mm/mmap.c: clean up CONFIG_DEBUG_VM_RB checks
[deliverable/linux.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44
45 #include <asm/uaccess.h>
46 #include <asm/cacheflush.h>
47 #include <asm/tlb.h>
48 #include <asm/mmu_context.h>
49
50 #include "internal.h"
51
52 #ifndef arch_mmap_check
53 #define arch_mmap_check(addr, len, flags) (0)
54 #endif
55
56 #ifndef arch_rebalance_pgtables
57 #define arch_rebalance_pgtables(addr, len) (addr)
58 #endif
59
60 static void unmap_region(struct mm_struct *mm,
61 struct vm_area_struct *vma, struct vm_area_struct *prev,
62 unsigned long start, unsigned long end);
63
64 /* description of effects of mapping type and prot in current implementation.
65 * this is due to the limited x86 page protection hardware. The expected
66 * behavior is in parens:
67 *
68 * map_type prot
69 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
70 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
71 * w: (no) no w: (no) no w: (yes) yes w: (no) no
72 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
73 *
74 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
75 * w: (no) no w: (no) no w: (copy) copy w: (no) no
76 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
77 *
78 */
79 pgprot_t protection_map[16] = {
80 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
81 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
82 };
83
84 pgprot_t vm_get_page_prot(unsigned long vm_flags)
85 {
86 return __pgprot(pgprot_val(protection_map[vm_flags &
87 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
88 pgprot_val(arch_vm_get_page_prot(vm_flags)));
89 }
90 EXPORT_SYMBOL(vm_get_page_prot);
91
92 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
93 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
94 unsigned long sysctl_overcommit_kbytes __read_mostly;
95 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
96 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
97 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
98 /*
99 * Make sure vm_committed_as in one cacheline and not cacheline shared with
100 * other variables. It can be updated by several CPUs frequently.
101 */
102 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
103
104 /*
105 * The global memory commitment made in the system can be a metric
106 * that can be used to drive ballooning decisions when Linux is hosted
107 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
108 * balancing memory across competing virtual machines that are hosted.
109 * Several metrics drive this policy engine including the guest reported
110 * memory commitment.
111 */
112 unsigned long vm_memory_committed(void)
113 {
114 return percpu_counter_read_positive(&vm_committed_as);
115 }
116 EXPORT_SYMBOL_GPL(vm_memory_committed);
117
118 /*
119 * Check that a process has enough memory to allocate a new virtual
120 * mapping. 0 means there is enough memory for the allocation to
121 * succeed and -ENOMEM implies there is not.
122 *
123 * We currently support three overcommit policies, which are set via the
124 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
125 *
126 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
127 * Additional code 2002 Jul 20 by Robert Love.
128 *
129 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
130 *
131 * Note this is a helper function intended to be used by LSMs which
132 * wish to use this logic.
133 */
134 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
135 {
136 unsigned long free, allowed, reserve;
137
138 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
139 -(s64)vm_committed_as_batch * num_online_cpus(),
140 "memory commitment underflow");
141
142 vm_acct_memory(pages);
143
144 /*
145 * Sometimes we want to use more memory than we have
146 */
147 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
148 return 0;
149
150 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
151 free = global_page_state(NR_FREE_PAGES);
152 free += global_page_state(NR_FILE_PAGES);
153
154 /*
155 * shmem pages shouldn't be counted as free in this
156 * case, they can't be purged, only swapped out, and
157 * that won't affect the overall amount of available
158 * memory in the system.
159 */
160 free -= global_page_state(NR_SHMEM);
161
162 free += get_nr_swap_pages();
163
164 /*
165 * Any slabs which are created with the
166 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
167 * which are reclaimable, under pressure. The dentry
168 * cache and most inode caches should fall into this
169 */
170 free += global_page_state(NR_SLAB_RECLAIMABLE);
171
172 /*
173 * Leave reserved pages. The pages are not for anonymous pages.
174 */
175 if (free <= totalreserve_pages)
176 goto error;
177 else
178 free -= totalreserve_pages;
179
180 /*
181 * Reserve some for root
182 */
183 if (!cap_sys_admin)
184 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
185
186 if (free > pages)
187 return 0;
188
189 goto error;
190 }
191
192 allowed = vm_commit_limit();
193 /*
194 * Reserve some for root
195 */
196 if (!cap_sys_admin)
197 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
198
199 /*
200 * Don't let a single process grow so big a user can't recover
201 */
202 if (mm) {
203 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
204 allowed -= min(mm->total_vm / 32, reserve);
205 }
206
207 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
208 return 0;
209 error:
210 vm_unacct_memory(pages);
211
212 return -ENOMEM;
213 }
214
215 /*
216 * Requires inode->i_mapping->i_mmap_mutex
217 */
218 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
219 struct file *file, struct address_space *mapping)
220 {
221 if (vma->vm_flags & VM_DENYWRITE)
222 atomic_inc(&file_inode(file)->i_writecount);
223 if (vma->vm_flags & VM_SHARED)
224 mapping_unmap_writable(mapping);
225
226 flush_dcache_mmap_lock(mapping);
227 if (unlikely(vma->vm_flags & VM_NONLINEAR))
228 list_del_init(&vma->shared.nonlinear);
229 else
230 vma_interval_tree_remove(vma, &mapping->i_mmap);
231 flush_dcache_mmap_unlock(mapping);
232 }
233
234 /*
235 * Unlink a file-based vm structure from its interval tree, to hide
236 * vma from rmap and vmtruncate before freeing its page tables.
237 */
238 void unlink_file_vma(struct vm_area_struct *vma)
239 {
240 struct file *file = vma->vm_file;
241
242 if (file) {
243 struct address_space *mapping = file->f_mapping;
244 mutex_lock(&mapping->i_mmap_mutex);
245 __remove_shared_vm_struct(vma, file, mapping);
246 mutex_unlock(&mapping->i_mmap_mutex);
247 }
248 }
249
250 /*
251 * Close a vm structure and free it, returning the next.
252 */
253 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
254 {
255 struct vm_area_struct *next = vma->vm_next;
256
257 might_sleep();
258 if (vma->vm_ops && vma->vm_ops->close)
259 vma->vm_ops->close(vma);
260 if (vma->vm_file)
261 fput(vma->vm_file);
262 mpol_put(vma_policy(vma));
263 kmem_cache_free(vm_area_cachep, vma);
264 return next;
265 }
266
267 static unsigned long do_brk(unsigned long addr, unsigned long len);
268
269 SYSCALL_DEFINE1(brk, unsigned long, brk)
270 {
271 unsigned long retval;
272 unsigned long newbrk, oldbrk;
273 struct mm_struct *mm = current->mm;
274 unsigned long min_brk;
275 bool populate;
276
277 down_write(&mm->mmap_sem);
278
279 #ifdef CONFIG_COMPAT_BRK
280 /*
281 * CONFIG_COMPAT_BRK can still be overridden by setting
282 * randomize_va_space to 2, which will still cause mm->start_brk
283 * to be arbitrarily shifted
284 */
285 if (current->brk_randomized)
286 min_brk = mm->start_brk;
287 else
288 min_brk = mm->end_data;
289 #else
290 min_brk = mm->start_brk;
291 #endif
292 if (brk < min_brk)
293 goto out;
294
295 /*
296 * Check against rlimit here. If this check is done later after the test
297 * of oldbrk with newbrk then it can escape the test and let the data
298 * segment grow beyond its set limit the in case where the limit is
299 * not page aligned -Ram Gupta
300 */
301 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
302 mm->end_data, mm->start_data))
303 goto out;
304
305 newbrk = PAGE_ALIGN(brk);
306 oldbrk = PAGE_ALIGN(mm->brk);
307 if (oldbrk == newbrk)
308 goto set_brk;
309
310 /* Always allow shrinking brk. */
311 if (brk <= mm->brk) {
312 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
313 goto set_brk;
314 goto out;
315 }
316
317 /* Check against existing mmap mappings. */
318 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
319 goto out;
320
321 /* Ok, looks good - let it rip. */
322 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
323 goto out;
324
325 set_brk:
326 mm->brk = brk;
327 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
328 up_write(&mm->mmap_sem);
329 if (populate)
330 mm_populate(oldbrk, newbrk - oldbrk);
331 return brk;
332
333 out:
334 retval = mm->brk;
335 up_write(&mm->mmap_sem);
336 return retval;
337 }
338
339 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
340 {
341 unsigned long max, subtree_gap;
342 max = vma->vm_start;
343 if (vma->vm_prev)
344 max -= vma->vm_prev->vm_end;
345 if (vma->vm_rb.rb_left) {
346 subtree_gap = rb_entry(vma->vm_rb.rb_left,
347 struct vm_area_struct, vm_rb)->rb_subtree_gap;
348 if (subtree_gap > max)
349 max = subtree_gap;
350 }
351 if (vma->vm_rb.rb_right) {
352 subtree_gap = rb_entry(vma->vm_rb.rb_right,
353 struct vm_area_struct, vm_rb)->rb_subtree_gap;
354 if (subtree_gap > max)
355 max = subtree_gap;
356 }
357 return max;
358 }
359
360 #ifdef CONFIG_DEBUG_VM_RB
361 static int browse_rb(struct rb_root *root)
362 {
363 int i = 0, j, bug = 0;
364 struct rb_node *nd, *pn = NULL;
365 unsigned long prev = 0, pend = 0;
366
367 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
368 struct vm_area_struct *vma;
369 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
370 if (vma->vm_start < prev) {
371 pr_emerg("vm_start %lx < prev %lx\n",
372 vma->vm_start, prev);
373 bug = 1;
374 }
375 if (vma->vm_start < pend) {
376 pr_emerg("vm_start %lx < pend %lx\n",
377 vma->vm_start, pend);
378 bug = 1;
379 }
380 if (vma->vm_start > vma->vm_end) {
381 pr_emerg("vm_start %lx > vm_end %lx\n",
382 vma->vm_start, vma->vm_end);
383 bug = 1;
384 }
385 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
386 pr_emerg("free gap %lx, correct %lx\n",
387 vma->rb_subtree_gap,
388 vma_compute_subtree_gap(vma));
389 bug = 1;
390 }
391 i++;
392 pn = nd;
393 prev = vma->vm_start;
394 pend = vma->vm_end;
395 }
396 j = 0;
397 for (nd = pn; nd; nd = rb_prev(nd))
398 j++;
399 if (i != j) {
400 pr_emerg("backwards %d, forwards %d\n", j, i);
401 bug = 1;
402 }
403 return bug ? -1 : i;
404 }
405
406 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
407 {
408 struct rb_node *nd;
409
410 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
411 struct vm_area_struct *vma;
412 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
413 BUG_ON(vma != ignore &&
414 vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
415 }
416 }
417
418 static void validate_mm(struct mm_struct *mm)
419 {
420 int bug = 0;
421 int i = 0;
422 unsigned long highest_address = 0;
423 struct vm_area_struct *vma = mm->mmap;
424
425 while (vma) {
426 struct anon_vma_chain *avc;
427
428 vma_lock_anon_vma(vma);
429 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
430 anon_vma_interval_tree_verify(avc);
431 vma_unlock_anon_vma(vma);
432 highest_address = vma->vm_end;
433 vma = vma->vm_next;
434 i++;
435 }
436 if (i != mm->map_count) {
437 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
438 bug = 1;
439 }
440 if (highest_address != mm->highest_vm_end) {
441 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
442 mm->highest_vm_end, highest_address);
443 bug = 1;
444 }
445 i = browse_rb(&mm->mm_rb);
446 if (i != mm->map_count) {
447 if (i != -1)
448 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
449 bug = 1;
450 }
451 BUG_ON(bug);
452 }
453 #else
454 #define validate_mm_rb(root, ignore) do { } while (0)
455 #define validate_mm(mm) do { } while (0)
456 #endif
457
458 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
459 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
460
461 /*
462 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
463 * vma->vm_prev->vm_end values changed, without modifying the vma's position
464 * in the rbtree.
465 */
466 static void vma_gap_update(struct vm_area_struct *vma)
467 {
468 /*
469 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
470 * function that does exacltly what we want.
471 */
472 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
473 }
474
475 static inline void vma_rb_insert(struct vm_area_struct *vma,
476 struct rb_root *root)
477 {
478 /* All rb_subtree_gap values must be consistent prior to insertion */
479 validate_mm_rb(root, NULL);
480
481 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
482 }
483
484 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
485 {
486 /*
487 * All rb_subtree_gap values must be consistent prior to erase,
488 * with the possible exception of the vma being erased.
