mm/cma: change fallback behaviour for CMA freepage
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/page_ext.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/page_owner.h>
64
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
68 #include "internal.h"
69
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock);
72 #define MIN_PERCPU_PAGELIST_FRACTION (8)
73
74 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
75 DEFINE_PER_CPU(int, numa_node);
76 EXPORT_PER_CPU_SYMBOL(numa_node);
77 #endif
78
79 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
80 /*
81 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
82 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
83 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
84 * defined in <linux/topology.h>.
85 */
86 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
87 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
88 int _node_numa_mem_[MAX_NUMNODES];
89 #endif
90
91 /*
92 * Array of node states.
93 */
94 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
95 [N_POSSIBLE] = NODE_MASK_ALL,
96 [N_ONLINE] = { { [0] = 1UL } },
97 #ifndef CONFIG_NUMA
98 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
99 #ifdef CONFIG_HIGHMEM
100 [N_HIGH_MEMORY] = { { [0] = 1UL } },
101 #endif
102 #ifdef CONFIG_MOVABLE_NODE
103 [N_MEMORY] = { { [0] = 1UL } },
104 #endif
105 [N_CPU] = { { [0] = 1UL } },
106 #endif /* NUMA */
107 };
108 EXPORT_SYMBOL(node_states);
109
110 /* Protect totalram_pages and zone->managed_pages */
111 static DEFINE_SPINLOCK(managed_page_count_lock);
112
113 unsigned long totalram_pages __read_mostly;
114 unsigned long totalreserve_pages __read_mostly;
115 unsigned long totalcma_pages __read_mostly;
116 /*
117 * When calculating the number of globally allowed dirty pages, there
118 * is a certain number of per-zone reserves that should not be
119 * considered dirtyable memory. This is the sum of those reserves
120 * over all existing zones that contribute dirtyable memory.
121 */
122 unsigned long dirty_balance_reserve __read_mostly;
123
124 int percpu_pagelist_fraction;
125 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
126
127 #ifdef CONFIG_PM_SLEEP
128 /*
129 * The following functions are used by the suspend/hibernate code to temporarily
130 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
131 * while devices are suspended. To avoid races with the suspend/hibernate code,
132 * they should always be called with pm_mutex held (gfp_allowed_mask also should
133 * only be modified with pm_mutex held, unless the suspend/hibernate code is
134 * guaranteed not to run in parallel with that modification).
135 */
136
137 static gfp_t saved_gfp_mask;
138
139 void pm_restore_gfp_mask(void)
140 {
141 WARN_ON(!mutex_is_locked(&pm_mutex));
142 if (saved_gfp_mask) {
143 gfp_allowed_mask = saved_gfp_mask;
144 saved_gfp_mask = 0;
145 }
146 }
147
148 void pm_restrict_gfp_mask(void)
149 {
150 WARN_ON(!mutex_is_locked(&pm_mutex));
151 WARN_ON(saved_gfp_mask);
152 saved_gfp_mask = gfp_allowed_mask;
153 gfp_allowed_mask &= ~GFP_IOFS;
154 }
155
156 bool pm_suspended_storage(void)
157 {
158 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
159 return false;
160 return true;
161 }
162 #endif /* CONFIG_PM_SLEEP */
163
164 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
165 int pageblock_order __read_mostly;
166 #endif
167
168 static void __free_pages_ok(struct page *page, unsigned int order);
169
170 /*
171 * results with 256, 32 in the lowmem_reserve sysctl:
172 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
173 * 1G machine -> (16M dma, 784M normal, 224M high)
174 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
175 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
176 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
177 *
178 * TBD: should special case ZONE_DMA32 machines here - in those we normally
179 * don't need any ZONE_NORMAL reservation
180 */
181 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
182 #ifdef CONFIG_ZONE_DMA
183 256,
184 #endif
185 #ifdef CONFIG_ZONE_DMA32
186 256,
187 #endif
188 #ifdef CONFIG_HIGHMEM
189 32,
190 #endif
191 32,
192 };
193
194 EXPORT_SYMBOL(totalram_pages);
195
196 static char * const zone_names[MAX_NR_ZONES] = {
197 #ifdef CONFIG_ZONE_DMA
198 "DMA",
199 #endif
200 #ifdef CONFIG_ZONE_DMA32
201 "DMA32",
202 #endif
203 "Normal",
204 #ifdef CONFIG_HIGHMEM
205 "HighMem",
206 #endif
207 "Movable",
208 };
209
210 int min_free_kbytes = 1024;
211 int user_min_free_kbytes = -1;
212
213 static unsigned long __meminitdata nr_kernel_pages;
214 static unsigned long __meminitdata nr_all_pages;
215 static unsigned long __meminitdata dma_reserve;
216
217 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
218 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
219 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
220 static unsigned long __initdata required_kernelcore;
221 static unsigned long __initdata required_movablecore;
222 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
223
224 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
225 int movable_zone;
226 EXPORT_SYMBOL(movable_zone);
227 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
228
229 #if MAX_NUMNODES > 1
230 int nr_node_ids __read_mostly = MAX_NUMNODES;
231 int nr_online_nodes __read_mostly = 1;
232 EXPORT_SYMBOL(nr_node_ids);
233 EXPORT_SYMBOL(nr_online_nodes);
234 #endif
235
236 int page_group_by_mobility_disabled __read_mostly;
237
238 void set_pageblock_migratetype(struct page *page, int migratetype)
239 {
240 if (unlikely(page_group_by_mobility_disabled &&
241 migratetype < MIGRATE_PCPTYPES))
242 migratetype = MIGRATE_UNMOVABLE;
243
244 set_pageblock_flags_group(page, (unsigned long)migratetype,
245 PB_migrate, PB_migrate_end);
246 }
247
248 #ifdef CONFIG_DEBUG_VM
249 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
250 {
251 int ret = 0;
252 unsigned seq;
253 unsigned long pfn = page_to_pfn(page);
254 unsigned long sp, start_pfn;
255
256 do {
257 seq = zone_span_seqbegin(zone);
258 start_pfn = zone->zone_start_pfn;
259 sp = zone->spanned_pages;
260 if (!zone_spans_pfn(zone, pfn))
261 ret = 1;
262 } while (zone_span_seqretry(zone, seq));
263
264 if (ret)
265 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
266 pfn, zone_to_nid(zone), zone->name,
267 start_pfn, start_pfn + sp);
268
269 return ret;
270 }
271
272 static int page_is_consistent(struct zone *zone, struct page *page)
273 {
274 if (!pfn_valid_within(page_to_pfn(page)))
275 return 0;
276 if (zone != page_zone(page))
277 return 0;
278
279 return 1;
280 }
281 /*
282 * Temporary debugging check for pages not lying within a given zone.
283 */
284 static int bad_range(struct zone *zone, struct page *page)
285 {
286 if (page_outside_zone_boundaries(zone, page))
287 return 1;
288 if (!page_is_consistent(zone, page))
289 return 1;
290
291 return 0;
292 }
293 #else
294 static inline int bad_range(struct zone *zone, struct page *page)
295 {
296 return 0;
297 }
298 #endif
299
300 static void bad_page(struct page *page, const char *reason,
301 unsigned long bad_flags)
302 {
303 static unsigned long resume;
304 static unsigned long nr_shown;
305 static unsigned long nr_unshown;
306
307 /* Don't complain about poisoned pages */
308 if (PageHWPoison(page)) {
309 page_mapcount_reset(page); /* remove PageBuddy */
310 return;
311 }
312
313 /*
314 * Allow a burst of 60 reports, then keep quiet for that minute;
315 * or allow a steady drip of one report per second.
316 */
317 if (nr_shown == 60) {
318 if (time_before(jiffies, resume)) {
319 nr_unshown++;
320 goto out;
321 }
322 if (nr_unshown) {
323 printk(KERN_ALERT
324 "BUG: Bad page state: %lu messages suppressed\n",
325 nr_unshown);
326 nr_unshown = 0;
327 }
328 nr_shown = 0;
329 }
330 if (nr_shown++ == 0)
331 resume = jiffies + 60 * HZ;
332
333 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
334 current->comm, page_to_pfn(page));
335 dump_page_badflags(page, reason, bad_flags);
336
337 print_modules();
338 dump_stack();
339 out:
340 /* Leave bad fields for debug, except PageBuddy could make trouble */
341 page_mapcount_reset(page); /* remove PageBuddy */
342 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
343 }
344
345 /*
346 * Higher-order pages are called "compound pages". They are structured thusly:
347 *
348 * The first PAGE_SIZE page is called the "head page".
349 *
350 * The remaining PAGE_SIZE pages are called "tail pages".
351 *
352 * All pages have PG_compound set. All tail pages have their ->first_page
353 * pointing at the head page.
354 *
355 * The first tail page's ->lru.next holds the address of the compound page's
356 * put_page() function. Its ->lru.prev holds the order of allocation.
357 * This usage means that zero-order pages may not be compound.
358 */
359
360 static void free_compound_page(struct page *page)
361 {
362 __free_pages_ok(page, compound_order(page));
363 }
364
365 void prep_compound_page(struct page *page, unsigned long order)
366 {
367 int i;
368 int nr_pages = 1 << order;
369
370 set_compound_page_dtor(page, free_compound_page);
371 set_compound_order(page, order);
372 __SetPageHead(page);
373 for (i = 1; i < nr_pages; i++) {
374 struct page *p = page + i;
375 set_page_count(p, 0);
376 p->first_page = page;
377 /* Make sure p->first_page is always valid for PageTail() */
378 smp_wmb();
379 __SetPageTail(p);
380 }
381 }
382
383 static inline void prep_zero_page(struct page *page, unsigned int order,
384 gfp_t gfp_flags)
385 {
386 int i;
387
388 /*
389 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
390 * and __GFP_HIGHMEM from hard or soft interrupt context.
391 */
392 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
393 for (i = 0; i < (1 << order); i++)
394 clear_highpage(page + i);
395 }
396
397 #ifdef CONFIG_DEBUG_PAGEALLOC
398 unsigned int _debug_guardpage_minorder;
399 bool _debug_pagealloc_enabled __read_mostly;
400 bool _debug_guardpage_enabled __read_mostly;
401
402 static int __init early_debug_pagealloc(char *buf)
403 {
404 if (!buf)
405 return -EINVAL;
406
407 if (strcmp(buf, "on") == 0)
408 _debug_pagealloc_enabled = true;
409
410 return 0;
411 }
412 early_param("debug_pagealloc", early_debug_pagealloc);
413
414 static bool need_debug_guardpage(void)
415 {
416 /* If we don't use debug_pagealloc, we don't need guard page */
417 if (!debug_pagealloc_enabled())
418 return false;
419
420 return true;
421 }
422
423 static void init_debug_guardpage(void)
424 {
425 if (!debug_pagealloc_enabled())
426 return;
427
428 _debug_guardpage_enabled = true;
429 }
430
431 struct page_ext_operations debug_guardpage_ops = {
432 .need = need_debug_guardpage,
433 .init = init_debug_guardpage,
434 };
435
436 static int __init debug_guardpage_minorder_setup(char *buf)
437 {
438 unsigned long res;
439
440 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
441 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
442 return 0;
443 }
444 _debug_guardpage_minorder = res;
445 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
446 return 0;
447 }
448 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
449
450 static inline void set_page_guard(struct zone *zone, struct page *page,
451 unsigned int order, int migratetype)
452 {
453 struct page_ext *page_ext;
454
455 if (!debug_guardpage_enabled())
456 return;
457
458 page_ext = lookup_page_ext(page);
459 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
460
461 INIT_LIST_HEAD(&page->lru);
462 set_page_private(page, order);
463 /* Guard pages are not available for any usage */
464 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
465 }
466
467 static inline void clear_page_guard(struct zone *zone, struct page *page,
468 unsigned int order, int migratetype)
469 {
470 struct page_ext *page_ext;
471
472 if (!debug_guardpage_enabled())
473 return;
474
475 page_ext = lookup_page_ext(page);
476 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
477
478 set_page_private(page, 0);
479 if (!is_migrate_isolate(migratetype))
480 __mod_zone_freepage_state(zone, (1 << order), migratetype);
481 }
482 #else
483 struct page_ext_operations debug_guardpage_ops = { NULL, };
484 static inline void set_page_guard(struct zone *zone, struct page *page,
485 unsigned int order, int migratetype) {}
486 static inline void clear_page_guard(struct zone *zone, struct page *page,
487 unsigned int order, int migratetype) {}
488 #endif
489
490 static inline void set_page_order(struct page *page, unsigned int order)
491 {
492 set_page_private(page, order);
493 __SetPageBuddy(page);
494 }
495
496 static inline void rmv_page_order(struct page *page)
497 {
498 __ClearPageBuddy(page);
499 set_page_private(page, 0);
500 }
501
502 /*
503 * This function checks whether a page is free && is the buddy
504 * we can do coalesce a page and its buddy if
505 * (a) the buddy is not in a hole &&
506 * (b) the buddy is in the buddy system &&
507 * (c) a page and its buddy have the same order &&
508 * (d) a page and its buddy are in the same zone.
509 *
510 * For recording whether a page is in the buddy system, we set ->_mapcount
511 * PAGE_BUDDY_MAPCOUNT_VALUE.
512 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
513 * serialized by zone->lock.
514 *
515 * For recording page's order, we use page_private(page).
516 */
517 static inline int page_is_buddy(struct page *page, struct page *buddy,
518 unsigned int order)
519 {
520 if (!pfn_valid_within(page_to_pfn(buddy)))
521 return 0;
522
523 if (page_is_guard(buddy) && page_order(buddy) == order) {
524 if (page_zone_id(page) != page_zone_id(buddy))
525 return 0;
526
527 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
528
529 return 1;
530 }
531
532 if (PageBuddy(buddy) && page_order(buddy) == order) {
533 /*
534 * zone check is done late to avoid uselessly
535 * calculating zone/node ids for pages that could
536 * never merge.
537 */
538 if (page_zone_id(page) != page_zone_id(buddy))
539 return 0;
540
541 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
542
543 return 1;
544 }
545 return 0;
546 }
547
548 /*
549 * Freeing function for a buddy system allocator.
550 *
551 * The concept of a buddy system is to maintain direct-mapped table
552 * (containing bit values) for memory blocks of various "orders".
553 * The bottom level table contains the map for the smallest allocatable
554 * units of memory (here, pages), and each level above it describes
555 * pairs of units from the levels below, hence, "buddies".
556 * At a high level, all that happens here is marking the table entry
557 * at the bottom level available, and propagating the changes upward
558 * as necessary, plus some accounting needed to play nicely with other
559 * parts of the VM system.
560 * At each level, we keep a list of pages, which are heads of continuous
561 * free pages of length of (1 << order) and marked with _mapcount
562 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
563 * field.
564 * So when we are allocating or freeing one, we can derive the state of the
565 * other. That is, if we allocate a small block, and both were
566 * free, the remainder of the region must be split into blocks.
567 * If a block is freed, and its buddy is also free, then this
568 * triggers coalescing into a block of larger size.
569 *
570 * -- nyc
571 */
572
573 static inline void __free_one_page(struct page *page,
574 unsigned long pfn,
575 struct zone *zone, unsigned int order,
576 int migratetype)
577 {
578 unsigned long page_idx;
579 unsigned long combined_idx;
580 unsigned long uninitialized_var(buddy_idx);
581 struct page *buddy;
582 int max_order = MAX_ORDER;
583
584 VM_BUG_ON(!zone_is_initialized(zone));
585 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
586
587 VM_BUG_ON(migratetype == -1);
588 if (is_migrate_isolate(migratetype)) {
589 /*
590 * We restrict max order of merging to prevent merge
591 * between freepages on isolate pageblock and normal
592 * pageblock. Without this, pageblock isolation
593 * could cause incorrect freepage accounting.
594 */
595 max_order = min(MAX_ORDER, pageblock_order + 1);
596 } else {
597 __mod_zone_freepage_state(zone, 1 << order, migratetype);
598 }
599
600 page_idx = pfn & ((1 << max_order) - 1);
601
602 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
603 VM_BUG_ON_PAGE(bad_range(zone, page), page);
604
605 while (order < max_order - 1) {
606 buddy_idx = __find_buddy_index(page_idx, order);
607 buddy = page + (buddy_idx - page_idx);
608 if (!page_is_buddy(page, buddy, order))
609 break;
610 /*
611 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
612 * merge with it and move up one order.
613 */
614 if (page_is_guard(buddy)) {
615 clear_page_guard(zone, buddy, order, migratetype);
616 } else {
617 list_del(&buddy->lru);
618 zone->free_area[order].nr_free--;
619 rmv_page_order(buddy);
620 }
621 combined_idx = buddy_idx & page_idx;
622 page = page + (combined_idx - page_idx);
623 page_idx = combined_idx;
624 order++;
625 }
626 set_page_order(page, order);
627
628 /*
629 * If this is not the largest possible page, check if the buddy
630 * of the next-highest order is free. If it is, it's possible
631 * that pages are being freed that will coalesce soon. In case,
632 * that is happening, add the free page to the tail of the list
633 * so it's less likely to be used soon and more likely to be merged
634 * as a higher order page
635 */
636 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
637 struct page *higher_page, *higher_buddy;
638 combined_idx = buddy_idx & page_idx;
639 higher_page = page + (combined_idx - page_idx);
640 buddy_idx = __find_buddy_index(combined_idx, order + 1);
641 higher_buddy = higher_page + (buddy_idx - combined_idx);
642 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
643 list_add_tail(&page->lru,
644 &zone->free_area[order].free_list[migratetype]);
645 goto out;
646 }
647 }
648
649 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
650 out:
651 zone->free_area[order].nr_free++;
652 }
653
654 static inline int free_pages_check(struct page *page)
655 {
656 const char *bad_reason = NULL;
657 unsigned long bad_flags = 0;
658
659 if (unlikely(page_mapcount(page)))
660 bad_reason = "nonzero mapcount";
661 if (unlikely(page->mapping != NULL))
662 bad_reason = "non-NULL mapping";
663 if (unlikely(atomic_read(&page->_count) != 0))
664 bad_reason = "nonzero _count";
665 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
666 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
667 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
668 }
669 #ifdef CONFIG_MEMCG
670 if (unlikely(page->mem_cgroup))
671 bad_reason = "page still charged to cgroup";
672 #endif
673 if (unlikely(bad_reason)) {
674 bad_page(page, bad_reason, bad_flags);
675 return 1;
676 }
677 page_cpupid_reset_last(page);
678 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
679 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
680 return 0;
681 }
682
683 /*
684 * Frees a number of pages from the PCP lists
685 * Assumes all pages on list are in same zone, and of same order.
686 * count is the number of pages to free.
687 *
688 * If the zone was previously in an "all pages pinned" state then look to
689 * see if this freeing clears that state.
690 *
691 * And clear the zone's pages_scanned counter, to hold off the "all pages are
692 * pinned" detection logic.
693 */
694 static void free_pcppages_bulk(struct zone *zone, int count,
695 struct per_cpu_pages *pcp)
696 {
697 int migratetype = 0;
698 int batch_free = 0;
699 int to_free = count;
700 unsigned long nr_scanned;
701
702 spin_lock(&zone->lock);
703 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
704 if (nr_scanned)
705 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
706
707 while (to_free) {
708 struct page *page;
709 struct list_head *list;
710
711 /*
712 * Remove pages from lists in a round-robin fashion. A
713 * batch_free count is maintained that is incremented when an
714 * empty list is encountered. This is so more pages are freed
715 * off fuller lists instead of spinning excessively around empty
716 * lists
717 */
718 do {
719 batch_free++;
720 if (++migratetype == MIGRATE_PCPTYPES)
721 migratetype = 0;
722 list = &pcp->lists[migratetype];
723 } while (list_empty(list));
724
725 /* This is the only non-empty list. Free them all. */
726 if (batch_free == MIGRATE_PCPTYPES)
727 batch_free = to_free;
728
729 do {
730 int mt; /* migratetype of the to-be-freed page */
731
732 page = list_entry(list->prev, struct page, lru);
733 /* must delete as __free_one_page list manipulates */
734 list_del(&page->lru);
735 mt = get_freepage_migratetype(page);
736 if (unlikely(has_isolate_pageblock(zone)))
737 mt = get_pageblock_migratetype(page);
738
739 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
740 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
741 trace_mm_page_pcpu_drain(page, 0, mt);
742 } while (--to_free && --batch_free && !list_empty(list));
743 }
744 spin_unlock(&zone->lock);
745 }
746
747 static void free_one_page(struct zone *zone,
748 struct page *page, unsigned long pfn,
749 unsigned int order,
750 int migratetype)
751 {
752 unsigned long nr_scanned;
753 spin_lock(&zone->lock);
754 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
755 if (nr_scanned)
756 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
757
758 if (unlikely(has_isolate_pageblock(zone) ||
759 is_migrate_isolate(migratetype))) {
760 migratetype = get_pfnblock_migratetype(page, pfn);
761 }
762 __free_one_page(page, pfn, zone, order, migratetype);
763 spin_unlock(&zone->lock);
764 }
765
766 static int free_tail_pages_check(struct page *head_page, struct page *page)
767 {
768 if (!IS_ENABLED(CONFIG_DEBUG_VM))
769 return 0;
770 if (unlikely(!PageTail(page))) {
771 bad_page(page, "PageTail not set", 0);
772 return 1;
773 }
774 if (unlikely(page->first_page != head_page)) {
775 bad_page(page, "first_page not consistent", 0);
776 return 1;
777 }
778 return 0;
779 }
780
781 static bool free_pages_prepare(struct page *page, unsigned int order)
782 {
783 bool compound = PageCompound(page);
784 int i, bad = 0;
785
786 VM_BUG_ON_PAGE(PageTail(page), page);
787 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
788
789 trace_mm_page_free(page, order);
790 kmemcheck_free_shadow(page, order);
791 kasan_free_pages(page, order);
792
793 if (PageAnon(page))
794 page->mapping = NULL;
795 bad += free_pages_check(page);
796 for (i = 1; i < (1 << order); i++) {
797 if (compound)
798 bad += free_tail_pages_check(page, page + i);
799 bad += free_pages_check(page + i);
800 }
801 if (bad)
802 return false;
803
804 reset_page_owner(page, order);
805
806 if (!PageHighMem(page)) {
807 debug_check_no_locks_freed(page_address(page),
808 PAGE_SIZE << order);
809 debug_check_no_obj_freed(page_address(page),
810 PAGE_SIZE << order);
811 }
812 arch_free_page(page, order);
813 kernel_map_pages(page, 1 << order, 0);
814
815 return true;
816 }
817
818 static void __free_pages_ok(struct page *page, unsigned int order)
819 {
820 unsigned long flags;
821 int migratetype;
822 unsigned long pfn = page_to_pfn(page);
823
824 if (!free_pages_prepare(page, order))
825 return;
826
827 migratetype = get_pfnblock_migratetype(page, pfn);
828 local_irq_save(flags);
829 __count_vm_events(PGFREE, 1 << order);
830 set_freepage_migratetype(page, migratetype);
831 free_one_page(page_zone(page), page, pfn, order, migratetype);
832 local_irq_restore(flags);
833 }
834
835 void __init __free_pages_bootmem(struct page *page, unsigned int order)
836 {
837 unsigned int nr_pages = 1 << order;
838 struct page *p = page;
839 unsigned int loop;
840
841 prefetchw(p);
842 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
843 prefetchw(p + 1);
844 __ClearPageReserved(p);
845 set_page_count(p, 0);
846 }
847 __ClearPageReserved(p);
848 set_page_count(p, 0);
849
850 page_zone(page)->managed_pages += nr_pages;
851 set_page_refcounted(page);
852 __free_pages(page, order);
853 }
854
855 #ifdef CONFIG_CMA
856 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
857 void __init init_cma_reserved_pageblock(struct page *page)
858 {
859 unsigned i = pageblock_nr_pages;
860 struct page *p = page;
861
862 do {
863 __ClearPageReserved(p);
864 set_page_count(p, 0);
865 } while (++p, --i);
866
867 set_pageblock_migratetype(page, MIGRATE_CMA);
868
869 if (pageblock_order >= MAX_ORDER) {
870 i = pageblock_nr_pages;
871 p = page;
872 do {
873 set_page_refcounted(p);
874 __free_pages(p, MAX_ORDER - 1);
875 p += MAX_ORDER_NR_PAGES;
876 } while (i -= MAX_ORDER_NR_PAGES);
877 } else {
878 set_page_refcounted(page);
879 __free_pages(page, pageblock_order);
880 }
881
882 adjust_managed_page_count(page, pageblock_nr_pages);
883 }
884 #endif
885
886 /*
887 * The order of subdivision here is critical for the IO subsystem.
888 * Please do not alter this order without good reasons and regression
889 * testing. Specifically, as large blocks of memory are subdivided,
890 * the order in which smaller blocks are delivered depends on the order
891 * they're subdivided in this function. This is the primary factor
892 * influencing the order in which pages are delivered to the IO
893 * subsystem according to empirical testing, and this is also justified
894 * by considering the behavior of a buddy system containing a single
895 * large block of memory acted on by a series of small allocations.
