mm: munlock: remove unnecessary call to lru_add_drain()
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63
64 #include <asm/sections.h>
65 #include <asm/tlbflush.h>
66 #include <asm/div64.h>
67 #include "internal.h"
68
69 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
70 static DEFINE_MUTEX(pcp_batch_high_lock);
71
72 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
73 DEFINE_PER_CPU(int, numa_node);
74 EXPORT_PER_CPU_SYMBOL(numa_node);
75 #endif
76
77 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
78 /*
79 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
80 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
81 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
82 * defined in <linux/topology.h>.
83 */
84 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
85 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
86 #endif
87
88 /*
89 * Array of node states.
90 */
91 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
92 [N_POSSIBLE] = NODE_MASK_ALL,
93 [N_ONLINE] = { { [0] = 1UL } },
94 #ifndef CONFIG_NUMA
95 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
96 #ifdef CONFIG_HIGHMEM
97 [N_HIGH_MEMORY] = { { [0] = 1UL } },
98 #endif
99 #ifdef CONFIG_MOVABLE_NODE
100 [N_MEMORY] = { { [0] = 1UL } },
101 #endif
102 [N_CPU] = { { [0] = 1UL } },
103 #endif /* NUMA */
104 };
105 EXPORT_SYMBOL(node_states);
106
107 /* Protect totalram_pages and zone->managed_pages */
108 static DEFINE_SPINLOCK(managed_page_count_lock);
109
110 unsigned long totalram_pages __read_mostly;
111 unsigned long totalreserve_pages __read_mostly;
112 /*
113 * When calculating the number of globally allowed dirty pages, there
114 * is a certain number of per-zone reserves that should not be
115 * considered dirtyable memory. This is the sum of those reserves
116 * over all existing zones that contribute dirtyable memory.
117 */
118 unsigned long dirty_balance_reserve __read_mostly;
119
120 int percpu_pagelist_fraction;
121 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
122
123 #ifdef CONFIG_PM_SLEEP
124 /*
125 * The following functions are used by the suspend/hibernate code to temporarily
126 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
127 * while devices are suspended. To avoid races with the suspend/hibernate code,
128 * they should always be called with pm_mutex held (gfp_allowed_mask also should
129 * only be modified with pm_mutex held, unless the suspend/hibernate code is
130 * guaranteed not to run in parallel with that modification).
131 */
132
133 static gfp_t saved_gfp_mask;
134
135 void pm_restore_gfp_mask(void)
136 {
137 WARN_ON(!mutex_is_locked(&pm_mutex));
138 if (saved_gfp_mask) {
139 gfp_allowed_mask = saved_gfp_mask;
140 saved_gfp_mask = 0;
141 }
142 }
143
144 void pm_restrict_gfp_mask(void)
145 {
146 WARN_ON(!mutex_is_locked(&pm_mutex));
147 WARN_ON(saved_gfp_mask);
148 saved_gfp_mask = gfp_allowed_mask;
149 gfp_allowed_mask &= ~GFP_IOFS;
150 }
151
152 bool pm_suspended_storage(void)
153 {
154 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
155 return false;
156 return true;
157 }
158 #endif /* CONFIG_PM_SLEEP */
159
160 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
161 int pageblock_order __read_mostly;
162 #endif
163
164 static void __free_pages_ok(struct page *page, unsigned int order);
165
166 /*
167 * results with 256, 32 in the lowmem_reserve sysctl:
168 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
169 * 1G machine -> (16M dma, 784M normal, 224M high)
170 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
171 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
172 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
173 *
174 * TBD: should special case ZONE_DMA32 machines here - in those we normally
175 * don't need any ZONE_NORMAL reservation
176 */
177 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
178 #ifdef CONFIG_ZONE_DMA
179 256,
180 #endif
181 #ifdef CONFIG_ZONE_DMA32
182 256,
183 #endif
184 #ifdef CONFIG_HIGHMEM
185 32,
186 #endif
187 32,
188 };
189
190 EXPORT_SYMBOL(totalram_pages);
191
192 static char * const zone_names[MAX_NR_ZONES] = {
193 #ifdef CONFIG_ZONE_DMA
194 "DMA",
195 #endif
196 #ifdef CONFIG_ZONE_DMA32
197 "DMA32",
198 #endif
199 "Normal",
200 #ifdef CONFIG_HIGHMEM
201 "HighMem",
202 #endif
203 "Movable",
204 };
205
206 int min_free_kbytes = 1024;
207 int user_min_free_kbytes;
208
209 static unsigned long __meminitdata nr_kernel_pages;
210 static unsigned long __meminitdata nr_all_pages;
211 static unsigned long __meminitdata dma_reserve;
212
213 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
214 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
215 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
216 static unsigned long __initdata required_kernelcore;
217 static unsigned long __initdata required_movablecore;
218 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
219
220 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
221 int movable_zone;
222 EXPORT_SYMBOL(movable_zone);
223 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
224
225 #if MAX_NUMNODES > 1
226 int nr_node_ids __read_mostly = MAX_NUMNODES;
227 int nr_online_nodes __read_mostly = 1;
228 EXPORT_SYMBOL(nr_node_ids);
229 EXPORT_SYMBOL(nr_online_nodes);
230 #endif
231
232 int page_group_by_mobility_disabled __read_mostly;
233
234 void set_pageblock_migratetype(struct page *page, int migratetype)
235 {
236
237 if (unlikely(page_group_by_mobility_disabled))
238 migratetype = MIGRATE_UNMOVABLE;
239
240 set_pageblock_flags_group(page, (unsigned long)migratetype,
241 PB_migrate, PB_migrate_end);
242 }
243
244 bool oom_killer_disabled __read_mostly;
245
246 #ifdef CONFIG_DEBUG_VM
247 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
248 {
249 int ret = 0;
250 unsigned seq;
251 unsigned long pfn = page_to_pfn(page);
252 unsigned long sp, start_pfn;
253
254 do {
255 seq = zone_span_seqbegin(zone);
256 start_pfn = zone->zone_start_pfn;
257 sp = zone->spanned_pages;
258 if (!zone_spans_pfn(zone, pfn))
259 ret = 1;
260 } while (zone_span_seqretry(zone, seq));
261
262 if (ret)
263 pr_err("page %lu outside zone [ %lu - %lu ]\n",
264 pfn, start_pfn, start_pfn + sp);
265
266 return ret;
267 }
268
269 static int page_is_consistent(struct zone *zone, struct page *page)
270 {
271 if (!pfn_valid_within(page_to_pfn(page)))
272 return 0;
273 if (zone != page_zone(page))
274 return 0;
275
276 return 1;
277 }
278 /*
279 * Temporary debugging check for pages not lying within a given zone.
280 */
281 static int bad_range(struct zone *zone, struct page *page)
282 {
283 if (page_outside_zone_boundaries(zone, page))
284 return 1;
285 if (!page_is_consistent(zone, page))
286 return 1;
287
288 return 0;
289 }
290 #else
291 static inline int bad_range(struct zone *zone, struct page *page)
292 {
293 return 0;
294 }
295 #endif
296
297 static void bad_page(struct page *page)
298 {
299 static unsigned long resume;
300 static unsigned long nr_shown;
301 static unsigned long nr_unshown;
302
303 /* Don't complain about poisoned pages */
304 if (PageHWPoison(page)) {
305 page_mapcount_reset(page); /* remove PageBuddy */
306 return;
307 }
308
309 /*
310 * Allow a burst of 60 reports, then keep quiet for that minute;
311 * or allow a steady drip of one report per second.
312 */
313 if (nr_shown == 60) {
314 if (time_before(jiffies, resume)) {
315 nr_unshown++;
316 goto out;
317 }
318 if (nr_unshown) {
319 printk(KERN_ALERT
320 "BUG: Bad page state: %lu messages suppressed\n",
321 nr_unshown);
322 nr_unshown = 0;
323 }
324 nr_shown = 0;
325 }
326 if (nr_shown++ == 0)
327 resume = jiffies + 60 * HZ;
328
329 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
330 current->comm, page_to_pfn(page));
331 dump_page(page);
332
333 print_modules();
334 dump_stack();
335 out:
336 /* Leave bad fields for debug, except PageBuddy could make trouble */
337 page_mapcount_reset(page); /* remove PageBuddy */
338 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
339 }
340
341 /*
342 * Higher-order pages are called "compound pages". They are structured thusly:
343 *
344 * The first PAGE_SIZE page is called the "head page".
345 *
346 * The remaining PAGE_SIZE pages are called "tail pages".
347 *
348 * All pages have PG_compound set. All tail pages have their ->first_page
349 * pointing at the head page.
350 *
351 * The first tail page's ->lru.next holds the address of the compound page's
352 * put_page() function. Its ->lru.prev holds the order of allocation.
353 * This usage means that zero-order pages may not be compound.
354 */
355
356 static void free_compound_page(struct page *page)
357 {
358 __free_pages_ok(page, compound_order(page));
359 }
360
361 void prep_compound_page(struct page *page, unsigned long order)
362 {
363 int i;
364 int nr_pages = 1 << order;
365
366 set_compound_page_dtor(page, free_compound_page);
367 set_compound_order(page, order);
368 __SetPageHead(page);
369 for (i = 1; i < nr_pages; i++) {
370 struct page *p = page + i;
371 __SetPageTail(p);
372 set_page_count(p, 0);
373 p->first_page = page;
374 }
375 }
376
377 /* update __split_huge_page_refcount if you change this function */
378 static int destroy_compound_page(struct page *page, unsigned long order)
379 {
380 int i;
381 int nr_pages = 1 << order;
382 int bad = 0;
383
384 if (unlikely(compound_order(page) != order)) {
385 bad_page(page);
386 bad++;
387 }
388
389 __ClearPageHead(page);
390
391 for (i = 1; i < nr_pages; i++) {
392 struct page *p = page + i;
393
394 if (unlikely(!PageTail(p) || (p->first_page != page))) {
395 bad_page(page);
396 bad++;
397 }
398 __ClearPageTail(p);
399 }
400
401 return bad;
402 }
403
404 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
405 {
406 int i;
407
408 /*
409 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
410 * and __GFP_HIGHMEM from hard or soft interrupt context.
411 */
412 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
413 for (i = 0; i < (1 << order); i++)
414 clear_highpage(page + i);
415 }
416
417 #ifdef CONFIG_DEBUG_PAGEALLOC
418 unsigned int _debug_guardpage_minorder;
419
420 static int __init debug_guardpage_minorder_setup(char *buf)
421 {
422 unsigned long res;
423
424 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
425 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
426 return 0;
427 }
428 _debug_guardpage_minorder = res;
429 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
430 return 0;
431 }
432 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
433
434 static inline void set_page_guard_flag(struct page *page)
435 {
436 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
437 }
438
439 static inline void clear_page_guard_flag(struct page *page)
440 {
441 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
442 }
443 #else
444 static inline void set_page_guard_flag(struct page *page) { }
445 static inline void clear_page_guard_flag(struct page *page) { }
446 #endif
447
448 static inline void set_page_order(struct page *page, int order)
449 {
450 set_page_private(page, order);
451 __SetPageBuddy(page);
452 }
453
454 static inline void rmv_page_order(struct page *page)
455 {
456 __ClearPageBuddy(page);
457 set_page_private(page, 0);
458 }
459
460 /*
461 * Locate the struct page for both the matching buddy in our
462 * pair (buddy1) and the combined O(n+1) page they form (page).
463 *
464 * 1) Any buddy B1 will have an order O twin B2 which satisfies
465 * the following equation:
466 * B2 = B1 ^ (1 << O)
467 * For example, if the starting buddy (buddy2) is #8 its order
468 * 1 buddy is #10:
469 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
470 *
471 * 2) Any buddy B will have an order O+1 parent P which
472 * satisfies the following equation:
473 * P = B & ~(1 << O)
474 *
475 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
476 */
477 static inline unsigned long
478 __find_buddy_index(unsigned long page_idx, unsigned int order)
479 {
480 return page_idx ^ (1 << order);
481 }
482
483 /*
484 * This function checks whether a page is free && is the buddy
485 * we can do coalesce a page and its buddy if
486 * (a) the buddy is not in a hole &&
487 * (b) the buddy is in the buddy system &&
488 * (c) a page and its buddy have the same order &&
489 * (d) a page and its buddy are in the same zone.
490 *
491 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
492 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
493 *
494 * For recording page's order, we use page_private(page).
495 */
496 static inline int page_is_buddy(struct page *page, struct page *buddy,
497 int order)
498 {
499 if (!pfn_valid_within(page_to_pfn(buddy)))
500 return 0;
501
502 if (page_zone_id(page) != page_zone_id(buddy))
503 return 0;
504
505 if (page_is_guard(buddy) && page_order(buddy) == order) {
506 VM_BUG_ON(page_count(buddy) != 0);
507 return 1;
508 }
509
510 if (PageBuddy(buddy) && page_order(buddy) == order) {
511 VM_BUG_ON(page_count(buddy) != 0);
512 return 1;
513 }
514 return 0;
515 }
516
517 /*
518 * Freeing function for a buddy system allocator.
519 *
520 * The concept of a buddy system is to maintain direct-mapped table
521 * (containing bit values) for memory blocks of various "orders".
522 * The bottom level table contains the map for the smallest allocatable
523 * units of memory (here, pages), and each level above it describes
524 * pairs of units from the levels below, hence, "buddies".
525 * At a high level, all that happens here is marking the table entry
526 * at the bottom level available, and propagating the changes upward
527 * as necessary, plus some accounting needed to play nicely with other
528 * parts of the VM system.
529 * At each level, we keep a list of pages, which are heads of continuous
530 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
531 * order is recorded in page_private(page) field.
532 * So when we are allocating or freeing one, we can derive the state of the
533 * other. That is, if we allocate a small block, and both were
534 * free, the remainder of the region must be split into blocks.
535 * If a block is freed, and its buddy is also free, then this
536 * triggers coalescing into a block of larger size.
537 *
538 * -- nyc
539 */
540
541 static inline void __free_one_page(struct page *page,
542 struct zone *zone, unsigned int order,
543 int migratetype)
544 {
545 unsigned long page_idx;
546 unsigned long combined_idx;
547 unsigned long uninitialized_var(buddy_idx);
548 struct page *buddy;
549
550 VM_BUG_ON(!zone_is_initialized(zone));
551
552 if (unlikely(PageCompound(page)))
553 if (unlikely(destroy_compound_page(page, order)))
554 return;
555
556 VM_BUG_ON(migratetype == -1);
557
558 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
559
560 VM_BUG_ON(page_idx & ((1 << order) - 1));
561 VM_BUG_ON(bad_range(zone, page));
562
563 while (order < MAX_ORDER-1) {
564 buddy_idx = __find_buddy_index(page_idx, order);
565 buddy = page + (buddy_idx - page_idx);
566 if (!page_is_buddy(page, buddy, order))
567 break;
568 /*
569 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
570 * merge with it and move up one order.
571 */
572 if (page_is_guard(buddy)) {
573 clear_page_guard_flag(buddy);
574 set_page_private(page, 0);
575 __mod_zone_freepage_state(zone, 1 << order,
576 migratetype);
577 } else {
578 list_del(&buddy->lru);
579 zone->free_area[order].nr_free--;
580 rmv_page_order(buddy);
581 }
582 combined_idx = buddy_idx & page_idx;
583 page = page + (combined_idx - page_idx);
584 page_idx = combined_idx;
585 order++;
586 }
587 set_page_order(page, order);
588
589 /*
590 * If this is not the largest possible page, check if the buddy
591 * of the next-highest order is free. If it is, it's possible
592 * that pages are being freed that will coalesce soon. In case,
593 * that is happening, add the free page to the tail of the list
594 * so it's less likely to be used soon and more likely to be merged
595 * as a higher order page
596 */
597 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
598 struct page *higher_page, *higher_buddy;
599 combined_idx = buddy_idx & page_idx;
600 higher_page = page + (combined_idx - page_idx);
601 buddy_idx = __find_buddy_index(combined_idx, order + 1);
602 higher_buddy = higher_page + (buddy_idx - combined_idx);
603 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
604 list_add_tail(&page->lru,
605 &zone->free_area[order].free_list[migratetype]);
606 goto out;
607 }
608 }
609
610 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
611 out:
612 zone->free_area[order].nr_free++;
613 }
614
615 static inline int free_pages_check(struct page *page)
616 {
617 if (unlikely(page_mapcount(page) |
618 (page->mapping != NULL) |
619 (atomic_read(&page->_count) != 0) |
620 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
621 (mem_cgroup_bad_page_check(page)))) {
622 bad_page(page);
623 return 1;
624 }
625 page_nid_reset_last(page);
626 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
627 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
628 return 0;
629 }
630
631 /*
632 * Frees a number of pages from the PCP lists
633 * Assumes all pages on list are in same zone, and of same order.
634 * count is the number of pages to free.
635 *
636 * If the zone was previously in an "all pages pinned" state then look to
637 * see if this freeing clears that state.
638 *
639 * And clear the zone's pages_scanned counter, to hold off the "all pages are
640 * pinned" detection logic.
641 */
642 static void free_pcppages_bulk(struct zone *zone, int count,
643 struct per_cpu_pages *pcp)
644 {
645 int migratetype = 0;
646 int batch_free = 0;
647 int to_free = count;
648
649 spin_lock(&zone->lock);
650 zone->all_unreclaimable = 0;
651 zone->pages_scanned = 0;
652
653 while (to_free) {
654 struct page *page;
655 struct list_head *list;
656
657 /*
658 * Remove pages from lists in a round-robin fashion. A
659 * batch_free count is maintained that is incremented when an
660 * empty list is encountered. This is so more pages are freed
661 * off fuller lists instead of spinning excessively around empty
662 * lists
663 */
664 do {
665 batch_free++;
666 if (++migratetype == MIGRATE_PCPTYPES)
667 migratetype = 0;
668 list = &pcp->lists[migratetype];
669 } while (list_empty(list));
670
671 /* This is the only non-empty list. Free them all. */
672 if (batch_free == MIGRATE_PCPTYPES)
673 batch_free = to_free;
674
675 do {
676 int mt; /* migratetype of the to-be-freed page */
677
678 page = list_entry(list->prev, struct page, lru);
679 /* must delete as __free_one_page list manipulates */
680 list_del(&page->lru);
681 mt = get_freepage_migratetype(page);
682 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
683 __free_one_page(page, zone, 0, mt);
684 trace_mm_page_pcpu_drain(page, 0, mt);
685 if (likely(!is_migrate_isolate_page(page))) {
686 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
687 if (is_migrate_cma(mt))
688 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
689 }
690 } while (--to_free && --batch_free && !list_empty(list));
691 }
692 spin_unlock(&zone->lock);
693 }
694
695 static void free_one_page(struct zone *zone, struct page *page, int order,
696 int migratetype)
697 {
698 spin_lock(&zone->lock);
699 zone->all_unreclaimable = 0;
700 zone->pages_scanned = 0;
701
702 __free_one_page(page, zone, order, migratetype);
703 if (unlikely(!is_migrate_isolate(migratetype)))
704 __mod_zone_freepage_state(zone, 1 << order, migratetype);
705 spin_unlock(&zone->lock);
706 }
707
708 static bool free_pages_prepare(struct page *page, unsigned int order)
709 {
710 int i;
711 int bad = 0;
712
713 trace_mm_page_free(page, order);
714 kmemcheck_free_shadow(page, order);
715
716 if (PageAnon(page))
717 page->mapping = NULL;
718 for (i = 0; i < (1 << order); i++)
719 bad += free_pages_check(page + i);
720 if (bad)
721 return false;
722
723 if (!PageHighMem(page)) {
724 debug_check_no_locks_freed(page_address(page),
725 PAGE_SIZE << order);
726 debug_check_no_obj_freed(page_address(page),
727 PAGE_SIZE << order);
728 }
729 arch_free_page(page, order);
730 kernel_map_pages(page, 1 << order, 0);
731
732 return true;
733 }
734
735 static void __free_pages_ok(struct page *page, unsigned int order)
736 {
737 unsigned long flags;
738 int migratetype;
739
740 if (!free_pages_prepare(page, order))
741 return;
742
743 local_irq_save(flags);
744 __count_vm_events(PGFREE, 1 << order);
745 migratetype = get_pageblock_migratetype(page);
746 set_freepage_migratetype(page, migratetype);
747 free_one_page(page_zone(page), page, order, migratetype);
748 local_irq_restore(flags);
749 }
750
751 void __init __free_pages_bootmem(struct page *page, unsigned int order)
752 {
753 unsigned int nr_pages = 1 << order;
754 struct page *p = page;
755 unsigned int loop;
756
757 prefetchw(p);
758 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
759 prefetchw(p + 1);
760 __ClearPageReserved(p);
761 set_page_count(p, 0);
762 }
763 __ClearPageReserved(p);
764 set_page_count(p, 0);
765
766 page_zone(page)->managed_pages += nr_pages;
767 set_page_refcounted(page);
768 __free_pages(page, order);
769 }
770
771 #ifdef CONFIG_CMA
772 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
773 void __init init_cma_reserved_pageblock(struct page *page)
774 {
775 unsigned i = pageblock_nr_pages;
776 struct page *p = page;
777
778 do {
779 __ClearPageReserved(p);
780 set_page_count(p, 0);
781 } while (++p, --i);
782
783 set_page_refcounted(page);
784 set_pageblock_migratetype(page, MIGRATE_CMA);
785 __free_pages(page, pageblock_order);
786 adjust_managed_page_count(page, pageblock_nr_pages);
787 }
788 #endif
789
790 /*
791 * The order of subdivision here is critical for the IO subsystem.
792 * Please do not alter this order without good reasons and regression
793 * testing. Specifically, as large blocks of memory are subdivided,
794 * the order in which smaller blocks are delivered depends on the order
795 * they're subdivided in this function. This is the primary factor
796 * influencing the order in which pages are delivered to the IO
797 * subsystem according to empirical testing, and this is also justified
798 * by considering the behavior of a buddy system containing a single
799 * large block of memory acted on by a series of small allocations.
800 * This behavior is a critical factor in sglist merging's success.
801 *
802 * -- nyc
803 */
804 static inline void expand(struct zone *zone, struct page *page,
805 int low, int high, struct free_area *area,
806 int migratetype)
807 {
808 unsigned long size = 1 << high;
809
810 while (high > low) {
811 area--;
812 high--;
813 size >>= 1;
814 VM_BUG_ON(bad_range(zone, &page[size]));
815
816 #ifdef CONFIG_DEBUG_PAGEALLOC
817 if (high < debug_guardpage_minorder()) {
818 /*
819 * Mark as guard pages (or page), that will allow to
820 * merge back to allocator when buddy will be freed.
821 * Corresponding page table entries will not be touched,
822 * pages will stay not present in virtual address space
823 */
824 INIT_LIST_HEAD(&page[size].lru);
825 set_page_guard_flag(&page[size]);
826 set_page_private(&page[size], high);
827 /* Guard pages are not available for any usage */
828 __mod_zone_freepage_state(zone, -(1 << high),
829 migratetype);
830 continue;
831 }
832 #endif
833 list_add(&page[size].lru, &area->free_list[migratetype]);
834 area->nr_free++;
835 set_page_order(&page[size], high);
836 }
837 }
838
839 /*
840 * This page is about to be returned from the page allocator
841 */
842 static inline int check_new_page(struct page *page)
843 {
844 if (unlikely(page_mapcount(page) |
845 (page->mapping != NULL) |
846 (atomic_read(&page->_count) != 0) |
847 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
848 (mem_cgroup_bad_page_check(page)))) {
849 bad_page(page);
850 return 1;
851 }
852 return 0;
853 }
854
855 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
856 {
857 int i;
858
859 for (i = 0; i < (1 << order); i++) {
860 struct page *p = page + i;
861 if (unlikely(check_new_page(p)))
862 return 1;
863 }
864
865 set_page_private(page, 0);
866 set_page_refcounted(page);
867
868 arch_alloc_page(page, order);
869 kernel_map_pages(page, 1 << order, 1);
870
871 if (gfp_flags & __GFP_ZERO)
872 prep_zero_page(page, order, gfp_flags);
873
874 if (order && (gfp_flags & __GFP_COMP))
875 prep_compound_page(page, order);
876
877 return 0;
878 }
879
880 /*
881 * Go through the free lists for the given migratetype and remove
882 * the smallest available page from the freelists
883 */
884 static inline
885 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
886 int migratetype)
887 {
888 unsigned int current_order;
889 struct free_area *area;
890 struct page *page;
891
892 /* Find a page of the appropriate size in the preferred list */
893 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
894 area = &(zone->free_area[current_order]);
895 if (list_empty(&area->free_list[migratetype]))
896 continue;
897
898 page = list_entry(area->free_list[migratetype].next,
899 struct page, lru);
900 list_del(&page->lru);
901 rmv_page_order(page);
902 area->nr_free--;
903 expand(zone, page, order, current_order, area, migratetype);
904 return page;
905 }
906
907 return NULL;
908 }
909
910
911 /*
912 * This array describes the order lists are fallen back to when
913 * the free lists for the desirable migrate type are depleted
914 */
915 static int fallbacks[MIGRATE_TYPES][4] = {
916 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
917 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
918 #ifdef CONFIG_CMA
919 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
920 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
921 #else
922 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
923 #endif
924 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
925 #ifdef CONFIG_MEMORY_ISOLATION
926 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
927 #endif
928 };
929
930 /*
931 * Move the free pages in a range to the free lists of the requested type.