489 */
490 validate_mm_rb(root, vma);
491
492 /*
493 * Note rb_erase_augmented is a fairly large inline function,
494 * so make sure we instantiate it only once with our desired
495 * augmented rbtree callbacks.
496 */
497 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
498 }
499
500 /*
501 * vma has some anon_vma assigned, and is already inserted on that
502 * anon_vma's interval trees.
503 *
504 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
505 * vma must be removed from the anon_vma's interval trees using
506 * anon_vma_interval_tree_pre_update_vma().
507 *
508 * After the update, the vma will be reinserted using
509 * anon_vma_interval_tree_post_update_vma().
510 *
511 * The entire update must be protected by exclusive mmap_sem and by
512 * the root anon_vma's mutex.
513 */
514 static inline void
515 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
516 {
517 struct anon_vma_chain *avc;
518
519 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
520 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
521 }
522
523 static inline void
524 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
525 {
526 struct anon_vma_chain *avc;
527
528 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
529 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
530 }
531
532 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
533 unsigned long end, struct vm_area_struct **pprev,
534 struct rb_node ***rb_link, struct rb_node **rb_parent)
535 {
536 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
537
538 __rb_link = &mm->mm_rb.rb_node;
539 rb_prev = __rb_parent = NULL;
540
541 while (*__rb_link) {
542 struct vm_area_struct *vma_tmp;
543
544 __rb_parent = *__rb_link;
545 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
546
547 if (vma_tmp->vm_end > addr) {
548 /* Fail if an existing vma overlaps the area */
549 if (vma_tmp->vm_start < end)
550 return -ENOMEM;
551 __rb_link = &__rb_parent->rb_left;
552 } else {
553 rb_prev = __rb_parent;
554 __rb_link = &__rb_parent->rb_right;
555 }
556 }
557
558 *pprev = NULL;
559 if (rb_prev)
560 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
561 *rb_link = __rb_link;
562 *rb_parent = __rb_parent;
563 return 0;
564 }
565
566 static unsigned long count_vma_pages_range(struct mm_struct *mm,
567 unsigned long addr, unsigned long end)
568 {
569 unsigned long nr_pages = 0;
570 struct vm_area_struct *vma;
571
572 /* Find first overlaping mapping */
573 vma = find_vma_intersection(mm, addr, end);
574 if (!vma)
575 return 0;
576
577 nr_pages = (min(end, vma->vm_end) -
578 max(addr, vma->vm_start)) >> PAGE_SHIFT;
579
580 /* Iterate over the rest of the overlaps */
581 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
582 unsigned long overlap_len;
583
584 if (vma->vm_start > end)
585 break;
586
587 overlap_len = min(end, vma->vm_end) - vma->vm_start;
588 nr_pages += overlap_len >> PAGE_SHIFT;
589 }
590
591 return nr_pages;
592 }
593
594 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
595 struct rb_node **rb_link, struct rb_node *rb_parent)
596 {
597 /* Update tracking information for the gap following the new vma. */
598 if (vma->vm_next)
599 vma_gap_update(vma->vm_next);
600 else
601 mm->highest_vm_end = vma->vm_end;
602
603 /*
604 * vma->vm_prev wasn't known when we followed the rbtree to find the
605 * correct insertion point for that vma. As a result, we could not
606 * update the vma vm_rb parents rb_subtree_gap values on the way down.
607 * So, we first insert the vma with a zero rb_subtree_gap value
608 * (to be consistent with what we did on the way down), and then
609 * immediately update the gap to the correct value. Finally we
610 * rebalance the rbtree after all augmented values have been set.
611 */
612 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
613 vma->rb_subtree_gap = 0;
614 vma_gap_update(vma);
615 vma_rb_insert(vma, &mm->mm_rb);
616 }
617
618 static void __vma_link_file(struct vm_area_struct *vma)
619 {
620 struct file *file;
621
622 file = vma->vm_file;
623 if (file) {
624 struct address_space *mapping = file->f_mapping;
625
626 if (vma->vm_flags & VM_DENYWRITE)
627 atomic_dec(&file_inode(file)->i_writecount);
628 if (vma->vm_flags & VM_SHARED)
629 atomic_inc(&mapping->i_mmap_writable);
630
631 flush_dcache_mmap_lock(mapping);
632 if (unlikely(vma->vm_flags & VM_NONLINEAR))
633 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
634 else
635 vma_interval_tree_insert(vma, &mapping->i_mmap);
636 flush_dcache_mmap_unlock(mapping);
637 }
638 }
639
640 static void
641 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
642 struct vm_area_struct *prev, struct rb_node **rb_link,
643 struct rb_node *rb_parent)
644 {
645 __vma_link_list(mm, vma, prev, rb_parent);
646 __vma_link_rb(mm, vma, rb_link, rb_parent);
647 }
648
649 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
650 struct vm_area_struct *prev, struct rb_node **rb_link,
651 struct rb_node *rb_parent)
652 {
653 struct address_space *mapping = NULL;
654
655 if (vma->vm_file) {
656 mapping = vma->vm_file->f_mapping;
657 mutex_lock(&mapping->i_mmap_mutex);
658 }
659
660 __vma_link(mm, vma, prev, rb_link, rb_parent);
661 __vma_link_file(vma);
662
663 if (mapping)
664 mutex_unlock(&mapping->i_mmap_mutex);
665
666 mm->map_count++;
667 validate_mm(mm);
668 }
669
670 /*
671 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
672 * mm's list and rbtree. It has already been inserted into the interval tree.
673 */
674 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
675 {
676 struct vm_area_struct *prev;
677 struct rb_node **rb_link, *rb_parent;
678
679 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
680 &prev, &rb_link, &rb_parent))
681 BUG();
682 __vma_link(mm, vma, prev, rb_link, rb_parent);
683 mm->map_count++;
684 }
685
686 static inline void
687 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
688 struct vm_area_struct *prev)
689 {
690 struct vm_area_struct *next;
691
692 vma_rb_erase(vma, &mm->mm_rb);
693 prev->vm_next = next = vma->vm_next;
694 if (next)
695 next->vm_prev = prev;
696
697 /* Kill the cache */
698 vmacache_invalidate(mm);
699 }
700
701 /*
702 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
703 * is already present in an i_mmap tree without adjusting the tree.
704 * The following helper function should be used when such adjustments
705 * are necessary. The "insert" vma (if any) is to be inserted
706 * before we drop the necessary locks.
707 */
708 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
709 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
710 {
711 struct mm_struct *mm = vma->vm_mm;
712 struct vm_area_struct *next = vma->vm_next;
713 struct vm_area_struct *importer = NULL;
714 struct address_space *mapping = NULL;
715 struct rb_root *root = NULL;
716 struct anon_vma *anon_vma = NULL;
717 struct file *file = vma->vm_file;
718 bool start_changed = false, end_changed = false;
719 long adjust_next = 0;
720 int remove_next = 0;
721
722 if (next && !insert) {
723 struct vm_area_struct *exporter = NULL;
724
725 if (end >= next->vm_end) {
726 /*
727 * vma expands, overlapping all the next, and
728 * perhaps the one after too (mprotect case 6).
729 */
730 again: remove_next = 1 + (end > next->vm_end);
731 end = next->vm_end;
732 exporter = next;
733 importer = vma;
734 } else if (end > next->vm_start) {
735 /*
736 * vma expands, overlapping part of the next:
737 * mprotect case 5 shifting the boundary up.
738 */
739 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
740 exporter = next;
741 importer = vma;
742 } else if (end < vma->vm_end) {
743 /*
744 * vma shrinks, and !insert tells it's not
745 * split_vma inserting another: so it must be
746 * mprotect case 4 shifting the boundary down.
747 */
748 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
749 exporter = vma;
750 importer = next;
751 }
752
753 /*
754 * Easily overlooked: when mprotect shifts the boundary,
755 * make sure the expanding vma has anon_vma set if the
756 * shrinking vma had, to cover any anon pages imported.
757 */
758 if (exporter && exporter->anon_vma && !importer->anon_vma) {
759 if (anon_vma_clone(importer, exporter))
760 return -ENOMEM;
761 importer->anon_vma = exporter->anon_vma;
762 }
763 }
764
765 if (file) {
766 mapping = file->f_mapping;
767 if (!(vma->vm_flags & VM_NONLINEAR)) {
768 root = &mapping->i_mmap;
769 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
770
771 if (adjust_next)
772 uprobe_munmap(next, next->vm_start,
773 next->vm_end);
774 }
775
776 mutex_lock(&mapping->i_mmap_mutex);
777 if (insert) {
778 /*
779 * Put into interval tree now, so instantiated pages
780 * are visible to arm/parisc __flush_dcache_page
781 * throughout; but we cannot insert into address
782 * space until vma start or end is updated.
783 */
784 __vma_link_file(insert);
785 }
786 }
787
788 vma_adjust_trans_huge(vma, start, end, adjust_next);
789
790 anon_vma = vma->anon_vma;
791 if (!anon_vma && adjust_next)
792 anon_vma = next->anon_vma;
793 if (anon_vma) {
794 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
795 anon_vma != next->anon_vma, next);
796 anon_vma_lock_write(anon_vma);
797 anon_vma_interval_tree_pre_update_vma(vma);
798 if (adjust_next)
799 anon_vma_interval_tree_pre_update_vma(next);
800 }
801
802 if (root) {
803 flush_dcache_mmap_lock(mapping);
804 vma_interval_tree_remove(vma, root);
805 if (adjust_next)
806 vma_interval_tree_remove(next, root);
807 }
808
809 if (start != vma->vm_start) {
810 vma->vm_start = start;
811 start_changed = true;
812 }
813 if (end != vma->vm_end) {
814 vma->vm_end = end;
815 end_changed = true;
816 }
817 vma->vm_pgoff = pgoff;
818 if (adjust_next) {
819 next->vm_start += adjust_next << PAGE_SHIFT;
820 next->vm_pgoff += adjust_next;
821 }
822
823 if (root) {
824 if (adjust_next)
825 vma_interval_tree_insert(next, root);
826 vma_interval_tree_insert(vma, root);
827 flush_dcache_mmap_unlock(mapping);
828 }
829
830 if (remove_next) {
831 /*
832 * vma_merge has merged next into vma, and needs
833 * us to remove next before dropping the locks.
834 */
835 __vma_unlink(mm, next, vma);
836 if (file)
837 __remove_shared_vm_struct(next, file, mapping);
838 } else if (insert) {
839 /*
840 * split_vma has split insert from vma, and needs
841 * us to insert it before dropping the locks
842 * (it may either follow vma or precede it).
843 */
844 __insert_vm_struct(mm, insert);
845 } else {
846 if (start_changed)
847 vma_gap_update(vma);
848 if (end_changed) {
849 if (!next)
850 mm->highest_vm_end = end;
851 else if (!adjust_next)
852 vma_gap_update(next);
853 }
854 }
855
856 if (anon_vma) {
857 anon_vma_interval_tree_post_update_vma(vma);
858 if (adjust_next)
859 anon_vma_interval_tree_post_update_vma(next);
860 anon_vma_unlock_write(anon_vma);
861 }
862 if (mapping)
863 mutex_unlock(&mapping->i_mmap_mutex);
864
865 if (root) {
866 uprobe_mmap(vma);
867
868 if (adjust_next)
869 uprobe_mmap(next);
870 }
871
872 if (remove_next) {
873 if (file) {
874 uprobe_munmap(next, next->vm_start, next->vm_end);
875 fput(file);
876 }
877 if (next->anon_vma)
878 anon_vma_merge(vma, next);
879 mm->map_count--;
880 mpol_put(vma_policy(next));
881 kmem_cache_free(vm_area_cachep, next);
882 /*
883 * In mprotect's case 6 (see comments on vma_merge),
884 * we must remove another next too. It would clutter
885 * up the code too much to do both in one go.
886 */
887 next = vma->vm_next;
888 if (remove_next == 2)
889 goto again;
890 else if (next)
891 vma_gap_update(next);
892 else
893 mm->highest_vm_end = end;
894 }
895 if (insert && file)
896 uprobe_mmap(insert);
897
898 validate_mm(mm);
899
900 return 0;
901 }
902
903 /*
904 * If the vma has a ->close operation then the driver probably needs to release
905 * per-vma resources, so we don't attempt to merge those.