896 * This behavior is a critical factor in sglist merging's success.
897 *
898 * -- nyc
899 */
900 static inline void expand(struct zone *zone, struct page *page,
901 int low, int high, struct free_area *area,
902 int migratetype)
903 {
904 unsigned long size = 1 << high;
905
906 while (high > low) {
907 area--;
908 high--;
909 size >>= 1;
910 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
911
912 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
913 debug_guardpage_enabled() &&
914 high < debug_guardpage_minorder()) {
915 /*
916 * Mark as guard pages (or page), that will allow to
917 * merge back to allocator when buddy will be freed.
918 * Corresponding page table entries will not be touched,
919 * pages will stay not present in virtual address space
920 */
921 set_page_guard(zone, &page[size], high, migratetype);
922 continue;
923 }
924 list_add(&page[size].lru, &area->free_list[migratetype]);
925 area->nr_free++;
926 set_page_order(&page[size], high);
927 }
928 }
929
930 /*
931 * This page is about to be returned from the page allocator
932 */
933 static inline int check_new_page(struct page *page)
934 {
935 const char *bad_reason = NULL;
936 unsigned long bad_flags = 0;
937
938 if (unlikely(page_mapcount(page)))
939 bad_reason = "nonzero mapcount";
940 if (unlikely(page->mapping != NULL))
941 bad_reason = "non-NULL mapping";
942 if (unlikely(atomic_read(&page->_count) != 0))
943 bad_reason = "nonzero _count";
944 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
945 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
946 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
947 }
948 #ifdef CONFIG_MEMCG
949 if (unlikely(page->mem_cgroup))
950 bad_reason = "page still charged to cgroup";
951 #endif
952 if (unlikely(bad_reason)) {
953 bad_page(page, bad_reason, bad_flags);
954 return 1;
955 }
956 return 0;
957 }
958
959 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
960 int alloc_flags)
961 {
962 int i;
963
964 for (i = 0; i < (1 << order); i++) {
965 struct page *p = page + i;
966 if (unlikely(check_new_page(p)))
967 return 1;
968 }
969
970 set_page_private(page, 0);
971 set_page_refcounted(page);
972
973 arch_alloc_page(page, order);
974 kernel_map_pages(page, 1 << order, 1);
975 kasan_alloc_pages(page, order);
976
977 if (gfp_flags & __GFP_ZERO)
978 prep_zero_page(page, order, gfp_flags);
979
980 if (order && (gfp_flags & __GFP_COMP))
981 prep_compound_page(page, order);
982
983 set_page_owner(page, order, gfp_flags);
984
985 /*
986 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
987 * allocate the page. The expectation is that the caller is taking
988 * steps that will free more memory. The caller should avoid the page
989 * being used for !PFMEMALLOC purposes.
990 */
991 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
992
993 return 0;
994 }
995
996 /*
997 * Go through the free lists for the given migratetype and remove
998 * the smallest available page from the freelists
999 */
1000 static inline
1001 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1002 int migratetype)
1003 {
1004 unsigned int current_order;
1005 struct free_area *area;
1006 struct page *page;
1007
1008 /* Find a page of the appropriate size in the preferred list */
1009 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1010 area = &(zone->free_area[current_order]);
1011 if (list_empty(&area->free_list[migratetype]))
1012 continue;
1013
1014 page = list_entry(area->free_list[migratetype].next,
1015 struct page, lru);
1016 list_del(&page->lru);
1017 rmv_page_order(page);
1018 area->nr_free--;
1019 expand(zone, page, order, current_order, area, migratetype);
1020 set_freepage_migratetype(page, migratetype);
1021 return page;
1022 }
1023
1024 return NULL;
1025 }
1026
1027
1028 /*
1029 * This array describes the order lists are fallen back to when
1030 * the free lists for the desirable migrate type are depleted
1031 */
1032 static int fallbacks[MIGRATE_TYPES][4] = {
1033 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1034 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1035 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1036 #ifdef CONFIG_CMA
1037 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
1038 #endif
1039 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
1040 #ifdef CONFIG_MEMORY_ISOLATION
1041 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
1042 #endif
1043 };
1044
1045 #ifdef CONFIG_CMA
1046 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1047 unsigned int order)
1048 {
1049 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1050 }
1051 #else
1052 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1053 unsigned int order) { return NULL; }
1054 #endif
1055
1056 /*
1057 * Move the free pages in a range to the free lists of the requested type.
1058 * Note that start_page and end_pages are not aligned on a pageblock
1059 * boundary. If alignment is required, use move_freepages_block()
1060 */
1061 int move_freepages(struct zone *zone,
1062 struct page *start_page, struct page *end_page,
1063 int migratetype)
1064 {
1065 struct page *page;
1066 unsigned long order;
1067 int pages_moved = 0;
1068
1069 #ifndef CONFIG_HOLES_IN_ZONE
1070 /*
1071 * page_zone is not safe to call in this context when
1072 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1073 * anyway as we check zone boundaries in move_freepages_block().
1074 * Remove at a later date when no bug reports exist related to
1075 * grouping pages by mobility
1076 */
1077 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1078 #endif
1079
1080 for (page = start_page; page <= end_page;) {
1081 /* Make sure we are not inadvertently changing nodes */
1082 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1083
1084 if (!pfn_valid_within(page_to_pfn(page))) {
1085 page++;
1086 continue;
1087 }
1088
1089 if (!PageBuddy(page)) {
1090 page++;
1091 continue;
1092 }
1093
1094 order = page_order(page);
1095 list_move(&page->lru,
1096 &zone->free_area[order].free_list[migratetype]);
1097 set_freepage_migratetype(page, migratetype);
1098 page += 1 << order;
1099 pages_moved += 1 << order;
1100 }
1101
1102 return pages_moved;
1103 }
1104
1105 int move_freepages_block(struct zone *zone, struct page *page,
1106 int migratetype)
1107 {
1108 unsigned long start_pfn, end_pfn;
1109 struct page *start_page, *end_page;
1110
1111 start_pfn = page_to_pfn(page);
1112 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1113 start_page = pfn_to_page(start_pfn);
1114 end_page = start_page + pageblock_nr_pages - 1;
1115 end_pfn = start_pfn + pageblock_nr_pages - 1;
1116
1117 /* Do not cross zone boundaries */
1118 if (!zone_spans_pfn(zone, start_pfn))
1119 start_page = page;
1120 if (!zone_spans_pfn(zone, end_pfn))
1121 return 0;
1122
1123 return move_freepages(zone, start_page, end_page, migratetype);
1124 }
1125
1126 static void change_pageblock_range(struct page *pageblock_page,
1127 int start_order, int migratetype)
1128 {
1129 int nr_pageblocks = 1 << (start_order - pageblock_order);
1130
1131 while (nr_pageblocks--) {
1132 set_pageblock_migratetype(pageblock_page, migratetype);
1133 pageblock_page += pageblock_nr_pages;
1134 }
1135 }
1136
1137 /*
1138 * When we are falling back to another migratetype during allocation, try to
1139 * steal extra free pages from the same pageblocks to satisfy further
1140 * allocations, instead of polluting multiple pageblocks.
1141 *
1142 * If we are stealing a relatively large buddy page, it is likely there will
1143 * be more free pages in the pageblock, so try to steal them all. For
1144 * reclaimable and unmovable allocations, we steal regardless of page size,
1145 * as fragmentation caused by those allocations polluting movable pageblocks
1146 * is worse than movable allocations stealing from unmovable and reclaimable
1147 * pageblocks.
1148 *
1149 * If we claim more than half of the pageblock, change pageblock's migratetype
1150 * as well.
1151 */
1152 static void try_to_steal_freepages(struct zone *zone, struct page *page,
1153 int start_type, int fallback_type)
1154 {
1155 int current_order = page_order(page);
1156
1157 /* Take ownership for orders >= pageblock_order */
1158 if (current_order >= pageblock_order) {
1159 change_pageblock_range(page, current_order, start_type);
1160 return;
1161 }
1162
1163 if (current_order >= pageblock_order / 2 ||
1164 start_type == MIGRATE_RECLAIMABLE ||
1165 start_type == MIGRATE_UNMOVABLE ||
1166 page_group_by_mobility_disabled) {
1167 int pages;
1168
1169 pages = move_freepages_block(zone, page, start_type);
1170
1171 /* Claim the whole block if over half of it is free */
1172 if (pages >= (1 << (pageblock_order-1)) ||
1173 page_group_by_mobility_disabled)
1174 set_pageblock_migratetype(page, start_type);
1175 }
1176 }
1177
1178 /* Remove an element from the buddy allocator from the fallback list */
1179 static inline struct page *
1180 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1181 {
1182 struct free_area *area;
1183 unsigned int current_order;
1184 struct page *page;
1185
1186 /* Find the largest possible block of pages in the other list */
1187 for (current_order = MAX_ORDER-1;
1188 current_order >= order && current_order <= MAX_ORDER-1;
1189 --current_order) {
1190 int i;
1191 for (i = 0;; i++) {
1192 int migratetype = fallbacks[start_migratetype][i];
1193 int buddy_type = start_migratetype;
1194
1195 /* MIGRATE_RESERVE handled later if necessary */
1196 if (migratetype == MIGRATE_RESERVE)
1197 break;
1198
1199 area = &(zone->free_area[current_order]);
1200 if (list_empty(&area->free_list[migratetype]))
1201 continue;
1202
1203 page = list_entry(area->free_list[migratetype].next,
1204 struct page, lru);
1205 area->nr_free--;
1206
1207 try_to_steal_freepages(zone, page, start_migratetype,
1208 migratetype);
1209
1210 /* Remove the page from the freelists */
1211 list_del(&page->lru);
1212 rmv_page_order(page);
1213
1214 expand(zone, page, order, current_order, area,
1215 buddy_type);
1216
1217 /*
1218 * The freepage_migratetype may differ from pageblock's
1219 * migratetype depending on the decisions in
1220 * try_to_steal_freepages(). This is OK as long as it
1221 * does not differ for MIGRATE_CMA pageblocks. For CMA
1222 * we need to make sure unallocated pages flushed from
1223 * pcp lists are returned to the correct freelist.
1224 */
1225 set_freepage_migratetype(page, buddy_type);
1226
1227 trace_mm_page_alloc_extfrag(page, order, current_order,
1228 start_migratetype, migratetype);
1229
1230 return page;
1231 }
1232 }
1233
1234 return NULL;
1235 }
1236
1237 /*
1238 * Do the hard work of removing an element from the buddy allocator.
1239 * Call me with the zone->lock already held.
1240 */
1241 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1242 int migratetype)
1243 {
1244 struct page *page;
1245
1246 retry_reserve:
1247 page = __rmqueue_smallest(zone, order, migratetype);
1248
1249 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1250 if (migratetype == MIGRATE_MOVABLE)
1251 page = __rmqueue_cma_fallback(zone, order);
1252
1253 if (!page)
1254 page = __rmqueue_fallback(zone, order, migratetype);
1255
1256 /*
1257 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1258 * is used because __rmqueue_smallest is an inline function
1259 * and we want just one call site
1260 */
1261 if (!page) {
1262 migratetype = MIGRATE_RESERVE;
1263 goto retry_reserve;
1264 }
1265 }
1266
1267 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1268 return page;
1269 }
1270
1271 /*
1272 * Obtain a specified number of elements from the buddy allocator, all under
1273 * a single hold of the lock, for efficiency. Add them to the supplied list.
1274 * Returns the number of new pages which were placed at *list.
1275 */
1276 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1277 unsigned long count, struct list_head *list,
1278 int migratetype, bool cold)
1279 {
1280 int i;
1281
1282 spin_lock(&zone->lock);
1283 for (i = 0; i < count; ++i) {
1284 struct page *page = __rmqueue(zone, order, migratetype);
1285 if (unlikely(page == NULL))
1286 break;
1287
1288 /*
1289 * Split buddy pages returned by expand() are received here
1290 * in physical page order. The page is added to the callers and
1291 * list and the list head then moves forward. From the callers
1292 * perspective, the linked list is ordered by page number in
1293 * some conditions. This is useful for IO devices that can
1294 * merge IO requests if the physical pages are ordered
1295 * properly.
1296 */
1297 if (likely(!cold))
1298 list_add(&page->lru, list);
1299 else
1300 list_add_tail(&page->lru, list);
1301 list = &page->lru;
1302 if (is_migrate_cma(get_freepage_migratetype(page)))
1303 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1304 -(1 << order));
1305 }
1306 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1307 spin_unlock(&zone->lock);
1308 return i;
1309 }
1310
1311 #ifdef CONFIG_NUMA
1312 /*
1313 * Called from the vmstat counter updater to drain pagesets of this
1314 * currently executing processor on remote nodes after they have
1315 * expired.
1316 *
1317 * Note that this function must be called with the thread pinned to
1318 * a single processor.
1319 */
1320 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1321 {
1322 unsigned long flags;
1323 int to_drain, batch;
1324
1325 local_irq_save(flags);
1326 batch = ACCESS_ONCE(pcp->batch);
1327 to_drain = min(pcp->count, batch);
1328 if (to_drain > 0) {
1329 free_pcppages_bulk(zone, to_drain, pcp);
1330 pcp->count -= to_drain;
1331 }
1332 local_irq_restore(flags);
1333 }
1334 #endif
1335
1336 /*
1337 * Drain pcplists of the indicated processor and zone.
1338 *
1339 * The processor must either be the current processor and the
1340 * thread pinned to the current processor or a processor that
1341 * is not online.
1342 */
1343 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1344 {
1345 unsigned long flags;
1346 struct per_cpu_pageset *pset;
1347 struct per_cpu_pages *pcp;
1348
1349 local_irq_save(flags);
1350 pset = per_cpu_ptr(zone->pageset, cpu);
1351
1352 pcp = &pset->pcp;
1353 if (pcp->count) {
1354 free_pcppages_bulk(zone, pcp->count, pcp);
1355 pcp->count = 0;
1356 }
1357 local_irq_restore(flags);
1358 }
1359
1360 /*
1361 * Drain pcplists of all zones on the indicated processor.
1362 *
1363 * The processor must either be the current processor and the
1364 * thread pinned to the current processor or a processor that
1365 * is not online.
1366 */
1367 static void drain_pages(unsigned int cpu)
1368 {
1369 struct zone *zone;
1370
1371 for_each_populated_zone(zone) {
1372 drain_pages_zone(cpu, zone);
1373 }
1374 }
1375
1376 /*
1377 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1378 *
1379 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1380 * the single zone's pages.
1381 */
1382 void drain_local_pages(struct zone *zone)
1383 {
1384 int cpu = smp_processor_id();
1385
1386 if (zone)
1387 drain_pages_zone(cpu, zone);
1388 else
1389 drain_pages(cpu);
1390 }
1391
1392 /*
1393 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1394 *
1395 * When zone parameter is non-NULL, spill just the single zone's pages.
1396 *
1397 * Note that this code is protected against sending an IPI to an offline
1398 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1399 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1400 * nothing keeps CPUs from showing up after we populated the cpumask and
1401 * before the call to on_each_cpu_mask().
1402 */
1403 void drain_all_pages(struct zone *zone)
1404 {
1405 int cpu;
1406
1407 /*
1408 * Allocate in the BSS so we wont require allocation in
1409 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1410 */
1411 static cpumask_t cpus_with_pcps;
1412
1413 /*
1414 * We don't care about racing with CPU hotplug event
1415 * as offline notification will cause the notified
1416 * cpu to drain that CPU pcps and on_each_cpu_mask
1417 * disables preemption as part of its processing
1418 */
1419 for_each_online_cpu(cpu) {
1420 struct per_cpu_pageset *pcp;
1421 struct zone *z;
1422 bool has_pcps = false;
1423
1424 if (zone) {
1425 pcp = per_cpu_ptr(zone->pageset, cpu);
1426 if (pcp->pcp.count)
1427 has_pcps = true;
1428 } else {
1429 for_each_populated_zone(z) {
1430 pcp = per_cpu_ptr(z->pageset, cpu);
1431 if (pcp->pcp.count) {
1432 has_pcps = true;
1433 break;
1434 }
1435 }
1436 }
1437
1438 if (has_pcps)
1439 cpumask_set_cpu(cpu, &cpus_with_pcps);
1440 else
1441 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1442 }
1443 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1444 zone, 1);
1445 }
1446
1447 #ifdef CONFIG_HIBERNATION
1448
1449 void mark_free_pages(struct zone *zone)
1450 {
1451 unsigned long pfn, max_zone_pfn;
1452 unsigned long flags;
1453 unsigned int order, t;
1454 struct list_head *curr;
1455
1456 if (zone_is_empty(zone))
1457 return;
1458
1459 spin_lock_irqsave(&zone->lock, flags);
1460
1461 max_zone_pfn = zone_end_pfn(zone);
1462 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1463 if (pfn_valid(pfn)) {
1464 struct page *page = pfn_to_page(pfn);
1465
1466 if (!swsusp_page_is_forbidden(page))
1467 swsusp_unset_page_free(page);
1468 }
1469
1470 for_each_migratetype_order(order, t) {
1471 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1472 unsigned long i;
1473
1474 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1475 for (i = 0; i < (1UL << order); i++)
1476 swsusp_set_page_free(pfn_to_page(pfn + i));
1477 }
1478 }
1479 spin_unlock_irqrestore(&zone->lock, flags);
1480 }
1481 #endif /* CONFIG_PM */
1482
1483 /*
1484 * Free a 0-order page
1485 * cold == true ? free a cold page : free a hot page
1486 */
1487 void free_hot_cold_page(struct page *page, bool cold)
1488 {
1489 struct zone *zone = page_zone(page);
1490 struct per_cpu_pages *pcp;
1491 unsigned long flags;
1492 unsigned long pfn = page_to_pfn(page);
1493 int migratetype;
1494
1495 if (!free_pages_prepare(page, 0))
1496 return;
1497
1498 migratetype = get_pfnblock_migratetype(page, pfn);
1499 set_freepage_migratetype(page, migratetype);
1500 local_irq_save(flags);
1501 __count_vm_event(PGFREE);
1502
1503 /*
1504 * We only track unmovable, reclaimable and movable on pcp lists.
1505 * Free ISOLATE pages back to the allocator because they are being
1506 * offlined but treat RESERVE as movable pages so we can get those
1507 * areas back if necessary. Otherwise, we may have to free
1508 * excessively into the page allocator
1509 */
1510 if (migratetype >= MIGRATE_PCPTYPES) {
1511 if (unlikely(is_migrate_isolate(migratetype))) {
1512 free_one_page(zone, page, pfn, 0, migratetype);
1513 goto out;
1514 }
1515 migratetype = MIGRATE_MOVABLE;
1516 }
1517
1518 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1519 if (!cold)
1520 list_add(&page->lru, &pcp->lists[migratetype]);
1521 else
1522 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1523 pcp->count++;
1524 if (pcp->count >= pcp->high) {
1525 unsigned long batch = ACCESS_ONCE(pcp->batch);
1526 free_pcppages_bulk(zone, batch, pcp);
1527 pcp->count -= batch;
1528 }
1529
1530 out:
1531 local_irq_restore(flags);
1532 }
1533
1534 /*
1535 * Free a list of 0-order pages
1536 */
1537 void free_hot_cold_page_list(struct list_head *list, bool cold)
1538 {
1539 struct page *page, *next;
1540
1541 list_for_each_entry_safe(page, next, list, lru) {
1542 trace_mm_page_free_batched(page, cold);
1543 free_hot_cold_page(page, cold);
1544 }
1545 }
1546
1547 /*
1548 * split_page takes a non-compound higher-order page, and splits it into
1549 * n (1<<order) sub-pages: page[0..n]
1550 * Each sub-page must be freed individually.
1551 *
1552 * Note: this is probably too low level an operation for use in drivers.
1553 * Please consult with lkml before using this in your driver.
1554 */
1555 void split_page(struct page *page, unsigned int order)
1556 {
1557 int i;
1558
1559 VM_BUG_ON_PAGE(PageCompound(page), page);
1560 VM_BUG_ON_PAGE(!page_count(page), page);
1561
1562 #ifdef CONFIG_KMEMCHECK
1563 /*
1564 * Split shadow pages too, because free(page[0]) would
1565 * otherwise free the whole shadow.
1566 */
1567 if (kmemcheck_page_is_tracked(page))
1568 split_page(virt_to_page(page[0].shadow), order);
1569 #endif
1570
1571 set_page_owner(page, 0, 0);
1572 for (i = 1; i < (1 << order); i++) {
1573 set_page_refcounted(page + i);
1574 set_page_owner(page + i, 0, 0);
1575 }
1576 }
1577 EXPORT_SYMBOL_GPL(split_page);
1578
1579 int __isolate_free_page(struct page *page, unsigned int order)
1580 {
1581 unsigned long watermark;
1582 struct zone *zone;
1583 int mt;
1584
1585 BUG_ON(!PageBuddy(page));
1586
1587 zone = page_zone(page);
1588 mt = get_pageblock_migratetype(page);
1589
1590 if (!is_migrate_isolate(mt)) {
1591 /* Obey watermarks as if the page was being allocated */
1592 watermark = low_wmark_pages(zone) + (1 << order);
1593 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1594 return 0;
1595
1596 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1597 }
1598
1599 /* Remove page from free list */
1600 list_del(&page->lru);
1601 zone->free_area[order].nr_free--;
1602 rmv_page_order(page);
1603
1604 /* Set the pageblock if the isolated page is at least a pageblock */
1605 if (order >= pageblock_order - 1) {
1606 struct page *endpage = page + (1 << order) - 1;
1607 for (; page < endpage; page += pageblock_nr_pages) {
1608 int mt = get_pageblock_migratetype(page);
1609 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1610 set_pageblock_migratetype(page,
1611 MIGRATE_MOVABLE);
1612 }
1613 }
1614
1615 set_page_owner(page, order, 0);
1616 return 1UL << order;
1617 }
1618
1619 /*
1620 * Similar to split_page except the page is already free. As this is only
1621 * being used for migration, the migratetype of the block also changes.
1622 * As this is called with interrupts disabled, the caller is responsible
1623 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1624 * are enabled.
1625 *
1626 * Note: this is probably too low level an operation for use in drivers.
1627 * Please consult with lkml before using this in your driver.
1628 */
1629 int split_free_page(struct page *page)
1630 {
1631 unsigned int order;
1632 int nr_pages;
1633
1634 order = page_order(page);
1635
1636 nr_pages = __isolate_free_page(page, order);
1637 if (!nr_pages)
1638 return 0;
1639
1640 /* Split into individual pages */
1641 set_page_refcounted(page);
1642 split_page(page, order);
1643 return nr_pages;
1644 }
1645
1646 /*
1647 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1648 */
1649 static inline
1650 struct page *buffered_rmqueue(struct zone *preferred_zone,
1651 struct zone *zone, unsigned int order,
1652 gfp_t gfp_flags, int migratetype)
1653 {
1654 unsigned long flags;
1655 struct page *page;
1656 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1657
1658 if (likely(order == 0)) {
1659 struct per_cpu_pages *pcp;
1660 struct list_head *list;
1661
1662 local_irq_save(flags);
1663 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1664 list = &pcp->lists[migratetype];
1665 if (list_empty(list)) {
1666 pcp->count += rmqueue_bulk(zone, 0,
1667 pcp->batch, list,
1668 migratetype, cold);
1669 if (unlikely(list_empty(list)))
1670 goto failed;
1671 }
1672
1673 if (cold)
1674 page = list_entry(list->prev, struct page, lru);
1675 else
1676 page = list_entry(list->next, struct page, lru);
1677
1678 list_del(&page->lru);
1679 pcp->count--;
1680 } else {
1681 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1682 /*
1683 * __GFP_NOFAIL is not to be used in new code.
1684 *
1685 * All __GFP_NOFAIL callers should be fixed so that they
1686 * properly detect and handle allocation failures.
1687 *
1688 * We most definitely don't want callers attempting to
1689 * allocate greater than order-1 page units with
1690 * __GFP_NOFAIL.