932 * Note that start_page and end_pages are not aligned on a pageblock
933 * boundary. If alignment is required, use move_freepages_block()
934 */
935 int move_freepages(struct zone *zone,
936 struct page *start_page, struct page *end_page,
937 int migratetype)
938 {
939 struct page *page;
940 unsigned long order;
941 int pages_moved = 0;
942
943 #ifndef CONFIG_HOLES_IN_ZONE
944 /*
945 * page_zone is not safe to call in this context when
946 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
947 * anyway as we check zone boundaries in move_freepages_block().
948 * Remove at a later date when no bug reports exist related to
949 * grouping pages by mobility
950 */
951 BUG_ON(page_zone(start_page) != page_zone(end_page));
952 #endif
953
954 for (page = start_page; page <= end_page;) {
955 /* Make sure we are not inadvertently changing nodes */
956 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
957
958 if (!pfn_valid_within(page_to_pfn(page))) {
959 page++;
960 continue;
961 }
962
963 if (!PageBuddy(page)) {
964 page++;
965 continue;
966 }
967
968 order = page_order(page);
969 list_move(&page->lru,
970 &zone->free_area[order].free_list[migratetype]);
971 set_freepage_migratetype(page, migratetype);
972 page += 1 << order;
973 pages_moved += 1 << order;
974 }
975
976 return pages_moved;
977 }
978
979 int move_freepages_block(struct zone *zone, struct page *page,
980 int migratetype)
981 {
982 unsigned long start_pfn, end_pfn;
983 struct page *start_page, *end_page;
984
985 start_pfn = page_to_pfn(page);
986 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
987 start_page = pfn_to_page(start_pfn);
988 end_page = start_page + pageblock_nr_pages - 1;
989 end_pfn = start_pfn + pageblock_nr_pages - 1;
990
991 /* Do not cross zone boundaries */
992 if (!zone_spans_pfn(zone, start_pfn))
993 start_page = page;
994 if (!zone_spans_pfn(zone, end_pfn))
995 return 0;
996
997 return move_freepages(zone, start_page, end_page, migratetype);
998 }
999
1000 static void change_pageblock_range(struct page *pageblock_page,
1001 int start_order, int migratetype)
1002 {
1003 int nr_pageblocks = 1 << (start_order - pageblock_order);
1004
1005 while (nr_pageblocks--) {
1006 set_pageblock_migratetype(pageblock_page, migratetype);
1007 pageblock_page += pageblock_nr_pages;
1008 }
1009 }
1010
1011 /*
1012 * If breaking a large block of pages, move all free pages to the preferred
1013 * allocation list. If falling back for a reclaimable kernel allocation, be
1014 * more aggressive about taking ownership of free pages.
1015 *
1016 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1017 * nor move CMA pages to different free lists. We don't want unmovable pages
1018 * to be allocated from MIGRATE_CMA areas.
1019 *
1020 * Returns the new migratetype of the pageblock (or the same old migratetype
1021 * if it was unchanged).
1022 */
1023 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1024 int start_type, int fallback_type)
1025 {
1026 int current_order = page_order(page);
1027
1028 if (is_migrate_cma(fallback_type))
1029 return fallback_type;
1030
1031 /* Take ownership for orders >= pageblock_order */
1032 if (current_order >= pageblock_order) {
1033 change_pageblock_range(page, current_order, start_type);
1034 return start_type;
1035 }
1036
1037 if (current_order >= pageblock_order / 2 ||
1038 start_type == MIGRATE_RECLAIMABLE ||
1039 page_group_by_mobility_disabled) {
1040 int pages;
1041
1042 pages = move_freepages_block(zone, page, start_type);
1043
1044 /* Claim the whole block if over half of it is free */
1045 if (pages >= (1 << (pageblock_order-1)) ||
1046 page_group_by_mobility_disabled) {
1047
1048 set_pageblock_migratetype(page, start_type);
1049 return start_type;
1050 }
1051
1052 }
1053
1054 return fallback_type;
1055 }
1056
1057 /* Remove an element from the buddy allocator from the fallback list */
1058 static inline struct page *
1059 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1060 {
1061 struct free_area *area;
1062 int current_order;
1063 struct page *page;
1064 int migratetype, new_type, i;
1065
1066 /* Find the largest possible block of pages in the other list */
1067 for (current_order = MAX_ORDER-1; current_order >= order;
1068 --current_order) {
1069 for (i = 0;; i++) {
1070 migratetype = fallbacks[start_migratetype][i];
1071
1072 /* MIGRATE_RESERVE handled later if necessary */
1073 if (migratetype == MIGRATE_RESERVE)
1074 break;
1075
1076 area = &(zone->free_area[current_order]);
1077 if (list_empty(&area->free_list[migratetype]))
1078 continue;
1079
1080 page = list_entry(area->free_list[migratetype].next,
1081 struct page, lru);
1082 area->nr_free--;
1083
1084 new_type = try_to_steal_freepages(zone, page,
1085 start_migratetype,
1086 migratetype);
1087
1088 /* Remove the page from the freelists */
1089 list_del(&page->lru);
1090 rmv_page_order(page);
1091
1092 /*
1093 * Borrow the excess buddy pages as well, irrespective
1094 * of whether we stole freepages, or took ownership of
1095 * the pageblock or not.
1096 *
1097 * Exception: When borrowing from MIGRATE_CMA, release
1098 * the excess buddy pages to CMA itself.
1099 */
1100 expand(zone, page, order, current_order, area,
1101 is_migrate_cma(migratetype)
1102 ? migratetype : start_migratetype);
1103
1104 trace_mm_page_alloc_extfrag(page, order,
1105 current_order, start_migratetype, migratetype,
1106 new_type == start_migratetype);
1107
1108 return page;
1109 }
1110 }
1111
1112 return NULL;
1113 }
1114
1115 /*
1116 * Do the hard work of removing an element from the buddy allocator.
1117 * Call me with the zone->lock already held.
1118 */
1119 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1120 int migratetype)
1121 {
1122 struct page *page;
1123
1124 retry_reserve:
1125 page = __rmqueue_smallest(zone, order, migratetype);
1126
1127 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1128 page = __rmqueue_fallback(zone, order, migratetype);
1129
1130 /*
1131 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1132 * is used because __rmqueue_smallest is an inline function
1133 * and we want just one call site
1134 */
1135 if (!page) {
1136 migratetype = MIGRATE_RESERVE;
1137 goto retry_reserve;
1138 }
1139 }
1140
1141 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1142 return page;
1143 }
1144
1145 /*
1146 * Obtain a specified number of elements from the buddy allocator, all under
1147 * a single hold of the lock, for efficiency. Add them to the supplied list.
1148 * Returns the number of new pages which were placed at *list.
1149 */
1150 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1151 unsigned long count, struct list_head *list,
1152 int migratetype, int cold)
1153 {
1154 int mt = migratetype, i;
1155
1156 spin_lock(&zone->lock);
1157 for (i = 0; i < count; ++i) {
1158 struct page *page = __rmqueue(zone, order, migratetype);
1159 if (unlikely(page == NULL))
1160 break;
1161
1162 /*
1163 * Split buddy pages returned by expand() are received here
1164 * in physical page order. The page is added to the callers and
1165 * list and the list head then moves forward. From the callers
1166 * perspective, the linked list is ordered by page number in
1167 * some conditions. This is useful for IO devices that can
1168 * merge IO requests if the physical pages are ordered
1169 * properly.
1170 */
1171 if (likely(cold == 0))
1172 list_add(&page->lru, list);
1173 else
1174 list_add_tail(&page->lru, list);
1175 if (IS_ENABLED(CONFIG_CMA)) {
1176 mt = get_pageblock_migratetype(page);
1177 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
1178 mt = migratetype;
1179 }
1180 set_freepage_migratetype(page, mt);
1181 list = &page->lru;
1182 if (is_migrate_cma(mt))
1183 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1184 -(1 << order));
1185 }
1186 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1187 spin_unlock(&zone->lock);
1188 return i;
1189 }
1190
1191 #ifdef CONFIG_NUMA
1192 /*
1193 * Called from the vmstat counter updater to drain pagesets of this
1194 * currently executing processor on remote nodes after they have
1195 * expired.
1196 *
1197 * Note that this function must be called with the thread pinned to
1198 * a single processor.
1199 */
1200 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1201 {
1202 unsigned long flags;
1203 int to_drain;
1204 unsigned long batch;
1205
1206 local_irq_save(flags);
1207 batch = ACCESS_ONCE(pcp->batch);
1208 if (pcp->count >= batch)
1209 to_drain = batch;
1210 else
1211 to_drain = pcp->count;
1212 if (to_drain > 0) {
1213 free_pcppages_bulk(zone, to_drain, pcp);
1214 pcp->count -= to_drain;
1215 }
1216 local_irq_restore(flags);
1217 }
1218 #endif
1219
1220 /*
1221 * Drain pages of the indicated processor.
1222 *
1223 * The processor must either be the current processor and the
1224 * thread pinned to the current processor or a processor that
1225 * is not online.
1226 */
1227 static void drain_pages(unsigned int cpu)
1228 {
1229 unsigned long flags;
1230 struct zone *zone;
1231
1232 for_each_populated_zone(zone) {
1233 struct per_cpu_pageset *pset;
1234 struct per_cpu_pages *pcp;
1235
1236 local_irq_save(flags);
1237 pset = per_cpu_ptr(zone->pageset, cpu);
1238
1239 pcp = &pset->pcp;
1240 if (pcp->count) {
1241 free_pcppages_bulk(zone, pcp->count, pcp);
1242 pcp->count = 0;
1243 }
1244 local_irq_restore(flags);
1245 }
1246 }
1247
1248 /*
1249 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1250 */
1251 void drain_local_pages(void *arg)
1252 {
1253 drain_pages(smp_processor_id());
1254 }
1255
1256 /*
1257 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1258 *
1259 * Note that this code is protected against sending an IPI to an offline
1260 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1261 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1262 * nothing keeps CPUs from showing up after we populated the cpumask and
1263 * before the call to on_each_cpu_mask().
1264 */
1265 void drain_all_pages(void)
1266 {
1267 int cpu;
1268 struct per_cpu_pageset *pcp;
1269 struct zone *zone;
1270
1271 /*
1272 * Allocate in the BSS so we wont require allocation in
1273 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1274 */
1275 static cpumask_t cpus_with_pcps;
1276
1277 /*
1278 * We don't care about racing with CPU hotplug event
1279 * as offline notification will cause the notified
1280 * cpu to drain that CPU pcps and on_each_cpu_mask
1281 * disables preemption as part of its processing
1282 */
1283 for_each_online_cpu(cpu) {
1284 bool has_pcps = false;
1285 for_each_populated_zone(zone) {
1286 pcp = per_cpu_ptr(zone->pageset, cpu);
1287 if (pcp->pcp.count) {
1288 has_pcps = true;
1289 break;
1290 }
1291 }
1292 if (has_pcps)
1293 cpumask_set_cpu(cpu, &cpus_with_pcps);
1294 else
1295 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1296 }
1297 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1298 }
1299
1300 #ifdef CONFIG_HIBERNATION
1301
1302 void mark_free_pages(struct zone *zone)
1303 {
1304 unsigned long pfn, max_zone_pfn;
1305 unsigned long flags;
1306 int order, t;
1307 struct list_head *curr;
1308
1309 if (zone_is_empty(zone))
1310 return;
1311
1312 spin_lock_irqsave(&zone->lock, flags);
1313
1314 max_zone_pfn = zone_end_pfn(zone);
1315 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1316 if (pfn_valid(pfn)) {
1317 struct page *page = pfn_to_page(pfn);
1318
1319 if (!swsusp_page_is_forbidden(page))
1320 swsusp_unset_page_free(page);
1321 }
1322
1323 for_each_migratetype_order(order, t) {
1324 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1325 unsigned long i;
1326
1327 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1328 for (i = 0; i < (1UL << order); i++)
1329 swsusp_set_page_free(pfn_to_page(pfn + i));
1330 }
1331 }
1332 spin_unlock_irqrestore(&zone->lock, flags);
1333 }
1334 #endif /* CONFIG_PM */
1335
1336 /*
1337 * Free a 0-order page
1338 * cold == 1 ? free a cold page : free a hot page
1339 */
1340 void free_hot_cold_page(struct page *page, int cold)
1341 {
1342 struct zone *zone = page_zone(page);
1343 struct per_cpu_pages *pcp;
1344 unsigned long flags;
1345 int migratetype;
1346
1347 if (!free_pages_prepare(page, 0))
1348 return;
1349
1350 migratetype = get_pageblock_migratetype(page);
1351 set_freepage_migratetype(page, migratetype);
1352 local_irq_save(flags);
1353 __count_vm_event(PGFREE);
1354
1355 /*
1356 * We only track unmovable, reclaimable and movable on pcp lists.
1357 * Free ISOLATE pages back to the allocator because they are being
1358 * offlined but treat RESERVE as movable pages so we can get those
1359 * areas back if necessary. Otherwise, we may have to free
1360 * excessively into the page allocator
1361 */
1362 if (migratetype >= MIGRATE_PCPTYPES) {
1363 if (unlikely(is_migrate_isolate(migratetype))) {
1364 free_one_page(zone, page, 0, migratetype);
1365 goto out;
1366 }
1367 migratetype = MIGRATE_MOVABLE;
1368 }
1369
1370 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1371 if (cold)
1372 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1373 else
1374 list_add(&page->lru, &pcp->lists[migratetype]);
1375 pcp->count++;
1376 if (pcp->count >= pcp->high) {
1377 unsigned long batch = ACCESS_ONCE(pcp->batch);
1378 free_pcppages_bulk(zone, batch, pcp);
1379 pcp->count -= batch;
1380 }
1381
1382 out:
1383 local_irq_restore(flags);
1384 }
1385
1386 /*
1387 * Free a list of 0-order pages
1388 */
1389 void free_hot_cold_page_list(struct list_head *list, int cold)
1390 {
1391 struct page *page, *next;
1392
1393 list_for_each_entry_safe(page, next, list, lru) {
1394 trace_mm_page_free_batched(page, cold);
1395 free_hot_cold_page(page, cold);
1396 }
1397 }
1398
1399 /*
1400 * split_page takes a non-compound higher-order page, and splits it into
1401 * n (1<<order) sub-pages: page[0..n]
1402 * Each sub-page must be freed individually.
1403 *
1404 * Note: this is probably too low level an operation for use in drivers.
1405 * Please consult with lkml before using this in your driver.
1406 */
1407 void split_page(struct page *page, unsigned int order)
1408 {
1409 int i;
1410
1411 VM_BUG_ON(PageCompound(page));
1412 VM_BUG_ON(!page_count(page));
1413
1414 #ifdef CONFIG_KMEMCHECK
1415 /*
1416 * Split shadow pages too, because free(page[0]) would
1417 * otherwise free the whole shadow.
1418 */
1419 if (kmemcheck_page_is_tracked(page))
1420 split_page(virt_to_page(page[0].shadow), order);
1421 #endif
1422
1423 for (i = 1; i < (1 << order); i++)
1424 set_page_refcounted(page + i);
1425 }
1426 EXPORT_SYMBOL_GPL(split_page);
1427
1428 static int __isolate_free_page(struct page *page, unsigned int order)
1429 {
1430 unsigned long watermark;
1431 struct zone *zone;
1432 int mt;
1433
1434 BUG_ON(!PageBuddy(page));
1435
1436 zone = page_zone(page);
1437 mt = get_pageblock_migratetype(page);
1438
1439 if (!is_migrate_isolate(mt)) {
1440 /* Obey watermarks as if the page was being allocated */
1441 watermark = low_wmark_pages(zone) + (1 << order);
1442 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1443 return 0;
1444
1445 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1446 }
1447
1448 /* Remove page from free list */
1449 list_del(&page->lru);
1450 zone->free_area[order].nr_free--;
1451 rmv_page_order(page);
1452
1453 /* Set the pageblock if the isolated page is at least a pageblock */
1454 if (order >= pageblock_order - 1) {
1455 struct page *endpage = page + (1 << order) - 1;
1456 for (; page < endpage; page += pageblock_nr_pages) {
1457 int mt = get_pageblock_migratetype(page);
1458 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1459 set_pageblock_migratetype(page,
1460 MIGRATE_MOVABLE);
1461 }
1462 }
1463
1464 return 1UL << order;
1465 }
1466
1467 /*
1468 * Similar to split_page except the page is already free. As this is only
1469 * being used for migration, the migratetype of the block also changes.
1470 * As this is called with interrupts disabled, the caller is responsible
1471 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1472 * are enabled.
1473 *
1474 * Note: this is probably too low level an operation for use in drivers.
1475 * Please consult with lkml before using this in your driver.
1476 */
1477 int split_free_page(struct page *page)
1478 {
1479 unsigned int order;
1480 int nr_pages;
1481
1482 order = page_order(page);
1483
1484 nr_pages = __isolate_free_page(page, order);
1485 if (!nr_pages)
1486 return 0;
1487
1488 /* Split into individual pages */
1489 set_page_refcounted(page);
1490 split_page(page, order);
1491 return nr_pages;
1492 }
1493
1494 /*
1495 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1496 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1497 * or two.
1498 */
1499 static inline
1500 struct page *buffered_rmqueue(struct zone *preferred_zone,
1501 struct zone *zone, int order, gfp_t gfp_flags,
1502 int migratetype)
1503 {
1504 unsigned long flags;
1505 struct page *page;
1506 int cold = !!(gfp_flags & __GFP_COLD);
1507
1508 again:
1509 if (likely(order == 0)) {
1510 struct per_cpu_pages *pcp;
1511 struct list_head *list;
1512
1513 local_irq_save(flags);
1514 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1515 list = &pcp->lists[migratetype];
1516 if (list_empty(list)) {
1517 pcp->count += rmqueue_bulk(zone, 0,
1518 pcp->batch, list,
1519 migratetype, cold);
1520 if (unlikely(list_empty(list)))
1521 goto failed;
1522 }
1523
1524 if (cold)
1525 page = list_entry(list->prev, struct page, lru);
1526 else
1527 page = list_entry(list->next, struct page, lru);
1528
1529 list_del(&page->lru);
1530 pcp->count--;
1531 } else {
1532 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1533 /*
1534 * __GFP_NOFAIL is not to be used in new code.
1535 *
1536 * All __GFP_NOFAIL callers should be fixed so that they
1537 * properly detect and handle allocation failures.
1538 *
1539 * We most definitely don't want callers attempting to
1540 * allocate greater than order-1 page units with
1541 * __GFP_NOFAIL.
1542 */
1543 WARN_ON_ONCE(order > 1);
1544 }
1545 spin_lock_irqsave(&zone->lock, flags);
1546 page = __rmqueue(zone, order, migratetype);
1547 spin_unlock(&zone->lock);
1548 if (!page)
1549 goto failed;
1550 __mod_zone_freepage_state(zone, -(1 << order),
1551 get_pageblock_migratetype(page));
1552 }
1553
1554 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1555 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1556 zone_statistics(preferred_zone, zone, gfp_flags);
1557 local_irq_restore(flags);
1558
1559 VM_BUG_ON(bad_range(zone, page));
1560 if (prep_new_page(page, order, gfp_flags))
1561 goto again;
1562 return page;
1563
1564 failed:
1565 local_irq_restore(flags);
1566 return NULL;
1567 }
1568
1569 #ifdef CONFIG_FAIL_PAGE_ALLOC
1570
1571 static struct {
1572 struct fault_attr attr;
1573
1574 u32 ignore_gfp_highmem;
1575 u32 ignore_gfp_wait;
1576 u32 min_order;
1577 } fail_page_alloc = {
1578 .attr = FAULT_ATTR_INITIALIZER,
1579 .ignore_gfp_wait = 1,
1580 .ignore_gfp_highmem = 1,
1581 .min_order = 1,
1582 };
1583
1584 static int __init setup_fail_page_alloc(char *str)
1585 {
1586 return setup_fault_attr(&fail_page_alloc.attr, str);
1587 }
1588 __setup("fail_page_alloc=", setup_fail_page_alloc);
1589
1590 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1591 {
1592 if (order < fail_page_alloc.min_order)
1593 return false;
1594 if (gfp_mask & __GFP_NOFAIL)
1595 return false;
1596 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1597 return false;
1598 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1599 return false;
1600
1601 return should_fail(&fail_page_alloc.attr, 1 << order);
1602 }
1603
1604 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1605
1606 static int __init fail_page_alloc_debugfs(void)
1607 {
1608 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1609 struct dentry *dir;
1610
1611 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1612 &fail_page_alloc.attr);
1613 if (IS_ERR(dir))
1614 return PTR_ERR(dir);
1615
1616 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1617 &fail_page_alloc.ignore_gfp_wait))
1618 goto fail;
1619 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1620 &fail_page_alloc.ignore_gfp_highmem))
1621 goto fail;
1622 if (!debugfs_create_u32("min-order", mode, dir,
1623 &fail_page_alloc.min_order))
1624 goto fail;
1625
1626 return 0;
1627 fail:
1628 debugfs_remove_recursive(dir);
1629
1630 return -ENOMEM;
1631 }
1632
1633 late_initcall(fail_page_alloc_debugfs);
1634
1635 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1636
1637 #else /* CONFIG_FAIL_PAGE_ALLOC */
1638
1639 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1640 {
1641 return false;
1642 }
1643
1644 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1645
1646 /*
1647 * Return true if free pages are above 'mark'. This takes into account the order
1648 * of the allocation.
1649 */
1650 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1651 int classzone_idx, int alloc_flags, long free_pages)
1652 {
1653 /* free_pages my go negative - that's OK */
1654 long min = mark;
1655 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1656 int o;
1657 long free_cma = 0;
1658
1659 free_pages -= (1 << order) - 1;
1660 if (alloc_flags & ALLOC_HIGH)
1661 min -= min / 2;
1662 if (alloc_flags & ALLOC_HARDER)
1663 min -= min / 4;
1664 #ifdef CONFIG_CMA
1665 /* If allocation can't use CMA areas don't use free CMA pages */
1666 if (!(alloc_flags & ALLOC_CMA))
1667 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1668 #endif
1669
1670 if (free_pages - free_cma <= min + lowmem_reserve)
1671 return false;
1672 for (o = 0; o < order; o++) {
1673 /* At the next order, this order's pages become unavailable */
1674 free_pages -= z->free_area[o].nr_free << o;
1675
1676 /* Require fewer higher order pages to be free */
1677 min >>= 1;
1678
1679 if (free_pages <= min)
1680 return false;
1681 }
1682 return true;
1683 }
1684
1685 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1686 int classzone_idx, int alloc_flags)
1687 {
1688 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1689 zone_page_state(z, NR_FREE_PAGES));
1690 }
1691
1692 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1693 int classzone_idx, int alloc_flags)
1694 {
1695 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1696
1697 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1698 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1699
1700 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1701 free_pages);
1702 }
1703
1704 #ifdef CONFIG_NUMA
1705 /*
1706 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1707 * skip over zones that are not allowed by the cpuset, or that have
1708 * been recently (in last second) found to be nearly full. See further
1709 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1710 * that have to skip over a lot of full or unallowed zones.
1711 *
1712 * If the zonelist cache is present in the passed in zonelist, then
1713 * returns a pointer to the allowed node mask (either the current
1714 * tasks mems_allowed, or node_states[N_MEMORY].)
1715 *
1716 * If the zonelist cache is not available for this zonelist, does
1717 * nothing and returns NULL.
1718 *
1719 * If the fullzones BITMAP in the zonelist cache is stale (more than
1720 * a second since last zap'd) then we zap it out (clear its bits.)
1721 *
1722 * We hold off even calling zlc_setup, until after we've checked the
1723 * first zone in the zonelist, on the theory that most allocations will
1724 * be satisfied from that first zone, so best to examine that zone as
1725 * quickly as we can.
