mm: munlock: remove unnecessary call to lru_add_drain()
[deliverable/linux.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/backing-dev.h>
12 #include <linux/mm.h>
13 #include <linux/shm.h>
14 #include <linux/mman.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <linux/syscalls.h>
18 #include <linux/capability.h>
19 #include <linux/init.h>
20 #include <linux/file.h>
21 #include <linux/fs.h>
22 #include <linux/personality.h>
23 #include <linux/security.h>
24 #include <linux/hugetlb.h>
25 #include <linux/profile.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/mempolicy.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/perf_event.h>
32 #include <linux/audit.h>
33 #include <linux/khugepaged.h>
34 #include <linux/uprobes.h>
35 #include <linux/rbtree_augmented.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/notifier.h>
38 #include <linux/memory.h>
39
40 #include <asm/uaccess.h>
41 #include <asm/cacheflush.h>
42 #include <asm/tlb.h>
43 #include <asm/mmu_context.h>
44
45 #include "internal.h"
46
47 #ifndef arch_mmap_check
48 #define arch_mmap_check(addr, len, flags) (0)
49 #endif
50
51 #ifndef arch_rebalance_pgtables
52 #define arch_rebalance_pgtables(addr, len) (addr)
53 #endif
54
55 static void unmap_region(struct mm_struct *mm,
56 struct vm_area_struct *vma, struct vm_area_struct *prev,
57 unsigned long start, unsigned long end);
58
59 /* description of effects of mapping type and prot in current implementation.
60 * this is due to the limited x86 page protection hardware. The expected
61 * behavior is in parens:
62 *
63 * map_type prot
64 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
65 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
66 * w: (no) no w: (no) no w: (yes) yes w: (no) no
67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
68 *
69 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
70 * w: (no) no w: (no) no w: (copy) copy w: (no) no
71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
72 *
73 */
74 pgprot_t protection_map[16] = {
75 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77 };
78
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
80 {
81 return __pgprot(pgprot_val(protection_map[vm_flags &
82 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83 pgprot_val(arch_vm_get_page_prot(vm_flags)));
84 }
85 EXPORT_SYMBOL(vm_get_page_prot);
86
87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
90 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
91 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
92 /*
93 * Make sure vm_committed_as in one cacheline and not cacheline shared with
94 * other variables. It can be updated by several CPUs frequently.
95 */
96 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
97
98 /*
99 * The global memory commitment made in the system can be a metric
100 * that can be used to drive ballooning decisions when Linux is hosted
101 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
102 * balancing memory across competing virtual machines that are hosted.
103 * Several metrics drive this policy engine including the guest reported
104 * memory commitment.
105 */
106 unsigned long vm_memory_committed(void)
107 {
108 return percpu_counter_read_positive(&vm_committed_as);
109 }
110 EXPORT_SYMBOL_GPL(vm_memory_committed);
111
112 /*
113 * Check that a process has enough memory to allocate a new virtual
114 * mapping. 0 means there is enough memory for the allocation to
115 * succeed and -ENOMEM implies there is not.
116 *
117 * We currently support three overcommit policies, which are set via the
118 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
119 *
120 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
121 * Additional code 2002 Jul 20 by Robert Love.
122 *
123 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
124 *
125 * Note this is a helper function intended to be used by LSMs which
126 * wish to use this logic.
127 */
128 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
129 {
130 unsigned long free, allowed, reserve;
131
132 vm_acct_memory(pages);
133
134 /*
135 * Sometimes we want to use more memory than we have
136 */
137 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
138 return 0;
139
140 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
141 free = global_page_state(NR_FREE_PAGES);
142 free += global_page_state(NR_FILE_PAGES);
143
144 /*
145 * shmem pages shouldn't be counted as free in this
146 * case, they can't be purged, only swapped out, and
147 * that won't affect the overall amount of available
148 * memory in the system.
149 */
150 free -= global_page_state(NR_SHMEM);
151
152 free += get_nr_swap_pages();
153
154 /*
155 * Any slabs which are created with the
156 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
157 * which are reclaimable, under pressure. The dentry
158 * cache and most inode caches should fall into this
159 */
160 free += global_page_state(NR_SLAB_RECLAIMABLE);
161
162 /*
163 * Leave reserved pages. The pages are not for anonymous pages.
164 */
165 if (free <= totalreserve_pages)
166 goto error;
167 else
168 free -= totalreserve_pages;
169
170 /*
171 * Reserve some for root
172 */
173 if (!cap_sys_admin)
174 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
175
176 if (free > pages)
177 return 0;
178
179 goto error;
180 }
181
182 allowed = (totalram_pages - hugetlb_total_pages())
183 * sysctl_overcommit_ratio / 100;
184 /*
185 * Reserve some for root
186 */
187 if (!cap_sys_admin)
188 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
189 allowed += total_swap_pages;
190
191 /*
192 * Don't let a single process grow so big a user can't recover
193 */
194 if (mm) {
195 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
196 allowed -= min(mm->total_vm / 32, reserve);
197 }
198
199 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
200 return 0;
201 error:
202 vm_unacct_memory(pages);
203
204 return -ENOMEM;
205 }
206
207 /*
208 * Requires inode->i_mapping->i_mmap_mutex
209 */
210 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
211 struct file *file, struct address_space *mapping)
212 {
213 if (vma->vm_flags & VM_DENYWRITE)
214 atomic_inc(&file_inode(file)->i_writecount);
215 if (vma->vm_flags & VM_SHARED)
216 mapping->i_mmap_writable--;
217
218 flush_dcache_mmap_lock(mapping);
219 if (unlikely(vma->vm_flags & VM_NONLINEAR))
220 list_del_init(&vma->shared.nonlinear);
221 else
222 vma_interval_tree_remove(vma, &mapping->i_mmap);
223 flush_dcache_mmap_unlock(mapping);
224 }
225
226 /*
227 * Unlink a file-based vm structure from its interval tree, to hide
228 * vma from rmap and vmtruncate before freeing its page tables.
229 */
230 void unlink_file_vma(struct vm_area_struct *vma)
231 {
232 struct file *file = vma->vm_file;
233
234 if (file) {
235 struct address_space *mapping = file->f_mapping;
236 mutex_lock(&mapping->i_mmap_mutex);
237 __remove_shared_vm_struct(vma, file, mapping);
238 mutex_unlock(&mapping->i_mmap_mutex);
239 }
240 }
241
242 /*
243 * Close a vm structure and free it, returning the next.
244 */
245 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
246 {
247 struct vm_area_struct *next = vma->vm_next;
248
249 might_sleep();
250 if (vma->vm_ops && vma->vm_ops->close)
251 vma->vm_ops->close(vma);
252 if (vma->vm_file)
253 fput(vma->vm_file);
254 mpol_put(vma_policy(vma));
255 kmem_cache_free(vm_area_cachep, vma);
256 return next;
257 }
258
259 static unsigned long do_brk(unsigned long addr, unsigned long len);
260
261 SYSCALL_DEFINE1(brk, unsigned long, brk)
262 {
263 unsigned long rlim, retval;
264 unsigned long newbrk, oldbrk;
265 struct mm_struct *mm = current->mm;
266 unsigned long min_brk;
267 bool populate;
268
269 down_write(&mm->mmap_sem);
270
271 #ifdef CONFIG_COMPAT_BRK
272 /*
273 * CONFIG_COMPAT_BRK can still be overridden by setting
274 * randomize_va_space to 2, which will still cause mm->start_brk
275 * to be arbitrarily shifted
276 */
277 if (current->brk_randomized)
278 min_brk = mm->start_brk;
279 else
280 min_brk = mm->end_data;
281 #else
282 min_brk = mm->start_brk;
283 #endif
284 if (brk < min_brk)
285 goto out;
286
287 /*
288 * Check against rlimit here. If this check is done later after the test
289 * of oldbrk with newbrk then it can escape the test and let the data
290 * segment grow beyond its set limit the in case where the limit is
291 * not page aligned -Ram Gupta
292 */
293 rlim = rlimit(RLIMIT_DATA);
294 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
295 (mm->end_data - mm->start_data) > rlim)
296 goto out;
297
298 newbrk = PAGE_ALIGN(brk);
299 oldbrk = PAGE_ALIGN(mm->brk);
300 if (oldbrk == newbrk)
301 goto set_brk;
302
303 /* Always allow shrinking brk. */
304 if (brk <= mm->brk) {
305 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
306 goto set_brk;
307 goto out;
308 }
309
310 /* Check against existing mmap mappings. */
311 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
312 goto out;
313
314 /* Ok, looks good - let it rip. */
315 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
316 goto out;
317
318 set_brk:
319 mm->brk = brk;
320 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
321 up_write(&mm->mmap_sem);
322 if (populate)
323 mm_populate(oldbrk, newbrk - oldbrk);
324 return brk;
325
326 out:
327 retval = mm->brk;
328 up_write(&mm->mmap_sem);
329 return retval;
330 }
331
332 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
333 {
334 unsigned long max, subtree_gap;
335 max = vma->vm_start;
336 if (vma->vm_prev)
337 max -= vma->vm_prev->vm_end;
338 if (vma->vm_rb.rb_left) {
339 subtree_gap = rb_entry(vma->vm_rb.rb_left,
340 struct vm_area_struct, vm_rb)->rb_subtree_gap;
341 if (subtree_gap > max)
342 max = subtree_gap;
343 }
344 if (vma->vm_rb.rb_right) {
345 subtree_gap = rb_entry(vma->vm_rb.rb_right,
346 struct vm_area_struct, vm_rb)->rb_subtree_gap;
347 if (subtree_gap > max)
348 max = subtree_gap;
349 }
350 return max;
351 }
352
353 #ifdef CONFIG_DEBUG_VM_RB
354 static int browse_rb(struct rb_root *root)
355 {
356 int i = 0, j, bug = 0;
357 struct rb_node *nd, *pn = NULL;
358 unsigned long prev = 0, pend = 0;
359
360 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
361 struct vm_area_struct *vma;
362 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
363 if (vma->vm_start < prev) {
364 printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
365 bug = 1;
366 }
367 if (vma->vm_start < pend) {
368 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
369 bug = 1;
370 }
371 if (vma->vm_start > vma->vm_end) {
372 printk("vm_end %lx < vm_start %lx\n",
373 vma->vm_end, vma->vm_start);
374 bug = 1;
375 }
376 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
377 printk("free gap %lx, correct %lx\n",
378 vma->rb_subtree_gap,
379 vma_compute_subtree_gap(vma));
380 bug = 1;
381 }
382 i++;
383 pn = nd;
384 prev = vma->vm_start;
385 pend = vma->vm_end;
386 }
387 j = 0;
388 for (nd = pn; nd; nd = rb_prev(nd))
389 j++;
390 if (i != j) {
391 printk("backwards %d, forwards %d\n", j, i);
392 bug = 1;
393 }
394 return bug ? -1 : i;
395 }
396
397 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
398 {
399 struct rb_node *nd;
400
401 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
402 struct vm_area_struct *vma;
403 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
404 BUG_ON(vma != ignore &&
405 vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
406 }
407 }
408
409 void validate_mm(struct mm_struct *mm)
410 {
411 int bug = 0;
412 int i = 0;
413 unsigned long highest_address = 0;
414 struct vm_area_struct *vma = mm->mmap;
415 while (vma) {
416 struct anon_vma_chain *avc;
417 vma_lock_anon_vma(vma);
418 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
419 anon_vma_interval_tree_verify(avc);
420 vma_unlock_anon_vma(vma);
421 highest_address = vma->vm_end;
422 vma = vma->vm_next;
423 i++;
424 }
425 if (i != mm->map_count) {
426 printk("map_count %d vm_next %d\n", mm->map_count, i);
427 bug = 1;
428 }
429 if (highest_address != mm->highest_vm_end) {
430 printk("mm->highest_vm_end %lx, found %lx\n",
431 mm->highest_vm_end, highest_address);
432 bug = 1;
433 }
434 i = browse_rb(&mm->mm_rb);
435 if (i != mm->map_count) {
436 printk("map_count %d rb %d\n", mm->map_count, i);
437 bug = 1;
438 }
439 BUG_ON(bug);
440 }
441 #else
442 #define validate_mm_rb(root, ignore) do { } while (0)
443 #define validate_mm(mm) do { } while (0)
444 #endif
445
446 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
447 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
448
449 /*
450 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
451 * vma->vm_prev->vm_end values changed, without modifying the vma's position
452 * in the rbtree.
