mm/page_alloc: correct highmem memory statistics
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66
67 #include <asm/sections.h>
68 #include <asm/tlbflush.h>
69 #include <asm/div64.h>
70 #include "internal.h"
71
72 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73 static DEFINE_MUTEX(pcp_batch_high_lock);
74 #define MIN_PERCPU_PAGELIST_FRACTION (8)
75
76 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77 DEFINE_PER_CPU(int, numa_node);
78 EXPORT_PER_CPU_SYMBOL(numa_node);
79 #endif
80
81 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
82 /*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
90 int _node_numa_mem_[MAX_NUMNODES];
91 #endif
92
93 /*
94 * Array of node states.
95 */
96 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99 #ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101 #ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
103 #endif
104 #ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
106 #endif
107 [N_CPU] = { { [0] = 1UL } },
108 #endif /* NUMA */
109 };
110 EXPORT_SYMBOL(node_states);
111
112 /* Protect totalram_pages and zone->managed_pages */
113 static DEFINE_SPINLOCK(managed_page_count_lock);
114
115 unsigned long totalram_pages __read_mostly;
116 unsigned long totalreserve_pages __read_mostly;
117 unsigned long totalcma_pages __read_mostly;
118
119 int percpu_pagelist_fraction;
120 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
121
122 /*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130 static inline int get_pcppage_migratetype(struct page *page)
131 {
132 return page->index;
133 }
134
135 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136 {
137 page->index = migratetype;
138 }
139
140 #ifdef CONFIG_PM_SLEEP
141 /*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
149
150 static gfp_t saved_gfp_mask;
151
152 void pm_restore_gfp_mask(void)
153 {
154 WARN_ON(!mutex_is_locked(&pm_mutex));
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
159 }
160
161 void pm_restrict_gfp_mask(void)
162 {
163 WARN_ON(!mutex_is_locked(&pm_mutex));
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
167 }
168
169 bool pm_suspended_storage(void)
170 {
171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
172 return false;
173 return true;
174 }
175 #endif /* CONFIG_PM_SLEEP */
176
177 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
178 unsigned int pageblock_order __read_mostly;
179 #endif
180
181 static void __free_pages_ok(struct page *page, unsigned int order);
182
183 /*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
193 */
194 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
195 #ifdef CONFIG_ZONE_DMA
196 256,
197 #endif
198 #ifdef CONFIG_ZONE_DMA32
199 256,
200 #endif
201 #ifdef CONFIG_HIGHMEM
202 32,
203 #endif
204 32,
205 };
206
207 EXPORT_SYMBOL(totalram_pages);
208
209 static char * const zone_names[MAX_NR_ZONES] = {
210 #ifdef CONFIG_ZONE_DMA
211 "DMA",
212 #endif
213 #ifdef CONFIG_ZONE_DMA32
214 "DMA32",
215 #endif
216 "Normal",
217 #ifdef CONFIG_HIGHMEM
218 "HighMem",
219 #endif
220 "Movable",
221 #ifdef CONFIG_ZONE_DEVICE
222 "Device",
223 #endif
224 };
225
226 char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231 #ifdef CONFIG_CMA
232 "CMA",
233 #endif
234 #ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236 #endif
237 };
238
239 compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242 #ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244 #endif
245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247 #endif
248 };
249
250 int min_free_kbytes = 1024;
251 int user_min_free_kbytes = -1;
252 int watermark_scale_factor = 10;
253
254 static unsigned long __meminitdata nr_kernel_pages;
255 static unsigned long __meminitdata nr_all_pages;
256 static unsigned long __meminitdata dma_reserve;
257
258 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261 static unsigned long __initdata required_kernelcore;
262 static unsigned long __initdata required_movablecore;
263 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
264 static bool mirrored_kernelcore;
265
266 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267 int movable_zone;
268 EXPORT_SYMBOL(movable_zone);
269 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
270
271 #if MAX_NUMNODES > 1
272 int nr_node_ids __read_mostly = MAX_NUMNODES;
273 int nr_online_nodes __read_mostly = 1;
274 EXPORT_SYMBOL(nr_node_ids);
275 EXPORT_SYMBOL(nr_online_nodes);
276 #endif
277
278 int page_group_by_mobility_disabled __read_mostly;
279
280 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281 static inline void reset_deferred_meminit(pg_data_t *pgdat)
282 {
283 pgdat->first_deferred_pfn = ULONG_MAX;
284 }
285
286 /* Returns true if the struct page for the pfn is uninitialised */
287 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
288 {
289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
290 return true;
291
292 return false;
293 }
294
295 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296 {
297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301 }
302
303 /*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307 static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310 {
311 unsigned long max_initialise;
312
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
322
323 (*nr_initialised)++;
324 if ((*nr_initialised > max_initialise) &&
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331 }
332 #else
333 static inline void reset_deferred_meminit(pg_data_t *pgdat)
334 {
335 }
336
337 static inline bool early_page_uninitialised(unsigned long pfn)
338 {
339 return false;
340 }
341
342 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
343 {
344 return false;
345 }
346
347 static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350 {
351 return true;
352 }
353 #endif
354
355
356 void set_pageblock_migratetype(struct page *page, int migratetype)
357 {
358 if (unlikely(page_group_by_mobility_disabled &&
359 migratetype < MIGRATE_PCPTYPES))
360 migratetype = MIGRATE_UNMOVABLE;
361
362 set_pageblock_flags_group(page, (unsigned long)migratetype,
363 PB_migrate, PB_migrate_end);
364 }
365
366 #ifdef CONFIG_DEBUG_VM
367 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
368 {
369 int ret = 0;
370 unsigned seq;
371 unsigned long pfn = page_to_pfn(page);
372 unsigned long sp, start_pfn;
373
374 do {
375 seq = zone_span_seqbegin(zone);
376 start_pfn = zone->zone_start_pfn;
377 sp = zone->spanned_pages;
378 if (!zone_spans_pfn(zone, pfn))
379 ret = 1;
380 } while (zone_span_seqretry(zone, seq));
381
382 if (ret)
383 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
384 pfn, zone_to_nid(zone), zone->name,
385 start_pfn, start_pfn + sp);
386
387 return ret;
388 }
389
390 static int page_is_consistent(struct zone *zone, struct page *page)
391 {
392 if (!pfn_valid_within(page_to_pfn(page)))
393 return 0;
394 if (zone != page_zone(page))
395 return 0;
396
397 return 1;
398 }
399 /*
400 * Temporary debugging check for pages not lying within a given zone.
401 */
402 static int bad_range(struct zone *zone, struct page *page)
403 {
404 if (page_outside_zone_boundaries(zone, page))
405 return 1;
406 if (!page_is_consistent(zone, page))
407 return 1;
408
409 return 0;
410 }
411 #else
412 static inline int bad_range(struct zone *zone, struct page *page)
413 {
414 return 0;
415 }
416 #endif
417
418 static void bad_page(struct page *page, const char *reason,
419 unsigned long bad_flags)
420 {
421 static unsigned long resume;
422 static unsigned long nr_shown;
423 static unsigned long nr_unshown;
424
425 /* Don't complain about poisoned pages */
426 if (PageHWPoison(page)) {
427 page_mapcount_reset(page); /* remove PageBuddy */
428 return;
429 }
430
431 /*
432 * Allow a burst of 60 reports, then keep quiet for that minute;
433 * or allow a steady drip of one report per second.
434 */
435 if (nr_shown == 60) {
436 if (time_before(jiffies, resume)) {
437 nr_unshown++;
438 goto out;
439 }
440 if (nr_unshown) {
441 pr_alert(
442 "BUG: Bad page state: %lu messages suppressed\n",
443 nr_unshown);
444 nr_unshown = 0;
445 }
446 nr_shown = 0;
447 }
448 if (nr_shown++ == 0)
449 resume = jiffies + 60 * HZ;
450
451 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
452 current->comm, page_to_pfn(page));
453 __dump_page(page, reason);
454 bad_flags &= page->flags;
455 if (bad_flags)
456 pr_alert("bad because of flags: %#lx(%pGp)\n",
457 bad_flags, &bad_flags);
458 dump_page_owner(page);
459
460 print_modules();
461 dump_stack();
462 out:
463 /* Leave bad fields for debug, except PageBuddy could make trouble */
464 page_mapcount_reset(page); /* remove PageBuddy */
465 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
466 }
467
468 /*
469 * Higher-order pages are called "compound pages". They are structured thusly:
470 *
471 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
472 *
473 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
474 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
475 *
476 * The first tail page's ->compound_dtor holds the offset in array of compound
477 * page destructors. See compound_page_dtors.
478 *
479 * The first tail page's ->compound_order holds the order of allocation.
480 * This usage means that zero-order pages may not be compound.
481 */
482
483 void free_compound_page(struct page *page)
484 {
485 __free_pages_ok(page, compound_order(page));
486 }
487
488 void prep_compound_page(struct page *page, unsigned int order)
489 {
490 int i;
491 int nr_pages = 1 << order;
492
493 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
494 set_compound_order(page, order);
495 __SetPageHead(page);
496 for (i = 1; i < nr_pages; i++) {
497 struct page *p = page + i;
498 set_page_count(p, 0);
499 p->mapping = TAIL_MAPPING;
500 set_compound_head(p, page);
501 }
502 atomic_set(compound_mapcount_ptr(page), -1);
503 }
504
505 #ifdef CONFIG_DEBUG_PAGEALLOC
506 unsigned int _debug_guardpage_minorder;
507 bool _debug_pagealloc_enabled __read_mostly
508 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
509 EXPORT_SYMBOL(_debug_pagealloc_enabled);
510 bool _debug_guardpage_enabled __read_mostly;
511
512 static int __init early_debug_pagealloc(char *buf)
513 {
514 if (!buf)
515 return -EINVAL;
516
517 if (strcmp(buf, "on") == 0)
518 _debug_pagealloc_enabled = true;
519
520 if (strcmp(buf, "off") == 0)
521 _debug_pagealloc_enabled = false;
522
523 return 0;
524 }
525 early_param("debug_pagealloc", early_debug_pagealloc);
526
527 static bool need_debug_guardpage(void)
528 {
529 /* If we don't use debug_pagealloc, we don't need guard page */
530 if (!debug_pagealloc_enabled())
531 return false;
532
533 return true;
534 }
535
536 static void init_debug_guardpage(void)
537 {
538 if (!debug_pagealloc_enabled())
539 return;
540
541 _debug_guardpage_enabled = true;
542 }
543
544 struct page_ext_operations debug_guardpage_ops = {
545 .need = need_debug_guardpage,
546 .init = init_debug_guardpage,
547 };
548
549 static int __init debug_guardpage_minorder_setup(char *buf)
550 {
551 unsigned long res;
552
553 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
554 pr_err("Bad debug_guardpage_minorder value\n");
555 return 0;
556 }
557 _debug_guardpage_minorder = res;
558 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
559 return 0;
560 }
561 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
562
563 static inline void set_page_guard(struct zone *zone, struct page *page,
564 unsigned int order, int migratetype)
565 {
566 struct page_ext *page_ext;
567
568 if (!debug_guardpage_enabled())
569 return;
570
571 page_ext = lookup_page_ext(page);
572 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
573
574 INIT_LIST_HEAD(&page->lru);
575 set_page_private(page, order);
576 /* Guard pages are not available for any usage */
577 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
578 }
579
580 static inline void clear_page_guard(struct zone *zone, struct page *page,
581 unsigned int order, int migratetype)
582 {
583 struct page_ext *page_ext;
584
585 if (!debug_guardpage_enabled())
586 return;
587
588 page_ext = lookup_page_ext(page);
589 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
590
591 set_page_private(page, 0);
592 if (!is_migrate_isolate(migratetype))
593 __mod_zone_freepage_state(zone, (1 << order), migratetype);
594 }
595 #else
596 struct page_ext_operations debug_guardpage_ops = { NULL, };
597 static inline void set_page_guard(struct zone *zone, struct page *page,
598 unsigned int order, int migratetype) {}
599 static inline void clear_page_guard(struct zone *zone, struct page *page,
600 unsigned int order, int migratetype) {}
601 #endif
602
603 static inline void set_page_order(struct page *page, unsigned int order)
604 {
605 set_page_private(page, order);
606 __SetPageBuddy(page);
607 }
608
609 static inline void rmv_page_order(struct page *page)
610 {
611 __ClearPageBuddy(page);
612 set_page_private(page, 0);
613 }
614
615 /*
616 * This function checks whether a page is free && is the buddy
617 * we can do coalesce a page and its buddy if
618 * (a) the buddy is not in a hole &&
619 * (b) the buddy is in the buddy system &&
620 * (c) a page and its buddy have the same order &&
621 * (d) a page and its buddy are in the same zone.
622 *
623 * For recording whether a page is in the buddy system, we set ->_mapcount
624 * PAGE_BUDDY_MAPCOUNT_VALUE.
625 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
626 * serialized by zone->lock.
627 *
628 * For recording page's order, we use page_private(page).
629 */
630 static inline int page_is_buddy(struct page *page, struct page *buddy,
631 unsigned int order)
632 {
633 if (!pfn_valid_within(page_to_pfn(buddy)))
634 return 0;
635
636 if (page_is_guard(buddy) && page_order(buddy) == order) {
637 if (page_zone_id(page) != page_zone_id(buddy))
638 return 0;
639
640 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
641
642 return 1;
643 }
644
645 if (PageBuddy(buddy) && page_order(buddy) == order) {
646 /*
647 * zone check is done late to avoid uselessly
648 * calculating zone/node ids for pages that could
649 * never merge.
650 */
651 if (page_zone_id(page) != page_zone_id(buddy))
652 return 0;
653
654 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
655
656 return 1;
657 }
658 return 0;
659 }
660
661 /*
662 * Freeing function for a buddy system allocator.
663 *
664 * The concept of a buddy system is to maintain direct-mapped table
665 * (containing bit values) for memory blocks of various "orders".
666 * The bottom level table contains the map for the smallest allocatable
667 * units of memory (here, pages), and each level above it describes
668 * pairs of units from the levels below, hence, "buddies".
669 * At a high level, all that happens here is marking the table entry
670 * at the bottom level available, and propagating the changes upward
671 * as necessary, plus some accounting needed to play nicely with other
672 * parts of the VM system.
673 * At each level, we keep a list of pages, which are heads of continuous
674 * free pages of length of (1 << order) and marked with _mapcount
675 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
676 * field.
677 * So when we are allocating or freeing one, we can derive the state of the
678 * other. That is, if we allocate a small block, and both were
679 * free, the remainder of the region must be split into blocks.
680 * If a block is freed, and its buddy is also free, then this
681 * triggers coalescing into a block of larger size.
682 *
683 * -- nyc
684 */
685
686 static inline void __free_one_page(struct page *page,
687 unsigned long pfn,
688 struct zone *zone, unsigned int order,
689 int migratetype)
690 {
691 unsigned long page_idx;
692 unsigned long combined_idx;
693 unsigned long uninitialized_var(buddy_idx);
694 struct page *buddy;
695 unsigned int max_order;
696
697 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
698
699 VM_BUG_ON(!zone_is_initialized(zone));
700 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
701
702 VM_BUG_ON(migratetype == -1);
703 if (likely(!is_migrate_isolate(migratetype)))
704 __mod_zone_freepage_state(zone, 1 << order, migratetype);
705
706 page_idx = pfn & ((1 << MAX_ORDER) - 1);
707
708 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
709 VM_BUG_ON_PAGE(bad_range(zone, page), page);
710
711 continue_merging:
712 while (order < max_order - 1) {
713 buddy_idx = __find_buddy_index(page_idx, order);
714 buddy = page + (buddy_idx - page_idx);
715 if (!page_is_buddy(page, buddy, order))
716 goto done_merging;
717 /*
718 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
719 * merge with it and move up one order.
720 */
721 if (page_is_guard(buddy)) {
722 clear_page_guard(zone, buddy, order, migratetype);
723 } else {
724 list_del(&buddy->lru);
725 zone->free_area[order].nr_free--;
726 rmv_page_order(buddy);
727 }
728 combined_idx = buddy_idx & page_idx;
729 page = page + (combined_idx - page_idx);
730 page_idx = combined_idx;
731 order++;
732 }
733 if (max_order < MAX_ORDER) {
734 /* If we are here, it means order is >= pageblock_order.
735 * We want to prevent merge between freepages on isolate
736 * pageblock and normal pageblock. Without this, pageblock
737 * isolation could cause incorrect freepage or CMA accounting.
738 *
739 * We don't want to hit this code for the more frequent
740 * low-order merging.
741 */
742 if (unlikely(has_isolate_pageblock(zone))) {
743 int buddy_mt;
744
745 buddy_idx = __find_buddy_index(page_idx, order);
746 buddy = page + (buddy_idx - page_idx);
747 buddy_mt = get_pageblock_migratetype(buddy);
748
749 if (migratetype != buddy_mt
750 && (is_migrate_isolate(migratetype) ||
751 is_migrate_isolate(buddy_mt)))
752 goto done_merging;
753 }
754 max_order++;
755 goto continue_merging;
756 }
757
758 done_merging:
759 set_page_order(page, order);
760
761 /*
762 * If this is not the largest possible page, check if the buddy
763 * of the next-highest order is free. If it is, it's possible
764 * that pages are being freed that will coalesce soon. In case,
765 * that is happening, add the free page to the tail of the list
766 * so it's less likely to be used soon and more likely to be merged
767 * as a higher order page
768 */
769 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
770 struct page *higher_page, *higher_buddy;
771 combined_idx = buddy_idx & page_idx;
772 higher_page = page + (combined_idx - page_idx);
773 buddy_idx = __find_buddy_index(combined_idx, order + 1);
774 higher_buddy = higher_page + (buddy_idx - combined_idx);
775 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
776 list_add_tail(&page->lru,
777 &zone->free_area[order].free_list[migratetype]);
778 goto out;
779 }
780 }
781
782 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
783 out:
784 zone->free_area[order].nr_free++;
785 }
786
787 static inline int free_pages_check(struct page *page)
788 {
789 const char *bad_reason = NULL;
790 unsigned long bad_flags = 0;
791
792 if (unlikely(atomic_read(&page->_mapcount) != -1))
793 bad_reason = "nonzero mapcount";
794 if (unlikely(page->mapping != NULL))
795 bad_reason = "non-NULL mapping";
796 if (unlikely(page_ref_count(page) != 0))
797 bad_reason = "nonzero _refcount";
798 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
799 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
800 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
801 }
802 #ifdef CONFIG_MEMCG
803 if (unlikely(page->mem_cgroup))
804 bad_reason = "page still charged to cgroup";
805 #endif
806 if (unlikely(bad_reason)) {
807 bad_page(page, bad_reason, bad_flags);
808 return 1;
809 }
810 page_cpupid_reset_last(page);
811 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
812 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
813 return 0;
814 }
815
816 /*
817 * Frees a number of pages from the PCP lists
818 * Assumes all pages on list are in same zone, and of same order.
819 * count is the number of pages to free.
820 *
821 * If the zone was previously in an "all pages pinned" state then look to
822 * see if this freeing clears that state.
823 *
824 * And clear the zone's pages_scanned counter, to hold off the "all pages are
825 * pinned" detection logic.
826 */
827 static void free_pcppages_bulk(struct zone *zone, int count,
828 struct per_cpu_pages *pcp)
829 {
830 int migratetype = 0;
831 int batch_free = 0;
832 int to_free = count;
833 unsigned long nr_scanned;
834
835 spin_lock(&zone->lock);
836 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
837 if (nr_scanned)
838 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
839
840 while (to_free) {
841 struct page *page;
842 struct list_head *list;
843
844 /*
845 * Remove pages from lists in a round-robin fashion. A
846 * batch_free count is maintained that is incremented when an
847 * empty list is encountered. This is so more pages are freed
848 * off fuller lists instead of spinning excessively around empty
849 * lists
850 */
851 do {
852 batch_free++;
853 if (++migratetype == MIGRATE_PCPTYPES)
854 migratetype = 0;
855 list = &pcp->lists[migratetype];
856 } while (list_empty(list));
857
858 /* This is the only non-empty list. Free them all. */
859 if (batch_free == MIGRATE_PCPTYPES)
860 batch_free = to_free;
861
862 do {
863 int mt; /* migratetype of the to-be-freed page */
864
865 page = list_last_entry(list, struct page, lru);
866 /* must delete as __free_one_page list manipulates */
867 list_del(&page->lru);
868
869 mt = get_pcppage_migratetype(page);
870 /* MIGRATE_ISOLATE page should not go to pcplists */
871 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
872 /* Pageblock could have been isolated meanwhile */
873 if (unlikely(has_isolate_pageblock(zone)))
874 mt = get_pageblock_migratetype(page);
875
876 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
877 trace_mm_page_pcpu_drain(page, 0, mt);
878 } while (--to_free && --batch_free && !list_empty(list));
879 }
880 spin_unlock(&zone->lock);
881 }
882
883 static void free_one_page(struct zone *zone,
884 struct page *page, unsigned long pfn,
885 unsigned int order,
886 int migratetype)
887 {
888 unsigned long nr_scanned;
889 spin_lock(&zone->lock);
890 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
891 if (nr_scanned)
892 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
893
894 if (unlikely(has_isolate_pageblock(zone) ||
895 is_migrate_isolate(migratetype))) {
896 migratetype = get_pfnblock_migratetype(page, pfn);
897 }
898 __free_one_page(page, pfn, zone, order, migratetype);
899 spin_unlock(&zone->lock);
900 }
901
902 static int free_tail_pages_check(struct page *head_page, struct page *page)
903 {
904 int ret = 1;
905
906 /*
907 * We rely page->lru.next never has bit 0 set, unless the page
908 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
909 */
910 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
911
912 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
913 ret = 0;
914 goto out;
915 }
916 switch (page - head_page) {
917 case 1:
918 /* the first tail page: ->mapping is compound_mapcount() */
919 if (unlikely(compound_mapcount(page))) {
920 bad_page(page, "nonzero compound_mapcount", 0);
921 goto out;
922 }
923 break;
924 case 2:
925 /*
926 * the second tail page: ->mapping is
927 * page_deferred_list().next -- ignore value.
928 */
929 break;
930 default:
931 if (page->mapping != TAIL_MAPPING) {
932 bad_page(page, "corrupted mapping in tail page", 0);
933 goto out;
934 }
935 break;
936 }
937 if (unlikely(!PageTail(page))) {
938 bad_page(page, "PageTail not set", 0);
939 goto out;
940 }
941 if (unlikely(compound_head(page) != head_page)) {
942 bad_page(page, "compound_head not consistent", 0);
943 goto out;
944 }
945 ret = 0;
946 out:
947 page->mapping = NULL;
948 clear_compound_head(page);
949 return ret;
950 }
951
952 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
953 unsigned long zone, int nid)
954 {
955 set_page_links(page, zone, nid, pfn);
956 init_page_count(page);
957 page_mapcount_reset(page);
958 page_cpupid_reset_last(page);
959
960 INIT_LIST_HEAD(&page->lru);
961 #ifdef WANT_PAGE_VIRTUAL
962 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
963 if (!is_highmem_idx(zone))
964 set_page_address(page, __va(pfn << PAGE_SHIFT));
965 #endif
966 }
967
968 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
969 int nid)
970 {
971 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
972 }
973
974 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
975 static void init_reserved_page(unsigned long pfn)
976 {
977 pg_data_t *pgdat;
978 int nid, zid;
979
980 if (!early_page_uninitialised(pfn))
981 return;
982
983 nid = early_pfn_to_nid(pfn);
984 pgdat = NODE_DATA(nid);
985
986 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
987 struct zone *zone = &pgdat->node_zones[zid];
988
989 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
990 break;
991 }
992 __init_single_pfn(pfn, zid, nid);
993 }
994 #else
995 static inline void init_reserved_page(unsigned long pfn)
996 {
997 }
998 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
999
1000 /*
1001 * Initialised pages do not have PageReserved set. This function is
1002 * called for each range allocated by the bootmem allocator and
1003 * marks the pages PageReserved. The remaining valid pages are later
1004 * sent to the buddy page allocator.