1726 */
1727 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1728 {
1729 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1730 nodemask_t *allowednodes; /* zonelist_cache approximation */
1731
1732 zlc = zonelist->zlcache_ptr;
1733 if (!zlc)
1734 return NULL;
1735
1736 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1737 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1738 zlc->last_full_zap = jiffies;
1739 }
1740
1741 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1742 &cpuset_current_mems_allowed :
1743 &node_states[N_MEMORY];
1744 return allowednodes;
1745 }
1746
1747 /*
1748 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1749 * if it is worth looking at further for free memory:
1750 * 1) Check that the zone isn't thought to be full (doesn't have its
1751 * bit set in the zonelist_cache fullzones BITMAP).
1752 * 2) Check that the zones node (obtained from the zonelist_cache
1753 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1754 * Return true (non-zero) if zone is worth looking at further, or
1755 * else return false (zero) if it is not.
1756 *
1757 * This check -ignores- the distinction between various watermarks,
1758 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1759 * found to be full for any variation of these watermarks, it will
1760 * be considered full for up to one second by all requests, unless
1761 * we are so low on memory on all allowed nodes that we are forced
1762 * into the second scan of the zonelist.
1763 *
1764 * In the second scan we ignore this zonelist cache and exactly
1765 * apply the watermarks to all zones, even it is slower to do so.
1766 * We are low on memory in the second scan, and should leave no stone
1767 * unturned looking for a free page.
1768 */
1769 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1770 nodemask_t *allowednodes)
1771 {
1772 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1773 int i; /* index of *z in zonelist zones */
1774 int n; /* node that zone *z is on */
1775
1776 zlc = zonelist->zlcache_ptr;
1777 if (!zlc)
1778 return 1;
1779
1780 i = z - zonelist->_zonerefs;
1781 n = zlc->z_to_n[i];
1782
1783 /* This zone is worth trying if it is allowed but not full */
1784 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1785 }
1786
1787 /*
1788 * Given 'z' scanning a zonelist, set the corresponding bit in
1789 * zlc->fullzones, so that subsequent attempts to allocate a page
1790 * from that zone don't waste time re-examining it.
1791 */
1792 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1793 {
1794 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1795 int i; /* index of *z in zonelist zones */
1796
1797 zlc = zonelist->zlcache_ptr;
1798 if (!zlc)
1799 return;
1800
1801 i = z - zonelist->_zonerefs;
1802
1803 set_bit(i, zlc->fullzones);
1804 }
1805
1806 /*
1807 * clear all zones full, called after direct reclaim makes progress so that
1808 * a zone that was recently full is not skipped over for up to a second
1809 */
1810 static void zlc_clear_zones_full(struct zonelist *zonelist)
1811 {
1812 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1813
1814 zlc = zonelist->zlcache_ptr;
1815 if (!zlc)
1816 return;
1817
1818 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1819 }
1820
1821 static bool zone_local(struct zone *local_zone, struct zone *zone)
1822 {
1823 return node_distance(local_zone->node, zone->node) == LOCAL_DISTANCE;
1824 }
1825
1826 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1827 {
1828 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1829 }
1830
1831 static void __paginginit init_zone_allows_reclaim(int nid)
1832 {
1833 int i;
1834
1835 for_each_online_node(i)
1836 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1837 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1838 else
1839 zone_reclaim_mode = 1;
1840 }
1841
1842 #else /* CONFIG_NUMA */
1843
1844 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1845 {
1846 return NULL;
1847 }
1848
1849 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1850 nodemask_t *allowednodes)
1851 {
1852 return 1;
1853 }
1854
1855 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1856 {
1857 }
1858
1859 static void zlc_clear_zones_full(struct zonelist *zonelist)
1860 {
1861 }
1862
1863 static bool zone_local(struct zone *local_zone, struct zone *zone)
1864 {
1865 return true;
1866 }
1867
1868 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1869 {
1870 return true;
1871 }
1872
1873 static inline void init_zone_allows_reclaim(int nid)
1874 {
1875 }
1876 #endif /* CONFIG_NUMA */
1877
1878 /*
1879 * get_page_from_freelist goes through the zonelist trying to allocate
1880 * a page.
1881 */
1882 static struct page *
1883 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1884 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1885 struct zone *preferred_zone, int migratetype)
1886 {
1887 struct zoneref *z;
1888 struct page *page = NULL;
1889 int classzone_idx;
1890 struct zone *zone;
1891 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1892 int zlc_active = 0; /* set if using zonelist_cache */
1893 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1894
1895 classzone_idx = zone_idx(preferred_zone);
1896 zonelist_scan:
1897 /*
1898 * Scan zonelist, looking for a zone with enough free.
1899 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1900 */
1901 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1902 high_zoneidx, nodemask) {
1903 unsigned long mark;
1904
1905 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1906 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1907 continue;
1908 if ((alloc_flags & ALLOC_CPUSET) &&
1909 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1910 continue;
1911 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1912 if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS))
1913 goto try_this_zone;
1914 /*
1915 * Distribute pages in proportion to the individual
1916 * zone size to ensure fair page aging. The zone a
1917 * page was allocated in should have no effect on the
1918 * time the page has in memory before being reclaimed.
1919 *
1920 * When zone_reclaim_mode is enabled, try to stay in
1921 * local zones in the fastpath. If that fails, the
1922 * slowpath is entered, which will do another pass
1923 * starting with the local zones, but ultimately fall
1924 * back to remote zones that do not partake in the
1925 * fairness round-robin cycle of this zonelist.
1926 */
1927 if (alloc_flags & ALLOC_WMARK_LOW) {
1928 if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
1929 continue;
1930 if (zone_reclaim_mode &&
1931 !zone_local(preferred_zone, zone))
1932 continue;
1933 }
1934 /*
1935 * When allocating a page cache page for writing, we
1936 * want to get it from a zone that is within its dirty
1937 * limit, such that no single zone holds more than its
1938 * proportional share of globally allowed dirty pages.
1939 * The dirty limits take into account the zone's
1940 * lowmem reserves and high watermark so that kswapd
1941 * should be able to balance it without having to
1942 * write pages from its LRU list.
1943 *
1944 * This may look like it could increase pressure on
1945 * lower zones by failing allocations in higher zones
1946 * before they are full. But the pages that do spill
1947 * over are limited as the lower zones are protected
1948 * by this very same mechanism. It should not become
1949 * a practical burden to them.
1950 *
1951 * XXX: For now, allow allocations to potentially
1952 * exceed the per-zone dirty limit in the slowpath
1953 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1954 * which is important when on a NUMA setup the allowed
1955 * zones are together not big enough to reach the
1956 * global limit. The proper fix for these situations
1957 * will require awareness of zones in the
1958 * dirty-throttling and the flusher threads.
1959 */
1960 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1961 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1962 goto this_zone_full;
1963
1964 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1965 if (!zone_watermark_ok(zone, order, mark,
1966 classzone_idx, alloc_flags)) {
1967 int ret;
1968
1969 if (IS_ENABLED(CONFIG_NUMA) &&
1970 !did_zlc_setup && nr_online_nodes > 1) {
1971 /*
1972 * we do zlc_setup if there are multiple nodes
1973 * and before considering the first zone allowed
1974 * by the cpuset.
1975 */
1976 allowednodes = zlc_setup(zonelist, alloc_flags);
1977 zlc_active = 1;
1978 did_zlc_setup = 1;
1979 }
1980
1981 if (zone_reclaim_mode == 0 ||
1982 !zone_allows_reclaim(preferred_zone, zone))
1983 goto this_zone_full;
1984
1985 /*
1986 * As we may have just activated ZLC, check if the first
1987 * eligible zone has failed zone_reclaim recently.
1988 */
1989 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1990 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1991 continue;
1992
1993 ret = zone_reclaim(zone, gfp_mask, order);
1994 switch (ret) {
1995 case ZONE_RECLAIM_NOSCAN:
1996 /* did not scan */
1997 continue;
1998 case ZONE_RECLAIM_FULL:
1999 /* scanned but unreclaimable */
2000 continue;
2001 default:
2002 /* did we reclaim enough */
2003 if (zone_watermark_ok(zone, order, mark,
2004 classzone_idx, alloc_flags))
2005 goto try_this_zone;
2006
2007 /*
2008 * Failed to reclaim enough to meet watermark.
2009 * Only mark the zone full if checking the min
2010 * watermark or if we failed to reclaim just
2011 * 1<<order pages or else the page allocator
2012 * fastpath will prematurely mark zones full
2013 * when the watermark is between the low and
2014 * min watermarks.
2015 */
2016 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2017 ret == ZONE_RECLAIM_SOME)
2018 goto this_zone_full;
2019
2020 continue;
2021 }
2022 }
2023
2024 try_this_zone:
2025 page = buffered_rmqueue(preferred_zone, zone, order,
2026 gfp_mask, migratetype);
2027 if (page)
2028 break;
2029 this_zone_full:
2030 if (IS_ENABLED(CONFIG_NUMA))
2031 zlc_mark_zone_full(zonelist, z);
2032 }
2033
2034 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
2035 /* Disable zlc cache for second zonelist scan */
2036 zlc_active = 0;
2037 goto zonelist_scan;
2038 }
2039
2040 if (page)
2041 /*
2042 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2043 * necessary to allocate the page. The expectation is
2044 * that the caller is taking steps that will free more
2045 * memory. The caller should avoid the page being used
2046 * for !PFMEMALLOC purposes.
2047 */
2048 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2049
2050 return page;
2051 }
2052
2053 /*
2054 * Large machines with many possible nodes should not always dump per-node
2055 * meminfo in irq context.
2056 */
2057 static inline bool should_suppress_show_mem(void)
2058 {
2059 bool ret = false;
2060
2061 #if NODES_SHIFT > 8
2062 ret = in_interrupt();
2063 #endif
2064 return ret;
2065 }
2066
2067 static DEFINE_RATELIMIT_STATE(nopage_rs,
2068 DEFAULT_RATELIMIT_INTERVAL,
2069 DEFAULT_RATELIMIT_BURST);
2070
2071 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2072 {
2073 unsigned int filter = SHOW_MEM_FILTER_NODES;
2074
2075 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2076 debug_guardpage_minorder() > 0)
2077 return;
2078
2079 /*
2080 * Walking all memory to count page types is very expensive and should
2081 * be inhibited in non-blockable contexts.
2082 */
2083 if (!(gfp_mask & __GFP_WAIT))
2084 filter |= SHOW_MEM_FILTER_PAGE_COUNT;
2085
2086 /*
2087 * This documents exceptions given to allocations in certain
2088 * contexts that are allowed to allocate outside current's set
2089 * of allowed nodes.
2090 */
2091 if (!(gfp_mask & __GFP_NOMEMALLOC))
2092 if (test_thread_flag(TIF_MEMDIE) ||
2093 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2094 filter &= ~SHOW_MEM_FILTER_NODES;
2095 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2096 filter &= ~SHOW_MEM_FILTER_NODES;
2097
2098 if (fmt) {
2099 struct va_format vaf;
2100 va_list args;
2101
2102 va_start(args, fmt);
2103
2104 vaf.fmt = fmt;
2105 vaf.va = &args;
2106
2107 pr_warn("%pV", &vaf);
2108
2109 va_end(args);
2110 }
2111
2112 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2113 current->comm, order, gfp_mask);
2114
2115 dump_stack();
2116 if (!should_suppress_show_mem())
2117 show_mem(filter);
2118 }
2119
2120 static inline int
2121 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2122 unsigned long did_some_progress,
2123 unsigned long pages_reclaimed)
2124 {
2125 /* Do not loop if specifically requested */
2126 if (gfp_mask & __GFP_NORETRY)
2127 return 0;
2128
2129 /* Always retry if specifically requested */
2130 if (gfp_mask & __GFP_NOFAIL)
2131 return 1;
2132
2133 /*
2134 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2135 * making forward progress without invoking OOM. Suspend also disables
2136 * storage devices so kswapd will not help. Bail if we are suspending.
2137 */
2138 if (!did_some_progress && pm_suspended_storage())
2139 return 0;
2140
2141 /*
2142 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2143 * means __GFP_NOFAIL, but that may not be true in other
2144 * implementations.
2145 */
2146 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2147 return 1;
2148
2149 /*
2150 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2151 * specified, then we retry until we no longer reclaim any pages
2152 * (above), or we've reclaimed an order of pages at least as
2153 * large as the allocation's order. In both cases, if the
2154 * allocation still fails, we stop retrying.
2155 */
2156 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2157 return 1;
2158
2159 return 0;
2160 }
2161
2162 static inline struct page *
2163 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2164 struct zonelist *zonelist, enum zone_type high_zoneidx,
2165 nodemask_t *nodemask, struct zone *preferred_zone,
2166 int migratetype)
2167 {
2168 struct page *page;
2169
2170 /* Acquire the OOM killer lock for the zones in zonelist */
2171 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2172 schedule_timeout_uninterruptible(1);
2173 return NULL;
2174 }
2175
2176 /*
2177 * Go through the zonelist yet one more time, keep very high watermark
2178 * here, this is only to catch a parallel oom killing, we must fail if
2179 * we're still under heavy pressure.
2180 */
2181 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2182 order, zonelist, high_zoneidx,
2183 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2184 preferred_zone, migratetype);
2185 if (page)
2186 goto out;
2187
2188 if (!(gfp_mask & __GFP_NOFAIL)) {
2189 /* The OOM killer will not help higher order allocs */
2190 if (order > PAGE_ALLOC_COSTLY_ORDER)
2191 goto out;
2192 /* The OOM killer does not needlessly kill tasks for lowmem */
2193 if (high_zoneidx < ZONE_NORMAL)
2194 goto out;
2195 /*
2196 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2197 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2198 * The caller should handle page allocation failure by itself if
2199 * it specifies __GFP_THISNODE.
2200 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2201 */
2202 if (gfp_mask & __GFP_THISNODE)
2203 goto out;
2204 }
2205 /* Exhausted what can be done so it's blamo time */
2206 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2207
2208 out:
2209 clear_zonelist_oom(zonelist, gfp_mask);
2210 return page;
2211 }
2212
2213 #ifdef CONFIG_COMPACTION
2214 /* Try memory compaction for high-order allocations before reclaim */
2215 static struct page *
2216 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2217 struct zonelist *zonelist, enum zone_type high_zoneidx,
2218 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2219 int migratetype, bool sync_migration,
2220 bool *contended_compaction, bool *deferred_compaction,
2221 unsigned long *did_some_progress)
2222 {
2223 if (!order)
2224 return NULL;
2225
2226 if (compaction_deferred(preferred_zone, order)) {
2227 *deferred_compaction = true;
2228 return NULL;
2229 }
2230
2231 current->flags |= PF_MEMALLOC;
2232 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2233 nodemask, sync_migration,
2234 contended_compaction);
2235 current->flags &= ~PF_MEMALLOC;
2236
2237 if (*did_some_progress != COMPACT_SKIPPED) {
2238 struct page *page;
2239
2240 /* Page migration frees to the PCP lists but we want merging */
2241 drain_pages(get_cpu());
2242 put_cpu();
2243
2244 page = get_page_from_freelist(gfp_mask, nodemask,
2245 order, zonelist, high_zoneidx,
2246 alloc_flags & ~ALLOC_NO_WATERMARKS,
2247 preferred_zone, migratetype);
2248 if (page) {
2249 preferred_zone->compact_blockskip_flush = false;
2250 preferred_zone->compact_considered = 0;
2251 preferred_zone->compact_defer_shift = 0;
2252 if (order >= preferred_zone->compact_order_failed)
2253 preferred_zone->compact_order_failed = order + 1;
2254 count_vm_event(COMPACTSUCCESS);
2255 return page;
2256 }
2257
2258 /*
2259 * It's bad if compaction run occurs and fails.
2260 * The most likely reason is that pages exist,
2261 * but not enough to satisfy watermarks.
2262 */
2263 count_vm_event(COMPACTFAIL);
2264
2265 /*
2266 * As async compaction considers a subset of pageblocks, only
2267 * defer if the failure was a sync compaction failure.
2268 */
2269 if (sync_migration)
2270 defer_compaction(preferred_zone, order);
2271
2272 cond_resched();
2273 }
2274
2275 return NULL;
2276 }
2277 #else
2278 static inline struct page *
2279 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2280 struct zonelist *zonelist, enum zone_type high_zoneidx,
2281 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2282 int migratetype, bool sync_migration,
2283 bool *contended_compaction, bool *deferred_compaction,
2284 unsigned long *did_some_progress)
2285 {
2286 return NULL;
2287 }
2288 #endif /* CONFIG_COMPACTION */
2289
2290 /* Perform direct synchronous page reclaim */
2291 static int
2292 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2293 nodemask_t *nodemask)
2294 {
2295 struct reclaim_state reclaim_state;
2296 int progress;
2297
2298 cond_resched();
2299
2300 /* We now go into synchronous reclaim */
2301 cpuset_memory_pressure_bump();
2302 current->flags |= PF_MEMALLOC;
2303 lockdep_set_current_reclaim_state(gfp_mask);
2304 reclaim_state.reclaimed_slab = 0;
2305 current->reclaim_state = &reclaim_state;
2306
2307 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2308
2309 current->reclaim_state = NULL;
2310 lockdep_clear_current_reclaim_state();
2311 current->flags &= ~PF_MEMALLOC;
2312
2313 cond_resched();
2314
2315 return progress;
2316 }
2317
2318 /* The really slow allocator path where we enter direct reclaim */
2319 static inline struct page *
2320 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2321 struct zonelist *zonelist, enum zone_type high_zoneidx,
2322 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2323 int migratetype, unsigned long *did_some_progress)
2324 {
2325 struct page *page = NULL;
2326 bool drained = false;
2327
2328 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2329 nodemask);
2330 if (unlikely(!(*did_some_progress)))
2331 return NULL;
2332
2333 /* After successful reclaim, reconsider all zones for allocation */
2334 if (IS_ENABLED(CONFIG_NUMA))
2335 zlc_clear_zones_full(zonelist);
2336
2337 retry:
2338 page = get_page_from_freelist(gfp_mask, nodemask, order,
2339 zonelist, high_zoneidx,
2340 alloc_flags & ~ALLOC_NO_WATERMARKS,
2341 preferred_zone, migratetype);
2342
2343 /*
2344 * If an allocation failed after direct reclaim, it could be because
2345 * pages are pinned on the per-cpu lists. Drain them and try again
2346 */
2347 if (!page && !drained) {
2348 drain_all_pages();
2349 drained = true;
2350 goto retry;
2351 }
2352
2353 return page;
2354 }
2355
2356 /*
2357 * This is called in the allocator slow-path if the allocation request is of
2358 * sufficient urgency to ignore watermarks and take other desperate measures
2359 */
2360 static inline struct page *
2361 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2362 struct zonelist *zonelist, enum zone_type high_zoneidx,
2363 nodemask_t *nodemask, struct zone *preferred_zone,
2364 int migratetype)
2365 {
2366 struct page *page;
2367
2368 do {
2369 page = get_page_from_freelist(gfp_mask, nodemask, order,
2370 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2371 preferred_zone, migratetype);
2372
2373 if (!page && gfp_mask & __GFP_NOFAIL)
2374 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2375 } while (!page && (gfp_mask & __GFP_NOFAIL));
2376
2377 return page;
2378 }
2379
2380 static void prepare_slowpath(gfp_t gfp_mask, unsigned int order,
2381 struct zonelist *zonelist,
2382 enum zone_type high_zoneidx,
2383 struct zone *preferred_zone)
2384 {
2385 struct zoneref *z;
2386 struct zone *zone;
2387
2388 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
2389 if (!(gfp_mask & __GFP_NO_KSWAPD))
2390 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2391 /*
2392 * Only reset the batches of zones that were actually
2393 * considered in the fast path, we don't want to
2394 * thrash fairness information for zones that are not
2395 * actually part of this zonelist's round-robin cycle.
2396 */
2397 if (zone_reclaim_mode && !zone_local(preferred_zone, zone))
2398 continue;
2399 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2400 high_wmark_pages(zone) -
2401 low_wmark_pages(zone) -
2402 zone_page_state(zone, NR_ALLOC_BATCH));
2403 }
2404 }
2405
2406 static inline int
2407 gfp_to_alloc_flags(gfp_t gfp_mask)
2408 {
2409 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2410 const gfp_t wait = gfp_mask & __GFP_WAIT;
2411
2412 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2413 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2414
2415 /*
2416 * The caller may dip into page reserves a bit more if the caller
2417 * cannot run direct reclaim, or if the caller has realtime scheduling
2418 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2419 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2420 */
2421 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2422
2423 if (!wait) {
2424 /*
2425 * Not worth trying to allocate harder for
2426 * __GFP_NOMEMALLOC even if it can't schedule.
2427 */
2428 if (!(gfp_mask & __GFP_NOMEMALLOC))
2429 alloc_flags |= ALLOC_HARDER;
2430 /*
2431 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2432 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2433 */
2434 alloc_flags &= ~ALLOC_CPUSET;
2435 } else if (unlikely(rt_task(current)) && !in_interrupt())
2436 alloc_flags |= ALLOC_HARDER;
2437
2438 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2439 if (gfp_mask & __GFP_MEMALLOC)
2440 alloc_flags |= ALLOC_NO_WATERMARKS;
2441 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2442 alloc_flags |= ALLOC_NO_WATERMARKS;
2443 else if (!in_interrupt() &&
2444 ((current->flags & PF_MEMALLOC) ||
2445 unlikely(test_thread_flag(TIF_MEMDIE))))
2446 alloc_flags |= ALLOC_NO_WATERMARKS;
2447 }
2448 #ifdef CONFIG_CMA
2449 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2450 alloc_flags |= ALLOC_CMA;
2451 #endif
2452 return alloc_flags;
2453 }
2454
2455 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2456 {
2457 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2458 }
2459
2460 static inline struct page *
2461 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2462 struct zonelist *zonelist, enum zone_type high_zoneidx,
2463 nodemask_t *nodemask, struct zone *preferred_zone,
2464 int migratetype)
2465 {
2466 const gfp_t wait = gfp_mask & __GFP_WAIT;
2467 struct page *page = NULL;
2468 int alloc_flags;
2469 unsigned long pages_reclaimed = 0;
2470 unsigned long did_some_progress;
2471 bool sync_migration = false;
2472 bool deferred_compaction = false;
2473 bool contended_compaction = false;
2474
2475 /*
2476 * In the slowpath, we sanity check order to avoid ever trying to
2477 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2478 * be using allocators in order of preference for an area that is
2479 * too large.
2480 */
2481 if (order >= MAX_ORDER) {
2482 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2483 return NULL;
2484 }
2485
2486 /*
2487 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2488 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2489 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2490 * using a larger set of nodes after it has established that the
2491 * allowed per node queues are empty and that nodes are
2492 * over allocated.
2493 */
2494 if (IS_ENABLED(CONFIG_NUMA) &&
2495 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2496 goto nopage;
2497
2498 restart:
2499 prepare_slowpath(gfp_mask, order, zonelist,
2500 high_zoneidx, preferred_zone);
2501
2502 /*
2503 * OK, we're below the kswapd watermark and have kicked background
2504 * reclaim. Now things get more complex, so set up alloc_flags according
2505 * to how we want to proceed.
2506 */
2507 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2508
2509 /*
2510 * Find the true preferred zone if the allocation is unconstrained by
2511 * cpusets.
2512 */
2513 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2514 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2515 &preferred_zone);
2516
2517 rebalance:
2518 /* This is the last chance, in general, before the goto nopage. */
2519 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2520 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2521 preferred_zone, migratetype);
2522 if (page)
2523 goto got_pg;
2524
2525 /* Allocate without watermarks if the context allows */
2526 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2527 /*
2528 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2529 * the allocation is high priority and these type of
2530 * allocations are system rather than user orientated
2531 */
2532 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2533
2534 page = __alloc_pages_high_priority(gfp_mask, order,
2535 zonelist, high_zoneidx, nodemask,
2536 preferred_zone, migratetype);
2537 if (page) {
2538 goto got_pg;
2539 }
2540 }
2541
2542 /* Atomic allocations - we can't balance anything */
2543 if (!wait)
2544 goto nopage;
2545
2546 /* Avoid recursion of direct reclaim */
2547 if (current->flags & PF_MEMALLOC)
2548 goto nopage;
2549
2550 /* Avoid allocations with no watermarks from looping endlessly */
2551 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2552 goto nopage;
2553
2554 /*
2555 * Try direct compaction. The first pass is asynchronous. Subsequent
2556 * attempts after direct reclaim are synchronous
2557 */
2558 page = __alloc_pages_direct_compact(gfp_mask, order,
2559 zonelist, high_zoneidx,
2560 nodemask,
2561 alloc_flags, preferred_zone,
2562 migratetype, sync_migration,
2563 &contended_compaction,
2564 &deferred_compaction,
2565 &did_some_progress);
2566 if (page)
2567 goto got_pg;
2568 sync_migration = true;
2569
2570 /*
2571 * If compaction is deferred for high-order allocations, it is because
2572 * sync compaction recently failed. In this is the case and the caller
2573 * requested a movable allocation that does not heavily disrupt the
2574 * system then fail the allocation instead of entering direct reclaim.
