writeback: clean up wb_dirty_limit()
[deliverable/linux.git] / mm / page-writeback.c
1 /*
2 * mm/page-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
10 * 10Apr2002 Andrew Morton
11 * Initial version
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
41
42 #include "internal.h"
43
44 /*
45 * Sleep at most 200ms at a time in balance_dirty_pages().
46 */
47 #define MAX_PAUSE max(HZ/5, 1)
48
49 /*
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
52 */
53 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
54
55 /*
56 * Estimate write bandwidth at 200ms intervals.
57 */
58 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
59
60 #define RATELIMIT_CALC_SHIFT 10
61
62 /*
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
65 */
66 static long ratelimit_pages = 32;
67
68 /* The following parameters are exported via /proc/sys/vm */
69
70 /*
71 * Start background writeback (via writeback threads) at this percentage
72 */
73 int dirty_background_ratio = 10;
74
75 /*
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
78 */
79 unsigned long dirty_background_bytes;
80
81 /*
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
84 */
85 int vm_highmem_is_dirtyable;
86
87 /*
88 * The generator of dirty data starts writeback at this percentage
89 */
90 int vm_dirty_ratio = 20;
91
92 /*
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
95 */
96 unsigned long vm_dirty_bytes;
97
98 /*
99 * The interval between `kupdate'-style writebacks
100 */
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
102
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
105 /*
106 * The longest time for which data is allowed to remain dirty
107 */
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
109
110 /*
111 * Flag that makes the machine dump writes/reads and block dirtyings.
112 */
113 int block_dump;
114
115 /*
116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117 * a full sync is triggered after this time elapses without any disk activity.
118 */
119 int laptop_mode;
120
121 EXPORT_SYMBOL(laptop_mode);
122
123 /* End of sysctl-exported parameters */
124
125 unsigned long global_dirty_limit;
126
127 /*
128 * Scale the writeback cache size proportional to the relative writeout speeds.
129 *
130 * We do this by keeping a floating proportion between BDIs, based on page
131 * writeback completions [end_page_writeback()]. Those devices that write out
132 * pages fastest will get the larger share, while the slower will get a smaller
133 * share.
134 *
135 * We use page writeout completions because we are interested in getting rid of
136 * dirty pages. Having them written out is the primary goal.
137 *
138 * We introduce a concept of time, a period over which we measure these events,
139 * because demand can/will vary over time. The length of this period itself is
140 * measured in page writeback completions.
141 *
142 */
143 static struct fprop_global writeout_completions;
144
145 static void writeout_period(unsigned long t);
146 /* Timer for aging of writeout_completions */
147 static struct timer_list writeout_period_timer =
148 TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0);
149 static unsigned long writeout_period_time = 0;
150
151 /*
152 * Length of period for aging writeout fractions of bdis. This is an
153 * arbitrarily chosen number. The longer the period, the slower fractions will
154 * reflect changes in current writeout rate.
155 */
156 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
157
158 #ifdef CONFIG_CGROUP_WRITEBACK
159
160 static void wb_min_max_ratio(struct bdi_writeback *wb,
161 unsigned long *minp, unsigned long *maxp)
162 {
163 unsigned long this_bw = wb->avg_write_bandwidth;
164 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
165 unsigned long long min = wb->bdi->min_ratio;
166 unsigned long long max = wb->bdi->max_ratio;
167
168 /*
169 * @wb may already be clean by the time control reaches here and
170 * the total may not include its bw.
171 */
172 if (this_bw < tot_bw) {
173 if (min) {
174 min *= this_bw;
175 do_div(min, tot_bw);
176 }
177 if (max < 100) {
178 max *= this_bw;
179 do_div(max, tot_bw);
180 }
181 }
182
183 *minp = min;
184 *maxp = max;
185 }
186
187 #else /* CONFIG_CGROUP_WRITEBACK */
188
189 static void wb_min_max_ratio(struct bdi_writeback *wb,
190 unsigned long *minp, unsigned long *maxp)
191 {
192 *minp = wb->bdi->min_ratio;
193 *maxp = wb->bdi->max_ratio;
194 }
195
196 #endif /* CONFIG_CGROUP_WRITEBACK */
197
198 /*
199 * In a memory zone, there is a certain amount of pages we consider
200 * available for the page cache, which is essentially the number of
201 * free and reclaimable pages, minus some zone reserves to protect
202 * lowmem and the ability to uphold the zone's watermarks without
203 * requiring writeback.
204 *
205 * This number of dirtyable pages is the base value of which the
206 * user-configurable dirty ratio is the effictive number of pages that
207 * are allowed to be actually dirtied. Per individual zone, or
208 * globally by using the sum of dirtyable pages over all zones.
209 *
210 * Because the user is allowed to specify the dirty limit globally as
211 * absolute number of bytes, calculating the per-zone dirty limit can
212 * require translating the configured limit into a percentage of
213 * global dirtyable memory first.
214 */
215
216 /**
217 * zone_dirtyable_memory - number of dirtyable pages in a zone
218 * @zone: the zone
219 *
220 * Returns the zone's number of pages potentially available for dirty
221 * page cache. This is the base value for the per-zone dirty limits.
222 */
223 static unsigned long zone_dirtyable_memory(struct zone *zone)
224 {
225 unsigned long nr_pages;
226
227 nr_pages = zone_page_state(zone, NR_FREE_PAGES);
228 nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
229
230 nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
231 nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
232
233 return nr_pages;
234 }
235
236 static unsigned long highmem_dirtyable_memory(unsigned long total)
237 {
238 #ifdef CONFIG_HIGHMEM
239 int node;
240 unsigned long x = 0;
241
242 for_each_node_state(node, N_HIGH_MEMORY) {
243 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
244
245 x += zone_dirtyable_memory(z);
246 }
247 /*
248 * Unreclaimable memory (kernel memory or anonymous memory
249 * without swap) can bring down the dirtyable pages below
250 * the zone's dirty balance reserve and the above calculation
251 * will underflow. However we still want to add in nodes
252 * which are below threshold (negative values) to get a more
253 * accurate calculation but make sure that the total never
254 * underflows.
255 */
256 if ((long)x < 0)
257 x = 0;
258
259 /*
260 * Make sure that the number of highmem pages is never larger
261 * than the number of the total dirtyable memory. This can only
262 * occur in very strange VM situations but we want to make sure
263 * that this does not occur.
264 */
265 return min(x, total);
266 #else
267 return 0;
268 #endif
269 }
270
271 /**
272 * global_dirtyable_memory - number of globally dirtyable pages
273 *
274 * Returns the global number of pages potentially available for dirty
275 * page cache. This is the base value for the global dirty limits.
276 */
277 static unsigned long global_dirtyable_memory(void)
278 {
279 unsigned long x;
280
281 x = global_page_state(NR_FREE_PAGES);
282 x -= min(x, dirty_balance_reserve);
283
284 x += global_page_state(NR_INACTIVE_FILE);
285 x += global_page_state(NR_ACTIVE_FILE);
286
287 if (!vm_highmem_is_dirtyable)
288 x -= highmem_dirtyable_memory(x);
289
290 return x + 1; /* Ensure that we never return 0 */
291 }
292
293 /*
294 * global_dirty_limits - background-writeback and dirty-throttling thresholds
295 *
296 * Calculate the dirty thresholds based on sysctl parameters
297 * - vm.dirty_background_ratio or vm.dirty_background_bytes
298 * - vm.dirty_ratio or vm.dirty_bytes
299 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
300 * real-time tasks.
301 */
302 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
303 {
304 const unsigned long available_memory = global_dirtyable_memory();
305 unsigned long background;
306 unsigned long dirty;
307 struct task_struct *tsk;
308
309 if (vm_dirty_bytes)
310 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
311 else
312 dirty = (vm_dirty_ratio * available_memory) / 100;
313
314 if (dirty_background_bytes)
315 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
316 else
317 background = (dirty_background_ratio * available_memory) / 100;
318
319 if (background >= dirty)
320 background = dirty / 2;
321 tsk = current;
322 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
323 background += background / 4;
324 dirty += dirty / 4;
325 }
326 *pbackground = background;
327 *pdirty = dirty;
328 trace_global_dirty_state(background, dirty);
329 }
330
331 /**
332 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
333 * @zone: the zone
334 *
335 * Returns the maximum number of dirty pages allowed in a zone, based
336 * on the zone's dirtyable memory.
337 */
338 static unsigned long zone_dirty_limit(struct zone *zone)
339 {
340 unsigned long zone_memory = zone_dirtyable_memory(zone);
341 struct task_struct *tsk = current;
342 unsigned long dirty;
343
344 if (vm_dirty_bytes)
345 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
346 zone_memory / global_dirtyable_memory();
347 else
348 dirty = vm_dirty_ratio * zone_memory / 100;
349
350 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
351 dirty += dirty / 4;
352
353 return dirty;
354 }
355
356 /**
357 * zone_dirty_ok - tells whether a zone is within its dirty limits
358 * @zone: the zone to check
359 *
360 * Returns %true when the dirty pages in @zone are within the zone's
361 * dirty limit, %false if the limit is exceeded.
362 */
363 bool zone_dirty_ok(struct zone *zone)
364 {
365 unsigned long limit = zone_dirty_limit(zone);
366
367 return zone_page_state(zone, NR_FILE_DIRTY) +
368 zone_page_state(zone, NR_UNSTABLE_NFS) +
369 zone_page_state(zone, NR_WRITEBACK) <= limit;
370 }
371
372 int dirty_background_ratio_handler(struct ctl_table *table, int write,
373 void __user *buffer, size_t *lenp,
374 loff_t *ppos)
375 {
376 int ret;
377
378 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
379 if (ret == 0 && write)
380 dirty_background_bytes = 0;
381 return ret;
382 }
383
384 int dirty_background_bytes_handler(struct ctl_table *table, int write,
385 void __user *buffer, size_t *lenp,
386 loff_t *ppos)
387 {
388 int ret;
389
390 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
391 if (ret == 0 && write)
392 dirty_background_ratio = 0;
393 return ret;
394 }
395
396 int dirty_ratio_handler(struct ctl_table *table, int write,
397 void __user *buffer, size_t *lenp,
398 loff_t *ppos)
399 {
400 int old_ratio = vm_dirty_ratio;
401 int ret;
402
403 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
404 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
405 writeback_set_ratelimit();
406 vm_dirty_bytes = 0;
407 }
408 return ret;
409 }
410
411 int dirty_bytes_handler(struct ctl_table *table, int write,
412 void __user *buffer, size_t *lenp,
413 loff_t *ppos)
414 {
415 unsigned long old_bytes = vm_dirty_bytes;
416 int ret;
417
418 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
419 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
420 writeback_set_ratelimit();
421 vm_dirty_ratio = 0;
422 }
423 return ret;
424 }
425
426 static unsigned long wp_next_time(unsigned long cur_time)
427 {
428 cur_time += VM_COMPLETIONS_PERIOD_LEN;
429 /* 0 has a special meaning... */
430 if (!cur_time)
431 return 1;
432 return cur_time;
433 }
434
435 /*
436 * Increment the BDI's writeout completion count and the global writeout
437 * completion count. Called from test_clear_page_writeback().