453 */
454 static void vma_gap_update(struct vm_area_struct *vma)
455 {
456 /*
457 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
458 * function that does exacltly what we want.
459 */
460 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
461 }
462
463 static inline void vma_rb_insert(struct vm_area_struct *vma,
464 struct rb_root *root)
465 {
466 /* All rb_subtree_gap values must be consistent prior to insertion */
467 validate_mm_rb(root, NULL);
468
469 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
470 }
471
472 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
473 {
474 /*
475 * All rb_subtree_gap values must be consistent prior to erase,
476 * with the possible exception of the vma being erased.
477 */
478 validate_mm_rb(root, vma);
479
480 /*
481 * Note rb_erase_augmented is a fairly large inline function,
482 * so make sure we instantiate it only once with our desired
483 * augmented rbtree callbacks.
484 */
485 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
486 }
487
488 /*
489 * vma has some anon_vma assigned, and is already inserted on that
490 * anon_vma's interval trees.
491 *
492 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
493 * vma must be removed from the anon_vma's interval trees using
494 * anon_vma_interval_tree_pre_update_vma().
495 *
496 * After the update, the vma will be reinserted using
497 * anon_vma_interval_tree_post_update_vma().
498 *
499 * The entire update must be protected by exclusive mmap_sem and by
500 * the root anon_vma's mutex.
501 */
502 static inline void
503 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
504 {
505 struct anon_vma_chain *avc;
506
507 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
508 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
509 }
510
511 static inline void
512 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
513 {
514 struct anon_vma_chain *avc;
515
516 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
517 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
518 }
519
520 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
521 unsigned long end, struct vm_area_struct **pprev,
522 struct rb_node ***rb_link, struct rb_node **rb_parent)
523 {
524 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
525
526 __rb_link = &mm->mm_rb.rb_node;
527 rb_prev = __rb_parent = NULL;
528
529 while (*__rb_link) {
530 struct vm_area_struct *vma_tmp;
531
532 __rb_parent = *__rb_link;
533 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
534
535 if (vma_tmp->vm_end > addr) {
536 /* Fail if an existing vma overlaps the area */
537 if (vma_tmp->vm_start < end)
538 return -ENOMEM;
539 __rb_link = &__rb_parent->rb_left;
540 } else {
541 rb_prev = __rb_parent;
542 __rb_link = &__rb_parent->rb_right;
543 }
544 }
545
546 *pprev = NULL;
547 if (rb_prev)
548 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
549 *rb_link = __rb_link;
550 *rb_parent = __rb_parent;
551 return 0;
552 }
553
554 static unsigned long count_vma_pages_range(struct mm_struct *mm,
555 unsigned long addr, unsigned long end)
556 {
557 unsigned long nr_pages = 0;
558 struct vm_area_struct *vma;
559
560 /* Find first overlaping mapping */
561 vma = find_vma_intersection(mm, addr, end);
562 if (!vma)
563 return 0;
564
565 nr_pages = (min(end, vma->vm_end) -
566 max(addr, vma->vm_start)) >> PAGE_SHIFT;
567
568 /* Iterate over the rest of the overlaps */
569 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
570 unsigned long overlap_len;
571
572 if (vma->vm_start > end)
573 break;
574
575 overlap_len = min(end, vma->vm_end) - vma->vm_start;
576 nr_pages += overlap_len >> PAGE_SHIFT;
577 }
578
579 return nr_pages;
580 }
581
582 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
583 struct rb_node **rb_link, struct rb_node *rb_parent)
584 {
585 /* Update tracking information for the gap following the new vma. */
586 if (vma->vm_next)
587 vma_gap_update(vma->vm_next);
588 else
589 mm->highest_vm_end = vma->vm_end;
590
591 /*
592 * vma->vm_prev wasn't known when we followed the rbtree to find the
593 * correct insertion point for that vma. As a result, we could not
594 * update the vma vm_rb parents rb_subtree_gap values on the way down.
595 * So, we first insert the vma with a zero rb_subtree_gap value
596 * (to be consistent with what we did on the way down), and then
597 * immediately update the gap to the correct value. Finally we
598 * rebalance the rbtree after all augmented values have been set.
599 */
600 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
601 vma->rb_subtree_gap = 0;
602 vma_gap_update(vma);
603 vma_rb_insert(vma, &mm->mm_rb);
604 }
605
606 static void __vma_link_file(struct vm_area_struct *vma)
607 {
608 struct file *file;
609
610 file = vma->vm_file;
611 if (file) {
612 struct address_space *mapping = file->f_mapping;
613
614 if (vma->vm_flags & VM_DENYWRITE)
615 atomic_dec(&file_inode(file)->i_writecount);
616 if (vma->vm_flags & VM_SHARED)
617 mapping->i_mmap_writable++;
618
619 flush_dcache_mmap_lock(mapping);
620 if (unlikely(vma->vm_flags & VM_NONLINEAR))
621 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
622 else
623 vma_interval_tree_insert(vma, &mapping->i_mmap);
624 flush_dcache_mmap_unlock(mapping);
625 }
626 }
627
628 static void
629 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
630 struct vm_area_struct *prev, struct rb_node **rb_link,
631 struct rb_node *rb_parent)
632 {
633 __vma_link_list(mm, vma, prev, rb_parent);
634 __vma_link_rb(mm, vma, rb_link, rb_parent);
635 }
636
637 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
638 struct vm_area_struct *prev, struct rb_node **rb_link,
639 struct rb_node *rb_parent)
640 {
641 struct address_space *mapping = NULL;
642
643 if (vma->vm_file)
644 mapping = vma->vm_file->f_mapping;
645
646 if (mapping)
647 mutex_lock(&mapping->i_mmap_mutex);
648
649 __vma_link(mm, vma, prev, rb_link, rb_parent);
650 __vma_link_file(vma);
651
652 if (mapping)
653 mutex_unlock(&mapping->i_mmap_mutex);
654
655 mm->map_count++;
656 validate_mm(mm);
657 }
658
659 /*
660 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
661 * mm's list and rbtree. It has already been inserted into the interval tree.
662 */
663 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
664 {
665 struct vm_area_struct *prev;
666 struct rb_node **rb_link, *rb_parent;
667
668 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
669 &prev, &rb_link, &rb_parent))
670 BUG();
671 __vma_link(mm, vma, prev, rb_link, rb_parent);
672 mm->map_count++;
673 }
674
675 static inline void
676 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
677 struct vm_area_struct *prev)
678 {
679 struct vm_area_struct *next;
680
681 vma_rb_erase(vma, &mm->mm_rb);
682 prev->vm_next = next = vma->vm_next;
683 if (next)
684 next->vm_prev = prev;
685 if (mm->mmap_cache == vma)
686 mm->mmap_cache = prev;
687 }
688
689 /*
690 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
691 * is already present in an i_mmap tree without adjusting the tree.
692 * The following helper function should be used when such adjustments
693 * are necessary. The "insert" vma (if any) is to be inserted
694 * before we drop the necessary locks.
695 */
696 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
697 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
698 {
699 struct mm_struct *mm = vma->vm_mm;
700 struct vm_area_struct *next = vma->vm_next;
701 struct vm_area_struct *importer = NULL;
702 struct address_space *mapping = NULL;
703 struct rb_root *root = NULL;
704 struct anon_vma *anon_vma = NULL;
705 struct file *file = vma->vm_file;
706 bool start_changed = false, end_changed = false;
707 long adjust_next = 0;
708 int remove_next = 0;
709
710 if (next && !insert) {
711 struct vm_area_struct *exporter = NULL;
712
713 if (end >= next->vm_end) {
714 /*
715 * vma expands, overlapping all the next, and
716 * perhaps the one after too (mprotect case 6).
717 */
718 again: remove_next = 1 + (end > next->vm_end);
719 end = next->vm_end;
720 exporter = next;
721 importer = vma;
722 } else if (end > next->vm_start) {
723 /*
724 * vma expands, overlapping part of the next:
725 * mprotect case 5 shifting the boundary up.
726 */
727 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
728 exporter = next;
729 importer = vma;
730 } else if (end < vma->vm_end) {
731 /*
732 * vma shrinks, and !insert tells it's not
733 * split_vma inserting another: so it must be
734 * mprotect case 4 shifting the boundary down.
735 */
736 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
737 exporter = vma;
738 importer = next;
739 }
740
741 /*
742 * Easily overlooked: when mprotect shifts the boundary,
743 * make sure the expanding vma has anon_vma set if the
744 * shrinking vma had, to cover any anon pages imported.
745 */
746 if (exporter && exporter->anon_vma && !importer->anon_vma) {
747 if (anon_vma_clone(importer, exporter))
748 return -ENOMEM;
749 importer->anon_vma = exporter->anon_vma;
750 }
751 }
752
753 if (file) {
754 mapping = file->f_mapping;
755 if (!(vma->vm_flags & VM_NONLINEAR)) {
756 root = &mapping->i_mmap;
757 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
758
759 if (adjust_next)
760 uprobe_munmap(next, next->vm_start,
761 next->vm_end);
762 }
763
764 mutex_lock(&mapping->i_mmap_mutex);
765 if (insert) {
766 /*
767 * Put into interval tree now, so instantiated pages
768 * are visible to arm/parisc __flush_dcache_page
769 * throughout; but we cannot insert into address
770 * space until vma start or end is updated.
771 */
772 __vma_link_file(insert);
773 }
774 }
775
776 vma_adjust_trans_huge(vma, start, end, adjust_next);
777
778 anon_vma = vma->anon_vma;
779 if (!anon_vma && adjust_next)
780 anon_vma = next->anon_vma;
781 if (anon_vma) {
782 VM_BUG_ON(adjust_next && next->anon_vma &&
783 anon_vma != next->anon_vma);
784 anon_vma_lock_write(anon_vma);
785 anon_vma_interval_tree_pre_update_vma(vma);
786 if (adjust_next)
787 anon_vma_interval_tree_pre_update_vma(next);
788 }
789
790 if (root) {
791 flush_dcache_mmap_lock(mapping);
792 vma_interval_tree_remove(vma, root);
793 if (adjust_next)
794 vma_interval_tree_remove(next, root);
795 }
796
797 if (start != vma->vm_start) {
798 vma->vm_start = start;
799 start_changed = true;
800 }
801 if (end != vma->vm_end) {
802 vma->vm_end = end;
803 end_changed = true;
804 }
805 vma->vm_pgoff = pgoff;
806 if (adjust_next) {
807 next->vm_start += adjust_next << PAGE_SHIFT;
808 next->vm_pgoff += adjust_next;
809 }
810
811 if (root) {
812 if (adjust_next)
813 vma_interval_tree_insert(next, root);
814 vma_interval_tree_insert(vma, root);
815 flush_dcache_mmap_unlock(mapping);
816 }
817
818 if (remove_next) {
819 /*
820 * vma_merge has merged next into vma, and needs
821 * us to remove next before dropping the locks.
822 */
823 __vma_unlink(mm, next, vma);
824 if (file)
825 __remove_shared_vm_struct(next, file, mapping);
826 } else if (insert) {
827 /*
828 * split_vma has split insert from vma, and needs
829 * us to insert it before dropping the locks
830 * (it may either follow vma or precede it).
831 */
832 __insert_vm_struct(mm, insert);
833 } else {
834 if (start_changed)
835 vma_gap_update(vma);
836 if (end_changed) {
837 if (!next)
838 mm->highest_vm_end = end;
839 else if (!adjust_next)
840 vma_gap_update(next);
841 }
842 }
843
844 if (anon_vma) {
845 anon_vma_interval_tree_post_update_vma(vma);
846 if (adjust_next)
847 anon_vma_interval_tree_post_update_vma(next);
848 anon_vma_unlock_write(anon_vma);
849 }
850 if (mapping)
851 mutex_unlock(&mapping->i_mmap_mutex);
852
853 if (root) {
854 uprobe_mmap(vma);
855
856 if (adjust_next)
857 uprobe_mmap(next);
858 }
859
860 if (remove_next) {
861 if (file) {
862 uprobe_munmap(next, next->vm_start, next->vm_end);
863 fput(file);
864 }
865 if (next->anon_vma)
866 anon_vma_merge(vma, next);
867 mm->map_count--;
868 mpol_put(vma_policy(next));
869 kmem_cache_free(vm_area_cachep, next);
870 /*
871 * In mprotect's case 6 (see comments on vma_merge),
872 * we must remove another next too. It would clutter
873 * up the code too much to do both in one go.