2575 */
2576 if ((deferred_compaction || contended_compaction) &&
2577 (gfp_mask & __GFP_NO_KSWAPD))
2578 goto nopage;
2579
2580 /* Try direct reclaim and then allocating */
2581 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2582 zonelist, high_zoneidx,
2583 nodemask,
2584 alloc_flags, preferred_zone,
2585 migratetype, &did_some_progress);
2586 if (page)
2587 goto got_pg;
2588
2589 /*
2590 * If we failed to make any progress reclaiming, then we are
2591 * running out of options and have to consider going OOM
2592 */
2593 if (!did_some_progress) {
2594 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2595 if (oom_killer_disabled)
2596 goto nopage;
2597 /* Coredumps can quickly deplete all memory reserves */
2598 if ((current->flags & PF_DUMPCORE) &&
2599 !(gfp_mask & __GFP_NOFAIL))
2600 goto nopage;
2601 page = __alloc_pages_may_oom(gfp_mask, order,
2602 zonelist, high_zoneidx,
2603 nodemask, preferred_zone,
2604 migratetype);
2605 if (page)
2606 goto got_pg;
2607
2608 if (!(gfp_mask & __GFP_NOFAIL)) {
2609 /*
2610 * The oom killer is not called for high-order
2611 * allocations that may fail, so if no progress
2612 * is being made, there are no other options and
2613 * retrying is unlikely to help.
2614 */
2615 if (order > PAGE_ALLOC_COSTLY_ORDER)
2616 goto nopage;
2617 /*
2618 * The oom killer is not called for lowmem
2619 * allocations to prevent needlessly killing
2620 * innocent tasks.
2621 */
2622 if (high_zoneidx < ZONE_NORMAL)
2623 goto nopage;
2624 }
2625
2626 goto restart;
2627 }
2628 }
2629
2630 /* Check if we should retry the allocation */
2631 pages_reclaimed += did_some_progress;
2632 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2633 pages_reclaimed)) {
2634 /* Wait for some write requests to complete then retry */
2635 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2636 goto rebalance;
2637 } else {
2638 /*
2639 * High-order allocations do not necessarily loop after
2640 * direct reclaim and reclaim/compaction depends on compaction
2641 * being called after reclaim so call directly if necessary
2642 */
2643 page = __alloc_pages_direct_compact(gfp_mask, order,
2644 zonelist, high_zoneidx,
2645 nodemask,
2646 alloc_flags, preferred_zone,
2647 migratetype, sync_migration,
2648 &contended_compaction,
2649 &deferred_compaction,
2650 &did_some_progress);
2651 if (page)
2652 goto got_pg;
2653 }
2654
2655 nopage:
2656 warn_alloc_failed(gfp_mask, order, NULL);
2657 return page;
2658 got_pg:
2659 if (kmemcheck_enabled)
2660 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2661
2662 return page;
2663 }
2664
2665 /*
2666 * This is the 'heart' of the zoned buddy allocator.
2667 */
2668 struct page *
2669 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2670 struct zonelist *zonelist, nodemask_t *nodemask)
2671 {
2672 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2673 struct zone *preferred_zone;
2674 struct page *page = NULL;
2675 int migratetype = allocflags_to_migratetype(gfp_mask);
2676 unsigned int cpuset_mems_cookie;
2677 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2678 struct mem_cgroup *memcg = NULL;
2679
2680 gfp_mask &= gfp_allowed_mask;
2681
2682 lockdep_trace_alloc(gfp_mask);
2683
2684 might_sleep_if(gfp_mask & __GFP_WAIT);
2685
2686 if (should_fail_alloc_page(gfp_mask, order))
2687 return NULL;
2688
2689 /*
2690 * Check the zones suitable for the gfp_mask contain at least one
2691 * valid zone. It's possible to have an empty zonelist as a result
2692 * of GFP_THISNODE and a memoryless node
2693 */
2694 if (unlikely(!zonelist->_zonerefs->zone))
2695 return NULL;
2696
2697 /*
2698 * Will only have any effect when __GFP_KMEMCG is set. This is
2699 * verified in the (always inline) callee
2700 */
2701 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2702 return NULL;
2703
2704 retry_cpuset:
2705 cpuset_mems_cookie = get_mems_allowed();
2706
2707 /* The preferred zone is used for statistics later */
2708 first_zones_zonelist(zonelist, high_zoneidx,
2709 nodemask ? : &cpuset_current_mems_allowed,
2710 &preferred_zone);
2711 if (!preferred_zone)
2712 goto out;
2713
2714 #ifdef CONFIG_CMA
2715 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2716 alloc_flags |= ALLOC_CMA;
2717 #endif
2718 /* First allocation attempt */
2719 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2720 zonelist, high_zoneidx, alloc_flags,
2721 preferred_zone, migratetype);
2722 if (unlikely(!page)) {
2723 /*
2724 * Runtime PM, block IO and its error handling path
2725 * can deadlock because I/O on the device might not
2726 * complete.
2727 */
2728 gfp_mask = memalloc_noio_flags(gfp_mask);
2729 page = __alloc_pages_slowpath(gfp_mask, order,
2730 zonelist, high_zoneidx, nodemask,
2731 preferred_zone, migratetype);
2732 }
2733
2734 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2735
2736 out:
2737 /*
2738 * When updating a task's mems_allowed, it is possible to race with
2739 * parallel threads in such a way that an allocation can fail while
2740 * the mask is being updated. If a page allocation is about to fail,
2741 * check if the cpuset changed during allocation and if so, retry.
2742 */
2743 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2744 goto retry_cpuset;
2745
2746 memcg_kmem_commit_charge(page, memcg, order);
2747
2748 return page;
2749 }
2750 EXPORT_SYMBOL(__alloc_pages_nodemask);
2751
2752 /*
2753 * Common helper functions.
2754 */
2755 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2756 {
2757 struct page *page;
2758
2759 /*
2760 * __get_free_pages() returns a 32-bit address, which cannot represent
2761 * a highmem page
2762 */
2763 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2764
2765 page = alloc_pages(gfp_mask, order);
2766 if (!page)
2767 return 0;
2768 return (unsigned long) page_address(page);
2769 }
2770 EXPORT_SYMBOL(__get_free_pages);
2771
2772 unsigned long get_zeroed_page(gfp_t gfp_mask)
2773 {
2774 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2775 }
2776 EXPORT_SYMBOL(get_zeroed_page);
2777
2778 void __free_pages(struct page *page, unsigned int order)
2779 {
2780 if (put_page_testzero(page)) {
2781 if (order == 0)
2782 free_hot_cold_page(page, 0);
2783 else
2784 __free_pages_ok(page, order);
2785 }
2786 }
2787
2788 EXPORT_SYMBOL(__free_pages);
2789
2790 void free_pages(unsigned long addr, unsigned int order)
2791 {
2792 if (addr != 0) {
2793 VM_BUG_ON(!virt_addr_valid((void *)addr));
2794 __free_pages(virt_to_page((void *)addr), order);
2795 }
2796 }
2797
2798 EXPORT_SYMBOL(free_pages);
2799
2800 /*
2801 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2802 * pages allocated with __GFP_KMEMCG.
2803 *
2804 * Those pages are accounted to a particular memcg, embedded in the
2805 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2806 * for that information only to find out that it is NULL for users who have no
2807 * interest in that whatsoever, we provide these functions.
2808 *
2809 * The caller knows better which flags it relies on.
2810 */
2811 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2812 {
2813 memcg_kmem_uncharge_pages(page, order);
2814 __free_pages(page, order);
2815 }
2816
2817 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2818 {
2819 if (addr != 0) {
2820 VM_BUG_ON(!virt_addr_valid((void *)addr));
2821 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2822 }
2823 }
2824
2825 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2826 {
2827 if (addr) {
2828 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2829 unsigned long used = addr + PAGE_ALIGN(size);
2830
2831 split_page(virt_to_page((void *)addr), order);
2832 while (used < alloc_end) {
2833 free_page(used);
2834 used += PAGE_SIZE;
2835 }
2836 }
2837 return (void *)addr;
2838 }
2839
2840 /**
2841 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2842 * @size: the number of bytes to allocate
2843 * @gfp_mask: GFP flags for the allocation
2844 *
2845 * This function is similar to alloc_pages(), except that it allocates the
2846 * minimum number of pages to satisfy the request. alloc_pages() can only
2847 * allocate memory in power-of-two pages.
2848 *
2849 * This function is also limited by MAX_ORDER.
2850 *
2851 * Memory allocated by this function must be released by free_pages_exact().
2852 */
2853 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2854 {
2855 unsigned int order = get_order(size);
2856 unsigned long addr;
2857
2858 addr = __get_free_pages(gfp_mask, order);
2859 return make_alloc_exact(addr, order, size);
2860 }
2861 EXPORT_SYMBOL(alloc_pages_exact);
2862
2863 /**
2864 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2865 * pages on a node.
2866 * @nid: the preferred node ID where memory should be allocated
2867 * @size: the number of bytes to allocate
2868 * @gfp_mask: GFP flags for the allocation
2869 *
2870 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2871 * back.
2872 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2873 * but is not exact.
2874 */
2875 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2876 {
2877 unsigned order = get_order(size);
2878 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2879 if (!p)
2880 return NULL;
2881 return make_alloc_exact((unsigned long)page_address(p), order, size);
2882 }
2883 EXPORT_SYMBOL(alloc_pages_exact_nid);
2884
2885 /**
2886 * free_pages_exact - release memory allocated via alloc_pages_exact()
2887 * @virt: the value returned by alloc_pages_exact.
2888 * @size: size of allocation, same value as passed to alloc_pages_exact().
2889 *
2890 * Release the memory allocated by a previous call to alloc_pages_exact.
2891 */
2892 void free_pages_exact(void *virt, size_t size)
2893 {
2894 unsigned long addr = (unsigned long)virt;
2895 unsigned long end = addr + PAGE_ALIGN(size);
2896
2897 while (addr < end) {
2898 free_page(addr);
2899 addr += PAGE_SIZE;
2900 }
2901 }
2902 EXPORT_SYMBOL(free_pages_exact);
2903
2904 /**
2905 * nr_free_zone_pages - count number of pages beyond high watermark
2906 * @offset: The zone index of the highest zone
2907 *
2908 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2909 * high watermark within all zones at or below a given zone index. For each
2910 * zone, the number of pages is calculated as:
2911 * managed_pages - high_pages
2912 */
2913 static unsigned long nr_free_zone_pages(int offset)
2914 {
2915 struct zoneref *z;
2916 struct zone *zone;
2917
2918 /* Just pick one node, since fallback list is circular */
2919 unsigned long sum = 0;
2920
2921 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2922
2923 for_each_zone_zonelist(zone, z, zonelist, offset) {
2924 unsigned long size = zone->managed_pages;
2925 unsigned long high = high_wmark_pages(zone);
2926 if (size > high)
2927 sum += size - high;
2928 }
2929
2930 return sum;
2931 }
2932
2933 /**
2934 * nr_free_buffer_pages - count number of pages beyond high watermark
2935 *
2936 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2937 * watermark within ZONE_DMA and ZONE_NORMAL.
2938 */
2939 unsigned long nr_free_buffer_pages(void)
2940 {
2941 return nr_free_zone_pages(gfp_zone(GFP_USER));
2942 }
2943 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2944
2945 /**
2946 * nr_free_pagecache_pages - count number of pages beyond high watermark
2947 *
2948 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2949 * high watermark within all zones.
2950 */
2951 unsigned long nr_free_pagecache_pages(void)
2952 {
2953 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2954 }
2955
2956 static inline void show_node(struct zone *zone)
2957 {
2958 if (IS_ENABLED(CONFIG_NUMA))
2959 printk("Node %d ", zone_to_nid(zone));
2960 }
2961
2962 void si_meminfo(struct sysinfo *val)
2963 {
2964 val->totalram = totalram_pages;
2965 val->sharedram = 0;
2966 val->freeram = global_page_state(NR_FREE_PAGES);
2967 val->bufferram = nr_blockdev_pages();
2968 val->totalhigh = totalhigh_pages;
2969 val->freehigh = nr_free_highpages();
2970 val->mem_unit = PAGE_SIZE;
2971 }
2972
2973 EXPORT_SYMBOL(si_meminfo);
2974
2975 #ifdef CONFIG_NUMA
2976 void si_meminfo_node(struct sysinfo *val, int nid)
2977 {
2978 int zone_type; /* needs to be signed */
2979 unsigned long managed_pages = 0;
2980 pg_data_t *pgdat = NODE_DATA(nid);
2981
2982 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
2983 managed_pages += pgdat->node_zones[zone_type].managed_pages;
2984 val->totalram = managed_pages;
2985 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2986 #ifdef CONFIG_HIGHMEM
2987 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
2988 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2989 NR_FREE_PAGES);
2990 #else
2991 val->totalhigh = 0;
2992 val->freehigh = 0;
2993 #endif
2994 val->mem_unit = PAGE_SIZE;
2995 }
2996 #endif
2997
2998 /*
2999 * Determine whether the node should be displayed or not, depending on whether
3000 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3001 */
3002 bool skip_free_areas_node(unsigned int flags, int nid)
3003 {
3004 bool ret = false;
3005 unsigned int cpuset_mems_cookie;
3006
3007 if (!(flags & SHOW_MEM_FILTER_NODES))
3008 goto out;
3009
3010 do {
3011 cpuset_mems_cookie = get_mems_allowed();
3012 ret = !node_isset(nid, cpuset_current_mems_allowed);
3013 } while (!put_mems_allowed(cpuset_mems_cookie));
3014 out:
3015 return ret;
3016 }
3017
3018 #define K(x) ((x) << (PAGE_SHIFT-10))
3019
3020 static void show_migration_types(unsigned char type)
3021 {
3022 static const char types[MIGRATE_TYPES] = {
3023 [MIGRATE_UNMOVABLE] = 'U',
3024 [MIGRATE_RECLAIMABLE] = 'E',
3025 [MIGRATE_MOVABLE] = 'M',
3026 [MIGRATE_RESERVE] = 'R',
3027 #ifdef CONFIG_CMA
3028 [MIGRATE_CMA] = 'C',
3029 #endif
3030 #ifdef CONFIG_MEMORY_ISOLATION
3031 [MIGRATE_ISOLATE] = 'I',
3032 #endif
3033 };
3034 char tmp[MIGRATE_TYPES + 1];
3035 char *p = tmp;
3036 int i;
3037
3038 for (i = 0; i < MIGRATE_TYPES; i++) {
3039 if (type & (1 << i))
3040 *p++ = types[i];
3041 }
3042
3043 *p = '\0';
3044 printk("(%s) ", tmp);
3045 }
3046
3047 /*
3048 * Show free area list (used inside shift_scroll-lock stuff)
3049 * We also calculate the percentage fragmentation. We do this by counting the
3050 * memory on each free list with the exception of the first item on the list.
3051 * Suppresses nodes that are not allowed by current's cpuset if
3052 * SHOW_MEM_FILTER_NODES is passed.
3053 */
3054 void show_free_areas(unsigned int filter)
3055 {
3056 int cpu;
3057 struct zone *zone;
3058
3059 for_each_populated_zone(zone) {
3060 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3061 continue;
3062 show_node(zone);
3063 printk("%s per-cpu:\n", zone->name);
3064
3065 for_each_online_cpu(cpu) {
3066 struct per_cpu_pageset *pageset;
3067
3068 pageset = per_cpu_ptr(zone->pageset, cpu);
3069
3070 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3071 cpu, pageset->pcp.high,
3072 pageset->pcp.batch, pageset->pcp.count);
3073 }
3074 }
3075
3076 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3077 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3078 " unevictable:%lu"
3079 " dirty:%lu writeback:%lu unstable:%lu\n"
3080 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3081 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3082 " free_cma:%lu\n",
3083 global_page_state(NR_ACTIVE_ANON),
3084 global_page_state(NR_INACTIVE_ANON),
3085 global_page_state(NR_ISOLATED_ANON),
3086 global_page_state(NR_ACTIVE_FILE),
3087 global_page_state(NR_INACTIVE_FILE),
3088 global_page_state(NR_ISOLATED_FILE),
3089 global_page_state(NR_UNEVICTABLE),
3090 global_page_state(NR_FILE_DIRTY),
3091 global_page_state(NR_WRITEBACK),
3092 global_page_state(NR_UNSTABLE_NFS),
3093 global_page_state(NR_FREE_PAGES),
3094 global_page_state(NR_SLAB_RECLAIMABLE),
3095 global_page_state(NR_SLAB_UNRECLAIMABLE),
3096 global_page_state(NR_FILE_MAPPED),
3097 global_page_state(NR_SHMEM),
3098 global_page_state(NR_PAGETABLE),
3099 global_page_state(NR_BOUNCE),
3100 global_page_state(NR_FREE_CMA_PAGES));
3101
3102 for_each_populated_zone(zone) {
3103 int i;
3104
3105 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3106 continue;
3107 show_node(zone);
3108 printk("%s"
3109 " free:%lukB"
3110 " min:%lukB"
3111 " low:%lukB"
3112 " high:%lukB"
3113 " active_anon:%lukB"
3114 " inactive_anon:%lukB"
3115 " active_file:%lukB"
3116 " inactive_file:%lukB"
3117 " unevictable:%lukB"
3118 " isolated(anon):%lukB"
3119 " isolated(file):%lukB"
3120 " present:%lukB"
3121 " managed:%lukB"
3122 " mlocked:%lukB"
3123 " dirty:%lukB"
3124 " writeback:%lukB"
3125 " mapped:%lukB"
3126 " shmem:%lukB"
3127 " slab_reclaimable:%lukB"
3128 " slab_unreclaimable:%lukB"
3129 " kernel_stack:%lukB"
3130 " pagetables:%lukB"
3131 " unstable:%lukB"
3132 " bounce:%lukB"
3133 " free_cma:%lukB"
3134 " writeback_tmp:%lukB"
3135 " pages_scanned:%lu"
3136 " all_unreclaimable? %s"
3137 "\n",
3138 zone->name,
3139 K(zone_page_state(zone, NR_FREE_PAGES)),
3140 K(min_wmark_pages(zone)),
3141 K(low_wmark_pages(zone)),
3142 K(high_wmark_pages(zone)),
3143 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3144 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3145 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3146 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3147 K(zone_page_state(zone, NR_UNEVICTABLE)),
3148 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3149 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3150 K(zone->present_pages),
3151 K(zone->managed_pages),
3152 K(zone_page_state(zone, NR_MLOCK)),
3153 K(zone_page_state(zone, NR_FILE_DIRTY)),
3154 K(zone_page_state(zone, NR_WRITEBACK)),
3155 K(zone_page_state(zone, NR_FILE_MAPPED)),
3156 K(zone_page_state(zone, NR_SHMEM)),
3157 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3158 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3159 zone_page_state(zone, NR_KERNEL_STACK) *
3160 THREAD_SIZE / 1024,
3161 K(zone_page_state(zone, NR_PAGETABLE)),
3162 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3163 K(zone_page_state(zone, NR_BOUNCE)),
3164 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3165 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3166 zone->pages_scanned,
3167 (zone->all_unreclaimable ? "yes" : "no")
3168 );
3169 printk("lowmem_reserve[]:");
3170 for (i = 0; i < MAX_NR_ZONES; i++)
3171 printk(" %lu", zone->lowmem_reserve[i]);
3172 printk("\n");
3173 }
3174
3175 for_each_populated_zone(zone) {
3176 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3177 unsigned char types[MAX_ORDER];
3178
3179 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3180 continue;
3181 show_node(zone);
3182 printk("%s: ", zone->name);
3183
3184 spin_lock_irqsave(&zone->lock, flags);
3185 for (order = 0; order < MAX_ORDER; order++) {
3186 struct free_area *area = &zone->free_area[order];
3187 int type;
3188
3189 nr[order] = area->nr_free;
3190 total += nr[order] << order;
3191
3192 types[order] = 0;
3193 for (type = 0; type < MIGRATE_TYPES; type++) {
3194 if (!list_empty(&area->free_list[type]))
3195 types[order] |= 1 << type;
3196 }
3197 }
3198 spin_unlock_irqrestore(&zone->lock, flags);
3199 for (order = 0; order < MAX_ORDER; order++) {
3200 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3201 if (nr[order])
3202 show_migration_types(types[order]);
3203 }
3204 printk("= %lukB\n", K(total));
3205 }
3206
3207 hugetlb_show_meminfo();
3208
3209 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3210
3211 show_swap_cache_info();
3212 }
3213
3214 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3215 {
3216 zoneref->zone = zone;
3217 zoneref->zone_idx = zone_idx(zone);
3218 }
3219
3220 /*
3221 * Builds allocation fallback zone lists.
3222 *
3223 * Add all populated zones of a node to the zonelist.
3224 */
3225 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3226 int nr_zones)
3227 {
3228 struct zone *zone;
3229 enum zone_type zone_type = MAX_NR_ZONES;
3230
3231 do {
3232 zone_type--;
3233 zone = pgdat->node_zones + zone_type;
3234 if (populated_zone(zone)) {
3235 zoneref_set_zone(zone,
3236 &zonelist->_zonerefs[nr_zones++]);
3237 check_highest_zone(zone_type);
3238 }
3239 } while (zone_type);
3240
3241 return nr_zones;
3242 }
3243
3244
3245 /*
3246 * zonelist_order:
3247 * 0 = automatic detection of better ordering.
3248 * 1 = order by ([node] distance, -zonetype)
3249 * 2 = order by (-zonetype, [node] distance)
3250 *
3251 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3252 * the same zonelist. So only NUMA can configure this param.
3253 */
3254 #define ZONELIST_ORDER_DEFAULT 0
3255 #define ZONELIST_ORDER_NODE 1
3256 #define ZONELIST_ORDER_ZONE 2
3257
3258 /* zonelist order in the kernel.
3259 * set_zonelist_order() will set this to NODE or ZONE.
3260 */
3261 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3262 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3263
3264
3265 #ifdef CONFIG_NUMA
3266 /* The value user specified ....changed by config */
3267 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3268 /* string for sysctl */
3269 #define NUMA_ZONELIST_ORDER_LEN 16
3270 char numa_zonelist_order[16] = "default";
3271
3272 /*
3273 * interface for configure zonelist ordering.
3274 * command line option "numa_zonelist_order"
3275 * = "[dD]efault - default, automatic configuration.
3276 * = "[nN]ode - order by node locality, then by zone within node
3277 * = "[zZ]one - order by zone, then by locality within zone
3278 */
3279
3280 static int __parse_numa_zonelist_order(char *s)
3281 {
3282 if (*s == 'd' || *s == 'D') {
3283 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3284 } else if (*s == 'n' || *s == 'N') {
3285 user_zonelist_order = ZONELIST_ORDER_NODE;
3286 } else if (*s == 'z' || *s == 'Z') {
3287 user_zonelist_order = ZONELIST_ORDER_ZONE;
3288 } else {
3289 printk(KERN_WARNING
3290 "Ignoring invalid numa_zonelist_order value: "
3291 "%s\n", s);
3292 return -EINVAL;
3293 }
3294 return 0;
3295 }
3296
3297 static __init int setup_numa_zonelist_order(char *s)
3298 {
3299 int ret;
3300
3301 if (!s)
3302 return 0;
3303
3304 ret = __parse_numa_zonelist_order(s);
3305 if (ret == 0)
3306 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3307
3308 return ret;
3309 }
3310 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3311
3312 /*
3313 * sysctl handler for numa_zonelist_order
3314 */
3315 int numa_zonelist_order_handler(ctl_table *table, int write,
3316 void __user *buffer, size_t *length,
3317 loff_t *ppos)
3318 {
3319 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3320 int ret;
3321 static DEFINE_MUTEX(zl_order_mutex);
3322
3323 mutex_lock(&zl_order_mutex);
3324 if (write) {
3325 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3326 ret = -EINVAL;
3327 goto out;
3328 }
3329 strcpy(saved_string, (char *)table->data);
3330 }
3331 ret = proc_dostring(table, write, buffer, length, ppos);
3332 if (ret)
3333 goto out;
3334 if (write) {
3335 int oldval = user_zonelist_order;
3336
3337 ret = __parse_numa_zonelist_order((char *)table->data);
3338 if (ret) {
3339 /*
3340 * bogus value. restore saved string
3341 */
3342 strncpy((char *)table->data, saved_string,
3343 NUMA_ZONELIST_ORDER_LEN);
3344 user_zonelist_order = oldval;
3345 } else if (oldval != user_zonelist_order) {
3346 mutex_lock(&zonelists_mutex);
3347 build_all_zonelists(NULL, NULL);
3348 mutex_unlock(&zonelists_mutex);
3349 }
3350 }
3351 out:
3352 mutex_unlock(&zl_order_mutex);
3353 return ret;
3354 }
3355
3356
3357 #define MAX_NODE_LOAD (nr_online_nodes)
3358 static int node_load[MAX_NUMNODES];
3359
3360 /**
3361 * find_next_best_node - find the next node that should appear in a given node's fallback list
3362 * @node: node whose fallback list we're appending
3363 * @used_node_mask: nodemask_t of already used nodes
3364 *
3365 * We use a number of factors to determine which is the next node that should
3366 * appear on a given node's fallback list. The node should not have appeared
3367 * already in @node's fallback list, and it should be the next closest node
3368 * according to the distance array (which contains arbitrary distance values
3369 * from each node to each node in the system), and should also prefer nodes
3370 * with no CPUs, since presumably they'll have very little allocation pressure
3371 * on them otherwise.
