oom: clear TIF_MEMDIE after oom_reaper managed to unmap the address space
[deliverable/linux.git] / mm / oom_kill.c
1 /*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 * Copyright (C) 2010 Google, Inc.
8 * Rewritten by David Rientjes
9 *
10 * The routines in this file are used to kill a process when
11 * we're seriously out of memory. This gets called from __alloc_pages()
12 * in mm/page_alloc.c when we really run out of memory.
13 *
14 * Since we won't call these routines often (on a well-configured
15 * machine) this file will double as a 'coding guide' and a signpost
16 * for newbie kernel hackers. It features several pointers to major
17 * kernel subsystems and hints as to where to find out what things do.
18 */
19
20 #include <linux/oom.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/swap.h>
26 #include <linux/timex.h>
27 #include <linux/jiffies.h>
28 #include <linux/cpuset.h>
29 #include <linux/export.h>
30 #include <linux/notifier.h>
31 #include <linux/memcontrol.h>
32 #include <linux/mempolicy.h>
33 #include <linux/security.h>
34 #include <linux/ptrace.h>
35 #include <linux/freezer.h>
36 #include <linux/ftrace.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kthread.h>
39 #include <linux/init.h>
40
41 #include <asm/tlb.h>
42 #include "internal.h"
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/oom.h>
46
47 int sysctl_panic_on_oom;
48 int sysctl_oom_kill_allocating_task;
49 int sysctl_oom_dump_tasks = 1;
50
51 DEFINE_MUTEX(oom_lock);
52
53 #ifdef CONFIG_NUMA
54 /**
55 * has_intersects_mems_allowed() - check task eligiblity for kill
56 * @start: task struct of which task to consider
57 * @mask: nodemask passed to page allocator for mempolicy ooms
58 *
59 * Task eligibility is determined by whether or not a candidate task, @tsk,
60 * shares the same mempolicy nodes as current if it is bound by such a policy
61 * and whether or not it has the same set of allowed cpuset nodes.
62 */
63 static bool has_intersects_mems_allowed(struct task_struct *start,
64 const nodemask_t *mask)
65 {
66 struct task_struct *tsk;
67 bool ret = false;
68
69 rcu_read_lock();
70 for_each_thread(start, tsk) {
71 if (mask) {
72 /*
73 * If this is a mempolicy constrained oom, tsk's
74 * cpuset is irrelevant. Only return true if its
75 * mempolicy intersects current, otherwise it may be
76 * needlessly killed.
77 */
78 ret = mempolicy_nodemask_intersects(tsk, mask);
79 } else {
80 /*
81 * This is not a mempolicy constrained oom, so only
82 * check the mems of tsk's cpuset.
83 */
84 ret = cpuset_mems_allowed_intersects(current, tsk);
85 }
86 if (ret)
87 break;
88 }
89 rcu_read_unlock();
90
91 return ret;
92 }
93 #else
94 static bool has_intersects_mems_allowed(struct task_struct *tsk,
95 const nodemask_t *mask)
96 {
97 return true;
98 }
99 #endif /* CONFIG_NUMA */
100
101 /*
102 * The process p may have detached its own ->mm while exiting or through
103 * use_mm(), but one or more of its subthreads may still have a valid
104 * pointer. Return p, or any of its subthreads with a valid ->mm, with
105 * task_lock() held.
106 */
107 struct task_struct *find_lock_task_mm(struct task_struct *p)
108 {
109 struct task_struct *t;
110
111 rcu_read_lock();
112
113 for_each_thread(p, t) {
114 task_lock(t);
115 if (likely(t->mm))
116 goto found;
117 task_unlock(t);
118 }
119 t = NULL;
120 found:
121 rcu_read_unlock();
122
123 return t;
124 }
125
126 /*
127 * order == -1 means the oom kill is required by sysrq, otherwise only
128 * for display purposes.