874 */
875 next = vma->vm_next;
876 if (remove_next == 2)
877 goto again;
878 else if (next)
879 vma_gap_update(next);
880 else
881 mm->highest_vm_end = end;
882 }
883 if (insert && file)
884 uprobe_mmap(insert);
885
886 validate_mm(mm);
887
888 return 0;
889 }
890
891 /*
892 * If the vma has a ->close operation then the driver probably needs to release
893 * per-vma resources, so we don't attempt to merge those.
894 */
895 static inline int is_mergeable_vma(struct vm_area_struct *vma,
896 struct file *file, unsigned long vm_flags)
897 {
898 if (vma->vm_flags ^ vm_flags)
899 return 0;
900 if (vma->vm_file != file)
901 return 0;
902 if (vma->vm_ops && vma->vm_ops->close)
903 return 0;
904 return 1;
905 }
906
907 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
908 struct anon_vma *anon_vma2,
909 struct vm_area_struct *vma)
910 {
911 /*
912 * The list_is_singular() test is to avoid merging VMA cloned from
913 * parents. This can improve scalability caused by anon_vma lock.
914 */
915 if ((!anon_vma1 || !anon_vma2) && (!vma ||
916 list_is_singular(&vma->anon_vma_chain)))
917 return 1;
918 return anon_vma1 == anon_vma2;
919 }
920
921 /*
922 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
923 * in front of (at a lower virtual address and file offset than) the vma.
924 *
925 * We cannot merge two vmas if they have differently assigned (non-NULL)
926 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
927 *
928 * We don't check here for the merged mmap wrapping around the end of pagecache
929 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
930 * wrap, nor mmaps which cover the final page at index -1UL.
931 */
932 static int
933 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
934 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
935 {
936 if (is_mergeable_vma(vma, file, vm_flags) &&
937 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
938 if (vma->vm_pgoff == vm_pgoff)
939 return 1;
940 }
941 return 0;
942 }
943
944 /*
945 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
946 * beyond (at a higher virtual address and file offset than) the vma.
947 *
948 * We cannot merge two vmas if they have differently assigned (non-NULL)
949 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
950 */
951 static int
952 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
953 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
954 {
955 if (is_mergeable_vma(vma, file, vm_flags) &&
956 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
957 pgoff_t vm_pglen;
958 vm_pglen = vma_pages(vma);
959 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
960 return 1;
961 }
962 return 0;
963 }
964
965 /*
966 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
967 * whether that can be merged with its predecessor or its successor.
968 * Or both (it neatly fills a hole).
969 *
970 * In most cases - when called for mmap, brk or mremap - [addr,end) is
971 * certain not to be mapped by the time vma_merge is called; but when
972 * called for mprotect, it is certain to be already mapped (either at
973 * an offset within prev, or at the start of next), and the flags of
974 * this area are about to be changed to vm_flags - and the no-change
975 * case has already been eliminated.
976 *
977 * The following mprotect cases have to be considered, where AAAA is
978 * the area passed down from mprotect_fixup, never extending beyond one
979 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
980 *
981 * AAAA AAAA AAAA AAAA
982 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
983 * cannot merge might become might become might become
984 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
985 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
986 * mremap move: PPPPNNNNNNNN 8
987 * AAAA
988 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
989 * might become case 1 below case 2 below case 3 below
990 *
991 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
992 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
993 */
994 struct vm_area_struct *vma_merge(struct mm_struct *mm,
995 struct vm_area_struct *prev, unsigned long addr,
996 unsigned long end, unsigned long vm_flags,
997 struct anon_vma *anon_vma, struct file *file,
998 pgoff_t pgoff, struct mempolicy *policy)
999 {
1000 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1001 struct vm_area_struct *area, *next;
1002 int err;
1003
1004 /*
1005 * We later require that vma->vm_flags == vm_flags,
1006 * so this tests vma->vm_flags & VM_SPECIAL, too.
1007 */
1008 if (vm_flags & VM_SPECIAL)
1009 return NULL;
1010
1011 if (prev)
1012 next = prev->vm_next;
1013 else
1014 next = mm->mmap;
1015 area = next;
1016 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1017 next = next->vm_next;
1018
1019 /*
1020 * Can it merge with the predecessor?
1021 */
1022 if (prev && prev->vm_end == addr &&
1023 mpol_equal(vma_policy(prev), policy) &&
1024 can_vma_merge_after(prev, vm_flags,
1025 anon_vma, file, pgoff)) {
1026 /*
1027 * OK, it can. Can we now merge in the successor as well?
1028 */
1029 if (next && end == next->vm_start &&
1030 mpol_equal(policy, vma_policy(next)) &&
1031 can_vma_merge_before(next, vm_flags,
1032 anon_vma, file, pgoff+pglen) &&
1033 is_mergeable_anon_vma(prev->anon_vma,
1034 next->anon_vma, NULL)) {
1035 /* cases 1, 6 */
1036 err = vma_adjust(prev, prev->vm_start,
1037 next->vm_end, prev->vm_pgoff, NULL);
1038 } else /* cases 2, 5, 7 */
1039 err = vma_adjust(prev, prev->vm_start,
1040 end, prev->vm_pgoff, NULL);
1041 if (err)
1042 return NULL;
1043 khugepaged_enter_vma_merge(prev);
1044 return prev;
1045 }
1046
1047 /*
1048 * Can this new request be merged in front of next?
1049 */
1050 if (next && end == next->vm_start &&
1051 mpol_equal(policy, vma_policy(next)) &&
1052 can_vma_merge_before(next, vm_flags,
1053 anon_vma, file, pgoff+pglen)) {
1054 if (prev && addr < prev->vm_end) /* case 4 */
1055 err = vma_adjust(prev, prev->vm_start,
1056 addr, prev->vm_pgoff, NULL);
1057 else /* cases 3, 8 */
1058 err = vma_adjust(area, addr, next->vm_end,
1059 next->vm_pgoff - pglen, NULL);
1060 if (err)
1061 return NULL;
1062 khugepaged_enter_vma_merge(area);
1063 return area;
1064 }
1065
1066 return NULL;
1067 }
1068
1069 /*
1070 * Rough compatbility check to quickly see if it's even worth looking
1071 * at sharing an anon_vma.
1072 *
1073 * They need to have the same vm_file, and the flags can only differ
1074 * in things that mprotect may change.
1075 *
1076 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1077 * we can merge the two vma's. For example, we refuse to merge a vma if
1078 * there is a vm_ops->close() function, because that indicates that the
1079 * driver is doing some kind of reference counting. But that doesn't
1080 * really matter for the anon_vma sharing case.
1081 */
1082 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1083 {
1084 return a->vm_end == b->vm_start &&
1085 mpol_equal(vma_policy(a), vma_policy(b)) &&
1086 a->vm_file == b->vm_file &&
1087 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
1088 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1089 }
1090
1091 /*
1092 * Do some basic sanity checking to see if we can re-use the anon_vma
1093 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1094 * the same as 'old', the other will be the new one that is trying
1095 * to share the anon_vma.
1096 *
1097 * NOTE! This runs with mm_sem held for reading, so it is possible that
1098 * the anon_vma of 'old' is concurrently in the process of being set up
1099 * by another page fault trying to merge _that_. But that's ok: if it
1100 * is being set up, that automatically means that it will be a singleton
1101 * acceptable for merging, so we can do all of this optimistically. But
1102 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1103 *
1104 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1105 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1106 * is to return an anon_vma that is "complex" due to having gone through
1107 * a fork).
1108 *
1109 * We also make sure that the two vma's are compatible (adjacent,
1110 * and with the same memory policies). That's all stable, even with just
1111 * a read lock on the mm_sem.
1112 */
1113 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1114 {
1115 if (anon_vma_compatible(a, b)) {
1116 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1117
1118 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1119 return anon_vma;
1120 }
1121 return NULL;
1122 }
1123
1124 /*
1125 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1126 * neighbouring vmas for a suitable anon_vma, before it goes off
1127 * to allocate a new anon_vma. It checks because a repetitive
1128 * sequence of mprotects and faults may otherwise lead to distinct
1129 * anon_vmas being allocated, preventing vma merge in subsequent
1130 * mprotect.
1131 */
1132 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1133 {
1134 struct anon_vma *anon_vma;
1135 struct vm_area_struct *near;
1136
1137 near = vma->vm_next;
1138 if (!near)
1139 goto try_prev;
1140
1141 anon_vma = reusable_anon_vma(near, vma, near);
1142 if (anon_vma)
1143 return anon_vma;
1144 try_prev:
1145 near = vma->vm_prev;
1146 if (!near)
1147 goto none;
1148
1149 anon_vma = reusable_anon_vma(near, near, vma);
1150 if (anon_vma)
1151 return anon_vma;
1152 none:
1153 /*
1154 * There's no absolute need to look only at touching neighbours:
1155 * we could search further afield for "compatible" anon_vmas.
1156 * But it would probably just be a waste of time searching,
1157 * or lead to too many vmas hanging off the same anon_vma.
1158 * We're trying to allow mprotect remerging later on,
1159 * not trying to minimize memory used for anon_vmas.
1160 */
1161 return NULL;
1162 }
1163
1164 #ifdef CONFIG_PROC_FS
1165 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1166 struct file *file, long pages)
1167 {
1168 const unsigned long stack_flags
1169 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1170
1171 mm->total_vm += pages;
1172
1173 if (file) {
1174 mm->shared_vm += pages;
1175 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1176 mm->exec_vm += pages;
1177 } else if (flags & stack_flags)
1178 mm->stack_vm += pages;
1179 }
1180 #endif /* CONFIG_PROC_FS */
1181
1182 /*
1183 * If a hint addr is less than mmap_min_addr change hint to be as
1184 * low as possible but still greater than mmap_min_addr
1185 */
1186 static inline unsigned long round_hint_to_min(unsigned long hint)
1187 {
1188 hint &= PAGE_MASK;
1189 if (((void *)hint != NULL) &&
1190 (hint < mmap_min_addr))
1191 return PAGE_ALIGN(mmap_min_addr);
1192 return hint;
1193 }
1194
1195 /*
1196 * The caller must hold down_write(&current->mm->mmap_sem).
1197 */
1198
1199 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1200 unsigned long len, unsigned long prot,
1201 unsigned long flags, unsigned long pgoff,
1202 unsigned long *populate)
1203 {
1204 struct mm_struct * mm = current->mm;
1205 vm_flags_t vm_flags;
1206
1207 *populate = 0;
1208
1209 /*
1210 * Does the application expect PROT_READ to imply PROT_EXEC?
1211 *
1212 * (the exception is when the underlying filesystem is noexec
1213 * mounted, in which case we dont add PROT_EXEC.)
1214 */
1215 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1216 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1217 prot |= PROT_EXEC;
1218
1219 if (!len)
1220 return -EINVAL;
1221
1222 if (!(flags & MAP_FIXED))
1223 addr = round_hint_to_min(addr);
1224
1225 /* Careful about overflows.. */
1226 len = PAGE_ALIGN(len);
1227 if (!len)
1228 return -ENOMEM;
1229
1230 /* offset overflow? */
1231 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1232 return -EOVERFLOW;
1233
1234 /* Too many mappings? */
1235 if (mm->map_count > sysctl_max_map_count)
1236 return -ENOMEM;
1237
1238 /* Obtain the address to map to. we verify (or select) it and ensure
1239 * that it represents a valid section of the address space.
1240 */
1241 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1242 if (addr & ~PAGE_MASK)
1243 return addr;
1244
1245 /* Do simple checking here so the lower-level routines won't have
1246 * to. we assume access permissions have been handled by the open
1247 * of the memory object, so we don't do any here.
1248 */
1249 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1250 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1251
1252 if (flags & MAP_LOCKED)
1253 if (!can_do_mlock())
1254 return -EPERM;
1255
1256 /* mlock MCL_FUTURE? */
1257 if (vm_flags & VM_LOCKED) {
1258 unsigned long locked, lock_limit;
1259 locked = len >> PAGE_SHIFT;
1260 locked += mm->locked_vm;
1261 lock_limit = rlimit(RLIMIT_MEMLOCK);
1262 lock_limit >>= PAGE_SHIFT;
1263 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1264 return -EAGAIN;
1265 }
1266
1267 if (file) {
1268 struct inode *inode = file_inode(file);
1269
1270 switch (flags & MAP_TYPE) {
1271 case MAP_SHARED:
1272 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1273 return -EACCES;
1274
1275 /*
1276 * Make sure we don't allow writing to an append-only
1277 * file..