1691 */
1692 WARN_ON_ONCE(order > 1);
1693 }
1694 spin_lock_irqsave(&zone->lock, flags);
1695 page = __rmqueue(zone, order, migratetype);
1696 spin_unlock(&zone->lock);
1697 if (!page)
1698 goto failed;
1699 __mod_zone_freepage_state(zone, -(1 << order),
1700 get_freepage_migratetype(page));
1701 }
1702
1703 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1704 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
1705 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1706 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1707
1708 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1709 zone_statistics(preferred_zone, zone, gfp_flags);
1710 local_irq_restore(flags);
1711
1712 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1713 return page;
1714
1715 failed:
1716 local_irq_restore(flags);
1717 return NULL;
1718 }
1719
1720 #ifdef CONFIG_FAIL_PAGE_ALLOC
1721
1722 static struct {
1723 struct fault_attr attr;
1724
1725 u32 ignore_gfp_highmem;
1726 u32 ignore_gfp_wait;
1727 u32 min_order;
1728 } fail_page_alloc = {
1729 .attr = FAULT_ATTR_INITIALIZER,
1730 .ignore_gfp_wait = 1,
1731 .ignore_gfp_highmem = 1,
1732 .min_order = 1,
1733 };
1734
1735 static int __init setup_fail_page_alloc(char *str)
1736 {
1737 return setup_fault_attr(&fail_page_alloc.attr, str);
1738 }
1739 __setup("fail_page_alloc=", setup_fail_page_alloc);
1740
1741 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1742 {
1743 if (order < fail_page_alloc.min_order)
1744 return false;
1745 if (gfp_mask & __GFP_NOFAIL)
1746 return false;
1747 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1748 return false;
1749 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1750 return false;
1751
1752 return should_fail(&fail_page_alloc.attr, 1 << order);
1753 }
1754
1755 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1756
1757 static int __init fail_page_alloc_debugfs(void)
1758 {
1759 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1760 struct dentry *dir;
1761
1762 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1763 &fail_page_alloc.attr);
1764 if (IS_ERR(dir))
1765 return PTR_ERR(dir);
1766
1767 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1768 &fail_page_alloc.ignore_gfp_wait))
1769 goto fail;
1770 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1771 &fail_page_alloc.ignore_gfp_highmem))
1772 goto fail;
1773 if (!debugfs_create_u32("min-order", mode, dir,
1774 &fail_page_alloc.min_order))
1775 goto fail;
1776
1777 return 0;
1778 fail:
1779 debugfs_remove_recursive(dir);
1780
1781 return -ENOMEM;
1782 }
1783
1784 late_initcall(fail_page_alloc_debugfs);
1785
1786 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1787
1788 #else /* CONFIG_FAIL_PAGE_ALLOC */
1789
1790 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1791 {
1792 return false;
1793 }
1794
1795 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1796
1797 /*
1798 * Return true if free pages are above 'mark'. This takes into account the order
1799 * of the allocation.
1800 */
1801 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1802 unsigned long mark, int classzone_idx, int alloc_flags,
1803 long free_pages)
1804 {
1805 /* free_pages may go negative - that's OK */
1806 long min = mark;
1807 int o;
1808 long free_cma = 0;
1809
1810 free_pages -= (1 << order) - 1;
1811 if (alloc_flags & ALLOC_HIGH)
1812 min -= min / 2;
1813 if (alloc_flags & ALLOC_HARDER)
1814 min -= min / 4;
1815 #ifdef CONFIG_CMA
1816 /* If allocation can't use CMA areas don't use free CMA pages */
1817 if (!(alloc_flags & ALLOC_CMA))
1818 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1819 #endif
1820
1821 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1822 return false;
1823 for (o = 0; o < order; o++) {
1824 /* At the next order, this order's pages become unavailable */
1825 free_pages -= z->free_area[o].nr_free << o;
1826
1827 /* Require fewer higher order pages to be free */
1828 min >>= 1;
1829
1830 if (free_pages <= min)
1831 return false;
1832 }
1833 return true;
1834 }
1835
1836 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1837 int classzone_idx, int alloc_flags)
1838 {
1839 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1840 zone_page_state(z, NR_FREE_PAGES));
1841 }
1842
1843 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1844 unsigned long mark, int classzone_idx, int alloc_flags)
1845 {
1846 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1847
1848 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1849 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1850
1851 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1852 free_pages);
1853 }
1854
1855 #ifdef CONFIG_NUMA
1856 /*
1857 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1858 * skip over zones that are not allowed by the cpuset, or that have
1859 * been recently (in last second) found to be nearly full. See further
1860 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1861 * that have to skip over a lot of full or unallowed zones.
1862 *
1863 * If the zonelist cache is present in the passed zonelist, then
1864 * returns a pointer to the allowed node mask (either the current
1865 * tasks mems_allowed, or node_states[N_MEMORY].)
1866 *
1867 * If the zonelist cache is not available for this zonelist, does
1868 * nothing and returns NULL.
1869 *
1870 * If the fullzones BITMAP in the zonelist cache is stale (more than
1871 * a second since last zap'd) then we zap it out (clear its bits.)
1872 *
1873 * We hold off even calling zlc_setup, until after we've checked the
1874 * first zone in the zonelist, on the theory that most allocations will
1875 * be satisfied from that first zone, so best to examine that zone as
1876 * quickly as we can.
1877 */
1878 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1879 {
1880 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1881 nodemask_t *allowednodes; /* zonelist_cache approximation */
1882
1883 zlc = zonelist->zlcache_ptr;
1884 if (!zlc)
1885 return NULL;
1886
1887 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1888 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1889 zlc->last_full_zap = jiffies;
1890 }
1891
1892 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1893 &cpuset_current_mems_allowed :
1894 &node_states[N_MEMORY];
1895 return allowednodes;
1896 }
1897
1898 /*
1899 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1900 * if it is worth looking at further for free memory:
1901 * 1) Check that the zone isn't thought to be full (doesn't have its
1902 * bit set in the zonelist_cache fullzones BITMAP).
1903 * 2) Check that the zones node (obtained from the zonelist_cache
1904 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1905 * Return true (non-zero) if zone is worth looking at further, or
1906 * else return false (zero) if it is not.
1907 *
1908 * This check -ignores- the distinction between various watermarks,
1909 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1910 * found to be full for any variation of these watermarks, it will
1911 * be considered full for up to one second by all requests, unless
1912 * we are so low on memory on all allowed nodes that we are forced
1913 * into the second scan of the zonelist.
1914 *
1915 * In the second scan we ignore this zonelist cache and exactly
1916 * apply the watermarks to all zones, even it is slower to do so.
1917 * We are low on memory in the second scan, and should leave no stone
1918 * unturned looking for a free page.
1919 */
1920 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1921 nodemask_t *allowednodes)
1922 {
1923 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1924 int i; /* index of *z in zonelist zones */
1925 int n; /* node that zone *z is on */
1926
1927 zlc = zonelist->zlcache_ptr;
1928 if (!zlc)
1929 return 1;
1930
1931 i = z - zonelist->_zonerefs;
1932 n = zlc->z_to_n[i];
1933
1934 /* This zone is worth trying if it is allowed but not full */
1935 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1936 }
1937
1938 /*
1939 * Given 'z' scanning a zonelist, set the corresponding bit in
1940 * zlc->fullzones, so that subsequent attempts to allocate a page
1941 * from that zone don't waste time re-examining it.
1942 */
1943 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1944 {
1945 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1946 int i; /* index of *z in zonelist zones */
1947
1948 zlc = zonelist->zlcache_ptr;
1949 if (!zlc)
1950 return;
1951
1952 i = z - zonelist->_zonerefs;
1953
1954 set_bit(i, zlc->fullzones);
1955 }
1956
1957 /*
1958 * clear all zones full, called after direct reclaim makes progress so that
1959 * a zone that was recently full is not skipped over for up to a second
1960 */
1961 static void zlc_clear_zones_full(struct zonelist *zonelist)
1962 {
1963 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1964
1965 zlc = zonelist->zlcache_ptr;
1966 if (!zlc)
1967 return;
1968
1969 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1970 }
1971
1972 static bool zone_local(struct zone *local_zone, struct zone *zone)
1973 {
1974 return local_zone->node == zone->node;
1975 }
1976
1977 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1978 {
1979 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1980 RECLAIM_DISTANCE;
1981 }
1982
1983 #else /* CONFIG_NUMA */
1984
1985 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1986 {
1987 return NULL;
1988 }
1989
1990 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1991 nodemask_t *allowednodes)
1992 {
1993 return 1;
1994 }
1995
1996 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1997 {
1998 }
1999
2000 static void zlc_clear_zones_full(struct zonelist *zonelist)
2001 {
2002 }
2003
2004 static bool zone_local(struct zone *local_zone, struct zone *zone)
2005 {
2006 return true;
2007 }
2008
2009 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2010 {
2011 return true;
2012 }
2013
2014 #endif /* CONFIG_NUMA */
2015
2016 static void reset_alloc_batches(struct zone *preferred_zone)
2017 {
2018 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2019
2020 do {
2021 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2022 high_wmark_pages(zone) - low_wmark_pages(zone) -
2023 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2024 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2025 } while (zone++ != preferred_zone);
2026 }
2027
2028 /*
2029 * get_page_from_freelist goes through the zonelist trying to allocate
2030 * a page.
2031 */
2032 static struct page *
2033 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2034 const struct alloc_context *ac)
2035 {
2036 struct zonelist *zonelist = ac->zonelist;
2037 struct zoneref *z;
2038 struct page *page = NULL;
2039 struct zone *zone;
2040 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2041 int zlc_active = 0; /* set if using zonelist_cache */
2042 int did_zlc_setup = 0; /* just call zlc_setup() one time */
2043 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2044 (gfp_mask & __GFP_WRITE);
2045 int nr_fair_skipped = 0;
2046 bool zonelist_rescan;
2047
2048 zonelist_scan:
2049 zonelist_rescan = false;
2050
2051 /*
2052 * Scan zonelist, looking for a zone with enough free.
2053 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2054 */
2055 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2056 ac->nodemask) {
2057 unsigned long mark;
2058
2059 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2060 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2061 continue;
2062 if (cpusets_enabled() &&
2063 (alloc_flags & ALLOC_CPUSET) &&
2064 !cpuset_zone_allowed(zone, gfp_mask))
2065 continue;
2066 /*
2067 * Distribute pages in proportion to the individual
2068 * zone size to ensure fair page aging. The zone a
2069 * page was allocated in should have no effect on the
2070 * time the page has in memory before being reclaimed.
2071 */
2072 if (alloc_flags & ALLOC_FAIR) {
2073 if (!zone_local(ac->preferred_zone, zone))
2074 break;
2075 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2076 nr_fair_skipped++;
2077 continue;
2078 }
2079 }
2080 /*
2081 * When allocating a page cache page for writing, we
2082 * want to get it from a zone that is within its dirty
2083 * limit, such that no single zone holds more than its
2084 * proportional share of globally allowed dirty pages.
2085 * The dirty limits take into account the zone's
2086 * lowmem reserves and high watermark so that kswapd
2087 * should be able to balance it without having to
2088 * write pages from its LRU list.
2089 *
2090 * This may look like it could increase pressure on
2091 * lower zones by failing allocations in higher zones
2092 * before they are full. But the pages that do spill
2093 * over are limited as the lower zones are protected
2094 * by this very same mechanism. It should not become
2095 * a practical burden to them.
2096 *
2097 * XXX: For now, allow allocations to potentially
2098 * exceed the per-zone dirty limit in the slowpath
2099 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2100 * which is important when on a NUMA setup the allowed
2101 * zones are together not big enough to reach the
2102 * global limit. The proper fix for these situations
2103 * will require awareness of zones in the
2104 * dirty-throttling and the flusher threads.
2105 */
2106 if (consider_zone_dirty && !zone_dirty_ok(zone))
2107 continue;
2108
2109 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2110 if (!zone_watermark_ok(zone, order, mark,
2111 ac->classzone_idx, alloc_flags)) {
2112 int ret;
2113
2114 /* Checked here to keep the fast path fast */
2115 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2116 if (alloc_flags & ALLOC_NO_WATERMARKS)
2117 goto try_this_zone;
2118
2119 if (IS_ENABLED(CONFIG_NUMA) &&
2120 !did_zlc_setup && nr_online_nodes > 1) {
2121 /*
2122 * we do zlc_setup if there are multiple nodes
2123 * and before considering the first zone allowed
2124 * by the cpuset.
2125 */
2126 allowednodes = zlc_setup(zonelist, alloc_flags);
2127 zlc_active = 1;
2128 did_zlc_setup = 1;
2129 }
2130
2131 if (zone_reclaim_mode == 0 ||
2132 !zone_allows_reclaim(ac->preferred_zone, zone))
2133 goto this_zone_full;
2134
2135 /*
2136 * As we may have just activated ZLC, check if the first
2137 * eligible zone has failed zone_reclaim recently.
2138 */
2139 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2140 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2141 continue;
2142
2143 ret = zone_reclaim(zone, gfp_mask, order);
2144 switch (ret) {
2145 case ZONE_RECLAIM_NOSCAN:
2146 /* did not scan */
2147 continue;
2148 case ZONE_RECLAIM_FULL:
2149 /* scanned but unreclaimable */
2150 continue;
2151 default:
2152 /* did we reclaim enough */
2153 if (zone_watermark_ok(zone, order, mark,
2154 ac->classzone_idx, alloc_flags))
2155 goto try_this_zone;
2156
2157 /*
2158 * Failed to reclaim enough to meet watermark.
2159 * Only mark the zone full if checking the min
2160 * watermark or if we failed to reclaim just
2161 * 1<<order pages or else the page allocator
2162 * fastpath will prematurely mark zones full
2163 * when the watermark is between the low and
2164 * min watermarks.
2165 */
2166 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2167 ret == ZONE_RECLAIM_SOME)
2168 goto this_zone_full;
2169
2170 continue;
2171 }
2172 }
2173
2174 try_this_zone:
2175 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2176 gfp_mask, ac->migratetype);
2177 if (page) {
2178 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2179 goto try_this_zone;
2180 return page;
2181 }
2182 this_zone_full:
2183 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2184 zlc_mark_zone_full(zonelist, z);
2185 }
2186
2187 /*
2188 * The first pass makes sure allocations are spread fairly within the
2189 * local node. However, the local node might have free pages left
2190 * after the fairness batches are exhausted, and remote zones haven't
2191 * even been considered yet. Try once more without fairness, and
2192 * include remote zones now, before entering the slowpath and waking
2193 * kswapd: prefer spilling to a remote zone over swapping locally.
2194 */
2195 if (alloc_flags & ALLOC_FAIR) {
2196 alloc_flags &= ~ALLOC_FAIR;
2197 if (nr_fair_skipped) {
2198 zonelist_rescan = true;
2199 reset_alloc_batches(ac->preferred_zone);
2200 }
2201 if (nr_online_nodes > 1)
2202 zonelist_rescan = true;
2203 }
2204
2205 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2206 /* Disable zlc cache for second zonelist scan */
2207 zlc_active = 0;
2208 zonelist_rescan = true;
2209 }
2210
2211 if (zonelist_rescan)
2212 goto zonelist_scan;
2213
2214 return NULL;
2215 }
2216
2217 /*
2218 * Large machines with many possible nodes should not always dump per-node
2219 * meminfo in irq context.
2220 */
2221 static inline bool should_suppress_show_mem(void)
2222 {
2223 bool ret = false;
2224
2225 #if NODES_SHIFT > 8
2226 ret = in_interrupt();
2227 #endif
2228 return ret;
2229 }
2230
2231 static DEFINE_RATELIMIT_STATE(nopage_rs,
2232 DEFAULT_RATELIMIT_INTERVAL,
2233 DEFAULT_RATELIMIT_BURST);
2234
2235 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2236 {
2237 unsigned int filter = SHOW_MEM_FILTER_NODES;
2238
2239 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2240 debug_guardpage_minorder() > 0)
2241 return;
2242
2243 /*
2244 * This documents exceptions given to allocations in certain
2245 * contexts that are allowed to allocate outside current's set
2246 * of allowed nodes.
2247 */
2248 if (!(gfp_mask & __GFP_NOMEMALLOC))
2249 if (test_thread_flag(TIF_MEMDIE) ||
2250 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2251 filter &= ~SHOW_MEM_FILTER_NODES;
2252 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2253 filter &= ~SHOW_MEM_FILTER_NODES;
2254
2255 if (fmt) {
2256 struct va_format vaf;
2257 va_list args;
2258
2259 va_start(args, fmt);
2260
2261 vaf.fmt = fmt;
2262 vaf.va = &args;
2263
2264 pr_warn("%pV", &vaf);
2265
2266 va_end(args);
2267 }
2268
2269 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2270 current->comm, order, gfp_mask);
2271
2272 dump_stack();
2273 if (!should_suppress_show_mem())
2274 show_mem(filter);
2275 }
2276
2277 static inline int
2278 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2279 unsigned long did_some_progress,
2280 unsigned long pages_reclaimed)
2281 {
2282 /* Do not loop if specifically requested */
2283 if (gfp_mask & __GFP_NORETRY)
2284 return 0;
2285
2286 /* Always retry if specifically requested */
2287 if (gfp_mask & __GFP_NOFAIL)
2288 return 1;
2289
2290 /*
2291 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2292 * making forward progress without invoking OOM. Suspend also disables
2293 * storage devices so kswapd will not help. Bail if we are suspending.
2294 */
2295 if (!did_some_progress && pm_suspended_storage())
2296 return 0;
2297
2298 /*
2299 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2300 * means __GFP_NOFAIL, but that may not be true in other
2301 * implementations.
2302 */
2303 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2304 return 1;
2305
2306 /*
2307 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2308 * specified, then we retry until we no longer reclaim any pages
2309 * (above), or we've reclaimed an order of pages at least as
2310 * large as the allocation's order. In both cases, if the
2311 * allocation still fails, we stop retrying.
2312 */
2313 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2314 return 1;
2315
2316 return 0;
2317 }
2318
2319 static inline struct page *
2320 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2321 const struct alloc_context *ac, unsigned long *did_some_progress)
2322 {
2323 struct page *page;
2324
2325 *did_some_progress = 0;
2326
2327 /*
2328 * Acquire the per-zone oom lock for each zone. If that
2329 * fails, somebody else is making progress for us.
2330 */
2331 if (!oom_zonelist_trylock(ac->zonelist, gfp_mask)) {
2332 *did_some_progress = 1;
2333 schedule_timeout_uninterruptible(1);
2334 return NULL;
2335 }
2336
2337 /*
2338 * Go through the zonelist yet one more time, keep very high watermark
2339 * here, this is only to catch a parallel oom killing, we must fail if
2340 * we're still under heavy pressure.
2341 */
2342 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2343 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2344 if (page)
2345 goto out;
2346
2347 if (!(gfp_mask & __GFP_NOFAIL)) {
2348 /* Coredumps can quickly deplete all memory reserves */
2349 if (current->flags & PF_DUMPCORE)
2350 goto out;
2351 /* The OOM killer will not help higher order allocs */
2352 if (order > PAGE_ALLOC_COSTLY_ORDER)
2353 goto out;
2354 /* The OOM killer does not needlessly kill tasks for lowmem */
2355 if (ac->high_zoneidx < ZONE_NORMAL)
2356 goto out;
2357 /* The OOM killer does not compensate for light reclaim */
2358 if (!(gfp_mask & __GFP_FS)) {
2359 /*
2360 * XXX: Page reclaim didn't yield anything,
2361 * and the OOM killer can't be invoked, but
2362 * keep looping as per should_alloc_retry().
2363 */
2364 *did_some_progress = 1;
2365 goto out;
2366 }
2367 /*
2368 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2369 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2370 * The caller should handle page allocation failure by itself if
2371 * it specifies __GFP_THISNODE.
2372 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2373 */
2374 if (gfp_mask & __GFP_THISNODE)
2375 goto out;
2376 }
2377 /* Exhausted what can be done so it's blamo time */
2378 if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false)
2379 || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
2380 *did_some_progress = 1;
2381 out:
2382 oom_zonelist_unlock(ac->zonelist, gfp_mask);
2383 return page;
2384 }
2385
2386 #ifdef CONFIG_COMPACTION
2387 /* Try memory compaction for high-order allocations before reclaim */
2388 static struct page *
2389 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2390 int alloc_flags, const struct alloc_context *ac,
2391 enum migrate_mode mode, int *contended_compaction,
2392 bool *deferred_compaction)
2393 {
2394 unsigned long compact_result;
2395 struct page *page;
2396
2397 if (!order)
2398 return NULL;
2399
2400 current->flags |= PF_MEMALLOC;
2401 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2402 mode, contended_compaction);
2403 current->flags &= ~PF_MEMALLOC;
2404
2405 switch (compact_result) {
2406 case COMPACT_DEFERRED:
2407 *deferred_compaction = true;
2408 /* fall-through */
2409 case COMPACT_SKIPPED:
2410 return NULL;
2411 default:
2412 break;
2413 }
2414
2415 /*
2416 * At least in one zone compaction wasn't deferred or skipped, so let's
2417 * count a compaction stall
2418 */
2419 count_vm_event(COMPACTSTALL);
2420
2421 page = get_page_from_freelist(gfp_mask, order,
2422 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2423
2424 if (page) {
2425 struct zone *zone = page_zone(page);
2426
2427 zone->compact_blockskip_flush = false;
2428 compaction_defer_reset(zone, order, true);
2429 count_vm_event(COMPACTSUCCESS);
2430 return page;
2431 }
2432
2433 /*
2434 * It's bad if compaction run occurs and fails. The most likely reason
2435 * is that pages exist, but not enough to satisfy watermarks.
2436 */
2437 count_vm_event(COMPACTFAIL);
2438
2439 cond_resched();
2440
2441 return NULL;
2442 }
2443 #else
2444 static inline struct page *
2445 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2446 int alloc_flags, const struct alloc_context *ac,
2447 enum migrate_mode mode, int *contended_compaction,
2448 bool *deferred_compaction)
2449 {
2450 return NULL;
2451 }
2452 #endif /* CONFIG_COMPACTION */
2453
2454 /* Perform direct synchronous page reclaim */
2455 static int
2456 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2457 const struct alloc_context *ac)
2458 {
2459 struct reclaim_state reclaim_state;
2460 int progress;
2461
2462 cond_resched();
2463
2464 /* We now go into synchronous reclaim */
2465 cpuset_memory_pressure_bump();
2466 current->flags |= PF_MEMALLOC;
2467 lockdep_set_current_reclaim_state(gfp_mask);
2468 reclaim_state.reclaimed_slab = 0;
2469 current->reclaim_state = &reclaim_state;
2470
2471 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2472 ac->nodemask);
2473
2474 current->reclaim_state = NULL;
2475 lockdep_clear_current_reclaim_state();
2476 current->flags &= ~PF_MEMALLOC;
2477
2478 cond_resched();
2479
2480 return progress;
2481 }
2482
2483 /* The really slow allocator path where we enter direct reclaim */
2484 static inline struct page *
2485 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2486 int alloc_flags, const struct alloc_context *ac,
2487 unsigned long *did_some_progress)
2488 {
2489 struct page *page = NULL;
2490 bool drained = false;
2491
2492 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2493 if (unlikely(!(*did_some_progress)))
2494 return NULL;
2495
2496 /* After successful reclaim, reconsider all zones for allocation */
2497 if (IS_ENABLED(CONFIG_NUMA))
2498 zlc_clear_zones_full(ac->zonelist);
2499
2500 retry:
2501 page = get_page_from_freelist(gfp_mask, order,
2502 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2503
2504 /*
2505 * If an allocation failed after direct reclaim, it could be because
2506 * pages are pinned on the per-cpu lists. Drain them and try again
2507 */
2508 if (!page && !drained) {
2509 drain_all_pages(NULL);
2510 drained = true;
2511 goto retry;
2512 }
2513
2514 return page;
2515 }
2516
2517 /*
2518 * This is called in the allocator slow-path if the allocation request is of
2519 * sufficient urgency to ignore watermarks and take other desperate measures
2520 */
2521 static inline struct page *
2522 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2523 const struct alloc_context *ac)
2524 {
2525 struct page *page;
2526
2527 do {
2528 page = get_page_from_freelist(gfp_mask, order,
2529 ALLOC_NO_WATERMARKS, ac);
2530
2531 if (!page && gfp_mask & __GFP_NOFAIL)
2532 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2533 HZ/50);
2534 } while (!page && (gfp_mask & __GFP_NOFAIL));
2535
2536 return page;
2537 }
2538
2539 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2540 {
2541 struct zoneref *z;
2542 struct zone *zone;
2543
2544 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2545 ac->high_zoneidx, ac->nodemask)
2546 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2547 }
2548
2549 static inline int
2550 gfp_to_alloc_flags(gfp_t gfp_mask)
2551 {
2552 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2553 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2554
2555 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2556 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2557
2558 /*
2559 * The caller may dip into page reserves a bit more if the caller
2560 * cannot run direct reclaim, or if the caller has realtime scheduling
2561 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2562 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2563 */
2564 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2565
2566 if (atomic) {
2567 /*
2568 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2569 * if it can't schedule.
2570 */
2571 if (!(gfp_mask & __GFP_NOMEMALLOC))
2572 alloc_flags |= ALLOC_HARDER;
2573 /*
2574 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2575 * comment for __cpuset_node_allowed().