1005 */
1006 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
1007 {
1008 unsigned long start_pfn = PFN_DOWN(start);
1009 unsigned long end_pfn = PFN_UP(end);
1010
1011 for (; start_pfn < end_pfn; start_pfn++) {
1012 if (pfn_valid(start_pfn)) {
1013 struct page *page = pfn_to_page(start_pfn);
1014
1015 init_reserved_page(start_pfn);
1016
1017 /* Avoid false-positive PageTail() */
1018 INIT_LIST_HEAD(&page->lru);
1019
1020 SetPageReserved(page);
1021 }
1022 }
1023 }
1024
1025 static bool free_pages_prepare(struct page *page, unsigned int order)
1026 {
1027 bool compound = PageCompound(page);
1028 int i, bad = 0;
1029
1030 VM_BUG_ON_PAGE(PageTail(page), page);
1031 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1032
1033 trace_mm_page_free(page, order);
1034 kmemcheck_free_shadow(page, order);
1035 kasan_free_pages(page, order);
1036
1037 if (PageAnon(page))
1038 page->mapping = NULL;
1039 bad += free_pages_check(page);
1040 for (i = 1; i < (1 << order); i++) {
1041 if (compound)
1042 bad += free_tail_pages_check(page, page + i);
1043 bad += free_pages_check(page + i);
1044 }
1045 if (bad)
1046 return false;
1047
1048 reset_page_owner(page, order);
1049
1050 if (!PageHighMem(page)) {
1051 debug_check_no_locks_freed(page_address(page),
1052 PAGE_SIZE << order);
1053 debug_check_no_obj_freed(page_address(page),
1054 PAGE_SIZE << order);
1055 }
1056 arch_free_page(page, order);
1057 kernel_poison_pages(page, 1 << order, 0);
1058 kernel_map_pages(page, 1 << order, 0);
1059
1060 return true;
1061 }
1062
1063 static void __free_pages_ok(struct page *page, unsigned int order)
1064 {
1065 unsigned long flags;
1066 int migratetype;
1067 unsigned long pfn = page_to_pfn(page);
1068
1069 if (!free_pages_prepare(page, order))
1070 return;
1071
1072 migratetype = get_pfnblock_migratetype(page, pfn);
1073 local_irq_save(flags);
1074 __count_vm_events(PGFREE, 1 << order);
1075 free_one_page(page_zone(page), page, pfn, order, migratetype);
1076 local_irq_restore(flags);
1077 }
1078
1079 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1080 {
1081 unsigned int nr_pages = 1 << order;
1082 struct page *p = page;
1083 unsigned int loop;
1084
1085 prefetchw(p);
1086 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1087 prefetchw(p + 1);
1088 __ClearPageReserved(p);
1089 set_page_count(p, 0);
1090 }
1091 __ClearPageReserved(p);
1092 set_page_count(p, 0);
1093
1094 page_zone(page)->managed_pages += nr_pages;
1095 set_page_refcounted(page);
1096 __free_pages(page, order);
1097 }
1098
1099 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1100 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1101
1102 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1103
1104 int __meminit early_pfn_to_nid(unsigned long pfn)
1105 {
1106 static DEFINE_SPINLOCK(early_pfn_lock);
1107 int nid;
1108
1109 spin_lock(&early_pfn_lock);
1110 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1111 if (nid < 0)
1112 nid = 0;
1113 spin_unlock(&early_pfn_lock);
1114
1115 return nid;
1116 }
1117 #endif
1118
1119 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1120 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1121 struct mminit_pfnnid_cache *state)
1122 {
1123 int nid;
1124
1125 nid = __early_pfn_to_nid(pfn, state);
1126 if (nid >= 0 && nid != node)
1127 return false;
1128 return true;
1129 }
1130
1131 /* Only safe to use early in boot when initialisation is single-threaded */
1132 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1133 {
1134 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1135 }
1136
1137 #else
1138
1139 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1140 {
1141 return true;
1142 }
1143 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1144 struct mminit_pfnnid_cache *state)
1145 {
1146 return true;
1147 }
1148 #endif
1149
1150
1151 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1152 unsigned int order)
1153 {
1154 if (early_page_uninitialised(pfn))
1155 return;
1156 return __free_pages_boot_core(page, order);
1157 }
1158
1159 /*
1160 * Check that the whole (or subset of) a pageblock given by the interval of
1161 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1162 * with the migration of free compaction scanner. The scanners then need to
1163 * use only pfn_valid_within() check for arches that allow holes within
1164 * pageblocks.
1165 *
1166 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1167 *
1168 * It's possible on some configurations to have a setup like node0 node1 node0
1169 * i.e. it's possible that all pages within a zones range of pages do not
1170 * belong to a single zone. We assume that a border between node0 and node1
1171 * can occur within a single pageblock, but not a node0 node1 node0
1172 * interleaving within a single pageblock. It is therefore sufficient to check
1173 * the first and last page of a pageblock and avoid checking each individual
1174 * page in a pageblock.
1175 */
1176 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1177 unsigned long end_pfn, struct zone *zone)
1178 {
1179 struct page *start_page;
1180 struct page *end_page;
1181
1182 /* end_pfn is one past the range we are checking */
1183 end_pfn--;
1184
1185 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1186 return NULL;
1187
1188 start_page = pfn_to_page(start_pfn);
1189
1190 if (page_zone(start_page) != zone)
1191 return NULL;
1192
1193 end_page = pfn_to_page(end_pfn);
1194
1195 /* This gives a shorter code than deriving page_zone(end_page) */
1196 if (page_zone_id(start_page) != page_zone_id(end_page))
1197 return NULL;
1198
1199 return start_page;
1200 }
1201
1202 void set_zone_contiguous(struct zone *zone)
1203 {
1204 unsigned long block_start_pfn = zone->zone_start_pfn;
1205 unsigned long block_end_pfn;
1206
1207 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1208 for (; block_start_pfn < zone_end_pfn(zone);
1209 block_start_pfn = block_end_pfn,
1210 block_end_pfn += pageblock_nr_pages) {
1211
1212 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1213
1214 if (!__pageblock_pfn_to_page(block_start_pfn,
1215 block_end_pfn, zone))
1216 return;
1217 }
1218
1219 /* We confirm that there is no hole */
1220 zone->contiguous = true;
1221 }
1222
1223 void clear_zone_contiguous(struct zone *zone)
1224 {
1225 zone->contiguous = false;
1226 }
1227
1228 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1229 static void __init deferred_free_range(struct page *page,
1230 unsigned long pfn, int nr_pages)
1231 {
1232 int i;
1233
1234 if (!page)
1235 return;
1236
1237 /* Free a large naturally-aligned chunk if possible */
1238 if (nr_pages == MAX_ORDER_NR_PAGES &&
1239 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1240 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1241 __free_pages_boot_core(page, MAX_ORDER-1);
1242 return;
1243 }
1244
1245 for (i = 0; i < nr_pages; i++, page++)
1246 __free_pages_boot_core(page, 0);
1247 }
1248
1249 /* Completion tracking for deferred_init_memmap() threads */
1250 static atomic_t pgdat_init_n_undone __initdata;
1251 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1252
1253 static inline void __init pgdat_init_report_one_done(void)
1254 {
1255 if (atomic_dec_and_test(&pgdat_init_n_undone))
1256 complete(&pgdat_init_all_done_comp);
1257 }
1258
1259 /* Initialise remaining memory on a node */
1260 static int __init deferred_init_memmap(void *data)
1261 {
1262 pg_data_t *pgdat = data;
1263 int nid = pgdat->node_id;
1264 struct mminit_pfnnid_cache nid_init_state = { };
1265 unsigned long start = jiffies;
1266 unsigned long nr_pages = 0;
1267 unsigned long walk_start, walk_end;
1268 int i, zid;
1269 struct zone *zone;
1270 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1271 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1272
1273 if (first_init_pfn == ULONG_MAX) {
1274 pgdat_init_report_one_done();
1275 return 0;
1276 }
1277
1278 /* Bind memory initialisation thread to a local node if possible */
1279 if (!cpumask_empty(cpumask))
1280 set_cpus_allowed_ptr(current, cpumask);
1281
1282 /* Sanity check boundaries */
1283 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1284 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1285 pgdat->first_deferred_pfn = ULONG_MAX;
1286
1287 /* Only the highest zone is deferred so find it */
1288 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1289 zone = pgdat->node_zones + zid;
1290 if (first_init_pfn < zone_end_pfn(zone))
1291 break;
1292 }
1293
1294 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1295 unsigned long pfn, end_pfn;
1296 struct page *page = NULL;
1297 struct page *free_base_page = NULL;
1298 unsigned long free_base_pfn = 0;
1299 int nr_to_free = 0;
1300
1301 end_pfn = min(walk_end, zone_end_pfn(zone));
1302 pfn = first_init_pfn;
1303 if (pfn < walk_start)
1304 pfn = walk_start;
1305 if (pfn < zone->zone_start_pfn)
1306 pfn = zone->zone_start_pfn;
1307
1308 for (; pfn < end_pfn; pfn++) {
1309 if (!pfn_valid_within(pfn))
1310 goto free_range;
1311
1312 /*
1313 * Ensure pfn_valid is checked every
1314 * MAX_ORDER_NR_PAGES for memory holes
1315 */
1316 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1317 if (!pfn_valid(pfn)) {
1318 page = NULL;
1319 goto free_range;
1320 }
1321 }
1322
1323 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1324 page = NULL;
1325 goto free_range;
1326 }
1327
1328 /* Minimise pfn page lookups and scheduler checks */
1329 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1330 page++;
1331 } else {
1332 nr_pages += nr_to_free;
1333 deferred_free_range(free_base_page,
1334 free_base_pfn, nr_to_free);
1335 free_base_page = NULL;
1336 free_base_pfn = nr_to_free = 0;
1337
1338 page = pfn_to_page(pfn);
1339 cond_resched();
1340 }
1341
1342 if (page->flags) {
1343 VM_BUG_ON(page_zone(page) != zone);
1344 goto free_range;
1345 }
1346
1347 __init_single_page(page, pfn, zid, nid);
1348 if (!free_base_page) {
1349 free_base_page = page;
1350 free_base_pfn = pfn;
1351 nr_to_free = 0;
1352 }
1353 nr_to_free++;
1354
1355 /* Where possible, batch up pages for a single free */
1356 continue;
1357 free_range:
1358 /* Free the current block of pages to allocator */
1359 nr_pages += nr_to_free;
1360 deferred_free_range(free_base_page, free_base_pfn,
1361 nr_to_free);
1362 free_base_page = NULL;
1363 free_base_pfn = nr_to_free = 0;
1364 }
1365
1366 first_init_pfn = max(end_pfn, first_init_pfn);
1367 }
1368
1369 /* Sanity check that the next zone really is unpopulated */
1370 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1371
1372 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1373 jiffies_to_msecs(jiffies - start));
1374
1375 pgdat_init_report_one_done();
1376 return 0;
1377 }
1378 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1379
1380 void __init page_alloc_init_late(void)
1381 {
1382 struct zone *zone;
1383
1384 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1385 int nid;
1386
1387 /* There will be num_node_state(N_MEMORY) threads */
1388 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1389 for_each_node_state(nid, N_MEMORY) {
1390 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1391 }
1392
1393 /* Block until all are initialised */
1394 wait_for_completion(&pgdat_init_all_done_comp);
1395
1396 /* Reinit limits that are based on free pages after the kernel is up */
1397 files_maxfiles_init();
1398 #endif
1399
1400 for_each_populated_zone(zone)
1401 set_zone_contiguous(zone);
1402 }
1403
1404 #ifdef CONFIG_CMA
1405 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1406 void __init init_cma_reserved_pageblock(struct page *page)
1407 {
1408 unsigned i = pageblock_nr_pages;
1409 struct page *p = page;
1410
1411 do {
1412 __ClearPageReserved(p);
1413 set_page_count(p, 0);
1414 } while (++p, --i);
1415
1416 set_pageblock_migratetype(page, MIGRATE_CMA);
1417
1418 if (pageblock_order >= MAX_ORDER) {
1419 i = pageblock_nr_pages;
1420 p = page;
1421 do {
1422 set_page_refcounted(p);
1423 __free_pages(p, MAX_ORDER - 1);
1424 p += MAX_ORDER_NR_PAGES;
1425 } while (i -= MAX_ORDER_NR_PAGES);
1426 } else {
1427 set_page_refcounted(page);
1428 __free_pages(page, pageblock_order);
1429 }
1430
1431 adjust_managed_page_count(page, pageblock_nr_pages);
1432 }
1433 #endif
1434
1435 /*
1436 * The order of subdivision here is critical for the IO subsystem.
1437 * Please do not alter this order without good reasons and regression
1438 * testing. Specifically, as large blocks of memory are subdivided,
1439 * the order in which smaller blocks are delivered depends on the order
1440 * they're subdivided in this function. This is the primary factor
1441 * influencing the order in which pages are delivered to the IO
1442 * subsystem according to empirical testing, and this is also justified
1443 * by considering the behavior of a buddy system containing a single
1444 * large block of memory acted on by a series of small allocations.
1445 * This behavior is a critical factor in sglist merging's success.
1446 *
1447 * -- nyc
1448 */
1449 static inline void expand(struct zone *zone, struct page *page,
1450 int low, int high, struct free_area *area,
1451 int migratetype)
1452 {
1453 unsigned long size = 1 << high;
1454
1455 while (high > low) {
1456 area--;
1457 high--;
1458 size >>= 1;
1459 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1460
1461 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1462 debug_guardpage_enabled() &&
1463 high < debug_guardpage_minorder()) {
1464 /*
1465 * Mark as guard pages (or page), that will allow to
1466 * merge back to allocator when buddy will be freed.
1467 * Corresponding page table entries will not be touched,
1468 * pages will stay not present in virtual address space
1469 */
1470 set_page_guard(zone, &page[size], high, migratetype);
1471 continue;
1472 }
1473 list_add(&page[size].lru, &area->free_list[migratetype]);
1474 area->nr_free++;
1475 set_page_order(&page[size], high);
1476 }
1477 }
1478
1479 /*
1480 * This page is about to be returned from the page allocator
1481 */
1482 static inline int check_new_page(struct page *page)
1483 {
1484 const char *bad_reason = NULL;
1485 unsigned long bad_flags = 0;
1486
1487 if (unlikely(atomic_read(&page->_mapcount) != -1))
1488 bad_reason = "nonzero mapcount";
1489 if (unlikely(page->mapping != NULL))
1490 bad_reason = "non-NULL mapping";
1491 if (unlikely(page_ref_count(page) != 0))
1492 bad_reason = "nonzero _count";
1493 if (unlikely(page->flags & __PG_HWPOISON)) {
1494 bad_reason = "HWPoisoned (hardware-corrupted)";
1495 bad_flags = __PG_HWPOISON;
1496 }
1497 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1498 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1499 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1500 }
1501 #ifdef CONFIG_MEMCG
1502 if (unlikely(page->mem_cgroup))
1503 bad_reason = "page still charged to cgroup";
1504 #endif
1505 if (unlikely(bad_reason)) {
1506 bad_page(page, bad_reason, bad_flags);
1507 return 1;
1508 }
1509 return 0;
1510 }
1511
1512 static inline bool free_pages_prezeroed(bool poisoned)
1513 {
1514 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1515 page_poisoning_enabled() && poisoned;
1516 }
1517
1518 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1519 int alloc_flags)
1520 {
1521 int i;
1522 bool poisoned = true;
1523
1524 for (i = 0; i < (1 << order); i++) {
1525 struct page *p = page + i;
1526 if (unlikely(check_new_page(p)))
1527 return 1;
1528 if (poisoned)
1529 poisoned &= page_is_poisoned(p);
1530 }
1531
1532 set_page_private(page, 0);
1533 set_page_refcounted(page);
1534
1535 arch_alloc_page(page, order);
1536 kernel_map_pages(page, 1 << order, 1);
1537 kernel_poison_pages(page, 1 << order, 1);
1538 kasan_alloc_pages(page, order);
1539
1540 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1541 for (i = 0; i < (1 << order); i++)
1542 clear_highpage(page + i);
1543
1544 if (order && (gfp_flags & __GFP_COMP))
1545 prep_compound_page(page, order);
1546
1547 set_page_owner(page, order, gfp_flags);
1548
1549 /*
1550 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1551 * allocate the page. The expectation is that the caller is taking
1552 * steps that will free more memory. The caller should avoid the page
1553 * being used for !PFMEMALLOC purposes.
1554 */
1555 if (alloc_flags & ALLOC_NO_WATERMARKS)
1556 set_page_pfmemalloc(page);
1557 else
1558 clear_page_pfmemalloc(page);
1559
1560 return 0;
1561 }
1562
1563 /*
1564 * Go through the free lists for the given migratetype and remove
1565 * the smallest available page from the freelists
1566 */
1567 static inline
1568 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1569 int migratetype)
1570 {
1571 unsigned int current_order;
1572 struct free_area *area;
1573 struct page *page;
1574
1575 /* Find a page of the appropriate size in the preferred list */
1576 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1577 area = &(zone->free_area[current_order]);
1578 page = list_first_entry_or_null(&area->free_list[migratetype],
1579 struct page, lru);
1580 if (!page)
1581 continue;
1582 list_del(&page->lru);
1583 rmv_page_order(page);
1584 area->nr_free--;
1585 expand(zone, page, order, current_order, area, migratetype);
1586 set_pcppage_migratetype(page, migratetype);
1587 return page;
1588 }
1589
1590 return NULL;
1591 }
1592
1593
1594 /*
1595 * This array describes the order lists are fallen back to when
1596 * the free lists for the desirable migrate type are depleted
1597 */
1598 static int fallbacks[MIGRATE_TYPES][4] = {
1599 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1600 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1601 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1602 #ifdef CONFIG_CMA
1603 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1604 #endif
1605 #ifdef CONFIG_MEMORY_ISOLATION
1606 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1607 #endif
1608 };
1609
1610 #ifdef CONFIG_CMA
1611 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1612 unsigned int order)
1613 {
1614 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1615 }
1616 #else
1617 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1618 unsigned int order) { return NULL; }
1619 #endif
1620
1621 /*
1622 * Move the free pages in a range to the free lists of the requested type.
1623 * Note that start_page and end_pages are not aligned on a pageblock
1624 * boundary. If alignment is required, use move_freepages_block()
1625 */
1626 int move_freepages(struct zone *zone,
1627 struct page *start_page, struct page *end_page,
1628 int migratetype)
1629 {
1630 struct page *page;
1631 unsigned int order;
1632 int pages_moved = 0;
1633
1634 #ifndef CONFIG_HOLES_IN_ZONE
1635 /*
1636 * page_zone is not safe to call in this context when
1637 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1638 * anyway as we check zone boundaries in move_freepages_block().
1639 * Remove at a later date when no bug reports exist related to
1640 * grouping pages by mobility
1641 */
1642 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1643 #endif
1644
1645 for (page = start_page; page <= end_page;) {
1646 /* Make sure we are not inadvertently changing nodes */
1647 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1648
1649 if (!pfn_valid_within(page_to_pfn(page))) {
1650 page++;
1651 continue;
1652 }
1653
1654 if (!PageBuddy(page)) {
1655 page++;
1656 continue;
1657 }
1658
1659 order = page_order(page);
1660 list_move(&page->lru,
1661 &zone->free_area[order].free_list[migratetype]);
1662 page += 1 << order;
1663 pages_moved += 1 << order;
1664 }
1665
1666 return pages_moved;
1667 }
1668
1669 int move_freepages_block(struct zone *zone, struct page *page,
1670 int migratetype)
1671 {
1672 unsigned long start_pfn, end_pfn;
1673 struct page *start_page, *end_page;
1674
1675 start_pfn = page_to_pfn(page);
1676 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1677 start_page = pfn_to_page(start_pfn);
1678 end_page = start_page + pageblock_nr_pages - 1;
1679 end_pfn = start_pfn + pageblock_nr_pages - 1;
1680
1681 /* Do not cross zone boundaries */
1682 if (!zone_spans_pfn(zone, start_pfn))
1683 start_page = page;
1684 if (!zone_spans_pfn(zone, end_pfn))
1685 return 0;
1686
1687 return move_freepages(zone, start_page, end_page, migratetype);
1688 }
1689
1690 static void change_pageblock_range(struct page *pageblock_page,
1691 int start_order, int migratetype)
1692 {
1693 int nr_pageblocks = 1 << (start_order - pageblock_order);
1694
1695 while (nr_pageblocks--) {
1696 set_pageblock_migratetype(pageblock_page, migratetype);
1697 pageblock_page += pageblock_nr_pages;
1698 }
1699 }
1700
1701 /*
1702 * When we are falling back to another migratetype during allocation, try to
1703 * steal extra free pages from the same pageblocks to satisfy further
1704 * allocations, instead of polluting multiple pageblocks.
1705 *
1706 * If we are stealing a relatively large buddy page, it is likely there will
1707 * be more free pages in the pageblock, so try to steal them all. For
1708 * reclaimable and unmovable allocations, we steal regardless of page size,
1709 * as fragmentation caused by those allocations polluting movable pageblocks
1710 * is worse than movable allocations stealing from unmovable and reclaimable
1711 * pageblocks.
1712 */
1713 static bool can_steal_fallback(unsigned int order, int start_mt)
1714 {
1715 /*
1716 * Leaving this order check is intended, although there is
1717 * relaxed order check in next check. The reason is that
1718 * we can actually steal whole pageblock if this condition met,
1719 * but, below check doesn't guarantee it and that is just heuristic
1720 * so could be changed anytime.
1721 */
1722 if (order >= pageblock_order)
1723 return true;
1724
1725 if (order >= pageblock_order / 2 ||
1726 start_mt == MIGRATE_RECLAIMABLE ||
1727 start_mt == MIGRATE_UNMOVABLE ||
1728 page_group_by_mobility_disabled)
1729 return true;
1730
1731 return false;
1732 }
1733
1734 /*
1735 * This function implements actual steal behaviour. If order is large enough,
1736 * we can steal whole pageblock. If not, we first move freepages in this
1737 * pageblock and check whether half of pages are moved or not. If half of
1738 * pages are moved, we can change migratetype of pageblock and permanently
1739 * use it's pages as requested migratetype in the future.
1740 */
1741 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1742 int start_type)
1743 {
1744 unsigned int current_order = page_order(page);
1745 int pages;
1746
1747 /* Take ownership for orders >= pageblock_order */
1748 if (current_order >= pageblock_order) {
1749 change_pageblock_range(page, current_order, start_type);
1750 return;
1751 }
1752
1753 pages = move_freepages_block(zone, page, start_type);
1754
1755 /* Claim the whole block if over half of it is free */
1756 if (pages >= (1 << (pageblock_order-1)) ||
1757 page_group_by_mobility_disabled)
1758 set_pageblock_migratetype(page, start_type);
1759 }
1760
1761 /*
1762 * Check whether there is a suitable fallback freepage with requested order.
1763 * If only_stealable is true, this function returns fallback_mt only if
1764 * we can steal other freepages all together. This would help to reduce
1765 * fragmentation due to mixed migratetype pages in one pageblock.
1766 */
1767 int find_suitable_fallback(struct free_area *area, unsigned int order,
1768 int migratetype, bool only_stealable, bool *can_steal)
1769 {
1770 int i;
1771 int fallback_mt;
1772
1773 if (area->nr_free == 0)
1774 return -1;
1775
1776 *can_steal = false;
1777 for (i = 0;; i++) {
1778 fallback_mt = fallbacks[migratetype][i];
1779 if (fallback_mt == MIGRATE_TYPES)
1780 break;
1781
1782 if (list_empty(&area->free_list[fallback_mt]))
1783 continue;
1784
1785 if (can_steal_fallback(order, migratetype))
1786 *can_steal = true;
1787
1788 if (!only_stealable)
1789 return fallback_mt;
1790
1791 if (*can_steal)
1792 return fallback_mt;
1793 }
1794
1795 return -1;
1796 }
1797
1798 /*
1799 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1800 * there are no empty page blocks that contain a page with a suitable order
1801 */
1802 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1803 unsigned int alloc_order)
1804 {
1805 int mt;
1806 unsigned long max_managed, flags;
1807
1808 /*
1809 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1810 * Check is race-prone but harmless.
1811 */
1812 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1813 if (zone->nr_reserved_highatomic >= max_managed)
1814 return;
1815
1816 spin_lock_irqsave(&zone->lock, flags);
1817
1818 /* Recheck the nr_reserved_highatomic limit under the lock */
1819 if (zone->nr_reserved_highatomic >= max_managed)
1820 goto out_unlock;
1821
1822 /* Yoink! */
1823 mt = get_pageblock_migratetype(page);
1824 if (mt != MIGRATE_HIGHATOMIC &&
1825 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1826 zone->nr_reserved_highatomic += pageblock_nr_pages;
1827 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1828 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1829 }
1830
1831 out_unlock:
1832 spin_unlock_irqrestore(&zone->lock, flags);
1833 }
1834
1835 /*
1836 * Used when an allocation is about to fail under memory pressure. This
1837 * potentially hurts the reliability of high-order allocations when under
1838 * intense memory pressure but failed atomic allocations should be easier
1839 * to recover from than an OOM.
1840 */
1841 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1842 {
1843 struct zonelist *zonelist = ac->zonelist;
1844 unsigned long flags;
1845 struct zoneref *z;
1846 struct zone *zone;
1847 struct page *page;
1848 int order;
1849
1850 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1851 ac->nodemask) {
1852 /* Preserve at least one pageblock */
1853 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1854 continue;
1855
1856 spin_lock_irqsave(&zone->lock, flags);
1857 for (order = 0; order < MAX_ORDER; order++) {
1858 struct free_area *area = &(zone->free_area[order]);
1859
1860 page = list_first_entry_or_null(
1861 &area->free_list[MIGRATE_HIGHATOMIC],
1862 struct page, lru);
1863 if (!page)
1864 continue;
1865
1866 /*
1867 * It should never happen but changes to locking could
1868 * inadvertently allow a per-cpu drain to add pages
1869 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1870 * and watch for underflows.
1871 */
1872 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1873 zone->nr_reserved_highatomic);
1874
1875 /*
1876 * Convert to ac->migratetype and avoid the normal
1877 * pageblock stealing heuristics. Minimally, the caller
1878 * is doing the work and needs the pages. More
1879 * importantly, if the block was always converted to
1880 * MIGRATE_UNMOVABLE or another type then the number
1881 * of pageblocks that cannot be completely freed
1882 * may increase.