906 */
907 static inline int is_mergeable_vma(struct vm_area_struct *vma,
908 struct file *file, unsigned long vm_flags)
909 {
910 /*
911 * VM_SOFTDIRTY should not prevent from VMA merging, if we
912 * match the flags but dirty bit -- the caller should mark
913 * merged VMA as dirty. If dirty bit won't be excluded from
914 * comparison, we increase pressue on the memory system forcing
915 * the kernel to generate new VMAs when old one could be
916 * extended instead.
917 */
918 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
919 return 0;
920 if (vma->vm_file != file)
921 return 0;
922 if (vma->vm_ops && vma->vm_ops->close)
923 return 0;
924 return 1;
925 }
926
927 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
928 struct anon_vma *anon_vma2,
929 struct vm_area_struct *vma)
930 {
931 /*
932 * The list_is_singular() test is to avoid merging VMA cloned from
933 * parents. This can improve scalability caused by anon_vma lock.
934 */
935 if ((!anon_vma1 || !anon_vma2) && (!vma ||
936 list_is_singular(&vma->anon_vma_chain)))
937 return 1;
938 return anon_vma1 == anon_vma2;
939 }
940
941 /*
942 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
943 * in front of (at a lower virtual address and file offset than) the vma.
944 *
945 * We cannot merge two vmas if they have differently assigned (non-NULL)
946 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
947 *
948 * We don't check here for the merged mmap wrapping around the end of pagecache
949 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
950 * wrap, nor mmaps which cover the final page at index -1UL.
951 */
952 static int
953 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
954 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
955 {
956 if (is_mergeable_vma(vma, file, vm_flags) &&
957 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
958 if (vma->vm_pgoff == vm_pgoff)
959 return 1;
960 }
961 return 0;
962 }
963
964 /*
965 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
966 * beyond (at a higher virtual address and file offset than) the vma.
967 *
968 * We cannot merge two vmas if they have differently assigned (non-NULL)
969 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
970 */
971 static int
972 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
973 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
974 {
975 if (is_mergeable_vma(vma, file, vm_flags) &&
976 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
977 pgoff_t vm_pglen;
978 vm_pglen = vma_pages(vma);
979 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
980 return 1;
981 }
982 return 0;
983 }
984
985 /*
986 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
987 * whether that can be merged with its predecessor or its successor.
988 * Or both (it neatly fills a hole).
989 *
990 * In most cases - when called for mmap, brk or mremap - [addr,end) is
991 * certain not to be mapped by the time vma_merge is called; but when
992 * called for mprotect, it is certain to be already mapped (either at
993 * an offset within prev, or at the start of next), and the flags of
994 * this area are about to be changed to vm_flags - and the no-change
995 * case has already been eliminated.
996 *
997 * The following mprotect cases have to be considered, where AAAA is
998 * the area passed down from mprotect_fixup, never extending beyond one
999 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1000 *
1001 * AAAA AAAA AAAA AAAA
1002 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1003 * cannot merge might become might become might become
1004 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1005 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1006 * mremap move: PPPPNNNNNNNN 8
1007 * AAAA
1008 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1009 * might become case 1 below case 2 below case 3 below
1010 *
1011 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1012 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1013 */
1014 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1015 struct vm_area_struct *prev, unsigned long addr,
1016 unsigned long end, unsigned long vm_flags,
1017 struct anon_vma *anon_vma, struct file *file,
1018 pgoff_t pgoff, struct mempolicy *policy)
1019 {
1020 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1021 struct vm_area_struct *area, *next;
1022 int err;
1023
1024 /*
1025 * We later require that vma->vm_flags == vm_flags,
1026 * so this tests vma->vm_flags & VM_SPECIAL, too.
1027 */
1028 if (vm_flags & VM_SPECIAL)
1029 return NULL;
1030
1031 if (prev)
1032 next = prev->vm_next;
1033 else
1034 next = mm->mmap;
1035 area = next;
1036 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1037 next = next->vm_next;
1038
1039 /*
1040 * Can it merge with the predecessor?
1041 */
1042 if (prev && prev->vm_end == addr &&
1043 mpol_equal(vma_policy(prev), policy) &&
1044 can_vma_merge_after(prev, vm_flags,
1045 anon_vma, file, pgoff)) {
1046 /*
1047 * OK, it can. Can we now merge in the successor as well?
1048 */
1049 if (next && end == next->vm_start &&
1050 mpol_equal(policy, vma_policy(next)) &&
1051 can_vma_merge_before(next, vm_flags,
1052 anon_vma, file, pgoff+pglen) &&
1053 is_mergeable_anon_vma(prev->anon_vma,
1054 next->anon_vma, NULL)) {
1055 /* cases 1, 6 */
1056 err = vma_adjust(prev, prev->vm_start,
1057 next->vm_end, prev->vm_pgoff, NULL);
1058 } else /* cases 2, 5, 7 */
1059 err = vma_adjust(prev, prev->vm_start,
1060 end, prev->vm_pgoff, NULL);
1061 if (err)
1062 return NULL;
1063 khugepaged_enter_vma_merge(prev);
1064 return prev;
1065 }
1066
1067 /*
1068 * Can this new request be merged in front of next?
1069 */
1070 if (next && end == next->vm_start &&
1071 mpol_equal(policy, vma_policy(next)) &&
1072 can_vma_merge_before(next, vm_flags,
1073 anon_vma, file, pgoff+pglen)) {
1074 if (prev && addr < prev->vm_end) /* case 4 */
1075 err = vma_adjust(prev, prev->vm_start,
1076 addr, prev->vm_pgoff, NULL);
1077 else /* cases 3, 8 */
1078 err = vma_adjust(area, addr, next->vm_end,
1079 next->vm_pgoff - pglen, NULL);
1080 if (err)
1081 return NULL;
1082 khugepaged_enter_vma_merge(area);
1083 return area;
1084 }
1085
1086 return NULL;
1087 }
1088
1089 /*
1090 * Rough compatbility check to quickly see if it's even worth looking
1091 * at sharing an anon_vma.
1092 *
1093 * They need to have the same vm_file, and the flags can only differ
1094 * in things that mprotect may change.
1095 *
1096 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1097 * we can merge the two vma's. For example, we refuse to merge a vma if
1098 * there is a vm_ops->close() function, because that indicates that the
1099 * driver is doing some kind of reference counting. But that doesn't
1100 * really matter for the anon_vma sharing case.
1101 */
1102 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1103 {
1104 return a->vm_end == b->vm_start &&
1105 mpol_equal(vma_policy(a), vma_policy(b)) &&
1106 a->vm_file == b->vm_file &&
1107 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1108 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1109 }
1110
1111 /*
1112 * Do some basic sanity checking to see if we can re-use the anon_vma
1113 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1114 * the same as 'old', the other will be the new one that is trying
1115 * to share the anon_vma.
1116 *
1117 * NOTE! This runs with mm_sem held for reading, so it is possible that
1118 * the anon_vma of 'old' is concurrently in the process of being set up
1119 * by another page fault trying to merge _that_. But that's ok: if it
1120 * is being set up, that automatically means that it will be a singleton
1121 * acceptable for merging, so we can do all of this optimistically. But
1122 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1123 *
1124 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1125 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1126 * is to return an anon_vma that is "complex" due to having gone through
1127 * a fork).
1128 *
1129 * We also make sure that the two vma's are compatible (adjacent,
1130 * and with the same memory policies). That's all stable, even with just
1131 * a read lock on the mm_sem.
1132 */
1133 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1134 {
1135 if (anon_vma_compatible(a, b)) {
1136 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1137
1138 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1139 return anon_vma;
1140 }
1141 return NULL;
1142 }
1143
1144 /*
1145 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1146 * neighbouring vmas for a suitable anon_vma, before it goes off
1147 * to allocate a new anon_vma. It checks because a repetitive
1148 * sequence of mprotects and faults may otherwise lead to distinct
1149 * anon_vmas being allocated, preventing vma merge in subsequent
1150 * mprotect.
1151 */
1152 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1153 {
1154 struct anon_vma *anon_vma;
1155 struct vm_area_struct *near;
1156
1157 near = vma->vm_next;
1158 if (!near)
1159 goto try_prev;
1160
1161 anon_vma = reusable_anon_vma(near, vma, near);
1162 if (anon_vma)
1163 return anon_vma;
1164 try_prev:
1165 near = vma->vm_prev;
1166 if (!near)
1167 goto none;
1168
1169 anon_vma = reusable_anon_vma(near, near, vma);
1170 if (anon_vma)
1171 return anon_vma;
1172 none:
1173 /*
1174 * There's no absolute need to look only at touching neighbours:
1175 * we could search further afield for "compatible" anon_vmas.
1176 * But it would probably just be a waste of time searching,
1177 * or lead to too many vmas hanging off the same anon_vma.
1178 * We're trying to allow mprotect remerging later on,
1179 * not trying to minimize memory used for anon_vmas.
1180 */
1181 return NULL;
1182 }
1183
1184 #ifdef CONFIG_PROC_FS
1185 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1186 struct file *file, long pages)
1187 {
1188 const unsigned long stack_flags
1189 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1190
1191 mm->total_vm += pages;
1192
1193 if (file) {
1194 mm->shared_vm += pages;
1195 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1196 mm->exec_vm += pages;
1197 } else if (flags & stack_flags)
1198 mm->stack_vm += pages;
1199 }
1200 #endif /* CONFIG_PROC_FS */
1201
1202 /*
1203 * If a hint addr is less than mmap_min_addr change hint to be as
1204 * low as possible but still greater than mmap_min_addr
1205 */
1206 static inline unsigned long round_hint_to_min(unsigned long hint)
1207 {
1208 hint &= PAGE_MASK;
1209 if (((void *)hint != NULL) &&
1210 (hint < mmap_min_addr))
1211 return PAGE_ALIGN(mmap_min_addr);
1212 return hint;
1213 }
1214
1215 static inline int mlock_future_check(struct mm_struct *mm,
1216 unsigned long flags,
1217 unsigned long len)
1218 {
1219 unsigned long locked, lock_limit;
1220
1221 /* mlock MCL_FUTURE? */
1222 if (flags & VM_LOCKED) {
1223 locked = len >> PAGE_SHIFT;
1224 locked += mm->locked_vm;
1225 lock_limit = rlimit(RLIMIT_MEMLOCK);
1226 lock_limit >>= PAGE_SHIFT;
1227 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1228 return -EAGAIN;
1229 }
1230 return 0;
1231 }
1232
1233 /*
1234 * The caller must hold down_write(&current->mm->mmap_sem).
1235 */
1236
1237 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1238 unsigned long len, unsigned long prot,
1239 unsigned long flags, unsigned long pgoff,
1240 unsigned long *populate)
1241 {
1242 struct mm_struct *mm = current->mm;
1243 vm_flags_t vm_flags;
1244
1245 *populate = 0;
1246
1247 /*
1248 * Does the application expect PROT_READ to imply PROT_EXEC?
1249 *
1250 * (the exception is when the underlying filesystem is noexec
1251 * mounted, in which case we dont add PROT_EXEC.)
1252 */
1253 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1254 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1255 prot |= PROT_EXEC;
1256
1257 if (!len)
1258 return -EINVAL;
1259
1260 if (!(flags & MAP_FIXED))
1261 addr = round_hint_to_min(addr);
1262
1263 /* Careful about overflows.. */
1264 len = PAGE_ALIGN(len);
1265 if (!len)
1266 return -ENOMEM;
1267
1268 /* offset overflow? */
1269 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1270 return -EOVERFLOW;
1271
1272 /* Too many mappings? */
1273 if (mm->map_count > sysctl_max_map_count)
1274 return -ENOMEM;
1275
1276 /* Obtain the address to map to. we verify (or select) it and ensure
1277 * that it represents a valid section of the address space.
1278 */
1279 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1280 if (addr & ~PAGE_MASK)
1281 return addr;
1282
1283 /* Do simple checking here so the lower-level routines won't have
1284 * to. we assume access permissions have been handled by the open
1285 * of the memory object, so we don't do any here.
1286 */
1287 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1288 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1289
1290 if (flags & MAP_LOCKED)
1291 if (!can_do_mlock())
1292 return -EPERM;
1293
1294 if (mlock_future_check(mm, vm_flags, len))
1295 return -EAGAIN;
1296
1297 if (file) {
1298 struct inode *inode = file_inode(file);
1299
1300 switch (flags & MAP_TYPE) {
1301 case MAP_SHARED:
1302 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1303 return -EACCES;
1304
1305 /*
1306 * Make sure we don't allow writing to an append-only
1307 * file..
1308 */
1309 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1310 return -EACCES;
1311
1312 /*
1313 * Make sure there are no mandatory locks on the file.