2576 */
2577 alloc_flags &= ~ALLOC_CPUSET;
2578 } else if (unlikely(rt_task(current)) && !in_interrupt())
2579 alloc_flags |= ALLOC_HARDER;
2580
2581 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2582 if (gfp_mask & __GFP_MEMALLOC)
2583 alloc_flags |= ALLOC_NO_WATERMARKS;
2584 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2585 alloc_flags |= ALLOC_NO_WATERMARKS;
2586 else if (!in_interrupt() &&
2587 ((current->flags & PF_MEMALLOC) ||
2588 unlikely(test_thread_flag(TIF_MEMDIE))))
2589 alloc_flags |= ALLOC_NO_WATERMARKS;
2590 }
2591 #ifdef CONFIG_CMA
2592 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2593 alloc_flags |= ALLOC_CMA;
2594 #endif
2595 return alloc_flags;
2596 }
2597
2598 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2599 {
2600 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2601 }
2602
2603 static inline struct page *
2604 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2605 struct alloc_context *ac)
2606 {
2607 const gfp_t wait = gfp_mask & __GFP_WAIT;
2608 struct page *page = NULL;
2609 int alloc_flags;
2610 unsigned long pages_reclaimed = 0;
2611 unsigned long did_some_progress;
2612 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2613 bool deferred_compaction = false;
2614 int contended_compaction = COMPACT_CONTENDED_NONE;
2615
2616 /*
2617 * In the slowpath, we sanity check order to avoid ever trying to
2618 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2619 * be using allocators in order of preference for an area that is
2620 * too large.
2621 */
2622 if (order >= MAX_ORDER) {
2623 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2624 return NULL;
2625 }
2626
2627 /*
2628 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2629 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2630 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2631 * using a larger set of nodes after it has established that the
2632 * allowed per node queues are empty and that nodes are
2633 * over allocated.
2634 */
2635 if (IS_ENABLED(CONFIG_NUMA) &&
2636 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2637 goto nopage;
2638
2639 retry:
2640 if (!(gfp_mask & __GFP_NO_KSWAPD))
2641 wake_all_kswapds(order, ac);
2642
2643 /*
2644 * OK, we're below the kswapd watermark and have kicked background
2645 * reclaim. Now things get more complex, so set up alloc_flags according
2646 * to how we want to proceed.
2647 */
2648 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2649
2650 /*
2651 * Find the true preferred zone if the allocation is unconstrained by
2652 * cpusets.
2653 */
2654 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
2655 struct zoneref *preferred_zoneref;
2656 preferred_zoneref = first_zones_zonelist(ac->zonelist,
2657 ac->high_zoneidx, NULL, &ac->preferred_zone);
2658 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
2659 }
2660
2661 /* This is the last chance, in general, before the goto nopage. */
2662 page = get_page_from_freelist(gfp_mask, order,
2663 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2664 if (page)
2665 goto got_pg;
2666
2667 /* Allocate without watermarks if the context allows */
2668 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2669 /*
2670 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2671 * the allocation is high priority and these type of
2672 * allocations are system rather than user orientated
2673 */
2674 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
2675
2676 page = __alloc_pages_high_priority(gfp_mask, order, ac);
2677
2678 if (page) {
2679 goto got_pg;
2680 }
2681 }
2682
2683 /* Atomic allocations - we can't balance anything */
2684 if (!wait) {
2685 /*
2686 * All existing users of the deprecated __GFP_NOFAIL are
2687 * blockable, so warn of any new users that actually allow this
2688 * type of allocation to fail.
2689 */
2690 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2691 goto nopage;
2692 }
2693
2694 /* Avoid recursion of direct reclaim */
2695 if (current->flags & PF_MEMALLOC)
2696 goto nopage;
2697
2698 /* Avoid allocations with no watermarks from looping endlessly */
2699 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2700 goto nopage;
2701
2702 /*
2703 * Try direct compaction. The first pass is asynchronous. Subsequent
2704 * attempts after direct reclaim are synchronous
2705 */
2706 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
2707 migration_mode,
2708 &contended_compaction,
2709 &deferred_compaction);
2710 if (page)
2711 goto got_pg;
2712
2713 /* Checks for THP-specific high-order allocations */
2714 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2715 /*
2716 * If compaction is deferred for high-order allocations, it is
2717 * because sync compaction recently failed. If this is the case
2718 * and the caller requested a THP allocation, we do not want
2719 * to heavily disrupt the system, so we fail the allocation
2720 * instead of entering direct reclaim.
2721 */
2722 if (deferred_compaction)
2723 goto nopage;
2724
2725 /*
2726 * In all zones where compaction was attempted (and not
2727 * deferred or skipped), lock contention has been detected.
2728 * For THP allocation we do not want to disrupt the others
2729 * so we fallback to base pages instead.
2730 */
2731 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2732 goto nopage;
2733
2734 /*
2735 * If compaction was aborted due to need_resched(), we do not
2736 * want to further increase allocation latency, unless it is
2737 * khugepaged trying to collapse.
2738 */
2739 if (contended_compaction == COMPACT_CONTENDED_SCHED
2740 && !(current->flags & PF_KTHREAD))
2741 goto nopage;
2742 }
2743
2744 /*
2745 * It can become very expensive to allocate transparent hugepages at
2746 * fault, so use asynchronous memory compaction for THP unless it is
2747 * khugepaged trying to collapse.
2748 */
2749 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2750 (current->flags & PF_KTHREAD))
2751 migration_mode = MIGRATE_SYNC_LIGHT;
2752
2753 /* Try direct reclaim and then allocating */
2754 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
2755 &did_some_progress);
2756 if (page)
2757 goto got_pg;
2758
2759 /* Check if we should retry the allocation */
2760 pages_reclaimed += did_some_progress;
2761 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2762 pages_reclaimed)) {
2763 /*
2764 * If we fail to make progress by freeing individual
2765 * pages, but the allocation wants us to keep going,
2766 * start OOM killing tasks.
2767 */
2768 if (!did_some_progress) {
2769 page = __alloc_pages_may_oom(gfp_mask, order, ac,
2770 &did_some_progress);
2771 if (page)
2772 goto got_pg;
2773 if (!did_some_progress)
2774 goto nopage;
2775 }
2776 /* Wait for some write requests to complete then retry */
2777 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
2778 goto retry;
2779 } else {
2780 /*
2781 * High-order allocations do not necessarily loop after
2782 * direct reclaim and reclaim/compaction depends on compaction
2783 * being called after reclaim so call directly if necessary
2784 */
2785 page = __alloc_pages_direct_compact(gfp_mask, order,
2786 alloc_flags, ac, migration_mode,
2787 &contended_compaction,
2788 &deferred_compaction);
2789 if (page)
2790 goto got_pg;
2791 }
2792
2793 nopage:
2794 warn_alloc_failed(gfp_mask, order, NULL);
2795 got_pg:
2796 return page;
2797 }
2798
2799 /*
2800 * This is the 'heart' of the zoned buddy allocator.
2801 */
2802 struct page *
2803 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2804 struct zonelist *zonelist, nodemask_t *nodemask)
2805 {
2806 struct zoneref *preferred_zoneref;
2807 struct page *page = NULL;
2808 unsigned int cpuset_mems_cookie;
2809 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2810 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
2811 struct alloc_context ac = {
2812 .high_zoneidx = gfp_zone(gfp_mask),
2813 .nodemask = nodemask,
2814 .migratetype = gfpflags_to_migratetype(gfp_mask),
2815 };
2816
2817 gfp_mask &= gfp_allowed_mask;
2818
2819 lockdep_trace_alloc(gfp_mask);
2820
2821 might_sleep_if(gfp_mask & __GFP_WAIT);
2822
2823 if (should_fail_alloc_page(gfp_mask, order))
2824 return NULL;
2825
2826 /*
2827 * Check the zones suitable for the gfp_mask contain at least one
2828 * valid zone. It's possible to have an empty zonelist as a result
2829 * of GFP_THISNODE and a memoryless node
2830 */
2831 if (unlikely(!zonelist->_zonerefs->zone))
2832 return NULL;
2833
2834 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
2835 alloc_flags |= ALLOC_CMA;
2836
2837 retry_cpuset:
2838 cpuset_mems_cookie = read_mems_allowed_begin();
2839
2840 /* We set it here, as __alloc_pages_slowpath might have changed it */
2841 ac.zonelist = zonelist;
2842 /* The preferred zone is used for statistics later */
2843 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
2844 ac.nodemask ? : &cpuset_current_mems_allowed,
2845 &ac.preferred_zone);
2846 if (!ac.preferred_zone)
2847 goto out;
2848 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
2849
2850 /* First allocation attempt */
2851 alloc_mask = gfp_mask|__GFP_HARDWALL;
2852 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
2853 if (unlikely(!page)) {
2854 /*
2855 * Runtime PM, block IO and its error handling path
2856 * can deadlock because I/O on the device might not
2857 * complete.
2858 */
2859 alloc_mask = memalloc_noio_flags(gfp_mask);
2860
2861 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
2862 }
2863
2864 if (kmemcheck_enabled && page)
2865 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2866
2867 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
2868
2869 out:
2870 /*
2871 * When updating a task's mems_allowed, it is possible to race with
2872 * parallel threads in such a way that an allocation can fail while
2873 * the mask is being updated. If a page allocation is about to fail,
2874 * check if the cpuset changed during allocation and if so, retry.
2875 */
2876 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2877 goto retry_cpuset;
2878
2879 return page;
2880 }
2881 EXPORT_SYMBOL(__alloc_pages_nodemask);
2882
2883 /*
2884 * Common helper functions.
2885 */
2886 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2887 {
2888 struct page *page;
2889
2890 /*
2891 * __get_free_pages() returns a 32-bit address, which cannot represent
2892 * a highmem page
2893 */
2894 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2895
2896 page = alloc_pages(gfp_mask, order);
2897 if (!page)
2898 return 0;
2899 return (unsigned long) page_address(page);
2900 }
2901 EXPORT_SYMBOL(__get_free_pages);
2902
2903 unsigned long get_zeroed_page(gfp_t gfp_mask)
2904 {
2905 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2906 }
2907 EXPORT_SYMBOL(get_zeroed_page);
2908
2909 void __free_pages(struct page *page, unsigned int order)
2910 {
2911 if (put_page_testzero(page)) {
2912 if (order == 0)
2913 free_hot_cold_page(page, false);
2914 else
2915 __free_pages_ok(page, order);
2916 }
2917 }
2918
2919 EXPORT_SYMBOL(__free_pages);
2920
2921 void free_pages(unsigned long addr, unsigned int order)
2922 {
2923 if (addr != 0) {
2924 VM_BUG_ON(!virt_addr_valid((void *)addr));
2925 __free_pages(virt_to_page((void *)addr), order);
2926 }
2927 }
2928
2929 EXPORT_SYMBOL(free_pages);
2930
2931 /*
2932 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2933 * of the current memory cgroup.
2934 *
2935 * It should be used when the caller would like to use kmalloc, but since the
2936 * allocation is large, it has to fall back to the page allocator.
2937 */
2938 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2939 {
2940 struct page *page;
2941 struct mem_cgroup *memcg = NULL;
2942
2943 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2944 return NULL;
2945 page = alloc_pages(gfp_mask, order);
2946 memcg_kmem_commit_charge(page, memcg, order);
2947 return page;
2948 }
2949
2950 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2951 {
2952 struct page *page;
2953 struct mem_cgroup *memcg = NULL;
2954
2955 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2956 return NULL;
2957 page = alloc_pages_node(nid, gfp_mask, order);
2958 memcg_kmem_commit_charge(page, memcg, order);
2959 return page;
2960 }
2961
2962 /*
2963 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2964 * alloc_kmem_pages.
2965 */
2966 void __free_kmem_pages(struct page *page, unsigned int order)
2967 {
2968 memcg_kmem_uncharge_pages(page, order);
2969 __free_pages(page, order);
2970 }
2971
2972 void free_kmem_pages(unsigned long addr, unsigned int order)
2973 {
2974 if (addr != 0) {
2975 VM_BUG_ON(!virt_addr_valid((void *)addr));
2976 __free_kmem_pages(virt_to_page((void *)addr), order);
2977 }
2978 }
2979
2980 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2981 {
2982 if (addr) {
2983 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2984 unsigned long used = addr + PAGE_ALIGN(size);
2985
2986 split_page(virt_to_page((void *)addr), order);
2987 while (used < alloc_end) {
2988 free_page(used);
2989 used += PAGE_SIZE;
2990 }
2991 }
2992 return (void *)addr;
2993 }
2994
2995 /**
2996 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2997 * @size: the number of bytes to allocate
2998 * @gfp_mask: GFP flags for the allocation
2999 *
3000 * This function is similar to alloc_pages(), except that it allocates the
3001 * minimum number of pages to satisfy the request. alloc_pages() can only
3002 * allocate memory in power-of-two pages.
3003 *
3004 * This function is also limited by MAX_ORDER.
3005 *
3006 * Memory allocated by this function must be released by free_pages_exact().
3007 */
3008 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3009 {
3010 unsigned int order = get_order(size);
3011 unsigned long addr;
3012
3013 addr = __get_free_pages(gfp_mask, order);
3014 return make_alloc_exact(addr, order, size);
3015 }
3016 EXPORT_SYMBOL(alloc_pages_exact);
3017
3018 /**
3019 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3020 * pages on a node.
3021 * @nid: the preferred node ID where memory should be allocated
3022 * @size: the number of bytes to allocate
3023 * @gfp_mask: GFP flags for the allocation
3024 *
3025 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3026 * back.
3027 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3028 * but is not exact.
3029 */
3030 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3031 {
3032 unsigned order = get_order(size);
3033 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3034 if (!p)
3035 return NULL;
3036 return make_alloc_exact((unsigned long)page_address(p), order, size);
3037 }
3038
3039 /**
3040 * free_pages_exact - release memory allocated via alloc_pages_exact()
3041 * @virt: the value returned by alloc_pages_exact.
3042 * @size: size of allocation, same value as passed to alloc_pages_exact().
3043 *
3044 * Release the memory allocated by a previous call to alloc_pages_exact.
3045 */
3046 void free_pages_exact(void *virt, size_t size)
3047 {
3048 unsigned long addr = (unsigned long)virt;
3049 unsigned long end = addr + PAGE_ALIGN(size);
3050
3051 while (addr < end) {
3052 free_page(addr);
3053 addr += PAGE_SIZE;
3054 }
3055 }
3056 EXPORT_SYMBOL(free_pages_exact);
3057
3058 /**
3059 * nr_free_zone_pages - count number of pages beyond high watermark
3060 * @offset: The zone index of the highest zone
3061 *
3062 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3063 * high watermark within all zones at or below a given zone index. For each
3064 * zone, the number of pages is calculated as:
3065 * managed_pages - high_pages
3066 */
3067 static unsigned long nr_free_zone_pages(int offset)
3068 {
3069 struct zoneref *z;
3070 struct zone *zone;
3071
3072 /* Just pick one node, since fallback list is circular */
3073 unsigned long sum = 0;
3074
3075 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3076
3077 for_each_zone_zonelist(zone, z, zonelist, offset) {
3078 unsigned long size = zone->managed_pages;
3079 unsigned long high = high_wmark_pages(zone);
3080 if (size > high)
3081 sum += size - high;
3082 }
3083
3084 return sum;
3085 }
3086
3087 /**
3088 * nr_free_buffer_pages - count number of pages beyond high watermark
3089 *
3090 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3091 * watermark within ZONE_DMA and ZONE_NORMAL.
3092 */
3093 unsigned long nr_free_buffer_pages(void)
3094 {
3095 return nr_free_zone_pages(gfp_zone(GFP_USER));
3096 }
3097 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3098
3099 /**
3100 * nr_free_pagecache_pages - count number of pages beyond high watermark
3101 *
3102 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3103 * high watermark within all zones.
3104 */
3105 unsigned long nr_free_pagecache_pages(void)
3106 {
3107 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3108 }
3109
3110 static inline void show_node(struct zone *zone)
3111 {
3112 if (IS_ENABLED(CONFIG_NUMA))
3113 printk("Node %d ", zone_to_nid(zone));
3114 }
3115
3116 void si_meminfo(struct sysinfo *val)
3117 {
3118 val->totalram = totalram_pages;
3119 val->sharedram = global_page_state(NR_SHMEM);
3120 val->freeram = global_page_state(NR_FREE_PAGES);
3121 val->bufferram = nr_blockdev_pages();
3122 val->totalhigh = totalhigh_pages;
3123 val->freehigh = nr_free_highpages();
3124 val->mem_unit = PAGE_SIZE;
3125 }
3126
3127 EXPORT_SYMBOL(si_meminfo);
3128
3129 #ifdef CONFIG_NUMA
3130 void si_meminfo_node(struct sysinfo *val, int nid)
3131 {
3132 int zone_type; /* needs to be signed */
3133 unsigned long managed_pages = 0;
3134 pg_data_t *pgdat = NODE_DATA(nid);
3135
3136 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3137 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3138 val->totalram = managed_pages;
3139 val->sharedram = node_page_state(nid, NR_SHMEM);
3140 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3141 #ifdef CONFIG_HIGHMEM
3142 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3143 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3144 NR_FREE_PAGES);
3145 #else
3146 val->totalhigh = 0;
3147 val->freehigh = 0;
3148 #endif
3149 val->mem_unit = PAGE_SIZE;
3150 }
3151 #endif
3152
3153 /*
3154 * Determine whether the node should be displayed or not, depending on whether
3155 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3156 */
3157 bool skip_free_areas_node(unsigned int flags, int nid)
3158 {
3159 bool ret = false;
3160 unsigned int cpuset_mems_cookie;
3161
3162 if (!(flags & SHOW_MEM_FILTER_NODES))
3163 goto out;
3164
3165 do {
3166 cpuset_mems_cookie = read_mems_allowed_begin();
3167 ret = !node_isset(nid, cpuset_current_mems_allowed);
3168 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3169 out:
3170 return ret;
3171 }
3172
3173 #define K(x) ((x) << (PAGE_SHIFT-10))
3174
3175 static void show_migration_types(unsigned char type)
3176 {
3177 static const char types[MIGRATE_TYPES] = {
3178 [MIGRATE_UNMOVABLE] = 'U',
3179 [MIGRATE_RECLAIMABLE] = 'E',
3180 [MIGRATE_MOVABLE] = 'M',
3181 [MIGRATE_RESERVE] = 'R',
3182 #ifdef CONFIG_CMA
3183 [MIGRATE_CMA] = 'C',
3184 #endif
3185 #ifdef CONFIG_MEMORY_ISOLATION
3186 [MIGRATE_ISOLATE] = 'I',
3187 #endif
3188 };
3189 char tmp[MIGRATE_TYPES + 1];
3190 char *p = tmp;
3191 int i;
3192
3193 for (i = 0; i < MIGRATE_TYPES; i++) {
3194 if (type & (1 << i))
3195 *p++ = types[i];
3196 }
3197
3198 *p = '\0';
3199 printk("(%s) ", tmp);
3200 }
3201
3202 /*
3203 * Show free area list (used inside shift_scroll-lock stuff)
3204 * We also calculate the percentage fragmentation. We do this by counting the
3205 * memory on each free list with the exception of the first item on the list.
3206 * Suppresses nodes that are not allowed by current's cpuset if
3207 * SHOW_MEM_FILTER_NODES is passed.
3208 */
3209 void show_free_areas(unsigned int filter)
3210 {
3211 int cpu;
3212 struct zone *zone;
3213
3214 for_each_populated_zone(zone) {
3215 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3216 continue;
3217 show_node(zone);
3218 printk("%s per-cpu:\n", zone->name);
3219
3220 for_each_online_cpu(cpu) {
3221 struct per_cpu_pageset *pageset;
3222
3223 pageset = per_cpu_ptr(zone->pageset, cpu);
3224
3225 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3226 cpu, pageset->pcp.high,
3227 pageset->pcp.batch, pageset->pcp.count);
3228 }
3229 }
3230
3231 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3232 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3233 " unevictable:%lu"
3234 " dirty:%lu writeback:%lu unstable:%lu\n"
3235 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3236 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3237 " free_cma:%lu\n",
3238 global_page_state(NR_ACTIVE_ANON),
3239 global_page_state(NR_INACTIVE_ANON),
3240 global_page_state(NR_ISOLATED_ANON),
3241 global_page_state(NR_ACTIVE_FILE),
3242 global_page_state(NR_INACTIVE_FILE),
3243 global_page_state(NR_ISOLATED_FILE),
3244 global_page_state(NR_UNEVICTABLE),
3245 global_page_state(NR_FILE_DIRTY),
3246 global_page_state(NR_WRITEBACK),
3247 global_page_state(NR_UNSTABLE_NFS),
3248 global_page_state(NR_FREE_PAGES),
3249 global_page_state(NR_SLAB_RECLAIMABLE),
3250 global_page_state(NR_SLAB_UNRECLAIMABLE),
3251 global_page_state(NR_FILE_MAPPED),
3252 global_page_state(NR_SHMEM),
3253 global_page_state(NR_PAGETABLE),
3254 global_page_state(NR_BOUNCE),
3255 global_page_state(NR_FREE_CMA_PAGES));
3256
3257 for_each_populated_zone(zone) {
3258 int i;
3259
3260 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3261 continue;
3262 show_node(zone);
3263 printk("%s"
3264 " free:%lukB"
3265 " min:%lukB"
3266 " low:%lukB"
3267 " high:%lukB"
3268 " active_anon:%lukB"
3269 " inactive_anon:%lukB"
3270 " active_file:%lukB"
3271 " inactive_file:%lukB"
3272 " unevictable:%lukB"
3273 " isolated(anon):%lukB"
3274 " isolated(file):%lukB"
3275 " present:%lukB"
3276 " managed:%lukB"
3277 " mlocked:%lukB"
3278 " dirty:%lukB"
3279 " writeback:%lukB"
3280 " mapped:%lukB"
3281 " shmem:%lukB"
3282 " slab_reclaimable:%lukB"
3283 " slab_unreclaimable:%lukB"
3284 " kernel_stack:%lukB"
3285 " pagetables:%lukB"
3286 " unstable:%lukB"
3287 " bounce:%lukB"
3288 " free_cma:%lukB"
3289 " writeback_tmp:%lukB"
3290 " pages_scanned:%lu"
3291 " all_unreclaimable? %s"
3292 "\n",
3293 zone->name,
3294 K(zone_page_state(zone, NR_FREE_PAGES)),
3295 K(min_wmark_pages(zone)),
3296 K(low_wmark_pages(zone)),
3297 K(high_wmark_pages(zone)),
3298 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3299 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3300 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3301 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3302 K(zone_page_state(zone, NR_UNEVICTABLE)),
3303 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3304 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3305 K(zone->present_pages),
3306 K(zone->managed_pages),
3307 K(zone_page_state(zone, NR_MLOCK)),
3308 K(zone_page_state(zone, NR_FILE_DIRTY)),
3309 K(zone_page_state(zone, NR_WRITEBACK)),
3310 K(zone_page_state(zone, NR_FILE_MAPPED)),
3311 K(zone_page_state(zone, NR_SHMEM)),
3312 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3313 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3314 zone_page_state(zone, NR_KERNEL_STACK) *
3315 THREAD_SIZE / 1024,
3316 K(zone_page_state(zone, NR_PAGETABLE)),
3317 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3318 K(zone_page_state(zone, NR_BOUNCE)),
3319 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3320 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3321 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3322 (!zone_reclaimable(zone) ? "yes" : "no")
3323 );
3324 printk("lowmem_reserve[]:");
3325 for (i = 0; i < MAX_NR_ZONES; i++)
3326 printk(" %ld", zone->lowmem_reserve[i]);
3327 printk("\n");
3328 }
3329
3330 for_each_populated_zone(zone) {
3331 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3332 unsigned char types[MAX_ORDER];
3333
3334 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3335 continue;
3336 show_node(zone);
3337 printk("%s: ", zone->name);
3338
3339 spin_lock_irqsave(&zone->lock, flags);
3340 for (order = 0; order < MAX_ORDER; order++) {
3341 struct free_area *area = &zone->free_area[order];
3342 int type;
3343
3344 nr[order] = area->nr_free;
3345 total += nr[order] << order;
3346
3347 types[order] = 0;
3348 for (type = 0; type < MIGRATE_TYPES; type++) {
3349 if (!list_empty(&area->free_list[type]))
3350 types[order] |= 1 << type;
3351 }
3352 }
3353 spin_unlock_irqrestore(&zone->lock, flags);
3354 for (order = 0; order < MAX_ORDER; order++) {
3355 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3356 if (nr[order])
3357 show_migration_types(types[order]);
3358 }
3359 printk("= %lukB\n", K(total));
3360 }
3361
3362 hugetlb_show_meminfo();
3363
3364 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3365
3366 show_swap_cache_info();
3367 }
3368
3369 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3370 {
3371 zoneref->zone = zone;
3372 zoneref->zone_idx = zone_idx(zone);
3373 }
3374
3375 /*
3376 * Builds allocation fallback zone lists.
3377 *
3378 * Add all populated zones of a node to the zonelist.