129 */
130 static inline bool is_sysrq_oom(struct oom_control *oc)
131 {
132 return oc->order == -1;
133 }
134
135 /* return true if the task is not adequate as candidate victim task. */
136 static bool oom_unkillable_task(struct task_struct *p,
137 struct mem_cgroup *memcg, const nodemask_t *nodemask)
138 {
139 if (is_global_init(p))
140 return true;
141 if (p->flags & PF_KTHREAD)
142 return true;
143
144 /* When mem_cgroup_out_of_memory() and p is not member of the group */
145 if (memcg && !task_in_mem_cgroup(p, memcg))
146 return true;
147
148 /* p may not have freeable memory in nodemask */
149 if (!has_intersects_mems_allowed(p, nodemask))
150 return true;
151
152 return false;
153 }
154
155 /**
156 * oom_badness - heuristic function to determine which candidate task to kill
157 * @p: task struct of which task we should calculate
158 * @totalpages: total present RAM allowed for page allocation
159 *
160 * The heuristic for determining which task to kill is made to be as simple and
161 * predictable as possible. The goal is to return the highest value for the
162 * task consuming the most memory to avoid subsequent oom failures.
163 */
164 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
165 const nodemask_t *nodemask, unsigned long totalpages)
166 {
167 long points;
168 long adj;
169
170 if (oom_unkillable_task(p, memcg, nodemask))
171 return 0;
172
173 p = find_lock_task_mm(p);
174 if (!p)
175 return 0;
176
177 adj = (long)p->signal->oom_score_adj;
178 if (adj == OOM_SCORE_ADJ_MIN) {
179 task_unlock(p);
180 return 0;
181 }
182
183 /*
184 * The baseline for the badness score is the proportion of RAM that each
185 * task's rss, pagetable and swap space use.
186 */
187 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
188 atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
189 task_unlock(p);
190
191 /*
192 * Root processes get 3% bonus, just like the __vm_enough_memory()
193 * implementation used by LSMs.
194 */
195 if (has_capability_noaudit(p, CAP_SYS_ADMIN))
196 points -= (points * 3) / 100;
197
198 /* Normalize to oom_score_adj units */
199 adj *= totalpages / 1000;
200 points += adj;
201
202 /*
203 * Never return 0 for an eligible task regardless of the root bonus and
204 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
205 */
206 return points > 0 ? points : 1;
207 }
208
209 /*
210 * Determine the type of allocation constraint.
211 */
212 #ifdef CONFIG_NUMA
213 static enum oom_constraint constrained_alloc(struct oom_control *oc,
214 unsigned long *totalpages)
215 {
216 struct zone *zone;
217 struct zoneref *z;
218 enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
219 bool cpuset_limited = false;
220 int nid;
221
222 /* Default to all available memory */
223 *totalpages = totalram_pages + total_swap_pages;
224
225 if (!oc->zonelist)
226 return CONSTRAINT_NONE;
227 /*
228 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
229 * to kill current.We have to random task kill in this case.
230 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
231 */
232 if (oc->gfp_mask & __GFP_THISNODE)
233 return CONSTRAINT_NONE;
234
235 /*
236 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
237 * the page allocator means a mempolicy is in effect. Cpuset policy
238 * is enforced in get_page_from_freelist().
239 */
240 if (oc->nodemask &&
241 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
242 *totalpages = total_swap_pages;
243 for_each_node_mask(nid, *oc->nodemask)
244 *totalpages += node_spanned_pages(nid);
245 return CONSTRAINT_MEMORY_POLICY;
246 }
247
248 /* Check this allocation failure is caused by cpuset's wall function */
249 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
250 high_zoneidx, oc->nodemask)
251 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
252 cpuset_limited = true;
253
254 if (cpuset_limited) {
255 *totalpages = total_swap_pages;
256 for_each_node_mask(nid, cpuset_current_mems_allowed)
257 *totalpages += node_spanned_pages(nid);
258 return CONSTRAINT_CPUSET;
259 }
260 return CONSTRAINT_NONE;
261 }
262 #else
263 static enum oom_constraint constrained_alloc(struct oom_control *oc,
264 unsigned long *totalpages)
265 {
266 *totalpages = totalram_pages + total_swap_pages;
267 return CONSTRAINT_NONE;
268 }
269 #endif
270
271 enum oom_scan_t oom_scan_process_thread(struct oom_control *oc,
272 struct task_struct *task, unsigned long totalpages)
273 {
274 if (oom_unkillable_task(task, NULL, oc->nodemask))
275 return OOM_SCAN_CONTINUE;
276
277 /*
278 * This task already has access to memory reserves and is being killed.