438 */
439 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
440 {
441 __inc_wb_stat(wb, WB_WRITTEN);
442 __fprop_inc_percpu_max(&writeout_completions, &wb->completions,
443 wb->bdi->max_prop_frac);
444 /* First event after period switching was turned off? */
445 if (!unlikely(writeout_period_time)) {
446 /*
447 * We can race with other __bdi_writeout_inc calls here but
448 * it does not cause any harm since the resulting time when
449 * timer will fire and what is in writeout_period_time will be
450 * roughly the same.
451 */
452 writeout_period_time = wp_next_time(jiffies);
453 mod_timer(&writeout_period_timer, writeout_period_time);
454 }
455 }
456
457 void wb_writeout_inc(struct bdi_writeback *wb)
458 {
459 unsigned long flags;
460
461 local_irq_save(flags);
462 __wb_writeout_inc(wb);
463 local_irq_restore(flags);
464 }
465 EXPORT_SYMBOL_GPL(wb_writeout_inc);
466
467 /*
468 * Obtain an accurate fraction of the BDI's portion.
469 */
470 static void wb_writeout_fraction(struct bdi_writeback *wb,
471 long *numerator, long *denominator)
472 {
473 fprop_fraction_percpu(&writeout_completions, &wb->completions,
474 numerator, denominator);
475 }
476
477 /*
478 * On idle system, we can be called long after we scheduled because we use
479 * deferred timers so count with missed periods.
480 */
481 static void writeout_period(unsigned long t)
482 {
483 int miss_periods = (jiffies - writeout_period_time) /
484 VM_COMPLETIONS_PERIOD_LEN;
485
486 if (fprop_new_period(&writeout_completions, miss_periods + 1)) {
487 writeout_period_time = wp_next_time(writeout_period_time +
488 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
489 mod_timer(&writeout_period_timer, writeout_period_time);
490 } else {
491 /*
492 * Aging has zeroed all fractions. Stop wasting CPU on period
493 * updates.
494 */
495 writeout_period_time = 0;
496 }
497 }
498
499 /*
500 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
501 * registered backing devices, which, for obvious reasons, can not
502 * exceed 100%.
503 */
504 static unsigned int bdi_min_ratio;
505
506 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
507 {
508 int ret = 0;
509
510 spin_lock_bh(&bdi_lock);
511 if (min_ratio > bdi->max_ratio) {
512 ret = -EINVAL;
513 } else {
514 min_ratio -= bdi->min_ratio;
515 if (bdi_min_ratio + min_ratio < 100) {
516 bdi_min_ratio += min_ratio;
517 bdi->min_ratio += min_ratio;
518 } else {
519 ret = -EINVAL;
520 }
521 }
522 spin_unlock_bh(&bdi_lock);
523
524 return ret;
525 }
526
527 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
528 {
529 int ret = 0;
530
531 if (max_ratio > 100)
532 return -EINVAL;
533
534 spin_lock_bh(&bdi_lock);
535 if (bdi->min_ratio > max_ratio) {
536 ret = -EINVAL;
537 } else {
538 bdi->max_ratio = max_ratio;
539 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
540 }
541 spin_unlock_bh(&bdi_lock);
542
543 return ret;
544 }
545 EXPORT_SYMBOL(bdi_set_max_ratio);
546
547 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
548 unsigned long bg_thresh)
549 {
550 return (thresh + bg_thresh) / 2;
551 }
552
553 static unsigned long hard_dirty_limit(unsigned long thresh)
554 {
555 return max(thresh, global_dirty_limit);
556 }
557
558 /**
559 * wb_calc_thresh - @wb's share of dirty throttling threshold
560 * @wb: bdi_writeback to query
561 * @dirty: global dirty limit in pages
562 *
563 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
564 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
565 *
566 * Note that balance_dirty_pages() will only seriously take it as a hard limit
567 * when sleeping max_pause per page is not enough to keep the dirty pages under
568 * control. For example, when the device is completely stalled due to some error
569 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
570 * In the other normal situations, it acts more gently by throttling the tasks
571 * more (rather than completely block them) when the wb dirty pages go high.
572 *
573 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
574 * - starving fast devices
575 * - piling up dirty pages (that will take long time to sync) on slow devices
576 *
577 * The wb's share of dirty limit will be adapting to its throughput and
578 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
579 */
580 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
581 {
582 u64 wb_thresh;
583 long numerator, denominator;
584 unsigned long wb_min_ratio, wb_max_ratio;
585
586 /*
587 * Calculate this BDI's share of the thresh ratio.
588 */
589 wb_writeout_fraction(wb, &numerator, &denominator);
590
591 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
592 wb_thresh *= numerator;
593 do_div(wb_thresh, denominator);
594
595 wb_min_max_ratio(wb, &wb_min_ratio, &wb_max_ratio);
596
597 wb_thresh += (thresh * wb_min_ratio) / 100;
598 if (wb_thresh > (thresh * wb_max_ratio) / 100)
599 wb_thresh = thresh * wb_max_ratio / 100;
600
601 return wb_thresh;
602 }
603
604 /*
605 * setpoint - dirty 3
606 * f(dirty) := 1.0 + (----------------)
607 * limit - setpoint
608 *
609 * it's a 3rd order polynomial that subjects to
610 *
611 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
612 * (2) f(setpoint) = 1.0 => the balance point
613 * (3) f(limit) = 0 => the hard limit
614 * (4) df/dx <= 0 => negative feedback control
615 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
616 * => fast response on large errors; small oscillation near setpoint
617 */
618 static long long pos_ratio_polynom(unsigned long setpoint,
619 unsigned long dirty,
620 unsigned long limit)
621 {
622 long long pos_ratio;
623 long x;
624
625 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
626 limit - setpoint + 1);
627 pos_ratio = x;
628 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
629 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
630 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
631
632 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
633 }
634
635 /*
636 * Dirty position control.
637 *
638 * (o) global/bdi setpoints
639 *
640 * We want the dirty pages be balanced around the global/wb setpoints.
641 * When the number of dirty pages is higher/lower than the setpoint, the
642 * dirty position control ratio (and hence task dirty ratelimit) will be
643 * decreased/increased to bring the dirty pages back to the setpoint.
644 *
645 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
646 *
647 * if (dirty < setpoint) scale up pos_ratio
648 * if (dirty > setpoint) scale down pos_ratio
649 *
650 * if (wb_dirty < wb_setpoint) scale up pos_ratio
651 * if (wb_dirty > wb_setpoint) scale down pos_ratio
652 *
653 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
654 *
655 * (o) global control line
656 *
657 * ^ pos_ratio
658 * |
659 * | |<===== global dirty control scope ======>|
660 * 2.0 .............*
661 * | .*
662 * | . *
663 * | . *
664 * | . *
665 * | . *
666 * | . *
667 * 1.0 ................................*
668 * | . . *
669 * | . . *
670 * | . . *
671 * | . . *
672 * | . . *
673 * 0 +------------.------------------.----------------------*------------->
674 * freerun^ setpoint^ limit^ dirty pages
675 *
676 * (o) wb control line
677 *
678 * ^ pos_ratio
679 * |
680 * | *
681 * | *
682 * | *
683 * | *
684 * | * |<=========== span ============>|
685 * 1.0 .......................*
686 * | . *
687 * | . *
688 * | . *
689 * | . *
690 * | . *
691 * | . *
692 * | . *
693 * | . *
694 * | . *
695 * | . *
696 * | . *
697 * 1/4 ...............................................* * * * * * * * * * * *
698 * | . .
699 * | . .
700 * | . .
701 * 0 +----------------------.-------------------------------.------------->
702 * wb_setpoint^ x_intercept^
703 *
704 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
705 * be smoothly throttled down to normal if it starts high in situations like
706 * - start writing to a slow SD card and a fast disk at the same time. The SD
707 * card's wb_dirty may rush to many times higher than wb_setpoint.
708 * - the wb dirty thresh drops quickly due to change of JBOD workload
709 */
710 static unsigned long wb_position_ratio(struct bdi_writeback *wb,
711 unsigned long thresh,
712 unsigned long bg_thresh,
713 unsigned long dirty,
714 unsigned long wb_thresh,
715 unsigned long wb_dirty)
716 {
717 unsigned long write_bw = wb->avg_write_bandwidth;
718 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
719 unsigned long limit = hard_dirty_limit(thresh);
720 unsigned long x_intercept;
721 unsigned long setpoint; /* dirty pages' target balance point */
722 unsigned long wb_setpoint;
723 unsigned long span;
724 long long pos_ratio; /* for scaling up/down the rate limit */
725 long x;
726
727 if (unlikely(dirty >= limit))
728 return 0;
729
730 /*
731 * global setpoint
732 *
733 * See comment for pos_ratio_polynom().
734 */
735 setpoint = (freerun + limit) / 2;
736 pos_ratio = pos_ratio_polynom(setpoint, dirty, limit);
737
738 /*
739 * The strictlimit feature is a tool preventing mistrusted filesystems
740 * from growing a large number of dirty pages before throttling. For
741 * such filesystems balance_dirty_pages always checks wb counters
742 * against wb limits. Even if global "nr_dirty" is under "freerun".