3379 */
3380 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3381 int nr_zones)
3382 {
3383 struct zone *zone;
3384 enum zone_type zone_type = MAX_NR_ZONES;
3385
3386 do {
3387 zone_type--;
3388 zone = pgdat->node_zones + zone_type;
3389 if (populated_zone(zone)) {
3390 zoneref_set_zone(zone,
3391 &zonelist->_zonerefs[nr_zones++]);
3392 check_highest_zone(zone_type);
3393 }
3394 } while (zone_type);
3395
3396 return nr_zones;
3397 }
3398
3399
3400 /*
3401 * zonelist_order:
3402 * 0 = automatic detection of better ordering.
3403 * 1 = order by ([node] distance, -zonetype)
3404 * 2 = order by (-zonetype, [node] distance)
3405 *
3406 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3407 * the same zonelist. So only NUMA can configure this param.
3408 */
3409 #define ZONELIST_ORDER_DEFAULT 0
3410 #define ZONELIST_ORDER_NODE 1
3411 #define ZONELIST_ORDER_ZONE 2
3412
3413 /* zonelist order in the kernel.
3414 * set_zonelist_order() will set this to NODE or ZONE.
3415 */
3416 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3417 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3418
3419
3420 #ifdef CONFIG_NUMA
3421 /* The value user specified ....changed by config */
3422 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3423 /* string for sysctl */
3424 #define NUMA_ZONELIST_ORDER_LEN 16
3425 char numa_zonelist_order[16] = "default";
3426
3427 /*
3428 * interface for configure zonelist ordering.
3429 * command line option "numa_zonelist_order"
3430 * = "[dD]efault - default, automatic configuration.
3431 * = "[nN]ode - order by node locality, then by zone within node
3432 * = "[zZ]one - order by zone, then by locality within zone
3433 */
3434
3435 static int __parse_numa_zonelist_order(char *s)
3436 {
3437 if (*s == 'd' || *s == 'D') {
3438 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3439 } else if (*s == 'n' || *s == 'N') {
3440 user_zonelist_order = ZONELIST_ORDER_NODE;
3441 } else if (*s == 'z' || *s == 'Z') {
3442 user_zonelist_order = ZONELIST_ORDER_ZONE;
3443 } else {
3444 printk(KERN_WARNING
3445 "Ignoring invalid numa_zonelist_order value: "
3446 "%s\n", s);
3447 return -EINVAL;
3448 }
3449 return 0;
3450 }
3451
3452 static __init int setup_numa_zonelist_order(char *s)
3453 {
3454 int ret;
3455
3456 if (!s)
3457 return 0;
3458
3459 ret = __parse_numa_zonelist_order(s);
3460 if (ret == 0)
3461 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3462
3463 return ret;
3464 }
3465 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3466
3467 /*
3468 * sysctl handler for numa_zonelist_order
3469 */
3470 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3471 void __user *buffer, size_t *length,
3472 loff_t *ppos)
3473 {
3474 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3475 int ret;
3476 static DEFINE_MUTEX(zl_order_mutex);
3477
3478 mutex_lock(&zl_order_mutex);
3479 if (write) {
3480 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3481 ret = -EINVAL;
3482 goto out;
3483 }
3484 strcpy(saved_string, (char *)table->data);
3485 }
3486 ret = proc_dostring(table, write, buffer, length, ppos);
3487 if (ret)
3488 goto out;
3489 if (write) {
3490 int oldval = user_zonelist_order;
3491
3492 ret = __parse_numa_zonelist_order((char *)table->data);
3493 if (ret) {
3494 /*
3495 * bogus value. restore saved string
3496 */
3497 strncpy((char *)table->data, saved_string,
3498 NUMA_ZONELIST_ORDER_LEN);
3499 user_zonelist_order = oldval;
3500 } else if (oldval != user_zonelist_order) {
3501 mutex_lock(&zonelists_mutex);
3502 build_all_zonelists(NULL, NULL);
3503 mutex_unlock(&zonelists_mutex);
3504 }
3505 }
3506 out:
3507 mutex_unlock(&zl_order_mutex);
3508 return ret;
3509 }
3510
3511
3512 #define MAX_NODE_LOAD (nr_online_nodes)
3513 static int node_load[MAX_NUMNODES];
3514
3515 /**
3516 * find_next_best_node - find the next node that should appear in a given node's fallback list
3517 * @node: node whose fallback list we're appending
3518 * @used_node_mask: nodemask_t of already used nodes
3519 *
3520 * We use a number of factors to determine which is the next node that should
3521 * appear on a given node's fallback list. The node should not have appeared
3522 * already in @node's fallback list, and it should be the next closest node
3523 * according to the distance array (which contains arbitrary distance values
3524 * from each node to each node in the system), and should also prefer nodes
3525 * with no CPUs, since presumably they'll have very little allocation pressure
3526 * on them otherwise.
3527 * It returns -1 if no node is found.
3528 */
3529 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3530 {
3531 int n, val;
3532 int min_val = INT_MAX;
3533 int best_node = NUMA_NO_NODE;
3534 const struct cpumask *tmp = cpumask_of_node(0);
3535
3536 /* Use the local node if we haven't already */
3537 if (!node_isset(node, *used_node_mask)) {
3538 node_set(node, *used_node_mask);
3539 return node;
3540 }
3541
3542 for_each_node_state(n, N_MEMORY) {
3543
3544 /* Don't want a node to appear more than once */
3545 if (node_isset(n, *used_node_mask))
3546 continue;
3547
3548 /* Use the distance array to find the distance */
3549 val = node_distance(node, n);
3550
3551 /* Penalize nodes under us ("prefer the next node") */
3552 val += (n < node);
3553
3554 /* Give preference to headless and unused nodes */
3555 tmp = cpumask_of_node(n);
3556 if (!cpumask_empty(tmp))
3557 val += PENALTY_FOR_NODE_WITH_CPUS;
3558
3559 /* Slight preference for less loaded node */
3560 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3561 val += node_load[n];
3562
3563 if (val < min_val) {
3564 min_val = val;
3565 best_node = n;
3566 }
3567 }
3568
3569 if (best_node >= 0)
3570 node_set(best_node, *used_node_mask);
3571
3572 return best_node;
3573 }
3574
3575
3576 /*
3577 * Build zonelists ordered by node and zones within node.
3578 * This results in maximum locality--normal zone overflows into local
3579 * DMA zone, if any--but risks exhausting DMA zone.
3580 */
3581 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3582 {
3583 int j;
3584 struct zonelist *zonelist;
3585
3586 zonelist = &pgdat->node_zonelists[0];
3587 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3588 ;
3589 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3590 zonelist->_zonerefs[j].zone = NULL;
3591 zonelist->_zonerefs[j].zone_idx = 0;
3592 }
3593
3594 /*
3595 * Build gfp_thisnode zonelists
3596 */
3597 static void build_thisnode_zonelists(pg_data_t *pgdat)
3598 {
3599 int j;
3600 struct zonelist *zonelist;
3601
3602 zonelist = &pgdat->node_zonelists[1];
3603 j = build_zonelists_node(pgdat, zonelist, 0);
3604 zonelist->_zonerefs[j].zone = NULL;
3605 zonelist->_zonerefs[j].zone_idx = 0;
3606 }
3607
3608 /*
3609 * Build zonelists ordered by zone and nodes within zones.
3610 * This results in conserving DMA zone[s] until all Normal memory is
3611 * exhausted, but results in overflowing to remote node while memory
3612 * may still exist in local DMA zone.
3613 */
3614 static int node_order[MAX_NUMNODES];
3615
3616 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3617 {
3618 int pos, j, node;
3619 int zone_type; /* needs to be signed */
3620 struct zone *z;
3621 struct zonelist *zonelist;
3622
3623 zonelist = &pgdat->node_zonelists[0];
3624 pos = 0;
3625 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3626 for (j = 0; j < nr_nodes; j++) {
3627 node = node_order[j];
3628 z = &NODE_DATA(node)->node_zones[zone_type];
3629 if (populated_zone(z)) {
3630 zoneref_set_zone(z,
3631 &zonelist->_zonerefs[pos++]);
3632 check_highest_zone(zone_type);
3633 }
3634 }
3635 }
3636 zonelist->_zonerefs[pos].zone = NULL;
3637 zonelist->_zonerefs[pos].zone_idx = 0;
3638 }
3639
3640 #if defined(CONFIG_64BIT)
3641 /*
3642 * Devices that require DMA32/DMA are relatively rare and do not justify a
3643 * penalty to every machine in case the specialised case applies. Default
3644 * to Node-ordering on 64-bit NUMA machines
3645 */
3646 static int default_zonelist_order(void)
3647 {
3648 return ZONELIST_ORDER_NODE;
3649 }
3650 #else
3651 /*
3652 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3653 * by the kernel. If processes running on node 0 deplete the low memory zone
3654 * then reclaim will occur more frequency increasing stalls and potentially
3655 * be easier to OOM if a large percentage of the zone is under writeback or
3656 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3657 * Hence, default to zone ordering on 32-bit.
3658 */
3659 static int default_zonelist_order(void)
3660 {
3661 return ZONELIST_ORDER_ZONE;
3662 }
3663 #endif /* CONFIG_64BIT */
3664
3665 static void set_zonelist_order(void)
3666 {
3667 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3668 current_zonelist_order = default_zonelist_order();
3669 else
3670 current_zonelist_order = user_zonelist_order;
3671 }
3672
3673 static void build_zonelists(pg_data_t *pgdat)
3674 {
3675 int j, node, load;
3676 enum zone_type i;
3677 nodemask_t used_mask;
3678 int local_node, prev_node;
3679 struct zonelist *zonelist;
3680 int order = current_zonelist_order;
3681
3682 /* initialize zonelists */
3683 for (i = 0; i < MAX_ZONELISTS; i++) {
3684 zonelist = pgdat->node_zonelists + i;
3685 zonelist->_zonerefs[0].zone = NULL;
3686 zonelist->_zonerefs[0].zone_idx = 0;
3687 }
3688
3689 /* NUMA-aware ordering of nodes */
3690 local_node = pgdat->node_id;
3691 load = nr_online_nodes;
3692 prev_node = local_node;
3693 nodes_clear(used_mask);
3694
3695 memset(node_order, 0, sizeof(node_order));
3696 j = 0;
3697
3698 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3699 /*
3700 * We don't want to pressure a particular node.
3701 * So adding penalty to the first node in same
3702 * distance group to make it round-robin.
3703 */
3704 if (node_distance(local_node, node) !=
3705 node_distance(local_node, prev_node))
3706 node_load[node] = load;
3707
3708 prev_node = node;
3709 load--;
3710 if (order == ZONELIST_ORDER_NODE)
3711 build_zonelists_in_node_order(pgdat, node);
3712 else
3713 node_order[j++] = node; /* remember order */
3714 }
3715
3716 if (order == ZONELIST_ORDER_ZONE) {
3717 /* calculate node order -- i.e., DMA last! */
3718 build_zonelists_in_zone_order(pgdat, j);
3719 }
3720
3721 build_thisnode_zonelists(pgdat);
3722 }
3723
3724 /* Construct the zonelist performance cache - see further mmzone.h */
3725 static void build_zonelist_cache(pg_data_t *pgdat)
3726 {
3727 struct zonelist *zonelist;
3728 struct zonelist_cache *zlc;
3729 struct zoneref *z;
3730
3731 zonelist = &pgdat->node_zonelists[0];
3732 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3733 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3734 for (z = zonelist->_zonerefs; z->zone; z++)
3735 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3736 }
3737
3738 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3739 /*
3740 * Return node id of node used for "local" allocations.
3741 * I.e., first node id of first zone in arg node's generic zonelist.
3742 * Used for initializing percpu 'numa_mem', which is used primarily
3743 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3744 */
3745 int local_memory_node(int node)
3746 {
3747 struct zone *zone;
3748
3749 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3750 gfp_zone(GFP_KERNEL),
3751 NULL,
3752 &zone);
3753 return zone->node;
3754 }
3755 #endif
3756
3757 #else /* CONFIG_NUMA */
3758
3759 static void set_zonelist_order(void)
3760 {
3761 current_zonelist_order = ZONELIST_ORDER_ZONE;
3762 }
3763
3764 static void build_zonelists(pg_data_t *pgdat)
3765 {
3766 int node, local_node;
3767 enum zone_type j;
3768 struct zonelist *zonelist;
3769
3770 local_node = pgdat->node_id;
3771
3772 zonelist = &pgdat->node_zonelists[0];
3773 j = build_zonelists_node(pgdat, zonelist, 0);
3774
3775 /*
3776 * Now we build the zonelist so that it contains the zones
3777 * of all the other nodes.
3778 * We don't want to pressure a particular node, so when
3779 * building the zones for node N, we make sure that the
3780 * zones coming right after the local ones are those from
3781 * node N+1 (modulo N)
3782 */
3783 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3784 if (!node_online(node))
3785 continue;
3786 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3787 }
3788 for (node = 0; node < local_node; node++) {
3789 if (!node_online(node))
3790 continue;
3791 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3792 }
3793
3794 zonelist->_zonerefs[j].zone = NULL;
3795 zonelist->_zonerefs[j].zone_idx = 0;
3796 }
3797
3798 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3799 static void build_zonelist_cache(pg_data_t *pgdat)
3800 {
3801 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3802 }
3803
3804 #endif /* CONFIG_NUMA */
3805
3806 /*
3807 * Boot pageset table. One per cpu which is going to be used for all
3808 * zones and all nodes. The parameters will be set in such a way
3809 * that an item put on a list will immediately be handed over to
3810 * the buddy list. This is safe since pageset manipulation is done
3811 * with interrupts disabled.
3812 *
3813 * The boot_pagesets must be kept even after bootup is complete for
3814 * unused processors and/or zones. They do play a role for bootstrapping
3815 * hotplugged processors.
3816 *
3817 * zoneinfo_show() and maybe other functions do
3818 * not check if the processor is online before following the pageset pointer.
3819 * Other parts of the kernel may not check if the zone is available.
3820 */
3821 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3822 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3823 static void setup_zone_pageset(struct zone *zone);
3824
3825 /*
3826 * Global mutex to protect against size modification of zonelists
3827 * as well as to serialize pageset setup for the new populated zone.
3828 */
3829 DEFINE_MUTEX(zonelists_mutex);
3830
3831 /* return values int ....just for stop_machine() */
3832 static int __build_all_zonelists(void *data)
3833 {
3834 int nid;
3835 int cpu;
3836 pg_data_t *self = data;
3837
3838 #ifdef CONFIG_NUMA
3839 memset(node_load, 0, sizeof(node_load));
3840 #endif
3841
3842 if (self && !node_online(self->node_id)) {
3843 build_zonelists(self);
3844 build_zonelist_cache(self);
3845 }
3846
3847 for_each_online_node(nid) {
3848 pg_data_t *pgdat = NODE_DATA(nid);
3849
3850 build_zonelists(pgdat);
3851 build_zonelist_cache(pgdat);
3852 }
3853
3854 /*
3855 * Initialize the boot_pagesets that are going to be used
3856 * for bootstrapping processors. The real pagesets for
3857 * each zone will be allocated later when the per cpu
3858 * allocator is available.
3859 *
3860 * boot_pagesets are used also for bootstrapping offline
3861 * cpus if the system is already booted because the pagesets
3862 * are needed to initialize allocators on a specific cpu too.
3863 * F.e. the percpu allocator needs the page allocator which
3864 * needs the percpu allocator in order to allocate its pagesets
3865 * (a chicken-egg dilemma).
3866 */
3867 for_each_possible_cpu(cpu) {
3868 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3869
3870 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3871 /*
3872 * We now know the "local memory node" for each node--
3873 * i.e., the node of the first zone in the generic zonelist.
3874 * Set up numa_mem percpu variable for on-line cpus. During
3875 * boot, only the boot cpu should be on-line; we'll init the
3876 * secondary cpus' numa_mem as they come on-line. During
3877 * node/memory hotplug, we'll fixup all on-line cpus.
3878 */
3879 if (cpu_online(cpu))
3880 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3881 #endif
3882 }
3883
3884 return 0;
3885 }
3886
3887 static noinline void __init
3888 build_all_zonelists_init(void)
3889 {
3890 __build_all_zonelists(NULL);
3891 mminit_verify_zonelist();
3892 cpuset_init_current_mems_allowed();
3893 }
3894
3895 /*
3896 * Called with zonelists_mutex held always
3897 * unless system_state == SYSTEM_BOOTING.
3898 *
3899 * __ref due to (1) call of __meminit annotated setup_zone_pageset
3900 * [we're only called with non-NULL zone through __meminit paths] and
3901 * (2) call of __init annotated helper build_all_zonelists_init
3902 * [protected by SYSTEM_BOOTING].
3903 */
3904 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3905 {
3906 set_zonelist_order();
3907
3908 if (system_state == SYSTEM_BOOTING) {
3909 build_all_zonelists_init();
3910 } else {
3911 #ifdef CONFIG_MEMORY_HOTPLUG
3912 if (zone)
3913 setup_zone_pageset(zone);
3914 #endif
3915 /* we have to stop all cpus to guarantee there is no user
3916 of zonelist */
3917 stop_machine(__build_all_zonelists, pgdat, NULL);
3918 /* cpuset refresh routine should be here */
3919 }
3920 vm_total_pages = nr_free_pagecache_pages();
3921 /*
3922 * Disable grouping by mobility if the number of pages in the
3923 * system is too low to allow the mechanism to work. It would be
3924 * more accurate, but expensive to check per-zone. This check is
3925 * made on memory-hotadd so a system can start with mobility
3926 * disabled and enable it later
3927 */
3928 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3929 page_group_by_mobility_disabled = 1;
3930 else
3931 page_group_by_mobility_disabled = 0;
3932
3933 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
3934 "Total pages: %ld\n",
3935 nr_online_nodes,
3936 zonelist_order_name[current_zonelist_order],
3937 page_group_by_mobility_disabled ? "off" : "on",
3938 vm_total_pages);
3939 #ifdef CONFIG_NUMA
3940 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
3941 #endif
3942 }
3943
3944 /*
3945 * Helper functions to size the waitqueue hash table.
3946 * Essentially these want to choose hash table sizes sufficiently
3947 * large so that collisions trying to wait on pages are rare.
3948 * But in fact, the number of active page waitqueues on typical
3949 * systems is ridiculously low, less than 200. So this is even
3950 * conservative, even though it seems large.
3951 *
3952 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3953 * waitqueues, i.e. the size of the waitq table given the number of pages.
3954 */
3955 #define PAGES_PER_WAITQUEUE 256
3956
3957 #ifndef CONFIG_MEMORY_HOTPLUG
3958 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3959 {
3960 unsigned long size = 1;
3961
3962 pages /= PAGES_PER_WAITQUEUE;
3963
3964 while (size < pages)
3965 size <<= 1;
3966
3967 /*
3968 * Once we have dozens or even hundreds of threads sleeping
3969 * on IO we've got bigger problems than wait queue collision.
3970 * Limit the size of the wait table to a reasonable size.
3971 */
3972 size = min(size, 4096UL);
3973
3974 return max(size, 4UL);
3975 }
3976 #else
3977 /*
3978 * A zone's size might be changed by hot-add, so it is not possible to determine
3979 * a suitable size for its wait_table. So we use the maximum size now.
3980 *
3981 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3982 *
3983 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3984 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3985 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3986 *
3987 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3988 * or more by the traditional way. (See above). It equals:
3989 *
3990 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3991 * ia64(16K page size) : = ( 8G + 4M)byte.
3992 * powerpc (64K page size) : = (32G +16M)byte.
3993 */
3994 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3995 {
3996 return 4096UL;
3997 }
3998 #endif
3999
4000 /*
4001 * This is an integer logarithm so that shifts can be used later
4002 * to extract the more random high bits from the multiplicative
4003 * hash function before the remainder is taken.
4004 */
4005 static inline unsigned long wait_table_bits(unsigned long size)
4006 {
4007 return ffz(~size);
4008 }
4009
4010 /*
4011 * Check if a pageblock contains reserved pages
4012 */
4013 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4014 {
4015 unsigned long pfn;
4016
4017 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4018 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4019 return 1;
4020 }
4021 return 0;
4022 }
4023
4024 /*
4025 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4026 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4027 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4028 * higher will lead to a bigger reserve which will get freed as contiguous
4029 * blocks as reclaim kicks in
4030 */
4031 static void setup_zone_migrate_reserve(struct zone *zone)
4032 {
4033 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4034 struct page *page;
4035 unsigned long block_migratetype;
4036 int reserve;
4037 int old_reserve;
4038
4039 /*
4040 * Get the start pfn, end pfn and the number of blocks to reserve
4041 * We have to be careful to be aligned to pageblock_nr_pages to
4042 * make sure that we always check pfn_valid for the first page in
4043 * the block.
4044 */
4045 start_pfn = zone->zone_start_pfn;
4046 end_pfn = zone_end_pfn(zone);
4047 start_pfn = roundup(start_pfn, pageblock_nr_pages);
4048 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4049 pageblock_order;
4050
4051 /*
4052 * Reserve blocks are generally in place to help high-order atomic
4053 * allocations that are short-lived. A min_free_kbytes value that
4054 * would result in more than 2 reserve blocks for atomic allocations
4055 * is assumed to be in place to help anti-fragmentation for the
4056 * future allocation of hugepages at runtime.
4057 */
4058 reserve = min(2, reserve);
4059 old_reserve = zone->nr_migrate_reserve_block;
4060
4061 /* When memory hot-add, we almost always need to do nothing */
4062 if (reserve == old_reserve)
4063 return;
4064 zone->nr_migrate_reserve_block = reserve;
4065
4066 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4067 if (!pfn_valid(pfn))
4068 continue;
4069 page = pfn_to_page(pfn);
4070
4071 /* Watch out for overlapping nodes */
4072 if (page_to_nid(page) != zone_to_nid(zone))
4073 continue;
4074
4075 block_migratetype = get_pageblock_migratetype(page);
4076
4077 /* Only test what is necessary when the reserves are not met */
4078 if (reserve > 0) {
4079 /*
4080 * Blocks with reserved pages will never free, skip
4081 * them.
4082 */
4083 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4084 if (pageblock_is_reserved(pfn, block_end_pfn))
4085 continue;
4086
4087 /* If this block is reserved, account for it */
4088 if (block_migratetype == MIGRATE_RESERVE) {
4089 reserve--;
4090 continue;
4091 }
4092
4093 /* Suitable for reserving if this block is movable */
4094 if (block_migratetype == MIGRATE_MOVABLE) {
4095 set_pageblock_migratetype(page,
4096 MIGRATE_RESERVE);
4097 move_freepages_block(zone, page,
4098 MIGRATE_RESERVE);
4099 reserve--;
4100 continue;
4101 }
4102 } else if (!old_reserve) {
4103 /*
4104 * At boot time we don't need to scan the whole zone
4105 * for turning off MIGRATE_RESERVE.
4106 */
4107 break;
4108 }
4109
4110 /*
4111 * If the reserve is met and this is a previous reserved block,
4112 * take it back
4113 */
4114 if (block_migratetype == MIGRATE_RESERVE) {
4115 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4116 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4117 }
4118 }
4119 }
4120
4121 /*
4122 * Initially all pages are reserved - free ones are freed
4123 * up by free_all_bootmem() once the early boot process is
4124 * done. Non-atomic initialization, single-pass.
4125 */
4126 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4127 unsigned long start_pfn, enum memmap_context context)
4128 {
4129 struct page *page;
4130 unsigned long end_pfn = start_pfn + size;
4131 unsigned long pfn;
4132 struct zone *z;
4133
4134 if (highest_memmap_pfn < end_pfn - 1)
4135 highest_memmap_pfn = end_pfn - 1;
4136
4137 z = &NODE_DATA(nid)->node_zones[zone];
4138 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4139 /*
4140 * There can be holes in boot-time mem_map[]s
4141 * handed to this function. They do not
4142 * exist on hotplugged memory.
4143 */
4144 if (context == MEMMAP_EARLY) {
4145 if (!early_pfn_valid(pfn))
4146 continue;
4147 if (!early_pfn_in_nid(pfn, nid))
4148 continue;
4149 }
4150 page = pfn_to_page(pfn);
4151 set_page_links(page, zone, nid, pfn);
4152 mminit_verify_page_links(page, zone, nid, pfn);
4153 init_page_count(page);
4154 page_mapcount_reset(page);
4155 page_cpupid_reset_last(page);
4156 SetPageReserved(page);
4157 /*
4158 * Mark the block movable so that blocks are reserved for
4159 * movable at startup. This will force kernel allocations
4160 * to reserve their blocks rather than leaking throughout
4161 * the address space during boot when many long-lived
4162 * kernel allocations are made. Later some blocks near
4163 * the start are marked MIGRATE_RESERVE by
4164 * setup_zone_migrate_reserve()
4165 *
4166 * bitmap is created for zone's valid pfn range. but memmap
4167 * can be created for invalid pages (for alignment)
4168 * check here not to call set_pageblock_migratetype() against
4169 * pfn out of zone.