1314 */
1315 if (locks_verify_locked(file))
1316 return -EAGAIN;
1317
1318 vm_flags |= VM_SHARED | VM_MAYSHARE;
1319 if (!(file->f_mode & FMODE_WRITE))
1320 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1321
1322 /* fall through */
1323 case MAP_PRIVATE:
1324 if (!(file->f_mode & FMODE_READ))
1325 return -EACCES;
1326 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1327 if (vm_flags & VM_EXEC)
1328 return -EPERM;
1329 vm_flags &= ~VM_MAYEXEC;
1330 }
1331
1332 if (!file->f_op->mmap)
1333 return -ENODEV;
1334 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1335 return -EINVAL;
1336 break;
1337
1338 default:
1339 return -EINVAL;
1340 }
1341 } else {
1342 switch (flags & MAP_TYPE) {
1343 case MAP_SHARED:
1344 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1345 return -EINVAL;
1346 /*
1347 * Ignore pgoff.
1348 */
1349 pgoff = 0;
1350 vm_flags |= VM_SHARED | VM_MAYSHARE;
1351 break;
1352 case MAP_PRIVATE:
1353 /*
1354 * Set pgoff according to addr for anon_vma.
1355 */
1356 pgoff = addr >> PAGE_SHIFT;
1357 break;
1358 default:
1359 return -EINVAL;
1360 }
1361 }
1362
1363 /*
1364 * Set 'VM_NORESERVE' if we should not account for the
1365 * memory use of this mapping.
1366 */
1367 if (flags & MAP_NORESERVE) {
1368 /* We honor MAP_NORESERVE if allowed to overcommit */
1369 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1370 vm_flags |= VM_NORESERVE;
1371
1372 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1373 if (file && is_file_hugepages(file))
1374 vm_flags |= VM_NORESERVE;
1375 }
1376
1377 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1378 if (!IS_ERR_VALUE(addr) &&
1379 ((vm_flags & VM_LOCKED) ||
1380 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1381 *populate = len;
1382 return addr;
1383 }
1384
1385 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1386 unsigned long, prot, unsigned long, flags,
1387 unsigned long, fd, unsigned long, pgoff)
1388 {
1389 struct file *file = NULL;
1390 unsigned long retval = -EBADF;
1391
1392 if (!(flags & MAP_ANONYMOUS)) {
1393 audit_mmap_fd(fd, flags);
1394 file = fget(fd);
1395 if (!file)
1396 goto out;
1397 if (is_file_hugepages(file))
1398 len = ALIGN(len, huge_page_size(hstate_file(file)));
1399 retval = -EINVAL;
1400 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1401 goto out_fput;
1402 } else if (flags & MAP_HUGETLB) {
1403 struct user_struct *user = NULL;
1404 struct hstate *hs;
1405
1406 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1407 if (!hs)
1408 return -EINVAL;
1409
1410 len = ALIGN(len, huge_page_size(hs));
1411 /*
1412 * VM_NORESERVE is used because the reservations will be
1413 * taken when vm_ops->mmap() is called
1414 * A dummy user value is used because we are not locking
1415 * memory so no accounting is necessary
1416 */
1417 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1418 VM_NORESERVE,
1419 &user, HUGETLB_ANONHUGE_INODE,
1420 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1421 if (IS_ERR(file))
1422 return PTR_ERR(file);
1423 }
1424
1425 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1426
1427 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1428 out_fput:
1429 if (file)
1430 fput(file);
1431 out:
1432 return retval;
1433 }
1434
1435 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1436 struct mmap_arg_struct {
1437 unsigned long addr;
1438 unsigned long len;
1439 unsigned long prot;
1440 unsigned long flags;
1441 unsigned long fd;
1442 unsigned long offset;
1443 };
1444
1445 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1446 {
1447 struct mmap_arg_struct a;
1448
1449 if (copy_from_user(&a, arg, sizeof(a)))
1450 return -EFAULT;
1451 if (a.offset & ~PAGE_MASK)
1452 return -EINVAL;
1453
1454 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1455 a.offset >> PAGE_SHIFT);
1456 }
1457 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1458
1459 /*
1460 * Some shared mappigns will want the pages marked read-only
1461 * to track write events. If so, we'll downgrade vm_page_prot
1462 * to the private version (using protection_map[] without the
1463 * VM_SHARED bit).
1464 */
1465 int vma_wants_writenotify(struct vm_area_struct *vma)
1466 {
1467 vm_flags_t vm_flags = vma->vm_flags;
1468
1469 /* If it was private or non-writable, the write bit is already clear */
1470 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1471 return 0;
1472
1473 /* The backer wishes to know when pages are first written to? */
1474 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1475 return 1;
1476
1477 /* The open routine did something to the protections already? */
1478 if (pgprot_val(vma->vm_page_prot) !=
1479 pgprot_val(vm_get_page_prot(vm_flags)))
1480 return 0;
1481
1482 /* Specialty mapping? */
1483 if (vm_flags & VM_PFNMAP)
1484 return 0;
1485
1486 /* Can the mapping track the dirty pages? */
1487 return vma->vm_file && vma->vm_file->f_mapping &&
1488 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1489 }
1490
1491 /*
1492 * We account for memory if it's a private writeable mapping,
1493 * not hugepages and VM_NORESERVE wasn't set.
1494 */
1495 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1496 {
1497 /*
1498 * hugetlb has its own accounting separate from the core VM
1499 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1500 */
1501 if (file && is_file_hugepages(file))
1502 return 0;
1503
1504 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1505 }
1506
1507 unsigned long mmap_region(struct file *file, unsigned long addr,
1508 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1509 {
1510 struct mm_struct *mm = current->mm;
1511 struct vm_area_struct *vma, *prev;
1512 int error;
1513 struct rb_node **rb_link, *rb_parent;
1514 unsigned long charged = 0;
1515
1516 /* Check against address space limit. */
1517 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1518 unsigned long nr_pages;
1519
1520 /*
1521 * MAP_FIXED may remove pages of mappings that intersects with
1522 * requested mapping. Account for the pages it would unmap.
1523 */
1524 if (!(vm_flags & MAP_FIXED))
1525 return -ENOMEM;
1526
1527 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1528
1529 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1530 return -ENOMEM;
1531 }
1532
1533 /* Clear old maps */
1534 error = -ENOMEM;
1535 munmap_back:
1536 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1537 if (do_munmap(mm, addr, len))
1538 return -ENOMEM;
1539 goto munmap_back;
1540 }
1541
1542 /*
1543 * Private writable mapping: check memory availability
1544 */
1545 if (accountable_mapping(file, vm_flags)) {
1546 charged = len >> PAGE_SHIFT;
1547 if (security_vm_enough_memory_mm(mm, charged))
1548 return -ENOMEM;
1549 vm_flags |= VM_ACCOUNT;
1550 }
1551
1552 /*
1553 * Can we just expand an old mapping?
1554 */
1555 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1556 if (vma)
1557 goto out;
1558
1559 /*
1560 * Determine the object being mapped and call the appropriate
1561 * specific mapper. the address has already been validated, but
1562 * not unmapped, but the maps are removed from the list.
1563 */
1564 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1565 if (!vma) {
1566 error = -ENOMEM;
1567 goto unacct_error;
1568 }
1569
1570 vma->vm_mm = mm;
1571 vma->vm_start = addr;
1572 vma->vm_end = addr + len;
1573 vma->vm_flags = vm_flags;
1574 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1575 vma->vm_pgoff = pgoff;
1576 INIT_LIST_HEAD(&vma->anon_vma_chain);
1577
1578 if (file) {
1579 if (vm_flags & VM_DENYWRITE) {
1580 error = deny_write_access(file);
1581 if (error)
1582 goto free_vma;
1583 }
1584 if (vm_flags & VM_SHARED) {
1585 error = mapping_map_writable(file->f_mapping);
1586 if (error)
1587 goto allow_write_and_free_vma;
1588 }
1589
1590 /* ->mmap() can change vma->vm_file, but must guarantee that
1591 * vma_link() below can deny write-access if VM_DENYWRITE is set
1592 * and map writably if VM_SHARED is set. This usually means the
1593 * new file must not have been exposed to user-space, yet.
1594 */
1595 vma->vm_file = get_file(file);
1596 error = file->f_op->mmap(file, vma);
1597 if (error)
1598 goto unmap_and_free_vma;
1599
1600 /* Can addr have changed??
1601 *
1602 * Answer: Yes, several device drivers can do it in their
1603 * f_op->mmap method. -DaveM
1604 * Bug: If addr is changed, prev, rb_link, rb_parent should
1605 * be updated for vma_link()
1606 */
1607 WARN_ON_ONCE(addr != vma->vm_start);
1608
1609 addr = vma->vm_start;
1610 vm_flags = vma->vm_flags;
1611 } else if (vm_flags & VM_SHARED) {
1612 error = shmem_zero_setup(vma);
1613 if (error)
1614 goto free_vma;
1615 }
1616
1617 if (vma_wants_writenotify(vma)) {
1618 pgprot_t pprot = vma->vm_page_prot;
1619
1620 /* Can vma->vm_page_prot have changed??
1621 *
1622 * Answer: Yes, drivers may have changed it in their
1623 * f_op->mmap method.
1624 *
1625 * Ensures that vmas marked as uncached stay that way.
1626 */
1627 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1628 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1629 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1630 }
1631
1632 vma_link(mm, vma, prev, rb_link, rb_parent);
1633 /* Once vma denies write, undo our temporary denial count */
1634 if (file) {
1635 if (vm_flags & VM_SHARED)
1636 mapping_unmap_writable(file->f_mapping);
1637 if (vm_flags & VM_DENYWRITE)
1638 allow_write_access(file);
1639 }
1640 file = vma->vm_file;
1641 out:
1642 perf_event_mmap(vma);
1643
1644 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1645 if (vm_flags & VM_LOCKED) {
1646 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1647 vma == get_gate_vma(current->mm)))
1648 mm->locked_vm += (len >> PAGE_SHIFT);
1649 else
1650 vma->vm_flags &= ~VM_LOCKED;
1651 }
1652
1653 if (file)
1654 uprobe_mmap(vma);
1655
1656 /*
1657 * New (or expanded) vma always get soft dirty status.
1658 * Otherwise user-space soft-dirty page tracker won't
1659 * be able to distinguish situation when vma area unmapped,
1660 * then new mapped in-place (which must be aimed as
1661 * a completely new data area).