1883 */
1884 set_pageblock_migratetype(page, ac->migratetype);
1885 move_freepages_block(zone, page, ac->migratetype);
1886 spin_unlock_irqrestore(&zone->lock, flags);
1887 return;
1888 }
1889 spin_unlock_irqrestore(&zone->lock, flags);
1890 }
1891 }
1892
1893 /* Remove an element from the buddy allocator from the fallback list */
1894 static inline struct page *
1895 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1896 {
1897 struct free_area *area;
1898 unsigned int current_order;
1899 struct page *page;
1900 int fallback_mt;
1901 bool can_steal;
1902
1903 /* Find the largest possible block of pages in the other list */
1904 for (current_order = MAX_ORDER-1;
1905 current_order >= order && current_order <= MAX_ORDER-1;
1906 --current_order) {
1907 area = &(zone->free_area[current_order]);
1908 fallback_mt = find_suitable_fallback(area, current_order,
1909 start_migratetype, false, &can_steal);
1910 if (fallback_mt == -1)
1911 continue;
1912
1913 page = list_first_entry(&area->free_list[fallback_mt],
1914 struct page, lru);
1915 if (can_steal)
1916 steal_suitable_fallback(zone, page, start_migratetype);
1917
1918 /* Remove the page from the freelists */
1919 area->nr_free--;
1920 list_del(&page->lru);
1921 rmv_page_order(page);
1922
1923 expand(zone, page, order, current_order, area,
1924 start_migratetype);
1925 /*
1926 * The pcppage_migratetype may differ from pageblock's
1927 * migratetype depending on the decisions in
1928 * find_suitable_fallback(). This is OK as long as it does not
1929 * differ for MIGRATE_CMA pageblocks. Those can be used as
1930 * fallback only via special __rmqueue_cma_fallback() function
1931 */
1932 set_pcppage_migratetype(page, start_migratetype);
1933
1934 trace_mm_page_alloc_extfrag(page, order, current_order,
1935 start_migratetype, fallback_mt);
1936
1937 return page;
1938 }
1939
1940 return NULL;
1941 }
1942
1943 /*
1944 * Do the hard work of removing an element from the buddy allocator.
1945 * Call me with the zone->lock already held.
1946 */
1947 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1948 int migratetype)
1949 {
1950 struct page *page;
1951
1952 page = __rmqueue_smallest(zone, order, migratetype);
1953 if (unlikely(!page)) {
1954 if (migratetype == MIGRATE_MOVABLE)
1955 page = __rmqueue_cma_fallback(zone, order);
1956
1957 if (!page)
1958 page = __rmqueue_fallback(zone, order, migratetype);
1959 }
1960
1961 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1962 return page;
1963 }
1964
1965 /*
1966 * Obtain a specified number of elements from the buddy allocator, all under
1967 * a single hold of the lock, for efficiency. Add them to the supplied list.
1968 * Returns the number of new pages which were placed at *list.
1969 */
1970 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1971 unsigned long count, struct list_head *list,
1972 int migratetype, bool cold)
1973 {
1974 int i;
1975
1976 spin_lock(&zone->lock);
1977 for (i = 0; i < count; ++i) {
1978 struct page *page = __rmqueue(zone, order, migratetype);
1979 if (unlikely(page == NULL))
1980 break;
1981
1982 /*
1983 * Split buddy pages returned by expand() are received here
1984 * in physical page order. The page is added to the callers and
1985 * list and the list head then moves forward. From the callers
1986 * perspective, the linked list is ordered by page number in
1987 * some conditions. This is useful for IO devices that can
1988 * merge IO requests if the physical pages are ordered
1989 * properly.
1990 */
1991 if (likely(!cold))
1992 list_add(&page->lru, list);
1993 else
1994 list_add_tail(&page->lru, list);
1995 list = &page->lru;
1996 if (is_migrate_cma(get_pcppage_migratetype(page)))
1997 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1998 -(1 << order));
1999 }
2000 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2001 spin_unlock(&zone->lock);
2002 return i;
2003 }
2004
2005 #ifdef CONFIG_NUMA
2006 /*
2007 * Called from the vmstat counter updater to drain pagesets of this
2008 * currently executing processor on remote nodes after they have
2009 * expired.
2010 *
2011 * Note that this function must be called with the thread pinned to
2012 * a single processor.
2013 */
2014 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2015 {
2016 unsigned long flags;
2017 int to_drain, batch;
2018
2019 local_irq_save(flags);
2020 batch = READ_ONCE(pcp->batch);
2021 to_drain = min(pcp->count, batch);
2022 if (to_drain > 0) {
2023 free_pcppages_bulk(zone, to_drain, pcp);
2024 pcp->count -= to_drain;
2025 }
2026 local_irq_restore(flags);
2027 }
2028 #endif
2029
2030 /*
2031 * Drain pcplists of the indicated processor and zone.
2032 *
2033 * The processor must either be the current processor and the
2034 * thread pinned to the current processor or a processor that
2035 * is not online.
2036 */
2037 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2038 {
2039 unsigned long flags;
2040 struct per_cpu_pageset *pset;
2041 struct per_cpu_pages *pcp;
2042
2043 local_irq_save(flags);
2044 pset = per_cpu_ptr(zone->pageset, cpu);
2045
2046 pcp = &pset->pcp;
2047 if (pcp->count) {
2048 free_pcppages_bulk(zone, pcp->count, pcp);
2049 pcp->count = 0;
2050 }
2051 local_irq_restore(flags);
2052 }
2053
2054 /*
2055 * Drain pcplists of all zones on the indicated processor.
2056 *
2057 * The processor must either be the current processor and the
2058 * thread pinned to the current processor or a processor that
2059 * is not online.
2060 */
2061 static void drain_pages(unsigned int cpu)
2062 {
2063 struct zone *zone;
2064
2065 for_each_populated_zone(zone) {
2066 drain_pages_zone(cpu, zone);
2067 }
2068 }
2069
2070 /*
2071 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2072 *
2073 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2074 * the single zone's pages.
2075 */
2076 void drain_local_pages(struct zone *zone)
2077 {
2078 int cpu = smp_processor_id();
2079
2080 if (zone)
2081 drain_pages_zone(cpu, zone);
2082 else
2083 drain_pages(cpu);
2084 }
2085
2086 /*
2087 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2088 *
2089 * When zone parameter is non-NULL, spill just the single zone's pages.
2090 *
2091 * Note that this code is protected against sending an IPI to an offline
2092 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2093 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2094 * nothing keeps CPUs from showing up after we populated the cpumask and
2095 * before the call to on_each_cpu_mask().
2096 */
2097 void drain_all_pages(struct zone *zone)
2098 {
2099 int cpu;
2100
2101 /*
2102 * Allocate in the BSS so we wont require allocation in
2103 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2104 */
2105 static cpumask_t cpus_with_pcps;
2106
2107 /*
2108 * We don't care about racing with CPU hotplug event
2109 * as offline notification will cause the notified
2110 * cpu to drain that CPU pcps and on_each_cpu_mask
2111 * disables preemption as part of its processing
2112 */
2113 for_each_online_cpu(cpu) {
2114 struct per_cpu_pageset *pcp;
2115 struct zone *z;
2116 bool has_pcps = false;
2117
2118 if (zone) {
2119 pcp = per_cpu_ptr(zone->pageset, cpu);
2120 if (pcp->pcp.count)
2121 has_pcps = true;
2122 } else {
2123 for_each_populated_zone(z) {
2124 pcp = per_cpu_ptr(z->pageset, cpu);
2125 if (pcp->pcp.count) {
2126 has_pcps = true;
2127 break;
2128 }
2129 }
2130 }
2131
2132 if (has_pcps)
2133 cpumask_set_cpu(cpu, &cpus_with_pcps);
2134 else
2135 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2136 }
2137 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2138 zone, 1);
2139 }
2140
2141 #ifdef CONFIG_HIBERNATION
2142
2143 void mark_free_pages(struct zone *zone)
2144 {
2145 unsigned long pfn, max_zone_pfn;
2146 unsigned long flags;
2147 unsigned int order, t;
2148 struct page *page;
2149
2150 if (zone_is_empty(zone))
2151 return;
2152
2153 spin_lock_irqsave(&zone->lock, flags);
2154
2155 max_zone_pfn = zone_end_pfn(zone);
2156 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2157 if (pfn_valid(pfn)) {
2158 page = pfn_to_page(pfn);
2159
2160 if (page_zone(page) != zone)
2161 continue;
2162
2163 if (!swsusp_page_is_forbidden(page))
2164 swsusp_unset_page_free(page);
2165 }
2166
2167 for_each_migratetype_order(order, t) {
2168 list_for_each_entry(page,
2169 &zone->free_area[order].free_list[t], lru) {
2170 unsigned long i;
2171
2172 pfn = page_to_pfn(page);
2173 for (i = 0; i < (1UL << order); i++)
2174 swsusp_set_page_free(pfn_to_page(pfn + i));
2175 }
2176 }
2177 spin_unlock_irqrestore(&zone->lock, flags);
2178 }
2179 #endif /* CONFIG_PM */
2180
2181 /*
2182 * Free a 0-order page
2183 * cold == true ? free a cold page : free a hot page
2184 */
2185 void free_hot_cold_page(struct page *page, bool cold)
2186 {
2187 struct zone *zone = page_zone(page);
2188 struct per_cpu_pages *pcp;
2189 unsigned long flags;
2190 unsigned long pfn = page_to_pfn(page);
2191 int migratetype;
2192
2193 if (!free_pages_prepare(page, 0))
2194 return;
2195
2196 migratetype = get_pfnblock_migratetype(page, pfn);
2197 set_pcppage_migratetype(page, migratetype);
2198 local_irq_save(flags);
2199 __count_vm_event(PGFREE);
2200
2201 /*
2202 * We only track unmovable, reclaimable and movable on pcp lists.
2203 * Free ISOLATE pages back to the allocator because they are being
2204 * offlined but treat RESERVE as movable pages so we can get those
2205 * areas back if necessary. Otherwise, we may have to free
2206 * excessively into the page allocator
2207 */
2208 if (migratetype >= MIGRATE_PCPTYPES) {
2209 if (unlikely(is_migrate_isolate(migratetype))) {
2210 free_one_page(zone, page, pfn, 0, migratetype);
2211 goto out;
2212 }
2213 migratetype = MIGRATE_MOVABLE;
2214 }
2215
2216 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2217 if (!cold)
2218 list_add(&page->lru, &pcp->lists[migratetype]);
2219 else
2220 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2221 pcp->count++;
2222 if (pcp->count >= pcp->high) {
2223 unsigned long batch = READ_ONCE(pcp->batch);
2224 free_pcppages_bulk(zone, batch, pcp);
2225 pcp->count -= batch;
2226 }
2227
2228 out:
2229 local_irq_restore(flags);
2230 }
2231
2232 /*
2233 * Free a list of 0-order pages
2234 */
2235 void free_hot_cold_page_list(struct list_head *list, bool cold)
2236 {
2237 struct page *page, *next;
2238
2239 list_for_each_entry_safe(page, next, list, lru) {
2240 trace_mm_page_free_batched(page, cold);
2241 free_hot_cold_page(page, cold);
2242 }
2243 }
2244
2245 /*
2246 * split_page takes a non-compound higher-order page, and splits it into
2247 * n (1<<order) sub-pages: page[0..n]
2248 * Each sub-page must be freed individually.
2249 *
2250 * Note: this is probably too low level an operation for use in drivers.
2251 * Please consult with lkml before using this in your driver.
2252 */
2253 void split_page(struct page *page, unsigned int order)
2254 {
2255 int i;
2256 gfp_t gfp_mask;
2257
2258 VM_BUG_ON_PAGE(PageCompound(page), page);
2259 VM_BUG_ON_PAGE(!page_count(page), page);
2260
2261 #ifdef CONFIG_KMEMCHECK
2262 /*
2263 * Split shadow pages too, because free(page[0]) would
2264 * otherwise free the whole shadow.
2265 */
2266 if (kmemcheck_page_is_tracked(page))
2267 split_page(virt_to_page(page[0].shadow), order);
2268 #endif
2269
2270 gfp_mask = get_page_owner_gfp(page);
2271 set_page_owner(page, 0, gfp_mask);
2272 for (i = 1; i < (1 << order); i++) {
2273 set_page_refcounted(page + i);
2274 set_page_owner(page + i, 0, gfp_mask);
2275 }
2276 }
2277 EXPORT_SYMBOL_GPL(split_page);
2278
2279 int __isolate_free_page(struct page *page, unsigned int order)
2280 {
2281 unsigned long watermark;
2282 struct zone *zone;
2283 int mt;
2284
2285 BUG_ON(!PageBuddy(page));
2286
2287 zone = page_zone(page);
2288 mt = get_pageblock_migratetype(page);
2289
2290 if (!is_migrate_isolate(mt)) {
2291 /* Obey watermarks as if the page was being allocated */
2292 watermark = low_wmark_pages(zone) + (1 << order);
2293 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2294 return 0;
2295
2296 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2297 }
2298
2299 /* Remove page from free list */
2300 list_del(&page->lru);
2301 zone->free_area[order].nr_free--;
2302 rmv_page_order(page);
2303
2304 set_page_owner(page, order, __GFP_MOVABLE);
2305
2306 /* Set the pageblock if the isolated page is at least a pageblock */
2307 if (order >= pageblock_order - 1) {
2308 struct page *endpage = page + (1 << order) - 1;
2309 for (; page < endpage; page += pageblock_nr_pages) {
2310 int mt = get_pageblock_migratetype(page);
2311 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2312 set_pageblock_migratetype(page,
2313 MIGRATE_MOVABLE);
2314 }
2315 }
2316
2317
2318 return 1UL << order;
2319 }
2320
2321 /*
2322 * Similar to split_page except the page is already free. As this is only
2323 * being used for migration, the migratetype of the block also changes.
2324 * As this is called with interrupts disabled, the caller is responsible
2325 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2326 * are enabled.
2327 *
2328 * Note: this is probably too low level an operation for use in drivers.
2329 * Please consult with lkml before using this in your driver.
2330 */
2331 int split_free_page(struct page *page)
2332 {
2333 unsigned int order;
2334 int nr_pages;
2335
2336 order = page_order(page);
2337
2338 nr_pages = __isolate_free_page(page, order);
2339 if (!nr_pages)
2340 return 0;
2341
2342 /* Split into individual pages */
2343 set_page_refcounted(page);
2344 split_page(page, order);
2345 return nr_pages;
2346 }
2347
2348 /*
2349 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2350 */
2351 static inline
2352 struct page *buffered_rmqueue(struct zone *preferred_zone,
2353 struct zone *zone, unsigned int order,
2354 gfp_t gfp_flags, int alloc_flags, int migratetype)
2355 {
2356 unsigned long flags;
2357 struct page *page;
2358 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2359
2360 if (likely(order == 0)) {
2361 struct per_cpu_pages *pcp;
2362 struct list_head *list;
2363
2364 local_irq_save(flags);
2365 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2366 list = &pcp->lists[migratetype];
2367 if (list_empty(list)) {
2368 pcp->count += rmqueue_bulk(zone, 0,
2369 pcp->batch, list,
2370 migratetype, cold);
2371 if (unlikely(list_empty(list)))
2372 goto failed;
2373 }
2374
2375 if (cold)
2376 page = list_last_entry(list, struct page, lru);
2377 else
2378 page = list_first_entry(list, struct page, lru);
2379
2380 list_del(&page->lru);
2381 pcp->count--;
2382 } else {
2383 /*
2384 * We most definitely don't want callers attempting to
2385 * allocate greater than order-1 page units with __GFP_NOFAIL.
2386 */
2387 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2388 spin_lock_irqsave(&zone->lock, flags);
2389
2390 page = NULL;
2391 if (alloc_flags & ALLOC_HARDER) {
2392 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2393 if (page)
2394 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2395 }
2396 if (!page)
2397 page = __rmqueue(zone, order, migratetype);
2398 spin_unlock(&zone->lock);
2399 if (!page)
2400 goto failed;
2401 __mod_zone_freepage_state(zone, -(1 << order),
2402 get_pcppage_migratetype(page));
2403 }
2404
2405 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2406 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2407 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2408 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2409
2410 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2411 zone_statistics(preferred_zone, zone, gfp_flags);
2412 local_irq_restore(flags);
2413
2414 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2415 return page;
2416
2417 failed:
2418 local_irq_restore(flags);
2419 return NULL;
2420 }
2421
2422 #ifdef CONFIG_FAIL_PAGE_ALLOC
2423
2424 static struct {
2425 struct fault_attr attr;
2426
2427 bool ignore_gfp_highmem;
2428 bool ignore_gfp_reclaim;
2429 u32 min_order;
2430 } fail_page_alloc = {
2431 .attr = FAULT_ATTR_INITIALIZER,
2432 .ignore_gfp_reclaim = true,
2433 .ignore_gfp_highmem = true,
2434 .min_order = 1,
2435 };
2436
2437 static int __init setup_fail_page_alloc(char *str)
2438 {
2439 return setup_fault_attr(&fail_page_alloc.attr, str);
2440 }
2441 __setup("fail_page_alloc=", setup_fail_page_alloc);
2442
2443 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2444 {
2445 if (order < fail_page_alloc.min_order)
2446 return false;
2447 if (gfp_mask & __GFP_NOFAIL)
2448 return false;
2449 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2450 return false;
2451 if (fail_page_alloc.ignore_gfp_reclaim &&
2452 (gfp_mask & __GFP_DIRECT_RECLAIM))
2453 return false;
2454
2455 return should_fail(&fail_page_alloc.attr, 1 << order);
2456 }
2457
2458 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2459
2460 static int __init fail_page_alloc_debugfs(void)
2461 {
2462 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2463 struct dentry *dir;
2464
2465 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2466 &fail_page_alloc.attr);
2467 if (IS_ERR(dir))
2468 return PTR_ERR(dir);
2469
2470 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2471 &fail_page_alloc.ignore_gfp_reclaim))
2472 goto fail;
2473 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2474 &fail_page_alloc.ignore_gfp_highmem))
2475 goto fail;
2476 if (!debugfs_create_u32("min-order", mode, dir,
2477 &fail_page_alloc.min_order))
2478 goto fail;
2479
2480 return 0;
2481 fail:
2482 debugfs_remove_recursive(dir);
2483
2484 return -ENOMEM;
2485 }
2486
2487 late_initcall(fail_page_alloc_debugfs);
2488
2489 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2490
2491 #else /* CONFIG_FAIL_PAGE_ALLOC */
2492
2493 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2494 {
2495 return false;
2496 }
2497
2498 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2499
2500 /*
2501 * Return true if free base pages are above 'mark'. For high-order checks it
2502 * will return true of the order-0 watermark is reached and there is at least
2503 * one free page of a suitable size. Checking now avoids taking the zone lock
2504 * to check in the allocation paths if no pages are free.
2505 */
2506 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2507 unsigned long mark, int classzone_idx, int alloc_flags,
2508 long free_pages)
2509 {
2510 long min = mark;
2511 int o;
2512 const int alloc_harder = (alloc_flags & ALLOC_HARDER);
2513
2514 /* free_pages may go negative - that's OK */
2515 free_pages -= (1 << order) - 1;
2516
2517 if (alloc_flags & ALLOC_HIGH)
2518 min -= min / 2;
2519
2520 /*
2521 * If the caller does not have rights to ALLOC_HARDER then subtract
2522 * the high-atomic reserves. This will over-estimate the size of the
2523 * atomic reserve but it avoids a search.
2524 */
2525 if (likely(!alloc_harder))
2526 free_pages -= z->nr_reserved_highatomic;
2527 else
2528 min -= min / 4;
2529
2530 #ifdef CONFIG_CMA
2531 /* If allocation can't use CMA areas don't use free CMA pages */
2532 if (!(alloc_flags & ALLOC_CMA))
2533 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2534 #endif
2535
2536 /*
2537 * Check watermarks for an order-0 allocation request. If these
2538 * are not met, then a high-order request also cannot go ahead
2539 * even if a suitable page happened to be free.
2540 */
2541 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2542 return false;
2543
2544 /* If this is an order-0 request then the watermark is fine */
2545 if (!order)
2546 return true;
2547
2548 /* For a high-order request, check at least one suitable page is free */
2549 for (o = order; o < MAX_ORDER; o++) {
2550 struct free_area *area = &z->free_area[o];
2551 int mt;
2552
2553 if (!area->nr_free)
2554 continue;
2555
2556 if (alloc_harder)
2557 return true;
2558
2559 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2560 if (!list_empty(&area->free_list[mt]))
2561 return true;
2562 }
2563
2564 #ifdef CONFIG_CMA
2565 if ((alloc_flags & ALLOC_CMA) &&
2566 !list_empty(&area->free_list[MIGRATE_CMA])) {
2567 return true;
2568 }
2569 #endif
2570 }
2571 return false;
2572 }
2573
2574 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2575 int classzone_idx, int alloc_flags)
2576 {
2577 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2578 zone_page_state(z, NR_FREE_PAGES));
2579 }
2580
2581 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2582 unsigned long mark, int classzone_idx)
2583 {
2584 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2585
2586 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2587 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2588
2589 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2590 free_pages);
2591 }
2592
2593 #ifdef CONFIG_NUMA
2594 static bool zone_local(struct zone *local_zone, struct zone *zone)
2595 {
2596 return local_zone->node == zone->node;
2597 }
2598
2599 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2600 {
2601 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2602 RECLAIM_DISTANCE;
2603 }
2604 #else /* CONFIG_NUMA */
2605 static bool zone_local(struct zone *local_zone, struct zone *zone)
2606 {
2607 return true;
2608 }
2609
2610 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2611 {
2612 return true;
2613 }
2614 #endif /* CONFIG_NUMA */
2615
2616 static void reset_alloc_batches(struct zone *preferred_zone)
2617 {
2618 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2619
2620 do {
2621 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2622 high_wmark_pages(zone) - low_wmark_pages(zone) -
2623 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2624 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2625 } while (zone++ != preferred_zone);
2626 }
2627
2628 /*
2629 * get_page_from_freelist goes through the zonelist trying to allocate
2630 * a page.
2631 */
2632 static struct page *
2633 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2634 const struct alloc_context *ac)
2635 {
2636 struct zonelist *zonelist = ac->zonelist;
2637 struct zoneref *z;
2638 struct page *page = NULL;
2639 struct zone *zone;
2640 int nr_fair_skipped = 0;
2641 bool zonelist_rescan;
2642
2643 zonelist_scan:
2644 zonelist_rescan = false;
2645
2646 /*
2647 * Scan zonelist, looking for a zone with enough free.
2648 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2649 */
2650 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2651 ac->nodemask) {
2652 unsigned long mark;
2653
2654 if (cpusets_enabled() &&
2655 (alloc_flags & ALLOC_CPUSET) &&
2656 !cpuset_zone_allowed(zone, gfp_mask))
2657 continue;
2658 /*
2659 * Distribute pages in proportion to the individual
2660 * zone size to ensure fair page aging. The zone a
2661 * page was allocated in should have no effect on the
2662 * time the page has in memory before being reclaimed.
2663 */
2664 if (alloc_flags & ALLOC_FAIR) {
2665 if (!zone_local(ac->preferred_zone, zone))
2666 break;
2667 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2668 nr_fair_skipped++;
2669 continue;
2670 }
2671 }
2672 /*
2673 * When allocating a page cache page for writing, we
2674 * want to get it from a zone that is within its dirty
2675 * limit, such that no single zone holds more than its
2676 * proportional share of globally allowed dirty pages.
2677 * The dirty limits take into account the zone's
2678 * lowmem reserves and high watermark so that kswapd
2679 * should be able to balance it without having to
2680 * write pages from its LRU list.
2681 *
2682 * This may look like it could increase pressure on
2683 * lower zones by failing allocations in higher zones
2684 * before they are full. But the pages that do spill
2685 * over are limited as the lower zones are protected
2686 * by this very same mechanism. It should not become
2687 * a practical burden to them.
2688 *
2689 * XXX: For now, allow allocations to potentially
2690 * exceed the per-zone dirty limit in the slowpath
2691 * (spread_dirty_pages unset) before going into reclaim,
2692 * which is important when on a NUMA setup the allowed
2693 * zones are together not big enough to reach the
2694 * global limit. The proper fix for these situations
2695 * will require awareness of zones in the
2696 * dirty-throttling and the flusher threads.
2697 */
2698 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2699 continue;
2700
2701 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2702 if (!zone_watermark_ok(zone, order, mark,
2703 ac->classzone_idx, alloc_flags)) {
2704 int ret;
2705
2706 /* Checked here to keep the fast path fast */
2707 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2708 if (alloc_flags & ALLOC_NO_WATERMARKS)
2709 goto try_this_zone;
2710
2711 if (zone_reclaim_mode == 0 ||
2712 !zone_allows_reclaim(ac->preferred_zone, zone))
2713 continue;
2714
2715 ret = zone_reclaim(zone, gfp_mask, order);
2716 switch (ret) {
2717 case ZONE_RECLAIM_NOSCAN:
2718 /* did not scan */
2719 continue;
2720 case ZONE_RECLAIM_FULL:
2721 /* scanned but unreclaimable */
2722 continue;
2723 default:
2724 /* did we reclaim enough */
2725 if (zone_watermark_ok(zone, order, mark,
2726 ac->classzone_idx, alloc_flags))
2727 goto try_this_zone;
2728
2729 continue;
2730 }
2731 }
2732
2733 try_this_zone:
2734 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2735 gfp_mask, alloc_flags, ac->migratetype);
2736 if (page) {
2737 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2738 goto try_this_zone;
2739
2740 /*
2741 * If this is a high-order atomic allocation then check
2742 * if the pageblock should be reserved for the future
2743 */
2744 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2745 reserve_highatomic_pageblock(page, zone, order);
2746
2747 return page;
2748 }
2749 }
2750
2751 /*
2752 * The first pass makes sure allocations are spread fairly within the
2753 * local node. However, the local node might have free pages left
2754 * after the fairness batches are exhausted, and remote zones haven't
2755 * even been considered yet. Try once more without fairness, and
2756 * include remote zones now, before entering the slowpath and waking
2757 * kswapd: prefer spilling to a remote zone over swapping locally.