3372 * It returns -1 if no node is found.
3373 */
3374 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3375 {
3376 int n, val;
3377 int min_val = INT_MAX;
3378 int best_node = NUMA_NO_NODE;
3379 const struct cpumask *tmp = cpumask_of_node(0);
3380
3381 /* Use the local node if we haven't already */
3382 if (!node_isset(node, *used_node_mask)) {
3383 node_set(node, *used_node_mask);
3384 return node;
3385 }
3386
3387 for_each_node_state(n, N_MEMORY) {
3388
3389 /* Don't want a node to appear more than once */
3390 if (node_isset(n, *used_node_mask))
3391 continue;
3392
3393 /* Use the distance array to find the distance */
3394 val = node_distance(node, n);
3395
3396 /* Penalize nodes under us ("prefer the next node") */
3397 val += (n < node);
3398
3399 /* Give preference to headless and unused nodes */
3400 tmp = cpumask_of_node(n);
3401 if (!cpumask_empty(tmp))
3402 val += PENALTY_FOR_NODE_WITH_CPUS;
3403
3404 /* Slight preference for less loaded node */
3405 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3406 val += node_load[n];
3407
3408 if (val < min_val) {
3409 min_val = val;
3410 best_node = n;
3411 }
3412 }
3413
3414 if (best_node >= 0)
3415 node_set(best_node, *used_node_mask);
3416
3417 return best_node;
3418 }
3419
3420
3421 /*
3422 * Build zonelists ordered by node and zones within node.
3423 * This results in maximum locality--normal zone overflows into local
3424 * DMA zone, if any--but risks exhausting DMA zone.
3425 */
3426 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3427 {
3428 int j;
3429 struct zonelist *zonelist;
3430
3431 zonelist = &pgdat->node_zonelists[0];
3432 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3433 ;
3434 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3435 zonelist->_zonerefs[j].zone = NULL;
3436 zonelist->_zonerefs[j].zone_idx = 0;
3437 }
3438
3439 /*
3440 * Build gfp_thisnode zonelists
3441 */
3442 static void build_thisnode_zonelists(pg_data_t *pgdat)
3443 {
3444 int j;
3445 struct zonelist *zonelist;
3446
3447 zonelist = &pgdat->node_zonelists[1];
3448 j = build_zonelists_node(pgdat, zonelist, 0);
3449 zonelist->_zonerefs[j].zone = NULL;
3450 zonelist->_zonerefs[j].zone_idx = 0;
3451 }
3452
3453 /*
3454 * Build zonelists ordered by zone and nodes within zones.
3455 * This results in conserving DMA zone[s] until all Normal memory is
3456 * exhausted, but results in overflowing to remote node while memory
3457 * may still exist in local DMA zone.
3458 */
3459 static int node_order[MAX_NUMNODES];
3460
3461 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3462 {
3463 int pos, j, node;
3464 int zone_type; /* needs to be signed */
3465 struct zone *z;
3466 struct zonelist *zonelist;
3467
3468 zonelist = &pgdat->node_zonelists[0];
3469 pos = 0;
3470 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3471 for (j = 0; j < nr_nodes; j++) {
3472 node = node_order[j];
3473 z = &NODE_DATA(node)->node_zones[zone_type];
3474 if (populated_zone(z)) {
3475 zoneref_set_zone(z,
3476 &zonelist->_zonerefs[pos++]);
3477 check_highest_zone(zone_type);
3478 }
3479 }
3480 }
3481 zonelist->_zonerefs[pos].zone = NULL;
3482 zonelist->_zonerefs[pos].zone_idx = 0;
3483 }
3484
3485 static int default_zonelist_order(void)
3486 {
3487 int nid, zone_type;
3488 unsigned long low_kmem_size, total_size;
3489 struct zone *z;
3490 int average_size;
3491 /*
3492 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3493 * If they are really small and used heavily, the system can fall
3494 * into OOM very easily.
3495 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3496 */
3497 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3498 low_kmem_size = 0;
3499 total_size = 0;
3500 for_each_online_node(nid) {
3501 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3502 z = &NODE_DATA(nid)->node_zones[zone_type];
3503 if (populated_zone(z)) {
3504 if (zone_type < ZONE_NORMAL)
3505 low_kmem_size += z->managed_pages;
3506 total_size += z->managed_pages;
3507 } else if (zone_type == ZONE_NORMAL) {
3508 /*
3509 * If any node has only lowmem, then node order
3510 * is preferred to allow kernel allocations
3511 * locally; otherwise, they can easily infringe
3512 * on other nodes when there is an abundance of
3513 * lowmem available to allocate from.
3514 */
3515 return ZONELIST_ORDER_NODE;
3516 }
3517 }
3518 }
3519 if (!low_kmem_size || /* there are no DMA area. */
3520 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3521 return ZONELIST_ORDER_NODE;
3522 /*
3523 * look into each node's config.
3524 * If there is a node whose DMA/DMA32 memory is very big area on
3525 * local memory, NODE_ORDER may be suitable.
3526 */
3527 average_size = total_size /
3528 (nodes_weight(node_states[N_MEMORY]) + 1);
3529 for_each_online_node(nid) {
3530 low_kmem_size = 0;
3531 total_size = 0;
3532 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3533 z = &NODE_DATA(nid)->node_zones[zone_type];
3534 if (populated_zone(z)) {
3535 if (zone_type < ZONE_NORMAL)
3536 low_kmem_size += z->present_pages;
3537 total_size += z->present_pages;
3538 }
3539 }
3540 if (low_kmem_size &&
3541 total_size > average_size && /* ignore small node */
3542 low_kmem_size > total_size * 70/100)
3543 return ZONELIST_ORDER_NODE;
3544 }
3545 return ZONELIST_ORDER_ZONE;
3546 }
3547
3548 static void set_zonelist_order(void)
3549 {
3550 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3551 current_zonelist_order = default_zonelist_order();
3552 else
3553 current_zonelist_order = user_zonelist_order;
3554 }
3555
3556 static void build_zonelists(pg_data_t *pgdat)
3557 {
3558 int j, node, load;
3559 enum zone_type i;
3560 nodemask_t used_mask;
3561 int local_node, prev_node;
3562 struct zonelist *zonelist;
3563 int order = current_zonelist_order;
3564
3565 /* initialize zonelists */
3566 for (i = 0; i < MAX_ZONELISTS; i++) {
3567 zonelist = pgdat->node_zonelists + i;
3568 zonelist->_zonerefs[0].zone = NULL;
3569 zonelist->_zonerefs[0].zone_idx = 0;
3570 }
3571
3572 /* NUMA-aware ordering of nodes */
3573 local_node = pgdat->node_id;
3574 load = nr_online_nodes;
3575 prev_node = local_node;
3576 nodes_clear(used_mask);
3577
3578 memset(node_order, 0, sizeof(node_order));
3579 j = 0;
3580
3581 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3582 /*
3583 * We don't want to pressure a particular node.
3584 * So adding penalty to the first node in same
3585 * distance group to make it round-robin.
3586 */
3587 if (node_distance(local_node, node) !=
3588 node_distance(local_node, prev_node))
3589 node_load[node] = load;
3590
3591 prev_node = node;
3592 load--;
3593 if (order == ZONELIST_ORDER_NODE)
3594 build_zonelists_in_node_order(pgdat, node);
3595 else
3596 node_order[j++] = node; /* remember order */
3597 }
3598
3599 if (order == ZONELIST_ORDER_ZONE) {
3600 /* calculate node order -- i.e., DMA last! */
3601 build_zonelists_in_zone_order(pgdat, j);
3602 }
3603
3604 build_thisnode_zonelists(pgdat);
3605 }
3606
3607 /* Construct the zonelist performance cache - see further mmzone.h */
3608 static void build_zonelist_cache(pg_data_t *pgdat)
3609 {
3610 struct zonelist *zonelist;
3611 struct zonelist_cache *zlc;
3612 struct zoneref *z;
3613
3614 zonelist = &pgdat->node_zonelists[0];
3615 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3616 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3617 for (z = zonelist->_zonerefs; z->zone; z++)
3618 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3619 }
3620
3621 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3622 /*
3623 * Return node id of node used for "local" allocations.
3624 * I.e., first node id of first zone in arg node's generic zonelist.
3625 * Used for initializing percpu 'numa_mem', which is used primarily
3626 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3627 */
3628 int local_memory_node(int node)
3629 {
3630 struct zone *zone;
3631
3632 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3633 gfp_zone(GFP_KERNEL),
3634 NULL,
3635 &zone);
3636 return zone->node;
3637 }
3638 #endif
3639
3640 #else /* CONFIG_NUMA */
3641
3642 static void set_zonelist_order(void)
3643 {
3644 current_zonelist_order = ZONELIST_ORDER_ZONE;
3645 }
3646
3647 static void build_zonelists(pg_data_t *pgdat)
3648 {
3649 int node, local_node;
3650 enum zone_type j;
3651 struct zonelist *zonelist;
3652
3653 local_node = pgdat->node_id;
3654
3655 zonelist = &pgdat->node_zonelists[0];
3656 j = build_zonelists_node(pgdat, zonelist, 0);
3657
3658 /*
3659 * Now we build the zonelist so that it contains the zones
3660 * of all the other nodes.
3661 * We don't want to pressure a particular node, so when
3662 * building the zones for node N, we make sure that the
3663 * zones coming right after the local ones are those from
3664 * node N+1 (modulo N)
3665 */
3666 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3667 if (!node_online(node))
3668 continue;
3669 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3670 }
3671 for (node = 0; node < local_node; node++) {
3672 if (!node_online(node))
3673 continue;
3674 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3675 }
3676
3677 zonelist->_zonerefs[j].zone = NULL;
3678 zonelist->_zonerefs[j].zone_idx = 0;
3679 }
3680
3681 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3682 static void build_zonelist_cache(pg_data_t *pgdat)
3683 {
3684 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3685 }
3686
3687 #endif /* CONFIG_NUMA */
3688
3689 /*
3690 * Boot pageset table. One per cpu which is going to be used for all
3691 * zones and all nodes. The parameters will be set in such a way
3692 * that an item put on a list will immediately be handed over to
3693 * the buddy list. This is safe since pageset manipulation is done
3694 * with interrupts disabled.
3695 *
3696 * The boot_pagesets must be kept even after bootup is complete for
3697 * unused processors and/or zones. They do play a role for bootstrapping
3698 * hotplugged processors.
3699 *
3700 * zoneinfo_show() and maybe other functions do
3701 * not check if the processor is online before following the pageset pointer.
3702 * Other parts of the kernel may not check if the zone is available.
3703 */
3704 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3705 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3706 static void setup_zone_pageset(struct zone *zone);
3707
3708 /*
3709 * Global mutex to protect against size modification of zonelists
3710 * as well as to serialize pageset setup for the new populated zone.
3711 */
3712 DEFINE_MUTEX(zonelists_mutex);
3713
3714 /* return values int ....just for stop_machine() */
3715 static int __build_all_zonelists(void *data)
3716 {
3717 int nid;
3718 int cpu;
3719 pg_data_t *self = data;
3720
3721 #ifdef CONFIG_NUMA
3722 memset(node_load, 0, sizeof(node_load));
3723 #endif
3724
3725 if (self && !node_online(self->node_id)) {
3726 build_zonelists(self);
3727 build_zonelist_cache(self);
3728 }
3729
3730 for_each_online_node(nid) {
3731 pg_data_t *pgdat = NODE_DATA(nid);
3732
3733 build_zonelists(pgdat);
3734 build_zonelist_cache(pgdat);
3735 }
3736
3737 /*
3738 * Initialize the boot_pagesets that are going to be used
3739 * for bootstrapping processors. The real pagesets for
3740 * each zone will be allocated later when the per cpu
3741 * allocator is available.
3742 *
3743 * boot_pagesets are used also for bootstrapping offline
3744 * cpus if the system is already booted because the pagesets
3745 * are needed to initialize allocators on a specific cpu too.
3746 * F.e. the percpu allocator needs the page allocator which
3747 * needs the percpu allocator in order to allocate its pagesets
3748 * (a chicken-egg dilemma).
3749 */
3750 for_each_possible_cpu(cpu) {
3751 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3752
3753 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3754 /*
3755 * We now know the "local memory node" for each node--
3756 * i.e., the node of the first zone in the generic zonelist.
3757 * Set up numa_mem percpu variable for on-line cpus. During
3758 * boot, only the boot cpu should be on-line; we'll init the
3759 * secondary cpus' numa_mem as they come on-line. During
3760 * node/memory hotplug, we'll fixup all on-line cpus.
3761 */
3762 if (cpu_online(cpu))
3763 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3764 #endif
3765 }
3766
3767 return 0;
3768 }
3769
3770 /*
3771 * Called with zonelists_mutex held always
3772 * unless system_state == SYSTEM_BOOTING.
3773 */
3774 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3775 {
3776 set_zonelist_order();
3777
3778 if (system_state == SYSTEM_BOOTING) {
3779 __build_all_zonelists(NULL);
3780 mminit_verify_zonelist();
3781 cpuset_init_current_mems_allowed();
3782 } else {
3783 #ifdef CONFIG_MEMORY_HOTPLUG
3784 if (zone)
3785 setup_zone_pageset(zone);
3786 #endif
3787 /* we have to stop all cpus to guarantee there is no user
3788 of zonelist */
3789 stop_machine(__build_all_zonelists, pgdat, NULL);
3790 /* cpuset refresh routine should be here */
3791 }
3792 vm_total_pages = nr_free_pagecache_pages();
3793 /*
3794 * Disable grouping by mobility if the number of pages in the
3795 * system is too low to allow the mechanism to work. It would be
3796 * more accurate, but expensive to check per-zone. This check is
3797 * made on memory-hotadd so a system can start with mobility
3798 * disabled and enable it later
3799 */
3800 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3801 page_group_by_mobility_disabled = 1;
3802 else
3803 page_group_by_mobility_disabled = 0;
3804
3805 printk("Built %i zonelists in %s order, mobility grouping %s. "
3806 "Total pages: %ld\n",
3807 nr_online_nodes,
3808 zonelist_order_name[current_zonelist_order],
3809 page_group_by_mobility_disabled ? "off" : "on",
3810 vm_total_pages);
3811 #ifdef CONFIG_NUMA
3812 printk("Policy zone: %s\n", zone_names[policy_zone]);
3813 #endif
3814 }
3815
3816 /*
3817 * Helper functions to size the waitqueue hash table.
3818 * Essentially these want to choose hash table sizes sufficiently
3819 * large so that collisions trying to wait on pages are rare.
3820 * But in fact, the number of active page waitqueues on typical
3821 * systems is ridiculously low, less than 200. So this is even
3822 * conservative, even though it seems large.
3823 *
3824 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3825 * waitqueues, i.e. the size of the waitq table given the number of pages.
3826 */
3827 #define PAGES_PER_WAITQUEUE 256
3828
3829 #ifndef CONFIG_MEMORY_HOTPLUG
3830 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3831 {
3832 unsigned long size = 1;
3833
3834 pages /= PAGES_PER_WAITQUEUE;
3835
3836 while (size < pages)
3837 size <<= 1;
3838
3839 /*
3840 * Once we have dozens or even hundreds of threads sleeping
3841 * on IO we've got bigger problems than wait queue collision.
3842 * Limit the size of the wait table to a reasonable size.
3843 */
3844 size = min(size, 4096UL);
3845
3846 return max(size, 4UL);
3847 }
3848 #else
3849 /*
3850 * A zone's size might be changed by hot-add, so it is not possible to determine
3851 * a suitable size for its wait_table. So we use the maximum size now.
3852 *
3853 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3854 *
3855 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3856 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3857 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3858 *
3859 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3860 * or more by the traditional way. (See above). It equals:
3861 *
3862 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3863 * ia64(16K page size) : = ( 8G + 4M)byte.
3864 * powerpc (64K page size) : = (32G +16M)byte.
3865 */
3866 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3867 {
3868 return 4096UL;
3869 }
3870 #endif
3871
3872 /*
3873 * This is an integer logarithm so that shifts can be used later
3874 * to extract the more random high bits from the multiplicative
3875 * hash function before the remainder is taken.
3876 */
3877 static inline unsigned long wait_table_bits(unsigned long size)
3878 {
3879 return ffz(~size);
3880 }
3881
3882 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3883
3884 /*
3885 * Check if a pageblock contains reserved pages
3886 */
3887 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3888 {
3889 unsigned long pfn;
3890
3891 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3892 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3893 return 1;
3894 }
3895 return 0;
3896 }
3897
3898 /*
3899 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3900 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3901 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3902 * higher will lead to a bigger reserve which will get freed as contiguous
3903 * blocks as reclaim kicks in
3904 */
3905 static void setup_zone_migrate_reserve(struct zone *zone)
3906 {
3907 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3908 struct page *page;
3909 unsigned long block_migratetype;
3910 int reserve;
3911
3912 /*
3913 * Get the start pfn, end pfn and the number of blocks to reserve
3914 * We have to be careful to be aligned to pageblock_nr_pages to
3915 * make sure that we always check pfn_valid for the first page in
3916 * the block.
3917 */
3918 start_pfn = zone->zone_start_pfn;
3919 end_pfn = zone_end_pfn(zone);
3920 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3921 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3922 pageblock_order;
3923
3924 /*
3925 * Reserve blocks are generally in place to help high-order atomic
3926 * allocations that are short-lived. A min_free_kbytes value that
3927 * would result in more than 2 reserve blocks for atomic allocations
3928 * is assumed to be in place to help anti-fragmentation for the
3929 * future allocation of hugepages at runtime.
3930 */
3931 reserve = min(2, reserve);
3932
3933 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3934 if (!pfn_valid(pfn))
3935 continue;
3936 page = pfn_to_page(pfn);
3937
3938 /* Watch out for overlapping nodes */
3939 if (page_to_nid(page) != zone_to_nid(zone))
3940 continue;
3941
3942 block_migratetype = get_pageblock_migratetype(page);
3943
3944 /* Only test what is necessary when the reserves are not met */
3945 if (reserve > 0) {
3946 /*
3947 * Blocks with reserved pages will never free, skip
3948 * them.
3949 */
3950 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3951 if (pageblock_is_reserved(pfn, block_end_pfn))
3952 continue;
3953
3954 /* If this block is reserved, account for it */
3955 if (block_migratetype == MIGRATE_RESERVE) {
3956 reserve--;
3957 continue;
3958 }
3959
3960 /* Suitable for reserving if this block is movable */
3961 if (block_migratetype == MIGRATE_MOVABLE) {
3962 set_pageblock_migratetype(page,
3963 MIGRATE_RESERVE);
3964 move_freepages_block(zone, page,
3965 MIGRATE_RESERVE);
3966 reserve--;
3967 continue;
3968 }
3969 }
3970
3971 /*
3972 * If the reserve is met and this is a previous reserved block,
3973 * take it back
3974 */
3975 if (block_migratetype == MIGRATE_RESERVE) {
3976 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3977 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3978 }
3979 }
3980 }
3981
3982 /*
3983 * Initially all pages are reserved - free ones are freed
3984 * up by free_all_bootmem() once the early boot process is
3985 * done. Non-atomic initialization, single-pass.
3986 */
3987 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3988 unsigned long start_pfn, enum memmap_context context)
3989 {
3990 struct page *page;
3991 unsigned long end_pfn = start_pfn + size;
3992 unsigned long pfn;
3993 struct zone *z;
3994
3995 if (highest_memmap_pfn < end_pfn - 1)
3996 highest_memmap_pfn = end_pfn - 1;
3997
3998 z = &NODE_DATA(nid)->node_zones[zone];
3999 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4000 /*
4001 * There can be holes in boot-time mem_map[]s
4002 * handed to this function. They do not
4003 * exist on hotplugged memory.
4004 */
4005 if (context == MEMMAP_EARLY) {
4006 if (!early_pfn_valid(pfn))
4007 continue;
4008 if (!early_pfn_in_nid(pfn, nid))
4009 continue;
4010 }
4011 page = pfn_to_page(pfn);
4012 set_page_links(page, zone, nid, pfn);
4013 mminit_verify_page_links(page, zone, nid, pfn);
4014 init_page_count(page);
4015 page_mapcount_reset(page);
4016 page_nid_reset_last(page);
4017 SetPageReserved(page);
4018 /*
4019 * Mark the block movable so that blocks are reserved for
4020 * movable at startup. This will force kernel allocations
4021 * to reserve their blocks rather than leaking throughout
4022 * the address space during boot when many long-lived
4023 * kernel allocations are made. Later some blocks near
4024 * the start are marked MIGRATE_RESERVE by
4025 * setup_zone_migrate_reserve()
4026 *
4027 * bitmap is created for zone's valid pfn range. but memmap
4028 * can be created for invalid pages (for alignment)
4029 * check here not to call set_pageblock_migratetype() against
4030 * pfn out of zone.
4031 */
4032 if ((z->zone_start_pfn <= pfn)
4033 && (pfn < zone_end_pfn(z))
4034 && !(pfn & (pageblock_nr_pages - 1)))
4035 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4036
4037 INIT_LIST_HEAD(&page->lru);
4038 #ifdef WANT_PAGE_VIRTUAL
4039 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4040 if (!is_highmem_idx(zone))
4041 set_page_address(page, __va(pfn << PAGE_SHIFT));
4042 #endif
4043 }
4044 }
4045
4046 static void __meminit zone_init_free_lists(struct zone *zone)
4047 {
4048 int order, t;
4049 for_each_migratetype_order(order, t) {
4050 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4051 zone->free_area[order].nr_free = 0;
4052 }
4053 }
4054
4055 #ifndef __HAVE_ARCH_MEMMAP_INIT
4056 #define memmap_init(size, nid, zone, start_pfn) \
4057 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4058 #endif
4059
4060 static int __meminit zone_batchsize(struct zone *zone)
4061 {
4062 #ifdef CONFIG_MMU
4063 int batch;
4064
4065 /*
4066 * The per-cpu-pages pools are set to around 1000th of the
4067 * size of the zone. But no more than 1/2 of a meg.
4068 *
4069 * OK, so we don't know how big the cache is. So guess.
4070 */
4071 batch = zone->managed_pages / 1024;
4072 if (batch * PAGE_SIZE > 512 * 1024)
4073 batch = (512 * 1024) / PAGE_SIZE;
4074 batch /= 4; /* We effectively *= 4 below */
4075 if (batch < 1)
4076 batch = 1;
4077
4078 /*
4079 * Clamp the batch to a 2^n - 1 value. Having a power
4080 * of 2 value was found to be more likely to have
4081 * suboptimal cache aliasing properties in some cases.
4082 *
4083 * For example if 2 tasks are alternately allocating
4084 * batches of pages, one task can end up with a lot
4085 * of pages of one half of the possible page colors
4086 * and the other with pages of the other colors.
4087 */
4088 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4089
4090 return batch;
4091
4092 #else
4093 /* The deferral and batching of frees should be suppressed under NOMMU
4094 * conditions.
4095 *
4096 * The problem is that NOMMU needs to be able to allocate large chunks
4097 * of contiguous memory as there's no hardware page translation to
4098 * assemble apparent contiguous memory from discontiguous pages.
4099 *
4100 * Queueing large contiguous runs of pages for batching, however,
4101 * causes the pages to actually be freed in smaller chunks. As there
4102 * can be a significant delay between the individual batches being
4103 * recycled, this leads to the once large chunks of space being
4104 * fragmented and becoming unavailable for high-order allocations.
