2489 return 0;
2490 }
2491
2492 return VM_FAULT_SIGBUS;
2493 }
2494
2495 /*
2496 * Having a close hook prevents vma merging regardless of flags.
2497 */
2498 static void special_mapping_close(struct vm_area_struct *vma)
2499 {
2500 }
2501
2502 static const struct vm_operations_struct special_mapping_vmops = {
2503 .close = special_mapping_close,
2504 .fault = special_mapping_fault,
2505 };
2506
2507 /*
2508 * Called with mm->mmap_sem held for writing.
2509 * Insert a new vma covering the given region, with the given flags.
2510 * Its pages are supplied by the given array of struct page *.
2511 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2512 * The region past the last page supplied will always produce SIGBUS.
2513 * The array pointer and the pages it points to are assumed to stay alive
2514 * for as long as this mapping might exist.
2515 */
2516 int install_special_mapping(struct mm_struct *mm,
2517 unsigned long addr, unsigned long len,
2518 unsigned long vm_flags, struct page **pages)
2519 {
2520 int ret;
2521 struct vm_area_struct *vma;
2522
2523 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2524 if (unlikely(vma == NULL))
2525 return -ENOMEM;
2526
2527 INIT_LIST_HEAD(&vma->anon_vma_chain);
2528 vma->vm_mm = mm;
2529 vma->vm_start = addr;
2530 vma->vm_end = addr + len;
2531
2532 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2533 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2534
2535 vma->vm_ops = &special_mapping_vmops;
2536 vma->vm_private_data = pages;
2537
2538 ret = insert_vm_struct(mm, vma);
2539 if (ret)
2540 goto out;
2541
2542 mm->total_vm += len >> PAGE_SHIFT;
2543
2544 perf_event_mmap(vma);
2545
2546 return 0;
2547
2548 out:
2549 kmem_cache_free(vm_area_cachep, vma);
2550 return ret;
2551 }
2552
2553 static DEFINE_MUTEX(mm_all_locks_mutex);
2554
2555 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2556 {
2557 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2558 /*
2559 * The LSB of head.next can't change from under us
2560 * because we hold the mm_all_locks_mutex.
2561 */
2562 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2563 /*
2564 * We can safely modify head.next after taking the
2565 * anon_vma->root->mutex. If some other vma in this mm shares
2566 * the same anon_vma we won't take it again.
2567 *
2568 * No need of atomic instructions here, head.next
2569 * can't change from under us thanks to the
2570 * anon_vma->root->mutex.
2571 */
2572 if (__test_and_set_bit(0, (unsigned long *)
2573 &anon_vma->root->rb_root.rb_node))
2574 BUG();
2575 }
2576 }
2577
2578 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2579 {
2580 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2581 /*
2582 * AS_MM_ALL_LOCKS can't change from under us because
2583 * we hold the mm_all_locks_mutex.
2584 *
2585 * Operations on ->flags have to be atomic because
2586 * even if AS_MM_ALL_LOCKS is stable thanks to the
2587 * mm_all_locks_mutex, there may be other cpus
2588 * changing other bitflags in parallel to us.
2589 */
2590 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2591 BUG();
2592 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2593 }
2594 }
2595
2596 /*
2597 * This operation locks against the VM for all pte/vma/mm related
2598 * operations that could ever happen on a certain mm. This includes
2599 * vmtruncate, try_to_unmap, and all page faults.
2600 *
2601 * The caller must take the mmap_sem in write mode before calling
2602 * mm_take_all_locks(). The caller isn't allowed to release the
2603 * mmap_sem until mm_drop_all_locks() returns.
2604 *
2605 * mmap_sem in write mode is required in order to block all operations
2606 * that could modify pagetables and free pages without need of
2607 * altering the vma layout (for example populate_range() with
2608 * nonlinear vmas). It's also needed in write mode to avoid new
2609 * anon_vmas to be associated with existing vmas.
2610 *
2611 * A single task can't take more than one mm_take_all_locks() in a row
2612 * or it would deadlock.
2613 *
2614 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
2615 * mapping->flags avoid to take the same lock twice, if more than one
2616 * vma in this mm is backed by the same anon_vma or address_space.
2617 *
2618 * We can take all the locks in random order because the VM code
2619 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2620 * takes more than one of them in a row. Secondly we're protected
2621 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2622 *
2623 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2624 * that may have to take thousand of locks.
2625 *
2626 * mm_take_all_locks() can fail if it's interrupted by signals.
2627 */
2628 int mm_take_all_locks(struct mm_struct *mm)
2629 {
2630 struct vm_area_struct *vma;
2631 struct anon_vma_chain *avc;
2632
2633 BUG_ON(down_read_trylock(&mm->mmap_sem));
2634
2635 mutex_lock(&mm_all_locks_mutex);
2636
2637 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2638 if (signal_pending(current))
2639 goto out_unlock;
2640 if (vma->vm_file && vma->vm_file->f_mapping)
2641 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2642 }
2643
2644 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2645 if (signal_pending(current))
2646 goto out_unlock;
2647 if (vma->anon_vma)
2648 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2649 vm_lock_anon_vma(mm, avc->anon_vma);
2650 }
2651
2652 return 0;
2653
2654 out_unlock:
2655 mm_drop_all_locks(mm);
2656 return -EINTR;
2657 }
2658
2659 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2660 {
2661 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2662 /*
2663 * The LSB of head.next can't change to 0 from under
2664 * us because we hold the mm_all_locks_mutex.
2665 *
2666 * We must however clear the bitflag before unlocking
2667 * the vma so the users using the anon_vma->rb_root will
2668 * never see our bitflag.
2669 *
2670 * No need of atomic instructions here, head.next
2671 * can't change from under us until we release the
2672 * anon_vma->root->mutex.
2673 */
2674 if (!__test_and_clear_bit(0, (unsigned long *)
2675 &anon_vma->root->rb_root.rb_node))
2676 BUG();
2677 anon_vma_unlock(anon_vma);
2678 }
2679 }
2680
2681 static void vm_unlock_mapping(struct address_space *mapping)
2682 {
2683 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2684 /*
2685 * AS_MM_ALL_LOCKS can't change to 0 from under us
2686 * because we hold the mm_all_locks_mutex.
2687 */
2688 mutex_unlock(&mapping->i_mmap_mutex);
2689 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2690 &mapping->flags))
2691 BUG();
2692 }
2693 }
2694
2695 /*
2696 * The mmap_sem cannot be released by the caller until
2697 * mm_drop_all_locks() returns.
2698 */
2699 void mm_drop_all_locks(struct mm_struct *mm)
2700 {
2701 struct vm_area_struct *vma;
2702 struct anon_vma_chain *avc;
2703
2704 BUG_ON(down_read_trylock(&mm->mmap_sem));
2705 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2706
2707 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2708 if (vma->anon_vma)
2709 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2710 vm_unlock_anon_vma(avc->anon_vma);
2711 if (vma->vm_file && vma->vm_file->f_mapping)
2712 vm_unlock_mapping(vma->vm_file->f_mapping);
2713 }
2714
2715 mutex_unlock(&mm_all_locks_mutex);
2716 }
2717
2718 /*
2719 * initialise the VMA slab
2720 */
2721 void __init mmap_init(void)
2722 {
2723 int ret;
2724
2725 ret = percpu_counter_init(&vm_committed_as, 0);
2726 VM_BUG_ON(ret);
2727 }
This page took 0.132508 seconds and 5 git commands to generate.