743 * This is especially important for fuse which sets bdi->max_ratio to
744 * 1% by default. Without strictlimit feature, fuse writeback may
745 * consume arbitrary amount of RAM because it is accounted in
746 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
747 *
748 * Here, in wb_position_ratio(), we calculate pos_ratio based on
749 * two values: wb_dirty and wb_thresh. Let's consider an example:
750 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
751 * limits are set by default to 10% and 20% (background and throttle).
752 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
753 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
754 * about ~6K pages (as the average of background and throttle wb
755 * limits). The 3rd order polynomial will provide positive feedback if
756 * wb_dirty is under wb_setpoint and vice versa.
757 *
758 * Note, that we cannot use global counters in these calculations
759 * because we want to throttle process writing to a strictlimit wb
760 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
761 * in the example above).
762 */
763 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
764 long long wb_pos_ratio;
765 unsigned long wb_bg_thresh;
766
767 if (wb_dirty < 8)
768 return min_t(long long, pos_ratio * 2,
769 2 << RATELIMIT_CALC_SHIFT);
770
771 if (wb_dirty >= wb_thresh)
772 return 0;
773
774 wb_bg_thresh = div_u64((u64)wb_thresh * bg_thresh, thresh);
775 wb_setpoint = dirty_freerun_ceiling(wb_thresh, wb_bg_thresh);
776
777 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
778 return 0;
779
780 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, wb_dirty,
781 wb_thresh);
782
783 /*
784 * Typically, for strictlimit case, wb_setpoint << setpoint
785 * and pos_ratio >> wb_pos_ratio. In the other words global
786 * state ("dirty") is not limiting factor and we have to
787 * make decision based on wb counters. But there is an
788 * important case when global pos_ratio should get precedence:
789 * global limits are exceeded (e.g. due to activities on other
790 * wb's) while given strictlimit wb is below limit.
791 *
792 * "pos_ratio * wb_pos_ratio" would work for the case above,
793 * but it would look too non-natural for the case of all
794 * activity in the system coming from a single strictlimit wb
795 * with bdi->max_ratio == 100%.
796 *
797 * Note that min() below somewhat changes the dynamics of the
798 * control system. Normally, pos_ratio value can be well over 3
799 * (when globally we are at freerun and wb is well below wb
800 * setpoint). Now the maximum pos_ratio in the same situation
801 * is 2. We might want to tweak this if we observe the control
802 * system is too slow to adapt.
803 */
804 return min(pos_ratio, wb_pos_ratio);
805 }
806
807 /*
808 * We have computed basic pos_ratio above based on global situation. If
809 * the wb is over/under its share of dirty pages, we want to scale
810 * pos_ratio further down/up. That is done by the following mechanism.
811 */
812
813 /*
814 * wb setpoint
815 *
816 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
817 *
818 * x_intercept - wb_dirty
819 * := --------------------------
820 * x_intercept - wb_setpoint
821 *
822 * The main wb control line is a linear function that subjects to
823 *
824 * (1) f(wb_setpoint) = 1.0
825 * (2) k = - 1 / (8 * write_bw) (in single wb case)
826 * or equally: x_intercept = wb_setpoint + 8 * write_bw
827 *
828 * For single wb case, the dirty pages are observed to fluctuate
829 * regularly within range
830 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
831 * for various filesystems, where (2) can yield in a reasonable 12.5%
832 * fluctuation range for pos_ratio.
833 *
834 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
835 * own size, so move the slope over accordingly and choose a slope that
836 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
837 */
838 if (unlikely(wb_thresh > thresh))
839 wb_thresh = thresh;
840 /*
841 * It's very possible that wb_thresh is close to 0 not because the
842 * device is slow, but that it has remained inactive for long time.
843 * Honour such devices a reasonable good (hopefully IO efficient)
844 * threshold, so that the occasional writes won't be blocked and active
845 * writes can rampup the threshold quickly.
846 */
847 wb_thresh = max(wb_thresh, (limit - dirty) / 8);
848 /*
849 * scale global setpoint to wb's:
850 * wb_setpoint = setpoint * wb_thresh / thresh
851 */
852 x = div_u64((u64)wb_thresh << 16, thresh + 1);
853 wb_setpoint = setpoint * (u64)x >> 16;
854 /*
855 * Use span=(8*write_bw) in single wb case as indicated by
856 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
857 *
858 * wb_thresh thresh - wb_thresh
859 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
860 * thresh thresh
861 */
862 span = (thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
863 x_intercept = wb_setpoint + span;
864
865 if (wb_dirty < x_intercept - span / 4) {
866 pos_ratio = div64_u64(pos_ratio * (x_intercept - wb_dirty),
867 x_intercept - wb_setpoint + 1);
868 } else
869 pos_ratio /= 4;
870
871 /*
872 * wb reserve area, safeguard against dirty pool underrun and disk idle
873 * It may push the desired control point of global dirty pages higher
874 * than setpoint.
875 */
876 x_intercept = wb_thresh / 2;
877 if (wb_dirty < x_intercept) {
878 if (wb_dirty > x_intercept / 8)
879 pos_ratio = div_u64(pos_ratio * x_intercept, wb_dirty);
880 else
881 pos_ratio *= 8;
882 }
883
884 return pos_ratio;
885 }
886
887 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
888 unsigned long elapsed,
889 unsigned long written)
890 {
891 const unsigned long period = roundup_pow_of_two(3 * HZ);
892 unsigned long avg = wb->avg_write_bandwidth;
893 unsigned long old = wb->write_bandwidth;
894 u64 bw;
895
896 /*
897 * bw = written * HZ / elapsed
898 *
899 * bw * elapsed + write_bandwidth * (period - elapsed)
900 * write_bandwidth = ---------------------------------------------------
901 * period
902 *
903 * @written may have decreased due to account_page_redirty().
904 * Avoid underflowing @bw calculation.
905 */
906 bw = written - min(written, wb->written_stamp);
907 bw *= HZ;
908 if (unlikely(elapsed > period)) {
909 do_div(bw, elapsed);
910 avg = bw;
911 goto out;
912 }
913 bw += (u64)wb->write_bandwidth * (period - elapsed);
914 bw >>= ilog2(period);
915
916 /*
917 * one more level of smoothing, for filtering out sudden spikes
918 */
919 if (avg > old && old >= (unsigned long)bw)
920 avg -= (avg - old) >> 3;
921
922 if (avg < old && old <= (unsigned long)bw)
923 avg += (old - avg) >> 3;
924
925 out:
926 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
927 avg = max(avg, 1LU);
928 if (wb_has_dirty_io(wb)) {
929 long delta = avg - wb->avg_write_bandwidth;
930 WARN_ON_ONCE(atomic_long_add_return(delta,
931 &wb->bdi->tot_write_bandwidth) <= 0);
932 }
933 wb->write_bandwidth = bw;
934 wb->avg_write_bandwidth = avg;
935 }
936
937 /*
938 * The global dirtyable memory and dirty threshold could be suddenly knocked
939 * down by a large amount (eg. on the startup of KVM in a swapless system).
940 * This may throw the system into deep dirty exceeded state and throttle
941 * heavy/light dirtiers alike. To retain good responsiveness, maintain
942 * global_dirty_limit for tracking slowly down to the knocked down dirty
943 * threshold.
944 */
945 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
946 {
947 unsigned long limit = global_dirty_limit;
948
949 /*
950 * Follow up in one step.
951 */
952 if (limit < thresh) {
953 limit = thresh;
954 goto update;
955 }
956
957 /*
958 * Follow down slowly. Use the higher one as the target, because thresh
959 * may drop below dirty. This is exactly the reason to introduce
960 * global_dirty_limit which is guaranteed to lie above the dirty pages.
961 */
962 thresh = max(thresh, dirty);
963 if (limit > thresh) {
964 limit -= (limit - thresh) >> 5;
965 goto update;
966 }
967 return;
968 update:
969 global_dirty_limit = limit;
970 }
971
972 static void global_update_bandwidth(unsigned long thresh,
973 unsigned long dirty,
974 unsigned long now)
975 {
976 static DEFINE_SPINLOCK(dirty_lock);
977 static unsigned long update_time = INITIAL_JIFFIES;
978
979 /*
980 * check locklessly first to optimize away locking for the most time
981 */
982 if (time_before(now, update_time + BANDWIDTH_INTERVAL))
983 return;
984
985 spin_lock(&dirty_lock);
986 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
987 update_dirty_limit(thresh, dirty);
988 update_time = now;
989 }
990 spin_unlock(&dirty_lock);
991 }
992
993 /*
994 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
995 *
996 * Normal wb tasks will be curbed at or below it in long term.
997 * Obviously it should be around (write_bw / N) when there are N dd tasks.
998 */
999 static void wb_update_dirty_ratelimit(struct bdi_writeback *wb,
1000 unsigned long thresh,
1001 unsigned long bg_thresh,
1002 unsigned long dirty,
1003 unsigned long wb_thresh,
1004 unsigned long wb_dirty,
1005 unsigned long dirtied,
1006 unsigned long elapsed)
1007 {
1008 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
1009 unsigned long limit = hard_dirty_limit(thresh);
1010 unsigned long setpoint = (freerun + limit) / 2;
1011 unsigned long write_bw = wb->avg_write_bandwidth;
1012 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1013 unsigned long dirty_rate;
1014 unsigned long task_ratelimit;
1015 unsigned long balanced_dirty_ratelimit;
1016 unsigned long pos_ratio;
1017 unsigned long step;
1018 unsigned long x;
1019
1020 /*
1021 * The dirty rate will match the writeout rate in long term, except
1022 * when dirty pages are truncated by userspace or re-dirtied by FS.
1023 */
1024 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1025
1026 pos_ratio = wb_position_ratio(wb, thresh, bg_thresh, dirty,
1027 wb_thresh, wb_dirty);
1028 /*
1029 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1030 */
1031 task_ratelimit = (u64)dirty_ratelimit *
1032 pos_ratio >> RATELIMIT_CALC_SHIFT;
1033 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1034
1035 /*
1036 * A linear estimation of the "balanced" throttle rate. The theory is,
1037 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1038 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1039 * formula will yield the balanced rate limit (write_bw / N).