4105 */
4106 return 0;
4107 #endif
4108 }
4109
4110 /*
4111 * pcp->high and pcp->batch values are related and dependent on one another:
4112 * ->batch must never be higher then ->high.
4113 * The following function updates them in a safe manner without read side
4114 * locking.
4115 *
4116 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4117 * those fields changing asynchronously (acording the the above rule).
4118 *
4119 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4120 * outside of boot time (or some other assurance that no concurrent updaters
4121 * exist).
4122 */
4123 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4124 unsigned long batch)
4125 {
4126 /* start with a fail safe value for batch */
4127 pcp->batch = 1;
4128 smp_wmb();
4129
4130 /* Update high, then batch, in order */
4131 pcp->high = high;
4132 smp_wmb();
4133
4134 pcp->batch = batch;
4135 }
4136
4137 /* a companion to pageset_set_high() */
4138 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4139 {
4140 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4141 }
4142
4143 static void pageset_init(struct per_cpu_pageset *p)
4144 {
4145 struct per_cpu_pages *pcp;
4146 int migratetype;
4147
4148 memset(p, 0, sizeof(*p));
4149
4150 pcp = &p->pcp;
4151 pcp->count = 0;
4152 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4153 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4154 }
4155
4156 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4157 {
4158 pageset_init(p);
4159 pageset_set_batch(p, batch);
4160 }
4161
4162 /*
4163 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4164 * to the value high for the pageset p.
4165 */
4166 static void pageset_set_high(struct per_cpu_pageset *p,
4167 unsigned long high)
4168 {
4169 unsigned long batch = max(1UL, high / 4);
4170 if ((high / 4) > (PAGE_SHIFT * 8))
4171 batch = PAGE_SHIFT * 8;
4172
4173 pageset_update(&p->pcp, high, batch);
4174 }
4175
4176 static void __meminit pageset_set_high_and_batch(struct zone *zone,
4177 struct per_cpu_pageset *pcp)
4178 {
4179 if (percpu_pagelist_fraction)
4180 pageset_set_high(pcp,
4181 (zone->managed_pages /
4182 percpu_pagelist_fraction));
4183 else
4184 pageset_set_batch(pcp, zone_batchsize(zone));
4185 }
4186
4187 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4188 {
4189 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4190
4191 pageset_init(pcp);
4192 pageset_set_high_and_batch(zone, pcp);
4193 }
4194
4195 static void __meminit setup_zone_pageset(struct zone *zone)
4196 {
4197 int cpu;
4198 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4199 for_each_possible_cpu(cpu)
4200 zone_pageset_init(zone, cpu);
4201 }
4202
4203 /*
4204 * Allocate per cpu pagesets and initialize them.
4205 * Before this call only boot pagesets were available.
4206 */
4207 void __init setup_per_cpu_pageset(void)
4208 {
4209 struct zone *zone;
4210
4211 for_each_populated_zone(zone)
4212 setup_zone_pageset(zone);
4213 }
4214
4215 static noinline __init_refok
4216 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4217 {
4218 int i;
4219 struct pglist_data *pgdat = zone->zone_pgdat;
4220 size_t alloc_size;
4221
4222 /*
4223 * The per-page waitqueue mechanism uses hashed waitqueues
4224 * per zone.
4225 */
4226 zone->wait_table_hash_nr_entries =
4227 wait_table_hash_nr_entries(zone_size_pages);
4228 zone->wait_table_bits =
4229 wait_table_bits(zone->wait_table_hash_nr_entries);
4230 alloc_size = zone->wait_table_hash_nr_entries
4231 * sizeof(wait_queue_head_t);
4232
4233 if (!slab_is_available()) {
4234 zone->wait_table = (wait_queue_head_t *)
4235 alloc_bootmem_node_nopanic(pgdat, alloc_size);
4236 } else {
4237 /*
4238 * This case means that a zone whose size was 0 gets new memory
4239 * via memory hot-add.
4240 * But it may be the case that a new node was hot-added. In
4241 * this case vmalloc() will not be able to use this new node's
4242 * memory - this wait_table must be initialized to use this new
4243 * node itself as well.
4244 * To use this new node's memory, further consideration will be
4245 * necessary.
4246 */
4247 zone->wait_table = vmalloc(alloc_size);
4248 }
4249 if (!zone->wait_table)
4250 return -ENOMEM;
4251
4252 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4253 init_waitqueue_head(zone->wait_table + i);
4254
4255 return 0;
4256 }
4257
4258 static __meminit void zone_pcp_init(struct zone *zone)
4259 {
4260 /*
4261 * per cpu subsystem is not up at this point. The following code
4262 * relies on the ability of the linker to provide the
4263 * offset of a (static) per cpu variable into the per cpu area.
4264 */
4265 zone->pageset = &boot_pageset;
4266
4267 if (zone->present_pages)
4268 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4269 zone->name, zone->present_pages,
4270 zone_batchsize(zone));
4271 }
4272
4273 int __meminit init_currently_empty_zone(struct zone *zone,
4274 unsigned long zone_start_pfn,
4275 unsigned long size,
4276 enum memmap_context context)
4277 {
4278 struct pglist_data *pgdat = zone->zone_pgdat;
4279 int ret;
4280 ret = zone_wait_table_init(zone, size);
4281 if (ret)
4282 return ret;
4283 pgdat->nr_zones = zone_idx(zone) + 1;
4284
4285 zone->zone_start_pfn = zone_start_pfn;
4286
4287 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4288 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4289 pgdat->node_id,
4290 (unsigned long)zone_idx(zone),
4291 zone_start_pfn, (zone_start_pfn + size));
4292
4293 zone_init_free_lists(zone);
4294
4295 return 0;
4296 }
4297
4298 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4299 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4300 /*
4301 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4302 * Architectures may implement their own version but if add_active_range()
4303 * was used and there are no special requirements, this is a convenient
4304 * alternative
4305 */
4306 int __meminit __early_pfn_to_nid(unsigned long pfn)
4307 {
4308 unsigned long start_pfn, end_pfn;
4309 int nid;
4310 /*
4311 * NOTE: The following SMP-unsafe globals are only used early in boot
4312 * when the kernel is running single-threaded.
4313 */
4314 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4315 static int __meminitdata last_nid;
4316
4317 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4318 return last_nid;
4319
4320 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4321 if (nid != -1) {
4322 last_start_pfn = start_pfn;
4323 last_end_pfn = end_pfn;
4324 last_nid = nid;
4325 }
4326
4327 return nid;
4328 }
4329 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4330
4331 int __meminit early_pfn_to_nid(unsigned long pfn)
4332 {
4333 int nid;
4334
4335 nid = __early_pfn_to_nid(pfn);
4336 if (nid >= 0)
4337 return nid;
4338 /* just returns 0 */
4339 return 0;
4340 }
4341
4342 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4343 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4344 {
4345 int nid;
4346
4347 nid = __early_pfn_to_nid(pfn);
4348 if (nid >= 0 && nid != node)
4349 return false;
4350 return true;
4351 }
4352 #endif
4353
4354 /**
4355 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4356 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4357 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4358 *
4359 * If an architecture guarantees that all ranges registered with
4360 * add_active_ranges() contain no holes and may be freed, this
4361 * this function may be used instead of calling free_bootmem() manually.
4362 */
4363 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4364 {
4365 unsigned long start_pfn, end_pfn;
4366 int i, this_nid;
4367
4368 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4369 start_pfn = min(start_pfn, max_low_pfn);
4370 end_pfn = min(end_pfn, max_low_pfn);
4371
4372 if (start_pfn < end_pfn)
4373 free_bootmem_node(NODE_DATA(this_nid),
4374 PFN_PHYS(start_pfn),
4375 (end_pfn - start_pfn) << PAGE_SHIFT);
4376 }
4377 }
4378
4379 /**
4380 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4381 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4382 *
4383 * If an architecture guarantees that all ranges registered with
4384 * add_active_ranges() contain no holes and may be freed, this
4385 * function may be used instead of calling memory_present() manually.
4386 */
4387 void __init sparse_memory_present_with_active_regions(int nid)
4388 {
4389 unsigned long start_pfn, end_pfn;
4390 int i, this_nid;
4391
4392 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4393 memory_present(this_nid, start_pfn, end_pfn);
4394 }
4395
4396 /**
4397 * get_pfn_range_for_nid - Return the start and end page frames for a node
4398 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4399 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4400 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4401 *
4402 * It returns the start and end page frame of a node based on information
4403 * provided by an arch calling add_active_range(). If called for a node
4404 * with no available memory, a warning is printed and the start and end
4405 * PFNs will be 0.
4406 */
4407 void __meminit get_pfn_range_for_nid(unsigned int nid,
4408 unsigned long *start_pfn, unsigned long *end_pfn)
4409 {
4410 unsigned long this_start_pfn, this_end_pfn;
4411 int i;
4412
4413 *start_pfn = -1UL;
4414 *end_pfn = 0;
4415
4416 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4417 *start_pfn = min(*start_pfn, this_start_pfn);
4418 *end_pfn = max(*end_pfn, this_end_pfn);
4419 }
4420
4421 if (*start_pfn == -1UL)
4422 *start_pfn = 0;
4423 }
4424
4425 /*
4426 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4427 * assumption is made that zones within a node are ordered in monotonic
4428 * increasing memory addresses so that the "highest" populated zone is used
4429 */
4430 static void __init find_usable_zone_for_movable(void)
4431 {
4432 int zone_index;
4433 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4434 if (zone_index == ZONE_MOVABLE)
4435 continue;
4436
4437 if (arch_zone_highest_possible_pfn[zone_index] >
4438 arch_zone_lowest_possible_pfn[zone_index])
4439 break;
4440 }
4441
4442 VM_BUG_ON(zone_index == -1);
4443 movable_zone = zone_index;
4444 }
4445
4446 /*
4447 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4448 * because it is sized independent of architecture. Unlike the other zones,
4449 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4450 * in each node depending on the size of each node and how evenly kernelcore
4451 * is distributed. This helper function adjusts the zone ranges
4452 * provided by the architecture for a given node by using the end of the
4453 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4454 * zones within a node are in order of monotonic increases memory addresses
4455 */
4456 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4457 unsigned long zone_type,
4458 unsigned long node_start_pfn,
4459 unsigned long node_end_pfn,
4460 unsigned long *zone_start_pfn,
4461 unsigned long *zone_end_pfn)
4462 {
4463 /* Only adjust if ZONE_MOVABLE is on this node */
4464 if (zone_movable_pfn[nid]) {
4465 /* Size ZONE_MOVABLE */
4466 if (zone_type == ZONE_MOVABLE) {
4467 *zone_start_pfn = zone_movable_pfn[nid];
4468 *zone_end_pfn = min(node_end_pfn,
4469 arch_zone_highest_possible_pfn[movable_zone]);
4470
4471 /* Adjust for ZONE_MOVABLE starting within this range */
4472 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4473 *zone_end_pfn > zone_movable_pfn[nid]) {
4474 *zone_end_pfn = zone_movable_pfn[nid];
4475
4476 /* Check if this whole range is within ZONE_MOVABLE */
4477 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4478 *zone_start_pfn = *zone_end_pfn;
4479 }
4480 }
4481
4482 /*
4483 * Return the number of pages a zone spans in a node, including holes
4484 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4485 */
4486 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4487 unsigned long zone_type,
4488 unsigned long node_start_pfn,
4489 unsigned long node_end_pfn,
4490 unsigned long *ignored)
4491 {
4492 unsigned long zone_start_pfn, zone_end_pfn;
4493
4494 /* Get the start and end of the zone */
4495 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4496 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4497 adjust_zone_range_for_zone_movable(nid, zone_type,
4498 node_start_pfn, node_end_pfn,
4499 &zone_start_pfn, &zone_end_pfn);
4500
4501 /* Check that this node has pages within the zone's required range */
4502 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4503 return 0;
4504
4505 /* Move the zone boundaries inside the node if necessary */
4506 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4507 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4508
4509 /* Return the spanned pages */
4510 return zone_end_pfn - zone_start_pfn;
4511 }
4512
4513 /*
4514 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4515 * then all holes in the requested range will be accounted for.
4516 */
4517 unsigned long __meminit __absent_pages_in_range(int nid,
4518 unsigned long range_start_pfn,
4519 unsigned long range_end_pfn)
4520 {
4521 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4522 unsigned long start_pfn, end_pfn;
4523 int i;
4524
4525 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4526 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4527 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4528 nr_absent -= end_pfn - start_pfn;
4529 }
4530 return nr_absent;
4531 }
4532
4533 /**
4534 * absent_pages_in_range - Return number of page frames in holes within a range
4535 * @start_pfn: The start PFN to start searching for holes
4536 * @end_pfn: The end PFN to stop searching for holes
4537 *
4538 * It returns the number of pages frames in memory holes within a range.
4539 */
4540 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4541 unsigned long end_pfn)
4542 {
4543 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4544 }
4545
4546 /* Return the number of page frames in holes in a zone on a node */
4547 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4548 unsigned long zone_type,
4549 unsigned long node_start_pfn,
4550 unsigned long node_end_pfn,
4551 unsigned long *ignored)
4552 {
4553 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4554 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4555 unsigned long zone_start_pfn, zone_end_pfn;
4556
4557 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4558 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4559
4560 adjust_zone_range_for_zone_movable(nid, zone_type,
4561 node_start_pfn, node_end_pfn,
4562 &zone_start_pfn, &zone_end_pfn);
4563 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4564 }
4565
4566 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4567 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4568 unsigned long zone_type,
4569 unsigned long node_start_pfn,
4570 unsigned long node_end_pfn,
4571 unsigned long *zones_size)
4572 {
4573 return zones_size[zone_type];
4574 }
4575
4576 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4577 unsigned long zone_type,
4578 unsigned long node_start_pfn,
4579 unsigned long node_end_pfn,
4580 unsigned long *zholes_size)
4581 {
4582 if (!zholes_size)
4583 return 0;
4584
4585 return zholes_size[zone_type];
4586 }
4587
4588 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4589
4590 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4591 unsigned long node_start_pfn,
4592 unsigned long node_end_pfn,
4593 unsigned long *zones_size,
4594 unsigned long *zholes_size)
4595 {
4596 unsigned long realtotalpages, totalpages = 0;
4597 enum zone_type i;
4598
4599 for (i = 0; i < MAX_NR_ZONES; i++)
4600 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4601 node_start_pfn,
4602 node_end_pfn,
4603 zones_size);
4604 pgdat->node_spanned_pages = totalpages;
4605
4606 realtotalpages = totalpages;
4607 for (i = 0; i < MAX_NR_ZONES; i++)
4608 realtotalpages -=
4609 zone_absent_pages_in_node(pgdat->node_id, i,
4610 node_start_pfn, node_end_pfn,
4611 zholes_size);
4612 pgdat->node_present_pages = realtotalpages;
4613 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4614 realtotalpages);
4615 }
4616
4617 #ifndef CONFIG_SPARSEMEM
4618 /*
4619 * Calculate the size of the zone->blockflags rounded to an unsigned long
4620 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4621 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4622 * round what is now in bits to nearest long in bits, then return it in
4623 * bytes.
4624 */
4625 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4626 {
4627 unsigned long usemapsize;
4628
4629 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4630 usemapsize = roundup(zonesize, pageblock_nr_pages);
4631 usemapsize = usemapsize >> pageblock_order;
4632 usemapsize *= NR_PAGEBLOCK_BITS;
4633 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4634
4635 return usemapsize / 8;
4636 }
4637
4638 static void __init setup_usemap(struct pglist_data *pgdat,
4639 struct zone *zone,
4640 unsigned long zone_start_pfn,
4641 unsigned long zonesize)
4642 {
4643 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4644 zone->pageblock_flags = NULL;
4645 if (usemapsize)
4646 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4647 usemapsize);
4648 }
4649 #else
4650 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4651 unsigned long zone_start_pfn, unsigned long zonesize) {}
4652 #endif /* CONFIG_SPARSEMEM */
4653
4654 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4655
4656 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4657 void __paginginit set_pageblock_order(void)
4658 {
4659 unsigned int order;
4660
4661 /* Check that pageblock_nr_pages has not already been setup */
4662 if (pageblock_order)
4663 return;
4664
4665 if (HPAGE_SHIFT > PAGE_SHIFT)
4666 order = HUGETLB_PAGE_ORDER;
4667 else
4668 order = MAX_ORDER - 1;
4669
4670 /*
4671 * Assume the largest contiguous order of interest is a huge page.
4672 * This value may be variable depending on boot parameters on IA64 and
4673 * powerpc.
4674 */
4675 pageblock_order = order;
4676 }
4677 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4678
4679 /*
4680 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4681 * is unused as pageblock_order is set at compile-time. See
4682 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4683 * the kernel config
4684 */
4685 void __paginginit set_pageblock_order(void)
4686 {
4687 }
4688
4689 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4690
4691 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4692 unsigned long present_pages)
4693 {
4694 unsigned long pages = spanned_pages;
4695
4696 /*
4697 * Provide a more accurate estimation if there are holes within
4698 * the zone and SPARSEMEM is in use. If there are holes within the
4699 * zone, each populated memory region may cost us one or two extra
4700 * memmap pages due to alignment because memmap pages for each
4701 * populated regions may not naturally algined on page boundary.
4702 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4703 */
4704 if (spanned_pages > present_pages + (present_pages >> 4) &&
4705 IS_ENABLED(CONFIG_SPARSEMEM))
4706 pages = present_pages;
4707
4708 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4709 }
4710
4711 /*
4712 * Set up the zone data structures:
4713 * - mark all pages reserved
4714 * - mark all memory queues empty
4715 * - clear the memory bitmaps
4716 *
4717 * NOTE: pgdat should get zeroed by caller.
4718 */
4719 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4720 unsigned long node_start_pfn, unsigned long node_end_pfn,
4721 unsigned long *zones_size, unsigned long *zholes_size)
4722 {
4723 enum zone_type j;
4724 int nid = pgdat->node_id;
4725 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4726 int ret;
4727
4728 pgdat_resize_init(pgdat);
4729 #ifdef CONFIG_NUMA_BALANCING
4730 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4731 pgdat->numabalancing_migrate_nr_pages = 0;
4732 pgdat->numabalancing_migrate_next_window = jiffies;
4733 #endif
4734 init_waitqueue_head(&pgdat->kswapd_wait);
4735 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4736 pgdat_page_cgroup_init(pgdat);
4737
4738 for (j = 0; j < MAX_NR_ZONES; j++) {
4739 struct zone *zone = pgdat->node_zones + j;
4740 unsigned long size, realsize, freesize, memmap_pages;
4741
4742 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4743 node_end_pfn, zones_size);
4744 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4745 node_start_pfn,
4746 node_end_pfn,
4747 zholes_size);
4748
4749 /*
4750 * Adjust freesize so that it accounts for how much memory
4751 * is used by this zone for memmap. This affects the watermark
4752 * and per-cpu initialisations
4753 */
4754 memmap_pages = calc_memmap_size(size, realsize);
4755 if (freesize >= memmap_pages) {
4756 freesize -= memmap_pages;
4757 if (memmap_pages)
4758 printk(KERN_DEBUG
4759 " %s zone: %lu pages used for memmap\n",
4760 zone_names[j], memmap_pages);
4761 } else
4762 printk(KERN_WARNING
4763 " %s zone: %lu pages exceeds freesize %lu\n",
4764 zone_names[j], memmap_pages, freesize);
4765
4766 /* Account for reserved pages */
4767 if (j == 0 && freesize > dma_reserve) {
4768 freesize -= dma_reserve;
4769 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4770 zone_names[0], dma_reserve);
4771 }
4772
4773 if (!is_highmem_idx(j))
4774 nr_kernel_pages += freesize;
4775 /* Charge for highmem memmap if there are enough kernel pages */
4776 else if (nr_kernel_pages > memmap_pages * 2)
4777 nr_kernel_pages -= memmap_pages;
4778 nr_all_pages += freesize;
4779
4780 zone->spanned_pages = size;
4781 zone->present_pages = realsize;
4782 /*
4783 * Set an approximate value for lowmem here, it will be adjusted
4784 * when the bootmem allocator frees pages into the buddy system.
4785 * And all highmem pages will be managed by the buddy system.
4786 */
4787 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4788 #ifdef CONFIG_NUMA
4789 zone->node = nid;
4790 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4791 / 100;
4792 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4793 #endif
4794 zone->name = zone_names[j];
4795 spin_lock_init(&zone->lock);
4796 spin_lock_init(&zone->lru_lock);
4797 zone_seqlock_init(zone);
4798 zone->zone_pgdat = pgdat;
4799 zone_pcp_init(zone);
4800
4801 /* For bootup, initialized properly in watermark setup */
4802 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4803
4804 lruvec_init(&zone->lruvec);
4805 if (!size)
4806 continue;
4807
4808 set_pageblock_order();
4809 setup_usemap(pgdat, zone, zone_start_pfn, size);
4810 ret = init_currently_empty_zone(zone, zone_start_pfn,
4811 size, MEMMAP_EARLY);
4812 BUG_ON(ret);
4813 memmap_init(size, nid, j, zone_start_pfn);
4814 zone_start_pfn += size;
4815 }
4816 }
4817
4818 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4819 {
4820 /* Skip empty nodes */
4821 if (!pgdat->node_spanned_pages)
4822 return;
4823
4824 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4825 /* ia64 gets its own node_mem_map, before this, without bootmem */
4826 if (!pgdat->node_mem_map) {
4827 unsigned long size, start, end;
4828 struct page *map;
4829
4830 /*
4831 * The zone's endpoints aren't required to be MAX_ORDER
4832 * aligned but the node_mem_map endpoints must be in order
4833 * for the buddy allocator to function correctly.
4834 */
4835 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4836 end = pgdat_end_pfn(pgdat);
4837 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4838 size = (end - start) * sizeof(struct page);
4839 map = alloc_remap(pgdat->node_id, size);
4840 if (!map)
4841 map = alloc_bootmem_node_nopanic(pgdat, size);
4842 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4843 }
4844 #ifndef CONFIG_NEED_MULTIPLE_NODES
4845 /*
4846 * With no DISCONTIG, the global mem_map is just set as node 0's
4847 */
4848 if (pgdat == NODE_DATA(0)) {
4849 mem_map = NODE_DATA(0)->node_mem_map;
4850 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4851 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4852 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4853 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4854 }
4855 #endif
4856 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4857 }
4858
4859 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4860 unsigned long node_start_pfn, unsigned long *zholes_size)
4861 {
4862 pg_data_t *pgdat = NODE_DATA(nid);
4863 unsigned long start_pfn = 0;
4864 unsigned long end_pfn = 0;
4865
4866 /* pg_data_t should be reset to zero when it's allocated */
4867 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4868
4869 pgdat->node_id = nid;
4870 pgdat->node_start_pfn = node_start_pfn;
4871 init_zone_allows_reclaim(nid);
4872 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4873 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4874 #endif
4875 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4876 zones_size, zholes_size);
4877
4878 alloc_node_mem_map(pgdat);
4879 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4880 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4881 nid, (unsigned long)pgdat,
4882 (unsigned long)pgdat->node_mem_map);
4883 #endif
4884
4885 free_area_init_core(pgdat, start_pfn, end_pfn,
4886 zones_size, zholes_size);
4887 }
4888
4889 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4890
4891 #if MAX_NUMNODES > 1
4892 /*
4893 * Figure out the number of possible node ids.
4894 */
4895 void __init setup_nr_node_ids(void)
4896 {
4897 unsigned int node;
4898 unsigned int highest = 0;
4899
4900 for_each_node_mask(node, node_possible_map)
4901 highest = node;
4902 nr_node_ids = highest + 1;
4903 }
4904 #endif
4905
4906 /**
4907 * node_map_pfn_alignment - determine the maximum internode alignment
4908 *
4909 * This function should be called after node map is populated and sorted.
4910 * It calculates the maximum power of two alignment which can distinguish
4911 * all the nodes.
4912 *
4913 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4914 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4915 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4916 * shifted, 1GiB is enough and this function will indicate so.
4917 *
4918 * This is used to test whether pfn -> nid mapping of the chosen memory
4919 * model has fine enough granularity to avoid incorrect mapping for the
4920 * populated node map.
4921 *
4922 * Returns the determined alignment in pfn's. 0 if there is no alignment
4923 * requirement (single node).