279 * Don't allow any other task to have access to the reserves.
280 */
281 if (test_tsk_thread_flag(task, TIF_MEMDIE)) {
282 if (!is_sysrq_oom(oc))
283 return OOM_SCAN_ABORT;
284 }
285 if (!task->mm)
286 return OOM_SCAN_CONTINUE;
287
288 /*
289 * If task is allocating a lot of memory and has been marked to be
290 * killed first if it triggers an oom, then select it.
291 */
292 if (oom_task_origin(task))
293 return OOM_SCAN_SELECT;
294
295 return OOM_SCAN_OK;
296 }
297
298 /*
299 * Simple selection loop. We chose the process with the highest
300 * number of 'points'. Returns -1 on scan abort.
301 */
302 static struct task_struct *select_bad_process(struct oom_control *oc,
303 unsigned int *ppoints, unsigned long totalpages)
304 {
305 struct task_struct *g, *p;
306 struct task_struct *chosen = NULL;
307 unsigned long chosen_points = 0;
308
309 rcu_read_lock();
310 for_each_process_thread(g, p) {
311 unsigned int points;
312
313 switch (oom_scan_process_thread(oc, p, totalpages)) {
314 case OOM_SCAN_SELECT:
315 chosen = p;
316 chosen_points = ULONG_MAX;
317 /* fall through */
318 case OOM_SCAN_CONTINUE:
319 continue;
320 case OOM_SCAN_ABORT:
321 rcu_read_unlock();
322 return (struct task_struct *)(-1UL);
323 case OOM_SCAN_OK:
324 break;
325 };
326 points = oom_badness(p, NULL, oc->nodemask, totalpages);
327 if (!points || points < chosen_points)
328 continue;
329 /* Prefer thread group leaders for display purposes */
330 if (points == chosen_points && thread_group_leader(chosen))
331 continue;
332
333 chosen = p;
334 chosen_points = points;
335 }
336 if (chosen)
337 get_task_struct(chosen);
338 rcu_read_unlock();
339
340 *ppoints = chosen_points * 1000 / totalpages;
341 return chosen;
342 }
343
344 /**
345 * dump_tasks - dump current memory state of all system tasks
346 * @memcg: current's memory controller, if constrained
347 * @nodemask: nodemask passed to page allocator for mempolicy ooms
348 *
349 * Dumps the current memory state of all eligible tasks. Tasks not in the same
350 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
351 * are not shown.
352 * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
353 * swapents, oom_score_adj value, and name.
354 */
355 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
356 {
357 struct task_struct *p;
358 struct task_struct *task;
359
360 pr_info("[ pid ] uid tgid total_vm rss nr_ptes nr_pmds swapents oom_score_adj name\n");
361 rcu_read_lock();
362 for_each_process(p) {
363 if (oom_unkillable_task(p, memcg, nodemask))
364 continue;
365
366 task = find_lock_task_mm(p);
367 if (!task) {
368 /*
369 * This is a kthread or all of p's threads have already
370 * detached their mm's. There's no need to report
371 * them; they can't be oom killed anyway.
372 */
373 continue;
374 }
375
376 pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu %5hd %s\n",
377 task->pid, from_kuid(&init_user_ns, task_uid(task)),
378 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
379 atomic_long_read(&task->mm->nr_ptes),
380 mm_nr_pmds(task->mm),
381 get_mm_counter(task->mm, MM_SWAPENTS),
382 task->signal->oom_score_adj, task->comm);
383 task_unlock(task);
384 }
385 rcu_read_unlock();
386 }
387
388 static void dump_header(struct oom_control *oc, struct task_struct *p,
389 struct mem_cgroup *memcg)
390 {
391 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
392 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
393 current->signal->oom_score_adj);
394
395 cpuset_print_current_mems_allowed();
396 dump_stack();
397 if (memcg)
398 mem_cgroup_print_oom_info(memcg, p);
399 else
400 show_mem(SHOW_MEM_FILTER_NODES);
401 if (sysctl_oom_dump_tasks)
402 dump_tasks(memcg, oc->nodemask);
403 }
404
405 /*
406 * Number of OOM victims in flight
407 */
408 static atomic_t oom_victims = ATOMIC_INIT(0);
409 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
410
411 bool oom_killer_disabled __read_mostly;
412
413 #ifdef CONFIG_MMU
414 /*
415 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
416 * victim (if that is possible) to help the OOM killer to move on.