1040 *
1041 * Note that the expanded form is not a pure rate feedback:
1042 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1043 * but also takes pos_ratio into account:
1044 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1045 *
1046 * (1) is not realistic because pos_ratio also takes part in balancing
1047 * the dirty rate. Consider the state
1048 * pos_ratio = 0.5 (3)
1049 * rate = 2 * (write_bw / N) (4)
1050 * If (1) is used, it will stuck in that state! Because each dd will
1051 * be throttled at
1052 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1053 * yielding
1054 * dirty_rate = N * task_ratelimit = write_bw (6)
1055 * put (6) into (1) we get
1056 * rate_(i+1) = rate_(i) (7)
1057 *
1058 * So we end up using (2) to always keep
1059 * rate_(i+1) ~= (write_bw / N) (8)
1060 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1061 * pos_ratio is able to drive itself to 1.0, which is not only where
1062 * the dirty count meet the setpoint, but also where the slope of
1063 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1064 */
1065 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1066 dirty_rate | 1);
1067 /*
1068 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1069 */
1070 if (unlikely(balanced_dirty_ratelimit > write_bw))
1071 balanced_dirty_ratelimit = write_bw;
1072
1073 /*
1074 * We could safely do this and return immediately:
1075 *
1076 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
1077 *
1078 * However to get a more stable dirty_ratelimit, the below elaborated
1079 * code makes use of task_ratelimit to filter out singular points and
1080 * limit the step size.
1081 *
1082 * The below code essentially only uses the relative value of
1083 *
1084 * task_ratelimit - dirty_ratelimit
1085 * = (pos_ratio - 1) * dirty_ratelimit
1086 *
1087 * which reflects the direction and size of dirty position error.
1088 */
1089
1090 /*
1091 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1092 * task_ratelimit is on the same side of dirty_ratelimit, too.
1093 * For example, when
1094 * - dirty_ratelimit > balanced_dirty_ratelimit
1095 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1096 * lowering dirty_ratelimit will help meet both the position and rate
1097 * control targets. Otherwise, don't update dirty_ratelimit if it will
1098 * only help meet the rate target. After all, what the users ultimately
1099 * feel and care are stable dirty rate and small position error.
1100 *
1101 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1102 * and filter out the singular points of balanced_dirty_ratelimit. Which
1103 * keeps jumping around randomly and can even leap far away at times
1104 * due to the small 200ms estimation period of dirty_rate (we want to
1105 * keep that period small to reduce time lags).
1106 */
1107 step = 0;
1108
1109 /*
1110 * For strictlimit case, calculations above were based on wb counters
1111 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1112 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1113 * Hence, to calculate "step" properly, we have to use wb_dirty as
1114 * "dirty" and wb_setpoint as "setpoint".
1115 *
1116 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1117 * it's possible that wb_thresh is close to zero due to inactivity
1118 * of backing device (see the implementation of wb_calc_thresh()).
1119 */
1120 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1121 dirty = wb_dirty;
1122 if (wb_dirty < 8)
1123 setpoint = wb_dirty + 1;
1124 else
1125 setpoint = (wb_thresh +
1126 wb_calc_thresh(wb, bg_thresh)) / 2;
1127 }
1128
1129 if (dirty < setpoint) {
1130 x = min3(wb->balanced_dirty_ratelimit,
1131 balanced_dirty_ratelimit, task_ratelimit);
1132 if (dirty_ratelimit < x)
1133 step = x - dirty_ratelimit;
1134 } else {
1135 x = max3(wb->balanced_dirty_ratelimit,
1136 balanced_dirty_ratelimit, task_ratelimit);
1137 if (dirty_ratelimit > x)
1138 step = dirty_ratelimit - x;
1139 }
1140
1141 /*
1142 * Don't pursue 100% rate matching. It's impossible since the balanced
1143 * rate itself is constantly fluctuating. So decrease the track speed
1144 * when it gets close to the target. Helps eliminate pointless tremors.
1145 */
1146 step >>= dirty_ratelimit / (2 * step + 1);
1147 /*
1148 * Limit the tracking speed to avoid overshooting.
1149 */
1150 step = (step + 7) / 8;
1151
1152 if (dirty_ratelimit < balanced_dirty_ratelimit)
1153 dirty_ratelimit += step;
1154 else
1155 dirty_ratelimit -= step;
1156
1157 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1158 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1159
1160 trace_bdi_dirty_ratelimit(wb->bdi, dirty_rate, task_ratelimit);
1161 }
1162
1163 void __wb_update_bandwidth(struct bdi_writeback *wb,
1164 unsigned long thresh,
1165 unsigned long bg_thresh,
1166 unsigned long dirty,
1167 unsigned long wb_thresh,
1168 unsigned long wb_dirty,
1169 unsigned long start_time)
1170 {
1171 unsigned long now = jiffies;
1172 unsigned long elapsed = now - wb->bw_time_stamp;
1173 unsigned long dirtied;
1174 unsigned long written;
1175
1176 /*
1177 * rate-limit, only update once every 200ms.
1178 */
1179 if (elapsed < BANDWIDTH_INTERVAL)
1180 return;
1181
1182 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1183 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1184
1185 /*
1186 * Skip quiet periods when disk bandwidth is under-utilized.
1187 * (at least 1s idle time between two flusher runs)
1188 */
1189 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1190 goto snapshot;
1191
1192 if (thresh) {
1193 global_update_bandwidth(thresh, dirty, now);
1194 wb_update_dirty_ratelimit(wb, thresh, bg_thresh, dirty,
1195 wb_thresh, wb_dirty,
1196 dirtied, elapsed);
1197 }
1198 wb_update_write_bandwidth(wb, elapsed, written);
1199
1200 snapshot:
1201 wb->dirtied_stamp = dirtied;
1202 wb->written_stamp = written;
1203 wb->bw_time_stamp = now;
1204 }
1205
1206 static void wb_update_bandwidth(struct bdi_writeback *wb,
1207 unsigned long thresh,
1208 unsigned long bg_thresh,
1209 unsigned long dirty,
1210 unsigned long wb_thresh,
1211 unsigned long wb_dirty,
1212 unsigned long start_time)
1213 {
1214 if (time_is_after_eq_jiffies(wb->bw_time_stamp + BANDWIDTH_INTERVAL))
1215 return;
1216 spin_lock(&wb->list_lock);
1217 __wb_update_bandwidth(wb, thresh, bg_thresh, dirty,
1218 wb_thresh, wb_dirty, start_time);
1219 spin_unlock(&wb->list_lock);
1220 }
1221
1222 /*
1223 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1224 * will look to see if it needs to start dirty throttling.
1225 *
1226 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1227 * global_page_state() too often. So scale it near-sqrt to the safety margin
1228 * (the number of pages we may dirty without exceeding the dirty limits).
1229 */
1230 static unsigned long dirty_poll_interval(unsigned long dirty,
1231 unsigned long thresh)
1232 {
1233 if (thresh > dirty)
1234 return 1UL << (ilog2(thresh - dirty) >> 1);
1235
1236 return 1;
1237 }
1238
1239 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1240 unsigned long wb_dirty)
1241 {
1242 unsigned long bw = wb->avg_write_bandwidth;
1243 unsigned long t;
1244
1245 /*
1246 * Limit pause time for small memory systems. If sleeping for too long
1247 * time, a small pool of dirty/writeback pages may go empty and disk go
1248 * idle.
1249 *
1250 * 8 serves as the safety ratio.
1251 */
1252 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1253 t++;
1254
1255 return min_t(unsigned long, t, MAX_PAUSE);
1256 }
1257
1258 static long wb_min_pause(struct bdi_writeback *wb,
1259 long max_pause,
1260 unsigned long task_ratelimit,
1261 unsigned long dirty_ratelimit,
1262 int *nr_dirtied_pause)
1263 {
1264 long hi = ilog2(wb->avg_write_bandwidth);
1265 long lo = ilog2(wb->dirty_ratelimit);
1266 long t; /* target pause */
1267 long pause; /* estimated next pause */
1268 int pages; /* target nr_dirtied_pause */
1269
1270 /* target for 10ms pause on 1-dd case */
1271 t = max(1, HZ / 100);
1272
1273 /*
1274 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1275 * overheads.
1276 *
1277 * (N * 10ms) on 2^N concurrent tasks.
1278 */
1279 if (hi > lo)
1280 t += (hi - lo) * (10 * HZ) / 1024;
1281
1282 /*
1283 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1284 * on the much more stable dirty_ratelimit. However the next pause time
1285 * will be computed based on task_ratelimit and the two rate limits may
1286 * depart considerably at some time. Especially if task_ratelimit goes
1287 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1288 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1289 * result task_ratelimit won't be executed faithfully, which could
1290 * eventually bring down dirty_ratelimit.
1291 *
1292 * We apply two rules to fix it up:
1293 * 1) try to estimate the next pause time and if necessary, use a lower
1294 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1295 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1296 * 2) limit the target pause time to max_pause/2, so that the normal
1297 * small fluctuations of task_ratelimit won't trigger rule (1) and
1298 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1299 */
1300 t = min(t, 1 + max_pause / 2);
1301 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1302
1303 /*
1304 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1305 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1306 * When the 16 consecutive reads are often interrupted by some dirty
1307 * throttling pause during the async writes, cfq will go into idles
1308 * (deadline is fine). So push nr_dirtied_pause as high as possible
1309 * until reaches DIRTY_POLL_THRESH=32 pages.
1310 */
1311 if (pages < DIRTY_POLL_THRESH) {
1312 t = max_pause;
1313 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1314 if (pages > DIRTY_POLL_THRESH) {
1315 pages = DIRTY_POLL_THRESH;
1316 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1317 }
1318 }
1319
1320 pause = HZ * pages / (task_ratelimit + 1);
1321 if (pause > max_pause) {
1322 t = max_pause;
1323 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1324 }
1325
1326 *nr_dirtied_pause = pages;
1327 /*
1328 * The minimal pause time will normally be half the target pause time.
1329 */
1330 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1331 }
1332
1333 static inline void wb_dirty_limits(struct bdi_writeback *wb,
1334 unsigned long dirty_thresh,
1335 unsigned long background_thresh,
1336 unsigned long *wb_dirty,
1337 unsigned long *wb_thresh,
1338 unsigned long *wb_bg_thresh)
1339 {
1340 unsigned long wb_reclaimable;
1341
1342 /*
1343 * wb_thresh is not treated as some limiting factor as
1344 * dirty_thresh, due to reasons
1345 * - in JBOD setup, wb_thresh can fluctuate a lot
1346 * - in a system with HDD and USB key, the USB key may somehow
1347 * go into state (wb_dirty >> wb_thresh) either because
1348 * wb_dirty starts high, or because wb_thresh drops low.