2758 */
2759 if (alloc_flags & ALLOC_FAIR) {
2760 alloc_flags &= ~ALLOC_FAIR;
2761 if (nr_fair_skipped) {
2762 zonelist_rescan = true;
2763 reset_alloc_batches(ac->preferred_zone);
2764 }
2765 if (nr_online_nodes > 1)
2766 zonelist_rescan = true;
2767 }
2768
2769 if (zonelist_rescan)
2770 goto zonelist_scan;
2771
2772 return NULL;
2773 }
2774
2775 /*
2776 * Large machines with many possible nodes should not always dump per-node
2777 * meminfo in irq context.
2778 */
2779 static inline bool should_suppress_show_mem(void)
2780 {
2781 bool ret = false;
2782
2783 #if NODES_SHIFT > 8
2784 ret = in_interrupt();
2785 #endif
2786 return ret;
2787 }
2788
2789 static DEFINE_RATELIMIT_STATE(nopage_rs,
2790 DEFAULT_RATELIMIT_INTERVAL,
2791 DEFAULT_RATELIMIT_BURST);
2792
2793 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2794 {
2795 unsigned int filter = SHOW_MEM_FILTER_NODES;
2796
2797 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2798 debug_guardpage_minorder() > 0)
2799 return;
2800
2801 /*
2802 * This documents exceptions given to allocations in certain
2803 * contexts that are allowed to allocate outside current's set
2804 * of allowed nodes.
2805 */
2806 if (!(gfp_mask & __GFP_NOMEMALLOC))
2807 if (test_thread_flag(TIF_MEMDIE) ||
2808 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2809 filter &= ~SHOW_MEM_FILTER_NODES;
2810 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2811 filter &= ~SHOW_MEM_FILTER_NODES;
2812
2813 if (fmt) {
2814 struct va_format vaf;
2815 va_list args;
2816
2817 va_start(args, fmt);
2818
2819 vaf.fmt = fmt;
2820 vaf.va = &args;
2821
2822 pr_warn("%pV", &vaf);
2823
2824 va_end(args);
2825 }
2826
2827 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2828 current->comm, order, gfp_mask, &gfp_mask);
2829 dump_stack();
2830 if (!should_suppress_show_mem())
2831 show_mem(filter);
2832 }
2833
2834 static inline struct page *
2835 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2836 const struct alloc_context *ac, unsigned long *did_some_progress)
2837 {
2838 struct oom_control oc = {
2839 .zonelist = ac->zonelist,
2840 .nodemask = ac->nodemask,
2841 .gfp_mask = gfp_mask,
2842 .order = order,
2843 };
2844 struct page *page;
2845
2846 *did_some_progress = 0;
2847
2848 /*
2849 * Acquire the oom lock. If that fails, somebody else is
2850 * making progress for us.
2851 */
2852 if (!mutex_trylock(&oom_lock)) {
2853 *did_some_progress = 1;
2854 schedule_timeout_uninterruptible(1);
2855 return NULL;
2856 }
2857
2858 /*
2859 * Go through the zonelist yet one more time, keep very high watermark
2860 * here, this is only to catch a parallel oom killing, we must fail if
2861 * we're still under heavy pressure.
2862 */
2863 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2864 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2865 if (page)
2866 goto out;
2867
2868 if (!(gfp_mask & __GFP_NOFAIL)) {
2869 /* Coredumps can quickly deplete all memory reserves */
2870 if (current->flags & PF_DUMPCORE)
2871 goto out;
2872 /* The OOM killer will not help higher order allocs */
2873 if (order > PAGE_ALLOC_COSTLY_ORDER)
2874 goto out;
2875 /* The OOM killer does not needlessly kill tasks for lowmem */
2876 if (ac->high_zoneidx < ZONE_NORMAL)
2877 goto out;
2878 /* The OOM killer does not compensate for IO-less reclaim */
2879 if (!(gfp_mask & __GFP_FS)) {
2880 /*
2881 * XXX: Page reclaim didn't yield anything,
2882 * and the OOM killer can't be invoked, but
2883 * keep looping as per tradition.
2884 *
2885 * But do not keep looping if oom_killer_disable()
2886 * was already called, for the system is trying to
2887 * enter a quiescent state during suspend.
2888 */
2889 *did_some_progress = !oom_killer_disabled;
2890 goto out;
2891 }
2892 if (pm_suspended_storage())
2893 goto out;
2894 /* The OOM killer may not free memory on a specific node */
2895 if (gfp_mask & __GFP_THISNODE)
2896 goto out;
2897 }
2898 /* Exhausted what can be done so it's blamo time */
2899 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
2900 *did_some_progress = 1;
2901
2902 if (gfp_mask & __GFP_NOFAIL) {
2903 page = get_page_from_freelist(gfp_mask, order,
2904 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2905 /*
2906 * fallback to ignore cpuset restriction if our nodes
2907 * are depleted
2908 */
2909 if (!page)
2910 page = get_page_from_freelist(gfp_mask, order,
2911 ALLOC_NO_WATERMARKS, ac);
2912 }
2913 }
2914 out:
2915 mutex_unlock(&oom_lock);
2916 return page;
2917 }
2918
2919 #ifdef CONFIG_COMPACTION
2920 /* Try memory compaction for high-order allocations before reclaim */
2921 static struct page *
2922 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2923 int alloc_flags, const struct alloc_context *ac,
2924 enum migrate_mode mode, int *contended_compaction,
2925 bool *deferred_compaction)
2926 {
2927 unsigned long compact_result;
2928 struct page *page;
2929
2930 if (!order)
2931 return NULL;
2932
2933 current->flags |= PF_MEMALLOC;
2934 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2935 mode, contended_compaction);
2936 current->flags &= ~PF_MEMALLOC;
2937
2938 switch (compact_result) {
2939 case COMPACT_DEFERRED:
2940 *deferred_compaction = true;
2941 /* fall-through */
2942 case COMPACT_SKIPPED:
2943 return NULL;
2944 default:
2945 break;
2946 }
2947
2948 /*
2949 * At least in one zone compaction wasn't deferred or skipped, so let's
2950 * count a compaction stall
2951 */
2952 count_vm_event(COMPACTSTALL);
2953
2954 page = get_page_from_freelist(gfp_mask, order,
2955 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2956
2957 if (page) {
2958 struct zone *zone = page_zone(page);
2959
2960 zone->compact_blockskip_flush = false;
2961 compaction_defer_reset(zone, order, true);
2962 count_vm_event(COMPACTSUCCESS);
2963 return page;
2964 }
2965
2966 /*
2967 * It's bad if compaction run occurs and fails. The most likely reason
2968 * is that pages exist, but not enough to satisfy watermarks.
2969 */
2970 count_vm_event(COMPACTFAIL);
2971
2972 cond_resched();
2973
2974 return NULL;
2975 }
2976 #else
2977 static inline struct page *
2978 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2979 int alloc_flags, const struct alloc_context *ac,
2980 enum migrate_mode mode, int *contended_compaction,
2981 bool *deferred_compaction)
2982 {
2983 return NULL;
2984 }
2985 #endif /* CONFIG_COMPACTION */
2986
2987 /* Perform direct synchronous page reclaim */
2988 static int
2989 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2990 const struct alloc_context *ac)
2991 {
2992 struct reclaim_state reclaim_state;
2993 int progress;
2994
2995 cond_resched();
2996
2997 /* We now go into synchronous reclaim */
2998 cpuset_memory_pressure_bump();
2999 current->flags |= PF_MEMALLOC;
3000 lockdep_set_current_reclaim_state(gfp_mask);
3001 reclaim_state.reclaimed_slab = 0;
3002 current->reclaim_state = &reclaim_state;
3003
3004 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3005 ac->nodemask);
3006
3007 current->reclaim_state = NULL;
3008 lockdep_clear_current_reclaim_state();
3009 current->flags &= ~PF_MEMALLOC;
3010
3011 cond_resched();
3012
3013 return progress;
3014 }
3015
3016 /* The really slow allocator path where we enter direct reclaim */
3017 static inline struct page *
3018 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3019 int alloc_flags, const struct alloc_context *ac,
3020 unsigned long *did_some_progress)
3021 {
3022 struct page *page = NULL;
3023 bool drained = false;
3024
3025 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3026 if (unlikely(!(*did_some_progress)))
3027 return NULL;
3028
3029 retry:
3030 page = get_page_from_freelist(gfp_mask, order,
3031 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3032
3033 /*
3034 * If an allocation failed after direct reclaim, it could be because
3035 * pages are pinned on the per-cpu lists or in high alloc reserves.
3036 * Shrink them them and try again
3037 */
3038 if (!page && !drained) {
3039 unreserve_highatomic_pageblock(ac);
3040 drain_all_pages(NULL);
3041 drained = true;
3042 goto retry;
3043 }
3044
3045 return page;
3046 }
3047
3048 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3049 {
3050 struct zoneref *z;
3051 struct zone *zone;
3052
3053 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3054 ac->high_zoneidx, ac->nodemask)
3055 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3056 }
3057
3058 static inline int
3059 gfp_to_alloc_flags(gfp_t gfp_mask)
3060 {
3061 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3062
3063 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3064 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3065
3066 /*
3067 * The caller may dip into page reserves a bit more if the caller
3068 * cannot run direct reclaim, or if the caller has realtime scheduling
3069 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3070 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3071 */
3072 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3073
3074 if (gfp_mask & __GFP_ATOMIC) {
3075 /*
3076 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3077 * if it can't schedule.
3078 */
3079 if (!(gfp_mask & __GFP_NOMEMALLOC))
3080 alloc_flags |= ALLOC_HARDER;
3081 /*
3082 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3083 * comment for __cpuset_node_allowed().
3084 */
3085 alloc_flags &= ~ALLOC_CPUSET;
3086 } else if (unlikely(rt_task(current)) && !in_interrupt())
3087 alloc_flags |= ALLOC_HARDER;
3088
3089 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3090 if (gfp_mask & __GFP_MEMALLOC)
3091 alloc_flags |= ALLOC_NO_WATERMARKS;
3092 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3093 alloc_flags |= ALLOC_NO_WATERMARKS;
3094 else if (!in_interrupt() &&
3095 ((current->flags & PF_MEMALLOC) ||
3096 unlikely(test_thread_flag(TIF_MEMDIE))))
3097 alloc_flags |= ALLOC_NO_WATERMARKS;
3098 }
3099 #ifdef CONFIG_CMA
3100 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3101 alloc_flags |= ALLOC_CMA;
3102 #endif
3103 return alloc_flags;
3104 }
3105
3106 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3107 {
3108 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
3109 }
3110
3111 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3112 {
3113 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3114 }
3115
3116 static inline struct page *
3117 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3118 struct alloc_context *ac)
3119 {
3120 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3121 struct page *page = NULL;
3122 int alloc_flags;
3123 unsigned long pages_reclaimed = 0;
3124 unsigned long did_some_progress;
3125 enum migrate_mode migration_mode = MIGRATE_ASYNC;
3126 bool deferred_compaction = false;
3127 int contended_compaction = COMPACT_CONTENDED_NONE;
3128
3129 /*
3130 * In the slowpath, we sanity check order to avoid ever trying to
3131 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3132 * be using allocators in order of preference for an area that is
3133 * too large.
3134 */
3135 if (order >= MAX_ORDER) {
3136 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3137 return NULL;
3138 }
3139
3140 /*
3141 * We also sanity check to catch abuse of atomic reserves being used by
3142 * callers that are not in atomic context.
3143 */
3144 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3145 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3146 gfp_mask &= ~__GFP_ATOMIC;
3147
3148 retry:
3149 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3150 wake_all_kswapds(order, ac);
3151
3152 /*
3153 * OK, we're below the kswapd watermark and have kicked background
3154 * reclaim. Now things get more complex, so set up alloc_flags according
3155 * to how we want to proceed.
3156 */
3157 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3158
3159 /*
3160 * Find the true preferred zone if the allocation is unconstrained by
3161 * cpusets.
3162 */
3163 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
3164 struct zoneref *preferred_zoneref;
3165 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3166 ac->high_zoneidx, NULL, &ac->preferred_zone);
3167 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
3168 }
3169
3170 /* This is the last chance, in general, before the goto nopage. */
3171 page = get_page_from_freelist(gfp_mask, order,
3172 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3173 if (page)
3174 goto got_pg;
3175
3176 /* Allocate without watermarks if the context allows */
3177 if (alloc_flags & ALLOC_NO_WATERMARKS) {
3178 /*
3179 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3180 * the allocation is high priority and these type of
3181 * allocations are system rather than user orientated
3182 */
3183 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3184 page = get_page_from_freelist(gfp_mask, order,
3185 ALLOC_NO_WATERMARKS, ac);
3186 if (page)
3187 goto got_pg;
3188 }
3189
3190 /* Caller is not willing to reclaim, we can't balance anything */
3191 if (!can_direct_reclaim) {
3192 /*
3193 * All existing users of the __GFP_NOFAIL are blockable, so warn
3194 * of any new users that actually allow this type of allocation
3195 * to fail.
3196 */
3197 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3198 goto nopage;
3199 }
3200
3201 /* Avoid recursion of direct reclaim */
3202 if (current->flags & PF_MEMALLOC) {
3203 /*
3204 * __GFP_NOFAIL request from this context is rather bizarre
3205 * because we cannot reclaim anything and only can loop waiting
3206 * for somebody to do a work for us.
3207 */
3208 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3209 cond_resched();
3210 goto retry;
3211 }
3212 goto nopage;
3213 }
3214
3215 /* Avoid allocations with no watermarks from looping endlessly */
3216 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3217 goto nopage;
3218
3219 /*
3220 * Try direct compaction. The first pass is asynchronous. Subsequent
3221 * attempts after direct reclaim are synchronous
3222 */
3223 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3224 migration_mode,
3225 &contended_compaction,
3226 &deferred_compaction);
3227 if (page)
3228 goto got_pg;
3229
3230 /* Checks for THP-specific high-order allocations */
3231 if (is_thp_gfp_mask(gfp_mask)) {
3232 /*
3233 * If compaction is deferred for high-order allocations, it is
3234 * because sync compaction recently failed. If this is the case
3235 * and the caller requested a THP allocation, we do not want
3236 * to heavily disrupt the system, so we fail the allocation
3237 * instead of entering direct reclaim.
3238 */
3239 if (deferred_compaction)
3240 goto nopage;
3241
3242 /*
3243 * In all zones where compaction was attempted (and not
3244 * deferred or skipped), lock contention has been detected.
3245 * For THP allocation we do not want to disrupt the others
3246 * so we fallback to base pages instead.
3247 */
3248 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3249 goto nopage;
3250
3251 /*
3252 * If compaction was aborted due to need_resched(), we do not
3253 * want to further increase allocation latency, unless it is
3254 * khugepaged trying to collapse.
3255 */
3256 if (contended_compaction == COMPACT_CONTENDED_SCHED
3257 && !(current->flags & PF_KTHREAD))
3258 goto nopage;
3259 }
3260
3261 /*
3262 * It can become very expensive to allocate transparent hugepages at
3263 * fault, so use asynchronous memory compaction for THP unless it is
3264 * khugepaged trying to collapse.
3265 */
3266 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
3267 migration_mode = MIGRATE_SYNC_LIGHT;
3268
3269 /* Try direct reclaim and then allocating */
3270 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3271 &did_some_progress);
3272 if (page)
3273 goto got_pg;
3274
3275 /* Do not loop if specifically requested */
3276 if (gfp_mask & __GFP_NORETRY)
3277 goto noretry;
3278
3279 /* Keep reclaiming pages as long as there is reasonable progress */
3280 pages_reclaimed += did_some_progress;
3281 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3282 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3283 /* Wait for some write requests to complete then retry */
3284 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
3285 goto retry;
3286 }
3287
3288 /* Reclaim has failed us, start killing things */
3289 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3290 if (page)
3291 goto got_pg;
3292
3293 /* Retry as long as the OOM killer is making progress */
3294 if (did_some_progress)
3295 goto retry;
3296
3297 noretry:
3298 /*
3299 * High-order allocations do not necessarily loop after
3300 * direct reclaim and reclaim/compaction depends on compaction
3301 * being called after reclaim so call directly if necessary
3302 */
3303 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3304 ac, migration_mode,
3305 &contended_compaction,
3306 &deferred_compaction);
3307 if (page)
3308 goto got_pg;
3309 nopage:
3310 warn_alloc_failed(gfp_mask, order, NULL);
3311 got_pg:
3312 return page;
3313 }
3314
3315 /*
3316 * This is the 'heart' of the zoned buddy allocator.
3317 */
3318 struct page *
3319 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3320 struct zonelist *zonelist, nodemask_t *nodemask)
3321 {
3322 struct zoneref *preferred_zoneref;
3323 struct page *page = NULL;
3324 unsigned int cpuset_mems_cookie;
3325 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
3326 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
3327 struct alloc_context ac = {
3328 .high_zoneidx = gfp_zone(gfp_mask),
3329 .nodemask = nodemask,
3330 .migratetype = gfpflags_to_migratetype(gfp_mask),
3331 };
3332
3333 gfp_mask &= gfp_allowed_mask;
3334
3335 lockdep_trace_alloc(gfp_mask);
3336
3337 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3338
3339 if (should_fail_alloc_page(gfp_mask, order))
3340 return NULL;
3341
3342 /*
3343 * Check the zones suitable for the gfp_mask contain at least one
3344 * valid zone. It's possible to have an empty zonelist as a result
3345 * of __GFP_THISNODE and a memoryless node
3346 */
3347 if (unlikely(!zonelist->_zonerefs->zone))
3348 return NULL;
3349
3350 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3351 alloc_flags |= ALLOC_CMA;
3352
3353 retry_cpuset:
3354 cpuset_mems_cookie = read_mems_allowed_begin();
3355
3356 /* We set it here, as __alloc_pages_slowpath might have changed it */
3357 ac.zonelist = zonelist;
3358
3359 /* Dirty zone balancing only done in the fast path */
3360 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3361
3362 /* The preferred zone is used for statistics later */
3363 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3364 ac.nodemask ? : &cpuset_current_mems_allowed,
3365 &ac.preferred_zone);
3366 if (!ac.preferred_zone)
3367 goto out;
3368 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3369
3370 /* First allocation attempt */
3371 alloc_mask = gfp_mask|__GFP_HARDWALL;
3372 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3373 if (unlikely(!page)) {
3374 /*
3375 * Runtime PM, block IO and its error handling path
3376 * can deadlock because I/O on the device might not
3377 * complete.
3378 */
3379 alloc_mask = memalloc_noio_flags(gfp_mask);
3380 ac.spread_dirty_pages = false;
3381
3382 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3383 }
3384
3385 if (kmemcheck_enabled && page)
3386 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3387
3388 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3389
3390 out:
3391 /*
3392 * When updating a task's mems_allowed, it is possible to race with
3393 * parallel threads in such a way that an allocation can fail while
3394 * the mask is being updated. If a page allocation is about to fail,
3395 * check if the cpuset changed during allocation and if so, retry.
3396 */
3397 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
3398 goto retry_cpuset;
3399
3400 return page;
3401 }
3402 EXPORT_SYMBOL(__alloc_pages_nodemask);
3403
3404 /*
3405 * Common helper functions.
3406 */
3407 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3408 {
3409 struct page *page;
3410
3411 /*
3412 * __get_free_pages() returns a 32-bit address, which cannot represent
3413 * a highmem page
3414 */
3415 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3416
3417 page = alloc_pages(gfp_mask, order);
3418 if (!page)
3419 return 0;
3420 return (unsigned long) page_address(page);
3421 }
3422 EXPORT_SYMBOL(__get_free_pages);
3423
3424 unsigned long get_zeroed_page(gfp_t gfp_mask)
3425 {
3426 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3427 }
3428 EXPORT_SYMBOL(get_zeroed_page);
3429
3430 void __free_pages(struct page *page, unsigned int order)
3431 {
3432 if (put_page_testzero(page)) {
3433 if (order == 0)
3434 free_hot_cold_page(page, false);
3435 else
3436 __free_pages_ok(page, order);
3437 }
3438 }
3439
3440 EXPORT_SYMBOL(__free_pages);
3441
3442 void free_pages(unsigned long addr, unsigned int order)
3443 {
3444 if (addr != 0) {
3445 VM_BUG_ON(!virt_addr_valid((void *)addr));
3446 __free_pages(virt_to_page((void *)addr), order);
3447 }
3448 }
3449
3450 EXPORT_SYMBOL(free_pages);
3451
3452 /*
3453 * Page Fragment:
3454 * An arbitrary-length arbitrary-offset area of memory which resides
3455 * within a 0 or higher order page. Multiple fragments within that page
3456 * are individually refcounted, in the page's reference counter.
3457 *
3458 * The page_frag functions below provide a simple allocation framework for
3459 * page fragments. This is used by the network stack and network device
3460 * drivers to provide a backing region of memory for use as either an
3461 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3462 */
3463 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3464 gfp_t gfp_mask)
3465 {
3466 struct page *page = NULL;
3467 gfp_t gfp = gfp_mask;
3468
3469 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3470 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3471 __GFP_NOMEMALLOC;
3472 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3473 PAGE_FRAG_CACHE_MAX_ORDER);
3474 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3475 #endif
3476 if (unlikely(!page))
3477 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3478
3479 nc->va = page ? page_address(page) : NULL;
3480
3481 return page;
3482 }
3483
3484 void *__alloc_page_frag(struct page_frag_cache *nc,
3485 unsigned int fragsz, gfp_t gfp_mask)
3486 {
3487 unsigned int size = PAGE_SIZE;
3488 struct page *page;
3489 int offset;
3490
3491 if (unlikely(!nc->va)) {
3492 refill:
3493 page = __page_frag_refill(nc, gfp_mask);
3494 if (!page)
3495 return NULL;
3496
3497 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3498 /* if size can vary use size else just use PAGE_SIZE */
3499 size = nc->size;
3500 #endif
3501 /* Even if we own the page, we do not use atomic_set().
3502 * This would break get_page_unless_zero() users.
3503 */
3504 page_ref_add(page, size - 1);
3505
3506 /* reset page count bias and offset to start of new frag */
3507 nc->pfmemalloc = page_is_pfmemalloc(page);
3508 nc->pagecnt_bias = size;
3509 nc->offset = size;
3510 }
3511
3512 offset = nc->offset - fragsz;
3513 if (unlikely(offset < 0)) {
3514 page = virt_to_page(nc->va);
3515
3516 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3517 goto refill;
3518
3519 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3520 /* if size can vary use size else just use PAGE_SIZE */
3521 size = nc->size;
3522 #endif
3523 /* OK, page count is 0, we can safely set it */
3524 set_page_count(page, size);
3525
3526 /* reset page count bias and offset to start of new frag */
3527 nc->pagecnt_bias = size;
3528 offset = size - fragsz;
3529 }
3530
3531 nc->pagecnt_bias--;
3532 nc->offset = offset;
3533
3534 return nc->va + offset;
3535 }
3536 EXPORT_SYMBOL(__alloc_page_frag);
3537
3538 /*
3539 * Frees a page fragment allocated out of either a compound or order 0 page.
3540 */
3541 void __free_page_frag(void *addr)
3542 {
3543 struct page *page = virt_to_head_page(addr);
3544
3545 if (unlikely(put_page_testzero(page)))
3546 __free_pages_ok(page, compound_order(page));
3547 }
3548 EXPORT_SYMBOL(__free_page_frag);
3549
3550 /*
3551 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3552 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3553 * equivalent to alloc_pages.
3554 *
3555 * It should be used when the caller would like to use kmalloc, but since the
3556 * allocation is large, it has to fall back to the page allocator.
3557 */
3558 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3559 {
3560 struct page *page;
3561
3562 page = alloc_pages(gfp_mask, order);
3563 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3564 __free_pages(page, order);
3565 page = NULL;
3566 }
3567 return page;
3568 }
3569
3570 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3571 {
3572 struct page *page;
3573
3574 page = alloc_pages_node(nid, gfp_mask, order);
3575 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3576 __free_pages(page, order);
3577 page = NULL;
3578 }
3579 return page;
3580 }
3581
3582 /*
3583 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3584 * alloc_kmem_pages.
3585 */
3586 void __free_kmem_pages(struct page *page, unsigned int order)
3587 {
3588 memcg_kmem_uncharge(page, order);
3589 __free_pages(page, order);
3590 }
3591
3592 void free_kmem_pages(unsigned long addr, unsigned int order)
3593 {
3594 if (addr != 0) {
3595 VM_BUG_ON(!virt_addr_valid((void *)addr));
3596 __free_kmem_pages(virt_to_page((void *)addr), order);
3597 }
3598 }
3599
3600 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3601 size_t size)
3602 {
3603 if (addr) {
3604 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3605 unsigned long used = addr + PAGE_ALIGN(size);
3606
3607 split_page(virt_to_page((void *)addr), order);
3608 while (used < alloc_end) {
3609 free_page(used);
3610 used += PAGE_SIZE;
3611 }
3612 }
3613 return (void *)addr;
3614 }
3615
3616 /**
3617 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3618 * @size: the number of bytes to allocate
3619 * @gfp_mask: GFP flags for the allocation
3620 *
3621 * This function is similar to alloc_pages(), except that it allocates the
3622 * minimum number of pages to satisfy the request. alloc_pages() can only
3623 * allocate memory in power-of-two pages.
3624 *
3625 * This function is also limited by MAX_ORDER.
3626 *
3627 * Memory allocated by this function must be released by free_pages_exact().
3628 */
3629 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3630 {
3631 unsigned int order = get_order(size);
3632 unsigned long addr;
3633
3634 addr = __get_free_pages(gfp_mask, order);
3635 return make_alloc_exact(addr, order, size);
3636 }
3637 EXPORT_SYMBOL(alloc_pages_exact);
3638
3639 /**
3640 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3641 * pages on a node.