417 */
418 static struct task_struct *oom_reaper_th;
419 static struct task_struct *task_to_reap;
420 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
421
422 static bool __oom_reap_task(struct task_struct *tsk)
423 {
424 struct mmu_gather tlb;
425 struct vm_area_struct *vma;
426 struct mm_struct *mm;
427 struct task_struct *p;
428 struct zap_details details = {.check_swap_entries = true,
429 .ignore_dirty = true};
430 bool ret = true;
431
432 /*
433 * Make sure we find the associated mm_struct even when the particular
434 * thread has already terminated and cleared its mm.
435 * We might have race with exit path so consider our work done if there
436 * is no mm.
437 */
438 p = find_lock_task_mm(tsk);
439 if (!p)
440 return true;
441
442 mm = p->mm;
443 if (!atomic_inc_not_zero(&mm->mm_users)) {
444 task_unlock(p);
445 return true;
446 }
447
448 task_unlock(p);
449
450 if (!down_read_trylock(&mm->mmap_sem)) {
451 ret = false;
452 goto out;
453 }
454
455 tlb_gather_mmu(&tlb, mm, 0, -1);
456 for (vma = mm->mmap ; vma; vma = vma->vm_next) {
457 if (is_vm_hugetlb_page(vma))
458 continue;
459
460 /*
461 * mlocked VMAs require explicit munlocking before unmap.
462 * Let's keep it simple here and skip such VMAs.
463 */
464 if (vma->vm_flags & VM_LOCKED)
465 continue;
466
467 /*
468 * Only anonymous pages have a good chance to be dropped
469 * without additional steps which we cannot afford as we
470 * are OOM already.
471 *
472 * We do not even care about fs backed pages because all
473 * which are reclaimable have already been reclaimed and
474 * we do not want to block exit_mmap by keeping mm ref
475 * count elevated without a good reason.
476 */
477 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED))
478 unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
479 &details);
480 }
481 tlb_finish_mmu(&tlb, 0, -1);
482 up_read(&mm->mmap_sem);
483
484 /*
485 * Clear TIF_MEMDIE because the task shouldn't be sitting on a
486 * reasonably reclaimable memory anymore. OOM killer can continue
487 * by selecting other victim if unmapping hasn't led to any
488 * improvements. This also means that selecting this task doesn't
489 * make any sense.
490 */
491 tsk->signal->oom_score_adj = OOM_SCORE_ADJ_MIN;
492 exit_oom_victim(tsk);
493 out:
494 mmput(mm);
495 return ret;
496 }
497
498 static void oom_reap_task(struct task_struct *tsk)
499 {
500 int attempts = 0;
501
502 /* Retry the down_read_trylock(mmap_sem) a few times */
503 while (attempts++ < 10 && !__oom_reap_task(tsk))
504 schedule_timeout_idle(HZ/10);
505
506 /* Drop a reference taken by wake_oom_reaper */
507 put_task_struct(tsk);
508 }
509
510 static int oom_reaper(void *unused)
511 {
512 while (true) {
513 struct task_struct *tsk;
514
515 wait_event_freezable(oom_reaper_wait,
516 (tsk = READ_ONCE(task_to_reap)));
517 oom_reap_task(tsk);
518 WRITE_ONCE(task_to_reap, NULL);
519 }
520
521 return 0;
522 }
523
524 static void wake_oom_reaper(struct task_struct *tsk)
525 {
526 struct task_struct *old_tsk;
527
528 if (!oom_reaper_th)
529 return;
530
531 get_task_struct(tsk);
532
533 /*
534 * Make sure that only a single mm is ever queued for the reaper
535 * because multiple are not necessary and the operation might be
536 * disruptive so better reduce it to the bare minimum.