1349 * In this case we don't want to hard throttle the USB key
1350 * dirtiers for 100 seconds until wb_dirty drops under
1351 * wb_thresh. Instead the auxiliary wb control line in
1352 * wb_position_ratio() will let the dirtier task progress
1353 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
1354 */
1355 *wb_thresh = wb_calc_thresh(wb, dirty_thresh);
1356
1357 if (wb_bg_thresh)
1358 *wb_bg_thresh = dirty_thresh ? div_u64((u64)*wb_thresh *
1359 background_thresh,
1360 dirty_thresh) : 0;
1361
1362 /*
1363 * In order to avoid the stacked BDI deadlock we need
1364 * to ensure we accurately count the 'dirty' pages when
1365 * the threshold is low.
1366 *
1367 * Otherwise it would be possible to get thresh+n pages
1368 * reported dirty, even though there are thresh-m pages
1369 * actually dirty; with m+n sitting in the percpu
1370 * deltas.
1371 */
1372 if (*wb_thresh < 2 * wb_stat_error(wb)) {
1373 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1374 *wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1375 } else {
1376 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1377 *wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1378 }
1379 }
1380
1381 /*
1382 * balance_dirty_pages() must be called by processes which are generating dirty
1383 * data. It looks at the number of dirty pages in the machine and will force
1384 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1385 * If we're over `background_thresh' then the writeback threads are woken to
1386 * perform some writeout.
1387 */
1388 static void balance_dirty_pages(struct address_space *mapping,
1389 struct bdi_writeback *wb,
1390 unsigned long pages_dirtied)
1391 {
1392 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
1393 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
1394 unsigned long background_thresh;
1395 unsigned long dirty_thresh;
1396 long period;
1397 long pause;
1398 long max_pause;
1399 long min_pause;
1400 int nr_dirtied_pause;
1401 bool dirty_exceeded = false;
1402 unsigned long task_ratelimit;
1403 unsigned long dirty_ratelimit;
1404 unsigned long pos_ratio;
1405 struct backing_dev_info *bdi = wb->bdi;
1406 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1407 unsigned long start_time = jiffies;
1408
1409 for (;;) {
1410 unsigned long now = jiffies;
1411 unsigned long uninitialized_var(wb_thresh);
1412 unsigned long thresh;
1413 unsigned long uninitialized_var(wb_dirty);
1414 unsigned long dirty;
1415 unsigned long bg_thresh;
1416
1417 /*
1418 * Unstable writes are a feature of certain networked
1419 * filesystems (i.e. NFS) in which data may have been
1420 * written to the server's write cache, but has not yet
1421 * been flushed to permanent storage.
1422 */
1423 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1424 global_page_state(NR_UNSTABLE_NFS);
1425 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1426
1427 global_dirty_limits(&background_thresh, &dirty_thresh);
1428
1429 if (unlikely(strictlimit)) {
1430 wb_dirty_limits(wb, dirty_thresh, background_thresh,
1431 &wb_dirty, &wb_thresh, &bg_thresh);
1432
1433 dirty = wb_dirty;
1434 thresh = wb_thresh;
1435 } else {
1436 dirty = nr_dirty;
1437 thresh = dirty_thresh;
1438 bg_thresh = background_thresh;
1439 }
1440
1441 /*
1442 * Throttle it only when the background writeback cannot
1443 * catch-up. This avoids (excessively) small writeouts
1444 * when the wb limits are ramping up in case of !strictlimit.
1445 *
1446 * In strictlimit case make decision based on the wb counters
1447 * and limits. Small writeouts when the wb limits are ramping
1448 * up are the price we consciously pay for strictlimit-ing.
1449 */
1450 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
1451 current->dirty_paused_when = now;
1452 current->nr_dirtied = 0;
1453 current->nr_dirtied_pause =
1454 dirty_poll_interval(dirty, thresh);
1455 break;
1456 }
1457
1458 if (unlikely(!writeback_in_progress(wb)))
1459 wb_start_background_writeback(wb);
1460
1461 if (!strictlimit)
1462 wb_dirty_limits(wb, dirty_thresh, background_thresh,
1463 &wb_dirty, &wb_thresh, NULL);
1464
1465 dirty_exceeded = (wb_dirty > wb_thresh) &&
1466 ((nr_dirty > dirty_thresh) || strictlimit);
1467 if (dirty_exceeded && !wb->dirty_exceeded)
1468 wb->dirty_exceeded = 1;
1469
1470 wb_update_bandwidth(wb, dirty_thresh, background_thresh,
1471 nr_dirty, wb_thresh, wb_dirty, start_time);
1472
1473 dirty_ratelimit = wb->dirty_ratelimit;
1474 pos_ratio = wb_position_ratio(wb, dirty_thresh,
1475 background_thresh, nr_dirty,
1476 wb_thresh, wb_dirty);
1477 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1478 RATELIMIT_CALC_SHIFT;
1479 max_pause = wb_max_pause(wb, wb_dirty);
1480 min_pause = wb_min_pause(wb, max_pause,
1481 task_ratelimit, dirty_ratelimit,
1482 &nr_dirtied_pause);
1483
1484 if (unlikely(task_ratelimit == 0)) {
1485 period = max_pause;
1486 pause = max_pause;
1487 goto pause;
1488 }
1489 period = HZ * pages_dirtied / task_ratelimit;
1490 pause = period;
1491 if (current->dirty_paused_when)
1492 pause -= now - current->dirty_paused_when;
1493 /*
1494 * For less than 1s think time (ext3/4 may block the dirtier
1495 * for up to 800ms from time to time on 1-HDD; so does xfs,
1496 * however at much less frequency), try to compensate it in
1497 * future periods by updating the virtual time; otherwise just
1498 * do a reset, as it may be a light dirtier.
1499 */
1500 if (pause < min_pause) {
1501 trace_balance_dirty_pages(bdi,
1502 dirty_thresh,
1503 background_thresh,
1504 nr_dirty,
1505 wb_thresh,
1506 wb_dirty,
1507 dirty_ratelimit,
1508 task_ratelimit,
1509 pages_dirtied,
1510 period,
1511 min(pause, 0L),
1512 start_time);
1513 if (pause < -HZ) {
1514 current->dirty_paused_when = now;
1515 current->nr_dirtied = 0;
1516 } else if (period) {
1517 current->dirty_paused_when += period;
1518 current->nr_dirtied = 0;
1519 } else if (current->nr_dirtied_pause <= pages_dirtied)
1520 current->nr_dirtied_pause += pages_dirtied;
1521 break;
1522 }
1523 if (unlikely(pause > max_pause)) {
1524 /* for occasional dropped task_ratelimit */
1525 now += min(pause - max_pause, max_pause);
1526 pause = max_pause;
1527 }
1528
1529 pause:
1530 trace_balance_dirty_pages(bdi,
1531 dirty_thresh,
1532 background_thresh,
1533 nr_dirty,
1534 wb_thresh,
1535 wb_dirty,
1536 dirty_ratelimit,
1537 task_ratelimit,
1538 pages_dirtied,
1539 period,
1540 pause,
1541 start_time);
1542 __set_current_state(TASK_KILLABLE);
1543 io_schedule_timeout(pause);
1544
1545 current->dirty_paused_when = now + pause;
1546 current->nr_dirtied = 0;
1547 current->nr_dirtied_pause = nr_dirtied_pause;
1548
1549 /*
1550 * This is typically equal to (nr_dirty < dirty_thresh) and can
1551 * also keep "1000+ dd on a slow USB stick" under control.
1552 */
1553 if (task_ratelimit)
1554 break;
1555
1556 /*
1557 * In the case of an unresponding NFS server and the NFS dirty
1558 * pages exceeds dirty_thresh, give the other good wb's a pipe
1559 * to go through, so that tasks on them still remain responsive.
1560 *
1561 * In theory 1 page is enough to keep the comsumer-producer
1562 * pipe going: the flusher cleans 1 page => the task dirties 1
1563 * more page. However wb_dirty has accounting errors. So use
1564 * the larger and more IO friendly wb_stat_error.
1565 */
1566 if (wb_dirty <= wb_stat_error(wb))
1567 break;
1568
1569 if (fatal_signal_pending(current))
1570 break;
1571 }
1572
1573 if (!dirty_exceeded && wb->dirty_exceeded)
1574 wb->dirty_exceeded = 0;
1575
1576 if (writeback_in_progress(wb))
1577 return;
1578
1579 /*
1580 * In laptop mode, we wait until hitting the higher threshold before
1581 * starting background writeout, and then write out all the way down
1582 * to the lower threshold. So slow writers cause minimal disk activity.
1583 *
1584 * In normal mode, we start background writeout at the lower
1585 * background_thresh, to keep the amount of dirty memory low.
1586 */
1587 if (laptop_mode)
1588 return;
1589
1590 if (nr_reclaimable > background_thresh)
1591 wb_start_background_writeback(wb);
1592 }
1593
1594 static DEFINE_PER_CPU(int, bdp_ratelimits);
1595
1596 /*
1597 * Normal tasks are throttled by
1598 * loop {
1599 * dirty tsk->nr_dirtied_pause pages;
1600 * take a snap in balance_dirty_pages();
1601 * }
1602 * However there is a worst case. If every task exit immediately when dirtied
1603 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1604 * called to throttle the page dirties. The solution is to save the not yet
1605 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1606 * randomly into the running tasks. This works well for the above worst case,
1607 * as the new task will pick up and accumulate the old task's leaked dirty
1608 * count and eventually get throttled.
1609 */
1610 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1611
1612 /**
1613 * balance_dirty_pages_ratelimited - balance dirty memory state
1614 * @mapping: address_space which was dirtied
1615 *
1616 * Processes which are dirtying memory should call in here once for each page
1617 * which was newly dirtied. The function will periodically check the system's
1618 * dirty state and will initiate writeback if needed.
1619 *
1620 * On really big machines, get_writeback_state is expensive, so try to avoid
1621 * calling it too often (ratelimiting). But once we're over the dirty memory
1622 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1623 * from overshooting the limit by (ratelimit_pages) each.