3642 * @nid: the preferred node ID where memory should be allocated
3643 * @size: the number of bytes to allocate
3644 * @gfp_mask: GFP flags for the allocation
3645 *
3646 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3647 * back.
3648 */
3649 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3650 {
3651 unsigned int order = get_order(size);
3652 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3653 if (!p)
3654 return NULL;
3655 return make_alloc_exact((unsigned long)page_address(p), order, size);
3656 }
3657
3658 /**
3659 * free_pages_exact - release memory allocated via alloc_pages_exact()
3660 * @virt: the value returned by alloc_pages_exact.
3661 * @size: size of allocation, same value as passed to alloc_pages_exact().
3662 *
3663 * Release the memory allocated by a previous call to alloc_pages_exact.
3664 */
3665 void free_pages_exact(void *virt, size_t size)
3666 {
3667 unsigned long addr = (unsigned long)virt;
3668 unsigned long end = addr + PAGE_ALIGN(size);
3669
3670 while (addr < end) {
3671 free_page(addr);
3672 addr += PAGE_SIZE;
3673 }
3674 }
3675 EXPORT_SYMBOL(free_pages_exact);
3676
3677 /**
3678 * nr_free_zone_pages - count number of pages beyond high watermark
3679 * @offset: The zone index of the highest zone
3680 *
3681 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3682 * high watermark within all zones at or below a given zone index. For each
3683 * zone, the number of pages is calculated as:
3684 * managed_pages - high_pages
3685 */
3686 static unsigned long nr_free_zone_pages(int offset)
3687 {
3688 struct zoneref *z;
3689 struct zone *zone;
3690
3691 /* Just pick one node, since fallback list is circular */
3692 unsigned long sum = 0;
3693
3694 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3695
3696 for_each_zone_zonelist(zone, z, zonelist, offset) {
3697 unsigned long size = zone->managed_pages;
3698 unsigned long high = high_wmark_pages(zone);
3699 if (size > high)
3700 sum += size - high;
3701 }
3702
3703 return sum;
3704 }
3705
3706 /**
3707 * nr_free_buffer_pages - count number of pages beyond high watermark
3708 *
3709 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3710 * watermark within ZONE_DMA and ZONE_NORMAL.
3711 */
3712 unsigned long nr_free_buffer_pages(void)
3713 {
3714 return nr_free_zone_pages(gfp_zone(GFP_USER));
3715 }
3716 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3717
3718 /**
3719 * nr_free_pagecache_pages - count number of pages beyond high watermark
3720 *
3721 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3722 * high watermark within all zones.
3723 */
3724 unsigned long nr_free_pagecache_pages(void)
3725 {
3726 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3727 }
3728
3729 static inline void show_node(struct zone *zone)
3730 {
3731 if (IS_ENABLED(CONFIG_NUMA))
3732 printk("Node %d ", zone_to_nid(zone));
3733 }
3734
3735 long si_mem_available(void)
3736 {
3737 long available;
3738 unsigned long pagecache;
3739 unsigned long wmark_low = 0;
3740 unsigned long pages[NR_LRU_LISTS];
3741 struct zone *zone;
3742 int lru;
3743
3744 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
3745 pages[lru] = global_page_state(NR_LRU_BASE + lru);
3746
3747 for_each_zone(zone)
3748 wmark_low += zone->watermark[WMARK_LOW];
3749
3750 /*
3751 * Estimate the amount of memory available for userspace allocations,
3752 * without causing swapping.
3753 */
3754 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
3755
3756 /*
3757 * Not all the page cache can be freed, otherwise the system will
3758 * start swapping. Assume at least half of the page cache, or the
3759 * low watermark worth of cache, needs to stay.
3760 */
3761 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
3762 pagecache -= min(pagecache / 2, wmark_low);
3763 available += pagecache;
3764
3765 /*
3766 * Part of the reclaimable slab consists of items that are in use,
3767 * and cannot be freed. Cap this estimate at the low watermark.
3768 */
3769 available += global_page_state(NR_SLAB_RECLAIMABLE) -
3770 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
3771
3772 if (available < 0)
3773 available = 0;
3774 return available;
3775 }
3776 EXPORT_SYMBOL_GPL(si_mem_available);
3777
3778 void si_meminfo(struct sysinfo *val)
3779 {
3780 val->totalram = totalram_pages;
3781 val->sharedram = global_page_state(NR_SHMEM);
3782 val->freeram = global_page_state(NR_FREE_PAGES);
3783 val->bufferram = nr_blockdev_pages();
3784 val->totalhigh = totalhigh_pages;
3785 val->freehigh = nr_free_highpages();
3786 val->mem_unit = PAGE_SIZE;
3787 }
3788
3789 EXPORT_SYMBOL(si_meminfo);
3790
3791 #ifdef CONFIG_NUMA
3792 void si_meminfo_node(struct sysinfo *val, int nid)
3793 {
3794 int zone_type; /* needs to be signed */
3795 unsigned long managed_pages = 0;
3796 unsigned long managed_highpages = 0;
3797 unsigned long free_highpages = 0;
3798 pg_data_t *pgdat = NODE_DATA(nid);
3799
3800 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3801 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3802 val->totalram = managed_pages;
3803 val->sharedram = node_page_state(nid, NR_SHMEM);
3804 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3805 #ifdef CONFIG_HIGHMEM
3806 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3807 struct zone *zone = &pgdat->node_zones[zone_type];
3808
3809 if (is_highmem(zone)) {
3810 managed_highpages += zone->managed_pages;
3811 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
3812 }
3813 }
3814 val->totalhigh = managed_highpages;
3815 val->freehigh = free_highpages;
3816 #else
3817 val->totalhigh = managed_highpages;
3818 val->freehigh = free_highpages;
3819 #endif
3820 val->mem_unit = PAGE_SIZE;
3821 }
3822 #endif
3823
3824 /*
3825 * Determine whether the node should be displayed or not, depending on whether
3826 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3827 */
3828 bool skip_free_areas_node(unsigned int flags, int nid)
3829 {
3830 bool ret = false;
3831 unsigned int cpuset_mems_cookie;
3832
3833 if (!(flags & SHOW_MEM_FILTER_NODES))
3834 goto out;
3835
3836 do {
3837 cpuset_mems_cookie = read_mems_allowed_begin();
3838 ret = !node_isset(nid, cpuset_current_mems_allowed);
3839 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3840 out:
3841 return ret;
3842 }
3843
3844 #define K(x) ((x) << (PAGE_SHIFT-10))
3845
3846 static void show_migration_types(unsigned char type)
3847 {
3848 static const char types[MIGRATE_TYPES] = {
3849 [MIGRATE_UNMOVABLE] = 'U',
3850 [MIGRATE_MOVABLE] = 'M',
3851 [MIGRATE_RECLAIMABLE] = 'E',
3852 [MIGRATE_HIGHATOMIC] = 'H',
3853 #ifdef CONFIG_CMA
3854 [MIGRATE_CMA] = 'C',
3855 #endif
3856 #ifdef CONFIG_MEMORY_ISOLATION
3857 [MIGRATE_ISOLATE] = 'I',
3858 #endif
3859 };
3860 char tmp[MIGRATE_TYPES + 1];
3861 char *p = tmp;
3862 int i;
3863
3864 for (i = 0; i < MIGRATE_TYPES; i++) {
3865 if (type & (1 << i))
3866 *p++ = types[i];
3867 }
3868
3869 *p = '\0';
3870 printk("(%s) ", tmp);
3871 }
3872
3873 /*
3874 * Show free area list (used inside shift_scroll-lock stuff)
3875 * We also calculate the percentage fragmentation. We do this by counting the
3876 * memory on each free list with the exception of the first item on the list.
3877 *
3878 * Bits in @filter:
3879 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3880 * cpuset.
3881 */
3882 void show_free_areas(unsigned int filter)
3883 {
3884 unsigned long free_pcp = 0;
3885 int cpu;
3886 struct zone *zone;
3887
3888 for_each_populated_zone(zone) {
3889 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3890 continue;
3891
3892 for_each_online_cpu(cpu)
3893 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3894 }
3895
3896 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3897 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3898 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3899 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3900 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3901 " free:%lu free_pcp:%lu free_cma:%lu\n",
3902 global_page_state(NR_ACTIVE_ANON),
3903 global_page_state(NR_INACTIVE_ANON),
3904 global_page_state(NR_ISOLATED_ANON),
3905 global_page_state(NR_ACTIVE_FILE),
3906 global_page_state(NR_INACTIVE_FILE),
3907 global_page_state(NR_ISOLATED_FILE),
3908 global_page_state(NR_UNEVICTABLE),
3909 global_page_state(NR_FILE_DIRTY),
3910 global_page_state(NR_WRITEBACK),
3911 global_page_state(NR_UNSTABLE_NFS),
3912 global_page_state(NR_SLAB_RECLAIMABLE),
3913 global_page_state(NR_SLAB_UNRECLAIMABLE),
3914 global_page_state(NR_FILE_MAPPED),
3915 global_page_state(NR_SHMEM),
3916 global_page_state(NR_PAGETABLE),
3917 global_page_state(NR_BOUNCE),
3918 global_page_state(NR_FREE_PAGES),
3919 free_pcp,
3920 global_page_state(NR_FREE_CMA_PAGES));
3921
3922 for_each_populated_zone(zone) {
3923 int i;
3924
3925 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3926 continue;
3927
3928 free_pcp = 0;
3929 for_each_online_cpu(cpu)
3930 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3931
3932 show_node(zone);
3933 printk("%s"
3934 " free:%lukB"
3935 " min:%lukB"
3936 " low:%lukB"
3937 " high:%lukB"
3938 " active_anon:%lukB"
3939 " inactive_anon:%lukB"
3940 " active_file:%lukB"
3941 " inactive_file:%lukB"
3942 " unevictable:%lukB"
3943 " isolated(anon):%lukB"
3944 " isolated(file):%lukB"
3945 " present:%lukB"
3946 " managed:%lukB"
3947 " mlocked:%lukB"
3948 " dirty:%lukB"
3949 " writeback:%lukB"
3950 " mapped:%lukB"
3951 " shmem:%lukB"
3952 " slab_reclaimable:%lukB"
3953 " slab_unreclaimable:%lukB"
3954 " kernel_stack:%lukB"
3955 " pagetables:%lukB"
3956 " unstable:%lukB"
3957 " bounce:%lukB"
3958 " free_pcp:%lukB"
3959 " local_pcp:%ukB"
3960 " free_cma:%lukB"
3961 " writeback_tmp:%lukB"
3962 " pages_scanned:%lu"
3963 " all_unreclaimable? %s"
3964 "\n",
3965 zone->name,
3966 K(zone_page_state(zone, NR_FREE_PAGES)),
3967 K(min_wmark_pages(zone)),
3968 K(low_wmark_pages(zone)),
3969 K(high_wmark_pages(zone)),
3970 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3971 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3972 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3973 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3974 K(zone_page_state(zone, NR_UNEVICTABLE)),
3975 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3976 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3977 K(zone->present_pages),
3978 K(zone->managed_pages),
3979 K(zone_page_state(zone, NR_MLOCK)),
3980 K(zone_page_state(zone, NR_FILE_DIRTY)),
3981 K(zone_page_state(zone, NR_WRITEBACK)),
3982 K(zone_page_state(zone, NR_FILE_MAPPED)),
3983 K(zone_page_state(zone, NR_SHMEM)),
3984 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3985 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3986 zone_page_state(zone, NR_KERNEL_STACK) *
3987 THREAD_SIZE / 1024,
3988 K(zone_page_state(zone, NR_PAGETABLE)),
3989 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3990 K(zone_page_state(zone, NR_BOUNCE)),
3991 K(free_pcp),
3992 K(this_cpu_read(zone->pageset->pcp.count)),
3993 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3994 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3995 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3996 (!zone_reclaimable(zone) ? "yes" : "no")
3997 );
3998 printk("lowmem_reserve[]:");
3999 for (i = 0; i < MAX_NR_ZONES; i++)
4000 printk(" %ld", zone->lowmem_reserve[i]);
4001 printk("\n");
4002 }
4003
4004 for_each_populated_zone(zone) {
4005 unsigned int order;
4006 unsigned long nr[MAX_ORDER], flags, total = 0;
4007 unsigned char types[MAX_ORDER];
4008
4009 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4010 continue;
4011 show_node(zone);
4012 printk("%s: ", zone->name);
4013
4014 spin_lock_irqsave(&zone->lock, flags);
4015 for (order = 0; order < MAX_ORDER; order++) {
4016 struct free_area *area = &zone->free_area[order];
4017 int type;
4018
4019 nr[order] = area->nr_free;
4020 total += nr[order] << order;
4021
4022 types[order] = 0;
4023 for (type = 0; type < MIGRATE_TYPES; type++) {
4024 if (!list_empty(&area->free_list[type]))
4025 types[order] |= 1 << type;
4026 }
4027 }
4028 spin_unlock_irqrestore(&zone->lock, flags);
4029 for (order = 0; order < MAX_ORDER; order++) {
4030 printk("%lu*%lukB ", nr[order], K(1UL) << order);
4031 if (nr[order])
4032 show_migration_types(types[order]);
4033 }
4034 printk("= %lukB\n", K(total));
4035 }
4036
4037 hugetlb_show_meminfo();
4038
4039 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4040
4041 show_swap_cache_info();
4042 }
4043
4044 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4045 {
4046 zoneref->zone = zone;
4047 zoneref->zone_idx = zone_idx(zone);
4048 }
4049
4050 /*
4051 * Builds allocation fallback zone lists.
4052 *
4053 * Add all populated zones of a node to the zonelist.
4054 */
4055 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4056 int nr_zones)
4057 {
4058 struct zone *zone;
4059 enum zone_type zone_type = MAX_NR_ZONES;
4060
4061 do {
4062 zone_type--;
4063 zone = pgdat->node_zones + zone_type;
4064 if (populated_zone(zone)) {
4065 zoneref_set_zone(zone,
4066 &zonelist->_zonerefs[nr_zones++]);
4067 check_highest_zone(zone_type);
4068 }
4069 } while (zone_type);
4070
4071 return nr_zones;
4072 }
4073
4074
4075 /*
4076 * zonelist_order:
4077 * 0 = automatic detection of better ordering.
4078 * 1 = order by ([node] distance, -zonetype)
4079 * 2 = order by (-zonetype, [node] distance)
4080 *
4081 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4082 * the same zonelist. So only NUMA can configure this param.
4083 */
4084 #define ZONELIST_ORDER_DEFAULT 0
4085 #define ZONELIST_ORDER_NODE 1
4086 #define ZONELIST_ORDER_ZONE 2
4087
4088 /* zonelist order in the kernel.
4089 * set_zonelist_order() will set this to NODE or ZONE.
4090 */
4091 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4092 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4093
4094
4095 #ifdef CONFIG_NUMA
4096 /* The value user specified ....changed by config */
4097 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4098 /* string for sysctl */
4099 #define NUMA_ZONELIST_ORDER_LEN 16
4100 char numa_zonelist_order[16] = "default";
4101
4102 /*
4103 * interface for configure zonelist ordering.
4104 * command line option "numa_zonelist_order"
4105 * = "[dD]efault - default, automatic configuration.
4106 * = "[nN]ode - order by node locality, then by zone within node
4107 * = "[zZ]one - order by zone, then by locality within zone
4108 */
4109
4110 static int __parse_numa_zonelist_order(char *s)
4111 {
4112 if (*s == 'd' || *s == 'D') {
4113 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4114 } else if (*s == 'n' || *s == 'N') {
4115 user_zonelist_order = ZONELIST_ORDER_NODE;
4116 } else if (*s == 'z' || *s == 'Z') {
4117 user_zonelist_order = ZONELIST_ORDER_ZONE;
4118 } else {
4119 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4120 return -EINVAL;
4121 }
4122 return 0;
4123 }
4124
4125 static __init int setup_numa_zonelist_order(char *s)
4126 {
4127 int ret;
4128
4129 if (!s)
4130 return 0;
4131
4132 ret = __parse_numa_zonelist_order(s);
4133 if (ret == 0)
4134 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4135
4136 return ret;
4137 }
4138 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4139
4140 /*
4141 * sysctl handler for numa_zonelist_order
4142 */
4143 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4144 void __user *buffer, size_t *length,
4145 loff_t *ppos)
4146 {
4147 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4148 int ret;
4149 static DEFINE_MUTEX(zl_order_mutex);
4150
4151 mutex_lock(&zl_order_mutex);
4152 if (write) {
4153 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4154 ret = -EINVAL;
4155 goto out;
4156 }
4157 strcpy(saved_string, (char *)table->data);
4158 }
4159 ret = proc_dostring(table, write, buffer, length, ppos);
4160 if (ret)
4161 goto out;
4162 if (write) {
4163 int oldval = user_zonelist_order;
4164
4165 ret = __parse_numa_zonelist_order((char *)table->data);
4166 if (ret) {
4167 /*
4168 * bogus value. restore saved string
4169 */
4170 strncpy((char *)table->data, saved_string,
4171 NUMA_ZONELIST_ORDER_LEN);
4172 user_zonelist_order = oldval;
4173 } else if (oldval != user_zonelist_order) {
4174 mutex_lock(&zonelists_mutex);
4175 build_all_zonelists(NULL, NULL);
4176 mutex_unlock(&zonelists_mutex);
4177 }
4178 }
4179 out:
4180 mutex_unlock(&zl_order_mutex);
4181 return ret;
4182 }
4183
4184
4185 #define MAX_NODE_LOAD (nr_online_nodes)
4186 static int node_load[MAX_NUMNODES];
4187
4188 /**
4189 * find_next_best_node - find the next node that should appear in a given node's fallback list
4190 * @node: node whose fallback list we're appending
4191 * @used_node_mask: nodemask_t of already used nodes
4192 *
4193 * We use a number of factors to determine which is the next node that should
4194 * appear on a given node's fallback list. The node should not have appeared
4195 * already in @node's fallback list, and it should be the next closest node
4196 * according to the distance array (which contains arbitrary distance values
4197 * from each node to each node in the system), and should also prefer nodes
4198 * with no CPUs, since presumably they'll have very little allocation pressure
4199 * on them otherwise.
4200 * It returns -1 if no node is found.
4201 */
4202 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4203 {
4204 int n, val;
4205 int min_val = INT_MAX;
4206 int best_node = NUMA_NO_NODE;
4207 const struct cpumask *tmp = cpumask_of_node(0);
4208
4209 /* Use the local node if we haven't already */
4210 if (!node_isset(node, *used_node_mask)) {
4211 node_set(node, *used_node_mask);
4212 return node;
4213 }
4214
4215 for_each_node_state(n, N_MEMORY) {
4216
4217 /* Don't want a node to appear more than once */
4218 if (node_isset(n, *used_node_mask))
4219 continue;
4220
4221 /* Use the distance array to find the distance */
4222 val = node_distance(node, n);
4223
4224 /* Penalize nodes under us ("prefer the next node") */
4225 val += (n < node);
4226
4227 /* Give preference to headless and unused nodes */
4228 tmp = cpumask_of_node(n);
4229 if (!cpumask_empty(tmp))
4230 val += PENALTY_FOR_NODE_WITH_CPUS;
4231
4232 /* Slight preference for less loaded node */
4233 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4234 val += node_load[n];
4235
4236 if (val < min_val) {
4237 min_val = val;
4238 best_node = n;
4239 }
4240 }
4241
4242 if (best_node >= 0)
4243 node_set(best_node, *used_node_mask);
4244
4245 return best_node;
4246 }
4247
4248
4249 /*
4250 * Build zonelists ordered by node and zones within node.
4251 * This results in maximum locality--normal zone overflows into local
4252 * DMA zone, if any--but risks exhausting DMA zone.
4253 */
4254 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4255 {
4256 int j;
4257 struct zonelist *zonelist;
4258
4259 zonelist = &pgdat->node_zonelists[0];
4260 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4261 ;
4262 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4263 zonelist->_zonerefs[j].zone = NULL;
4264 zonelist->_zonerefs[j].zone_idx = 0;
4265 }
4266
4267 /*
4268 * Build gfp_thisnode zonelists
4269 */
4270 static void build_thisnode_zonelists(pg_data_t *pgdat)
4271 {
4272 int j;
4273 struct zonelist *zonelist;
4274
4275 zonelist = &pgdat->node_zonelists[1];
4276 j = build_zonelists_node(pgdat, zonelist, 0);
4277 zonelist->_zonerefs[j].zone = NULL;
4278 zonelist->_zonerefs[j].zone_idx = 0;
4279 }
4280
4281 /*
4282 * Build zonelists ordered by zone and nodes within zones.
4283 * This results in conserving DMA zone[s] until all Normal memory is
4284 * exhausted, but results in overflowing to remote node while memory
4285 * may still exist in local DMA zone.
4286 */
4287 static int node_order[MAX_NUMNODES];
4288
4289 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4290 {
4291 int pos, j, node;
4292 int zone_type; /* needs to be signed */
4293 struct zone *z;
4294 struct zonelist *zonelist;
4295
4296 zonelist = &pgdat->node_zonelists[0];
4297 pos = 0;
4298 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4299 for (j = 0; j < nr_nodes; j++) {
4300 node = node_order[j];
4301 z = &NODE_DATA(node)->node_zones[zone_type];
4302 if (populated_zone(z)) {
4303 zoneref_set_zone(z,
4304 &zonelist->_zonerefs[pos++]);
4305 check_highest_zone(zone_type);
4306 }
4307 }
4308 }
4309 zonelist->_zonerefs[pos].zone = NULL;
4310 zonelist->_zonerefs[pos].zone_idx = 0;
4311 }
4312
4313 #if defined(CONFIG_64BIT)
4314 /*
4315 * Devices that require DMA32/DMA are relatively rare and do not justify a
4316 * penalty to every machine in case the specialised case applies. Default
4317 * to Node-ordering on 64-bit NUMA machines
4318 */
4319 static int default_zonelist_order(void)
4320 {
4321 return ZONELIST_ORDER_NODE;
4322 }
4323 #else
4324 /*
4325 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4326 * by the kernel. If processes running on node 0 deplete the low memory zone
4327 * then reclaim will occur more frequency increasing stalls and potentially
4328 * be easier to OOM if a large percentage of the zone is under writeback or
4329 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4330 * Hence, default to zone ordering on 32-bit.
4331 */
4332 static int default_zonelist_order(void)
4333 {
4334 return ZONELIST_ORDER_ZONE;
4335 }
4336 #endif /* CONFIG_64BIT */
4337
4338 static void set_zonelist_order(void)
4339 {
4340 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4341 current_zonelist_order = default_zonelist_order();
4342 else
4343 current_zonelist_order = user_zonelist_order;
4344 }
4345
4346 static void build_zonelists(pg_data_t *pgdat)
4347 {
4348 int i, node, load;
4349 nodemask_t used_mask;
4350 int local_node, prev_node;
4351 struct zonelist *zonelist;
4352 unsigned int order = current_zonelist_order;
4353
4354 /* initialize zonelists */
4355 for (i = 0; i < MAX_ZONELISTS; i++) {
4356 zonelist = pgdat->node_zonelists + i;
4357 zonelist->_zonerefs[0].zone = NULL;
4358 zonelist->_zonerefs[0].zone_idx = 0;
4359 }
4360
4361 /* NUMA-aware ordering of nodes */
4362 local_node = pgdat->node_id;
4363 load = nr_online_nodes;
4364 prev_node = local_node;
4365 nodes_clear(used_mask);
4366
4367 memset(node_order, 0, sizeof(node_order));
4368 i = 0;
4369
4370 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4371 /*
4372 * We don't want to pressure a particular node.
4373 * So adding penalty to the first node in same
4374 * distance group to make it round-robin.
4375 */
4376 if (node_distance(local_node, node) !=
4377 node_distance(local_node, prev_node))
4378 node_load[node] = load;
4379
4380 prev_node = node;
4381 load--;
4382 if (order == ZONELIST_ORDER_NODE)
4383 build_zonelists_in_node_order(pgdat, node);
4384 else
4385 node_order[i++] = node; /* remember order */
4386 }
4387
4388 if (order == ZONELIST_ORDER_ZONE) {
4389 /* calculate node order -- i.e., DMA last! */
4390 build_zonelists_in_zone_order(pgdat, i);
4391 }
4392
4393 build_thisnode_zonelists(pgdat);
4394 }
4395
4396 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4397 /*
4398 * Return node id of node used for "local" allocations.
4399 * I.e., first node id of first zone in arg node's generic zonelist.
4400 * Used for initializing percpu 'numa_mem', which is used primarily
4401 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4402 */
4403 int local_memory_node(int node)
4404 {
4405 struct zone *zone;
4406
4407 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4408 gfp_zone(GFP_KERNEL),
4409 NULL,
4410 &zone);
4411 return zone->node;
4412 }
4413 #endif
4414
4415 #else /* CONFIG_NUMA */
4416
4417 static void set_zonelist_order(void)
4418 {
4419 current_zonelist_order = ZONELIST_ORDER_ZONE;
4420 }
4421
4422 static void build_zonelists(pg_data_t *pgdat)
4423 {
4424 int node, local_node;
4425 enum zone_type j;
4426 struct zonelist *zonelist;
4427
4428 local_node = pgdat->node_id;
4429
4430 zonelist = &pgdat->node_zonelists[0];
4431 j = build_zonelists_node(pgdat, zonelist, 0);
4432
4433 /*
4434 * Now we build the zonelist so that it contains the zones
4435 * of all the other nodes.