4924 */
4925 unsigned long __init node_map_pfn_alignment(void)
4926 {
4927 unsigned long accl_mask = 0, last_end = 0;
4928 unsigned long start, end, mask;
4929 int last_nid = -1;
4930 int i, nid;
4931
4932 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4933 if (!start || last_nid < 0 || last_nid == nid) {
4934 last_nid = nid;
4935 last_end = end;
4936 continue;
4937 }
4938
4939 /*
4940 * Start with a mask granular enough to pin-point to the
4941 * start pfn and tick off bits one-by-one until it becomes
4942 * too coarse to separate the current node from the last.
4943 */
4944 mask = ~((1 << __ffs(start)) - 1);
4945 while (mask && last_end <= (start & (mask << 1)))
4946 mask <<= 1;
4947
4948 /* accumulate all internode masks */
4949 accl_mask |= mask;
4950 }
4951
4952 /* convert mask to number of pages */
4953 return ~accl_mask + 1;
4954 }
4955
4956 /* Find the lowest pfn for a node */
4957 static unsigned long __init find_min_pfn_for_node(int nid)
4958 {
4959 unsigned long min_pfn = ULONG_MAX;
4960 unsigned long start_pfn;
4961 int i;
4962
4963 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4964 min_pfn = min(min_pfn, start_pfn);
4965
4966 if (min_pfn == ULONG_MAX) {
4967 printk(KERN_WARNING
4968 "Could not find start_pfn for node %d\n", nid);
4969 return 0;
4970 }
4971
4972 return min_pfn;
4973 }
4974
4975 /**
4976 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4977 *
4978 * It returns the minimum PFN based on information provided via
4979 * add_active_range().
4980 */
4981 unsigned long __init find_min_pfn_with_active_regions(void)
4982 {
4983 return find_min_pfn_for_node(MAX_NUMNODES);
4984 }
4985
4986 /*
4987 * early_calculate_totalpages()
4988 * Sum pages in active regions for movable zone.
4989 * Populate N_MEMORY for calculating usable_nodes.
4990 */
4991 static unsigned long __init early_calculate_totalpages(void)
4992 {
4993 unsigned long totalpages = 0;
4994 unsigned long start_pfn, end_pfn;
4995 int i, nid;
4996
4997 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4998 unsigned long pages = end_pfn - start_pfn;
4999
5000 totalpages += pages;
5001 if (pages)
5002 node_set_state(nid, N_MEMORY);
5003 }
5004 return totalpages;
5005 }
5006
5007 /*
5008 * Find the PFN the Movable zone begins in each node. Kernel memory
5009 * is spread evenly between nodes as long as the nodes have enough
5010 * memory. When they don't, some nodes will have more kernelcore than
5011 * others
5012 */
5013 static void __init find_zone_movable_pfns_for_nodes(void)
5014 {
5015 int i, nid;
5016 unsigned long usable_startpfn;
5017 unsigned long kernelcore_node, kernelcore_remaining;
5018 /* save the state before borrow the nodemask */
5019 nodemask_t saved_node_state = node_states[N_MEMORY];
5020 unsigned long totalpages = early_calculate_totalpages();
5021 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5022
5023 /*
5024 * If movablecore was specified, calculate what size of
5025 * kernelcore that corresponds so that memory usable for
5026 * any allocation type is evenly spread. If both kernelcore
5027 * and movablecore are specified, then the value of kernelcore
5028 * will be used for required_kernelcore if it's greater than
5029 * what movablecore would have allowed.
5030 */
5031 if (required_movablecore) {
5032 unsigned long corepages;
5033
5034 /*
5035 * Round-up so that ZONE_MOVABLE is at least as large as what
5036 * was requested by the user
5037 */
5038 required_movablecore =
5039 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5040 corepages = totalpages - required_movablecore;
5041
5042 required_kernelcore = max(required_kernelcore, corepages);
5043 }
5044
5045 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5046 if (!required_kernelcore)
5047 goto out;
5048
5049 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5050 find_usable_zone_for_movable();
5051 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5052
5053 restart:
5054 /* Spread kernelcore memory as evenly as possible throughout nodes */
5055 kernelcore_node = required_kernelcore / usable_nodes;
5056 for_each_node_state(nid, N_MEMORY) {
5057 unsigned long start_pfn, end_pfn;
5058
5059 /*
5060 * Recalculate kernelcore_node if the division per node
5061 * now exceeds what is necessary to satisfy the requested
5062 * amount of memory for the kernel
5063 */
5064 if (required_kernelcore < kernelcore_node)
5065 kernelcore_node = required_kernelcore / usable_nodes;
5066
5067 /*
5068 * As the map is walked, we track how much memory is usable
5069 * by the kernel using kernelcore_remaining. When it is
5070 * 0, the rest of the node is usable by ZONE_MOVABLE
5071 */
5072 kernelcore_remaining = kernelcore_node;
5073
5074 /* Go through each range of PFNs within this node */
5075 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5076 unsigned long size_pages;
5077
5078 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5079 if (start_pfn >= end_pfn)
5080 continue;
5081
5082 /* Account for what is only usable for kernelcore */
5083 if (start_pfn < usable_startpfn) {
5084 unsigned long kernel_pages;
5085 kernel_pages = min(end_pfn, usable_startpfn)
5086 - start_pfn;
5087
5088 kernelcore_remaining -= min(kernel_pages,
5089 kernelcore_remaining);
5090 required_kernelcore -= min(kernel_pages,
5091 required_kernelcore);
5092
5093 /* Continue if range is now fully accounted */
5094 if (end_pfn <= usable_startpfn) {
5095
5096 /*
5097 * Push zone_movable_pfn to the end so
5098 * that if we have to rebalance
5099 * kernelcore across nodes, we will
5100 * not double account here
5101 */
5102 zone_movable_pfn[nid] = end_pfn;
5103 continue;
5104 }
5105 start_pfn = usable_startpfn;
5106 }
5107
5108 /*
5109 * The usable PFN range for ZONE_MOVABLE is from
5110 * start_pfn->end_pfn. Calculate size_pages as the
5111 * number of pages used as kernelcore
5112 */
5113 size_pages = end_pfn - start_pfn;
5114 if (size_pages > kernelcore_remaining)
5115 size_pages = kernelcore_remaining;
5116 zone_movable_pfn[nid] = start_pfn + size_pages;
5117
5118 /*
5119 * Some kernelcore has been met, update counts and
5120 * break if the kernelcore for this node has been
5121 * satisfied
5122 */
5123 required_kernelcore -= min(required_kernelcore,
5124 size_pages);
5125 kernelcore_remaining -= size_pages;
5126 if (!kernelcore_remaining)
5127 break;
5128 }
5129 }
5130
5131 /*
5132 * If there is still required_kernelcore, we do another pass with one
5133 * less node in the count. This will push zone_movable_pfn[nid] further
5134 * along on the nodes that still have memory until kernelcore is
5135 * satisfied
5136 */
5137 usable_nodes--;
5138 if (usable_nodes && required_kernelcore > usable_nodes)
5139 goto restart;
5140
5141 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5142 for (nid = 0; nid < MAX_NUMNODES; nid++)
5143 zone_movable_pfn[nid] =
5144 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5145
5146 out:
5147 /* restore the node_state */
5148 node_states[N_MEMORY] = saved_node_state;
5149 }
5150
5151 /* Any regular or high memory on that node ? */
5152 static void check_for_memory(pg_data_t *pgdat, int nid)
5153 {
5154 enum zone_type zone_type;
5155
5156 if (N_MEMORY == N_NORMAL_MEMORY)
5157 return;
5158
5159 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5160 struct zone *zone = &pgdat->node_zones[zone_type];
5161 if (zone->present_pages) {
5162 node_set_state(nid, N_HIGH_MEMORY);
5163 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5164 zone_type <= ZONE_NORMAL)
5165 node_set_state(nid, N_NORMAL_MEMORY);
5166 break;
5167 }
5168 }
5169 }
5170
5171 /**
5172 * free_area_init_nodes - Initialise all pg_data_t and zone data
5173 * @max_zone_pfn: an array of max PFNs for each zone
5174 *
5175 * This will call free_area_init_node() for each active node in the system.
5176 * Using the page ranges provided by add_active_range(), the size of each
5177 * zone in each node and their holes is calculated. If the maximum PFN
5178 * between two adjacent zones match, it is assumed that the zone is empty.
5179 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5180 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5181 * starts where the previous one ended. For example, ZONE_DMA32 starts
5182 * at arch_max_dma_pfn.
5183 */
5184 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5185 {
5186 unsigned long start_pfn, end_pfn;
5187 int i, nid;
5188
5189 /* Record where the zone boundaries are */
5190 memset(arch_zone_lowest_possible_pfn, 0,
5191 sizeof(arch_zone_lowest_possible_pfn));
5192 memset(arch_zone_highest_possible_pfn, 0,
5193 sizeof(arch_zone_highest_possible_pfn));
5194 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5195 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5196 for (i = 1; i < MAX_NR_ZONES; i++) {
5197 if (i == ZONE_MOVABLE)
5198 continue;
5199 arch_zone_lowest_possible_pfn[i] =
5200 arch_zone_highest_possible_pfn[i-1];
5201 arch_zone_highest_possible_pfn[i] =
5202 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5203 }
5204 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5205 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5206
5207 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5208 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5209 find_zone_movable_pfns_for_nodes();
5210
5211 /* Print out the zone ranges */
5212 printk("Zone ranges:\n");
5213 for (i = 0; i < MAX_NR_ZONES; i++) {
5214 if (i == ZONE_MOVABLE)
5215 continue;
5216 printk(KERN_CONT " %-8s ", zone_names[i]);
5217 if (arch_zone_lowest_possible_pfn[i] ==
5218 arch_zone_highest_possible_pfn[i])
5219 printk(KERN_CONT "empty\n");
5220 else
5221 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5222 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5223 (arch_zone_highest_possible_pfn[i]
5224 << PAGE_SHIFT) - 1);
5225 }
5226
5227 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5228 printk("Movable zone start for each node\n");
5229 for (i = 0; i < MAX_NUMNODES; i++) {
5230 if (zone_movable_pfn[i])
5231 printk(" Node %d: %#010lx\n", i,
5232 zone_movable_pfn[i] << PAGE_SHIFT);
5233 }
5234
5235 /* Print out the early node map */
5236 printk("Early memory node ranges\n");
5237 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5238 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5239 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5240
5241 /* Initialise every node */
5242 mminit_verify_pageflags_layout();
5243 setup_nr_node_ids();
5244 for_each_online_node(nid) {
5245 pg_data_t *pgdat = NODE_DATA(nid);
5246 free_area_init_node(nid, NULL,
5247 find_min_pfn_for_node(nid), NULL);
5248
5249 /* Any memory on that node */
5250 if (pgdat->node_present_pages)
5251 node_set_state(nid, N_MEMORY);
5252 check_for_memory(pgdat, nid);
5253 }
5254 }
5255
5256 static int __init cmdline_parse_core(char *p, unsigned long *core)
5257 {
5258 unsigned long long coremem;
5259 if (!p)
5260 return -EINVAL;
5261
5262 coremem = memparse(p, &p);
5263 *core = coremem >> PAGE_SHIFT;
5264
5265 /* Paranoid check that UL is enough for the coremem value */
5266 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5267
5268 return 0;
5269 }
5270
5271 /*
5272 * kernelcore=size sets the amount of memory for use for allocations that
5273 * cannot be reclaimed or migrated.
5274 */
5275 static int __init cmdline_parse_kernelcore(char *p)
5276 {
5277 return cmdline_parse_core(p, &required_kernelcore);
5278 }
5279
5280 /*
5281 * movablecore=size sets the amount of memory for use for allocations that
5282 * can be reclaimed or migrated.
5283 */
5284 static int __init cmdline_parse_movablecore(char *p)
5285 {
5286 return cmdline_parse_core(p, &required_movablecore);
5287 }
5288
5289 early_param("kernelcore", cmdline_parse_kernelcore);
5290 early_param("movablecore", cmdline_parse_movablecore);
5291
5292 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5293
5294 void adjust_managed_page_count(struct page *page, long count)
5295 {
5296 spin_lock(&managed_page_count_lock);
5297 page_zone(page)->managed_pages += count;
5298 totalram_pages += count;
5299 #ifdef CONFIG_HIGHMEM
5300 if (PageHighMem(page))
5301 totalhigh_pages += count;
5302 #endif
5303 spin_unlock(&managed_page_count_lock);
5304 }
5305 EXPORT_SYMBOL(adjust_managed_page_count);
5306
5307 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5308 {
5309 void *pos;
5310 unsigned long pages = 0;
5311
5312 start = (void *)PAGE_ALIGN((unsigned long)start);
5313 end = (void *)((unsigned long)end & PAGE_MASK);
5314 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5315 if ((unsigned int)poison <= 0xFF)
5316 memset(pos, poison, PAGE_SIZE);
5317 free_reserved_page(virt_to_page(pos));
5318 }
5319
5320 if (pages && s)
5321 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5322 s, pages << (PAGE_SHIFT - 10), start, end);
5323
5324 return pages;
5325 }
5326 EXPORT_SYMBOL(free_reserved_area);
5327
5328 #ifdef CONFIG_HIGHMEM
5329 void free_highmem_page(struct page *page)
5330 {
5331 __free_reserved_page(page);
5332 totalram_pages++;
5333 page_zone(page)->managed_pages++;
5334 totalhigh_pages++;
5335 }
5336 #endif
5337
5338
5339 void __init mem_init_print_info(const char *str)
5340 {
5341 unsigned long physpages, codesize, datasize, rosize, bss_size;
5342 unsigned long init_code_size, init_data_size;
5343
5344 physpages = get_num_physpages();
5345 codesize = _etext - _stext;
5346 datasize = _edata - _sdata;
5347 rosize = __end_rodata - __start_rodata;
5348 bss_size = __bss_stop - __bss_start;
5349 init_data_size = __init_end - __init_begin;
5350 init_code_size = _einittext - _sinittext;
5351
5352 /*
5353 * Detect special cases and adjust section sizes accordingly:
5354 * 1) .init.* may be embedded into .data sections
5355 * 2) .init.text.* may be out of [__init_begin, __init_end],
5356 * please refer to arch/tile/kernel/vmlinux.lds.S.
5357 * 3) .rodata.* may be embedded into .text or .data sections.
5358 */
5359 #define adj_init_size(start, end, size, pos, adj) \
5360 do { \
5361 if (start <= pos && pos < end && size > adj) \
5362 size -= adj; \
5363 } while (0)
5364
5365 adj_init_size(__init_begin, __init_end, init_data_size,
5366 _sinittext, init_code_size);
5367 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5368 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5369 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5370 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5371
5372 #undef adj_init_size
5373
5374 printk("Memory: %luK/%luK available "
5375 "(%luK kernel code, %luK rwdata, %luK rodata, "
5376 "%luK init, %luK bss, %luK reserved"
5377 #ifdef CONFIG_HIGHMEM
5378 ", %luK highmem"
5379 #endif
5380 "%s%s)\n",
5381 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5382 codesize >> 10, datasize >> 10, rosize >> 10,
5383 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5384 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5385 #ifdef CONFIG_HIGHMEM
5386 totalhigh_pages << (PAGE_SHIFT-10),
5387 #endif
5388 str ? ", " : "", str ? str : "");
5389 }
5390
5391 /**
5392 * set_dma_reserve - set the specified number of pages reserved in the first zone
5393 * @new_dma_reserve: The number of pages to mark reserved
5394 *
5395 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5396 * In the DMA zone, a significant percentage may be consumed by kernel image
5397 * and other unfreeable allocations which can skew the watermarks badly. This
5398 * function may optionally be used to account for unfreeable pages in the
5399 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5400 * smaller per-cpu batchsize.
5401 */
5402 void __init set_dma_reserve(unsigned long new_dma_reserve)
5403 {
5404 dma_reserve = new_dma_reserve;
5405 }
5406
5407 void __init free_area_init(unsigned long *zones_size)
5408 {
5409 free_area_init_node(0, zones_size,
5410 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5411 }
5412
5413 static int page_alloc_cpu_notify(struct notifier_block *self,
5414 unsigned long action, void *hcpu)
5415 {
5416 int cpu = (unsigned long)hcpu;
5417
5418 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5419 lru_add_drain_cpu(cpu);
5420 drain_pages(cpu);
5421
5422 /*
5423 * Spill the event counters of the dead processor
5424 * into the current processors event counters.
5425 * This artificially elevates the count of the current
5426 * processor.
5427 */
5428 vm_events_fold_cpu(cpu);
5429
5430 /*
5431 * Zero the differential counters of the dead processor
5432 * so that the vm statistics are consistent.
5433 *
5434 * This is only okay since the processor is dead and cannot
5435 * race with what we are doing.
5436 */
5437 cpu_vm_stats_fold(cpu);
5438 }
5439 return NOTIFY_OK;
5440 }
5441
5442 void __init page_alloc_init(void)
5443 {
5444 hotcpu_notifier(page_alloc_cpu_notify, 0);
5445 }
5446
5447 /*
5448 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5449 * or min_free_kbytes changes.
5450 */
5451 static void calculate_totalreserve_pages(void)
5452 {
5453 struct pglist_data *pgdat;
5454 unsigned long reserve_pages = 0;
5455 enum zone_type i, j;
5456
5457 for_each_online_pgdat(pgdat) {
5458 for (i = 0; i < MAX_NR_ZONES; i++) {
5459 struct zone *zone = pgdat->node_zones + i;
5460 unsigned long max = 0;
5461
5462 /* Find valid and maximum lowmem_reserve in the zone */
5463 for (j = i; j < MAX_NR_ZONES; j++) {
5464 if (zone->lowmem_reserve[j] > max)
5465 max = zone->lowmem_reserve[j];
5466 }
5467
5468 /* we treat the high watermark as reserved pages. */
5469 max += high_wmark_pages(zone);
5470
5471 if (max > zone->managed_pages)
5472 max = zone->managed_pages;
5473 reserve_pages += max;
5474 /*
5475 * Lowmem reserves are not available to
5476 * GFP_HIGHUSER page cache allocations and
5477 * kswapd tries to balance zones to their high
5478 * watermark. As a result, neither should be
5479 * regarded as dirtyable memory, to prevent a
5480 * situation where reclaim has to clean pages
5481 * in order to balance the zones.
5482 */
5483 zone->dirty_balance_reserve = max;
5484 }
5485 }
5486 dirty_balance_reserve = reserve_pages;
5487 totalreserve_pages = reserve_pages;
5488 }
5489
5490 /*
5491 * setup_per_zone_lowmem_reserve - called whenever
5492 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5493 * has a correct pages reserved value, so an adequate number of
5494 * pages are left in the zone after a successful __alloc_pages().
5495 */
5496 static void setup_per_zone_lowmem_reserve(void)
5497 {
5498 struct pglist_data *pgdat;
5499 enum zone_type j, idx;
5500
5501 for_each_online_pgdat(pgdat) {
5502 for (j = 0; j < MAX_NR_ZONES; j++) {
5503 struct zone *zone = pgdat->node_zones + j;
5504 unsigned long managed_pages = zone->managed_pages;
5505
5506 zone->lowmem_reserve[j] = 0;
5507
5508 idx = j;
5509 while (idx) {
5510 struct zone *lower_zone;
5511
5512 idx--;
5513
5514 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5515 sysctl_lowmem_reserve_ratio[idx] = 1;
5516
5517 lower_zone = pgdat->node_zones + idx;
5518 lower_zone->lowmem_reserve[j] = managed_pages /
5519 sysctl_lowmem_reserve_ratio[idx];
5520 managed_pages += lower_zone->managed_pages;
5521 }
5522 }
5523 }
5524
5525 /* update totalreserve_pages */
5526 calculate_totalreserve_pages();
5527 }
5528
5529 static void __setup_per_zone_wmarks(void)
5530 {
5531 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5532 unsigned long lowmem_pages = 0;
5533 struct zone *zone;
5534 unsigned long flags;
5535
5536 /* Calculate total number of !ZONE_HIGHMEM pages */
5537 for_each_zone(zone) {
5538 if (!is_highmem(zone))
5539 lowmem_pages += zone->managed_pages;
5540 }
5541
5542 for_each_zone(zone) {
5543 u64 tmp;
5544
5545 spin_lock_irqsave(&zone->lock, flags);
5546 tmp = (u64)pages_min * zone->managed_pages;
5547 do_div(tmp, lowmem_pages);
5548 if (is_highmem(zone)) {
5549 /*
5550 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5551 * need highmem pages, so cap pages_min to a small
5552 * value here.
5553 *
5554 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5555 * deltas controls asynch page reclaim, and so should
5556 * not be capped for highmem.
5557 */
5558 unsigned long min_pages;
5559
5560 min_pages = zone->managed_pages / 1024;
5561 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5562 zone->watermark[WMARK_MIN] = min_pages;
5563 } else {
5564 /*
5565 * If it's a lowmem zone, reserve a number of pages
5566 * proportionate to the zone's size.
5567 */
5568 zone->watermark[WMARK_MIN] = tmp;
5569 }
5570
5571 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5572 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5573
5574 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5575 high_wmark_pages(zone) -
5576 low_wmark_pages(zone) -
5577 zone_page_state(zone, NR_ALLOC_BATCH));
5578
5579 setup_zone_migrate_reserve(zone);
5580 spin_unlock_irqrestore(&zone->lock, flags);
5581 }
5582
5583 /* update totalreserve_pages */
5584 calculate_totalreserve_pages();
5585 }
5586
5587 /**
5588 * setup_per_zone_wmarks - called when min_free_kbytes changes
5589 * or when memory is hot-{added|removed}
5590 *
5591 * Ensures that the watermark[min,low,high] values for each zone are set
5592 * correctly with respect to min_free_kbytes.
5593 */
5594 void setup_per_zone_wmarks(void)
5595 {
5596 mutex_lock(&zonelists_mutex);
5597 __setup_per_zone_wmarks();
5598 mutex_unlock(&zonelists_mutex);
5599 }
5600
5601 /*
5602 * The inactive anon list should be small enough that the VM never has to
5603 * do too much work, but large enough that each inactive page has a chance
5604 * to be referenced again before it is swapped out.
5605 *
5606 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5607 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5608 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5609 * the anonymous pages are kept on the inactive list.
5610 *
5611 * total target max
5612 * memory ratio inactive anon
5613 * -------------------------------------
5614 * 10MB 1 5MB
5615 * 100MB 1 50MB
5616 * 1GB 3 250MB
5617 * 10GB 10 0.9GB
5618 * 100GB 31 3GB
5619 * 1TB 101 10GB
5620 * 10TB 320 32GB
5621 */
5622 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5623 {
5624 unsigned int gb, ratio;
5625
5626 /* Zone size in gigabytes */
5627 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5628 if (gb)
5629 ratio = int_sqrt(10 * gb);
5630 else
5631 ratio = 1;
5632
5633 zone->inactive_ratio = ratio;
5634 }
5635
5636 static void __meminit setup_per_zone_inactive_ratio(void)
5637 {
5638 struct zone *zone;
5639
5640 for_each_zone(zone)
5641 calculate_zone_inactive_ratio(zone);
5642 }
5643
5644 /*
5645 * Initialise min_free_kbytes.
5646 *
5647 * For small machines we want it small (128k min). For large machines
5648 * we want it large (64MB max). But it is not linear, because network
5649 * bandwidth does not increase linearly with machine size. We use
5650 *
5651 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5652 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5653 *
5654 * which yields
5655 *
5656 * 16MB: 512k
5657 * 32MB: 724k
5658 * 64MB: 1024k
5659 * 128MB: 1448k
5660 * 256MB: 2048k
5661 * 512MB: 2896k
5662 * 1024MB: 4096k
5663 * 2048MB: 5792k
5664 * 4096MB: 8192k
5665 * 8192MB: 11584k
5666 * 16384MB: 16384k
5667 */
5668 int __meminit init_per_zone_wmark_min(void)
5669 {
5670 unsigned long lowmem_kbytes;
5671 int new_min_free_kbytes;
5672
5673 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5674 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5675
5676 if (new_min_free_kbytes > user_min_free_kbytes) {
5677 min_free_kbytes = new_min_free_kbytes;
5678 if (min_free_kbytes < 128)
5679 min_free_kbytes = 128;
5680 if (min_free_kbytes > 65536)
5681 min_free_kbytes = 65536;
5682 } else {
5683 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5684 new_min_free_kbytes, user_min_free_kbytes);
5685 }
5686 setup_per_zone_wmarks();
5687 refresh_zone_stat_thresholds();
5688 setup_per_zone_lowmem_reserve();
5689 setup_per_zone_inactive_ratio();
5690 return 0;
5691 }
5692 module_init(init_per_zone_wmark_min)
5693
5694 /*
5695 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5696 * that we can call two helper functions whenever min_free_kbytes
5697 * changes.