1624 */
1625 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1626 {
1627 struct inode *inode = mapping->host;
1628 struct backing_dev_info *bdi = inode_to_bdi(inode);
1629 struct bdi_writeback *wb = NULL;
1630 int ratelimit;
1631 int *p;
1632
1633 if (!bdi_cap_account_dirty(bdi))
1634 return;
1635
1636 if (inode_cgwb_enabled(inode))
1637 wb = wb_get_create_current(bdi, GFP_KERNEL);
1638 if (!wb)
1639 wb = &bdi->wb;
1640
1641 ratelimit = current->nr_dirtied_pause;
1642 if (wb->dirty_exceeded)
1643 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1644
1645 preempt_disable();
1646 /*
1647 * This prevents one CPU to accumulate too many dirtied pages without
1648 * calling into balance_dirty_pages(), which can happen when there are
1649 * 1000+ tasks, all of them start dirtying pages at exactly the same
1650 * time, hence all honoured too large initial task->nr_dirtied_pause.
1651 */
1652 p = this_cpu_ptr(&bdp_ratelimits);
1653 if (unlikely(current->nr_dirtied >= ratelimit))
1654 *p = 0;
1655 else if (unlikely(*p >= ratelimit_pages)) {
1656 *p = 0;
1657 ratelimit = 0;
1658 }
1659 /*
1660 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1661 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1662 * the dirty throttling and livelock other long-run dirtiers.
1663 */
1664 p = this_cpu_ptr(&dirty_throttle_leaks);
1665 if (*p > 0 && current->nr_dirtied < ratelimit) {
1666 unsigned long nr_pages_dirtied;
1667 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1668 *p -= nr_pages_dirtied;
1669 current->nr_dirtied += nr_pages_dirtied;
1670 }
1671 preempt_enable();
1672
1673 if (unlikely(current->nr_dirtied >= ratelimit))
1674 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1675
1676 wb_put(wb);
1677 }
1678 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1679
1680 void throttle_vm_writeout(gfp_t gfp_mask)
1681 {
1682 unsigned long background_thresh;
1683 unsigned long dirty_thresh;
1684
1685 for ( ; ; ) {
1686 global_dirty_limits(&background_thresh, &dirty_thresh);
1687 dirty_thresh = hard_dirty_limit(dirty_thresh);
1688
1689 /*
1690 * Boost the allowable dirty threshold a bit for page
1691 * allocators so they don't get DoS'ed by heavy writers
1692 */
1693 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1694
1695 if (global_page_state(NR_UNSTABLE_NFS) +
1696 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1697 break;
1698 congestion_wait(BLK_RW_ASYNC, HZ/10);
1699
1700 /*
1701 * The caller might hold locks which can prevent IO completion
1702 * or progress in the filesystem. So we cannot just sit here
1703 * waiting for IO to complete.
1704 */
1705 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1706 break;
1707 }
1708 }
1709
1710 /*
1711 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1712 */
1713 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1714 void __user *buffer, size_t *length, loff_t *ppos)
1715 {
1716 proc_dointvec(table, write, buffer, length, ppos);
1717 return 0;
1718 }
1719
1720 #ifdef CONFIG_BLOCK
1721 void laptop_mode_timer_fn(unsigned long data)
1722 {
1723 struct request_queue *q = (struct request_queue *)data;
1724 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1725 global_page_state(NR_UNSTABLE_NFS);
1726 struct bdi_writeback *wb;
1727 struct wb_iter iter;
1728
1729 /*
1730 * We want to write everything out, not just down to the dirty
1731 * threshold
1732 */
1733 if (!bdi_has_dirty_io(&q->backing_dev_info))
1734 return;
1735
1736 bdi_for_each_wb(wb, &q->backing_dev_info, &iter, 0)
1737 if (wb_has_dirty_io(wb))
1738 wb_start_writeback(wb, nr_pages, true,
1739 WB_REASON_LAPTOP_TIMER);
1740 }
1741
1742 /*
1743 * We've spun up the disk and we're in laptop mode: schedule writeback
1744 * of all dirty data a few seconds from now. If the flush is already scheduled
1745 * then push it back - the user is still using the disk.
1746 */
1747 void laptop_io_completion(struct backing_dev_info *info)
1748 {
1749 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1750 }
1751
1752 /*
1753 * We're in laptop mode and we've just synced. The sync's writes will have
1754 * caused another writeback to be scheduled by laptop_io_completion.
1755 * Nothing needs to be written back anymore, so we unschedule the writeback.
1756 */
1757 void laptop_sync_completion(void)
1758 {
1759 struct backing_dev_info *bdi;
1760
1761 rcu_read_lock();
1762
1763 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1764 del_timer(&bdi->laptop_mode_wb_timer);
1765
1766 rcu_read_unlock();
1767 }
1768 #endif
1769
1770 /*
1771 * If ratelimit_pages is too high then we can get into dirty-data overload
1772 * if a large number of processes all perform writes at the same time.
1773 * If it is too low then SMP machines will call the (expensive)
1774 * get_writeback_state too often.
1775 *
1776 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1777 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1778 * thresholds.
1779 */
1780
1781 void writeback_set_ratelimit(void)
1782 {
1783 unsigned long background_thresh;
1784 unsigned long dirty_thresh;
1785 global_dirty_limits(&background_thresh, &dirty_thresh);
1786 global_dirty_limit = dirty_thresh;
1787 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1788 if (ratelimit_pages < 16)
1789 ratelimit_pages = 16;
1790 }
1791
1792 static int
1793 ratelimit_handler(struct notifier_block *self, unsigned long action,
1794 void *hcpu)
1795 {
1796
1797 switch (action & ~CPU_TASKS_FROZEN) {
1798 case CPU_ONLINE:
1799 case CPU_DEAD:
1800 writeback_set_ratelimit();
1801 return NOTIFY_OK;
1802 default:
1803 return NOTIFY_DONE;
1804 }
1805 }
1806
1807 static struct notifier_block ratelimit_nb = {
1808 .notifier_call = ratelimit_handler,
1809 .next = NULL,
1810 };
1811
1812 /*
1813 * Called early on to tune the page writeback dirty limits.
1814 *
1815 * We used to scale dirty pages according to how total memory
1816 * related to pages that could be allocated for buffers (by
1817 * comparing nr_free_buffer_pages() to vm_total_pages.
1818 *
1819 * However, that was when we used "dirty_ratio" to scale with
1820 * all memory, and we don't do that any more. "dirty_ratio"
1821 * is now applied to total non-HIGHPAGE memory (by subtracting
1822 * totalhigh_pages from vm_total_pages), and as such we can't
1823 * get into the old insane situation any more where we had
1824 * large amounts of dirty pages compared to a small amount of
1825 * non-HIGHMEM memory.
1826 *
1827 * But we might still want to scale the dirty_ratio by how
1828 * much memory the box has..
1829 */
1830 void __init page_writeback_init(void)
1831 {
1832 writeback_set_ratelimit();
1833 register_cpu_notifier(&ratelimit_nb);
1834
1835 fprop_global_init(&writeout_completions, GFP_KERNEL);
1836 }
1837
1838 /**
1839 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1840 * @mapping: address space structure to write
1841 * @start: starting page index
1842 * @end: ending page index (inclusive)
1843 *
1844 * This function scans the page range from @start to @end (inclusive) and tags
1845 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1846 * that write_cache_pages (or whoever calls this function) will then use
1847 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1848 * used to avoid livelocking of writeback by a process steadily creating new
1849 * dirty pages in the file (thus it is important for this function to be quick
1850 * so that it can tag pages faster than a dirtying process can create them).
1851 */
1852 /*
1853 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1854 */
1855 void tag_pages_for_writeback(struct address_space *mapping,
1856 pgoff_t start, pgoff_t end)
1857 {
1858 #define WRITEBACK_TAG_BATCH 4096
1859 unsigned long tagged;
1860
1861 do {
1862 spin_lock_irq(&mapping->tree_lock);
1863 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1864 &start, end, WRITEBACK_TAG_BATCH,
1865 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1866 spin_unlock_irq(&mapping->tree_lock);
1867 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1868 cond_resched();
1869 /* We check 'start' to handle wrapping when end == ~0UL */
1870 } while (tagged >= WRITEBACK_TAG_BATCH && start);
1871 }
1872 EXPORT_SYMBOL(tag_pages_for_writeback);
1873
1874 /**
1875 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1876 * @mapping: address space structure to write
1877 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1878 * @writepage: function called for each page
1879 * @data: data passed to writepage function
1880 *
1881 * If a page is already under I/O, write_cache_pages() skips it, even
1882 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1883 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1884 * and msync() need to guarantee that all the data which was dirty at the time
1885 * the call was made get new I/O started against them. If wbc->sync_mode is
1886 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1887 * existing IO to complete.
1888 *
1889 * To avoid livelocks (when other process dirties new pages), we first tag
1890 * pages which should be written back with TOWRITE tag and only then start
1891 * writing them. For data-integrity sync we have to be careful so that we do
1892 * not miss some pages (e.g., because some other process has cleared TOWRITE
1893 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1894 * by the process clearing the DIRTY tag (and submitting the page for IO).
1895 */
1896 int write_cache_pages(struct address_space *mapping,
1897 struct writeback_control *wbc, writepage_t writepage,
1898 void *data)
1899 {
1900 int ret = 0;
1901 int done = 0;
1902 struct pagevec pvec;
1903 int nr_pages;
1904 pgoff_t uninitialized_var(writeback_index);
1905 pgoff_t index;
1906 pgoff_t end; /* Inclusive */
1907 pgoff_t done_index;
1908 int cycled;
1909 int range_whole = 0;
1910 int tag;
1911
1912 pagevec_init(&pvec, 0);
1913 if (wbc->range_cyclic) {
1914 writeback_index = mapping->writeback_index; /* prev offset */
1915 index = writeback_index;
1916 if (index == 0)
1917 cycled = 1;
1918 else
1919 cycled = 0;
1920 end = -1;
1921 } else {
1922 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1923 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1924 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1925 range_whole = 1;
1926 cycled = 1; /* ignore range_cyclic tests */
1927 }
1928 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1929 tag = PAGECACHE_TAG_TOWRITE;
1930 else
1931 tag = PAGECACHE_TAG_DIRTY;
1932 retry:
1933 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1934 tag_pages_for_writeback(mapping, index, end);
1935 done_index = index;
1936 while (!done && (index <= end)) {
1937 int i;
1938
1939 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1940 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1941 if (nr_pages == 0)
1942 break;
1943
1944 for (i = 0; i < nr_pages; i++) {
1945 struct page *page = pvec.pages[i];
1946
1947 /*
1948 * At this point, the page may be truncated or
1949 * invalidated (changing page->mapping to NULL), or
1950 * even swizzled back from swapper_space to tmpfs file
1951 * mapping. However, page->index will not change
1952 * because we have a reference on the page.