1278 */
1279 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1280 return -EACCES;
1281
1282 /*
1283 * Make sure there are no mandatory locks on the file.
1284 */
1285 if (locks_verify_locked(inode))
1286 return -EAGAIN;
1287
1288 vm_flags |= VM_SHARED | VM_MAYSHARE;
1289 if (!(file->f_mode & FMODE_WRITE))
1290 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1291
1292 /* fall through */
1293 case MAP_PRIVATE:
1294 if (!(file->f_mode & FMODE_READ))
1295 return -EACCES;
1296 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1297 if (vm_flags & VM_EXEC)
1298 return -EPERM;
1299 vm_flags &= ~VM_MAYEXEC;
1300 }
1301
1302 if (!file->f_op || !file->f_op->mmap)
1303 return -ENODEV;
1304 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1305 return -EINVAL;
1306 break;
1307
1308 default:
1309 return -EINVAL;
1310 }
1311 } else {
1312 switch (flags & MAP_TYPE) {
1313 case MAP_SHARED:
1314 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1315 return -EINVAL;
1316 /*
1317 * Ignore pgoff.
1318 */
1319 pgoff = 0;
1320 vm_flags |= VM_SHARED | VM_MAYSHARE;
1321 break;
1322 case MAP_PRIVATE:
1323 /*
1324 * Set pgoff according to addr for anon_vma.
1325 */
1326 pgoff = addr >> PAGE_SHIFT;
1327 break;
1328 default:
1329 return -EINVAL;
1330 }
1331 }
1332
1333 /*
1334 * Set 'VM_NORESERVE' if we should not account for the
1335 * memory use of this mapping.
1336 */
1337 if (flags & MAP_NORESERVE) {
1338 /* We honor MAP_NORESERVE if allowed to overcommit */
1339 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1340 vm_flags |= VM_NORESERVE;
1341
1342 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1343 if (file && is_file_hugepages(file))
1344 vm_flags |= VM_NORESERVE;
1345 }
1346
1347 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1348 if (!IS_ERR_VALUE(addr) &&
1349 ((vm_flags & VM_LOCKED) ||
1350 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1351 *populate = len;
1352 return addr;
1353 }
1354
1355 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1356 unsigned long, prot, unsigned long, flags,
1357 unsigned long, fd, unsigned long, pgoff)
1358 {
1359 struct file *file = NULL;
1360 unsigned long retval = -EBADF;
1361
1362 if (!(flags & MAP_ANONYMOUS)) {
1363 audit_mmap_fd(fd, flags);
1364 file = fget(fd);
1365 if (!file)
1366 goto out;
1367 if (is_file_hugepages(file))
1368 len = ALIGN(len, huge_page_size(hstate_file(file)));
1369 retval = -EINVAL;
1370 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1371 goto out_fput;
1372 } else if (flags & MAP_HUGETLB) {
1373 struct user_struct *user = NULL;
1374 struct hstate *hs;
1375
1376 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1377 if (!hs)
1378 return -EINVAL;
1379
1380 len = ALIGN(len, huge_page_size(hs));
1381 /*
1382 * VM_NORESERVE is used because the reservations will be
1383 * taken when vm_ops->mmap() is called
1384 * A dummy user value is used because we are not locking
1385 * memory so no accounting is necessary
1386 */
1387 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1388 VM_NORESERVE,
1389 &user, HUGETLB_ANONHUGE_INODE,
1390 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1391 if (IS_ERR(file))
1392 return PTR_ERR(file);
1393 }
1394
1395 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1396
1397 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1398 out_fput:
1399 if (file)
1400 fput(file);
1401 out:
1402 return retval;
1403 }
1404
1405 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1406 struct mmap_arg_struct {
1407 unsigned long addr;
1408 unsigned long len;
1409 unsigned long prot;
1410 unsigned long flags;
1411 unsigned long fd;
1412 unsigned long offset;
1413 };
1414
1415 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1416 {
1417 struct mmap_arg_struct a;
1418
1419 if (copy_from_user(&a, arg, sizeof(a)))
1420 return -EFAULT;
1421 if (a.offset & ~PAGE_MASK)
1422 return -EINVAL;
1423
1424 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1425 a.offset >> PAGE_SHIFT);
1426 }
1427 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1428
1429 /*
1430 * Some shared mappigns will want the pages marked read-only
1431 * to track write events. If so, we'll downgrade vm_page_prot
1432 * to the private version (using protection_map[] without the
1433 * VM_SHARED bit).
1434 */
1435 int vma_wants_writenotify(struct vm_area_struct *vma)
1436 {
1437 vm_flags_t vm_flags = vma->vm_flags;
1438
1439 /* If it was private or non-writable, the write bit is already clear */
1440 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1441 return 0;
1442
1443 /* The backer wishes to know when pages are first written to? */
1444 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1445 return 1;
1446
1447 /* The open routine did something to the protections already? */
1448 if (pgprot_val(vma->vm_page_prot) !=
1449 pgprot_val(vm_get_page_prot(vm_flags)))
1450 return 0;
1451
1452 /* Specialty mapping? */
1453 if (vm_flags & VM_PFNMAP)
1454 return 0;
1455
1456 /* Can the mapping track the dirty pages? */
1457 return vma->vm_file && vma->vm_file->f_mapping &&
1458 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1459 }
1460
1461 /*
1462 * We account for memory if it's a private writeable mapping,
1463 * not hugepages and VM_NORESERVE wasn't set.
1464 */
1465 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1466 {
1467 /*
1468 * hugetlb has its own accounting separate from the core VM
1469 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1470 */
1471 if (file && is_file_hugepages(file))
1472 return 0;
1473
1474 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1475 }
1476
1477 unsigned long mmap_region(struct file *file, unsigned long addr,
1478 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1479 {
1480 struct mm_struct *mm = current->mm;
1481 struct vm_area_struct *vma, *prev;
1482 int error;
1483 struct rb_node **rb_link, *rb_parent;
1484 unsigned long charged = 0;
1485
1486 /* Check against address space limit. */
1487 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1488 unsigned long nr_pages;
1489
1490 /*
1491 * MAP_FIXED may remove pages of mappings that intersects with
1492 * requested mapping. Account for the pages it would unmap.
1493 */
1494 if (!(vm_flags & MAP_FIXED))
1495 return -ENOMEM;
1496
1497 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1498
1499 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1500 return -ENOMEM;
1501 }
1502
1503 /* Clear old maps */
1504 error = -ENOMEM;
1505 munmap_back:
1506 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1507 if (do_munmap(mm, addr, len))
1508 return -ENOMEM;
1509 goto munmap_back;
1510 }
1511
1512 /*
1513 * Private writable mapping: check memory availability
1514 */
1515 if (accountable_mapping(file, vm_flags)) {
1516 charged = len >> PAGE_SHIFT;
1517 if (security_vm_enough_memory_mm(mm, charged))
1518 return -ENOMEM;
1519 vm_flags |= VM_ACCOUNT;
1520 }
1521
1522 /*
1523 * Can we just expand an old mapping?
1524 */
1525 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1526 if (vma)
1527 goto out;
1528
1529 /*
1530 * Determine the object being mapped and call the appropriate
1531 * specific mapper. the address has already been validated, but
1532 * not unmapped, but the maps are removed from the list.
1533 */
1534 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1535 if (!vma) {
1536 error = -ENOMEM;
1537 goto unacct_error;
1538 }
1539
1540 vma->vm_mm = mm;
1541 vma->vm_start = addr;
1542 vma->vm_end = addr + len;
1543 vma->vm_flags = vm_flags;
1544 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1545 vma->vm_pgoff = pgoff;
1546 INIT_LIST_HEAD(&vma->anon_vma_chain);
1547
1548 if (file) {
1549 if (vm_flags & VM_DENYWRITE) {
1550 error = deny_write_access(file);
1551 if (error)
1552 goto free_vma;
1553 }
1554 vma->vm_file = get_file(file);
1555 error = file->f_op->mmap(file, vma);
1556 if (error)
1557 goto unmap_and_free_vma;
1558
1559 /* Can addr have changed??
1560 *
1561 * Answer: Yes, several device drivers can do it in their
1562 * f_op->mmap method. -DaveM
1563 * Bug: If addr is changed, prev, rb_link, rb_parent should
1564 * be updated for vma_link()
1565 */
1566 WARN_ON_ONCE(addr != vma->vm_start);
1567
1568 addr = vma->vm_start;
1569 pgoff = vma->vm_pgoff;
1570 vm_flags = vma->vm_flags;
1571 } else if (vm_flags & VM_SHARED) {
1572 error = shmem_zero_setup(vma);
1573 if (error)
1574 goto free_vma;
1575 }
1576
1577 if (vma_wants_writenotify(vma)) {
1578 pgprot_t pprot = vma->vm_page_prot;
1579
1580 /* Can vma->vm_page_prot have changed??
1581 *
1582 * Answer: Yes, drivers may have changed it in their
1583 * f_op->mmap method.
1584 *
1585 * Ensures that vmas marked as uncached stay that way.
1586 */
1587 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1588 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1589 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1590 }
1591
1592 vma_link(mm, vma, prev, rb_link, rb_parent);
1593 /* Once vma denies write, undo our temporary denial count */
1594 if (vm_flags & VM_DENYWRITE)
1595 allow_write_access(file);
1596 file = vma->vm_file;
1597 out:
1598 perf_event_mmap(vma);
1599
1600 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1601 if (vm_flags & VM_LOCKED) {
1602 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1603 vma == get_gate_vma(current->mm)))
1604 mm->locked_vm += (len >> PAGE_SHIFT);
1605 else
1606 vma->vm_flags &= ~VM_LOCKED;
1607 }
1608
1609 if (file)
1610 uprobe_mmap(vma);
1611
1612 /*
1613 * New (or expanded) vma always get soft dirty status.
1614 * Otherwise user-space soft-dirty page tracker won't
1615 * be able to distinguish situation when vma area unmapped,
1616 * then new mapped in-place (which must be aimed as
1617 * a completely new data area).