4170 */
4171 if ((z->zone_start_pfn <= pfn)
4172 && (pfn < zone_end_pfn(z))
4173 && !(pfn & (pageblock_nr_pages - 1)))
4174 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4175
4176 INIT_LIST_HEAD(&page->lru);
4177 #ifdef WANT_PAGE_VIRTUAL
4178 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4179 if (!is_highmem_idx(zone))
4180 set_page_address(page, __va(pfn << PAGE_SHIFT));
4181 #endif
4182 }
4183 }
4184
4185 static void __meminit zone_init_free_lists(struct zone *zone)
4186 {
4187 unsigned int order, t;
4188 for_each_migratetype_order(order, t) {
4189 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4190 zone->free_area[order].nr_free = 0;
4191 }
4192 }
4193
4194 #ifndef __HAVE_ARCH_MEMMAP_INIT
4195 #define memmap_init(size, nid, zone, start_pfn) \
4196 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4197 #endif
4198
4199 static int zone_batchsize(struct zone *zone)
4200 {
4201 #ifdef CONFIG_MMU
4202 int batch;
4203
4204 /*
4205 * The per-cpu-pages pools are set to around 1000th of the
4206 * size of the zone. But no more than 1/2 of a meg.
4207 *
4208 * OK, so we don't know how big the cache is. So guess.
4209 */
4210 batch = zone->managed_pages / 1024;
4211 if (batch * PAGE_SIZE > 512 * 1024)
4212 batch = (512 * 1024) / PAGE_SIZE;
4213 batch /= 4; /* We effectively *= 4 below */
4214 if (batch < 1)
4215 batch = 1;
4216
4217 /*
4218 * Clamp the batch to a 2^n - 1 value. Having a power
4219 * of 2 value was found to be more likely to have
4220 * suboptimal cache aliasing properties in some cases.
4221 *
4222 * For example if 2 tasks are alternately allocating
4223 * batches of pages, one task can end up with a lot
4224 * of pages of one half of the possible page colors
4225 * and the other with pages of the other colors.
4226 */
4227 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4228
4229 return batch;
4230
4231 #else
4232 /* The deferral and batching of frees should be suppressed under NOMMU
4233 * conditions.
4234 *
4235 * The problem is that NOMMU needs to be able to allocate large chunks
4236 * of contiguous memory as there's no hardware page translation to
4237 * assemble apparent contiguous memory from discontiguous pages.
4238 *
4239 * Queueing large contiguous runs of pages for batching, however,
4240 * causes the pages to actually be freed in smaller chunks. As there
4241 * can be a significant delay between the individual batches being
4242 * recycled, this leads to the once large chunks of space being
4243 * fragmented and becoming unavailable for high-order allocations.
4244 */
4245 return 0;
4246 #endif
4247 }
4248
4249 /*
4250 * pcp->high and pcp->batch values are related and dependent on one another:
4251 * ->batch must never be higher then ->high.
4252 * The following function updates them in a safe manner without read side
4253 * locking.
4254 *
4255 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4256 * those fields changing asynchronously (acording the the above rule).
4257 *
4258 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4259 * outside of boot time (or some other assurance that no concurrent updaters
4260 * exist).
4261 */
4262 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4263 unsigned long batch)
4264 {
4265 /* start with a fail safe value for batch */
4266 pcp->batch = 1;
4267 smp_wmb();
4268
4269 /* Update high, then batch, in order */
4270 pcp->high = high;
4271 smp_wmb();
4272
4273 pcp->batch = batch;
4274 }
4275
4276 /* a companion to pageset_set_high() */
4277 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4278 {
4279 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4280 }
4281
4282 static void pageset_init(struct per_cpu_pageset *p)
4283 {
4284 struct per_cpu_pages *pcp;
4285 int migratetype;
4286
4287 memset(p, 0, sizeof(*p));
4288
4289 pcp = &p->pcp;
4290 pcp->count = 0;
4291 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4292 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4293 }
4294
4295 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4296 {
4297 pageset_init(p);
4298 pageset_set_batch(p, batch);
4299 }
4300
4301 /*
4302 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4303 * to the value high for the pageset p.
4304 */
4305 static void pageset_set_high(struct per_cpu_pageset *p,
4306 unsigned long high)
4307 {
4308 unsigned long batch = max(1UL, high / 4);
4309 if ((high / 4) > (PAGE_SHIFT * 8))
4310 batch = PAGE_SHIFT * 8;
4311
4312 pageset_update(&p->pcp, high, batch);
4313 }
4314
4315 static void pageset_set_high_and_batch(struct zone *zone,
4316 struct per_cpu_pageset *pcp)
4317 {
4318 if (percpu_pagelist_fraction)
4319 pageset_set_high(pcp,
4320 (zone->managed_pages /
4321 percpu_pagelist_fraction));
4322 else
4323 pageset_set_batch(pcp, zone_batchsize(zone));
4324 }
4325
4326 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4327 {
4328 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4329
4330 pageset_init(pcp);
4331 pageset_set_high_and_batch(zone, pcp);
4332 }
4333
4334 static void __meminit setup_zone_pageset(struct zone *zone)
4335 {
4336 int cpu;
4337 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4338 for_each_possible_cpu(cpu)
4339 zone_pageset_init(zone, cpu);
4340 }
4341
4342 /*
4343 * Allocate per cpu pagesets and initialize them.
4344 * Before this call only boot pagesets were available.
4345 */
4346 void __init setup_per_cpu_pageset(void)
4347 {
4348 struct zone *zone;
4349
4350 for_each_populated_zone(zone)
4351 setup_zone_pageset(zone);
4352 }
4353
4354 static noinline __init_refok
4355 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4356 {
4357 int i;
4358 size_t alloc_size;
4359
4360 /*
4361 * The per-page waitqueue mechanism uses hashed waitqueues
4362 * per zone.
4363 */
4364 zone->wait_table_hash_nr_entries =
4365 wait_table_hash_nr_entries(zone_size_pages);
4366 zone->wait_table_bits =
4367 wait_table_bits(zone->wait_table_hash_nr_entries);
4368 alloc_size = zone->wait_table_hash_nr_entries
4369 * sizeof(wait_queue_head_t);
4370
4371 if (!slab_is_available()) {
4372 zone->wait_table = (wait_queue_head_t *)
4373 memblock_virt_alloc_node_nopanic(
4374 alloc_size, zone->zone_pgdat->node_id);
4375 } else {
4376 /*
4377 * This case means that a zone whose size was 0 gets new memory
4378 * via memory hot-add.
4379 * But it may be the case that a new node was hot-added. In
4380 * this case vmalloc() will not be able to use this new node's
4381 * memory - this wait_table must be initialized to use this new
4382 * node itself as well.
4383 * To use this new node's memory, further consideration will be
4384 * necessary.
4385 */
4386 zone->wait_table = vmalloc(alloc_size);
4387 }
4388 if (!zone->wait_table)
4389 return -ENOMEM;
4390
4391 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4392 init_waitqueue_head(zone->wait_table + i);
4393
4394 return 0;
4395 }
4396
4397 static __meminit void zone_pcp_init(struct zone *zone)
4398 {
4399 /*
4400 * per cpu subsystem is not up at this point. The following code
4401 * relies on the ability of the linker to provide the
4402 * offset of a (static) per cpu variable into the per cpu area.
4403 */
4404 zone->pageset = &boot_pageset;
4405
4406 if (populated_zone(zone))
4407 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4408 zone->name, zone->present_pages,
4409 zone_batchsize(zone));
4410 }
4411
4412 int __meminit init_currently_empty_zone(struct zone *zone,
4413 unsigned long zone_start_pfn,
4414 unsigned long size,
4415 enum memmap_context context)
4416 {
4417 struct pglist_data *pgdat = zone->zone_pgdat;
4418 int ret;
4419 ret = zone_wait_table_init(zone, size);
4420 if (ret)
4421 return ret;
4422 pgdat->nr_zones = zone_idx(zone) + 1;
4423
4424 zone->zone_start_pfn = zone_start_pfn;
4425
4426 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4427 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4428 pgdat->node_id,
4429 (unsigned long)zone_idx(zone),
4430 zone_start_pfn, (zone_start_pfn + size));
4431
4432 zone_init_free_lists(zone);
4433
4434 return 0;
4435 }
4436
4437 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4438 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4439 /*
4440 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4441 */
4442 int __meminit __early_pfn_to_nid(unsigned long pfn)
4443 {
4444 unsigned long start_pfn, end_pfn;
4445 int nid;
4446 /*
4447 * NOTE: The following SMP-unsafe globals are only used early in boot
4448 * when the kernel is running single-threaded.
4449 */
4450 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4451 static int __meminitdata last_nid;
4452
4453 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4454 return last_nid;
4455
4456 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4457 if (nid != -1) {
4458 last_start_pfn = start_pfn;
4459 last_end_pfn = end_pfn;
4460 last_nid = nid;
4461 }
4462
4463 return nid;
4464 }
4465 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4466
4467 int __meminit early_pfn_to_nid(unsigned long pfn)
4468 {
4469 int nid;
4470
4471 nid = __early_pfn_to_nid(pfn);
4472 if (nid >= 0)
4473 return nid;
4474 /* just returns 0 */
4475 return 0;
4476 }
4477
4478 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4479 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4480 {
4481 int nid;
4482
4483 nid = __early_pfn_to_nid(pfn);
4484 if (nid >= 0 && nid != node)
4485 return false;
4486 return true;
4487 }
4488 #endif
4489
4490 /**
4491 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4492 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4493 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4494 *
4495 * If an architecture guarantees that all ranges registered contain no holes
4496 * and may be freed, this this function may be used instead of calling
4497 * memblock_free_early_nid() manually.
4498 */
4499 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4500 {
4501 unsigned long start_pfn, end_pfn;
4502 int i, this_nid;
4503
4504 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4505 start_pfn = min(start_pfn, max_low_pfn);
4506 end_pfn = min(end_pfn, max_low_pfn);
4507
4508 if (start_pfn < end_pfn)
4509 memblock_free_early_nid(PFN_PHYS(start_pfn),
4510 (end_pfn - start_pfn) << PAGE_SHIFT,
4511 this_nid);
4512 }
4513 }
4514
4515 /**
4516 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4517 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4518 *
4519 * If an architecture guarantees that all ranges registered contain no holes and may
4520 * be freed, this function may be used instead of calling memory_present() manually.
4521 */
4522 void __init sparse_memory_present_with_active_regions(int nid)
4523 {
4524 unsigned long start_pfn, end_pfn;
4525 int i, this_nid;
4526
4527 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4528 memory_present(this_nid, start_pfn, end_pfn);
4529 }
4530
4531 /**
4532 * get_pfn_range_for_nid - Return the start and end page frames for a node
4533 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4534 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4535 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4536 *
4537 * It returns the start and end page frame of a node based on information
4538 * provided by memblock_set_node(). If called for a node
4539 * with no available memory, a warning is printed and the start and end
4540 * PFNs will be 0.
4541 */
4542 void __meminit get_pfn_range_for_nid(unsigned int nid,
4543 unsigned long *start_pfn, unsigned long *end_pfn)
4544 {
4545 unsigned long this_start_pfn, this_end_pfn;
4546 int i;
4547
4548 *start_pfn = -1UL;
4549 *end_pfn = 0;
4550
4551 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4552 *start_pfn = min(*start_pfn, this_start_pfn);
4553 *end_pfn = max(*end_pfn, this_end_pfn);
4554 }
4555
4556 if (*start_pfn == -1UL)
4557 *start_pfn = 0;
4558 }
4559
4560 /*
4561 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4562 * assumption is made that zones within a node are ordered in monotonic
4563 * increasing memory addresses so that the "highest" populated zone is used
4564 */
4565 static void __init find_usable_zone_for_movable(void)
4566 {
4567 int zone_index;
4568 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4569 if (zone_index == ZONE_MOVABLE)
4570 continue;
4571
4572 if (arch_zone_highest_possible_pfn[zone_index] >
4573 arch_zone_lowest_possible_pfn[zone_index])
4574 break;
4575 }
4576
4577 VM_BUG_ON(zone_index == -1);
4578 movable_zone = zone_index;
4579 }
4580
4581 /*
4582 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4583 * because it is sized independent of architecture. Unlike the other zones,
4584 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4585 * in each node depending on the size of each node and how evenly kernelcore
4586 * is distributed. This helper function adjusts the zone ranges
4587 * provided by the architecture for a given node by using the end of the
4588 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4589 * zones within a node are in order of monotonic increases memory addresses
4590 */
4591 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4592 unsigned long zone_type,
4593 unsigned long node_start_pfn,
4594 unsigned long node_end_pfn,
4595 unsigned long *zone_start_pfn,
4596 unsigned long *zone_end_pfn)
4597 {
4598 /* Only adjust if ZONE_MOVABLE is on this node */
4599 if (zone_movable_pfn[nid]) {
4600 /* Size ZONE_MOVABLE */
4601 if (zone_type == ZONE_MOVABLE) {
4602 *zone_start_pfn = zone_movable_pfn[nid];
4603 *zone_end_pfn = min(node_end_pfn,
4604 arch_zone_highest_possible_pfn[movable_zone]);
4605
4606 /* Adjust for ZONE_MOVABLE starting within this range */
4607 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4608 *zone_end_pfn > zone_movable_pfn[nid]) {
4609 *zone_end_pfn = zone_movable_pfn[nid];
4610
4611 /* Check if this whole range is within ZONE_MOVABLE */
4612 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4613 *zone_start_pfn = *zone_end_pfn;
4614 }
4615 }
4616
4617 /*
4618 * Return the number of pages a zone spans in a node, including holes
4619 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4620 */
4621 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4622 unsigned long zone_type,
4623 unsigned long node_start_pfn,
4624 unsigned long node_end_pfn,
4625 unsigned long *ignored)
4626 {
4627 unsigned long zone_start_pfn, zone_end_pfn;
4628
4629 /* Get the start and end of the zone */
4630 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4631 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4632 adjust_zone_range_for_zone_movable(nid, zone_type,
4633 node_start_pfn, node_end_pfn,
4634 &zone_start_pfn, &zone_end_pfn);
4635
4636 /* Check that this node has pages within the zone's required range */
4637 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4638 return 0;
4639
4640 /* Move the zone boundaries inside the node if necessary */
4641 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4642 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4643
4644 /* Return the spanned pages */
4645 return zone_end_pfn - zone_start_pfn;
4646 }
4647
4648 /*
4649 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4650 * then all holes in the requested range will be accounted for.
4651 */
4652 unsigned long __meminit __absent_pages_in_range(int nid,
4653 unsigned long range_start_pfn,
4654 unsigned long range_end_pfn)
4655 {
4656 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4657 unsigned long start_pfn, end_pfn;
4658 int i;
4659
4660 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4661 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4662 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4663 nr_absent -= end_pfn - start_pfn;
4664 }
4665 return nr_absent;
4666 }
4667
4668 /**
4669 * absent_pages_in_range - Return number of page frames in holes within a range
4670 * @start_pfn: The start PFN to start searching for holes
4671 * @end_pfn: The end PFN to stop searching for holes
4672 *
4673 * It returns the number of pages frames in memory holes within a range.
4674 */
4675 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4676 unsigned long end_pfn)
4677 {
4678 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4679 }
4680
4681 /* Return the number of page frames in holes in a zone on a node */
4682 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4683 unsigned long zone_type,
4684 unsigned long node_start_pfn,
4685 unsigned long node_end_pfn,
4686 unsigned long *ignored)
4687 {
4688 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4689 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4690 unsigned long zone_start_pfn, zone_end_pfn;
4691
4692 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4693 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4694
4695 adjust_zone_range_for_zone_movable(nid, zone_type,
4696 node_start_pfn, node_end_pfn,
4697 &zone_start_pfn, &zone_end_pfn);
4698 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4699 }
4700
4701 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4702 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4703 unsigned long zone_type,
4704 unsigned long node_start_pfn,
4705 unsigned long node_end_pfn,
4706 unsigned long *zones_size)
4707 {
4708 return zones_size[zone_type];
4709 }
4710
4711 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4712 unsigned long zone_type,
4713 unsigned long node_start_pfn,
4714 unsigned long node_end_pfn,
4715 unsigned long *zholes_size)
4716 {
4717 if (!zholes_size)
4718 return 0;
4719
4720 return zholes_size[zone_type];
4721 }
4722
4723 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4724
4725 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4726 unsigned long node_start_pfn,
4727 unsigned long node_end_pfn,
4728 unsigned long *zones_size,
4729 unsigned long *zholes_size)
4730 {
4731 unsigned long realtotalpages, totalpages = 0;
4732 enum zone_type i;
4733
4734 for (i = 0; i < MAX_NR_ZONES; i++)
4735 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4736 node_start_pfn,
4737 node_end_pfn,
4738 zones_size);
4739 pgdat->node_spanned_pages = totalpages;
4740
4741 realtotalpages = totalpages;
4742 for (i = 0; i < MAX_NR_ZONES; i++)
4743 realtotalpages -=
4744 zone_absent_pages_in_node(pgdat->node_id, i,
4745 node_start_pfn, node_end_pfn,
4746 zholes_size);
4747 pgdat->node_present_pages = realtotalpages;
4748 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4749 realtotalpages);
4750 }
4751
4752 #ifndef CONFIG_SPARSEMEM
4753 /*
4754 * Calculate the size of the zone->blockflags rounded to an unsigned long
4755 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4756 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4757 * round what is now in bits to nearest long in bits, then return it in
4758 * bytes.
4759 */
4760 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4761 {
4762 unsigned long usemapsize;
4763
4764 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4765 usemapsize = roundup(zonesize, pageblock_nr_pages);
4766 usemapsize = usemapsize >> pageblock_order;
4767 usemapsize *= NR_PAGEBLOCK_BITS;
4768 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4769
4770 return usemapsize / 8;
4771 }
4772
4773 static void __init setup_usemap(struct pglist_data *pgdat,
4774 struct zone *zone,
4775 unsigned long zone_start_pfn,
4776 unsigned long zonesize)
4777 {
4778 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4779 zone->pageblock_flags = NULL;
4780 if (usemapsize)
4781 zone->pageblock_flags =
4782 memblock_virt_alloc_node_nopanic(usemapsize,
4783 pgdat->node_id);
4784 }
4785 #else
4786 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4787 unsigned long zone_start_pfn, unsigned long zonesize) {}
4788 #endif /* CONFIG_SPARSEMEM */
4789
4790 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4791
4792 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4793 void __paginginit set_pageblock_order(void)
4794 {
4795 unsigned int order;
4796
4797 /* Check that pageblock_nr_pages has not already been setup */
4798 if (pageblock_order)
4799 return;
4800
4801 if (HPAGE_SHIFT > PAGE_SHIFT)
4802 order = HUGETLB_PAGE_ORDER;
4803 else
4804 order = MAX_ORDER - 1;
4805
4806 /*
4807 * Assume the largest contiguous order of interest is a huge page.
4808 * This value may be variable depending on boot parameters on IA64 and
4809 * powerpc.
4810 */
4811 pageblock_order = order;
4812 }
4813 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4814
4815 /*
4816 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4817 * is unused as pageblock_order is set at compile-time. See
4818 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4819 * the kernel config
4820 */
4821 void __paginginit set_pageblock_order(void)
4822 {
4823 }
4824
4825 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4826
4827 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4828 unsigned long present_pages)
4829 {
4830 unsigned long pages = spanned_pages;
4831
4832 /*
4833 * Provide a more accurate estimation if there are holes within
4834 * the zone and SPARSEMEM is in use. If there are holes within the
4835 * zone, each populated memory region may cost us one or two extra
4836 * memmap pages due to alignment because memmap pages for each
4837 * populated regions may not naturally algined on page boundary.
4838 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4839 */
4840 if (spanned_pages > present_pages + (present_pages >> 4) &&
4841 IS_ENABLED(CONFIG_SPARSEMEM))
4842 pages = present_pages;
4843
4844 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4845 }
4846
4847 /*
4848 * Set up the zone data structures:
4849 * - mark all pages reserved
4850 * - mark all memory queues empty
4851 * - clear the memory bitmaps
4852 *
4853 * NOTE: pgdat should get zeroed by caller.
4854 */
4855 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4856 unsigned long node_start_pfn, unsigned long node_end_pfn,
4857 unsigned long *zones_size, unsigned long *zholes_size)
4858 {
4859 enum zone_type j;
4860 int nid = pgdat->node_id;
4861 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4862 int ret;
4863
4864 pgdat_resize_init(pgdat);
4865 #ifdef CONFIG_NUMA_BALANCING
4866 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4867 pgdat->numabalancing_migrate_nr_pages = 0;
4868 pgdat->numabalancing_migrate_next_window = jiffies;
4869 #endif
4870 init_waitqueue_head(&pgdat->kswapd_wait);
4871 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4872 pgdat_page_ext_init(pgdat);
4873
4874 for (j = 0; j < MAX_NR_ZONES; j++) {
4875 struct zone *zone = pgdat->node_zones + j;
4876 unsigned long size, realsize, freesize, memmap_pages;
4877
4878 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4879 node_end_pfn, zones_size);
4880 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4881 node_start_pfn,
4882 node_end_pfn,
4883 zholes_size);
4884
4885 /*
4886 * Adjust freesize so that it accounts for how much memory
4887 * is used by this zone for memmap. This affects the watermark
4888 * and per-cpu initialisations
4889 */
4890 memmap_pages = calc_memmap_size(size, realsize);
4891 if (!is_highmem_idx(j)) {
4892 if (freesize >= memmap_pages) {
4893 freesize -= memmap_pages;
4894 if (memmap_pages)
4895 printk(KERN_DEBUG
4896 " %s zone: %lu pages used for memmap\n",
4897 zone_names[j], memmap_pages);
4898 } else
4899 printk(KERN_WARNING
4900 " %s zone: %lu pages exceeds freesize %lu\n",
4901 zone_names[j], memmap_pages, freesize);
4902 }
4903
4904 /* Account for reserved pages */
4905 if (j == 0 && freesize > dma_reserve) {
4906 freesize -= dma_reserve;
4907 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4908 zone_names[0], dma_reserve);
4909 }
4910
4911 if (!is_highmem_idx(j))
4912 nr_kernel_pages += freesize;
4913 /* Charge for highmem memmap if there are enough kernel pages */
4914 else if (nr_kernel_pages > memmap_pages * 2)
4915 nr_kernel_pages -= memmap_pages;
4916 nr_all_pages += freesize;
4917
4918 zone->spanned_pages = size;
4919 zone->present_pages = realsize;
4920 /*
4921 * Set an approximate value for lowmem here, it will be adjusted
4922 * when the bootmem allocator frees pages into the buddy system.
4923 * And all highmem pages will be managed by the buddy system.
4924 */
4925 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4926 #ifdef CONFIG_NUMA
4927 zone->node = nid;
4928 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4929 / 100;
4930 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4931 #endif
4932 zone->name = zone_names[j];
4933 spin_lock_init(&zone->lock);
4934 spin_lock_init(&zone->lru_lock);
4935 zone_seqlock_init(zone);
4936 zone->zone_pgdat = pgdat;
4937 zone_pcp_init(zone);
4938
4939 /* For bootup, initialized properly in watermark setup */
4940 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4941
4942 lruvec_init(&zone->lruvec);
4943 if (!size)
4944 continue;
4945
4946 set_pageblock_order();
4947 setup_usemap(pgdat, zone, zone_start_pfn, size);
4948 ret = init_currently_empty_zone(zone, zone_start_pfn,
4949 size, MEMMAP_EARLY);
4950 BUG_ON(ret);
4951 memmap_init(size, nid, j, zone_start_pfn);
4952 zone_start_pfn += size;
4953 }
4954 }
4955
4956 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4957 {
4958 /* Skip empty nodes */
4959 if (!pgdat->node_spanned_pages)
4960 return;
4961
4962 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4963 /* ia64 gets its own node_mem_map, before this, without bootmem */
4964 if (!pgdat->node_mem_map) {
4965 unsigned long size, start, end;
4966 struct page *map;
4967
4968 /*
4969 * The zone's endpoints aren't required to be MAX_ORDER
4970 * aligned but the node_mem_map endpoints must be in order
4971 * for the buddy allocator to function correctly.
4972 */
4973 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4974 end = pgdat_end_pfn(pgdat);
4975 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4976 size = (end - start) * sizeof(struct page);
4977 map = alloc_remap(pgdat->node_id, size);
4978 if (!map)
4979 map = memblock_virt_alloc_node_nopanic(size,
4980 pgdat->node_id);
4981 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4982 }
4983 #ifndef CONFIG_NEED_MULTIPLE_NODES
4984 /*
4985 * With no DISCONTIG, the global mem_map is just set as node 0's
4986 */
4987 if (pgdat == NODE_DATA(0)) {
4988 mem_map = NODE_DATA(0)->node_mem_map;
4989 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4990 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4991 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4992 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4993 }
4994 #endif
4995 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4996 }
4997
4998 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4999 unsigned long node_start_pfn, unsigned long *zholes_size)
5000 {
5001 pg_data_t *pgdat = NODE_DATA(nid);
5002 unsigned long start_pfn = 0;
5003 unsigned long end_pfn = 0;
5004
5005 /* pg_data_t should be reset to zero when it's allocated */
5006 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5007
5008 pgdat->node_id = nid;
5009 pgdat->node_start_pfn = node_start_pfn;
5010 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5011 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5012 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5013 (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
5014 #endif
5015 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5016 zones_size, zholes_size);
5017
5018 alloc_node_mem_map(pgdat);
5019 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5020 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5021 nid, (unsigned long)pgdat,
5022 (unsigned long)pgdat->node_mem_map);
5023 #endif
5024
5025 free_area_init_core(pgdat, start_pfn, end_pfn,
5026 zones_size, zholes_size);
5027 }
5028
5029 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5030
5031 #if MAX_NUMNODES > 1
5032 /*
5033 * Figure out the number of possible node ids.