1662 */
1663 vma->vm_flags |= VM_SOFTDIRTY;
1664
1665 return addr;
1666
1667 unmap_and_free_vma:
1668 vma->vm_file = NULL;
1669 fput(file);
1670
1671 /* Undo any partial mapping done by a device driver. */
1672 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1673 charged = 0;
1674 if (vm_flags & VM_SHARED)
1675 mapping_unmap_writable(file->f_mapping);
1676 allow_write_and_free_vma:
1677 if (vm_flags & VM_DENYWRITE)
1678 allow_write_access(file);
1679 free_vma:
1680 kmem_cache_free(vm_area_cachep, vma);
1681 unacct_error:
1682 if (charged)
1683 vm_unacct_memory(charged);
1684 return error;
1685 }
1686
1687 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1688 {
1689 /*
1690 * We implement the search by looking for an rbtree node that
1691 * immediately follows a suitable gap. That is,
1692 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1693 * - gap_end = vma->vm_start >= info->low_limit + length;
1694 * - gap_end - gap_start >= length
1695 */
1696
1697 struct mm_struct *mm = current->mm;
1698 struct vm_area_struct *vma;
1699 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1700
1701 /* Adjust search length to account for worst case alignment overhead */
1702 length = info->length + info->align_mask;
1703 if (length < info->length)
1704 return -ENOMEM;
1705
1706 /* Adjust search limits by the desired length */
1707 if (info->high_limit < length)
1708 return -ENOMEM;
1709 high_limit = info->high_limit - length;
1710
1711 if (info->low_limit > high_limit)
1712 return -ENOMEM;
1713 low_limit = info->low_limit + length;
1714
1715 /* Check if rbtree root looks promising */
1716 if (RB_EMPTY_ROOT(&mm->mm_rb))
1717 goto check_highest;
1718 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1719 if (vma->rb_subtree_gap < length)
1720 goto check_highest;
1721
1722 while (true) {
1723 /* Visit left subtree if it looks promising */
1724 gap_end = vma->vm_start;
1725 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1726 struct vm_area_struct *left =
1727 rb_entry(vma->vm_rb.rb_left,
1728 struct vm_area_struct, vm_rb);
1729 if (left->rb_subtree_gap >= length) {
1730 vma = left;
1731 continue;
1732 }
1733 }
1734
1735 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1736 check_current:
1737 /* Check if current node has a suitable gap */
1738 if (gap_start > high_limit)
1739 return -ENOMEM;
1740 if (gap_end >= low_limit && gap_end - gap_start >= length)
1741 goto found;
1742
1743 /* Visit right subtree if it looks promising */
1744 if (vma->vm_rb.rb_right) {
1745 struct vm_area_struct *right =
1746 rb_entry(vma->vm_rb.rb_right,
1747 struct vm_area_struct, vm_rb);
1748 if (right->rb_subtree_gap >= length) {
1749 vma = right;
1750 continue;
1751 }
1752 }
1753
1754 /* Go back up the rbtree to find next candidate node */
1755 while (true) {
1756 struct rb_node *prev = &vma->vm_rb;
1757 if (!rb_parent(prev))
1758 goto check_highest;
1759 vma = rb_entry(rb_parent(prev),
1760 struct vm_area_struct, vm_rb);
1761 if (prev == vma->vm_rb.rb_left) {
1762 gap_start = vma->vm_prev->vm_end;
1763 gap_end = vma->vm_start;
1764 goto check_current;
1765 }
1766 }
1767 }
1768
1769 check_highest:
1770 /* Check highest gap, which does not precede any rbtree node */
1771 gap_start = mm->highest_vm_end;
1772 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1773 if (gap_start > high_limit)
1774 return -ENOMEM;
1775
1776 found:
1777 /* We found a suitable gap. Clip it with the original low_limit. */
1778 if (gap_start < info->low_limit)
1779 gap_start = info->low_limit;
1780
1781 /* Adjust gap address to the desired alignment */
1782 gap_start += (info->align_offset - gap_start) & info->align_mask;
1783
1784 VM_BUG_ON(gap_start + info->length > info->high_limit);
1785 VM_BUG_ON(gap_start + info->length > gap_end);
1786 return gap_start;
1787 }
1788
1789 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1790 {
1791 struct mm_struct *mm = current->mm;
1792 struct vm_area_struct *vma;
1793 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1794
1795 /* Adjust search length to account for worst case alignment overhead */
1796 length = info->length + info->align_mask;
1797 if (length < info->length)
1798 return -ENOMEM;
1799
1800 /*
1801 * Adjust search limits by the desired length.
1802 * See implementation comment at top of unmapped_area().
1803 */
1804 gap_end = info->high_limit;
1805 if (gap_end < length)
1806 return -ENOMEM;
1807 high_limit = gap_end - length;
1808
1809 if (info->low_limit > high_limit)
1810 return -ENOMEM;
1811 low_limit = info->low_limit + length;
1812
1813 /* Check highest gap, which does not precede any rbtree node */
1814 gap_start = mm->highest_vm_end;
1815 if (gap_start <= high_limit)
1816 goto found_highest;
1817
1818 /* Check if rbtree root looks promising */
1819 if (RB_EMPTY_ROOT(&mm->mm_rb))
1820 return -ENOMEM;
1821 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1822 if (vma->rb_subtree_gap < length)
1823 return -ENOMEM;
1824
1825 while (true) {
1826 /* Visit right subtree if it looks promising */
1827 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1828 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1829 struct vm_area_struct *right =
1830 rb_entry(vma->vm_rb.rb_right,
1831 struct vm_area_struct, vm_rb);
1832 if (right->rb_subtree_gap >= length) {
1833 vma = right;
1834 continue;
1835 }
1836 }
1837
1838 check_current:
1839 /* Check if current node has a suitable gap */
1840 gap_end = vma->vm_start;
1841 if (gap_end < low_limit)
1842 return -ENOMEM;
1843 if (gap_start <= high_limit && gap_end - gap_start >= length)
1844 goto found;
1845
1846 /* Visit left subtree if it looks promising */
1847 if (vma->vm_rb.rb_left) {
1848 struct vm_area_struct *left =
1849 rb_entry(vma->vm_rb.rb_left,
1850 struct vm_area_struct, vm_rb);
1851 if (left->rb_subtree_gap >= length) {
1852 vma = left;
1853 continue;
1854 }
1855 }
1856
1857 /* Go back up the rbtree to find next candidate node */
1858 while (true) {
1859 struct rb_node *prev = &vma->vm_rb;
1860 if (!rb_parent(prev))
1861 return -ENOMEM;
1862 vma = rb_entry(rb_parent(prev),
1863 struct vm_area_struct, vm_rb);
1864 if (prev == vma->vm_rb.rb_right) {
1865 gap_start = vma->vm_prev ?
1866 vma->vm_prev->vm_end : 0;
1867 goto check_current;
1868 }
1869 }
1870 }
1871
1872 found:
1873 /* We found a suitable gap. Clip it with the original high_limit. */
1874 if (gap_end > info->high_limit)
1875 gap_end = info->high_limit;
1876
1877 found_highest:
1878 /* Compute highest gap address at the desired alignment */
1879 gap_end -= info->length;
1880 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1881
1882 VM_BUG_ON(gap_end < info->low_limit);
1883 VM_BUG_ON(gap_end < gap_start);
1884 return gap_end;
1885 }
1886
1887 /* Get an address range which is currently unmapped.
1888 * For shmat() with addr=0.
1889 *
1890 * Ugly calling convention alert:
1891 * Return value with the low bits set means error value,
1892 * ie
1893 * if (ret & ~PAGE_MASK)
1894 * error = ret;
1895 *
1896 * This function "knows" that -ENOMEM has the bits set.
1897 */
1898 #ifndef HAVE_ARCH_UNMAPPED_AREA
1899 unsigned long
1900 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1901 unsigned long len, unsigned long pgoff, unsigned long flags)
1902 {
1903 struct mm_struct *mm = current->mm;
1904 struct vm_area_struct *vma;
1905 struct vm_unmapped_area_info info;
1906
1907 if (len > TASK_SIZE - mmap_min_addr)
1908 return -ENOMEM;
1909
1910 if (flags & MAP_FIXED)
1911 return addr;
1912
1913 if (addr) {
1914 addr = PAGE_ALIGN(addr);
1915 vma = find_vma(mm, addr);
1916 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1917 (!vma || addr + len <= vma->vm_start))
1918 return addr;
1919 }
1920
1921 info.flags = 0;
1922 info.length = len;
1923 info.low_limit = mm->mmap_base;
1924 info.high_limit = TASK_SIZE;
1925 info.align_mask = 0;
1926 return vm_unmapped_area(&info);
1927 }
1928 #endif
1929
1930 /*
1931 * This mmap-allocator allocates new areas top-down from below the
1932 * stack's low limit (the base):
1933 */
1934 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1935 unsigned long
1936 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1937 const unsigned long len, const unsigned long pgoff,
1938 const unsigned long flags)
1939 {
1940 struct vm_area_struct *vma;
1941 struct mm_struct *mm = current->mm;
1942 unsigned long addr = addr0;
1943 struct vm_unmapped_area_info info;
1944
1945 /* requested length too big for entire address space */
1946 if (len > TASK_SIZE - mmap_min_addr)
1947 return -ENOMEM;
1948
1949 if (flags & MAP_FIXED)
1950 return addr;
1951
1952 /* requesting a specific address */
1953 if (addr) {
1954 addr = PAGE_ALIGN(addr);
1955 vma = find_vma(mm, addr);
1956 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1957 (!vma || addr + len <= vma->vm_start))
1958 return addr;
1959 }
1960
1961 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1962 info.length = len;
1963 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1964 info.high_limit = mm->mmap_base;
1965 info.align_mask = 0;
1966 addr = vm_unmapped_area(&info);
1967
1968 /*
1969 * A failed mmap() very likely causes application failure,
1970 * so fall back to the bottom-up function here. This scenario
1971 * can happen with large stack limits and large mmap()
1972 * allocations.
1973 */
1974 if (addr & ~PAGE_MASK) {
1975 VM_BUG_ON(addr != -ENOMEM);
1976 info.flags = 0;
1977 info.low_limit = TASK_UNMAPPED_BASE;
1978 info.high_limit = TASK_SIZE;
1979 addr = vm_unmapped_area(&info);
1980 }
1981
1982 return addr;
1983 }
1984 #endif
1985
1986 unsigned long
1987 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1988 unsigned long pgoff, unsigned long flags)
1989 {
1990 unsigned long (*get_area)(struct file *, unsigned long,
1991 unsigned long, unsigned long, unsigned long);
1992
1993 unsigned long error = arch_mmap_check(addr, len, flags);
1994 if (error)
1995 return error;
1996
1997 /* Careful about overflows.. */
1998 if (len > TASK_SIZE)
1999 return -ENOMEM;
2000
2001 get_area = current->mm->get_unmapped_area;
2002 if (file && file->f_op->get_unmapped_area)
2003 get_area = file->f_op->get_unmapped_area;
2004 addr = get_area(file, addr, len, pgoff, flags);
2005 if (IS_ERR_VALUE(addr))
2006 return addr;
2007
2008 if (addr > TASK_SIZE - len)
2009 return -ENOMEM;
2010 if (addr & ~PAGE_MASK)
2011 return -EINVAL;
2012
2013 addr = arch_rebalance_pgtables(addr, len);
2014 error = security_mmap_addr(addr);
2015 return error ? error : addr;
2016 }
2017
2018 EXPORT_SYMBOL(get_unmapped_area);
2019
2020 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2021 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2022 {
2023 struct rb_node *rb_node;
2024 struct vm_area_struct *vma;
2025
2026 /* Check the cache first. */
2027 vma = vmacache_find(mm, addr);
2028 if (likely(vma))
2029 return vma;
2030
2031 rb_node = mm->mm_rb.rb_node;
2032 vma = NULL;
2033
2034 while (rb_node) {
2035 struct vm_area_struct *tmp;
2036
2037 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2038
2039 if (tmp->vm_end > addr) {
2040 vma = tmp;
2041 if (tmp->vm_start <= addr)
2042 break;
2043 rb_node = rb_node->rb_left;
2044 } else
2045 rb_node = rb_node->rb_right;
2046 }
2047
2048 if (vma)
2049 vmacache_update(addr, vma);
2050 return vma;
2051 }
2052
2053 EXPORT_SYMBOL(find_vma);
2054
2055 /*
2056 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2057 */
2058 struct vm_area_struct *
2059 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2060 struct vm_area_struct **pprev)
2061 {
2062 struct vm_area_struct *vma;
2063
2064 vma = find_vma(mm, addr);
2065 if (vma) {
2066 *pprev = vma->vm_prev;
2067 } else {
2068 struct rb_node *rb_node = mm->mm_rb.rb_node;
2069 *pprev = NULL;
2070 while (rb_node) {
2071 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2072 rb_node = rb_node->rb_right;
2073 }
2074 }
2075 return vma;
2076 }
2077
2078 /*
2079 * Verify that the stack growth is acceptable and
2080 * update accounting. This is shared with both the
2081 * grow-up and grow-down cases.
2082 */
2083 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2084 {
2085 struct mm_struct *mm = vma->vm_mm;
2086 struct rlimit *rlim = current->signal->rlim;
2087 unsigned long new_start;
2088
2089 /* address space limit tests */
2090 if (!may_expand_vm(mm, grow))
2091 return -ENOMEM;
2092
2093 /* Stack limit test */
2094 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2095 return -ENOMEM;
2096
2097 /* mlock limit tests */
2098 if (vma->vm_flags & VM_LOCKED) {
2099 unsigned long locked;
2100 unsigned long limit;
2101 locked = mm->locked_vm + grow;
2102 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2103 limit >>= PAGE_SHIFT;
2104 if (locked > limit && !capable(CAP_IPC_LOCK))
2105 return -ENOMEM;
2106 }
2107
2108 /* Check to ensure the stack will not grow into a hugetlb-only region */
2109 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2110 vma->vm_end - size;
2111 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2112 return -EFAULT;
2113
2114 /*
2115 * Overcommit.. This must be the final test, as it will
2116 * update security statistics.
2117 */
2118 if (security_vm_enough_memory_mm(mm, grow))
2119 return -ENOMEM;
2120
2121 /* Ok, everything looks good - let it rip */
2122 if (vma->vm_flags & VM_LOCKED)
2123 mm->locked_vm += grow;
2124 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2125 return 0;
2126 }
2127
2128 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2129 /*
2130 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2131 * vma is the last one with address > vma->vm_end. Have to extend vma.