1618 */
1619 vma->vm_flags |= VM_SOFTDIRTY;
1620
1621 return addr;
1622
1623 unmap_and_free_vma:
1624 if (vm_flags & VM_DENYWRITE)
1625 allow_write_access(file);
1626 vma->vm_file = NULL;
1627 fput(file);
1628
1629 /* Undo any partial mapping done by a device driver. */
1630 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1631 charged = 0;
1632 free_vma:
1633 kmem_cache_free(vm_area_cachep, vma);
1634 unacct_error:
1635 if (charged)
1636 vm_unacct_memory(charged);
1637 return error;
1638 }
1639
1640 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1641 {
1642 /*
1643 * We implement the search by looking for an rbtree node that
1644 * immediately follows a suitable gap. That is,
1645 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1646 * - gap_end = vma->vm_start >= info->low_limit + length;
1647 * - gap_end - gap_start >= length
1648 */
1649
1650 struct mm_struct *mm = current->mm;
1651 struct vm_area_struct *vma;
1652 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1653
1654 /* Adjust search length to account for worst case alignment overhead */
1655 length = info->length + info->align_mask;
1656 if (length < info->length)
1657 return -ENOMEM;
1658
1659 /* Adjust search limits by the desired length */
1660 if (info->high_limit < length)
1661 return -ENOMEM;
1662 high_limit = info->high_limit - length;
1663
1664 if (info->low_limit > high_limit)
1665 return -ENOMEM;
1666 low_limit = info->low_limit + length;
1667
1668 /* Check if rbtree root looks promising */
1669 if (RB_EMPTY_ROOT(&mm->mm_rb))
1670 goto check_highest;
1671 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1672 if (vma->rb_subtree_gap < length)
1673 goto check_highest;
1674
1675 while (true) {
1676 /* Visit left subtree if it looks promising */
1677 gap_end = vma->vm_start;
1678 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1679 struct vm_area_struct *left =
1680 rb_entry(vma->vm_rb.rb_left,
1681 struct vm_area_struct, vm_rb);
1682 if (left->rb_subtree_gap >= length) {
1683 vma = left;
1684 continue;
1685 }
1686 }
1687
1688 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1689 check_current:
1690 /* Check if current node has a suitable gap */
1691 if (gap_start > high_limit)
1692 return -ENOMEM;
1693 if (gap_end >= low_limit && gap_end - gap_start >= length)
1694 goto found;
1695
1696 /* Visit right subtree if it looks promising */
1697 if (vma->vm_rb.rb_right) {
1698 struct vm_area_struct *right =
1699 rb_entry(vma->vm_rb.rb_right,
1700 struct vm_area_struct, vm_rb);
1701 if (right->rb_subtree_gap >= length) {
1702 vma = right;
1703 continue;
1704 }
1705 }
1706
1707 /* Go back up the rbtree to find next candidate node */
1708 while (true) {
1709 struct rb_node *prev = &vma->vm_rb;
1710 if (!rb_parent(prev))
1711 goto check_highest;
1712 vma = rb_entry(rb_parent(prev),
1713 struct vm_area_struct, vm_rb);
1714 if (prev == vma->vm_rb.rb_left) {
1715 gap_start = vma->vm_prev->vm_end;
1716 gap_end = vma->vm_start;
1717 goto check_current;
1718 }
1719 }
1720 }
1721
1722 check_highest:
1723 /* Check highest gap, which does not precede any rbtree node */
1724 gap_start = mm->highest_vm_end;
1725 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1726 if (gap_start > high_limit)
1727 return -ENOMEM;
1728
1729 found:
1730 /* We found a suitable gap. Clip it with the original low_limit. */
1731 if (gap_start < info->low_limit)
1732 gap_start = info->low_limit;
1733
1734 /* Adjust gap address to the desired alignment */
1735 gap_start += (info->align_offset - gap_start) & info->align_mask;
1736
1737 VM_BUG_ON(gap_start + info->length > info->high_limit);
1738 VM_BUG_ON(gap_start + info->length > gap_end);
1739 return gap_start;
1740 }
1741
1742 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1743 {
1744 struct mm_struct *mm = current->mm;
1745 struct vm_area_struct *vma;
1746 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1747
1748 /* Adjust search length to account for worst case alignment overhead */
1749 length = info->length + info->align_mask;
1750 if (length < info->length)
1751 return -ENOMEM;
1752
1753 /*
1754 * Adjust search limits by the desired length.
1755 * See implementation comment at top of unmapped_area().
1756 */
1757 gap_end = info->high_limit;
1758 if (gap_end < length)
1759 return -ENOMEM;
1760 high_limit = gap_end - length;
1761
1762 if (info->low_limit > high_limit)
1763 return -ENOMEM;
1764 low_limit = info->low_limit + length;
1765
1766 /* Check highest gap, which does not precede any rbtree node */
1767 gap_start = mm->highest_vm_end;
1768 if (gap_start <= high_limit)
1769 goto found_highest;
1770
1771 /* Check if rbtree root looks promising */
1772 if (RB_EMPTY_ROOT(&mm->mm_rb))
1773 return -ENOMEM;
1774 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1775 if (vma->rb_subtree_gap < length)
1776 return -ENOMEM;
1777
1778 while (true) {
1779 /* Visit right subtree if it looks promising */
1780 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1781 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1782 struct vm_area_struct *right =
1783 rb_entry(vma->vm_rb.rb_right,
1784 struct vm_area_struct, vm_rb);
1785 if (right->rb_subtree_gap >= length) {
1786 vma = right;
1787 continue;
1788 }
1789 }
1790
1791 check_current:
1792 /* Check if current node has a suitable gap */
1793 gap_end = vma->vm_start;
1794 if (gap_end < low_limit)
1795 return -ENOMEM;
1796 if (gap_start <= high_limit && gap_end - gap_start >= length)
1797 goto found;
1798
1799 /* Visit left subtree if it looks promising */
1800 if (vma->vm_rb.rb_left) {
1801 struct vm_area_struct *left =
1802 rb_entry(vma->vm_rb.rb_left,
1803 struct vm_area_struct, vm_rb);
1804 if (left->rb_subtree_gap >= length) {
1805 vma = left;
1806 continue;
1807 }
1808 }
1809
1810 /* Go back up the rbtree to find next candidate node */
1811 while (true) {
1812 struct rb_node *prev = &vma->vm_rb;
1813 if (!rb_parent(prev))
1814 return -ENOMEM;
1815 vma = rb_entry(rb_parent(prev),
1816 struct vm_area_struct, vm_rb);
1817 if (prev == vma->vm_rb.rb_right) {
1818 gap_start = vma->vm_prev ?
1819 vma->vm_prev->vm_end : 0;
1820 goto check_current;
1821 }
1822 }
1823 }
1824
1825 found:
1826 /* We found a suitable gap. Clip it with the original high_limit. */
1827 if (gap_end > info->high_limit)
1828 gap_end = info->high_limit;
1829
1830 found_highest:
1831 /* Compute highest gap address at the desired alignment */
1832 gap_end -= info->length;
1833 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1834
1835 VM_BUG_ON(gap_end < info->low_limit);
1836 VM_BUG_ON(gap_end < gap_start);
1837 return gap_end;
1838 }
1839
1840 /* Get an address range which is currently unmapped.
1841 * For shmat() with addr=0.
1842 *
1843 * Ugly calling convention alert:
1844 * Return value with the low bits set means error value,
1845 * ie
1846 * if (ret & ~PAGE_MASK)
1847 * error = ret;
1848 *
1849 * This function "knows" that -ENOMEM has the bits set.
1850 */
1851 #ifndef HAVE_ARCH_UNMAPPED_AREA
1852 unsigned long
1853 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1854 unsigned long len, unsigned long pgoff, unsigned long flags)
1855 {
1856 struct mm_struct *mm = current->mm;
1857 struct vm_area_struct *vma;
1858 struct vm_unmapped_area_info info;
1859
1860 if (len > TASK_SIZE)
1861 return -ENOMEM;
1862
1863 if (flags & MAP_FIXED)
1864 return addr;
1865
1866 if (addr) {
1867 addr = PAGE_ALIGN(addr);
1868 vma = find_vma(mm, addr);
1869 if (TASK_SIZE - len >= addr &&
1870 (!vma || addr + len <= vma->vm_start))
1871 return addr;
1872 }
1873
1874 info.flags = 0;
1875 info.length = len;
1876 info.low_limit = TASK_UNMAPPED_BASE;
1877 info.high_limit = TASK_SIZE;
1878 info.align_mask = 0;
1879 return vm_unmapped_area(&info);
1880 }
1881 #endif
1882
1883 /*
1884 * This mmap-allocator allocates new areas top-down from below the
1885 * stack's low limit (the base):
1886 */
1887 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1888 unsigned long
1889 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1890 const unsigned long len, const unsigned long pgoff,
1891 const unsigned long flags)
1892 {
1893 struct vm_area_struct *vma;
1894 struct mm_struct *mm = current->mm;
1895 unsigned long addr = addr0;
1896 struct vm_unmapped_area_info info;
1897
1898 /* requested length too big for entire address space */
1899 if (len > TASK_SIZE)
1900 return -ENOMEM;
1901
1902 if (flags & MAP_FIXED)
1903 return addr;
1904
1905 /* requesting a specific address */
1906 if (addr) {
1907 addr = PAGE_ALIGN(addr);
1908 vma = find_vma(mm, addr);
1909 if (TASK_SIZE - len >= addr &&
1910 (!vma || addr + len <= vma->vm_start))
1911 return addr;
1912 }
1913
1914 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1915 info.length = len;
1916 info.low_limit = PAGE_SIZE;
1917 info.high_limit = mm->mmap_base;
1918 info.align_mask = 0;
1919 addr = vm_unmapped_area(&info);
1920
1921 /*
1922 * A failed mmap() very likely causes application failure,
1923 * so fall back to the bottom-up function here. This scenario
1924 * can happen with large stack limits and large mmap()
1925 * allocations.
1926 */
1927 if (addr & ~PAGE_MASK) {
1928 VM_BUG_ON(addr != -ENOMEM);
1929 info.flags = 0;
1930 info.low_limit = TASK_UNMAPPED_BASE;
1931 info.high_limit = TASK_SIZE;
1932 addr = vm_unmapped_area(&info);
1933 }
1934
1935 return addr;
1936 }
1937 #endif
1938
1939 unsigned long
1940 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1941 unsigned long pgoff, unsigned long flags)
1942 {
1943 unsigned long (*get_area)(struct file *, unsigned long,
1944 unsigned long, unsigned long, unsigned long);
1945
1946 unsigned long error = arch_mmap_check(addr, len, flags);
1947 if (error)
1948 return error;
1949
1950 /* Careful about overflows.. */
1951 if (len > TASK_SIZE)
1952 return -ENOMEM;
1953
1954 get_area = current->mm->get_unmapped_area;
1955 if (file && file->f_op && file->f_op->get_unmapped_area)
1956 get_area = file->f_op->get_unmapped_area;
1957 addr = get_area(file, addr, len, pgoff, flags);
1958 if (IS_ERR_VALUE(addr))
1959 return addr;
1960
1961 if (addr > TASK_SIZE - len)
1962 return -ENOMEM;
1963 if (addr & ~PAGE_MASK)
1964 return -EINVAL;
1965
1966 addr = arch_rebalance_pgtables(addr, len);
1967 error = security_mmap_addr(addr);
1968 return error ? error : addr;
1969 }
1970
1971 EXPORT_SYMBOL(get_unmapped_area);
1972
1973 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1974 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1975 {
1976 struct vm_area_struct *vma = NULL;
1977
1978 /* Check the cache first. */
1979 /* (Cache hit rate is typically around 35%.) */
1980 vma = ACCESS_ONCE(mm->mmap_cache);
1981 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1982 struct rb_node *rb_node;
1983
1984 rb_node = mm->mm_rb.rb_node;
1985 vma = NULL;
1986
1987 while (rb_node) {
1988 struct vm_area_struct *vma_tmp;
1989
1990 vma_tmp = rb_entry(rb_node,
1991 struct vm_area_struct, vm_rb);
1992
1993 if (vma_tmp->vm_end > addr) {
1994 vma = vma_tmp;
1995 if (vma_tmp->vm_start <= addr)
1996 break;
1997 rb_node = rb_node->rb_left;
1998 } else
1999 rb_node = rb_node->rb_right;
2000 }
2001 if (vma)
2002 mm->mmap_cache = vma;
2003 }
2004 return vma;
2005 }
2006
2007 EXPORT_SYMBOL(find_vma);
2008
2009 /*
2010 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2011 */
2012 struct vm_area_struct *
2013 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2014 struct vm_area_struct **pprev)
2015 {
2016 struct vm_area_struct *vma;
2017
2018 vma = find_vma(mm, addr);
2019 if (vma) {
2020 *pprev = vma->vm_prev;
2021 } else {
2022 struct rb_node *rb_node = mm->mm_rb.rb_node;
2023 *pprev = NULL;
2024 while (rb_node) {
2025 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2026 rb_node = rb_node->rb_right;
2027 }
2028 }
2029 return vma;
2030 }
2031
2032 /*
2033 * Verify that the stack growth is acceptable and
2034 * update accounting. This is shared with both the
2035 * grow-up and grow-down cases.
2036 */
2037 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2038 {
2039 struct mm_struct *mm = vma->vm_mm;
2040 struct rlimit *rlim = current->signal->rlim;
2041 unsigned long new_start;
2042
2043 /* address space limit tests */
2044 if (!may_expand_vm(mm, grow))
2045 return -ENOMEM;
2046
2047 /* Stack limit test */
2048 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2049 return -ENOMEM;
2050
2051 /* mlock limit tests */
2052 if (vma->vm_flags & VM_LOCKED) {
2053 unsigned long locked;
2054 unsigned long limit;
2055 locked = mm->locked_vm + grow;
2056 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2057 limit >>= PAGE_SHIFT;
2058 if (locked > limit && !capable(CAP_IPC_LOCK))
2059 return -ENOMEM;
2060 }
2061
2062 /* Check to ensure the stack will not grow into a hugetlb-only region */
2063 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2064 vma->vm_end - size;
2065 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2066 return -EFAULT;
2067
2068 /*
2069 * Overcommit.. This must be the final test, as it will
2070 * update security statistics.