537 */
538 old_tsk = cmpxchg(&task_to_reap, NULL, tsk);
539 if (!old_tsk)
540 wake_up(&oom_reaper_wait);
541 else
542 put_task_struct(tsk);
543 }
544
545 static int __init oom_init(void)
546 {
547 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
548 if (IS_ERR(oom_reaper_th)) {
549 pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
550 PTR_ERR(oom_reaper_th));
551 oom_reaper_th = NULL;
552 }
553 return 0;
554 }
555 subsys_initcall(oom_init)
556 #else
557 static void wake_oom_reaper(struct task_struct *tsk)
558 {
559 }
560 #endif
561
562 /**
563 * mark_oom_victim - mark the given task as OOM victim
564 * @tsk: task to mark
565 *
566 * Has to be called with oom_lock held and never after
567 * oom has been disabled already.
568 */
569 void mark_oom_victim(struct task_struct *tsk)
570 {
571 WARN_ON(oom_killer_disabled);
572 /* OOM killer might race with memcg OOM */
573 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
574 return;
575 /*
576 * Make sure that the task is woken up from uninterruptible sleep
577 * if it is frozen because OOM killer wouldn't be able to free
578 * any memory and livelock. freezing_slow_path will tell the freezer
579 * that TIF_MEMDIE tasks should be ignored.
580 */
581 __thaw_task(tsk);
582 atomic_inc(&oom_victims);
583 }
584
585 /**
586 * exit_oom_victim - note the exit of an OOM victim
587 */
588 void exit_oom_victim(struct task_struct *tsk)
589 {
590 if (!test_and_clear_tsk_thread_flag(tsk, TIF_MEMDIE))
591 return;
592
593 if (!atomic_dec_return(&oom_victims))
594 wake_up_all(&oom_victims_wait);
595 }
596
597 /**
598 * oom_killer_disable - disable OOM killer
599 *
600 * Forces all page allocations to fail rather than trigger OOM killer.
601 * Will block and wait until all OOM victims are killed.
602 *
603 * The function cannot be called when there are runnable user tasks because
604 * the userspace would see unexpected allocation failures as a result. Any
605 * new usage of this function should be consulted with MM people.
606 *
607 * Returns true if successful and false if the OOM killer cannot be
608 * disabled.
609 */
610 bool oom_killer_disable(void)
611 {
612 /*
613 * Make sure to not race with an ongoing OOM killer. Check that the
614 * current is not killed (possibly due to sharing the victim's memory).
615 */
616 if (mutex_lock_killable(&oom_lock))
617 return false;
618 oom_killer_disabled = true;
619 mutex_unlock(&oom_lock);
620
621 wait_event(oom_victims_wait, !atomic_read(&oom_victims));
622
623 return true;
624 }
625
626 /**
627 * oom_killer_enable - enable OOM killer
628 */
629 void oom_killer_enable(void)
630 {
631 oom_killer_disabled = false;
632 }
633
634 /*
635 * task->mm can be NULL if the task is the exited group leader. So to
636 * determine whether the task is using a particular mm, we examine all the
637 * task's threads: if one of those is using this mm then this task was also
638 * using it.
639 */
640 static bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
641 {
642 struct task_struct *t;
643
644 for_each_thread(p, t) {
645 struct mm_struct *t_mm = READ_ONCE(t->mm);
646 if (t_mm)
647 return t_mm == mm;
648 }
649 return false;
650 }
651
652 #define K(x) ((x) << (PAGE_SHIFT-10))
653 /*
654 * Must be called while holding a reference to p, which will be released upon
655 * returning.