2132 */
2133 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2134 {
2135 int error;
2136
2137 if (!(vma->vm_flags & VM_GROWSUP))
2138 return -EFAULT;
2139
2140 /*
2141 * We must make sure the anon_vma is allocated
2142 * so that the anon_vma locking is not a noop.
2143 */
2144 if (unlikely(anon_vma_prepare(vma)))
2145 return -ENOMEM;
2146 vma_lock_anon_vma(vma);
2147
2148 /*
2149 * vma->vm_start/vm_end cannot change under us because the caller
2150 * is required to hold the mmap_sem in read mode. We need the
2151 * anon_vma lock to serialize against concurrent expand_stacks.
2152 * Also guard against wrapping around to address 0.
2153 */
2154 if (address < PAGE_ALIGN(address+4))
2155 address = PAGE_ALIGN(address+4);
2156 else {
2157 vma_unlock_anon_vma(vma);
2158 return -ENOMEM;
2159 }
2160 error = 0;
2161
2162 /* Somebody else might have raced and expanded it already */
2163 if (address > vma->vm_end) {
2164 unsigned long size, grow;
2165
2166 size = address - vma->vm_start;
2167 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2168
2169 error = -ENOMEM;
2170 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2171 error = acct_stack_growth(vma, size, grow);
2172 if (!error) {
2173 /*
2174 * vma_gap_update() doesn't support concurrent
2175 * updates, but we only hold a shared mmap_sem
2176 * lock here, so we need to protect against
2177 * concurrent vma expansions.
2178 * vma_lock_anon_vma() doesn't help here, as
2179 * we don't guarantee that all growable vmas
2180 * in a mm share the same root anon vma.
2181 * So, we reuse mm->page_table_lock to guard
2182 * against concurrent vma expansions.
2183 */
2184 spin_lock(&vma->vm_mm->page_table_lock);
2185 anon_vma_interval_tree_pre_update_vma(vma);
2186 vma->vm_end = address;
2187 anon_vma_interval_tree_post_update_vma(vma);
2188 if (vma->vm_next)
2189 vma_gap_update(vma->vm_next);
2190 else
2191 vma->vm_mm->highest_vm_end = address;
2192 spin_unlock(&vma->vm_mm->page_table_lock);
2193
2194 perf_event_mmap(vma);
2195 }
2196 }
2197 }
2198 vma_unlock_anon_vma(vma);
2199 khugepaged_enter_vma_merge(vma);
2200 validate_mm(vma->vm_mm);
2201 return error;
2202 }
2203 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2204
2205 /*
2206 * vma is the first one with address < vma->vm_start. Have to extend vma.
2207 */
2208 int expand_downwards(struct vm_area_struct *vma,
2209 unsigned long address)
2210 {
2211 int error;
2212
2213 /*
2214 * We must make sure the anon_vma is allocated
2215 * so that the anon_vma locking is not a noop.
2216 */
2217 if (unlikely(anon_vma_prepare(vma)))
2218 return -ENOMEM;
2219
2220 address &= PAGE_MASK;
2221 error = security_mmap_addr(address);
2222 if (error)
2223 return error;
2224
2225 vma_lock_anon_vma(vma);
2226
2227 /*
2228 * vma->vm_start/vm_end cannot change under us because the caller
2229 * is required to hold the mmap_sem in read mode. We need the
2230 * anon_vma lock to serialize against concurrent expand_stacks.
2231 */
2232
2233 /* Somebody else might have raced and expanded it already */
2234 if (address < vma->vm_start) {
2235 unsigned long size, grow;
2236
2237 size = vma->vm_end - address;
2238 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2239
2240 error = -ENOMEM;
2241 if (grow <= vma->vm_pgoff) {
2242 error = acct_stack_growth(vma, size, grow);
2243 if (!error) {
2244 /*
2245 * vma_gap_update() doesn't support concurrent
2246 * updates, but we only hold a shared mmap_sem
2247 * lock here, so we need to protect against
2248 * concurrent vma expansions.
2249 * vma_lock_anon_vma() doesn't help here, as
2250 * we don't guarantee that all growable vmas
2251 * in a mm share the same root anon vma.
2252 * So, we reuse mm->page_table_lock to guard
2253 * against concurrent vma expansions.
2254 */
2255 spin_lock(&vma->vm_mm->page_table_lock);
2256 anon_vma_interval_tree_pre_update_vma(vma);
2257 vma->vm_start = address;
2258 vma->vm_pgoff -= grow;
2259 anon_vma_interval_tree_post_update_vma(vma);
2260 vma_gap_update(vma);
2261 spin_unlock(&vma->vm_mm->page_table_lock);
2262
2263 perf_event_mmap(vma);
2264 }
2265 }
2266 }
2267 vma_unlock_anon_vma(vma);
2268 khugepaged_enter_vma_merge(vma);
2269 validate_mm(vma->vm_mm);
2270 return error;
2271 }
2272
2273 /*
2274 * Note how expand_stack() refuses to expand the stack all the way to
2275 * abut the next virtual mapping, *unless* that mapping itself is also
2276 * a stack mapping. We want to leave room for a guard page, after all
2277 * (the guard page itself is not added here, that is done by the
2278 * actual page faulting logic)
2279 *
2280 * This matches the behavior of the guard page logic (see mm/memory.c:
2281 * check_stack_guard_page()), which only allows the guard page to be
2282 * removed under these circumstances.
2283 */
2284 #ifdef CONFIG_STACK_GROWSUP
2285 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2286 {
2287 struct vm_area_struct *next;
2288
2289 address &= PAGE_MASK;
2290 next = vma->vm_next;
2291 if (next && next->vm_start == address + PAGE_SIZE) {
2292 if (!(next->vm_flags & VM_GROWSUP))
2293 return -ENOMEM;
2294 }
2295 return expand_upwards(vma, address);
2296 }
2297
2298 struct vm_area_struct *
2299 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2300 {
2301 struct vm_area_struct *vma, *prev;
2302
2303 addr &= PAGE_MASK;
2304 vma = find_vma_prev(mm, addr, &prev);
2305 if (vma && (vma->vm_start <= addr))
2306 return vma;
2307 if (!prev || expand_stack(prev, addr))
2308 return NULL;
2309 if (prev->vm_flags & VM_LOCKED)
2310 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2311 return prev;
2312 }
2313 #else
2314 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2315 {
2316 struct vm_area_struct *prev;
2317
2318 address &= PAGE_MASK;
2319 prev = vma->vm_prev;
2320 if (prev && prev->vm_end == address) {
2321 if (!(prev->vm_flags & VM_GROWSDOWN))
2322 return -ENOMEM;
2323 }
2324 return expand_downwards(vma, address);
2325 }
2326
2327 struct vm_area_struct *
2328 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2329 {
2330 struct vm_area_struct *vma;
2331 unsigned long start;
2332
2333 addr &= PAGE_MASK;
2334 vma = find_vma(mm, addr);
2335 if (!vma)
2336 return NULL;
2337 if (vma->vm_start <= addr)
2338 return vma;
2339 if (!(vma->vm_flags & VM_GROWSDOWN))
2340 return NULL;
2341 start = vma->vm_start;
2342 if (expand_stack(vma, addr))
2343 return NULL;
2344 if (vma->vm_flags & VM_LOCKED)
2345 __mlock_vma_pages_range(vma, addr, start, NULL);
2346 return vma;
2347 }
2348 #endif
2349
2350 /*
2351 * Ok - we have the memory areas we should free on the vma list,
2352 * so release them, and do the vma updates.
2353 *
2354 * Called with the mm semaphore held.
2355 */
2356 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2357 {
2358 unsigned long nr_accounted = 0;
2359
2360 /* Update high watermark before we lower total_vm */
2361 update_hiwater_vm(mm);
2362 do {
2363 long nrpages = vma_pages(vma);
2364
2365 if (vma->vm_flags & VM_ACCOUNT)
2366 nr_accounted += nrpages;
2367 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2368 vma = remove_vma(vma);
2369 } while (vma);
2370 vm_unacct_memory(nr_accounted);
2371 validate_mm(mm);
2372 }
2373
2374 /*
2375 * Get rid of page table information in the indicated region.
2376 *
2377 * Called with the mm semaphore held.
2378 */
2379 static void unmap_region(struct mm_struct *mm,
2380 struct vm_area_struct *vma, struct vm_area_struct *prev,
2381 unsigned long start, unsigned long end)
2382 {
2383 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2384 struct mmu_gather tlb;
2385
2386 lru_add_drain();
2387 tlb_gather_mmu(&tlb, mm, start, end);
2388 update_hiwater_rss(mm);
2389 unmap_vmas(&tlb, vma, start, end);
2390 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2391 next ? next->vm_start : USER_PGTABLES_CEILING);
2392 tlb_finish_mmu(&tlb, start, end);
2393 }
2394
2395 /*
2396 * Create a list of vma's touched by the unmap, removing them from the mm's
2397 * vma list as we go..
2398 */
2399 static void
2400 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2401 struct vm_area_struct *prev, unsigned long end)
2402 {
2403 struct vm_area_struct **insertion_point;
2404 struct vm_area_struct *tail_vma = NULL;
2405
2406 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2407 vma->vm_prev = NULL;
2408 do {
2409 vma_rb_erase(vma, &mm->mm_rb);
2410 mm->map_count--;
2411 tail_vma = vma;
2412 vma = vma->vm_next;
2413 } while (vma && vma->vm_start < end);
2414 *insertion_point = vma;
2415 if (vma) {
2416 vma->vm_prev = prev;
2417 vma_gap_update(vma);
2418 } else
2419 mm->highest_vm_end = prev ? prev->vm_end : 0;
2420 tail_vma->vm_next = NULL;
2421
2422 /* Kill the cache */
2423 vmacache_invalidate(mm);
2424 }
2425
2426 /*
2427 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2428 * munmap path where it doesn't make sense to fail.
2429 */
2430 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2431 unsigned long addr, int new_below)
2432 {
2433 struct vm_area_struct *new;
2434 int err = -ENOMEM;
2435
2436 if (is_vm_hugetlb_page(vma) && (addr &
2437 ~(huge_page_mask(hstate_vma(vma)))))
2438 return -EINVAL;
2439
2440 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2441 if (!new)
2442 goto out_err;
2443
2444 /* most fields are the same, copy all, and then fixup */
2445 *new = *vma;
2446
2447 INIT_LIST_HEAD(&new->anon_vma_chain);
2448
2449 if (new_below)
2450 new->vm_end = addr;
2451 else {
2452 new->vm_start = addr;
2453 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2454 }
2455
2456 err = vma_dup_policy(vma, new);
2457 if (err)
2458 goto out_free_vma;
2459
2460 if (anon_vma_clone(new, vma))
2461 goto out_free_mpol;
2462
2463 if (new->vm_file)
2464 get_file(new->vm_file);
2465
2466 if (new->vm_ops && new->vm_ops->open)
2467 new->vm_ops->open(new);
2468
2469 if (new_below)
2470 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2471 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2472 else
2473 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2474
2475 /* Success. */
2476 if (!err)
2477 return 0;
2478
2479 /* Clean everything up if vma_adjust failed. */
2480 if (new->vm_ops && new->vm_ops->close)
2481 new->vm_ops->close(new);
2482 if (new->vm_file)
2483 fput(new->vm_file);
2484 unlink_anon_vmas(new);
2485 out_free_mpol:
2486 mpol_put(vma_policy(new));
2487 out_free_vma:
2488 kmem_cache_free(vm_area_cachep, new);
2489 out_err:
2490 return err;
2491 }
2492
2493 /*
2494 * Split a vma into two pieces at address 'addr', a new vma is allocated
2495 * either for the first part or the tail.
2496 */
2497 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2498 unsigned long addr, int new_below)
2499 {
2500 if (mm->map_count >= sysctl_max_map_count)
2501 return -ENOMEM;
2502
2503 return __split_vma(mm, vma, addr, new_below);
2504 }
2505
2506 /* Munmap is split into 2 main parts -- this part which finds
2507 * what needs doing, and the areas themselves, which do the
2508 * work. This now handles partial unmappings.
2509 * Jeremy Fitzhardinge <jeremy@goop.org>
2510 */
2511 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2512 {
2513 unsigned long end;
2514 struct vm_area_struct *vma, *prev, *last;
2515
2516 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2517 return -EINVAL;
2518
2519 len = PAGE_ALIGN(len);
2520 if (len == 0)
2521 return -EINVAL;
2522
2523 /* Find the first overlapping VMA */
2524 vma = find_vma(mm, start);
2525 if (!vma)
2526 return 0;
2527 prev = vma->vm_prev;
2528 /* we have start < vma->vm_end */
2529
2530 /* if it doesn't overlap, we have nothing.. */
2531 end = start + len;
2532 if (vma->vm_start >= end)
2533 return 0;
2534
2535 /*
2536 * If we need to split any vma, do it now to save pain later.