2071 */
2072 if (security_vm_enough_memory_mm(mm, grow))
2073 return -ENOMEM;
2074
2075 /* Ok, everything looks good - let it rip */
2076 if (vma->vm_flags & VM_LOCKED)
2077 mm->locked_vm += grow;
2078 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2079 return 0;
2080 }
2081
2082 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2083 /*
2084 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2085 * vma is the last one with address > vma->vm_end. Have to extend vma.
2086 */
2087 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2088 {
2089 int error;
2090
2091 if (!(vma->vm_flags & VM_GROWSUP))
2092 return -EFAULT;
2093
2094 /*
2095 * We must make sure the anon_vma is allocated
2096 * so that the anon_vma locking is not a noop.
2097 */
2098 if (unlikely(anon_vma_prepare(vma)))
2099 return -ENOMEM;
2100 vma_lock_anon_vma(vma);
2101
2102 /*
2103 * vma->vm_start/vm_end cannot change under us because the caller
2104 * is required to hold the mmap_sem in read mode. We need the
2105 * anon_vma lock to serialize against concurrent expand_stacks.
2106 * Also guard against wrapping around to address 0.
2107 */
2108 if (address < PAGE_ALIGN(address+4))
2109 address = PAGE_ALIGN(address+4);
2110 else {
2111 vma_unlock_anon_vma(vma);
2112 return -ENOMEM;
2113 }
2114 error = 0;
2115
2116 /* Somebody else might have raced and expanded it already */
2117 if (address > vma->vm_end) {
2118 unsigned long size, grow;
2119
2120 size = address - vma->vm_start;
2121 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2122
2123 error = -ENOMEM;
2124 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2125 error = acct_stack_growth(vma, size, grow);
2126 if (!error) {
2127 /*
2128 * vma_gap_update() doesn't support concurrent
2129 * updates, but we only hold a shared mmap_sem
2130 * lock here, so we need to protect against
2131 * concurrent vma expansions.
2132 * vma_lock_anon_vma() doesn't help here, as
2133 * we don't guarantee that all growable vmas
2134 * in a mm share the same root anon vma.
2135 * So, we reuse mm->page_table_lock to guard
2136 * against concurrent vma expansions.
2137 */
2138 spin_lock(&vma->vm_mm->page_table_lock);
2139 anon_vma_interval_tree_pre_update_vma(vma);
2140 vma->vm_end = address;
2141 anon_vma_interval_tree_post_update_vma(vma);
2142 if (vma->vm_next)
2143 vma_gap_update(vma->vm_next);
2144 else
2145 vma->vm_mm->highest_vm_end = address;
2146 spin_unlock(&vma->vm_mm->page_table_lock);
2147
2148 perf_event_mmap(vma);
2149 }
2150 }
2151 }
2152 vma_unlock_anon_vma(vma);
2153 khugepaged_enter_vma_merge(vma);
2154 validate_mm(vma->vm_mm);
2155 return error;
2156 }
2157 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2158
2159 /*
2160 * vma is the first one with address < vma->vm_start. Have to extend vma.
2161 */
2162 int expand_downwards(struct vm_area_struct *vma,
2163 unsigned long address)
2164 {
2165 int error;
2166
2167 /*
2168 * We must make sure the anon_vma is allocated
2169 * so that the anon_vma locking is not a noop.
2170 */
2171 if (unlikely(anon_vma_prepare(vma)))
2172 return -ENOMEM;
2173
2174 address &= PAGE_MASK;
2175 error = security_mmap_addr(address);
2176 if (error)
2177 return error;
2178
2179 vma_lock_anon_vma(vma);
2180
2181 /*
2182 * vma->vm_start/vm_end cannot change under us because the caller
2183 * is required to hold the mmap_sem in read mode. We need the
2184 * anon_vma lock to serialize against concurrent expand_stacks.
2185 */
2186
2187 /* Somebody else might have raced and expanded it already */
2188 if (address < vma->vm_start) {
2189 unsigned long size, grow;
2190
2191 size = vma->vm_end - address;
2192 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2193
2194 error = -ENOMEM;
2195 if (grow <= vma->vm_pgoff) {
2196 error = acct_stack_growth(vma, size, grow);
2197 if (!error) {
2198 /*
2199 * vma_gap_update() doesn't support concurrent
2200 * updates, but we only hold a shared mmap_sem
2201 * lock here, so we need to protect against
2202 * concurrent vma expansions.
2203 * vma_lock_anon_vma() doesn't help here, as
2204 * we don't guarantee that all growable vmas
2205 * in a mm share the same root anon vma.
2206 * So, we reuse mm->page_table_lock to guard
2207 * against concurrent vma expansions.
2208 */
2209 spin_lock(&vma->vm_mm->page_table_lock);
2210 anon_vma_interval_tree_pre_update_vma(vma);
2211 vma->vm_start = address;
2212 vma->vm_pgoff -= grow;
2213 anon_vma_interval_tree_post_update_vma(vma);
2214 vma_gap_update(vma);
2215 spin_unlock(&vma->vm_mm->page_table_lock);
2216
2217 perf_event_mmap(vma);
2218 }
2219 }
2220 }
2221 vma_unlock_anon_vma(vma);
2222 khugepaged_enter_vma_merge(vma);
2223 validate_mm(vma->vm_mm);
2224 return error;
2225 }
2226
2227 /*
2228 * Note how expand_stack() refuses to expand the stack all the way to
2229 * abut the next virtual mapping, *unless* that mapping itself is also
2230 * a stack mapping. We want to leave room for a guard page, after all
2231 * (the guard page itself is not added here, that is done by the
2232 * actual page faulting logic)
2233 *
2234 * This matches the behavior of the guard page logic (see mm/memory.c:
2235 * check_stack_guard_page()), which only allows the guard page to be
2236 * removed under these circumstances.
2237 */
2238 #ifdef CONFIG_STACK_GROWSUP
2239 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2240 {
2241 struct vm_area_struct *next;
2242
2243 address &= PAGE_MASK;
2244 next = vma->vm_next;
2245 if (next && next->vm_start == address + PAGE_SIZE) {
2246 if (!(next->vm_flags & VM_GROWSUP))
2247 return -ENOMEM;
2248 }
2249 return expand_upwards(vma, address);
2250 }
2251
2252 struct vm_area_struct *
2253 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2254 {
2255 struct vm_area_struct *vma, *prev;
2256
2257 addr &= PAGE_MASK;
2258 vma = find_vma_prev(mm, addr, &prev);
2259 if (vma && (vma->vm_start <= addr))
2260 return vma;
2261 if (!prev || expand_stack(prev, addr))
2262 return NULL;
2263 if (prev->vm_flags & VM_LOCKED)
2264 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2265 return prev;
2266 }
2267 #else
2268 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2269 {
2270 struct vm_area_struct *prev;
2271
2272 address &= PAGE_MASK;
2273 prev = vma->vm_prev;
2274 if (prev && prev->vm_end == address) {
2275 if (!(prev->vm_flags & VM_GROWSDOWN))
2276 return -ENOMEM;
2277 }
2278 return expand_downwards(vma, address);
2279 }
2280
2281 struct vm_area_struct *
2282 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2283 {
2284 struct vm_area_struct * vma;
2285 unsigned long start;
2286
2287 addr &= PAGE_MASK;
2288 vma = find_vma(mm,addr);
2289 if (!vma)
2290 return NULL;
2291 if (vma->vm_start <= addr)
2292 return vma;
2293 if (!(vma->vm_flags & VM_GROWSDOWN))
2294 return NULL;
2295 start = vma->vm_start;
2296 if (expand_stack(vma, addr))
2297 return NULL;
2298 if (vma->vm_flags & VM_LOCKED)
2299 __mlock_vma_pages_range(vma, addr, start, NULL);
2300 return vma;
2301 }
2302 #endif
2303
2304 /*
2305 * Ok - we have the memory areas we should free on the vma list,
2306 * so release them, and do the vma updates.
2307 *
2308 * Called with the mm semaphore held.
2309 */
2310 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2311 {
2312 unsigned long nr_accounted = 0;
2313
2314 /* Update high watermark before we lower total_vm */
2315 update_hiwater_vm(mm);
2316 do {
2317 long nrpages = vma_pages(vma);
2318
2319 if (vma->vm_flags & VM_ACCOUNT)
2320 nr_accounted += nrpages;
2321 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2322 vma = remove_vma(vma);
2323 } while (vma);
2324 vm_unacct_memory(nr_accounted);
2325 validate_mm(mm);
2326 }
2327
2328 /*
2329 * Get rid of page table information in the indicated region.
2330 *
2331 * Called with the mm semaphore held.
2332 */
2333 static void unmap_region(struct mm_struct *mm,
2334 struct vm_area_struct *vma, struct vm_area_struct *prev,
2335 unsigned long start, unsigned long end)
2336 {
2337 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2338 struct mmu_gather tlb;
2339
2340 lru_add_drain();
2341 tlb_gather_mmu(&tlb, mm, start, end);
2342 update_hiwater_rss(mm);
2343 unmap_vmas(&tlb, vma, start, end);
2344 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2345 next ? next->vm_start : USER_PGTABLES_CEILING);
2346 tlb_finish_mmu(&tlb, start, end);
2347 }
2348
2349 /*
2350 * Create a list of vma's touched by the unmap, removing them from the mm's
2351 * vma list as we go..
2352 */
2353 static void
2354 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2355 struct vm_area_struct *prev, unsigned long end)
2356 {
2357 struct vm_area_struct **insertion_point;
2358 struct vm_area_struct *tail_vma = NULL;
2359
2360 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2361 vma->vm_prev = NULL;
2362 do {
2363 vma_rb_erase(vma, &mm->mm_rb);
2364 mm->map_count--;
2365 tail_vma = vma;
2366 vma = vma->vm_next;
2367 } while (vma && vma->vm_start < end);
2368 *insertion_point = vma;
2369 if (vma) {
2370 vma->vm_prev = prev;
2371 vma_gap_update(vma);
2372 } else
2373 mm->highest_vm_end = prev ? prev->vm_end : 0;
2374 tail_vma->vm_next = NULL;
2375 mm->mmap_cache = NULL; /* Kill the cache. */
2376 }
2377
2378 /*
2379 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2380 * munmap path where it doesn't make sense to fail.
2381 */
2382 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2383 unsigned long addr, int new_below)
2384 {
2385 struct vm_area_struct *new;
2386 int err = -ENOMEM;
2387
2388 if (is_vm_hugetlb_page(vma) && (addr &
2389 ~(huge_page_mask(hstate_vma(vma)))))
2390 return -EINVAL;
2391
2392 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2393 if (!new)
2394 goto out_err;
2395
2396 /* most fields are the same, copy all, and then fixup */
2397 *new = *vma;
2398
2399 INIT_LIST_HEAD(&new->anon_vma_chain);
2400
2401 if (new_below)
2402 new->vm_end = addr;
2403 else {
2404 new->vm_start = addr;
2405 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2406 }
2407
2408 err = vma_dup_policy(vma, new);
2409 if (err)
2410 goto out_free_vma;
2411
2412 if (anon_vma_clone(new, vma))
2413 goto out_free_mpol;
2414
2415 if (new->vm_file)
2416 get_file(new->vm_file);
2417
2418 if (new->vm_ops && new->vm_ops->open)
2419 new->vm_ops->open(new);
2420
2421 if (new_below)
2422 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2423 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2424 else
2425 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2426
2427 /* Success. */
2428 if (!err)
2429 return 0;
2430
2431 /* Clean everything up if vma_adjust failed. */
2432 if (new->vm_ops && new->vm_ops->close)
2433 new->vm_ops->close(new);
2434 if (new->vm_file)
2435 fput(new->vm_file);
2436 unlink_anon_vmas(new);
2437 out_free_mpol:
2438 mpol_put(vma_policy(new));
2439 out_free_vma:
2440 kmem_cache_free(vm_area_cachep, new);
2441 out_err:
2442 return err;
2443 }
2444
2445 /*
2446 * Split a vma into two pieces at address 'addr', a new vma is allocated
2447 * either for the first part or the tail.