1953 */
1954 if (page->index > end) {
1955 /*
1956 * can't be range_cyclic (1st pass) because
1957 * end == -1 in that case.
1958 */
1959 done = 1;
1960 break;
1961 }
1962
1963 done_index = page->index;
1964
1965 lock_page(page);
1966
1967 /*
1968 * Page truncated or invalidated. We can freely skip it
1969 * then, even for data integrity operations: the page
1970 * has disappeared concurrently, so there could be no
1971 * real expectation of this data interity operation
1972 * even if there is now a new, dirty page at the same
1973 * pagecache address.
1974 */
1975 if (unlikely(page->mapping != mapping)) {
1976 continue_unlock:
1977 unlock_page(page);
1978 continue;
1979 }
1980
1981 if (!PageDirty(page)) {
1982 /* someone wrote it for us */
1983 goto continue_unlock;
1984 }
1985
1986 if (PageWriteback(page)) {
1987 if (wbc->sync_mode != WB_SYNC_NONE)
1988 wait_on_page_writeback(page);
1989 else
1990 goto continue_unlock;
1991 }
1992
1993 BUG_ON(PageWriteback(page));
1994 if (!clear_page_dirty_for_io(page))
1995 goto continue_unlock;
1996
1997 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
1998 ret = (*writepage)(page, wbc, data);
1999 if (unlikely(ret)) {
2000 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2001 unlock_page(page);
2002 ret = 0;
2003 } else {
2004 /*
2005 * done_index is set past this page,
2006 * so media errors will not choke
2007 * background writeout for the entire
2008 * file. This has consequences for
2009 * range_cyclic semantics (ie. it may
2010 * not be suitable for data integrity
2011 * writeout).
2012 */
2013 done_index = page->index + 1;
2014 done = 1;
2015 break;
2016 }
2017 }
2018
2019 /*
2020 * We stop writing back only if we are not doing
2021 * integrity sync. In case of integrity sync we have to
2022 * keep going until we have written all the pages
2023 * we tagged for writeback prior to entering this loop.
2024 */
2025 if (--wbc->nr_to_write <= 0 &&
2026 wbc->sync_mode == WB_SYNC_NONE) {
2027 done = 1;
2028 break;
2029 }
2030 }
2031 pagevec_release(&pvec);
2032 cond_resched();
2033 }
2034 if (!cycled && !done) {
2035 /*
2036 * range_cyclic:
2037 * We hit the last page and there is more work to be done: wrap
2038 * back to the start of the file
2039 */
2040 cycled = 1;
2041 index = 0;
2042 end = writeback_index - 1;
2043 goto retry;
2044 }
2045 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2046 mapping->writeback_index = done_index;
2047
2048 return ret;
2049 }
2050 EXPORT_SYMBOL(write_cache_pages);
2051
2052 /*
2053 * Function used by generic_writepages to call the real writepage
2054 * function and set the mapping flags on error
2055 */
2056 static int __writepage(struct page *page, struct writeback_control *wbc,
2057 void *data)
2058 {
2059 struct address_space *mapping = data;
2060 int ret = mapping->a_ops->writepage(page, wbc);
2061 mapping_set_error(mapping, ret);
2062 return ret;
2063 }
2064
2065 /**
2066 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2067 * @mapping: address space structure to write
2068 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2069 *
2070 * This is a library function, which implements the writepages()
2071 * address_space_operation.
2072 */
2073 int generic_writepages(struct address_space *mapping,
2074 struct writeback_control *wbc)
2075 {
2076 struct blk_plug plug;
2077 int ret;
2078
2079 /* deal with chardevs and other special file */
2080 if (!mapping->a_ops->writepage)
2081 return 0;
2082
2083 blk_start_plug(&plug);
2084 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2085 blk_finish_plug(&plug);
2086 return ret;
2087 }
2088
2089 EXPORT_SYMBOL(generic_writepages);
2090
2091 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2092 {
2093 int ret;
2094
2095 if (wbc->nr_to_write <= 0)
2096 return 0;
2097 if (mapping->a_ops->writepages)
2098 ret = mapping->a_ops->writepages(mapping, wbc);
2099 else
2100 ret = generic_writepages(mapping, wbc);
2101 return ret;
2102 }
2103
2104 /**
2105 * write_one_page - write out a single page and optionally wait on I/O
2106 * @page: the page to write
2107 * @wait: if true, wait on writeout
2108 *
2109 * The page must be locked by the caller and will be unlocked upon return.
2110 *
2111 * write_one_page() returns a negative error code if I/O failed.
2112 */
2113 int write_one_page(struct page *page, int wait)
2114 {
2115 struct address_space *mapping = page->mapping;
2116 int ret = 0;
2117 struct writeback_control wbc = {
2118 .sync_mode = WB_SYNC_ALL,
2119 .nr_to_write = 1,
2120 };
2121
2122 BUG_ON(!PageLocked(page));
2123
2124 if (wait)
2125 wait_on_page_writeback(page);
2126
2127 if (clear_page_dirty_for_io(page)) {
2128 page_cache_get(page);
2129 ret = mapping->a_ops->writepage(page, &wbc);
2130 if (ret == 0 && wait) {
2131 wait_on_page_writeback(page);
2132 if (PageError(page))
2133 ret = -EIO;
2134 }
2135 page_cache_release(page);
2136 } else {
2137 unlock_page(page);
2138 }
2139 return ret;
2140 }
2141 EXPORT_SYMBOL(write_one_page);
2142
2143 /*
2144 * For address_spaces which do not use buffers nor write back.
2145 */
2146 int __set_page_dirty_no_writeback(struct page *page)
2147 {
2148 if (!PageDirty(page))
2149 return !TestSetPageDirty(page);
2150 return 0;
2151 }
2152
2153 /*
2154 * Helper function for set_page_dirty family.
2155 *
2156 * Caller must hold mem_cgroup_begin_page_stat().
2157 *
2158 * NOTE: This relies on being atomic wrt interrupts.
2159 */
2160 void account_page_dirtied(struct page *page, struct address_space *mapping,
2161 struct mem_cgroup *memcg)
2162 {
2163 struct inode *inode = mapping->host;
2164
2165 trace_writeback_dirty_page(page, mapping);
2166
2167 if (mapping_cap_account_dirty(mapping)) {
2168 struct bdi_writeback *wb;
2169
2170 inode_attach_wb(inode, page);
2171 wb = inode_to_wb(inode);
2172
2173 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2174 __inc_zone_page_state(page, NR_FILE_DIRTY);
2175 __inc_zone_page_state(page, NR_DIRTIED);
2176 __inc_wb_stat(wb, WB_RECLAIMABLE);
2177 __inc_wb_stat(wb, WB_DIRTIED);
2178 task_io_account_write(PAGE_CACHE_SIZE);
2179 current->nr_dirtied++;
2180 this_cpu_inc(bdp_ratelimits);
2181 }
2182 }
2183 EXPORT_SYMBOL(account_page_dirtied);
2184
2185 /*
2186 * Helper function for deaccounting dirty page without writeback.
2187 *
2188 * Caller must hold mem_cgroup_begin_page_stat().
2189 */
2190 void account_page_cleaned(struct page *page, struct address_space *mapping,
2191 struct mem_cgroup *memcg)
2192 {
2193 if (mapping_cap_account_dirty(mapping)) {
2194 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2195 dec_zone_page_state(page, NR_FILE_DIRTY);
2196 dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
2197 task_io_account_cancelled_write(PAGE_CACHE_SIZE);
2198 }
2199 }
2200
2201 /*
2202 * For address_spaces which do not use buffers. Just tag the page as dirty in
2203 * its radix tree.
2204 *
2205 * This is also used when a single buffer is being dirtied: we want to set the
2206 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2207 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2208 *
2209 * The caller must ensure this doesn't race with truncation. Most will simply
2210 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2211 * the pte lock held, which also locks out truncation.
2212 */
2213 int __set_page_dirty_nobuffers(struct page *page)
2214 {
2215 struct mem_cgroup *memcg;
2216
2217 memcg = mem_cgroup_begin_page_stat(page);
2218 if (!TestSetPageDirty(page)) {
2219 struct address_space *mapping = page_mapping(page);
2220 unsigned long flags;
2221
2222 if (!mapping) {
2223 mem_cgroup_end_page_stat(memcg);
2224 return 1;
2225 }
2226
2227 spin_lock_irqsave(&mapping->tree_lock, flags);
2228 BUG_ON(page_mapping(page) != mapping);
2229 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2230 account_page_dirtied(page, mapping, memcg);
2231 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2232 PAGECACHE_TAG_DIRTY);
2233 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2234 mem_cgroup_end_page_stat(memcg);
2235
2236 if (mapping->host) {
2237 /* !PageAnon && !swapper_space */
2238 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2239 }
2240 return 1;
2241 }
2242 mem_cgroup_end_page_stat(memcg);
2243 return 0;
2244 }
2245 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2246
2247 /*
2248 * Call this whenever redirtying a page, to de-account the dirty counters
2249 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2250 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2251 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2252 * control.
2253 */
2254 void account_page_redirty(struct page *page)
2255 {
2256 struct address_space *mapping = page->mapping;
2257
2258 if (mapping && mapping_cap_account_dirty(mapping)) {
2259 struct bdi_writeback *wb = inode_to_wb(mapping->host);
2260
2261 current->nr_dirtied--;
2262 dec_zone_page_state(page, NR_DIRTIED);
2263 dec_wb_stat(wb, WB_DIRTIED);
2264 }
2265 }
2266 EXPORT_SYMBOL(account_page_redirty);
2267
2268 /*
2269 * When a writepage implementation decides that it doesn't want to write this
2270 * page for some reason, it should redirty the locked page via
2271 * redirty_page_for_writepage() and it should then unlock the page and return 0
2272 */
2273 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2274 {
2275 int ret;
2276
2277 wbc->pages_skipped++;
2278 ret = __set_page_dirty_nobuffers(page);
2279 account_page_redirty(page);
2280 return ret;
2281 }
2282 EXPORT_SYMBOL(redirty_page_for_writepage);
2283
2284 /*
2285 * Dirty a page.