2537 *
2538 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2539 * unmapped vm_area_struct will remain in use: so lower split_vma
2540 * places tmp vma above, and higher split_vma places tmp vma below.
2541 */
2542 if (start > vma->vm_start) {
2543 int error;
2544
2545 /*
2546 * Make sure that map_count on return from munmap() will
2547 * not exceed its limit; but let map_count go just above
2548 * its limit temporarily, to help free resources as expected.
2549 */
2550 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2551 return -ENOMEM;
2552
2553 error = __split_vma(mm, vma, start, 0);
2554 if (error)
2555 return error;
2556 prev = vma;
2557 }
2558
2559 /* Does it split the last one? */
2560 last = find_vma(mm, end);
2561 if (last && end > last->vm_start) {
2562 int error = __split_vma(mm, last, end, 1);
2563 if (error)
2564 return error;
2565 }
2566 vma = prev ? prev->vm_next : mm->mmap;
2567
2568 /*
2569 * unlock any mlock()ed ranges before detaching vmas
2570 */
2571 if (mm->locked_vm) {
2572 struct vm_area_struct *tmp = vma;
2573 while (tmp && tmp->vm_start < end) {
2574 if (tmp->vm_flags & VM_LOCKED) {
2575 mm->locked_vm -= vma_pages(tmp);
2576 munlock_vma_pages_all(tmp);
2577 }
2578 tmp = tmp->vm_next;
2579 }
2580 }
2581
2582 /*
2583 * Remove the vma's, and unmap the actual pages
2584 */
2585 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2586 unmap_region(mm, vma, prev, start, end);
2587
2588 /* Fix up all other VM information */
2589 remove_vma_list(mm, vma);
2590
2591 return 0;
2592 }
2593
2594 int vm_munmap(unsigned long start, size_t len)
2595 {
2596 int ret;
2597 struct mm_struct *mm = current->mm;
2598
2599 down_write(&mm->mmap_sem);
2600 ret = do_munmap(mm, start, len);
2601 up_write(&mm->mmap_sem);
2602 return ret;
2603 }
2604 EXPORT_SYMBOL(vm_munmap);
2605
2606 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2607 {
2608 profile_munmap(addr);
2609 return vm_munmap(addr, len);
2610 }
2611
2612 static inline void verify_mm_writelocked(struct mm_struct *mm)
2613 {
2614 #ifdef CONFIG_DEBUG_VM
2615 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2616 WARN_ON(1);
2617 up_read(&mm->mmap_sem);
2618 }
2619 #endif
2620 }
2621
2622 /*
2623 * this is really a simplified "do_mmap". it only handles
2624 * anonymous maps. eventually we may be able to do some
2625 * brk-specific accounting here.
2626 */
2627 static unsigned long do_brk(unsigned long addr, unsigned long len)
2628 {
2629 struct mm_struct *mm = current->mm;
2630 struct vm_area_struct *vma, *prev;
2631 unsigned long flags;
2632 struct rb_node **rb_link, *rb_parent;
2633 pgoff_t pgoff = addr >> PAGE_SHIFT;
2634 int error;
2635
2636 len = PAGE_ALIGN(len);
2637 if (!len)
2638 return addr;
2639
2640 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2641
2642 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2643 if (error & ~PAGE_MASK)
2644 return error;
2645
2646 error = mlock_future_check(mm, mm->def_flags, len);
2647 if (error)
2648 return error;
2649
2650 /*
2651 * mm->mmap_sem is required to protect against another thread
2652 * changing the mappings in case we sleep.
2653 */
2654 verify_mm_writelocked(mm);
2655
2656 /*
2657 * Clear old maps. this also does some error checking for us
2658 */
2659 munmap_back:
2660 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2661 if (do_munmap(mm, addr, len))
2662 return -ENOMEM;
2663 goto munmap_back;
2664 }
2665
2666 /* Check against address space limits *after* clearing old maps... */
2667 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2668 return -ENOMEM;
2669
2670 if (mm->map_count > sysctl_max_map_count)
2671 return -ENOMEM;
2672
2673 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2674 return -ENOMEM;
2675
2676 /* Can we just expand an old private anonymous mapping? */
2677 vma = vma_merge(mm, prev, addr, addr + len, flags,
2678 NULL, NULL, pgoff, NULL);
2679 if (vma)
2680 goto out;
2681
2682 /*
2683 * create a vma struct for an anonymous mapping
2684 */
2685 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2686 if (!vma) {
2687 vm_unacct_memory(len >> PAGE_SHIFT);
2688 return -ENOMEM;
2689 }
2690
2691 INIT_LIST_HEAD(&vma->anon_vma_chain);
2692 vma->vm_mm = mm;
2693 vma->vm_start = addr;
2694 vma->vm_end = addr + len;
2695 vma->vm_pgoff = pgoff;
2696 vma->vm_flags = flags;
2697 vma->vm_page_prot = vm_get_page_prot(flags);
2698 vma_link(mm, vma, prev, rb_link, rb_parent);
2699 out:
2700 perf_event_mmap(vma);
2701 mm->total_vm += len >> PAGE_SHIFT;
2702 if (flags & VM_LOCKED)
2703 mm->locked_vm += (len >> PAGE_SHIFT);
2704 vma->vm_flags |= VM_SOFTDIRTY;
2705 return addr;
2706 }
2707
2708 unsigned long vm_brk(unsigned long addr, unsigned long len)
2709 {
2710 struct mm_struct *mm = current->mm;
2711 unsigned long ret;
2712 bool populate;
2713
2714 down_write(&mm->mmap_sem);
2715 ret = do_brk(addr, len);
2716 populate = ((mm->def_flags & VM_LOCKED) != 0);
2717 up_write(&mm->mmap_sem);
2718 if (populate)
2719 mm_populate(addr, len);
2720 return ret;
2721 }
2722 EXPORT_SYMBOL(vm_brk);
2723
2724 /* Release all mmaps. */
2725 void exit_mmap(struct mm_struct *mm)
2726 {
2727 struct mmu_gather tlb;
2728 struct vm_area_struct *vma;
2729 unsigned long nr_accounted = 0;
2730
2731 /* mm's last user has gone, and its about to be pulled down */
2732 mmu_notifier_release(mm);
2733
2734 if (mm->locked_vm) {
2735 vma = mm->mmap;
2736 while (vma) {
2737 if (vma->vm_flags & VM_LOCKED)
2738 munlock_vma_pages_all(vma);
2739 vma = vma->vm_next;
2740 }
2741 }
2742
2743 arch_exit_mmap(mm);
2744
2745 vma = mm->mmap;
2746 if (!vma) /* Can happen if dup_mmap() received an OOM */
2747 return;
2748
2749 lru_add_drain();
2750 flush_cache_mm(mm);
2751 tlb_gather_mmu(&tlb, mm, 0, -1);
2752 /* update_hiwater_rss(mm) here? but nobody should be looking */
2753 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2754 unmap_vmas(&tlb, vma, 0, -1);
2755
2756 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2757 tlb_finish_mmu(&tlb, 0, -1);
2758
2759 /*
2760 * Walk the list again, actually closing and freeing it,
2761 * with preemption enabled, without holding any MM locks.
2762 */
2763 while (vma) {
2764 if (vma->vm_flags & VM_ACCOUNT)
2765 nr_accounted += vma_pages(vma);
2766 vma = remove_vma(vma);
2767 }
2768 vm_unacct_memory(nr_accounted);
2769
2770 WARN_ON(atomic_long_read(&mm->nr_ptes) >
2771 (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2772 }
2773
2774 /* Insert vm structure into process list sorted by address
2775 * and into the inode's i_mmap tree. If vm_file is non-NULL
2776 * then i_mmap_mutex is taken here.
2777 */
2778 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2779 {
2780 struct vm_area_struct *prev;
2781 struct rb_node **rb_link, *rb_parent;
2782
2783 /*
2784 * The vm_pgoff of a purely anonymous vma should be irrelevant
2785 * until its first write fault, when page's anon_vma and index
2786 * are set. But now set the vm_pgoff it will almost certainly
2787 * end up with (unless mremap moves it elsewhere before that
2788 * first wfault), so /proc/pid/maps tells a consistent story.
2789 *
2790 * By setting it to reflect the virtual start address of the
2791 * vma, merges and splits can happen in a seamless way, just
2792 * using the existing file pgoff checks and manipulations.
2793 * Similarly in do_mmap_pgoff and in do_brk.
2794 */
2795 if (!vma->vm_file) {
2796 BUG_ON(vma->anon_vma);
2797 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2798 }
2799 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2800 &prev, &rb_link, &rb_parent))
2801 return -ENOMEM;
2802 if ((vma->vm_flags & VM_ACCOUNT) &&
2803 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2804 return -ENOMEM;
2805
2806 vma_link(mm, vma, prev, rb_link, rb_parent);
2807 return 0;
2808 }
2809
2810 /*
2811 * Copy the vma structure to a new location in the same mm,
2812 * prior to moving page table entries, to effect an mremap move.
2813 */
2814 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2815 unsigned long addr, unsigned long len, pgoff_t pgoff,
2816 bool *need_rmap_locks)
2817 {
2818 struct vm_area_struct *vma = *vmap;
2819 unsigned long vma_start = vma->vm_start;
2820 struct mm_struct *mm = vma->vm_mm;
2821 struct vm_area_struct *new_vma, *prev;
2822 struct rb_node **rb_link, *rb_parent;
2823 bool faulted_in_anon_vma = true;
2824
2825 /*
2826 * If anonymous vma has not yet been faulted, update new pgoff
2827 * to match new location, to increase its chance of merging.
2828 */
2829 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2830 pgoff = addr >> PAGE_SHIFT;
2831 faulted_in_anon_vma = false;
2832 }
2833
2834 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2835 return NULL; /* should never get here */
2836 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2837 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2838 if (new_vma) {
2839 /*
2840 * Source vma may have been merged into new_vma
2841 */
2842 if (unlikely(vma_start >= new_vma->vm_start &&
2843 vma_start < new_vma->vm_end)) {
2844 /*
2845 * The only way we can get a vma_merge with
2846 * self during an mremap is if the vma hasn't
2847 * been faulted in yet and we were allowed to
2848 * reset the dst vma->vm_pgoff to the
2849 * destination address of the mremap to allow
2850 * the merge to happen. mremap must change the
2851 * vm_pgoff linearity between src and dst vmas
2852 * (in turn preventing a vma_merge) to be
2853 * safe. It is only safe to keep the vm_pgoff
2854 * linear if there are no pages mapped yet.
2855 */
2856 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2857 *vmap = vma = new_vma;
2858 }
2859 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2860 } else {
2861 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2862 if (new_vma) {
2863 *new_vma = *vma;
2864 new_vma->vm_start = addr;
2865 new_vma->vm_end = addr + len;
2866 new_vma->vm_pgoff = pgoff;
2867 if (vma_dup_policy(vma, new_vma))
2868 goto out_free_vma;
2869 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2870 if (anon_vma_clone(new_vma, vma))
2871 goto out_free_mempol;
2872 if (new_vma->vm_file)
2873 get_file(new_vma->vm_file);
2874 if (new_vma->vm_ops && new_vma->vm_ops->open)
2875 new_vma->vm_ops->open(new_vma);
2876 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2877 *need_rmap_locks = false;
2878 }
2879 }
2880 return new_vma;
2881
2882 out_free_mempol:
2883 mpol_put(vma_policy(new_vma));
2884 out_free_vma:
2885 kmem_cache_free(vm_area_cachep, new_vma);
2886 return NULL;
2887 }
2888
2889 /*
2890 * Return true if the calling process may expand its vm space by the passed
2891 * number of pages
2892 */
2893 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2894 {
2895 unsigned long cur = mm->total_vm; /* pages */
2896 unsigned long lim;
2897
2898 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2899
2900 if (cur + npages > lim)
2901 return 0;
2902 return 1;
2903 }
2904
2905 static int special_mapping_fault(struct vm_area_struct *vma,
2906 struct vm_fault *vmf);
2907
2908 /*
2909 * Having a close hook prevents vma merging regardless of flags.