4436 * We don't want to pressure a particular node, so when
4437 * building the zones for node N, we make sure that the
4438 * zones coming right after the local ones are those from
4439 * node N+1 (modulo N)
4440 */
4441 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4442 if (!node_online(node))
4443 continue;
4444 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4445 }
4446 for (node = 0; node < local_node; node++) {
4447 if (!node_online(node))
4448 continue;
4449 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4450 }
4451
4452 zonelist->_zonerefs[j].zone = NULL;
4453 zonelist->_zonerefs[j].zone_idx = 0;
4454 }
4455
4456 #endif /* CONFIG_NUMA */
4457
4458 /*
4459 * Boot pageset table. One per cpu which is going to be used for all
4460 * zones and all nodes. The parameters will be set in such a way
4461 * that an item put on a list will immediately be handed over to
4462 * the buddy list. This is safe since pageset manipulation is done
4463 * with interrupts disabled.
4464 *
4465 * The boot_pagesets must be kept even after bootup is complete for
4466 * unused processors and/or zones. They do play a role for bootstrapping
4467 * hotplugged processors.
4468 *
4469 * zoneinfo_show() and maybe other functions do
4470 * not check if the processor is online before following the pageset pointer.
4471 * Other parts of the kernel may not check if the zone is available.
4472 */
4473 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4474 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4475 static void setup_zone_pageset(struct zone *zone);
4476
4477 /*
4478 * Global mutex to protect against size modification of zonelists
4479 * as well as to serialize pageset setup for the new populated zone.
4480 */
4481 DEFINE_MUTEX(zonelists_mutex);
4482
4483 /* return values int ....just for stop_machine() */
4484 static int __build_all_zonelists(void *data)
4485 {
4486 int nid;
4487 int cpu;
4488 pg_data_t *self = data;
4489
4490 #ifdef CONFIG_NUMA
4491 memset(node_load, 0, sizeof(node_load));
4492 #endif
4493
4494 if (self && !node_online(self->node_id)) {
4495 build_zonelists(self);
4496 }
4497
4498 for_each_online_node(nid) {
4499 pg_data_t *pgdat = NODE_DATA(nid);
4500
4501 build_zonelists(pgdat);
4502 }
4503
4504 /*
4505 * Initialize the boot_pagesets that are going to be used
4506 * for bootstrapping processors. The real pagesets for
4507 * each zone will be allocated later when the per cpu
4508 * allocator is available.
4509 *
4510 * boot_pagesets are used also for bootstrapping offline
4511 * cpus if the system is already booted because the pagesets
4512 * are needed to initialize allocators on a specific cpu too.
4513 * F.e. the percpu allocator needs the page allocator which
4514 * needs the percpu allocator in order to allocate its pagesets
4515 * (a chicken-egg dilemma).
4516 */
4517 for_each_possible_cpu(cpu) {
4518 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4519
4520 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4521 /*
4522 * We now know the "local memory node" for each node--
4523 * i.e., the node of the first zone in the generic zonelist.
4524 * Set up numa_mem percpu variable for on-line cpus. During
4525 * boot, only the boot cpu should be on-line; we'll init the
4526 * secondary cpus' numa_mem as they come on-line. During
4527 * node/memory hotplug, we'll fixup all on-line cpus.
4528 */
4529 if (cpu_online(cpu))
4530 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4531 #endif
4532 }
4533
4534 return 0;
4535 }
4536
4537 static noinline void __init
4538 build_all_zonelists_init(void)
4539 {
4540 __build_all_zonelists(NULL);
4541 mminit_verify_zonelist();
4542 cpuset_init_current_mems_allowed();
4543 }
4544
4545 /*
4546 * Called with zonelists_mutex held always
4547 * unless system_state == SYSTEM_BOOTING.
4548 *
4549 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4550 * [we're only called with non-NULL zone through __meminit paths] and
4551 * (2) call of __init annotated helper build_all_zonelists_init
4552 * [protected by SYSTEM_BOOTING].
4553 */
4554 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4555 {
4556 set_zonelist_order();
4557
4558 if (system_state == SYSTEM_BOOTING) {
4559 build_all_zonelists_init();
4560 } else {
4561 #ifdef CONFIG_MEMORY_HOTPLUG
4562 if (zone)
4563 setup_zone_pageset(zone);
4564 #endif
4565 /* we have to stop all cpus to guarantee there is no user
4566 of zonelist */
4567 stop_machine(__build_all_zonelists, pgdat, NULL);
4568 /* cpuset refresh routine should be here */
4569 }
4570 vm_total_pages = nr_free_pagecache_pages();
4571 /*
4572 * Disable grouping by mobility if the number of pages in the
4573 * system is too low to allow the mechanism to work. It would be
4574 * more accurate, but expensive to check per-zone. This check is
4575 * made on memory-hotadd so a system can start with mobility
4576 * disabled and enable it later
4577 */
4578 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4579 page_group_by_mobility_disabled = 1;
4580 else
4581 page_group_by_mobility_disabled = 0;
4582
4583 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4584 nr_online_nodes,
4585 zonelist_order_name[current_zonelist_order],
4586 page_group_by_mobility_disabled ? "off" : "on",
4587 vm_total_pages);
4588 #ifdef CONFIG_NUMA
4589 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4590 #endif
4591 }
4592
4593 /*
4594 * Helper functions to size the waitqueue hash table.
4595 * Essentially these want to choose hash table sizes sufficiently
4596 * large so that collisions trying to wait on pages are rare.
4597 * But in fact, the number of active page waitqueues on typical
4598 * systems is ridiculously low, less than 200. So this is even
4599 * conservative, even though it seems large.
4600 *
4601 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4602 * waitqueues, i.e. the size of the waitq table given the number of pages.
4603 */
4604 #define PAGES_PER_WAITQUEUE 256
4605
4606 #ifndef CONFIG_MEMORY_HOTPLUG
4607 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4608 {
4609 unsigned long size = 1;
4610
4611 pages /= PAGES_PER_WAITQUEUE;
4612
4613 while (size < pages)
4614 size <<= 1;
4615
4616 /*
4617 * Once we have dozens or even hundreds of threads sleeping
4618 * on IO we've got bigger problems than wait queue collision.
4619 * Limit the size of the wait table to a reasonable size.
4620 */
4621 size = min(size, 4096UL);
4622
4623 return max(size, 4UL);
4624 }
4625 #else
4626 /*
4627 * A zone's size might be changed by hot-add, so it is not possible to determine
4628 * a suitable size for its wait_table. So we use the maximum size now.
4629 *
4630 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4631 *
4632 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4633 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4634 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4635 *
4636 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4637 * or more by the traditional way. (See above). It equals:
4638 *
4639 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4640 * ia64(16K page size) : = ( 8G + 4M)byte.
4641 * powerpc (64K page size) : = (32G +16M)byte.
4642 */
4643 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4644 {
4645 return 4096UL;
4646 }
4647 #endif
4648
4649 /*
4650 * This is an integer logarithm so that shifts can be used later
4651 * to extract the more random high bits from the multiplicative
4652 * hash function before the remainder is taken.
4653 */
4654 static inline unsigned long wait_table_bits(unsigned long size)
4655 {
4656 return ffz(~size);
4657 }
4658
4659 /*
4660 * Initially all pages are reserved - free ones are freed
4661 * up by free_all_bootmem() once the early boot process is
4662 * done. Non-atomic initialization, single-pass.
4663 */
4664 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4665 unsigned long start_pfn, enum memmap_context context)
4666 {
4667 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
4668 unsigned long end_pfn = start_pfn + size;
4669 pg_data_t *pgdat = NODE_DATA(nid);
4670 unsigned long pfn;
4671 unsigned long nr_initialised = 0;
4672 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4673 struct memblock_region *r = NULL, *tmp;
4674 #endif
4675
4676 if (highest_memmap_pfn < end_pfn - 1)
4677 highest_memmap_pfn = end_pfn - 1;
4678
4679 /*
4680 * Honor reservation requested by the driver for this ZONE_DEVICE
4681 * memory
4682 */
4683 if (altmap && start_pfn == altmap->base_pfn)
4684 start_pfn += altmap->reserve;
4685
4686 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4687 /*
4688 * There can be holes in boot-time mem_map[]s handed to this
4689 * function. They do not exist on hotplugged memory.
4690 */
4691 if (context != MEMMAP_EARLY)
4692 goto not_early;
4693
4694 if (!early_pfn_valid(pfn))
4695 continue;
4696 if (!early_pfn_in_nid(pfn, nid))
4697 continue;
4698 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4699 break;
4700
4701 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4702 /*
4703 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4704 * from zone_movable_pfn[nid] to end of each node should be
4705 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4706 */
4707 if (!mirrored_kernelcore && zone_movable_pfn[nid])
4708 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4709 continue;
4710
4711 /*
4712 * Check given memblock attribute by firmware which can affect
4713 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
4714 * mirrored, it's an overlapped memmap init. skip it.
4715 */
4716 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4717 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4718 for_each_memblock(memory, tmp)
4719 if (pfn < memblock_region_memory_end_pfn(tmp))
4720 break;
4721 r = tmp;
4722 }
4723 if (pfn >= memblock_region_memory_base_pfn(r) &&
4724 memblock_is_mirror(r)) {
4725 /* already initialized as NORMAL */
4726 pfn = memblock_region_memory_end_pfn(r);
4727 continue;
4728 }
4729 }
4730 #endif
4731
4732 not_early:
4733 /*
4734 * Mark the block movable so that blocks are reserved for
4735 * movable at startup. This will force kernel allocations
4736 * to reserve their blocks rather than leaking throughout
4737 * the address space during boot when many long-lived
4738 * kernel allocations are made.
4739 *
4740 * bitmap is created for zone's valid pfn range. but memmap
4741 * can be created for invalid pages (for alignment)
4742 * check here not to call set_pageblock_migratetype() against
4743 * pfn out of zone.
4744 */
4745 if (!(pfn & (pageblock_nr_pages - 1))) {
4746 struct page *page = pfn_to_page(pfn);
4747
4748 __init_single_page(page, pfn, zone, nid);
4749 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4750 } else {
4751 __init_single_pfn(pfn, zone, nid);
4752 }
4753 }
4754 }
4755
4756 static void __meminit zone_init_free_lists(struct zone *zone)
4757 {
4758 unsigned int order, t;
4759 for_each_migratetype_order(order, t) {
4760 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4761 zone->free_area[order].nr_free = 0;
4762 }
4763 }
4764
4765 #ifndef __HAVE_ARCH_MEMMAP_INIT
4766 #define memmap_init(size, nid, zone, start_pfn) \
4767 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4768 #endif
4769
4770 static int zone_batchsize(struct zone *zone)
4771 {
4772 #ifdef CONFIG_MMU
4773 int batch;
4774
4775 /*
4776 * The per-cpu-pages pools are set to around 1000th of the
4777 * size of the zone. But no more than 1/2 of a meg.
4778 *
4779 * OK, so we don't know how big the cache is. So guess.
4780 */
4781 batch = zone->managed_pages / 1024;
4782 if (batch * PAGE_SIZE > 512 * 1024)
4783 batch = (512 * 1024) / PAGE_SIZE;
4784 batch /= 4; /* We effectively *= 4 below */
4785 if (batch < 1)
4786 batch = 1;
4787
4788 /*
4789 * Clamp the batch to a 2^n - 1 value. Having a power
4790 * of 2 value was found to be more likely to have
4791 * suboptimal cache aliasing properties in some cases.
4792 *
4793 * For example if 2 tasks are alternately allocating
4794 * batches of pages, one task can end up with a lot
4795 * of pages of one half of the possible page colors
4796 * and the other with pages of the other colors.
4797 */
4798 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4799
4800 return batch;
4801
4802 #else
4803 /* The deferral and batching of frees should be suppressed under NOMMU
4804 * conditions.
4805 *
4806 * The problem is that NOMMU needs to be able to allocate large chunks
4807 * of contiguous memory as there's no hardware page translation to
4808 * assemble apparent contiguous memory from discontiguous pages.
4809 *
4810 * Queueing large contiguous runs of pages for batching, however,
4811 * causes the pages to actually be freed in smaller chunks. As there
4812 * can be a significant delay between the individual batches being
4813 * recycled, this leads to the once large chunks of space being
4814 * fragmented and becoming unavailable for high-order allocations.
4815 */
4816 return 0;
4817 #endif
4818 }
4819
4820 /*
4821 * pcp->high and pcp->batch values are related and dependent on one another:
4822 * ->batch must never be higher then ->high.
4823 * The following function updates them in a safe manner without read side
4824 * locking.
4825 *
4826 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4827 * those fields changing asynchronously (acording the the above rule).
4828 *
4829 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4830 * outside of boot time (or some other assurance that no concurrent updaters
4831 * exist).
4832 */
4833 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4834 unsigned long batch)
4835 {
4836 /* start with a fail safe value for batch */
4837 pcp->batch = 1;
4838 smp_wmb();
4839
4840 /* Update high, then batch, in order */
4841 pcp->high = high;
4842 smp_wmb();
4843
4844 pcp->batch = batch;
4845 }
4846
4847 /* a companion to pageset_set_high() */
4848 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4849 {
4850 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4851 }
4852
4853 static void pageset_init(struct per_cpu_pageset *p)
4854 {
4855 struct per_cpu_pages *pcp;
4856 int migratetype;
4857
4858 memset(p, 0, sizeof(*p));
4859
4860 pcp = &p->pcp;
4861 pcp->count = 0;
4862 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4863 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4864 }
4865
4866 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4867 {
4868 pageset_init(p);
4869 pageset_set_batch(p, batch);
4870 }
4871
4872 /*
4873 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4874 * to the value high for the pageset p.
4875 */
4876 static void pageset_set_high(struct per_cpu_pageset *p,
4877 unsigned long high)
4878 {
4879 unsigned long batch = max(1UL, high / 4);
4880 if ((high / 4) > (PAGE_SHIFT * 8))
4881 batch = PAGE_SHIFT * 8;
4882
4883 pageset_update(&p->pcp, high, batch);
4884 }
4885
4886 static void pageset_set_high_and_batch(struct zone *zone,
4887 struct per_cpu_pageset *pcp)
4888 {
4889 if (percpu_pagelist_fraction)
4890 pageset_set_high(pcp,
4891 (zone->managed_pages /
4892 percpu_pagelist_fraction));
4893 else
4894 pageset_set_batch(pcp, zone_batchsize(zone));
4895 }
4896
4897 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4898 {
4899 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4900
4901 pageset_init(pcp);
4902 pageset_set_high_and_batch(zone, pcp);
4903 }
4904
4905 static void __meminit setup_zone_pageset(struct zone *zone)
4906 {
4907 int cpu;
4908 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4909 for_each_possible_cpu(cpu)
4910 zone_pageset_init(zone, cpu);
4911 }
4912
4913 /*
4914 * Allocate per cpu pagesets and initialize them.
4915 * Before this call only boot pagesets were available.
4916 */
4917 void __init setup_per_cpu_pageset(void)
4918 {
4919 struct zone *zone;
4920
4921 for_each_populated_zone(zone)
4922 setup_zone_pageset(zone);
4923 }
4924
4925 static noinline __init_refok
4926 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4927 {
4928 int i;
4929 size_t alloc_size;
4930
4931 /*
4932 * The per-page waitqueue mechanism uses hashed waitqueues
4933 * per zone.
4934 */
4935 zone->wait_table_hash_nr_entries =
4936 wait_table_hash_nr_entries(zone_size_pages);
4937 zone->wait_table_bits =
4938 wait_table_bits(zone->wait_table_hash_nr_entries);
4939 alloc_size = zone->wait_table_hash_nr_entries
4940 * sizeof(wait_queue_head_t);
4941
4942 if (!slab_is_available()) {
4943 zone->wait_table = (wait_queue_head_t *)
4944 memblock_virt_alloc_node_nopanic(
4945 alloc_size, zone->zone_pgdat->node_id);
4946 } else {
4947 /*
4948 * This case means that a zone whose size was 0 gets new memory
4949 * via memory hot-add.
4950 * But it may be the case that a new node was hot-added. In
4951 * this case vmalloc() will not be able to use this new node's
4952 * memory - this wait_table must be initialized to use this new
4953 * node itself as well.
4954 * To use this new node's memory, further consideration will be
4955 * necessary.
4956 */
4957 zone->wait_table = vmalloc(alloc_size);
4958 }
4959 if (!zone->wait_table)
4960 return -ENOMEM;
4961
4962 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4963 init_waitqueue_head(zone->wait_table + i);
4964
4965 return 0;
4966 }
4967
4968 static __meminit void zone_pcp_init(struct zone *zone)
4969 {
4970 /*
4971 * per cpu subsystem is not up at this point. The following code
4972 * relies on the ability of the linker to provide the
4973 * offset of a (static) per cpu variable into the per cpu area.
4974 */
4975 zone->pageset = &boot_pageset;
4976
4977 if (populated_zone(zone))
4978 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4979 zone->name, zone->present_pages,
4980 zone_batchsize(zone));
4981 }
4982
4983 int __meminit init_currently_empty_zone(struct zone *zone,
4984 unsigned long zone_start_pfn,
4985 unsigned long size)
4986 {
4987 struct pglist_data *pgdat = zone->zone_pgdat;
4988 int ret;
4989 ret = zone_wait_table_init(zone, size);
4990 if (ret)
4991 return ret;
4992 pgdat->nr_zones = zone_idx(zone) + 1;
4993
4994 zone->zone_start_pfn = zone_start_pfn;
4995
4996 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4997 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4998 pgdat->node_id,
4999 (unsigned long)zone_idx(zone),
5000 zone_start_pfn, (zone_start_pfn + size));
5001
5002 zone_init_free_lists(zone);
5003
5004 return 0;
5005 }
5006
5007 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5008 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5009
5010 /*
5011 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5012 */
5013 int __meminit __early_pfn_to_nid(unsigned long pfn,
5014 struct mminit_pfnnid_cache *state)
5015 {
5016 unsigned long start_pfn, end_pfn;
5017 int nid;
5018
5019 if (state->last_start <= pfn && pfn < state->last_end)
5020 return state->last_nid;
5021
5022 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5023 if (nid != -1) {
5024 state->last_start = start_pfn;
5025 state->last_end = end_pfn;
5026 state->last_nid = nid;
5027 }
5028
5029 return nid;
5030 }
5031 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5032
5033 /**
5034 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5035 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5036 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5037 *
5038 * If an architecture guarantees that all ranges registered contain no holes
5039 * and may be freed, this this function may be used instead of calling
5040 * memblock_free_early_nid() manually.
5041 */
5042 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5043 {
5044 unsigned long start_pfn, end_pfn;
5045 int i, this_nid;
5046
5047 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5048 start_pfn = min(start_pfn, max_low_pfn);
5049 end_pfn = min(end_pfn, max_low_pfn);
5050
5051 if (start_pfn < end_pfn)
5052 memblock_free_early_nid(PFN_PHYS(start_pfn),
5053 (end_pfn - start_pfn) << PAGE_SHIFT,
5054 this_nid);
5055 }
5056 }
5057
5058 /**
5059 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5060 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5061 *
5062 * If an architecture guarantees that all ranges registered contain no holes and may
5063 * be freed, this function may be used instead of calling memory_present() manually.
5064 */
5065 void __init sparse_memory_present_with_active_regions(int nid)
5066 {
5067 unsigned long start_pfn, end_pfn;
5068 int i, this_nid;
5069
5070 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5071 memory_present(this_nid, start_pfn, end_pfn);
5072 }
5073
5074 /**
5075 * get_pfn_range_for_nid - Return the start and end page frames for a node
5076 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5077 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5078 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5079 *
5080 * It returns the start and end page frame of a node based on information
5081 * provided by memblock_set_node(). If called for a node
5082 * with no available memory, a warning is printed and the start and end
5083 * PFNs will be 0.
5084 */
5085 void __meminit get_pfn_range_for_nid(unsigned int nid,
5086 unsigned long *start_pfn, unsigned long *end_pfn)
5087 {
5088 unsigned long this_start_pfn, this_end_pfn;
5089 int i;
5090
5091 *start_pfn = -1UL;
5092 *end_pfn = 0;
5093
5094 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5095 *start_pfn = min(*start_pfn, this_start_pfn);
5096 *end_pfn = max(*end_pfn, this_end_pfn);
5097 }
5098
5099 if (*start_pfn == -1UL)
5100 *start_pfn = 0;
5101 }
5102
5103 /*
5104 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5105 * assumption is made that zones within a node are ordered in monotonic
5106 * increasing memory addresses so that the "highest" populated zone is used
5107 */
5108 static void __init find_usable_zone_for_movable(void)
5109 {
5110 int zone_index;
5111 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5112 if (zone_index == ZONE_MOVABLE)
5113 continue;
5114
5115 if (arch_zone_highest_possible_pfn[zone_index] >
5116 arch_zone_lowest_possible_pfn[zone_index])
5117 break;
5118 }
5119
5120 VM_BUG_ON(zone_index == -1);
5121 movable_zone = zone_index;
5122 }
5123
5124 /*
5125 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5126 * because it is sized independent of architecture. Unlike the other zones,
5127 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5128 * in each node depending on the size of each node and how evenly kernelcore
5129 * is distributed. This helper function adjusts the zone ranges
5130 * provided by the architecture for a given node by using the end of the
5131 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5132 * zones within a node are in order of monotonic increases memory addresses
5133 */
5134 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5135 unsigned long zone_type,
5136 unsigned long node_start_pfn,
5137 unsigned long node_end_pfn,
5138 unsigned long *zone_start_pfn,
5139 unsigned long *zone_end_pfn)
5140 {
5141 /* Only adjust if ZONE_MOVABLE is on this node */
5142 if (zone_movable_pfn[nid]) {
5143 /* Size ZONE_MOVABLE */
5144 if (zone_type == ZONE_MOVABLE) {
5145 *zone_start_pfn = zone_movable_pfn[nid];
5146 *zone_end_pfn = min(node_end_pfn,
5147 arch_zone_highest_possible_pfn[movable_zone]);
5148
5149 /* Check if this whole range is within ZONE_MOVABLE */
5150 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5151 *zone_start_pfn = *zone_end_pfn;
5152 }
5153 }
5154
5155 /*
5156 * Return the number of pages a zone spans in a node, including holes
5157 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5158 */
5159 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5160 unsigned long zone_type,
5161 unsigned long node_start_pfn,
5162 unsigned long node_end_pfn,
5163 unsigned long *zone_start_pfn,
5164 unsigned long *zone_end_pfn,
5165 unsigned long *ignored)
5166 {
5167 /* When hotadd a new node from cpu_up(), the node should be empty */
5168 if (!node_start_pfn && !node_end_pfn)
5169 return 0;
5170
5171 /* Get the start and end of the zone */
5172 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5173 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5174 adjust_zone_range_for_zone_movable(nid, zone_type,
5175 node_start_pfn, node_end_pfn,
5176 zone_start_pfn, zone_end_pfn);
5177
5178 /* Check that this node has pages within the zone's required range */
5179 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5180 return 0;
5181
5182 /* Move the zone boundaries inside the node if necessary */
5183 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5184 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5185
5186 /* Return the spanned pages */
5187 return *zone_end_pfn - *zone_start_pfn;
5188 }
5189
5190 /*
5191 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5192 * then all holes in the requested range will be accounted for.
5193 */
5194 unsigned long __meminit __absent_pages_in_range(int nid,
5195 unsigned long range_start_pfn,
5196 unsigned long range_end_pfn)
5197 {
5198 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5199 unsigned long start_pfn, end_pfn;
5200 int i;
5201
5202 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5203 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5204 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5205 nr_absent -= end_pfn - start_pfn;
5206 }
5207 return nr_absent;
5208 }
5209
5210 /**
5211 * absent_pages_in_range - Return number of page frames in holes within a range
5212 * @start_pfn: The start PFN to start searching for holes
5213 * @end_pfn: The end PFN to stop searching for holes
5214 *
5215 * It returns the number of pages frames in memory holes within a range.
5216 */
5217 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5218 unsigned long end_pfn)
5219 {
5220 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5221 }
5222
5223 /* Return the number of page frames in holes in a zone on a node */
5224 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5225 unsigned long zone_type,
5226 unsigned long node_start_pfn,
5227 unsigned long node_end_pfn,
5228 unsigned long *ignored)
5229 {
5230 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5231 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5232 unsigned long zone_start_pfn, zone_end_pfn;
5233 unsigned long nr_absent;
5234
5235 /* When hotadd a new node from cpu_up(), the node should be empty */
5236 if (!node_start_pfn && !node_end_pfn)
5237 return 0;
5238
5239 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5240 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5241
5242 adjust_zone_range_for_zone_movable(nid, zone_type,
5243 node_start_pfn, node_end_pfn,
5244 &zone_start_pfn, &zone_end_pfn);
5245 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5246
5247 /*
5248 * ZONE_MOVABLE handling.
5249 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5250 * and vice versa.