656 */
657 void oom_kill_process(struct oom_control *oc, struct task_struct *p,
658 unsigned int points, unsigned long totalpages,
659 struct mem_cgroup *memcg, const char *message)
660 {
661 struct task_struct *victim = p;
662 struct task_struct *child;
663 struct task_struct *t;
664 struct mm_struct *mm;
665 unsigned int victim_points = 0;
666 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
667 DEFAULT_RATELIMIT_BURST);
668 bool can_oom_reap = true;
669
670 /*
671 * If the task is already exiting, don't alarm the sysadmin or kill
672 * its children or threads, just set TIF_MEMDIE so it can die quickly
673 */
674 task_lock(p);
675 if (p->mm && task_will_free_mem(p)) {
676 mark_oom_victim(p);
677 task_unlock(p);
678 put_task_struct(p);
679 return;
680 }
681 task_unlock(p);
682
683 if (__ratelimit(&oom_rs))
684 dump_header(oc, p, memcg);
685
686 pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
687 message, task_pid_nr(p), p->comm, points);
688
689 /*
690 * If any of p's children has a different mm and is eligible for kill,
691 * the one with the highest oom_badness() score is sacrificed for its
692 * parent. This attempts to lose the minimal amount of work done while
693 * still freeing memory.
694 */
695 read_lock(&tasklist_lock);
696 for_each_thread(p, t) {
697 list_for_each_entry(child, &t->children, sibling) {
698 unsigned int child_points;
699
700 if (process_shares_mm(child, p->mm))
701 continue;
702 /*
703 * oom_badness() returns 0 if the thread is unkillable
704 */
705 child_points = oom_badness(child, memcg, oc->nodemask,
706 totalpages);
707 if (child_points > victim_points) {
708 put_task_struct(victim);
709 victim = child;
710 victim_points = child_points;
711 get_task_struct(victim);
712 }
713 }
714 }
715 read_unlock(&tasklist_lock);
716
717 p = find_lock_task_mm(victim);
718 if (!p) {
719 put_task_struct(victim);
720 return;
721 } else if (victim != p) {
722 get_task_struct(p);
723 put_task_struct(victim);
724 victim = p;
725 }
726
727 /* Get a reference to safely compare mm after task_unlock(victim) */
728 mm = victim->mm;
729 atomic_inc(&mm->mm_count);
730 /*
731 * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
732 * the OOM victim from depleting the memory reserves from the user
733 * space under its control.
734 */
735 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
736 mark_oom_victim(victim);
737 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
738 task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
739 K(get_mm_counter(victim->mm, MM_ANONPAGES)),
740 K(get_mm_counter(victim->mm, MM_FILEPAGES)),
741 K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
742 task_unlock(victim);
743
744 /*
745 * Kill all user processes sharing victim->mm in other thread groups, if
746 * any. They don't get access to memory reserves, though, to avoid
747 * depletion of all memory. This prevents mm->mmap_sem livelock when an
748 * oom killed thread cannot exit because it requires the semaphore and
749 * its contended by another thread trying to allocate memory itself.
750 * That thread will now get access to memory reserves since it has a
751 * pending fatal signal.
752 */
753 rcu_read_lock();
754 for_each_process(p) {
755 if (!process_shares_mm(p, mm))
756 continue;
757 if (same_thread_group(p, victim))
758 continue;
759 if (unlikely(p->flags & PF_KTHREAD) || is_global_init(p) ||
760 p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
761 /*
762 * We cannot use oom_reaper for the mm shared by this
763 * process because it wouldn't get killed and so the
764 * memory might be still used.
765 */
766 can_oom_reap = false;
767 continue;
768 }
769 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
770 }
771 rcu_read_unlock();
772
773 if (can_oom_reap)
774 wake_oom_reaper(victim);
775
776 mmdrop(mm);
777 put_task_struct(victim);
778 }
779 #undef K
780
781 /*
782 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
783 */
784 void check_panic_on_oom(struct oom_control *oc, enum oom_constraint constraint,
785 struct mem_cgroup *memcg)
786 {
787 if (likely(!sysctl_panic_on_oom))
788 return;
789 if (sysctl_panic_on_oom != 2) {
790 /*
791 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
792 * does not panic for cpuset, mempolicy, or memcg allocation
793 * failures.