2910 */
2911 static void special_mapping_close(struct vm_area_struct *vma)
2912 {
2913 }
2914
2915 static const char *special_mapping_name(struct vm_area_struct *vma)
2916 {
2917 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2918 }
2919
2920 static const struct vm_operations_struct special_mapping_vmops = {
2921 .close = special_mapping_close,
2922 .fault = special_mapping_fault,
2923 .name = special_mapping_name,
2924 };
2925
2926 static const struct vm_operations_struct legacy_special_mapping_vmops = {
2927 .close = special_mapping_close,
2928 .fault = special_mapping_fault,
2929 };
2930
2931 static int special_mapping_fault(struct vm_area_struct *vma,
2932 struct vm_fault *vmf)
2933 {
2934 pgoff_t pgoff;
2935 struct page **pages;
2936
2937 /*
2938 * special mappings have no vm_file, and in that case, the mm
2939 * uses vm_pgoff internally. So we have to subtract it from here.
2940 * We are allowed to do this because we are the mm; do not copy
2941 * this code into drivers!
2942 */
2943 pgoff = vmf->pgoff - vma->vm_pgoff;
2944
2945 if (vma->vm_ops == &legacy_special_mapping_vmops)
2946 pages = vma->vm_private_data;
2947 else
2948 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
2949 pages;
2950
2951 for (; pgoff && *pages; ++pages)
2952 pgoff--;
2953
2954 if (*pages) {
2955 struct page *page = *pages;
2956 get_page(page);
2957 vmf->page = page;
2958 return 0;
2959 }
2960
2961 return VM_FAULT_SIGBUS;
2962 }
2963
2964 static struct vm_area_struct *__install_special_mapping(
2965 struct mm_struct *mm,
2966 unsigned long addr, unsigned long len,
2967 unsigned long vm_flags, const struct vm_operations_struct *ops,
2968 void *priv)
2969 {
2970 int ret;
2971 struct vm_area_struct *vma;
2972
2973 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2974 if (unlikely(vma == NULL))
2975 return ERR_PTR(-ENOMEM);
2976
2977 INIT_LIST_HEAD(&vma->anon_vma_chain);
2978 vma->vm_mm = mm;
2979 vma->vm_start = addr;
2980 vma->vm_end = addr + len;
2981
2982 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2983 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2984
2985 vma->vm_ops = ops;
2986 vma->vm_private_data = priv;
2987
2988 ret = insert_vm_struct(mm, vma);
2989 if (ret)
2990 goto out;
2991
2992 mm->total_vm += len >> PAGE_SHIFT;
2993
2994 perf_event_mmap(vma);
2995
2996 return vma;
2997
2998 out:
2999 kmem_cache_free(vm_area_cachep, vma);
3000 return ERR_PTR(ret);
3001 }
3002
3003 /*
3004 * Called with mm->mmap_sem held for writing.
3005 * Insert a new vma covering the given region, with the given flags.
3006 * Its pages are supplied by the given array of struct page *.
3007 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3008 * The region past the last page supplied will always produce SIGBUS.
3009 * The array pointer and the pages it points to are assumed to stay alive
3010 * for as long as this mapping might exist.
3011 */
3012 struct vm_area_struct *_install_special_mapping(
3013 struct mm_struct *mm,
3014 unsigned long addr, unsigned long len,
3015 unsigned long vm_flags, const struct vm_special_mapping *spec)
3016 {
3017 return __install_special_mapping(mm, addr, len, vm_flags,
3018 &special_mapping_vmops, (void *)spec);
3019 }
3020
3021 int install_special_mapping(struct mm_struct *mm,
3022 unsigned long addr, unsigned long len,
3023 unsigned long vm_flags, struct page **pages)
3024 {
3025 struct vm_area_struct *vma = __install_special_mapping(
3026 mm, addr, len, vm_flags, &legacy_special_mapping_vmops,
3027 (void *)pages);
3028
3029 return PTR_ERR_OR_ZERO(vma);
3030 }
3031
3032 static DEFINE_MUTEX(mm_all_locks_mutex);
3033
3034 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3035 {
3036 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3037 /*
3038 * The LSB of head.next can't change from under us
3039 * because we hold the mm_all_locks_mutex.
3040 */
3041 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3042 /*
3043 * We can safely modify head.next after taking the
3044 * anon_vma->root->rwsem. If some other vma in this mm shares
3045 * the same anon_vma we won't take it again.
3046 *
3047 * No need of atomic instructions here, head.next
3048 * can't change from under us thanks to the
3049 * anon_vma->root->rwsem.
3050 */
3051 if (__test_and_set_bit(0, (unsigned long *)
3052 &anon_vma->root->rb_root.rb_node))
3053 BUG();
3054 }
3055 }
3056
3057 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3058 {
3059 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3060 /*
3061 * AS_MM_ALL_LOCKS can't change from under us because
3062 * we hold the mm_all_locks_mutex.
3063 *
3064 * Operations on ->flags have to be atomic because
3065 * even if AS_MM_ALL_LOCKS is stable thanks to the
3066 * mm_all_locks_mutex, there may be other cpus
3067 * changing other bitflags in parallel to us.
3068 */
3069 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3070 BUG();
3071 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3072 }
3073 }
3074
3075 /*
3076 * This operation locks against the VM for all pte/vma/mm related
3077 * operations that could ever happen on a certain mm. This includes
3078 * vmtruncate, try_to_unmap, and all page faults.
3079 *
3080 * The caller must take the mmap_sem in write mode before calling
3081 * mm_take_all_locks(). The caller isn't allowed to release the
3082 * mmap_sem until mm_drop_all_locks() returns.
3083 *
3084 * mmap_sem in write mode is required in order to block all operations
3085 * that could modify pagetables and free pages without need of
3086 * altering the vma layout (for example populate_range() with
3087 * nonlinear vmas). It's also needed in write mode to avoid new
3088 * anon_vmas to be associated with existing vmas.
3089 *
3090 * A single task can't take more than one mm_take_all_locks() in a row
3091 * or it would deadlock.
3092 *
3093 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3094 * mapping->flags avoid to take the same lock twice, if more than one
3095 * vma in this mm is backed by the same anon_vma or address_space.
3096 *
3097 * We can take all the locks in random order because the VM code
3098 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3099 * takes more than one of them in a row. Secondly we're protected
3100 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3101 *
3102 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3103 * that may have to take thousand of locks.
3104 *
3105 * mm_take_all_locks() can fail if it's interrupted by signals.
3106 */
3107 int mm_take_all_locks(struct mm_struct *mm)
3108 {
3109 struct vm_area_struct *vma;
3110 struct anon_vma_chain *avc;
3111
3112 BUG_ON(down_read_trylock(&mm->mmap_sem));
3113
3114 mutex_lock(&mm_all_locks_mutex);
3115
3116 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3117 if (signal_pending(current))
3118 goto out_unlock;
3119 if (vma->vm_file && vma->vm_file->f_mapping)
3120 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3121 }
3122
3123 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3124 if (signal_pending(current))
3125 goto out_unlock;
3126 if (vma->anon_vma)
3127 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3128 vm_lock_anon_vma(mm, avc->anon_vma);
3129 }
3130
3131 return 0;
3132
3133 out_unlock:
3134 mm_drop_all_locks(mm);
3135 return -EINTR;
3136 }
3137
3138 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3139 {
3140 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3141 /*
3142 * The LSB of head.next can't change to 0 from under
3143 * us because we hold the mm_all_locks_mutex.
3144 *
3145 * We must however clear the bitflag before unlocking
3146 * the vma so the users using the anon_vma->rb_root will
3147 * never see our bitflag.
3148 *
3149 * No need of atomic instructions here, head.next
3150 * can't change from under us until we release the
3151 * anon_vma->root->rwsem.
3152 */
3153 if (!__test_and_clear_bit(0, (unsigned long *)
3154 &anon_vma->root->rb_root.rb_node))
3155 BUG();
3156 anon_vma_unlock_write(anon_vma);
3157 }
3158 }
3159
3160 static void vm_unlock_mapping(struct address_space *mapping)
3161 {
3162 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3163 /*
3164 * AS_MM_ALL_LOCKS can't change to 0 from under us
3165 * because we hold the mm_all_locks_mutex.
3166 */
3167 mutex_unlock(&mapping->i_mmap_mutex);
3168 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3169 &mapping->flags))
3170 BUG();
3171 }
3172 }
3173
3174 /*
3175 * The mmap_sem cannot be released by the caller until
3176 * mm_drop_all_locks() returns.
3177 */
3178 void mm_drop_all_locks(struct mm_struct *mm)
3179 {
3180 struct vm_area_struct *vma;
3181 struct anon_vma_chain *avc;
3182
3183 BUG_ON(down_read_trylock(&mm->mmap_sem));
3184 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3185
3186 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3187 if (vma->anon_vma)
3188 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3189 vm_unlock_anon_vma(avc->anon_vma);
3190 if (vma->vm_file && vma->vm_file->f_mapping)
3191 vm_unlock_mapping(vma->vm_file->f_mapping);
3192 }
3193
3194 mutex_unlock(&mm_all_locks_mutex);
3195 }
3196
3197 /*
3198 * initialise the VMA slab
3199 */
3200 void __init mmap_init(void)
3201 {
3202 int ret;
3203
3204 ret = percpu_counter_init(&vm_committed_as, 0);
3205 VM_BUG_ON(ret);
3206 }
3207
3208 /*
3209 * Initialise sysctl_user_reserve_kbytes.
3210 *
3211 * This is intended to prevent a user from starting a single memory hogging
3212 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3213 * mode.
3214 *
3215 * The default value is min(3% of free memory, 128MB)
3216 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3217 */
3218 static int init_user_reserve(void)
3219 {
3220 unsigned long free_kbytes;
3221
3222 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3223
3224 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3225 return 0;
3226 }
3227 subsys_initcall(init_user_reserve);
3228
3229 /*
3230 * Initialise sysctl_admin_reserve_kbytes.
3231 *
3232 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3233 * to log in and kill a memory hogging process.
3234 *
3235 * Systems with more than 256MB will reserve 8MB, enough to recover
3236 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3237 * only reserve 3% of free pages by default.
3238 */
3239 static int init_admin_reserve(void)
3240 {
3241 unsigned long free_kbytes;
3242
3243 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3244
3245 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3246 return 0;
3247 }
3248 subsys_initcall(init_admin_reserve);
3249
3250 /*
3251 * Reinititalise user and admin reserves if memory is added or removed.
3252 *
3253 * The default user reserve max is 128MB, and the default max for the
3254 * admin reserve is 8MB. These are usually, but not always, enough to
3255 * enable recovery from a memory hogging process using login/sshd, a shell,
3256 * and tools like top. It may make sense to increase or even disable the
3257 * reserve depending on the existence of swap or variations in the recovery
3258 * tools. So, the admin may have changed them.
3259 *
3260 * If memory is added and the reserves have been eliminated or increased above
3261 * the default max, then we'll trust the admin.
3262 *
3263 * If memory is removed and there isn't enough free memory, then we
3264 * need to reset the reserves.
3265 *
3266 * Otherwise keep the reserve set by the admin.
3267 */
3268 static int reserve_mem_notifier(struct notifier_block *nb,
3269 unsigned long action, void *data)
3270 {
3271 unsigned long tmp, free_kbytes;
3272
3273 switch (action) {
3274 case MEM_ONLINE:
3275 /* Default max is 128MB. Leave alone if modified by operator. */
3276 tmp = sysctl_user_reserve_kbytes;
3277 if (0 < tmp && tmp < (1UL << 17))
3278 init_user_reserve();
3279
3280 /* Default max is 8MB. Leave alone if modified by operator. */
3281 tmp = sysctl_admin_reserve_kbytes;
3282 if (0 < tmp && tmp < (1UL << 13))
3283 init_admin_reserve();
3284
3285 break;
3286 case MEM_OFFLINE:
3287 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3288
3289 if (sysctl_user_reserve_kbytes > free_kbytes) {
3290 init_user_reserve();
3291 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3292 sysctl_user_reserve_kbytes);
3293 }
3294
3295 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3296 init_admin_reserve();
3297 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3298 sysctl_admin_reserve_kbytes);
3299 }
3300 break;
3301 default:
3302 break;
3303 }
3304 return NOTIFY_OK;
3305 }
3306
3307 static struct notifier_block reserve_mem_nb = {
3308 .notifier_call = reserve_mem_notifier,
3309 };
3310
3311 static int __meminit init_reserve_notifier(void)
3312 {
3313 if (register_hotmemory_notifier(&reserve_mem_nb))
3314 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3315
3316 return 0;
3317 }
3318 subsys_initcall(init_reserve_notifier);
This page took 0.101063 seconds and 5 git commands to generate.