5251 */
5252 if (zone_movable_pfn[nid]) {
5253 if (mirrored_kernelcore) {
5254 unsigned long start_pfn, end_pfn;
5255 struct memblock_region *r;
5256
5257 for_each_memblock(memory, r) {
5258 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5259 zone_start_pfn, zone_end_pfn);
5260 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5261 zone_start_pfn, zone_end_pfn);
5262
5263 if (zone_type == ZONE_MOVABLE &&
5264 memblock_is_mirror(r))
5265 nr_absent += end_pfn - start_pfn;
5266
5267 if (zone_type == ZONE_NORMAL &&
5268 !memblock_is_mirror(r))
5269 nr_absent += end_pfn - start_pfn;
5270 }
5271 } else {
5272 if (zone_type == ZONE_NORMAL)
5273 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5274 }
5275 }
5276
5277 return nr_absent;
5278 }
5279
5280 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5281 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5282 unsigned long zone_type,
5283 unsigned long node_start_pfn,
5284 unsigned long node_end_pfn,
5285 unsigned long *zone_start_pfn,
5286 unsigned long *zone_end_pfn,
5287 unsigned long *zones_size)
5288 {
5289 unsigned int zone;
5290
5291 *zone_start_pfn = node_start_pfn;
5292 for (zone = 0; zone < zone_type; zone++)
5293 *zone_start_pfn += zones_size[zone];
5294
5295 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5296
5297 return zones_size[zone_type];
5298 }
5299
5300 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5301 unsigned long zone_type,
5302 unsigned long node_start_pfn,
5303 unsigned long node_end_pfn,
5304 unsigned long *zholes_size)
5305 {
5306 if (!zholes_size)
5307 return 0;
5308
5309 return zholes_size[zone_type];
5310 }
5311
5312 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5313
5314 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5315 unsigned long node_start_pfn,
5316 unsigned long node_end_pfn,
5317 unsigned long *zones_size,
5318 unsigned long *zholes_size)
5319 {
5320 unsigned long realtotalpages = 0, totalpages = 0;
5321 enum zone_type i;
5322
5323 for (i = 0; i < MAX_NR_ZONES; i++) {
5324 struct zone *zone = pgdat->node_zones + i;
5325 unsigned long zone_start_pfn, zone_end_pfn;
5326 unsigned long size, real_size;
5327
5328 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5329 node_start_pfn,
5330 node_end_pfn,
5331 &zone_start_pfn,
5332 &zone_end_pfn,
5333 zones_size);
5334 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5335 node_start_pfn, node_end_pfn,
5336 zholes_size);
5337 if (size)
5338 zone->zone_start_pfn = zone_start_pfn;
5339 else
5340 zone->zone_start_pfn = 0;
5341 zone->spanned_pages = size;
5342 zone->present_pages = real_size;
5343
5344 totalpages += size;
5345 realtotalpages += real_size;
5346 }
5347
5348 pgdat->node_spanned_pages = totalpages;
5349 pgdat->node_present_pages = realtotalpages;
5350 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5351 realtotalpages);
5352 }
5353
5354 #ifndef CONFIG_SPARSEMEM
5355 /*
5356 * Calculate the size of the zone->blockflags rounded to an unsigned long
5357 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5358 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5359 * round what is now in bits to nearest long in bits, then return it in
5360 * bytes.
5361 */
5362 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5363 {
5364 unsigned long usemapsize;
5365
5366 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5367 usemapsize = roundup(zonesize, pageblock_nr_pages);
5368 usemapsize = usemapsize >> pageblock_order;
5369 usemapsize *= NR_PAGEBLOCK_BITS;
5370 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5371
5372 return usemapsize / 8;
5373 }
5374
5375 static void __init setup_usemap(struct pglist_data *pgdat,
5376 struct zone *zone,
5377 unsigned long zone_start_pfn,
5378 unsigned long zonesize)
5379 {
5380 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5381 zone->pageblock_flags = NULL;
5382 if (usemapsize)
5383 zone->pageblock_flags =
5384 memblock_virt_alloc_node_nopanic(usemapsize,
5385 pgdat->node_id);
5386 }
5387 #else
5388 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5389 unsigned long zone_start_pfn, unsigned long zonesize) {}
5390 #endif /* CONFIG_SPARSEMEM */
5391
5392 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5393
5394 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5395 void __paginginit set_pageblock_order(void)
5396 {
5397 unsigned int order;
5398
5399 /* Check that pageblock_nr_pages has not already been setup */
5400 if (pageblock_order)
5401 return;
5402
5403 if (HPAGE_SHIFT > PAGE_SHIFT)
5404 order = HUGETLB_PAGE_ORDER;
5405 else
5406 order = MAX_ORDER - 1;
5407
5408 /*
5409 * Assume the largest contiguous order of interest is a huge page.
5410 * This value may be variable depending on boot parameters on IA64 and
5411 * powerpc.
5412 */
5413 pageblock_order = order;
5414 }
5415 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5416
5417 /*
5418 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5419 * is unused as pageblock_order is set at compile-time. See
5420 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5421 * the kernel config
5422 */
5423 void __paginginit set_pageblock_order(void)
5424 {
5425 }
5426
5427 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5428
5429 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5430 unsigned long present_pages)
5431 {
5432 unsigned long pages = spanned_pages;
5433
5434 /*
5435 * Provide a more accurate estimation if there are holes within
5436 * the zone and SPARSEMEM is in use. If there are holes within the
5437 * zone, each populated memory region may cost us one or two extra
5438 * memmap pages due to alignment because memmap pages for each
5439 * populated regions may not naturally algined on page boundary.
5440 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5441 */
5442 if (spanned_pages > present_pages + (present_pages >> 4) &&
5443 IS_ENABLED(CONFIG_SPARSEMEM))
5444 pages = present_pages;
5445
5446 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5447 }
5448
5449 /*
5450 * Set up the zone data structures:
5451 * - mark all pages reserved
5452 * - mark all memory queues empty
5453 * - clear the memory bitmaps
5454 *
5455 * NOTE: pgdat should get zeroed by caller.
5456 */
5457 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5458 {
5459 enum zone_type j;
5460 int nid = pgdat->node_id;
5461 int ret;
5462
5463 pgdat_resize_init(pgdat);
5464 #ifdef CONFIG_NUMA_BALANCING
5465 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5466 pgdat->numabalancing_migrate_nr_pages = 0;
5467 pgdat->numabalancing_migrate_next_window = jiffies;
5468 #endif
5469 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5470 spin_lock_init(&pgdat->split_queue_lock);
5471 INIT_LIST_HEAD(&pgdat->split_queue);
5472 pgdat->split_queue_len = 0;
5473 #endif
5474 init_waitqueue_head(&pgdat->kswapd_wait);
5475 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5476 #ifdef CONFIG_COMPACTION
5477 init_waitqueue_head(&pgdat->kcompactd_wait);
5478 #endif
5479 pgdat_page_ext_init(pgdat);
5480
5481 for (j = 0; j < MAX_NR_ZONES; j++) {
5482 struct zone *zone = pgdat->node_zones + j;
5483 unsigned long size, realsize, freesize, memmap_pages;
5484 unsigned long zone_start_pfn = zone->zone_start_pfn;
5485
5486 size = zone->spanned_pages;
5487 realsize = freesize = zone->present_pages;
5488
5489 /*
5490 * Adjust freesize so that it accounts for how much memory
5491 * is used by this zone for memmap. This affects the watermark
5492 * and per-cpu initialisations
5493 */
5494 memmap_pages = calc_memmap_size(size, realsize);
5495 if (!is_highmem_idx(j)) {
5496 if (freesize >= memmap_pages) {
5497 freesize -= memmap_pages;
5498 if (memmap_pages)
5499 printk(KERN_DEBUG
5500 " %s zone: %lu pages used for memmap\n",
5501 zone_names[j], memmap_pages);
5502 } else
5503 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5504 zone_names[j], memmap_pages, freesize);
5505 }
5506
5507 /* Account for reserved pages */
5508 if (j == 0 && freesize > dma_reserve) {
5509 freesize -= dma_reserve;
5510 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5511 zone_names[0], dma_reserve);
5512 }
5513
5514 if (!is_highmem_idx(j))
5515 nr_kernel_pages += freesize;
5516 /* Charge for highmem memmap if there are enough kernel pages */
5517 else if (nr_kernel_pages > memmap_pages * 2)
5518 nr_kernel_pages -= memmap_pages;
5519 nr_all_pages += freesize;
5520
5521 /*
5522 * Set an approximate value for lowmem here, it will be adjusted
5523 * when the bootmem allocator frees pages into the buddy system.
5524 * And all highmem pages will be managed by the buddy system.
5525 */
5526 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5527 #ifdef CONFIG_NUMA
5528 zone->node = nid;
5529 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5530 / 100;
5531 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5532 #endif
5533 zone->name = zone_names[j];
5534 spin_lock_init(&zone->lock);
5535 spin_lock_init(&zone->lru_lock);
5536 zone_seqlock_init(zone);
5537 zone->zone_pgdat = pgdat;
5538 zone_pcp_init(zone);
5539
5540 /* For bootup, initialized properly in watermark setup */
5541 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5542
5543 lruvec_init(&zone->lruvec);
5544 if (!size)
5545 continue;
5546
5547 set_pageblock_order();
5548 setup_usemap(pgdat, zone, zone_start_pfn, size);
5549 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5550 BUG_ON(ret);
5551 memmap_init(size, nid, j, zone_start_pfn);
5552 }
5553 }
5554
5555 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5556 {
5557 unsigned long __maybe_unused start = 0;
5558 unsigned long __maybe_unused offset = 0;
5559
5560 /* Skip empty nodes */
5561 if (!pgdat->node_spanned_pages)
5562 return;
5563
5564 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5565 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5566 offset = pgdat->node_start_pfn - start;
5567 /* ia64 gets its own node_mem_map, before this, without bootmem */
5568 if (!pgdat->node_mem_map) {
5569 unsigned long size, end;
5570 struct page *map;
5571
5572 /*
5573 * The zone's endpoints aren't required to be MAX_ORDER
5574 * aligned but the node_mem_map endpoints must be in order
5575 * for the buddy allocator to function correctly.
5576 */
5577 end = pgdat_end_pfn(pgdat);
5578 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5579 size = (end - start) * sizeof(struct page);
5580 map = alloc_remap(pgdat->node_id, size);
5581 if (!map)
5582 map = memblock_virt_alloc_node_nopanic(size,
5583 pgdat->node_id);
5584 pgdat->node_mem_map = map + offset;
5585 }
5586 #ifndef CONFIG_NEED_MULTIPLE_NODES
5587 /*
5588 * With no DISCONTIG, the global mem_map is just set as node 0's
5589 */
5590 if (pgdat == NODE_DATA(0)) {
5591 mem_map = NODE_DATA(0)->node_mem_map;
5592 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5593 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5594 mem_map -= offset;
5595 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5596 }
5597 #endif
5598 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5599 }
5600
5601 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5602 unsigned long node_start_pfn, unsigned long *zholes_size)
5603 {
5604 pg_data_t *pgdat = NODE_DATA(nid);
5605 unsigned long start_pfn = 0;
5606 unsigned long end_pfn = 0;
5607
5608 /* pg_data_t should be reset to zero when it's allocated */
5609 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5610
5611 reset_deferred_meminit(pgdat);
5612 pgdat->node_id = nid;
5613 pgdat->node_start_pfn = node_start_pfn;
5614 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5615 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5616 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5617 (u64)start_pfn << PAGE_SHIFT,
5618 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5619 #else
5620 start_pfn = node_start_pfn;
5621 #endif
5622 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5623 zones_size, zholes_size);
5624
5625 alloc_node_mem_map(pgdat);
5626 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5627 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5628 nid, (unsigned long)pgdat,
5629 (unsigned long)pgdat->node_mem_map);
5630 #endif
5631
5632 free_area_init_core(pgdat);
5633 }
5634
5635 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5636
5637 #if MAX_NUMNODES > 1
5638 /*
5639 * Figure out the number of possible node ids.
5640 */
5641 void __init setup_nr_node_ids(void)
5642 {
5643 unsigned int highest;
5644
5645 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5646 nr_node_ids = highest + 1;
5647 }
5648 #endif
5649
5650 /**
5651 * node_map_pfn_alignment - determine the maximum internode alignment
5652 *
5653 * This function should be called after node map is populated and sorted.
5654 * It calculates the maximum power of two alignment which can distinguish
5655 * all the nodes.
5656 *
5657 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5658 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5659 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5660 * shifted, 1GiB is enough and this function will indicate so.
5661 *
5662 * This is used to test whether pfn -> nid mapping of the chosen memory
5663 * model has fine enough granularity to avoid incorrect mapping for the
5664 * populated node map.
5665 *
5666 * Returns the determined alignment in pfn's. 0 if there is no alignment
5667 * requirement (single node).
5668 */
5669 unsigned long __init node_map_pfn_alignment(void)
5670 {
5671 unsigned long accl_mask = 0, last_end = 0;
5672 unsigned long start, end, mask;
5673 int last_nid = -1;
5674 int i, nid;
5675
5676 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5677 if (!start || last_nid < 0 || last_nid == nid) {
5678 last_nid = nid;
5679 last_end = end;
5680 continue;
5681 }
5682
5683 /*
5684 * Start with a mask granular enough to pin-point to the
5685 * start pfn and tick off bits one-by-one until it becomes
5686 * too coarse to separate the current node from the last.
5687 */
5688 mask = ~((1 << __ffs(start)) - 1);
5689 while (mask && last_end <= (start & (mask << 1)))
5690 mask <<= 1;
5691
5692 /* accumulate all internode masks */
5693 accl_mask |= mask;
5694 }
5695
5696 /* convert mask to number of pages */
5697 return ~accl_mask + 1;
5698 }
5699
5700 /* Find the lowest pfn for a node */
5701 static unsigned long __init find_min_pfn_for_node(int nid)
5702 {
5703 unsigned long min_pfn = ULONG_MAX;
5704 unsigned long start_pfn;
5705 int i;
5706
5707 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5708 min_pfn = min(min_pfn, start_pfn);
5709
5710 if (min_pfn == ULONG_MAX) {
5711 pr_warn("Could not find start_pfn for node %d\n", nid);
5712 return 0;
5713 }
5714
5715 return min_pfn;
5716 }
5717
5718 /**
5719 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5720 *
5721 * It returns the minimum PFN based on information provided via
5722 * memblock_set_node().
5723 */
5724 unsigned long __init find_min_pfn_with_active_regions(void)
5725 {
5726 return find_min_pfn_for_node(MAX_NUMNODES);
5727 }
5728
5729 /*
5730 * early_calculate_totalpages()
5731 * Sum pages in active regions for movable zone.
5732 * Populate N_MEMORY for calculating usable_nodes.
5733 */
5734 static unsigned long __init early_calculate_totalpages(void)
5735 {
5736 unsigned long totalpages = 0;
5737 unsigned long start_pfn, end_pfn;
5738 int i, nid;
5739
5740 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5741 unsigned long pages = end_pfn - start_pfn;
5742
5743 totalpages += pages;
5744 if (pages)
5745 node_set_state(nid, N_MEMORY);
5746 }
5747 return totalpages;
5748 }
5749
5750 /*
5751 * Find the PFN the Movable zone begins in each node. Kernel memory
5752 * is spread evenly between nodes as long as the nodes have enough
5753 * memory. When they don't, some nodes will have more kernelcore than
5754 * others
5755 */
5756 static void __init find_zone_movable_pfns_for_nodes(void)
5757 {
5758 int i, nid;
5759 unsigned long usable_startpfn;
5760 unsigned long kernelcore_node, kernelcore_remaining;
5761 /* save the state before borrow the nodemask */
5762 nodemask_t saved_node_state = node_states[N_MEMORY];
5763 unsigned long totalpages = early_calculate_totalpages();
5764 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5765 struct memblock_region *r;
5766
5767 /* Need to find movable_zone earlier when movable_node is specified. */
5768 find_usable_zone_for_movable();
5769
5770 /*
5771 * If movable_node is specified, ignore kernelcore and movablecore
5772 * options.
5773 */
5774 if (movable_node_is_enabled()) {
5775 for_each_memblock(memory, r) {
5776 if (!memblock_is_hotpluggable(r))
5777 continue;
5778
5779 nid = r->nid;
5780
5781 usable_startpfn = PFN_DOWN(r->base);
5782 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5783 min(usable_startpfn, zone_movable_pfn[nid]) :
5784 usable_startpfn;
5785 }
5786
5787 goto out2;
5788 }
5789
5790 /*
5791 * If kernelcore=mirror is specified, ignore movablecore option
5792 */
5793 if (mirrored_kernelcore) {
5794 bool mem_below_4gb_not_mirrored = false;
5795
5796 for_each_memblock(memory, r) {
5797 if (memblock_is_mirror(r))
5798 continue;
5799
5800 nid = r->nid;
5801
5802 usable_startpfn = memblock_region_memory_base_pfn(r);
5803
5804 if (usable_startpfn < 0x100000) {
5805 mem_below_4gb_not_mirrored = true;
5806 continue;
5807 }
5808
5809 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5810 min(usable_startpfn, zone_movable_pfn[nid]) :
5811 usable_startpfn;
5812 }
5813
5814 if (mem_below_4gb_not_mirrored)
5815 pr_warn("This configuration results in unmirrored kernel memory.");
5816
5817 goto out2;
5818 }
5819
5820 /*
5821 * If movablecore=nn[KMG] was specified, calculate what size of
5822 * kernelcore that corresponds so that memory usable for
5823 * any allocation type is evenly spread. If both kernelcore
5824 * and movablecore are specified, then the value of kernelcore
5825 * will be used for required_kernelcore if it's greater than
5826 * what movablecore would have allowed.
5827 */
5828 if (required_movablecore) {
5829 unsigned long corepages;
5830
5831 /*
5832 * Round-up so that ZONE_MOVABLE is at least as large as what
5833 * was requested by the user
5834 */
5835 required_movablecore =
5836 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5837 required_movablecore = min(totalpages, required_movablecore);
5838 corepages = totalpages - required_movablecore;
5839
5840 required_kernelcore = max(required_kernelcore, corepages);
5841 }
5842
5843 /*
5844 * If kernelcore was not specified or kernelcore size is larger
5845 * than totalpages, there is no ZONE_MOVABLE.
5846 */
5847 if (!required_kernelcore || required_kernelcore >= totalpages)
5848 goto out;
5849
5850 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5851 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5852
5853 restart:
5854 /* Spread kernelcore memory as evenly as possible throughout nodes */
5855 kernelcore_node = required_kernelcore / usable_nodes;
5856 for_each_node_state(nid, N_MEMORY) {
5857 unsigned long start_pfn, end_pfn;
5858
5859 /*
5860 * Recalculate kernelcore_node if the division per node
5861 * now exceeds what is necessary to satisfy the requested
5862 * amount of memory for the kernel
5863 */
5864 if (required_kernelcore < kernelcore_node)
5865 kernelcore_node = required_kernelcore / usable_nodes;
5866
5867 /*
5868 * As the map is walked, we track how much memory is usable
5869 * by the kernel using kernelcore_remaining. When it is
5870 * 0, the rest of the node is usable by ZONE_MOVABLE
5871 */
5872 kernelcore_remaining = kernelcore_node;
5873
5874 /* Go through each range of PFNs within this node */
5875 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5876 unsigned long size_pages;
5877
5878 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5879 if (start_pfn >= end_pfn)
5880 continue;
5881
5882 /* Account for what is only usable for kernelcore */
5883 if (start_pfn < usable_startpfn) {
5884 unsigned long kernel_pages;
5885 kernel_pages = min(end_pfn, usable_startpfn)
5886 - start_pfn;
5887
5888 kernelcore_remaining -= min(kernel_pages,
5889 kernelcore_remaining);
5890 required_kernelcore -= min(kernel_pages,
5891 required_kernelcore);
5892
5893 /* Continue if range is now fully accounted */
5894 if (end_pfn <= usable_startpfn) {
5895
5896 /*
5897 * Push zone_movable_pfn to the end so
5898 * that if we have to rebalance
5899 * kernelcore across nodes, we will
5900 * not double account here
5901 */
5902 zone_movable_pfn[nid] = end_pfn;
5903 continue;
5904 }
5905 start_pfn = usable_startpfn;
5906 }
5907
5908 /*
5909 * The usable PFN range for ZONE_MOVABLE is from
5910 * start_pfn->end_pfn. Calculate size_pages as the
5911 * number of pages used as kernelcore
5912 */
5913 size_pages = end_pfn - start_pfn;
5914 if (size_pages > kernelcore_remaining)
5915 size_pages = kernelcore_remaining;
5916 zone_movable_pfn[nid] = start_pfn + size_pages;
5917
5918 /*
5919 * Some kernelcore has been met, update counts and
5920 * break if the kernelcore for this node has been
5921 * satisfied
5922 */
5923 required_kernelcore -= min(required_kernelcore,
5924 size_pages);
5925 kernelcore_remaining -= size_pages;
5926 if (!kernelcore_remaining)
5927 break;
5928 }
5929 }
5930
5931 /*
5932 * If there is still required_kernelcore, we do another pass with one
5933 * less node in the count. This will push zone_movable_pfn[nid] further
5934 * along on the nodes that still have memory until kernelcore is
5935 * satisfied
5936 */
5937 usable_nodes--;
5938 if (usable_nodes && required_kernelcore > usable_nodes)
5939 goto restart;
5940
5941 out2:
5942 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5943 for (nid = 0; nid < MAX_NUMNODES; nid++)
5944 zone_movable_pfn[nid] =
5945 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5946
5947 out:
5948 /* restore the node_state */
5949 node_states[N_MEMORY] = saved_node_state;
5950 }
5951
5952 /* Any regular or high memory on that node ? */
5953 static void check_for_memory(pg_data_t *pgdat, int nid)
5954 {
5955 enum zone_type zone_type;
5956
5957 if (N_MEMORY == N_NORMAL_MEMORY)
5958 return;
5959
5960 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5961 struct zone *zone = &pgdat->node_zones[zone_type];
5962 if (populated_zone(zone)) {
5963 node_set_state(nid, N_HIGH_MEMORY);
5964 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5965 zone_type <= ZONE_NORMAL)
5966 node_set_state(nid, N_NORMAL_MEMORY);
5967 break;
5968 }
5969 }
5970 }
5971
5972 /**
5973 * free_area_init_nodes - Initialise all pg_data_t and zone data
5974 * @max_zone_pfn: an array of max PFNs for each zone
5975 *
5976 * This will call free_area_init_node() for each active node in the system.
5977 * Using the page ranges provided by memblock_set_node(), the size of each
5978 * zone in each node and their holes is calculated. If the maximum PFN
5979 * between two adjacent zones match, it is assumed that the zone is empty.
5980 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5981 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5982 * starts where the previous one ended. For example, ZONE_DMA32 starts
5983 * at arch_max_dma_pfn.
5984 */
5985 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5986 {
5987 unsigned long start_pfn, end_pfn;
5988 int i, nid;
5989
5990 /* Record where the zone boundaries are */
5991 memset(arch_zone_lowest_possible_pfn, 0,
5992 sizeof(arch_zone_lowest_possible_pfn));
5993 memset(arch_zone_highest_possible_pfn, 0,
5994 sizeof(arch_zone_highest_possible_pfn));
5995 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5996 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5997 for (i = 1; i < MAX_NR_ZONES; i++) {
5998 if (i == ZONE_MOVABLE)
5999 continue;
6000 arch_zone_lowest_possible_pfn[i] =
6001 arch_zone_highest_possible_pfn[i-1];
6002 arch_zone_highest_possible_pfn[i] =
6003 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
6004 }
6005 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6006 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6007
6008 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6009 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6010 find_zone_movable_pfns_for_nodes();
6011
6012 /* Print out the zone ranges */
6013 pr_info("Zone ranges:\n");
6014 for (i = 0; i < MAX_NR_ZONES; i++) {
6015 if (i == ZONE_MOVABLE)
6016 continue;
6017 pr_info(" %-8s ", zone_names[i]);
6018 if (arch_zone_lowest_possible_pfn[i] ==
6019 arch_zone_highest_possible_pfn[i])
6020 pr_cont("empty\n");
6021 else
6022 pr_cont("[mem %#018Lx-%#018Lx]\n",
6023 (u64)arch_zone_lowest_possible_pfn[i]
6024 << PAGE_SHIFT,
6025 ((u64)arch_zone_highest_possible_pfn[i]
6026 << PAGE_SHIFT) - 1);
6027 }
6028
6029 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6030 pr_info("Movable zone start for each node\n");
6031 for (i = 0; i < MAX_NUMNODES; i++) {
6032 if (zone_movable_pfn[i])
6033 pr_info(" Node %d: %#018Lx\n", i,
6034 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6035 }
6036
6037 /* Print out the early node map */
6038 pr_info("Early memory node ranges\n");
6039 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6040 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6041 (u64)start_pfn << PAGE_SHIFT,
6042 ((u64)end_pfn << PAGE_SHIFT) - 1);
6043
6044 /* Initialise every node */
6045 mminit_verify_pageflags_layout();
6046 setup_nr_node_ids();
6047 for_each_online_node(nid) {
6048 pg_data_t *pgdat = NODE_DATA(nid);
6049 free_area_init_node(nid, NULL,
6050 find_min_pfn_for_node(nid), NULL);
6051
6052 /* Any memory on that node */
6053 if (pgdat->node_present_pages)
6054 node_set_state(nid, N_MEMORY);
6055 check_for_memory(pgdat, nid);
6056 }
6057 }
6058
6059 static int __init cmdline_parse_core(char *p, unsigned long *core)
6060 {
6061 unsigned long long coremem;
6062 if (!p)
6063 return -EINVAL;
6064
6065 coremem = memparse(p, &p);
6066 *core = coremem >> PAGE_SHIFT;
6067
6068 /* Paranoid check that UL is enough for the coremem value */
6069 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6070
6071 return 0;
6072 }
6073
6074 /*
6075 * kernelcore=size sets the amount of memory for use for allocations that
6076 * cannot be reclaimed or migrated.
6077 */
6078 static int __init cmdline_parse_kernelcore(char *p)
6079 {
6080 /* parse kernelcore=mirror */
6081 if (parse_option_str(p, "mirror")) {
6082 mirrored_kernelcore = true;
6083 return 0;
6084 }
6085
6086 return cmdline_parse_core(p, &required_kernelcore);
6087 }
6088
6089 /*
6090 * movablecore=size sets the amount of memory for use for allocations that
6091 * can be reclaimed or migrated.