5034 */
5035 void __init setup_nr_node_ids(void)
5036 {
5037 unsigned int node;
5038 unsigned int highest = 0;
5039
5040 for_each_node_mask(node, node_possible_map)
5041 highest = node;
5042 nr_node_ids = highest + 1;
5043 }
5044 #endif
5045
5046 /**
5047 * node_map_pfn_alignment - determine the maximum internode alignment
5048 *
5049 * This function should be called after node map is populated and sorted.
5050 * It calculates the maximum power of two alignment which can distinguish
5051 * all the nodes.
5052 *
5053 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5054 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5055 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5056 * shifted, 1GiB is enough and this function will indicate so.
5057 *
5058 * This is used to test whether pfn -> nid mapping of the chosen memory
5059 * model has fine enough granularity to avoid incorrect mapping for the
5060 * populated node map.
5061 *
5062 * Returns the determined alignment in pfn's. 0 if there is no alignment
5063 * requirement (single node).
5064 */
5065 unsigned long __init node_map_pfn_alignment(void)
5066 {
5067 unsigned long accl_mask = 0, last_end = 0;
5068 unsigned long start, end, mask;
5069 int last_nid = -1;
5070 int i, nid;
5071
5072 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5073 if (!start || last_nid < 0 || last_nid == nid) {
5074 last_nid = nid;
5075 last_end = end;
5076 continue;
5077 }
5078
5079 /*
5080 * Start with a mask granular enough to pin-point to the
5081 * start pfn and tick off bits one-by-one until it becomes
5082 * too coarse to separate the current node from the last.
5083 */
5084 mask = ~((1 << __ffs(start)) - 1);
5085 while (mask && last_end <= (start & (mask << 1)))
5086 mask <<= 1;
5087
5088 /* accumulate all internode masks */
5089 accl_mask |= mask;
5090 }
5091
5092 /* convert mask to number of pages */
5093 return ~accl_mask + 1;
5094 }
5095
5096 /* Find the lowest pfn for a node */
5097 static unsigned long __init find_min_pfn_for_node(int nid)
5098 {
5099 unsigned long min_pfn = ULONG_MAX;
5100 unsigned long start_pfn;
5101 int i;
5102
5103 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5104 min_pfn = min(min_pfn, start_pfn);
5105
5106 if (min_pfn == ULONG_MAX) {
5107 printk(KERN_WARNING
5108 "Could not find start_pfn for node %d\n", nid);
5109 return 0;
5110 }
5111
5112 return min_pfn;
5113 }
5114
5115 /**
5116 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5117 *
5118 * It returns the minimum PFN based on information provided via
5119 * memblock_set_node().
5120 */
5121 unsigned long __init find_min_pfn_with_active_regions(void)
5122 {
5123 return find_min_pfn_for_node(MAX_NUMNODES);
5124 }
5125
5126 /*
5127 * early_calculate_totalpages()
5128 * Sum pages in active regions for movable zone.
5129 * Populate N_MEMORY for calculating usable_nodes.
5130 */
5131 static unsigned long __init early_calculate_totalpages(void)
5132 {
5133 unsigned long totalpages = 0;
5134 unsigned long start_pfn, end_pfn;
5135 int i, nid;
5136
5137 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5138 unsigned long pages = end_pfn - start_pfn;
5139
5140 totalpages += pages;
5141 if (pages)
5142 node_set_state(nid, N_MEMORY);
5143 }
5144 return totalpages;
5145 }
5146
5147 /*
5148 * Find the PFN the Movable zone begins in each node. Kernel memory
5149 * is spread evenly between nodes as long as the nodes have enough
5150 * memory. When they don't, some nodes will have more kernelcore than
5151 * others
5152 */
5153 static void __init find_zone_movable_pfns_for_nodes(void)
5154 {
5155 int i, nid;
5156 unsigned long usable_startpfn;
5157 unsigned long kernelcore_node, kernelcore_remaining;
5158 /* save the state before borrow the nodemask */
5159 nodemask_t saved_node_state = node_states[N_MEMORY];
5160 unsigned long totalpages = early_calculate_totalpages();
5161 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5162 struct memblock_region *r;
5163
5164 /* Need to find movable_zone earlier when movable_node is specified. */
5165 find_usable_zone_for_movable();
5166
5167 /*
5168 * If movable_node is specified, ignore kernelcore and movablecore
5169 * options.
5170 */
5171 if (movable_node_is_enabled()) {
5172 for_each_memblock(memory, r) {
5173 if (!memblock_is_hotpluggable(r))
5174 continue;
5175
5176 nid = r->nid;
5177
5178 usable_startpfn = PFN_DOWN(r->base);
5179 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5180 min(usable_startpfn, zone_movable_pfn[nid]) :
5181 usable_startpfn;
5182 }
5183
5184 goto out2;
5185 }
5186
5187 /*
5188 * If movablecore=nn[KMG] was specified, calculate what size of
5189 * kernelcore that corresponds so that memory usable for
5190 * any allocation type is evenly spread. If both kernelcore
5191 * and movablecore are specified, then the value of kernelcore
5192 * will be used for required_kernelcore if it's greater than
5193 * what movablecore would have allowed.
5194 */
5195 if (required_movablecore) {
5196 unsigned long corepages;
5197
5198 /*
5199 * Round-up so that ZONE_MOVABLE is at least as large as what
5200 * was requested by the user
5201 */
5202 required_movablecore =
5203 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5204 corepages = totalpages - required_movablecore;
5205
5206 required_kernelcore = max(required_kernelcore, corepages);
5207 }
5208
5209 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5210 if (!required_kernelcore)
5211 goto out;
5212
5213 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5214 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5215
5216 restart:
5217 /* Spread kernelcore memory as evenly as possible throughout nodes */
5218 kernelcore_node = required_kernelcore / usable_nodes;
5219 for_each_node_state(nid, N_MEMORY) {
5220 unsigned long start_pfn, end_pfn;
5221
5222 /*
5223 * Recalculate kernelcore_node if the division per node
5224 * now exceeds what is necessary to satisfy the requested
5225 * amount of memory for the kernel
5226 */
5227 if (required_kernelcore < kernelcore_node)
5228 kernelcore_node = required_kernelcore / usable_nodes;
5229
5230 /*
5231 * As the map is walked, we track how much memory is usable
5232 * by the kernel using kernelcore_remaining. When it is
5233 * 0, the rest of the node is usable by ZONE_MOVABLE
5234 */
5235 kernelcore_remaining = kernelcore_node;
5236
5237 /* Go through each range of PFNs within this node */
5238 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5239 unsigned long size_pages;
5240
5241 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5242 if (start_pfn >= end_pfn)
5243 continue;
5244
5245 /* Account for what is only usable for kernelcore */
5246 if (start_pfn < usable_startpfn) {
5247 unsigned long kernel_pages;
5248 kernel_pages = min(end_pfn, usable_startpfn)
5249 - start_pfn;
5250
5251 kernelcore_remaining -= min(kernel_pages,
5252 kernelcore_remaining);
5253 required_kernelcore -= min(kernel_pages,
5254 required_kernelcore);
5255
5256 /* Continue if range is now fully accounted */
5257 if (end_pfn <= usable_startpfn) {
5258
5259 /*
5260 * Push zone_movable_pfn to the end so
5261 * that if we have to rebalance
5262 * kernelcore across nodes, we will
5263 * not double account here
5264 */
5265 zone_movable_pfn[nid] = end_pfn;
5266 continue;
5267 }
5268 start_pfn = usable_startpfn;
5269 }
5270
5271 /*
5272 * The usable PFN range for ZONE_MOVABLE is from
5273 * start_pfn->end_pfn. Calculate size_pages as the
5274 * number of pages used as kernelcore
5275 */
5276 size_pages = end_pfn - start_pfn;
5277 if (size_pages > kernelcore_remaining)
5278 size_pages = kernelcore_remaining;
5279 zone_movable_pfn[nid] = start_pfn + size_pages;
5280
5281 /*
5282 * Some kernelcore has been met, update counts and
5283 * break if the kernelcore for this node has been
5284 * satisfied
5285 */
5286 required_kernelcore -= min(required_kernelcore,
5287 size_pages);
5288 kernelcore_remaining -= size_pages;
5289 if (!kernelcore_remaining)
5290 break;
5291 }
5292 }
5293
5294 /*
5295 * If there is still required_kernelcore, we do another pass with one
5296 * less node in the count. This will push zone_movable_pfn[nid] further
5297 * along on the nodes that still have memory until kernelcore is
5298 * satisfied
5299 */
5300 usable_nodes--;
5301 if (usable_nodes && required_kernelcore > usable_nodes)
5302 goto restart;
5303
5304 out2:
5305 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5306 for (nid = 0; nid < MAX_NUMNODES; nid++)
5307 zone_movable_pfn[nid] =
5308 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5309
5310 out:
5311 /* restore the node_state */
5312 node_states[N_MEMORY] = saved_node_state;
5313 }
5314
5315 /* Any regular or high memory on that node ? */
5316 static void check_for_memory(pg_data_t *pgdat, int nid)
5317 {
5318 enum zone_type zone_type;
5319
5320 if (N_MEMORY == N_NORMAL_MEMORY)
5321 return;
5322
5323 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5324 struct zone *zone = &pgdat->node_zones[zone_type];
5325 if (populated_zone(zone)) {
5326 node_set_state(nid, N_HIGH_MEMORY);
5327 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5328 zone_type <= ZONE_NORMAL)
5329 node_set_state(nid, N_NORMAL_MEMORY);
5330 break;
5331 }
5332 }
5333 }
5334
5335 /**
5336 * free_area_init_nodes - Initialise all pg_data_t and zone data
5337 * @max_zone_pfn: an array of max PFNs for each zone
5338 *
5339 * This will call free_area_init_node() for each active node in the system.
5340 * Using the page ranges provided by memblock_set_node(), the size of each
5341 * zone in each node and their holes is calculated. If the maximum PFN
5342 * between two adjacent zones match, it is assumed that the zone is empty.
5343 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5344 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5345 * starts where the previous one ended. For example, ZONE_DMA32 starts
5346 * at arch_max_dma_pfn.
5347 */
5348 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5349 {
5350 unsigned long start_pfn, end_pfn;
5351 int i, nid;
5352
5353 /* Record where the zone boundaries are */
5354 memset(arch_zone_lowest_possible_pfn, 0,
5355 sizeof(arch_zone_lowest_possible_pfn));
5356 memset(arch_zone_highest_possible_pfn, 0,
5357 sizeof(arch_zone_highest_possible_pfn));
5358 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5359 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5360 for (i = 1; i < MAX_NR_ZONES; i++) {
5361 if (i == ZONE_MOVABLE)
5362 continue;
5363 arch_zone_lowest_possible_pfn[i] =
5364 arch_zone_highest_possible_pfn[i-1];
5365 arch_zone_highest_possible_pfn[i] =
5366 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5367 }
5368 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5369 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5370
5371 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5372 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5373 find_zone_movable_pfns_for_nodes();
5374
5375 /* Print out the zone ranges */
5376 pr_info("Zone ranges:\n");
5377 for (i = 0; i < MAX_NR_ZONES; i++) {
5378 if (i == ZONE_MOVABLE)
5379 continue;
5380 pr_info(" %-8s ", zone_names[i]);
5381 if (arch_zone_lowest_possible_pfn[i] ==
5382 arch_zone_highest_possible_pfn[i])
5383 pr_cont("empty\n");
5384 else
5385 pr_cont("[mem %#018Lx-%#018Lx]\n",
5386 (u64)arch_zone_lowest_possible_pfn[i]
5387 << PAGE_SHIFT,
5388 ((u64)arch_zone_highest_possible_pfn[i]
5389 << PAGE_SHIFT) - 1);
5390 }
5391
5392 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5393 pr_info("Movable zone start for each node\n");
5394 for (i = 0; i < MAX_NUMNODES; i++) {
5395 if (zone_movable_pfn[i])
5396 pr_info(" Node %d: %#018Lx\n", i,
5397 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5398 }
5399
5400 /* Print out the early node map */
5401 pr_info("Early memory node ranges\n");
5402 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5403 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5404 (u64)start_pfn << PAGE_SHIFT,
5405 ((u64)end_pfn << PAGE_SHIFT) - 1);
5406
5407 /* Initialise every node */
5408 mminit_verify_pageflags_layout();
5409 setup_nr_node_ids();
5410 for_each_online_node(nid) {
5411 pg_data_t *pgdat = NODE_DATA(nid);
5412 free_area_init_node(nid, NULL,
5413 find_min_pfn_for_node(nid), NULL);
5414
5415 /* Any memory on that node */
5416 if (pgdat->node_present_pages)
5417 node_set_state(nid, N_MEMORY);
5418 check_for_memory(pgdat, nid);
5419 }
5420 }
5421
5422 static int __init cmdline_parse_core(char *p, unsigned long *core)
5423 {
5424 unsigned long long coremem;
5425 if (!p)
5426 return -EINVAL;
5427
5428 coremem = memparse(p, &p);
5429 *core = coremem >> PAGE_SHIFT;
5430
5431 /* Paranoid check that UL is enough for the coremem value */
5432 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5433
5434 return 0;
5435 }
5436
5437 /*
5438 * kernelcore=size sets the amount of memory for use for allocations that
5439 * cannot be reclaimed or migrated.
5440 */
5441 static int __init cmdline_parse_kernelcore(char *p)
5442 {
5443 return cmdline_parse_core(p, &required_kernelcore);
5444 }
5445
5446 /*
5447 * movablecore=size sets the amount of memory for use for allocations that
5448 * can be reclaimed or migrated.
5449 */
5450 static int __init cmdline_parse_movablecore(char *p)
5451 {
5452 return cmdline_parse_core(p, &required_movablecore);
5453 }
5454
5455 early_param("kernelcore", cmdline_parse_kernelcore);
5456 early_param("movablecore", cmdline_parse_movablecore);
5457
5458 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5459
5460 void adjust_managed_page_count(struct page *page, long count)
5461 {
5462 spin_lock(&managed_page_count_lock);
5463 page_zone(page)->managed_pages += count;
5464 totalram_pages += count;
5465 #ifdef CONFIG_HIGHMEM
5466 if (PageHighMem(page))
5467 totalhigh_pages += count;
5468 #endif
5469 spin_unlock(&managed_page_count_lock);
5470 }
5471 EXPORT_SYMBOL(adjust_managed_page_count);
5472
5473 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5474 {
5475 void *pos;
5476 unsigned long pages = 0;
5477
5478 start = (void *)PAGE_ALIGN((unsigned long)start);
5479 end = (void *)((unsigned long)end & PAGE_MASK);
5480 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5481 if ((unsigned int)poison <= 0xFF)
5482 memset(pos, poison, PAGE_SIZE);
5483 free_reserved_page(virt_to_page(pos));
5484 }
5485
5486 if (pages && s)
5487 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5488 s, pages << (PAGE_SHIFT - 10), start, end);
5489
5490 return pages;
5491 }
5492 EXPORT_SYMBOL(free_reserved_area);
5493
5494 #ifdef CONFIG_HIGHMEM
5495 void free_highmem_page(struct page *page)
5496 {
5497 __free_reserved_page(page);
5498 totalram_pages++;
5499 page_zone(page)->managed_pages++;
5500 totalhigh_pages++;
5501 }
5502 #endif
5503
5504
5505 void __init mem_init_print_info(const char *str)
5506 {
5507 unsigned long physpages, codesize, datasize, rosize, bss_size;
5508 unsigned long init_code_size, init_data_size;
5509
5510 physpages = get_num_physpages();
5511 codesize = _etext - _stext;
5512 datasize = _edata - _sdata;
5513 rosize = __end_rodata - __start_rodata;
5514 bss_size = __bss_stop - __bss_start;
5515 init_data_size = __init_end - __init_begin;
5516 init_code_size = _einittext - _sinittext;
5517
5518 /*
5519 * Detect special cases and adjust section sizes accordingly:
5520 * 1) .init.* may be embedded into .data sections
5521 * 2) .init.text.* may be out of [__init_begin, __init_end],
5522 * please refer to arch/tile/kernel/vmlinux.lds.S.
5523 * 3) .rodata.* may be embedded into .text or .data sections.
5524 */
5525 #define adj_init_size(start, end, size, pos, adj) \
5526 do { \
5527 if (start <= pos && pos < end && size > adj) \
5528 size -= adj; \
5529 } while (0)
5530
5531 adj_init_size(__init_begin, __init_end, init_data_size,
5532 _sinittext, init_code_size);
5533 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5534 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5535 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5536 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5537
5538 #undef adj_init_size
5539
5540 pr_info("Memory: %luK/%luK available "
5541 "(%luK kernel code, %luK rwdata, %luK rodata, "
5542 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5543 #ifdef CONFIG_HIGHMEM
5544 ", %luK highmem"
5545 #endif
5546 "%s%s)\n",
5547 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5548 codesize >> 10, datasize >> 10, rosize >> 10,
5549 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5550 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5551 totalcma_pages << (PAGE_SHIFT-10),
5552 #ifdef CONFIG_HIGHMEM
5553 totalhigh_pages << (PAGE_SHIFT-10),
5554 #endif
5555 str ? ", " : "", str ? str : "");
5556 }
5557
5558 /**
5559 * set_dma_reserve - set the specified number of pages reserved in the first zone
5560 * @new_dma_reserve: The number of pages to mark reserved
5561 *
5562 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5563 * In the DMA zone, a significant percentage may be consumed by kernel image
5564 * and other unfreeable allocations which can skew the watermarks badly. This
5565 * function may optionally be used to account for unfreeable pages in the
5566 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5567 * smaller per-cpu batchsize.
5568 */
5569 void __init set_dma_reserve(unsigned long new_dma_reserve)
5570 {
5571 dma_reserve = new_dma_reserve;
5572 }
5573
5574 void __init free_area_init(unsigned long *zones_size)
5575 {
5576 free_area_init_node(0, zones_size,
5577 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5578 }
5579
5580 static int page_alloc_cpu_notify(struct notifier_block *self,
5581 unsigned long action, void *hcpu)
5582 {
5583 int cpu = (unsigned long)hcpu;
5584
5585 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5586 lru_add_drain_cpu(cpu);
5587 drain_pages(cpu);
5588
5589 /*
5590 * Spill the event counters of the dead processor
5591 * into the current processors event counters.
5592 * This artificially elevates the count of the current
5593 * processor.
5594 */
5595 vm_events_fold_cpu(cpu);
5596
5597 /*
5598 * Zero the differential counters of the dead processor
5599 * so that the vm statistics are consistent.
5600 *
5601 * This is only okay since the processor is dead and cannot
5602 * race with what we are doing.
5603 */
5604 cpu_vm_stats_fold(cpu);
5605 }
5606 return NOTIFY_OK;
5607 }
5608
5609 void __init page_alloc_init(void)
5610 {
5611 hotcpu_notifier(page_alloc_cpu_notify, 0);
5612 }
5613
5614 /*
5615 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5616 * or min_free_kbytes changes.
5617 */
5618 static void calculate_totalreserve_pages(void)
5619 {
5620 struct pglist_data *pgdat;
5621 unsigned long reserve_pages = 0;
5622 enum zone_type i, j;
5623
5624 for_each_online_pgdat(pgdat) {
5625 for (i = 0; i < MAX_NR_ZONES; i++) {
5626 struct zone *zone = pgdat->node_zones + i;
5627 long max = 0;
5628
5629 /* Find valid and maximum lowmem_reserve in the zone */
5630 for (j = i; j < MAX_NR_ZONES; j++) {
5631 if (zone->lowmem_reserve[j] > max)
5632 max = zone->lowmem_reserve[j];
5633 }
5634
5635 /* we treat the high watermark as reserved pages. */
5636 max += high_wmark_pages(zone);
5637
5638 if (max > zone->managed_pages)
5639 max = zone->managed_pages;
5640 reserve_pages += max;
5641 /*
5642 * Lowmem reserves are not available to
5643 * GFP_HIGHUSER page cache allocations and
5644 * kswapd tries to balance zones to their high
5645 * watermark. As a result, neither should be
5646 * regarded as dirtyable memory, to prevent a
5647 * situation where reclaim has to clean pages
5648 * in order to balance the zones.
5649 */
5650 zone->dirty_balance_reserve = max;
5651 }
5652 }
5653 dirty_balance_reserve = reserve_pages;
5654 totalreserve_pages = reserve_pages;
5655 }
5656
5657 /*
5658 * setup_per_zone_lowmem_reserve - called whenever
5659 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5660 * has a correct pages reserved value, so an adequate number of
5661 * pages are left in the zone after a successful __alloc_pages().
5662 */
5663 static void setup_per_zone_lowmem_reserve(void)
5664 {
5665 struct pglist_data *pgdat;
5666 enum zone_type j, idx;
5667
5668 for_each_online_pgdat(pgdat) {
5669 for (j = 0; j < MAX_NR_ZONES; j++) {
5670 struct zone *zone = pgdat->node_zones + j;
5671 unsigned long managed_pages = zone->managed_pages;
5672
5673 zone->lowmem_reserve[j] = 0;
5674
5675 idx = j;
5676 while (idx) {
5677 struct zone *lower_zone;
5678
5679 idx--;
5680
5681 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5682 sysctl_lowmem_reserve_ratio[idx] = 1;
5683
5684 lower_zone = pgdat->node_zones + idx;
5685 lower_zone->lowmem_reserve[j] = managed_pages /
5686 sysctl_lowmem_reserve_ratio[idx];
5687 managed_pages += lower_zone->managed_pages;
5688 }
5689 }
5690 }
5691
5692 /* update totalreserve_pages */
5693 calculate_totalreserve_pages();
5694 }
5695
5696 static void __setup_per_zone_wmarks(void)
5697 {
5698 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5699 unsigned long lowmem_pages = 0;
5700 struct zone *zone;
5701 unsigned long flags;
5702
5703 /* Calculate total number of !ZONE_HIGHMEM pages */
5704 for_each_zone(zone) {
5705 if (!is_highmem(zone))
5706 lowmem_pages += zone->managed_pages;
5707 }
5708
5709 for_each_zone(zone) {
5710 u64 tmp;
5711
5712 spin_lock_irqsave(&zone->lock, flags);
5713 tmp = (u64)pages_min * zone->managed_pages;
5714 do_div(tmp, lowmem_pages);
5715 if (is_highmem(zone)) {
5716 /*
5717 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5718 * need highmem pages, so cap pages_min to a small
5719 * value here.
5720 *
5721 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5722 * deltas controls asynch page reclaim, and so should
5723 * not be capped for highmem.
5724 */
5725 unsigned long min_pages;
5726
5727 min_pages = zone->managed_pages / 1024;
5728 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5729 zone->watermark[WMARK_MIN] = min_pages;
5730 } else {
5731 /*
5732 * If it's a lowmem zone, reserve a number of pages
5733 * proportionate to the zone's size.
5734 */
5735 zone->watermark[WMARK_MIN] = tmp;
5736 }
5737
5738 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5739 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5740
5741 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5742 high_wmark_pages(zone) - low_wmark_pages(zone) -
5743 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5744
5745 setup_zone_migrate_reserve(zone);
5746 spin_unlock_irqrestore(&zone->lock, flags);
5747 }
5748
5749 /* update totalreserve_pages */
5750 calculate_totalreserve_pages();
5751 }
5752
5753 /**
5754 * setup_per_zone_wmarks - called when min_free_kbytes changes
5755 * or when memory is hot-{added|removed}
5756 *
5757 * Ensures that the watermark[min,low,high] values for each zone are set
5758 * correctly with respect to min_free_kbytes.
5759 */
5760 void setup_per_zone_wmarks(void)
5761 {
5762 mutex_lock(&zonelists_mutex);
5763 __setup_per_zone_wmarks();
5764 mutex_unlock(&zonelists_mutex);
5765 }
5766
5767 /*
5768 * The inactive anon list should be small enough that the VM never has to
5769 * do too much work, but large enough that each inactive page has a chance
5770 * to be referenced again before it is swapped out.
5771 *
5772 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5773 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5774 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5775 * the anonymous pages are kept on the inactive list.