5698 */
5699 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5700 void __user *buffer, size_t *length, loff_t *ppos)
5701 {
5702 proc_dointvec(table, write, buffer, length, ppos);
5703 if (write) {
5704 user_min_free_kbytes = min_free_kbytes;
5705 setup_per_zone_wmarks();
5706 }
5707 return 0;
5708 }
5709
5710 #ifdef CONFIG_NUMA
5711 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5712 void __user *buffer, size_t *length, loff_t *ppos)
5713 {
5714 struct zone *zone;
5715 int rc;
5716
5717 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5718 if (rc)
5719 return rc;
5720
5721 for_each_zone(zone)
5722 zone->min_unmapped_pages = (zone->managed_pages *
5723 sysctl_min_unmapped_ratio) / 100;
5724 return 0;
5725 }
5726
5727 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5728 void __user *buffer, size_t *length, loff_t *ppos)
5729 {
5730 struct zone *zone;
5731 int rc;
5732
5733 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5734 if (rc)
5735 return rc;
5736
5737 for_each_zone(zone)
5738 zone->min_slab_pages = (zone->managed_pages *
5739 sysctl_min_slab_ratio) / 100;
5740 return 0;
5741 }
5742 #endif
5743
5744 /*
5745 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5746 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5747 * whenever sysctl_lowmem_reserve_ratio changes.
5748 *
5749 * The reserve ratio obviously has absolutely no relation with the
5750 * minimum watermarks. The lowmem reserve ratio can only make sense
5751 * if in function of the boot time zone sizes.
5752 */
5753 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5754 void __user *buffer, size_t *length, loff_t *ppos)
5755 {
5756 proc_dointvec_minmax(table, write, buffer, length, ppos);
5757 setup_per_zone_lowmem_reserve();
5758 return 0;
5759 }
5760
5761 /*
5762 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5763 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5764 * pagelist can have before it gets flushed back to buddy allocator.
5765 */
5766 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5767 void __user *buffer, size_t *length, loff_t *ppos)
5768 {
5769 struct zone *zone;
5770 unsigned int cpu;
5771 int ret;
5772
5773 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5774 if (!write || (ret < 0))
5775 return ret;
5776
5777 mutex_lock(&pcp_batch_high_lock);
5778 for_each_populated_zone(zone) {
5779 unsigned long high;
5780 high = zone->managed_pages / percpu_pagelist_fraction;
5781 for_each_possible_cpu(cpu)
5782 pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5783 high);
5784 }
5785 mutex_unlock(&pcp_batch_high_lock);
5786 return 0;
5787 }
5788
5789 int hashdist = HASHDIST_DEFAULT;
5790
5791 #ifdef CONFIG_NUMA
5792 static int __init set_hashdist(char *str)
5793 {
5794 if (!str)
5795 return 0;
5796 hashdist = simple_strtoul(str, &str, 0);
5797 return 1;
5798 }
5799 __setup("hashdist=", set_hashdist);
5800 #endif
5801
5802 /*
5803 * allocate a large system hash table from bootmem
5804 * - it is assumed that the hash table must contain an exact power-of-2
5805 * quantity of entries
5806 * - limit is the number of hash buckets, not the total allocation size
5807 */
5808 void *__init alloc_large_system_hash(const char *tablename,
5809 unsigned long bucketsize,
5810 unsigned long numentries,
5811 int scale,
5812 int flags,
5813 unsigned int *_hash_shift,
5814 unsigned int *_hash_mask,
5815 unsigned long low_limit,
5816 unsigned long high_limit)
5817 {
5818 unsigned long long max = high_limit;
5819 unsigned long log2qty, size;
5820 void *table = NULL;
5821
5822 /* allow the kernel cmdline to have a say */
5823 if (!numentries) {
5824 /* round applicable memory size up to nearest megabyte */
5825 numentries = nr_kernel_pages;
5826
5827 /* It isn't necessary when PAGE_SIZE >= 1MB */
5828 if (PAGE_SHIFT < 20)
5829 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5830
5831 /* limit to 1 bucket per 2^scale bytes of low memory */
5832 if (scale > PAGE_SHIFT)
5833 numentries >>= (scale - PAGE_SHIFT);
5834 else
5835 numentries <<= (PAGE_SHIFT - scale);
5836
5837 /* Make sure we've got at least a 0-order allocation.. */
5838 if (unlikely(flags & HASH_SMALL)) {
5839 /* Makes no sense without HASH_EARLY */
5840 WARN_ON(!(flags & HASH_EARLY));
5841 if (!(numentries >> *_hash_shift)) {
5842 numentries = 1UL << *_hash_shift;
5843 BUG_ON(!numentries);
5844 }
5845 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5846 numentries = PAGE_SIZE / bucketsize;
5847 }
5848 numentries = roundup_pow_of_two(numentries);
5849
5850 /* limit allocation size to 1/16 total memory by default */
5851 if (max == 0) {
5852 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5853 do_div(max, bucketsize);
5854 }
5855 max = min(max, 0x80000000ULL);
5856
5857 if (numentries < low_limit)
5858 numentries = low_limit;
5859 if (numentries > max)
5860 numentries = max;
5861
5862 log2qty = ilog2(numentries);
5863
5864 do {
5865 size = bucketsize << log2qty;
5866 if (flags & HASH_EARLY)
5867 table = alloc_bootmem_nopanic(size);
5868 else if (hashdist)
5869 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5870 else {
5871 /*
5872 * If bucketsize is not a power-of-two, we may free
5873 * some pages at the end of hash table which
5874 * alloc_pages_exact() automatically does
5875 */
5876 if (get_order(size) < MAX_ORDER) {
5877 table = alloc_pages_exact(size, GFP_ATOMIC);
5878 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5879 }
5880 }
5881 } while (!table && size > PAGE_SIZE && --log2qty);
5882
5883 if (!table)
5884 panic("Failed to allocate %s hash table\n", tablename);
5885
5886 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5887 tablename,
5888 (1UL << log2qty),
5889 ilog2(size) - PAGE_SHIFT,
5890 size);
5891
5892 if (_hash_shift)
5893 *_hash_shift = log2qty;
5894 if (_hash_mask)
5895 *_hash_mask = (1 << log2qty) - 1;
5896
5897 return table;
5898 }
5899
5900 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5901 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5902 unsigned long pfn)
5903 {
5904 #ifdef CONFIG_SPARSEMEM
5905 return __pfn_to_section(pfn)->pageblock_flags;
5906 #else
5907 return zone->pageblock_flags;
5908 #endif /* CONFIG_SPARSEMEM */
5909 }
5910
5911 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5912 {
5913 #ifdef CONFIG_SPARSEMEM
5914 pfn &= (PAGES_PER_SECTION-1);
5915 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5916 #else
5917 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5918 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5919 #endif /* CONFIG_SPARSEMEM */
5920 }
5921
5922 /**
5923 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5924 * @page: The page within the block of interest
5925 * @start_bitidx: The first bit of interest to retrieve
5926 * @end_bitidx: The last bit of interest
5927 * returns pageblock_bits flags
5928 */
5929 unsigned long get_pageblock_flags_group(struct page *page,
5930 int start_bitidx, int end_bitidx)
5931 {
5932 struct zone *zone;
5933 unsigned long *bitmap;
5934 unsigned long pfn, bitidx;
5935 unsigned long flags = 0;
5936 unsigned long value = 1;
5937
5938 zone = page_zone(page);
5939 pfn = page_to_pfn(page);
5940 bitmap = get_pageblock_bitmap(zone, pfn);
5941 bitidx = pfn_to_bitidx(zone, pfn);
5942
5943 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5944 if (test_bit(bitidx + start_bitidx, bitmap))
5945 flags |= value;
5946
5947 return flags;
5948 }
5949
5950 /**
5951 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5952 * @page: The page within the block of interest
5953 * @start_bitidx: The first bit of interest
5954 * @end_bitidx: The last bit of interest
5955 * @flags: The flags to set
5956 */
5957 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5958 int start_bitidx, int end_bitidx)
5959 {
5960 struct zone *zone;
5961 unsigned long *bitmap;
5962 unsigned long pfn, bitidx;
5963 unsigned long value = 1;
5964
5965 zone = page_zone(page);
5966 pfn = page_to_pfn(page);
5967 bitmap = get_pageblock_bitmap(zone, pfn);
5968 bitidx = pfn_to_bitidx(zone, pfn);
5969 VM_BUG_ON(!zone_spans_pfn(zone, pfn));
5970
5971 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5972 if (flags & value)
5973 __set_bit(bitidx + start_bitidx, bitmap);
5974 else
5975 __clear_bit(bitidx + start_bitidx, bitmap);
5976 }
5977
5978 /*
5979 * This function checks whether pageblock includes unmovable pages or not.
5980 * If @count is not zero, it is okay to include less @count unmovable pages
5981 *
5982 * PageLRU check without isolation or lru_lock could race so that
5983 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5984 * expect this function should be exact.
5985 */
5986 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5987 bool skip_hwpoisoned_pages)
5988 {
5989 unsigned long pfn, iter, found;
5990 int mt;
5991
5992 /*
5993 * For avoiding noise data, lru_add_drain_all() should be called
5994 * If ZONE_MOVABLE, the zone never contains unmovable pages
5995 */
5996 if (zone_idx(zone) == ZONE_MOVABLE)
5997 return false;
5998 mt = get_pageblock_migratetype(page);
5999 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6000 return false;
6001
6002 pfn = page_to_pfn(page);
6003 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6004 unsigned long check = pfn + iter;
6005
6006 if (!pfn_valid_within(check))
6007 continue;
6008
6009 page = pfn_to_page(check);
6010
6011 /*
6012 * Hugepages are not in LRU lists, but they're movable.
6013 * We need not scan over tail pages bacause we don't
6014 * handle each tail page individually in migration.
6015 */
6016 if (PageHuge(page)) {
6017 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6018 continue;
6019 }
6020
6021 /*
6022 * We can't use page_count without pin a page
6023 * because another CPU can free compound page.
6024 * This check already skips compound tails of THP
6025 * because their page->_count is zero at all time.
6026 */
6027 if (!atomic_read(&page->_count)) {
6028 if (PageBuddy(page))
6029 iter += (1 << page_order(page)) - 1;
6030 continue;
6031 }
6032
6033 /*
6034 * The HWPoisoned page may be not in buddy system, and
6035 * page_count() is not 0.
6036 */
6037 if (skip_hwpoisoned_pages && PageHWPoison(page))
6038 continue;
6039
6040 if (!PageLRU(page))
6041 found++;
6042 /*
6043 * If there are RECLAIMABLE pages, we need to check it.
6044 * But now, memory offline itself doesn't call shrink_slab()
6045 * and it still to be fixed.
6046 */
6047 /*
6048 * If the page is not RAM, page_count()should be 0.
6049 * we don't need more check. This is an _used_ not-movable page.
6050 *
6051 * The problematic thing here is PG_reserved pages. PG_reserved
6052 * is set to both of a memory hole page and a _used_ kernel
6053 * page at boot.
6054 */
6055 if (found > count)
6056 return true;
6057 }
6058 return false;
6059 }
6060
6061 bool is_pageblock_removable_nolock(struct page *page)
6062 {
6063 struct zone *zone;
6064 unsigned long pfn;
6065
6066 /*
6067 * We have to be careful here because we are iterating over memory
6068 * sections which are not zone aware so we might end up outside of
6069 * the zone but still within the section.
6070 * We have to take care about the node as well. If the node is offline
6071 * its NODE_DATA will be NULL - see page_zone.
6072 */
6073 if (!node_online(page_to_nid(page)))
6074 return false;
6075
6076 zone = page_zone(page);
6077 pfn = page_to_pfn(page);
6078 if (!zone_spans_pfn(zone, pfn))
6079 return false;
6080
6081 return !has_unmovable_pages(zone, page, 0, true);
6082 }
6083
6084 #ifdef CONFIG_CMA
6085
6086 static unsigned long pfn_max_align_down(unsigned long pfn)
6087 {
6088 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6089 pageblock_nr_pages) - 1);
6090 }
6091
6092 static unsigned long pfn_max_align_up(unsigned long pfn)
6093 {
6094 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6095 pageblock_nr_pages));
6096 }
6097
6098 /* [start, end) must belong to a single zone. */
6099 static int __alloc_contig_migrate_range(struct compact_control *cc,
6100 unsigned long start, unsigned long end)
6101 {
6102 /* This function is based on compact_zone() from compaction.c. */
6103 unsigned long nr_reclaimed;
6104 unsigned long pfn = start;
6105 unsigned int tries = 0;
6106 int ret = 0;
6107
6108 migrate_prep();
6109
6110 while (pfn < end || !list_empty(&cc->migratepages)) {
6111 if (fatal_signal_pending(current)) {
6112 ret = -EINTR;
6113 break;
6114 }
6115
6116 if (list_empty(&cc->migratepages)) {
6117 cc->nr_migratepages = 0;
6118 pfn = isolate_migratepages_range(cc->zone, cc,
6119 pfn, end, true);
6120 if (!pfn) {
6121 ret = -EINTR;
6122 break;
6123 }
6124 tries = 0;
6125 } else if (++tries == 5) {
6126 ret = ret < 0 ? ret : -EBUSY;
6127 break;
6128 }
6129
6130 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6131 &cc->migratepages);
6132 cc->nr_migratepages -= nr_reclaimed;
6133
6134 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6135 0, MIGRATE_SYNC, MR_CMA);
6136 }
6137 if (ret < 0) {
6138 putback_movable_pages(&cc->migratepages);
6139 return ret;
6140 }
6141 return 0;
6142 }
6143
6144 /**
6145 * alloc_contig_range() -- tries to allocate given range of pages
6146 * @start: start PFN to allocate
6147 * @end: one-past-the-last PFN to allocate
6148 * @migratetype: migratetype of the underlaying pageblocks (either
6149 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6150 * in range must have the same migratetype and it must
6151 * be either of the two.
6152 *
6153 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6154 * aligned, however it's the caller's responsibility to guarantee that
6155 * we are the only thread that changes migrate type of pageblocks the
6156 * pages fall in.
6157 *
6158 * The PFN range must belong to a single zone.
6159 *
6160 * Returns zero on success or negative error code. On success all
6161 * pages which PFN is in [start, end) are allocated for the caller and
6162 * need to be freed with free_contig_range().
6163 */
6164 int alloc_contig_range(unsigned long start, unsigned long end,
6165 unsigned migratetype)
6166 {
6167 unsigned long outer_start, outer_end;
6168 int ret = 0, order;
6169
6170 struct compact_control cc = {
6171 .nr_migratepages = 0,
6172 .order = -1,
6173 .zone = page_zone(pfn_to_page(start)),
6174 .sync = true,
6175 .ignore_skip_hint = true,
6176 };
6177 INIT_LIST_HEAD(&cc.migratepages);
6178
6179 /*
6180 * What we do here is we mark all pageblocks in range as
6181 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6182 * have different sizes, and due to the way page allocator
6183 * work, we align the range to biggest of the two pages so
6184 * that page allocator won't try to merge buddies from
6185 * different pageblocks and change MIGRATE_ISOLATE to some
6186 * other migration type.
6187 *
6188 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6189 * migrate the pages from an unaligned range (ie. pages that
6190 * we are interested in). This will put all the pages in
6191 * range back to page allocator as MIGRATE_ISOLATE.
6192 *
6193 * When this is done, we take the pages in range from page
6194 * allocator removing them from the buddy system. This way
6195 * page allocator will never consider using them.
6196 *
6197 * This lets us mark the pageblocks back as
6198 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6199 * aligned range but not in the unaligned, original range are
6200 * put back to page allocator so that buddy can use them.
6201 */
6202
6203 ret = start_isolate_page_range(pfn_max_align_down(start),
6204 pfn_max_align_up(end), migratetype,
6205 false);
6206 if (ret)
6207 return ret;
6208
6209 ret = __alloc_contig_migrate_range(&cc, start, end);
6210 if (ret)
6211 goto done;
6212
6213 /*
6214 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6215 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6216 * more, all pages in [start, end) are free in page allocator.
6217 * What we are going to do is to allocate all pages from
6218 * [start, end) (that is remove them from page allocator).
6219 *
6220 * The only problem is that pages at the beginning and at the
6221 * end of interesting range may be not aligned with pages that
6222 * page allocator holds, ie. they can be part of higher order
6223 * pages. Because of this, we reserve the bigger range and
6224 * once this is done free the pages we are not interested in.
6225 *
6226 * We don't have to hold zone->lock here because the pages are
6227 * isolated thus they won't get removed from buddy.
6228 */
6229
6230 lru_add_drain_all();
6231 drain_all_pages();
6232
6233 order = 0;
6234 outer_start = start;
6235 while (!PageBuddy(pfn_to_page(outer_start))) {
6236 if (++order >= MAX_ORDER) {
6237 ret = -EBUSY;
6238 goto done;
6239 }
6240 outer_start &= ~0UL << order;
6241 }
6242
6243 /* Make sure the range is really isolated. */
6244 if (test_pages_isolated(outer_start, end, false)) {
6245 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6246 outer_start, end);
6247 ret = -EBUSY;
6248 goto done;
6249 }
6250
6251
6252 /* Grab isolated pages from freelists. */
6253 outer_end = isolate_freepages_range(&cc, outer_start, end);
6254 if (!outer_end) {
6255 ret = -EBUSY;
6256 goto done;
6257 }
6258
6259 /* Free head and tail (if any) */
6260 if (start != outer_start)
6261 free_contig_range(outer_start, start - outer_start);
6262 if (end != outer_end)
6263 free_contig_range(end, outer_end - end);
6264
6265 done:
6266 undo_isolate_page_range(pfn_max_align_down(start),
6267 pfn_max_align_up(end), migratetype);
6268 return ret;
6269 }
6270
6271 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6272 {
6273 unsigned int count = 0;
6274
6275 for (; nr_pages--; pfn++) {
6276 struct page *page = pfn_to_page(pfn);
6277
6278 count += page_count(page) != 1;
6279 __free_page(page);
6280 }
6281 WARN(count != 0, "%d pages are still in use!\n", count);
6282 }
6283 #endif
6284
6285 #ifdef CONFIG_MEMORY_HOTPLUG
6286 /*
6287 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6288 * page high values need to be recalulated.
6289 */
6290 void __meminit zone_pcp_update(struct zone *zone)
6291 {
6292 unsigned cpu;
6293 mutex_lock(&pcp_batch_high_lock);
6294 for_each_possible_cpu(cpu)
6295 pageset_set_high_and_batch(zone,
6296 per_cpu_ptr(zone->pageset, cpu));
6297 mutex_unlock(&pcp_batch_high_lock);
6298 }
6299 #endif
6300
6301 void zone_pcp_reset(struct zone *zone)
6302 {
6303 unsigned long flags;
6304 int cpu;
6305 struct per_cpu_pageset *pset;
6306
6307 /* avoid races with drain_pages() */
6308 local_irq_save(flags);
6309 if (zone->pageset != &boot_pageset) {
6310 for_each_online_cpu(cpu) {
6311 pset = per_cpu_ptr(zone->pageset, cpu);
6312 drain_zonestat(zone, pset);
6313 }
6314 free_percpu(zone->pageset);
6315 zone->pageset = &boot_pageset;
6316 }
6317 local_irq_restore(flags);
6318 }
6319
6320 #ifdef CONFIG_MEMORY_HOTREMOVE
6321 /*
6322 * All pages in the range must be isolated before calling this.
6323 */
6324 void
6325 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6326 {
6327 struct page *page;
6328 struct zone *zone;
6329 int order, i;
6330 unsigned long pfn;
6331 unsigned long flags;
6332 /* find the first valid pfn */
6333 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6334 if (pfn_valid(pfn))
6335 break;
6336 if (pfn == end_pfn)
6337 return;
6338 zone = page_zone(pfn_to_page(pfn));
6339 spin_lock_irqsave(&zone->lock, flags);
6340 pfn = start_pfn;
6341 while (pfn < end_pfn) {
6342 if (!pfn_valid(pfn)) {
6343 pfn++;
6344 continue;
6345 }
6346 page = pfn_to_page(pfn);
6347 /*
6348 * The HWPoisoned page may be not in buddy system, and
6349 * page_count() is not 0.
6350 */
6351 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6352 pfn++;
6353 SetPageReserved(page);
6354 continue;
6355 }
6356
6357 BUG_ON(page_count(page));
6358 BUG_ON(!PageBuddy(page));
6359 order = page_order(page);
6360 #ifdef CONFIG_DEBUG_VM
6361 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6362 pfn, 1 << order, end_pfn);
6363 #endif
6364 list_del(&page->lru);
6365 rmv_page_order(page);
6366 zone->free_area[order].nr_free--;
6367 #ifdef CONFIG_HIGHMEM
6368 if (PageHighMem(page))
6369 totalhigh_pages -= 1 << order;
6370 #endif
6371 for (i = 0; i < (1 << order); i++)
6372 SetPageReserved((page+i));
6373 pfn += (1 << order);
6374 }
6375 spin_unlock_irqrestore(&zone->lock, flags);
6376 }
6377 #endif
6378
6379 #ifdef CONFIG_MEMORY_FAILURE
6380 bool is_free_buddy_page(struct page *page)
6381 {
6382 struct zone *zone = page_zone(page);
6383 unsigned long pfn = page_to_pfn(page);
6384 unsigned long flags;
6385 int order;
6386
6387 spin_lock_irqsave(&zone->lock, flags);
6388 for (order = 0; order < MAX_ORDER; order++) {
6389 struct page *page_head = page - (pfn & ((1 << order) - 1));
6390
6391 if (PageBuddy(page_head) && page_order(page_head) >= order)
6392 break;
6393 }
6394 spin_unlock_irqrestore(&zone->lock, flags);
6395
6396 return order < MAX_ORDER;
6397 }
6398 #endif
6399
6400 static const struct trace_print_flags pageflag_names[] = {
6401 {1UL << PG_locked, "locked" },
6402 {1UL << PG_error, "error" },
6403 {1UL << PG_referenced, "referenced" },
6404 {1UL << PG_uptodate, "uptodate" },
6405 {1UL << PG_dirty, "dirty" },
6406 {1UL << PG_lru, "lru" },
6407 {1UL << PG_active, "active" },
6408 {1UL << PG_slab, "slab" },
6409 {1UL << PG_owner_priv_1, "owner_priv_1" },
6410 {1UL << PG_arch_1, "arch_1" },
6411 {1UL << PG_reserved, "reserved" },
6412 {1UL << PG_private, "private" },
6413 {1UL << PG_private_2, "private_2" },
6414 {1UL << PG_writeback, "writeback" },
6415 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6416 {1UL << PG_head, "head" },
6417 {1UL << PG_tail, "tail" },
6418 #else
6419 {1UL << PG_compound, "compound" },
6420 #endif
6421 {1UL << PG_swapcache, "swapcache" },
6422 {1UL << PG_mappedtodisk, "mappedtodisk" },
6423 {1UL << PG_reclaim, "reclaim" },
6424 {1UL << PG_swapbacked, "swapbacked" },
6425 {1UL << PG_unevictable, "unevictable" },
6426 #ifdef CONFIG_MMU
6427 {1UL << PG_mlocked, "mlocked" },
6428 #endif
6429 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6430 {1UL << PG_uncached, "uncached" },
6431 #endif
6432 #ifdef CONFIG_MEMORY_FAILURE
6433 {1UL << PG_hwpoison, "hwpoison" },
6434 #endif
6435 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6436 {1UL << PG_compound_lock, "compound_lock" },
6437 #endif
6438 };
6439
6440 static void dump_page_flags(unsigned long flags)
6441 {
6442 const char *delim = "";
6443 unsigned long mask;
6444 int i;
6445
6446 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6447
6448 printk(KERN_ALERT "page flags: %#lx(", flags);
6449
6450 /* remove zone id */
6451 flags &= (1UL << NR_PAGEFLAGS) - 1;
6452
6453 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6454
6455 mask = pageflag_names[i].mask;
6456 if ((flags & mask) != mask)
6457 continue;
6458
6459 flags &= ~mask;
6460 printk("%s%s", delim, pageflag_names[i].name);
6461 delim = "|";
6462 }
6463
6464 /* check for left over flags */
6465 if (flags)
6466 printk("%s%#lx", delim, flags);
6467
6468 printk(")\n");
6469 }
6470
6471 void dump_page(struct page *page)
6472 {
6473 printk(KERN_ALERT
6474 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6475 page, atomic_read(&page->_count), page_mapcount(page),
6476 page->mapping, page->index);
6477 dump_page_flags(page->flags);
6478 mem_cgroup_print_bad_page(page);
6479 }
This page took 0.172858 seconds and 5 git commands to generate.