2448 */
2449 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2450 unsigned long addr, int new_below)
2451 {
2452 if (mm->map_count >= sysctl_max_map_count)
2453 return -ENOMEM;
2454
2455 return __split_vma(mm, vma, addr, new_below);
2456 }
2457
2458 /* Munmap is split into 2 main parts -- this part which finds
2459 * what needs doing, and the areas themselves, which do the
2460 * work. This now handles partial unmappings.
2461 * Jeremy Fitzhardinge <jeremy@goop.org>
2462 */
2463 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2464 {
2465 unsigned long end;
2466 struct vm_area_struct *vma, *prev, *last;
2467
2468 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2469 return -EINVAL;
2470
2471 if ((len = PAGE_ALIGN(len)) == 0)
2472 return -EINVAL;
2473
2474 /* Find the first overlapping VMA */
2475 vma = find_vma(mm, start);
2476 if (!vma)
2477 return 0;
2478 prev = vma->vm_prev;
2479 /* we have start < vma->vm_end */
2480
2481 /* if it doesn't overlap, we have nothing.. */
2482 end = start + len;
2483 if (vma->vm_start >= end)
2484 return 0;
2485
2486 /*
2487 * If we need to split any vma, do it now to save pain later.
2488 *
2489 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2490 * unmapped vm_area_struct will remain in use: so lower split_vma
2491 * places tmp vma above, and higher split_vma places tmp vma below.
2492 */
2493 if (start > vma->vm_start) {
2494 int error;
2495
2496 /*
2497 * Make sure that map_count on return from munmap() will
2498 * not exceed its limit; but let map_count go just above
2499 * its limit temporarily, to help free resources as expected.
2500 */
2501 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2502 return -ENOMEM;
2503
2504 error = __split_vma(mm, vma, start, 0);
2505 if (error)
2506 return error;
2507 prev = vma;
2508 }
2509
2510 /* Does it split the last one? */
2511 last = find_vma(mm, end);
2512 if (last && end > last->vm_start) {
2513 int error = __split_vma(mm, last, end, 1);
2514 if (error)
2515 return error;
2516 }
2517 vma = prev? prev->vm_next: mm->mmap;
2518
2519 /*
2520 * unlock any mlock()ed ranges before detaching vmas
2521 */
2522 if (mm->locked_vm) {
2523 struct vm_area_struct *tmp = vma;
2524 while (tmp && tmp->vm_start < end) {
2525 if (tmp->vm_flags & VM_LOCKED) {
2526 mm->locked_vm -= vma_pages(tmp);
2527 munlock_vma_pages_all(tmp);
2528 }
2529 tmp = tmp->vm_next;
2530 }
2531 }
2532
2533 /*
2534 * Remove the vma's, and unmap the actual pages
2535 */
2536 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2537 unmap_region(mm, vma, prev, start, end);
2538
2539 /* Fix up all other VM information */
2540 remove_vma_list(mm, vma);
2541
2542 return 0;
2543 }
2544
2545 int vm_munmap(unsigned long start, size_t len)
2546 {
2547 int ret;
2548 struct mm_struct *mm = current->mm;
2549
2550 down_write(&mm->mmap_sem);
2551 ret = do_munmap(mm, start, len);
2552 up_write(&mm->mmap_sem);
2553 return ret;
2554 }
2555 EXPORT_SYMBOL(vm_munmap);
2556
2557 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2558 {
2559 profile_munmap(addr);
2560 return vm_munmap(addr, len);
2561 }
2562
2563 static inline void verify_mm_writelocked(struct mm_struct *mm)
2564 {
2565 #ifdef CONFIG_DEBUG_VM
2566 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2567 WARN_ON(1);
2568 up_read(&mm->mmap_sem);
2569 }
2570 #endif
2571 }
2572
2573 /*
2574 * this is really a simplified "do_mmap". it only handles
2575 * anonymous maps. eventually we may be able to do some
2576 * brk-specific accounting here.
2577 */
2578 static unsigned long do_brk(unsigned long addr, unsigned long len)
2579 {
2580 struct mm_struct * mm = current->mm;
2581 struct vm_area_struct * vma, * prev;
2582 unsigned long flags;
2583 struct rb_node ** rb_link, * rb_parent;
2584 pgoff_t pgoff = addr >> PAGE_SHIFT;
2585 int error;
2586
2587 len = PAGE_ALIGN(len);
2588 if (!len)
2589 return addr;
2590
2591 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2592
2593 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2594 if (error & ~PAGE_MASK)
2595 return error;
2596
2597 /*
2598 * mlock MCL_FUTURE?
2599 */
2600 if (mm->def_flags & VM_LOCKED) {
2601 unsigned long locked, lock_limit;
2602 locked = len >> PAGE_SHIFT;
2603 locked += mm->locked_vm;
2604 lock_limit = rlimit(RLIMIT_MEMLOCK);
2605 lock_limit >>= PAGE_SHIFT;
2606 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2607 return -EAGAIN;
2608 }
2609
2610 /*
2611 * mm->mmap_sem is required to protect against another thread
2612 * changing the mappings in case we sleep.
2613 */
2614 verify_mm_writelocked(mm);
2615
2616 /*
2617 * Clear old maps. this also does some error checking for us
2618 */
2619 munmap_back:
2620 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2621 if (do_munmap(mm, addr, len))
2622 return -ENOMEM;
2623 goto munmap_back;
2624 }
2625
2626 /* Check against address space limits *after* clearing old maps... */
2627 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2628 return -ENOMEM;
2629
2630 if (mm->map_count > sysctl_max_map_count)
2631 return -ENOMEM;
2632
2633 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2634 return -ENOMEM;
2635
2636 /* Can we just expand an old private anonymous mapping? */
2637 vma = vma_merge(mm, prev, addr, addr + len, flags,
2638 NULL, NULL, pgoff, NULL);
2639 if (vma)
2640 goto out;
2641
2642 /*
2643 * create a vma struct for an anonymous mapping
2644 */
2645 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2646 if (!vma) {
2647 vm_unacct_memory(len >> PAGE_SHIFT);
2648 return -ENOMEM;
2649 }
2650
2651 INIT_LIST_HEAD(&vma->anon_vma_chain);
2652 vma->vm_mm = mm;
2653 vma->vm_start = addr;
2654 vma->vm_end = addr + len;
2655 vma->vm_pgoff = pgoff;
2656 vma->vm_flags = flags;
2657 vma->vm_page_prot = vm_get_page_prot(flags);
2658 vma_link(mm, vma, prev, rb_link, rb_parent);
2659 out:
2660 perf_event_mmap(vma);
2661 mm->total_vm += len >> PAGE_SHIFT;
2662 if (flags & VM_LOCKED)
2663 mm->locked_vm += (len >> PAGE_SHIFT);
2664 vma->vm_flags |= VM_SOFTDIRTY;
2665 return addr;
2666 }
2667
2668 unsigned long vm_brk(unsigned long addr, unsigned long len)
2669 {
2670 struct mm_struct *mm = current->mm;
2671 unsigned long ret;
2672 bool populate;
2673
2674 down_write(&mm->mmap_sem);
2675 ret = do_brk(addr, len);
2676 populate = ((mm->def_flags & VM_LOCKED) != 0);
2677 up_write(&mm->mmap_sem);
2678 if (populate)
2679 mm_populate(addr, len);
2680 return ret;
2681 }
2682 EXPORT_SYMBOL(vm_brk);
2683
2684 /* Release all mmaps. */
2685 void exit_mmap(struct mm_struct *mm)
2686 {
2687 struct mmu_gather tlb;
2688 struct vm_area_struct *vma;
2689 unsigned long nr_accounted = 0;
2690
2691 /* mm's last user has gone, and its about to be pulled down */
2692 mmu_notifier_release(mm);
2693
2694 if (mm->locked_vm) {
2695 vma = mm->mmap;
2696 while (vma) {
2697 if (vma->vm_flags & VM_LOCKED)
2698 munlock_vma_pages_all(vma);
2699 vma = vma->vm_next;
2700 }
2701 }
2702
2703 arch_exit_mmap(mm);
2704
2705 vma = mm->mmap;
2706 if (!vma) /* Can happen if dup_mmap() received an OOM */
2707 return;
2708
2709 lru_add_drain();
2710 flush_cache_mm(mm);
2711 tlb_gather_mmu(&tlb, mm, 0, -1);
2712 /* update_hiwater_rss(mm) here? but nobody should be looking */
2713 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2714 unmap_vmas(&tlb, vma, 0, -1);
2715
2716 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2717 tlb_finish_mmu(&tlb, 0, -1);
2718
2719 /*
2720 * Walk the list again, actually closing and freeing it,
2721 * with preemption enabled, without holding any MM locks.
2722 */
2723 while (vma) {
2724 if (vma->vm_flags & VM_ACCOUNT)
2725 nr_accounted += vma_pages(vma);
2726 vma = remove_vma(vma);
2727 }
2728 vm_unacct_memory(nr_accounted);
2729
2730 WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2731 }
2732
2733 /* Insert vm structure into process list sorted by address
2734 * and into the inode's i_mmap tree. If vm_file is non-NULL
2735 * then i_mmap_mutex is taken here.
2736 */
2737 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2738 {
2739 struct vm_area_struct *prev;
2740 struct rb_node **rb_link, *rb_parent;
2741
2742 /*
2743 * The vm_pgoff of a purely anonymous vma should be irrelevant
2744 * until its first write fault, when page's anon_vma and index
2745 * are set. But now set the vm_pgoff it will almost certainly
2746 * end up with (unless mremap moves it elsewhere before that
2747 * first wfault), so /proc/pid/maps tells a consistent story.
2748 *
2749 * By setting it to reflect the virtual start address of the
2750 * vma, merges and splits can happen in a seamless way, just
2751 * using the existing file pgoff checks and manipulations.
2752 * Similarly in do_mmap_pgoff and in do_brk.
2753 */
2754 if (!vma->vm_file) {
2755 BUG_ON(vma->anon_vma);
2756 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2757 }
2758 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2759 &prev, &rb_link, &rb_parent))
2760 return -ENOMEM;
2761 if ((vma->vm_flags & VM_ACCOUNT) &&
2762 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2763 return -ENOMEM;
2764
2765 vma_link(mm, vma, prev, rb_link, rb_parent);
2766 return 0;
2767 }
2768
2769 /*
2770 * Copy the vma structure to a new location in the same mm,
2771 * prior to moving page table entries, to effect an mremap move.
2772 */
2773 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2774 unsigned long addr, unsigned long len, pgoff_t pgoff,
2775 bool *need_rmap_locks)
2776 {
2777 struct vm_area_struct *vma = *vmap;
2778 unsigned long vma_start = vma->vm_start;
2779 struct mm_struct *mm = vma->vm_mm;
2780 struct vm_area_struct *new_vma, *prev;
2781 struct rb_node **rb_link, *rb_parent;
2782 bool faulted_in_anon_vma = true;
2783
2784 /*
2785 * If anonymous vma has not yet been faulted, update new pgoff
2786 * to match new location, to increase its chance of merging.
2787 */
2788 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2789 pgoff = addr >> PAGE_SHIFT;
2790 faulted_in_anon_vma = false;
2791 }
2792
2793 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2794 return NULL; /* should never get here */
2795 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2796 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2797 if (new_vma) {
2798 /*
2799 * Source vma may have been merged into new_vma
2800 */
2801 if (unlikely(vma_start >= new_vma->vm_start &&
2802 vma_start < new_vma->vm_end)) {
2803 /*
2804 * The only way we can get a vma_merge with
2805 * self during an mremap is if the vma hasn't
2806 * been faulted in yet and we were allowed to
2807 * reset the dst vma->vm_pgoff to the
2808 * destination address of the mremap to allow
2809 * the merge to happen. mremap must change the
2810 * vm_pgoff linearity between src and dst vmas
2811 * (in turn preventing a vma_merge) to be
2812 * safe. It is only safe to keep the vm_pgoff
2813 * linear if there are no pages mapped yet.