5776 *
5777 * total target max
5778 * memory ratio inactive anon
5779 * -------------------------------------
5780 * 10MB 1 5MB
5781 * 100MB 1 50MB
5782 * 1GB 3 250MB
5783 * 10GB 10 0.9GB
5784 * 100GB 31 3GB
5785 * 1TB 101 10GB
5786 * 10TB 320 32GB
5787 */
5788 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5789 {
5790 unsigned int gb, ratio;
5791
5792 /* Zone size in gigabytes */
5793 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5794 if (gb)
5795 ratio = int_sqrt(10 * gb);
5796 else
5797 ratio = 1;
5798
5799 zone->inactive_ratio = ratio;
5800 }
5801
5802 static void __meminit setup_per_zone_inactive_ratio(void)
5803 {
5804 struct zone *zone;
5805
5806 for_each_zone(zone)
5807 calculate_zone_inactive_ratio(zone);
5808 }
5809
5810 /*
5811 * Initialise min_free_kbytes.
5812 *
5813 * For small machines we want it small (128k min). For large machines
5814 * we want it large (64MB max). But it is not linear, because network
5815 * bandwidth does not increase linearly with machine size. We use
5816 *
5817 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5818 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5819 *
5820 * which yields
5821 *
5822 * 16MB: 512k
5823 * 32MB: 724k
5824 * 64MB: 1024k
5825 * 128MB: 1448k
5826 * 256MB: 2048k
5827 * 512MB: 2896k
5828 * 1024MB: 4096k
5829 * 2048MB: 5792k
5830 * 4096MB: 8192k
5831 * 8192MB: 11584k
5832 * 16384MB: 16384k
5833 */
5834 int __meminit init_per_zone_wmark_min(void)
5835 {
5836 unsigned long lowmem_kbytes;
5837 int new_min_free_kbytes;
5838
5839 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5840 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5841
5842 if (new_min_free_kbytes > user_min_free_kbytes) {
5843 min_free_kbytes = new_min_free_kbytes;
5844 if (min_free_kbytes < 128)
5845 min_free_kbytes = 128;
5846 if (min_free_kbytes > 65536)
5847 min_free_kbytes = 65536;
5848 } else {
5849 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5850 new_min_free_kbytes, user_min_free_kbytes);
5851 }
5852 setup_per_zone_wmarks();
5853 refresh_zone_stat_thresholds();
5854 setup_per_zone_lowmem_reserve();
5855 setup_per_zone_inactive_ratio();
5856 return 0;
5857 }
5858 module_init(init_per_zone_wmark_min)
5859
5860 /*
5861 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5862 * that we can call two helper functions whenever min_free_kbytes
5863 * changes.
5864 */
5865 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5866 void __user *buffer, size_t *length, loff_t *ppos)
5867 {
5868 int rc;
5869
5870 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5871 if (rc)
5872 return rc;
5873
5874 if (write) {
5875 user_min_free_kbytes = min_free_kbytes;
5876 setup_per_zone_wmarks();
5877 }
5878 return 0;
5879 }
5880
5881 #ifdef CONFIG_NUMA
5882 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5883 void __user *buffer, size_t *length, loff_t *ppos)
5884 {
5885 struct zone *zone;
5886 int rc;
5887
5888 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5889 if (rc)
5890 return rc;
5891
5892 for_each_zone(zone)
5893 zone->min_unmapped_pages = (zone->managed_pages *
5894 sysctl_min_unmapped_ratio) / 100;
5895 return 0;
5896 }
5897
5898 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5899 void __user *buffer, size_t *length, loff_t *ppos)
5900 {
5901 struct zone *zone;
5902 int rc;
5903
5904 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5905 if (rc)
5906 return rc;
5907
5908 for_each_zone(zone)
5909 zone->min_slab_pages = (zone->managed_pages *
5910 sysctl_min_slab_ratio) / 100;
5911 return 0;
5912 }
5913 #endif
5914
5915 /*
5916 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5917 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5918 * whenever sysctl_lowmem_reserve_ratio changes.
5919 *
5920 * The reserve ratio obviously has absolutely no relation with the
5921 * minimum watermarks. The lowmem reserve ratio can only make sense
5922 * if in function of the boot time zone sizes.
5923 */
5924 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5925 void __user *buffer, size_t *length, loff_t *ppos)
5926 {
5927 proc_dointvec_minmax(table, write, buffer, length, ppos);
5928 setup_per_zone_lowmem_reserve();
5929 return 0;
5930 }
5931
5932 /*
5933 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5934 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5935 * pagelist can have before it gets flushed back to buddy allocator.
5936 */
5937 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
5938 void __user *buffer, size_t *length, loff_t *ppos)
5939 {
5940 struct zone *zone;
5941 int old_percpu_pagelist_fraction;
5942 int ret;
5943
5944 mutex_lock(&pcp_batch_high_lock);
5945 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5946
5947 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5948 if (!write || ret < 0)
5949 goto out;
5950
5951 /* Sanity checking to avoid pcp imbalance */
5952 if (percpu_pagelist_fraction &&
5953 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5954 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5955 ret = -EINVAL;
5956 goto out;
5957 }
5958
5959 /* No change? */
5960 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5961 goto out;
5962
5963 for_each_populated_zone(zone) {
5964 unsigned int cpu;
5965
5966 for_each_possible_cpu(cpu)
5967 pageset_set_high_and_batch(zone,
5968 per_cpu_ptr(zone->pageset, cpu));
5969 }
5970 out:
5971 mutex_unlock(&pcp_batch_high_lock);
5972 return ret;
5973 }
5974
5975 int hashdist = HASHDIST_DEFAULT;
5976
5977 #ifdef CONFIG_NUMA
5978 static int __init set_hashdist(char *str)
5979 {
5980 if (!str)
5981 return 0;
5982 hashdist = simple_strtoul(str, &str, 0);
5983 return 1;
5984 }
5985 __setup("hashdist=", set_hashdist);
5986 #endif
5987
5988 /*
5989 * allocate a large system hash table from bootmem
5990 * - it is assumed that the hash table must contain an exact power-of-2
5991 * quantity of entries
5992 * - limit is the number of hash buckets, not the total allocation size
5993 */
5994 void *__init alloc_large_system_hash(const char *tablename,
5995 unsigned long bucketsize,
5996 unsigned long numentries,
5997 int scale,
5998 int flags,
5999 unsigned int *_hash_shift,
6000 unsigned int *_hash_mask,
6001 unsigned long low_limit,
6002 unsigned long high_limit)
6003 {
6004 unsigned long long max = high_limit;
6005 unsigned long log2qty, size;
6006 void *table = NULL;
6007
6008 /* allow the kernel cmdline to have a say */
6009 if (!numentries) {
6010 /* round applicable memory size up to nearest megabyte */
6011 numentries = nr_kernel_pages;
6012
6013 /* It isn't necessary when PAGE_SIZE >= 1MB */
6014 if (PAGE_SHIFT < 20)
6015 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6016
6017 /* limit to 1 bucket per 2^scale bytes of low memory */
6018 if (scale > PAGE_SHIFT)
6019 numentries >>= (scale - PAGE_SHIFT);
6020 else
6021 numentries <<= (PAGE_SHIFT - scale);
6022
6023 /* Make sure we've got at least a 0-order allocation.. */
6024 if (unlikely(flags & HASH_SMALL)) {
6025 /* Makes no sense without HASH_EARLY */
6026 WARN_ON(!(flags & HASH_EARLY));
6027 if (!(numentries >> *_hash_shift)) {
6028 numentries = 1UL << *_hash_shift;
6029 BUG_ON(!numentries);
6030 }
6031 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6032 numentries = PAGE_SIZE / bucketsize;
6033 }
6034 numentries = roundup_pow_of_two(numentries);
6035
6036 /* limit allocation size to 1/16 total memory by default */
6037 if (max == 0) {
6038 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6039 do_div(max, bucketsize);
6040 }
6041 max = min(max, 0x80000000ULL);
6042
6043 if (numentries < low_limit)
6044 numentries = low_limit;
6045 if (numentries > max)
6046 numentries = max;
6047
6048 log2qty = ilog2(numentries);
6049
6050 do {
6051 size = bucketsize << log2qty;
6052 if (flags & HASH_EARLY)
6053 table = memblock_virt_alloc_nopanic(size, 0);
6054 else if (hashdist)
6055 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6056 else {
6057 /*
6058 * If bucketsize is not a power-of-two, we may free
6059 * some pages at the end of hash table which
6060 * alloc_pages_exact() automatically does
6061 */
6062 if (get_order(size) < MAX_ORDER) {
6063 table = alloc_pages_exact(size, GFP_ATOMIC);
6064 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6065 }
6066 }
6067 } while (!table && size > PAGE_SIZE && --log2qty);
6068
6069 if (!table)
6070 panic("Failed to allocate %s hash table\n", tablename);
6071
6072 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6073 tablename,
6074 (1UL << log2qty),
6075 ilog2(size) - PAGE_SHIFT,
6076 size);
6077
6078 if (_hash_shift)
6079 *_hash_shift = log2qty;
6080 if (_hash_mask)
6081 *_hash_mask = (1 << log2qty) - 1;
6082
6083 return table;
6084 }
6085
6086 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6087 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6088 unsigned long pfn)
6089 {
6090 #ifdef CONFIG_SPARSEMEM
6091 return __pfn_to_section(pfn)->pageblock_flags;
6092 #else
6093 return zone->pageblock_flags;
6094 #endif /* CONFIG_SPARSEMEM */
6095 }
6096
6097 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6098 {
6099 #ifdef CONFIG_SPARSEMEM
6100 pfn &= (PAGES_PER_SECTION-1);
6101 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6102 #else
6103 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6104 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6105 #endif /* CONFIG_SPARSEMEM */
6106 }
6107
6108 /**
6109 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6110 * @page: The page within the block of interest
6111 * @pfn: The target page frame number
6112 * @end_bitidx: The last bit of interest to retrieve
6113 * @mask: mask of bits that the caller is interested in
6114 *
6115 * Return: pageblock_bits flags
6116 */
6117 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6118 unsigned long end_bitidx,
6119 unsigned long mask)
6120 {
6121 struct zone *zone;
6122 unsigned long *bitmap;
6123 unsigned long bitidx, word_bitidx;
6124 unsigned long word;
6125
6126 zone = page_zone(page);
6127 bitmap = get_pageblock_bitmap(zone, pfn);
6128 bitidx = pfn_to_bitidx(zone, pfn);
6129 word_bitidx = bitidx / BITS_PER_LONG;
6130 bitidx &= (BITS_PER_LONG-1);
6131
6132 word = bitmap[word_bitidx];
6133 bitidx += end_bitidx;
6134 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6135 }
6136
6137 /**
6138 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6139 * @page: The page within the block of interest
6140 * @flags: The flags to set
6141 * @pfn: The target page frame number
6142 * @end_bitidx: The last bit of interest
6143 * @mask: mask of bits that the caller is interested in
6144 */
6145 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6146 unsigned long pfn,
6147 unsigned long end_bitidx,
6148 unsigned long mask)
6149 {
6150 struct zone *zone;
6151 unsigned long *bitmap;
6152 unsigned long bitidx, word_bitidx;
6153 unsigned long old_word, word;
6154
6155 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6156
6157 zone = page_zone(page);
6158 bitmap = get_pageblock_bitmap(zone, pfn);
6159 bitidx = pfn_to_bitidx(zone, pfn);
6160 word_bitidx = bitidx / BITS_PER_LONG;
6161 bitidx &= (BITS_PER_LONG-1);
6162
6163 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6164
6165 bitidx += end_bitidx;
6166 mask <<= (BITS_PER_LONG - bitidx - 1);
6167 flags <<= (BITS_PER_LONG - bitidx - 1);
6168
6169 word = ACCESS_ONCE(bitmap[word_bitidx]);
6170 for (;;) {
6171 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6172 if (word == old_word)
6173 break;
6174 word = old_word;
6175 }
6176 }
6177
6178 /*
6179 * This function checks whether pageblock includes unmovable pages or not.
6180 * If @count is not zero, it is okay to include less @count unmovable pages
6181 *
6182 * PageLRU check without isolation or lru_lock could race so that
6183 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6184 * expect this function should be exact.
6185 */
6186 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6187 bool skip_hwpoisoned_pages)
6188 {
6189 unsigned long pfn, iter, found;
6190 int mt;
6191
6192 /*
6193 * For avoiding noise data, lru_add_drain_all() should be called
6194 * If ZONE_MOVABLE, the zone never contains unmovable pages
6195 */
6196 if (zone_idx(zone) == ZONE_MOVABLE)
6197 return false;
6198 mt = get_pageblock_migratetype(page);
6199 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6200 return false;
6201
6202 pfn = page_to_pfn(page);
6203 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6204 unsigned long check = pfn + iter;
6205
6206 if (!pfn_valid_within(check))
6207 continue;
6208
6209 page = pfn_to_page(check);
6210
6211 /*
6212 * Hugepages are not in LRU lists, but they're movable.
6213 * We need not scan over tail pages bacause we don't
6214 * handle each tail page individually in migration.
6215 */
6216 if (PageHuge(page)) {
6217 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6218 continue;
6219 }
6220
6221 /*
6222 * We can't use page_count without pin a page
6223 * because another CPU can free compound page.
6224 * This check already skips compound tails of THP
6225 * because their page->_count is zero at all time.
6226 */
6227 if (!atomic_read(&page->_count)) {
6228 if (PageBuddy(page))
6229 iter += (1 << page_order(page)) - 1;
6230 continue;
6231 }
6232
6233 /*
6234 * The HWPoisoned page may be not in buddy system, and
6235 * page_count() is not 0.
6236 */
6237 if (skip_hwpoisoned_pages && PageHWPoison(page))
6238 continue;
6239
6240 if (!PageLRU(page))
6241 found++;
6242 /*
6243 * If there are RECLAIMABLE pages, we need to check
6244 * it. But now, memory offline itself doesn't call
6245 * shrink_node_slabs() and it still to be fixed.
6246 */
6247 /*
6248 * If the page is not RAM, page_count()should be 0.
6249 * we don't need more check. This is an _used_ not-movable page.
6250 *
6251 * The problematic thing here is PG_reserved pages. PG_reserved
6252 * is set to both of a memory hole page and a _used_ kernel
6253 * page at boot.
6254 */
6255 if (found > count)
6256 return true;
6257 }
6258 return false;
6259 }
6260
6261 bool is_pageblock_removable_nolock(struct page *page)
6262 {
6263 struct zone *zone;
6264 unsigned long pfn;
6265
6266 /*
6267 * We have to be careful here because we are iterating over memory
6268 * sections which are not zone aware so we might end up outside of
6269 * the zone but still within the section.
6270 * We have to take care about the node as well. If the node is offline
6271 * its NODE_DATA will be NULL - see page_zone.
6272 */
6273 if (!node_online(page_to_nid(page)))
6274 return false;
6275
6276 zone = page_zone(page);
6277 pfn = page_to_pfn(page);
6278 if (!zone_spans_pfn(zone, pfn))
6279 return false;
6280
6281 return !has_unmovable_pages(zone, page, 0, true);
6282 }
6283
6284 #ifdef CONFIG_CMA
6285
6286 static unsigned long pfn_max_align_down(unsigned long pfn)
6287 {
6288 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6289 pageblock_nr_pages) - 1);
6290 }
6291
6292 static unsigned long pfn_max_align_up(unsigned long pfn)
6293 {
6294 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6295 pageblock_nr_pages));
6296 }
6297
6298 /* [start, end) must belong to a single zone. */
6299 static int __alloc_contig_migrate_range(struct compact_control *cc,
6300 unsigned long start, unsigned long end)
6301 {
6302 /* This function is based on compact_zone() from compaction.c. */
6303 unsigned long nr_reclaimed;
6304 unsigned long pfn = start;
6305 unsigned int tries = 0;
6306 int ret = 0;
6307
6308 migrate_prep();
6309
6310 while (pfn < end || !list_empty(&cc->migratepages)) {
6311 if (fatal_signal_pending(current)) {
6312 ret = -EINTR;
6313 break;
6314 }
6315
6316 if (list_empty(&cc->migratepages)) {
6317 cc->nr_migratepages = 0;
6318 pfn = isolate_migratepages_range(cc, pfn, end);
6319 if (!pfn) {
6320 ret = -EINTR;
6321 break;
6322 }
6323 tries = 0;
6324 } else if (++tries == 5) {
6325 ret = ret < 0 ? ret : -EBUSY;
6326 break;
6327 }
6328
6329 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6330 &cc->migratepages);
6331 cc->nr_migratepages -= nr_reclaimed;
6332
6333 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6334 NULL, 0, cc->mode, MR_CMA);
6335 }
6336 if (ret < 0) {
6337 putback_movable_pages(&cc->migratepages);
6338 return ret;
6339 }
6340 return 0;
6341 }
6342
6343 /**
6344 * alloc_contig_range() -- tries to allocate given range of pages
6345 * @start: start PFN to allocate
6346 * @end: one-past-the-last PFN to allocate
6347 * @migratetype: migratetype of the underlaying pageblocks (either
6348 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6349 * in range must have the same migratetype and it must
6350 * be either of the two.
6351 *
6352 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6353 * aligned, however it's the caller's responsibility to guarantee that
6354 * we are the only thread that changes migrate type of pageblocks the
6355 * pages fall in.
6356 *
6357 * The PFN range must belong to a single zone.
6358 *
6359 * Returns zero on success or negative error code. On success all
6360 * pages which PFN is in [start, end) are allocated for the caller and
6361 * need to be freed with free_contig_range().
6362 */
6363 int alloc_contig_range(unsigned long start, unsigned long end,
6364 unsigned migratetype)
6365 {
6366 unsigned long outer_start, outer_end;
6367 int ret = 0, order;
6368
6369 struct compact_control cc = {
6370 .nr_migratepages = 0,
6371 .order = -1,
6372 .zone = page_zone(pfn_to_page(start)),
6373 .mode = MIGRATE_SYNC,
6374 .ignore_skip_hint = true,
6375 };
6376 INIT_LIST_HEAD(&cc.migratepages);
6377
6378 /*
6379 * What we do here is we mark all pageblocks in range as
6380 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6381 * have different sizes, and due to the way page allocator
6382 * work, we align the range to biggest of the two pages so
6383 * that page allocator won't try to merge buddies from
6384 * different pageblocks and change MIGRATE_ISOLATE to some
6385 * other migration type.
6386 *
6387 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6388 * migrate the pages from an unaligned range (ie. pages that
6389 * we are interested in). This will put all the pages in
6390 * range back to page allocator as MIGRATE_ISOLATE.
6391 *
6392 * When this is done, we take the pages in range from page
6393 * allocator removing them from the buddy system. This way
6394 * page allocator will never consider using them.
6395 *
6396 * This lets us mark the pageblocks back as
6397 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6398 * aligned range but not in the unaligned, original range are
6399 * put back to page allocator so that buddy can use them.
6400 */
6401
6402 ret = start_isolate_page_range(pfn_max_align_down(start),
6403 pfn_max_align_up(end), migratetype,
6404 false);
6405 if (ret)
6406 return ret;
6407
6408 ret = __alloc_contig_migrate_range(&cc, start, end);
6409 if (ret)
6410 goto done;
6411
6412 /*
6413 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6414 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6415 * more, all pages in [start, end) are free in page allocator.
6416 * What we are going to do is to allocate all pages from
6417 * [start, end) (that is remove them from page allocator).
6418 *
6419 * The only problem is that pages at the beginning and at the
6420 * end of interesting range may be not aligned with pages that
6421 * page allocator holds, ie. they can be part of higher order
6422 * pages. Because of this, we reserve the bigger range and
6423 * once this is done free the pages we are not interested in.
6424 *
6425 * We don't have to hold zone->lock here because the pages are
6426 * isolated thus they won't get removed from buddy.
6427 */
6428
6429 lru_add_drain_all();
6430 drain_all_pages(cc.zone);
6431
6432 order = 0;
6433 outer_start = start;
6434 while (!PageBuddy(pfn_to_page(outer_start))) {
6435 if (++order >= MAX_ORDER) {
6436 ret = -EBUSY;
6437 goto done;
6438 }
6439 outer_start &= ~0UL << order;
6440 }
6441
6442 /* Make sure the range is really isolated. */
6443 if (test_pages_isolated(outer_start, end, false)) {
6444 pr_info("%s: [%lx, %lx) PFNs busy\n",
6445 __func__, outer_start, end);
6446 ret = -EBUSY;
6447 goto done;
6448 }
6449
6450 /* Grab isolated pages from freelists. */
6451 outer_end = isolate_freepages_range(&cc, outer_start, end);
6452 if (!outer_end) {
6453 ret = -EBUSY;
6454 goto done;
6455 }
6456
6457 /* Free head and tail (if any) */
6458 if (start != outer_start)
6459 free_contig_range(outer_start, start - outer_start);
6460 if (end != outer_end)
6461 free_contig_range(end, outer_end - end);
6462
6463 done:
6464 undo_isolate_page_range(pfn_max_align_down(start),
6465 pfn_max_align_up(end), migratetype);
6466 return ret;
6467 }
6468
6469 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6470 {
6471 unsigned int count = 0;
6472
6473 for (; nr_pages--; pfn++) {
6474 struct page *page = pfn_to_page(pfn);
6475
6476 count += page_count(page) != 1;
6477 __free_page(page);
6478 }
6479 WARN(count != 0, "%d pages are still in use!\n", count);
6480 }
6481 #endif
6482
6483 #ifdef CONFIG_MEMORY_HOTPLUG
6484 /*
6485 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6486 * page high values need to be recalulated.
6487 */
6488 void __meminit zone_pcp_update(struct zone *zone)
6489 {
6490 unsigned cpu;
6491 mutex_lock(&pcp_batch_high_lock);
6492 for_each_possible_cpu(cpu)
6493 pageset_set_high_and_batch(zone,
6494 per_cpu_ptr(zone->pageset, cpu));
6495 mutex_unlock(&pcp_batch_high_lock);
6496 }
6497 #endif
6498
6499 void zone_pcp_reset(struct zone *zone)
6500 {
6501 unsigned long flags;
6502 int cpu;
6503 struct per_cpu_pageset *pset;
6504
6505 /* avoid races with drain_pages() */
6506 local_irq_save(flags);
6507 if (zone->pageset != &boot_pageset) {
6508 for_each_online_cpu(cpu) {
6509 pset = per_cpu_ptr(zone->pageset, cpu);
6510 drain_zonestat(zone, pset);
6511 }
6512 free_percpu(zone->pageset);
6513 zone->pageset = &boot_pageset;
6514 }
6515 local_irq_restore(flags);
6516 }
6517
6518 #ifdef CONFIG_MEMORY_HOTREMOVE
6519 /*
6520 * All pages in the range must be isolated before calling this.
6521 */
6522 void
6523 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6524 {
6525 struct page *page;
6526 struct zone *zone;
6527 unsigned int order, i;
6528 unsigned long pfn;
6529 unsigned long flags;
6530 /* find the first valid pfn */
6531 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6532 if (pfn_valid(pfn))
6533 break;
6534 if (pfn == end_pfn)
6535 return;
6536 zone = page_zone(pfn_to_page(pfn));
6537 spin_lock_irqsave(&zone->lock, flags);
6538 pfn = start_pfn;
6539 while (pfn < end_pfn) {
6540 if (!pfn_valid(pfn)) {
6541 pfn++;
6542 continue;
6543 }
6544 page = pfn_to_page(pfn);
6545 /*
6546 * The HWPoisoned page may be not in buddy system, and
6547 * page_count() is not 0.
6548 */
6549 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6550 pfn++;
6551 SetPageReserved(page);
6552 continue;
6553 }
6554
6555 BUG_ON(page_count(page));
6556 BUG_ON(!PageBuddy(page));
6557 order = page_order(page);
6558 #ifdef CONFIG_DEBUG_VM
6559 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6560 pfn, 1 << order, end_pfn);
6561 #endif
6562 list_del(&page->lru);
6563 rmv_page_order(page);
6564 zone->free_area[order].nr_free--;
6565 for (i = 0; i < (1 << order); i++)
6566 SetPageReserved((page+i));
6567 pfn += (1 << order);
6568 }
6569 spin_unlock_irqrestore(&zone->lock, flags);
6570 }
6571 #endif
6572
6573 #ifdef CONFIG_MEMORY_FAILURE
6574 bool is_free_buddy_page(struct page *page)
6575 {
6576 struct zone *zone = page_zone(page);
6577 unsigned long pfn = page_to_pfn(page);
6578 unsigned long flags;
6579 unsigned int order;
6580
6581 spin_lock_irqsave(&zone->lock, flags);
6582 for (order = 0; order < MAX_ORDER; order++) {
6583 struct page *page_head = page - (pfn & ((1 << order) - 1));
6584
6585 if (PageBuddy(page_head) && page_order(page_head) >= order)
6586 break;
6587 }
6588 spin_unlock_irqrestore(&zone->lock, flags);
6589
6590 return order < MAX_ORDER;
6591 }
6592 #endif
This page took 0.20452 seconds and 5 git commands to generate.