794 */
795 if (constraint != CONSTRAINT_NONE)
796 return;
797 }
798 /* Do not panic for oom kills triggered by sysrq */
799 if (is_sysrq_oom(oc))
800 return;
801 dump_header(oc, NULL, memcg);
802 panic("Out of memory: %s panic_on_oom is enabled\n",
803 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
804 }
805
806 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
807
808 int register_oom_notifier(struct notifier_block *nb)
809 {
810 return blocking_notifier_chain_register(&oom_notify_list, nb);
811 }
812 EXPORT_SYMBOL_GPL(register_oom_notifier);
813
814 int unregister_oom_notifier(struct notifier_block *nb)
815 {
816 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
817 }
818 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
819
820 /**
821 * out_of_memory - kill the "best" process when we run out of memory
822 * @oc: pointer to struct oom_control
823 *
824 * If we run out of memory, we have the choice between either
825 * killing a random task (bad), letting the system crash (worse)
826 * OR try to be smart about which process to kill. Note that we
827 * don't have to be perfect here, we just have to be good.
828 */
829 bool out_of_memory(struct oom_control *oc)
830 {
831 struct task_struct *p;
832 unsigned long totalpages;
833 unsigned long freed = 0;
834 unsigned int uninitialized_var(points);
835 enum oom_constraint constraint = CONSTRAINT_NONE;
836
837 if (oom_killer_disabled)
838 return false;
839
840 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
841 if (freed > 0)
842 /* Got some memory back in the last second. */
843 return true;
844
845 /*
846 * If current has a pending SIGKILL or is exiting, then automatically
847 * select it. The goal is to allow it to allocate so that it may
848 * quickly exit and free its memory.
849 *
850 * But don't select if current has already released its mm and cleared
851 * TIF_MEMDIE flag at exit_mm(), otherwise an OOM livelock may occur.
852 */
853 if (current->mm &&
854 (fatal_signal_pending(current) || task_will_free_mem(current))) {
855 mark_oom_victim(current);
856 return true;
857 }
858
859 /*
860 * Check if there were limitations on the allocation (only relevant for
861 * NUMA) that may require different handling.
862 */
863 constraint = constrained_alloc(oc, &totalpages);
864 if (constraint != CONSTRAINT_MEMORY_POLICY)
865 oc->nodemask = NULL;
866 check_panic_on_oom(oc, constraint, NULL);
867
868 if (sysctl_oom_kill_allocating_task && current->mm &&
869 !oom_unkillable_task(current, NULL, oc->nodemask) &&
870 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
871 get_task_struct(current);
872 oom_kill_process(oc, current, 0, totalpages, NULL,
873 "Out of memory (oom_kill_allocating_task)");
874 return true;
875 }
876
877 p = select_bad_process(oc, &points, totalpages);
878 /* Found nothing?!?! Either we hang forever, or we panic. */
879 if (!p && !is_sysrq_oom(oc)) {
880 dump_header(oc, NULL, NULL);
881 panic("Out of memory and no killable processes...\n");
882 }
883 if (p && p != (void *)-1UL) {
884 oom_kill_process(oc, p, points, totalpages, NULL,
885 "Out of memory");
886 /*
887 * Give the killed process a good chance to exit before trying
888 * to allocate memory again.
889 */
890 schedule_timeout_killable(1);
891 }
892 return true;
893 }
894
895 /*
896 * The pagefault handler calls here because it is out of memory, so kill a
897 * memory-hogging task. If any populated zone has ZONE_OOM_LOCKED set, a
898 * parallel oom killing is already in progress so do nothing.
899 */
900 void pagefault_out_of_memory(void)
901 {
902 struct oom_control oc = {
903 .zonelist = NULL,
904 .nodemask = NULL,
905 .gfp_mask = 0,
906 .order = 0,
907 };
908
909 if (mem_cgroup_oom_synchronize(true))
910 return;
911
912 if (!mutex_trylock(&oom_lock))
913 return;
914
915 if (!out_of_memory(&oc)) {
916 /*
917 * There shouldn't be any user tasks runnable while the
918 * OOM killer is disabled, so the current task has to
919 * be a racing OOM victim for which oom_killer_disable()
920 * is waiting for.
921 */
922 WARN_ON(test_thread_flag(TIF_MEMDIE));
923 }
924
925 mutex_unlock(&oom_lock);
926 }
This page took 0.048604 seconds and 6 git commands to generate.