2814 */
2815 VM_BUG_ON(faulted_in_anon_vma);
2816 *vmap = vma = new_vma;
2817 }
2818 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2819 } else {
2820 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2821 if (new_vma) {
2822 *new_vma = *vma;
2823 new_vma->vm_start = addr;
2824 new_vma->vm_end = addr + len;
2825 new_vma->vm_pgoff = pgoff;
2826 if (vma_dup_policy(vma, new_vma))
2827 goto out_free_vma;
2828 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2829 if (anon_vma_clone(new_vma, vma))
2830 goto out_free_mempol;
2831 if (new_vma->vm_file)
2832 get_file(new_vma->vm_file);
2833 if (new_vma->vm_ops && new_vma->vm_ops->open)
2834 new_vma->vm_ops->open(new_vma);
2835 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2836 *need_rmap_locks = false;
2837 }
2838 }
2839 return new_vma;
2840
2841 out_free_mempol:
2842 mpol_put(vma_policy(new_vma));
2843 out_free_vma:
2844 kmem_cache_free(vm_area_cachep, new_vma);
2845 return NULL;
2846 }
2847
2848 /*
2849 * Return true if the calling process may expand its vm space by the passed
2850 * number of pages
2851 */
2852 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2853 {
2854 unsigned long cur = mm->total_vm; /* pages */
2855 unsigned long lim;
2856
2857 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2858
2859 if (cur + npages > lim)
2860 return 0;
2861 return 1;
2862 }
2863
2864
2865 static int special_mapping_fault(struct vm_area_struct *vma,
2866 struct vm_fault *vmf)
2867 {
2868 pgoff_t pgoff;
2869 struct page **pages;
2870
2871 /*
2872 * special mappings have no vm_file, and in that case, the mm
2873 * uses vm_pgoff internally. So we have to subtract it from here.
2874 * We are allowed to do this because we are the mm; do not copy
2875 * this code into drivers!
2876 */
2877 pgoff = vmf->pgoff - vma->vm_pgoff;
2878
2879 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2880 pgoff--;
2881
2882 if (*pages) {
2883 struct page *page = *pages;
2884 get_page(page);
2885 vmf->page = page;
2886 return 0;
2887 }
2888
2889 return VM_FAULT_SIGBUS;
2890 }
2891
2892 /*
2893 * Having a close hook prevents vma merging regardless of flags.
2894 */
2895 static void special_mapping_close(struct vm_area_struct *vma)
2896 {
2897 }
2898
2899 static const struct vm_operations_struct special_mapping_vmops = {
2900 .close = special_mapping_close,
2901 .fault = special_mapping_fault,
2902 };
2903
2904 /*
2905 * Called with mm->mmap_sem held for writing.
2906 * Insert a new vma covering the given region, with the given flags.
2907 * Its pages are supplied by the given array of struct page *.
2908 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2909 * The region past the last page supplied will always produce SIGBUS.
2910 * The array pointer and the pages it points to are assumed to stay alive
2911 * for as long as this mapping might exist.
2912 */
2913 int install_special_mapping(struct mm_struct *mm,
2914 unsigned long addr, unsigned long len,
2915 unsigned long vm_flags, struct page **pages)
2916 {
2917 int ret;
2918 struct vm_area_struct *vma;
2919
2920 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2921 if (unlikely(vma == NULL))
2922 return -ENOMEM;
2923
2924 INIT_LIST_HEAD(&vma->anon_vma_chain);
2925 vma->vm_mm = mm;
2926 vma->vm_start = addr;
2927 vma->vm_end = addr + len;
2928
2929 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2930 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2931
2932 vma->vm_ops = &special_mapping_vmops;
2933 vma->vm_private_data = pages;
2934
2935 ret = insert_vm_struct(mm, vma);
2936 if (ret)
2937 goto out;
2938
2939 mm->total_vm += len >> PAGE_SHIFT;
2940
2941 perf_event_mmap(vma);
2942
2943 return 0;
2944
2945 out:
2946 kmem_cache_free(vm_area_cachep, vma);
2947 return ret;
2948 }
2949
2950 static DEFINE_MUTEX(mm_all_locks_mutex);
2951
2952 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2953 {
2954 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2955 /*
2956 * The LSB of head.next can't change from under us
2957 * because we hold the mm_all_locks_mutex.
2958 */
2959 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
2960 /*
2961 * We can safely modify head.next after taking the
2962 * anon_vma->root->rwsem. If some other vma in this mm shares
2963 * the same anon_vma we won't take it again.
2964 *
2965 * No need of atomic instructions here, head.next
2966 * can't change from under us thanks to the
2967 * anon_vma->root->rwsem.
2968 */
2969 if (__test_and_set_bit(0, (unsigned long *)
2970 &anon_vma->root->rb_root.rb_node))
2971 BUG();
2972 }
2973 }
2974
2975 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2976 {
2977 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2978 /*
2979 * AS_MM_ALL_LOCKS can't change from under us because
2980 * we hold the mm_all_locks_mutex.
2981 *
2982 * Operations on ->flags have to be atomic because
2983 * even if AS_MM_ALL_LOCKS is stable thanks to the
2984 * mm_all_locks_mutex, there may be other cpus
2985 * changing other bitflags in parallel to us.
2986 */
2987 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2988 BUG();
2989 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2990 }
2991 }
2992
2993 /*
2994 * This operation locks against the VM for all pte/vma/mm related
2995 * operations that could ever happen on a certain mm. This includes
2996 * vmtruncate, try_to_unmap, and all page faults.
2997 *
2998 * The caller must take the mmap_sem in write mode before calling
2999 * mm_take_all_locks(). The caller isn't allowed to release the
3000 * mmap_sem until mm_drop_all_locks() returns.
3001 *
3002 * mmap_sem in write mode is required in order to block all operations
3003 * that could modify pagetables and free pages without need of
3004 * altering the vma layout (for example populate_range() with
3005 * nonlinear vmas). It's also needed in write mode to avoid new
3006 * anon_vmas to be associated with existing vmas.
3007 *
3008 * A single task can't take more than one mm_take_all_locks() in a row
3009 * or it would deadlock.
3010 *
3011 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3012 * mapping->flags avoid to take the same lock twice, if more than one
3013 * vma in this mm is backed by the same anon_vma or address_space.
3014 *
3015 * We can take all the locks in random order because the VM code
3016 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3017 * takes more than one of them in a row. Secondly we're protected
3018 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3019 *
3020 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3021 * that may have to take thousand of locks.
3022 *
3023 * mm_take_all_locks() can fail if it's interrupted by signals.
3024 */
3025 int mm_take_all_locks(struct mm_struct *mm)
3026 {
3027 struct vm_area_struct *vma;
3028 struct anon_vma_chain *avc;
3029
3030 BUG_ON(down_read_trylock(&mm->mmap_sem));
3031
3032 mutex_lock(&mm_all_locks_mutex);
3033
3034 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3035 if (signal_pending(current))
3036 goto out_unlock;
3037 if (vma->vm_file && vma->vm_file->f_mapping)
3038 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3039 }
3040
3041 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3042 if (signal_pending(current))
3043 goto out_unlock;
3044 if (vma->anon_vma)
3045 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3046 vm_lock_anon_vma(mm, avc->anon_vma);
3047 }
3048
3049 return 0;
3050
3051 out_unlock:
3052 mm_drop_all_locks(mm);
3053 return -EINTR;
3054 }
3055
3056 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3057 {
3058 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3059 /*
3060 * The LSB of head.next can't change to 0 from under
3061 * us because we hold the mm_all_locks_mutex.
3062 *
3063 * We must however clear the bitflag before unlocking
3064 * the vma so the users using the anon_vma->rb_root will
3065 * never see our bitflag.
3066 *
3067 * No need of atomic instructions here, head.next
3068 * can't change from under us until we release the
3069 * anon_vma->root->rwsem.
3070 */
3071 if (!__test_and_clear_bit(0, (unsigned long *)
3072 &anon_vma->root->rb_root.rb_node))
3073 BUG();
3074 anon_vma_unlock_write(anon_vma);
3075 }
3076 }
3077
3078 static void vm_unlock_mapping(struct address_space *mapping)
3079 {
3080 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3081 /*
3082 * AS_MM_ALL_LOCKS can't change to 0 from under us
3083 * because we hold the mm_all_locks_mutex.
3084 */
3085 mutex_unlock(&mapping->i_mmap_mutex);
3086 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3087 &mapping->flags))
3088 BUG();
3089 }
3090 }
3091
3092 /*
3093 * The mmap_sem cannot be released by the caller until
3094 * mm_drop_all_locks() returns.
3095 */
3096 void mm_drop_all_locks(struct mm_struct *mm)
3097 {
3098 struct vm_area_struct *vma;
3099 struct anon_vma_chain *avc;
3100
3101 BUG_ON(down_read_trylock(&mm->mmap_sem));
3102 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3103
3104 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3105 if (vma->anon_vma)
3106 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3107 vm_unlock_anon_vma(avc->anon_vma);
3108 if (vma->vm_file && vma->vm_file->f_mapping)
3109 vm_unlock_mapping(vma->vm_file->f_mapping);
3110 }
3111
3112 mutex_unlock(&mm_all_locks_mutex);
3113 }
3114
3115 /*
3116 * initialise the VMA slab
3117 */
3118 void __init mmap_init(void)
3119 {
3120 int ret;
3121
3122 ret = percpu_counter_init(&vm_committed_as, 0);
3123 VM_BUG_ON(ret);
3124 }
3125
3126 /*
3127 * Initialise sysctl_user_reserve_kbytes.
3128 *
3129 * This is intended to prevent a user from starting a single memory hogging
3130 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3131 * mode.
3132 *
3133 * The default value is min(3% of free memory, 128MB)
3134 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3135 */
3136 static int init_user_reserve(void)
3137 {
3138 unsigned long free_kbytes;
3139
3140 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3141
3142 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3143 return 0;
3144 }
3145 module_init(init_user_reserve)
3146
3147 /*
3148 * Initialise sysctl_admin_reserve_kbytes.
3149 *
3150 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3151 * to log in and kill a memory hogging process.
3152 *
3153 * Systems with more than 256MB will reserve 8MB, enough to recover
3154 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3155 * only reserve 3% of free pages by default.
3156 */
3157 static int init_admin_reserve(void)
3158 {
3159 unsigned long free_kbytes;
3160
3161 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3162
3163 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3164 return 0;
3165 }
3166 module_init(init_admin_reserve)
3167
3168 /*
3169 * Reinititalise user and admin reserves if memory is added or removed.
3170 *
3171 * The default user reserve max is 128MB, and the default max for the
3172 * admin reserve is 8MB. These are usually, but not always, enough to
3173 * enable recovery from a memory hogging process using login/sshd, a shell,
3174 * and tools like top. It may make sense to increase or even disable the
3175 * reserve depending on the existence of swap or variations in the recovery
3176 * tools. So, the admin may have changed them.
3177 *
3178 * If memory is added and the reserves have been eliminated or increased above
3179 * the default max, then we'll trust the admin.
3180 *
3181 * If memory is removed and there isn't enough free memory, then we
3182 * need to reset the reserves.
3183 *
3184 * Otherwise keep the reserve set by the admin.
3185 */
3186 static int reserve_mem_notifier(struct notifier_block *nb,
3187 unsigned long action, void *data)
3188 {
3189 unsigned long tmp, free_kbytes;
3190
3191 switch (action) {
3192 case MEM_ONLINE:
3193 /* Default max is 128MB. Leave alone if modified by operator. */
3194 tmp = sysctl_user_reserve_kbytes;
3195 if (0 < tmp && tmp < (1UL << 17))
3196 init_user_reserve();
3197
3198 /* Default max is 8MB. Leave alone if modified by operator. */
3199 tmp = sysctl_admin_reserve_kbytes;
3200 if (0 < tmp && tmp < (1UL << 13))
3201 init_admin_reserve();
3202
3203 break;
3204 case MEM_OFFLINE:
3205 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3206
3207 if (sysctl_user_reserve_kbytes > free_kbytes) {
3208 init_user_reserve();
3209 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3210 sysctl_user_reserve_kbytes);
3211 }
3212
3213 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3214 init_admin_reserve();
3215 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3216 sysctl_admin_reserve_kbytes);
3217 }
3218 break;
3219 default:
3220 break;
3221 }
3222 return NOTIFY_OK;
3223 }
3224
3225 static struct notifier_block reserve_mem_nb = {
3226 .notifier_call = reserve_mem_notifier,
3227 };
3228
3229 static int __meminit init_reserve_notifier(void)
3230 {
3231 if (register_hotmemory_notifier(&reserve_mem_nb))
3232 printk("Failed registering memory add/remove notifier for admin reserve");
3233
3234 return 0;
3235 }
3236 module_init(init_reserve_notifier)
This page took 0.097523 seconds and 5 git commands to generate.