2286 *
2287 * For pages with a mapping this should be done under the page lock
2288 * for the benefit of asynchronous memory errors who prefer a consistent
2289 * dirty state. This rule can be broken in some special cases,
2290 * but should be better not to.
2291 *
2292 * If the mapping doesn't provide a set_page_dirty a_op, then
2293 * just fall through and assume that it wants buffer_heads.
2294 */
2295 int set_page_dirty(struct page *page)
2296 {
2297 struct address_space *mapping = page_mapping(page);
2298
2299 if (likely(mapping)) {
2300 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2301 /*
2302 * readahead/lru_deactivate_page could remain
2303 * PG_readahead/PG_reclaim due to race with end_page_writeback
2304 * About readahead, if the page is written, the flags would be
2305 * reset. So no problem.
2306 * About lru_deactivate_page, if the page is redirty, the flag
2307 * will be reset. So no problem. but if the page is used by readahead
2308 * it will confuse readahead and make it restart the size rampup
2309 * process. But it's a trivial problem.
2310 */
2311 if (PageReclaim(page))
2312 ClearPageReclaim(page);
2313 #ifdef CONFIG_BLOCK
2314 if (!spd)
2315 spd = __set_page_dirty_buffers;
2316 #endif
2317 return (*spd)(page);
2318 }
2319 if (!PageDirty(page)) {
2320 if (!TestSetPageDirty(page))
2321 return 1;
2322 }
2323 return 0;
2324 }
2325 EXPORT_SYMBOL(set_page_dirty);
2326
2327 /*
2328 * set_page_dirty() is racy if the caller has no reference against
2329 * page->mapping->host, and if the page is unlocked. This is because another
2330 * CPU could truncate the page off the mapping and then free the mapping.
2331 *
2332 * Usually, the page _is_ locked, or the caller is a user-space process which
2333 * holds a reference on the inode by having an open file.
2334 *
2335 * In other cases, the page should be locked before running set_page_dirty().
2336 */
2337 int set_page_dirty_lock(struct page *page)
2338 {
2339 int ret;
2340
2341 lock_page(page);
2342 ret = set_page_dirty(page);
2343 unlock_page(page);
2344 return ret;
2345 }
2346 EXPORT_SYMBOL(set_page_dirty_lock);
2347
2348 /*
2349 * This cancels just the dirty bit on the kernel page itself, it does NOT
2350 * actually remove dirty bits on any mmap's that may be around. It also
2351 * leaves the page tagged dirty, so any sync activity will still find it on
2352 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2353 * look at the dirty bits in the VM.
2354 *
2355 * Doing this should *normally* only ever be done when a page is truncated,
2356 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2357 * this when it notices that somebody has cleaned out all the buffers on a
2358 * page without actually doing it through the VM. Can you say "ext3 is
2359 * horribly ugly"? Thought you could.
2360 */
2361 void cancel_dirty_page(struct page *page)
2362 {
2363 struct address_space *mapping = page_mapping(page);
2364
2365 if (mapping_cap_account_dirty(mapping)) {
2366 struct mem_cgroup *memcg;
2367
2368 memcg = mem_cgroup_begin_page_stat(page);
2369
2370 if (TestClearPageDirty(page))
2371 account_page_cleaned(page, mapping, memcg);
2372
2373 mem_cgroup_end_page_stat(memcg);
2374 } else {
2375 ClearPageDirty(page);
2376 }
2377 }
2378 EXPORT_SYMBOL(cancel_dirty_page);
2379
2380 /*
2381 * Clear a page's dirty flag, while caring for dirty memory accounting.
2382 * Returns true if the page was previously dirty.
2383 *
2384 * This is for preparing to put the page under writeout. We leave the page
2385 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2386 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2387 * implementation will run either set_page_writeback() or set_page_dirty(),
2388 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2389 * back into sync.
2390 *
2391 * This incoherency between the page's dirty flag and radix-tree tag is
2392 * unfortunate, but it only exists while the page is locked.
2393 */
2394 int clear_page_dirty_for_io(struct page *page)
2395 {
2396 struct address_space *mapping = page_mapping(page);
2397 struct mem_cgroup *memcg;
2398 int ret = 0;
2399
2400 BUG_ON(!PageLocked(page));
2401
2402 if (mapping && mapping_cap_account_dirty(mapping)) {
2403 /*
2404 * Yes, Virginia, this is indeed insane.
2405 *
2406 * We use this sequence to make sure that
2407 * (a) we account for dirty stats properly
2408 * (b) we tell the low-level filesystem to
2409 * mark the whole page dirty if it was
2410 * dirty in a pagetable. Only to then
2411 * (c) clean the page again and return 1 to
2412 * cause the writeback.
2413 *
2414 * This way we avoid all nasty races with the
2415 * dirty bit in multiple places and clearing
2416 * them concurrently from different threads.
2417 *
2418 * Note! Normally the "set_page_dirty(page)"
2419 * has no effect on the actual dirty bit - since
2420 * that will already usually be set. But we
2421 * need the side effects, and it can help us
2422 * avoid races.
2423 *
2424 * We basically use the page "master dirty bit"
2425 * as a serialization point for all the different
2426 * threads doing their things.
2427 */
2428 if (page_mkclean(page))
2429 set_page_dirty(page);
2430 /*
2431 * We carefully synchronise fault handlers against
2432 * installing a dirty pte and marking the page dirty
2433 * at this point. We do this by having them hold the
2434 * page lock while dirtying the page, and pages are
2435 * always locked coming in here, so we get the desired
2436 * exclusion.
2437 */
2438 memcg = mem_cgroup_begin_page_stat(page);
2439 if (TestClearPageDirty(page)) {
2440 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2441 dec_zone_page_state(page, NR_FILE_DIRTY);
2442 dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
2443 ret = 1;
2444 }
2445 mem_cgroup_end_page_stat(memcg);
2446 return ret;
2447 }
2448 return TestClearPageDirty(page);
2449 }
2450 EXPORT_SYMBOL(clear_page_dirty_for_io);
2451
2452 int test_clear_page_writeback(struct page *page)
2453 {
2454 struct address_space *mapping = page_mapping(page);
2455 struct mem_cgroup *memcg;
2456 int ret;
2457
2458 memcg = mem_cgroup_begin_page_stat(page);
2459 if (mapping) {
2460 struct inode *inode = mapping->host;
2461 struct backing_dev_info *bdi = inode_to_bdi(inode);
2462 unsigned long flags;
2463
2464 spin_lock_irqsave(&mapping->tree_lock, flags);
2465 ret = TestClearPageWriteback(page);
2466 if (ret) {
2467 radix_tree_tag_clear(&mapping->page_tree,
2468 page_index(page),
2469 PAGECACHE_TAG_WRITEBACK);
2470 if (bdi_cap_account_writeback(bdi)) {
2471 struct bdi_writeback *wb = inode_to_wb(inode);
2472
2473 __dec_wb_stat(wb, WB_WRITEBACK);
2474 __wb_writeout_inc(wb);
2475 }
2476 }
2477 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2478 } else {
2479 ret = TestClearPageWriteback(page);
2480 }
2481 if (ret) {
2482 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2483 dec_zone_page_state(page, NR_WRITEBACK);
2484 inc_zone_page_state(page, NR_WRITTEN);
2485 }
2486 mem_cgroup_end_page_stat(memcg);
2487 return ret;
2488 }
2489
2490 int __test_set_page_writeback(struct page *page, bool keep_write)
2491 {
2492 struct address_space *mapping = page_mapping(page);
2493 struct mem_cgroup *memcg;
2494 int ret;
2495
2496 memcg = mem_cgroup_begin_page_stat(page);
2497 if (mapping) {
2498 struct inode *inode = mapping->host;
2499 struct backing_dev_info *bdi = inode_to_bdi(inode);
2500 unsigned long flags;
2501
2502 spin_lock_irqsave(&mapping->tree_lock, flags);
2503 ret = TestSetPageWriteback(page);
2504 if (!ret) {
2505 radix_tree_tag_set(&mapping->page_tree,
2506 page_index(page),
2507 PAGECACHE_TAG_WRITEBACK);
2508 if (bdi_cap_account_writeback(bdi))
2509 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2510 }
2511 if (!PageDirty(page))
2512 radix_tree_tag_clear(&mapping->page_tree,
2513 page_index(page),
2514 PAGECACHE_TAG_DIRTY);
2515 if (!keep_write)
2516 radix_tree_tag_clear(&mapping->page_tree,
2517 page_index(page),
2518 PAGECACHE_TAG_TOWRITE);
2519 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2520 } else {
2521 ret = TestSetPageWriteback(page);
2522 }
2523 if (!ret) {
2524 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2525 inc_zone_page_state(page, NR_WRITEBACK);
2526 }
2527 mem_cgroup_end_page_stat(memcg);
2528 return ret;
2529
2530 }
2531 EXPORT_SYMBOL(__test_set_page_writeback);
2532
2533 /*
2534 * Return true if any of the pages in the mapping are marked with the
2535 * passed tag.
2536 */
2537 int mapping_tagged(struct address_space *mapping, int tag)
2538 {
2539 return radix_tree_tagged(&mapping->page_tree, tag);
2540 }
2541 EXPORT_SYMBOL(mapping_tagged);
2542
2543 /**
2544 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2545 * @page: The page to wait on.
2546 *
2547 * This function determines if the given page is related to a backing device
2548 * that requires page contents to be held stable during writeback. If so, then
2549 * it will wait for any pending writeback to complete.
2550 */
2551 void wait_for_stable_page(struct page *page)
2552 {
2553 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2554 wait_on_page_writeback(page);
2555 }
2556 EXPORT_SYMBOL_GPL(wait_for_stable_page);
This page took 0.131677 seconds and 6 git commands to generate.