6092 */
6093 static int __init cmdline_parse_movablecore(char *p)
6094 {
6095 return cmdline_parse_core(p, &required_movablecore);
6096 }
6097
6098 early_param("kernelcore", cmdline_parse_kernelcore);
6099 early_param("movablecore", cmdline_parse_movablecore);
6100
6101 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6102
6103 void adjust_managed_page_count(struct page *page, long count)
6104 {
6105 spin_lock(&managed_page_count_lock);
6106 page_zone(page)->managed_pages += count;
6107 totalram_pages += count;
6108 #ifdef CONFIG_HIGHMEM
6109 if (PageHighMem(page))
6110 totalhigh_pages += count;
6111 #endif
6112 spin_unlock(&managed_page_count_lock);
6113 }
6114 EXPORT_SYMBOL(adjust_managed_page_count);
6115
6116 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6117 {
6118 void *pos;
6119 unsigned long pages = 0;
6120
6121 start = (void *)PAGE_ALIGN((unsigned long)start);
6122 end = (void *)((unsigned long)end & PAGE_MASK);
6123 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6124 if ((unsigned int)poison <= 0xFF)
6125 memset(pos, poison, PAGE_SIZE);
6126 free_reserved_page(virt_to_page(pos));
6127 }
6128
6129 if (pages && s)
6130 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6131 s, pages << (PAGE_SHIFT - 10), start, end);
6132
6133 return pages;
6134 }
6135 EXPORT_SYMBOL(free_reserved_area);
6136
6137 #ifdef CONFIG_HIGHMEM
6138 void free_highmem_page(struct page *page)
6139 {
6140 __free_reserved_page(page);
6141 totalram_pages++;
6142 page_zone(page)->managed_pages++;
6143 totalhigh_pages++;
6144 }
6145 #endif
6146
6147
6148 void __init mem_init_print_info(const char *str)
6149 {
6150 unsigned long physpages, codesize, datasize, rosize, bss_size;
6151 unsigned long init_code_size, init_data_size;
6152
6153 physpages = get_num_physpages();
6154 codesize = _etext - _stext;
6155 datasize = _edata - _sdata;
6156 rosize = __end_rodata - __start_rodata;
6157 bss_size = __bss_stop - __bss_start;
6158 init_data_size = __init_end - __init_begin;
6159 init_code_size = _einittext - _sinittext;
6160
6161 /*
6162 * Detect special cases and adjust section sizes accordingly:
6163 * 1) .init.* may be embedded into .data sections
6164 * 2) .init.text.* may be out of [__init_begin, __init_end],
6165 * please refer to arch/tile/kernel/vmlinux.lds.S.
6166 * 3) .rodata.* may be embedded into .text or .data sections.
6167 */
6168 #define adj_init_size(start, end, size, pos, adj) \
6169 do { \
6170 if (start <= pos && pos < end && size > adj) \
6171 size -= adj; \
6172 } while (0)
6173
6174 adj_init_size(__init_begin, __init_end, init_data_size,
6175 _sinittext, init_code_size);
6176 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6177 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6178 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6179 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6180
6181 #undef adj_init_size
6182
6183 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6184 #ifdef CONFIG_HIGHMEM
6185 ", %luK highmem"
6186 #endif
6187 "%s%s)\n",
6188 nr_free_pages() << (PAGE_SHIFT - 10),
6189 physpages << (PAGE_SHIFT - 10),
6190 codesize >> 10, datasize >> 10, rosize >> 10,
6191 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6192 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6193 totalcma_pages << (PAGE_SHIFT - 10),
6194 #ifdef CONFIG_HIGHMEM
6195 totalhigh_pages << (PAGE_SHIFT - 10),
6196 #endif
6197 str ? ", " : "", str ? str : "");
6198 }
6199
6200 /**
6201 * set_dma_reserve - set the specified number of pages reserved in the first zone
6202 * @new_dma_reserve: The number of pages to mark reserved
6203 *
6204 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6205 * In the DMA zone, a significant percentage may be consumed by kernel image
6206 * and other unfreeable allocations which can skew the watermarks badly. This
6207 * function may optionally be used to account for unfreeable pages in the
6208 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6209 * smaller per-cpu batchsize.
6210 */
6211 void __init set_dma_reserve(unsigned long new_dma_reserve)
6212 {
6213 dma_reserve = new_dma_reserve;
6214 }
6215
6216 void __init free_area_init(unsigned long *zones_size)
6217 {
6218 free_area_init_node(0, zones_size,
6219 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6220 }
6221
6222 static int page_alloc_cpu_notify(struct notifier_block *self,
6223 unsigned long action, void *hcpu)
6224 {
6225 int cpu = (unsigned long)hcpu;
6226
6227 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6228 lru_add_drain_cpu(cpu);
6229 drain_pages(cpu);
6230
6231 /*
6232 * Spill the event counters of the dead processor
6233 * into the current processors event counters.
6234 * This artificially elevates the count of the current
6235 * processor.
6236 */
6237 vm_events_fold_cpu(cpu);
6238
6239 /*
6240 * Zero the differential counters of the dead processor
6241 * so that the vm statistics are consistent.
6242 *
6243 * This is only okay since the processor is dead and cannot
6244 * race with what we are doing.
6245 */
6246 cpu_vm_stats_fold(cpu);
6247 }
6248 return NOTIFY_OK;
6249 }
6250
6251 void __init page_alloc_init(void)
6252 {
6253 hotcpu_notifier(page_alloc_cpu_notify, 0);
6254 }
6255
6256 /*
6257 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6258 * or min_free_kbytes changes.
6259 */
6260 static void calculate_totalreserve_pages(void)
6261 {
6262 struct pglist_data *pgdat;
6263 unsigned long reserve_pages = 0;
6264 enum zone_type i, j;
6265
6266 for_each_online_pgdat(pgdat) {
6267 for (i = 0; i < MAX_NR_ZONES; i++) {
6268 struct zone *zone = pgdat->node_zones + i;
6269 long max = 0;
6270
6271 /* Find valid and maximum lowmem_reserve in the zone */
6272 for (j = i; j < MAX_NR_ZONES; j++) {
6273 if (zone->lowmem_reserve[j] > max)
6274 max = zone->lowmem_reserve[j];
6275 }
6276
6277 /* we treat the high watermark as reserved pages. */
6278 max += high_wmark_pages(zone);
6279
6280 if (max > zone->managed_pages)
6281 max = zone->managed_pages;
6282
6283 zone->totalreserve_pages = max;
6284
6285 reserve_pages += max;
6286 }
6287 }
6288 totalreserve_pages = reserve_pages;
6289 }
6290
6291 /*
6292 * setup_per_zone_lowmem_reserve - called whenever
6293 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6294 * has a correct pages reserved value, so an adequate number of
6295 * pages are left in the zone after a successful __alloc_pages().
6296 */
6297 static void setup_per_zone_lowmem_reserve(void)
6298 {
6299 struct pglist_data *pgdat;
6300 enum zone_type j, idx;
6301
6302 for_each_online_pgdat(pgdat) {
6303 for (j = 0; j < MAX_NR_ZONES; j++) {
6304 struct zone *zone = pgdat->node_zones + j;
6305 unsigned long managed_pages = zone->managed_pages;
6306
6307 zone->lowmem_reserve[j] = 0;
6308
6309 idx = j;
6310 while (idx) {
6311 struct zone *lower_zone;
6312
6313 idx--;
6314
6315 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6316 sysctl_lowmem_reserve_ratio[idx] = 1;
6317
6318 lower_zone = pgdat->node_zones + idx;
6319 lower_zone->lowmem_reserve[j] = managed_pages /
6320 sysctl_lowmem_reserve_ratio[idx];
6321 managed_pages += lower_zone->managed_pages;
6322 }
6323 }
6324 }
6325
6326 /* update totalreserve_pages */
6327 calculate_totalreserve_pages();
6328 }
6329
6330 static void __setup_per_zone_wmarks(void)
6331 {
6332 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6333 unsigned long lowmem_pages = 0;
6334 struct zone *zone;
6335 unsigned long flags;
6336
6337 /* Calculate total number of !ZONE_HIGHMEM pages */
6338 for_each_zone(zone) {
6339 if (!is_highmem(zone))
6340 lowmem_pages += zone->managed_pages;
6341 }
6342
6343 for_each_zone(zone) {
6344 u64 tmp;
6345
6346 spin_lock_irqsave(&zone->lock, flags);
6347 tmp = (u64)pages_min * zone->managed_pages;
6348 do_div(tmp, lowmem_pages);
6349 if (is_highmem(zone)) {
6350 /*
6351 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6352 * need highmem pages, so cap pages_min to a small
6353 * value here.
6354 *
6355 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6356 * deltas control asynch page reclaim, and so should
6357 * not be capped for highmem.
6358 */
6359 unsigned long min_pages;
6360
6361 min_pages = zone->managed_pages / 1024;
6362 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6363 zone->watermark[WMARK_MIN] = min_pages;
6364 } else {
6365 /*
6366 * If it's a lowmem zone, reserve a number of pages
6367 * proportionate to the zone's size.
6368 */
6369 zone->watermark[WMARK_MIN] = tmp;
6370 }
6371
6372 /*
6373 * Set the kswapd watermarks distance according to the
6374 * scale factor in proportion to available memory, but
6375 * ensure a minimum size on small systems.
6376 */
6377 tmp = max_t(u64, tmp >> 2,
6378 mult_frac(zone->managed_pages,
6379 watermark_scale_factor, 10000));
6380
6381 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6382 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6383
6384 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6385 high_wmark_pages(zone) - low_wmark_pages(zone) -
6386 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6387
6388 spin_unlock_irqrestore(&zone->lock, flags);
6389 }
6390
6391 /* update totalreserve_pages */
6392 calculate_totalreserve_pages();
6393 }
6394
6395 /**
6396 * setup_per_zone_wmarks - called when min_free_kbytes changes
6397 * or when memory is hot-{added|removed}
6398 *
6399 * Ensures that the watermark[min,low,high] values for each zone are set
6400 * correctly with respect to min_free_kbytes.
6401 */
6402 void setup_per_zone_wmarks(void)
6403 {
6404 mutex_lock(&zonelists_mutex);
6405 __setup_per_zone_wmarks();
6406 mutex_unlock(&zonelists_mutex);
6407 }
6408
6409 /*
6410 * The inactive anon list should be small enough that the VM never has to
6411 * do too much work, but large enough that each inactive page has a chance
6412 * to be referenced again before it is swapped out.
6413 *
6414 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6415 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6416 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6417 * the anonymous pages are kept on the inactive list.
6418 *
6419 * total target max
6420 * memory ratio inactive anon
6421 * -------------------------------------
6422 * 10MB 1 5MB
6423 * 100MB 1 50MB
6424 * 1GB 3 250MB
6425 * 10GB 10 0.9GB
6426 * 100GB 31 3GB
6427 * 1TB 101 10GB
6428 * 10TB 320 32GB
6429 */
6430 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6431 {
6432 unsigned int gb, ratio;
6433
6434 /* Zone size in gigabytes */
6435 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6436 if (gb)
6437 ratio = int_sqrt(10 * gb);
6438 else
6439 ratio = 1;
6440
6441 zone->inactive_ratio = ratio;
6442 }
6443
6444 static void __meminit setup_per_zone_inactive_ratio(void)
6445 {
6446 struct zone *zone;
6447
6448 for_each_zone(zone)
6449 calculate_zone_inactive_ratio(zone);
6450 }
6451
6452 /*
6453 * Initialise min_free_kbytes.
6454 *
6455 * For small machines we want it small (128k min). For large machines
6456 * we want it large (64MB max). But it is not linear, because network
6457 * bandwidth does not increase linearly with machine size. We use
6458 *
6459 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6460 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6461 *
6462 * which yields
6463 *
6464 * 16MB: 512k
6465 * 32MB: 724k
6466 * 64MB: 1024k
6467 * 128MB: 1448k
6468 * 256MB: 2048k
6469 * 512MB: 2896k
6470 * 1024MB: 4096k
6471 * 2048MB: 5792k
6472 * 4096MB: 8192k
6473 * 8192MB: 11584k
6474 * 16384MB: 16384k
6475 */
6476 int __meminit init_per_zone_wmark_min(void)
6477 {
6478 unsigned long lowmem_kbytes;
6479 int new_min_free_kbytes;
6480
6481 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6482 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6483
6484 if (new_min_free_kbytes > user_min_free_kbytes) {
6485 min_free_kbytes = new_min_free_kbytes;
6486 if (min_free_kbytes < 128)
6487 min_free_kbytes = 128;
6488 if (min_free_kbytes > 65536)
6489 min_free_kbytes = 65536;
6490 } else {
6491 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6492 new_min_free_kbytes, user_min_free_kbytes);
6493 }
6494 setup_per_zone_wmarks();
6495 refresh_zone_stat_thresholds();
6496 setup_per_zone_lowmem_reserve();
6497 setup_per_zone_inactive_ratio();
6498 return 0;
6499 }
6500 core_initcall(init_per_zone_wmark_min)
6501
6502 /*
6503 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6504 * that we can call two helper functions whenever min_free_kbytes
6505 * changes.
6506 */
6507 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6508 void __user *buffer, size_t *length, loff_t *ppos)
6509 {
6510 int rc;
6511
6512 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6513 if (rc)
6514 return rc;
6515
6516 if (write) {
6517 user_min_free_kbytes = min_free_kbytes;
6518 setup_per_zone_wmarks();
6519 }
6520 return 0;
6521 }
6522
6523 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6524 void __user *buffer, size_t *length, loff_t *ppos)
6525 {
6526 int rc;
6527
6528 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6529 if (rc)
6530 return rc;
6531
6532 if (write)
6533 setup_per_zone_wmarks();
6534
6535 return 0;
6536 }
6537
6538 #ifdef CONFIG_NUMA
6539 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6540 void __user *buffer, size_t *length, loff_t *ppos)
6541 {
6542 struct zone *zone;
6543 int rc;
6544
6545 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6546 if (rc)
6547 return rc;
6548
6549 for_each_zone(zone)
6550 zone->min_unmapped_pages = (zone->managed_pages *
6551 sysctl_min_unmapped_ratio) / 100;
6552 return 0;
6553 }
6554
6555 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6556 void __user *buffer, size_t *length, loff_t *ppos)
6557 {
6558 struct zone *zone;
6559 int rc;
6560
6561 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6562 if (rc)
6563 return rc;
6564
6565 for_each_zone(zone)
6566 zone->min_slab_pages = (zone->managed_pages *
6567 sysctl_min_slab_ratio) / 100;
6568 return 0;
6569 }
6570 #endif
6571
6572 /*
6573 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6574 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6575 * whenever sysctl_lowmem_reserve_ratio changes.
6576 *
6577 * The reserve ratio obviously has absolutely no relation with the
6578 * minimum watermarks. The lowmem reserve ratio can only make sense
6579 * if in function of the boot time zone sizes.
6580 */
6581 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6582 void __user *buffer, size_t *length, loff_t *ppos)
6583 {
6584 proc_dointvec_minmax(table, write, buffer, length, ppos);
6585 setup_per_zone_lowmem_reserve();
6586 return 0;
6587 }
6588
6589 /*
6590 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6591 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6592 * pagelist can have before it gets flushed back to buddy allocator.
6593 */
6594 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6595 void __user *buffer, size_t *length, loff_t *ppos)
6596 {
6597 struct zone *zone;
6598 int old_percpu_pagelist_fraction;
6599 int ret;
6600
6601 mutex_lock(&pcp_batch_high_lock);
6602 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6603
6604 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6605 if (!write || ret < 0)
6606 goto out;
6607
6608 /* Sanity checking to avoid pcp imbalance */
6609 if (percpu_pagelist_fraction &&
6610 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6611 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6612 ret = -EINVAL;
6613 goto out;
6614 }
6615
6616 /* No change? */
6617 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6618 goto out;
6619
6620 for_each_populated_zone(zone) {
6621 unsigned int cpu;
6622
6623 for_each_possible_cpu(cpu)
6624 pageset_set_high_and_batch(zone,
6625 per_cpu_ptr(zone->pageset, cpu));
6626 }
6627 out:
6628 mutex_unlock(&pcp_batch_high_lock);
6629 return ret;
6630 }
6631
6632 #ifdef CONFIG_NUMA
6633 int hashdist = HASHDIST_DEFAULT;
6634
6635 static int __init set_hashdist(char *str)
6636 {
6637 if (!str)
6638 return 0;
6639 hashdist = simple_strtoul(str, &str, 0);
6640 return 1;
6641 }
6642 __setup("hashdist=", set_hashdist);
6643 #endif
6644
6645 /*
6646 * allocate a large system hash table from bootmem
6647 * - it is assumed that the hash table must contain an exact power-of-2
6648 * quantity of entries
6649 * - limit is the number of hash buckets, not the total allocation size
6650 */
6651 void *__init alloc_large_system_hash(const char *tablename,
6652 unsigned long bucketsize,
6653 unsigned long numentries,
6654 int scale,
6655 int flags,
6656 unsigned int *_hash_shift,
6657 unsigned int *_hash_mask,
6658 unsigned long low_limit,
6659 unsigned long high_limit)
6660 {
6661 unsigned long long max = high_limit;
6662 unsigned long log2qty, size;
6663 void *table = NULL;
6664
6665 /* allow the kernel cmdline to have a say */
6666 if (!numentries) {
6667 /* round applicable memory size up to nearest megabyte */
6668 numentries = nr_kernel_pages;
6669
6670 /* It isn't necessary when PAGE_SIZE >= 1MB */
6671 if (PAGE_SHIFT < 20)
6672 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6673
6674 /* limit to 1 bucket per 2^scale bytes of low memory */
6675 if (scale > PAGE_SHIFT)
6676 numentries >>= (scale - PAGE_SHIFT);
6677 else
6678 numentries <<= (PAGE_SHIFT - scale);
6679
6680 /* Make sure we've got at least a 0-order allocation.. */
6681 if (unlikely(flags & HASH_SMALL)) {
6682 /* Makes no sense without HASH_EARLY */
6683 WARN_ON(!(flags & HASH_EARLY));
6684 if (!(numentries >> *_hash_shift)) {
6685 numentries = 1UL << *_hash_shift;
6686 BUG_ON(!numentries);
6687 }
6688 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6689 numentries = PAGE_SIZE / bucketsize;
6690 }
6691 numentries = roundup_pow_of_two(numentries);
6692
6693 /* limit allocation size to 1/16 total memory by default */
6694 if (max == 0) {
6695 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6696 do_div(max, bucketsize);
6697 }
6698 max = min(max, 0x80000000ULL);
6699
6700 if (numentries < low_limit)
6701 numentries = low_limit;
6702 if (numentries > max)
6703 numentries = max;
6704
6705 log2qty = ilog2(numentries);
6706
6707 do {
6708 size = bucketsize << log2qty;
6709 if (flags & HASH_EARLY)
6710 table = memblock_virt_alloc_nopanic(size, 0);
6711 else if (hashdist)
6712 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6713 else {
6714 /*
6715 * If bucketsize is not a power-of-two, we may free
6716 * some pages at the end of hash table which
6717 * alloc_pages_exact() automatically does
6718 */
6719 if (get_order(size) < MAX_ORDER) {
6720 table = alloc_pages_exact(size, GFP_ATOMIC);
6721 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6722 }
6723 }
6724 } while (!table && size > PAGE_SIZE && --log2qty);
6725
6726 if (!table)
6727 panic("Failed to allocate %s hash table\n", tablename);
6728
6729 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
6730 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
6731
6732 if (_hash_shift)
6733 *_hash_shift = log2qty;
6734 if (_hash_mask)
6735 *_hash_mask = (1 << log2qty) - 1;
6736
6737 return table;
6738 }
6739
6740 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6741 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6742 unsigned long pfn)
6743 {
6744 #ifdef CONFIG_SPARSEMEM
6745 return __pfn_to_section(pfn)->pageblock_flags;
6746 #else
6747 return zone->pageblock_flags;
6748 #endif /* CONFIG_SPARSEMEM */
6749 }
6750
6751 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6752 {
6753 #ifdef CONFIG_SPARSEMEM
6754 pfn &= (PAGES_PER_SECTION-1);
6755 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6756 #else
6757 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6758 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6759 #endif /* CONFIG_SPARSEMEM */
6760 }
6761
6762 /**
6763 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6764 * @page: The page within the block of interest
6765 * @pfn: The target page frame number
6766 * @end_bitidx: The last bit of interest to retrieve
6767 * @mask: mask of bits that the caller is interested in
6768 *
6769 * Return: pageblock_bits flags
6770 */
6771 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6772 unsigned long end_bitidx,
6773 unsigned long mask)
6774 {
6775 struct zone *zone;
6776 unsigned long *bitmap;
6777 unsigned long bitidx, word_bitidx;
6778 unsigned long word;
6779
6780 zone = page_zone(page);
6781 bitmap = get_pageblock_bitmap(zone, pfn);
6782 bitidx = pfn_to_bitidx(zone, pfn);
6783 word_bitidx = bitidx / BITS_PER_LONG;
6784 bitidx &= (BITS_PER_LONG-1);
6785
6786 word = bitmap[word_bitidx];
6787 bitidx += end_bitidx;
6788 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6789 }
6790
6791 /**
6792 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6793 * @page: The page within the block of interest
6794 * @flags: The flags to set
6795 * @pfn: The target page frame number
6796 * @end_bitidx: The last bit of interest
6797 * @mask: mask of bits that the caller is interested in
6798 */
6799 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6800 unsigned long pfn,
6801 unsigned long end_bitidx,
6802 unsigned long mask)
6803 {
6804 struct zone *zone;
6805 unsigned long *bitmap;
6806 unsigned long bitidx, word_bitidx;
6807 unsigned long old_word, word;
6808
6809 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6810
6811 zone = page_zone(page);
6812 bitmap = get_pageblock_bitmap(zone, pfn);
6813 bitidx = pfn_to_bitidx(zone, pfn);
6814 word_bitidx = bitidx / BITS_PER_LONG;
6815 bitidx &= (BITS_PER_LONG-1);
6816
6817 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6818
6819 bitidx += end_bitidx;
6820 mask <<= (BITS_PER_LONG - bitidx - 1);
6821 flags <<= (BITS_PER_LONG - bitidx - 1);
6822
6823 word = READ_ONCE(bitmap[word_bitidx]);
6824 for (;;) {
6825 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6826 if (word == old_word)
6827 break;
6828 word = old_word;
6829 }
6830 }
6831
6832 /*
6833 * This function checks whether pageblock includes unmovable pages or not.
6834 * If @count is not zero, it is okay to include less @count unmovable pages
6835 *
6836 * PageLRU check without isolation or lru_lock could race so that
6837 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6838 * expect this function should be exact.
6839 */
6840 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6841 bool skip_hwpoisoned_pages)
6842 {
6843 unsigned long pfn, iter, found;
6844 int mt;
6845
6846 /*
6847 * For avoiding noise data, lru_add_drain_all() should be called
6848 * If ZONE_MOVABLE, the zone never contains unmovable pages
6849 */
6850 if (zone_idx(zone) == ZONE_MOVABLE)
6851 return false;
6852 mt = get_pageblock_migratetype(page);
6853 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6854 return false;
6855
6856 pfn = page_to_pfn(page);
6857 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6858 unsigned long check = pfn + iter;
6859
6860 if (!pfn_valid_within(check))
6861 continue;
6862
6863 page = pfn_to_page(check);
6864
6865 /*
6866 * Hugepages are not in LRU lists, but they're movable.
6867 * We need not scan over tail pages bacause we don't
6868 * handle each tail page individually in migration.
6869 */
6870 if (PageHuge(page)) {
6871 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6872 continue;
6873 }
6874
6875 /*
6876 * We can't use page_count without pin a page
6877 * because another CPU can free compound page.
6878 * This check already skips compound tails of THP
6879 * because their page->_refcount is zero at all time.
6880 */
6881 if (!page_ref_count(page)) {
6882 if (PageBuddy(page))
6883 iter += (1 << page_order(page)) - 1;
6884 continue;
6885 }
6886
6887 /*
6888 * The HWPoisoned page may be not in buddy system, and
6889 * page_count() is not 0.
6890 */
6891 if (skip_hwpoisoned_pages && PageHWPoison(page))
6892 continue;
6893
6894 if (!PageLRU(page))
6895 found++;
6896 /*
6897 * If there are RECLAIMABLE pages, we need to check
6898 * it. But now, memory offline itself doesn't call
6899 * shrink_node_slabs() and it still to be fixed.
6900 */
6901 /*
6902 * If the page is not RAM, page_count()should be 0.
6903 * we don't need more check. This is an _used_ not-movable page.
6904 *
6905 * The problematic thing here is PG_reserved pages. PG_reserved
6906 * is set to both of a memory hole page and a _used_ kernel
6907 * page at boot.
6908 */
6909 if (found > count)
6910 return true;
6911 }
6912 return false;
6913 }
6914
6915 bool is_pageblock_removable_nolock(struct page *page)
6916 {
6917 struct zone *zone;
6918 unsigned long pfn;
6919
6920 /*
6921 * We have to be careful here because we are iterating over memory
6922 * sections which are not zone aware so we might end up outside of
6923 * the zone but still within the section.
6924 * We have to take care about the node as well. If the node is offline
6925 * its NODE_DATA will be NULL - see page_zone.
6926 */
6927 if (!node_online(page_to_nid(page)))
6928 return false;
6929
6930 zone = page_zone(page);
6931 pfn = page_to_pfn(page);
6932 if (!zone_spans_pfn(zone, pfn))
6933 return false;
6934
6935 return !has_unmovable_pages(zone, page, 0, true);
6936 }
6937
6938 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
6939
6940 static unsigned long pfn_max_align_down(unsigned long pfn)
6941 {
6942 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6943 pageblock_nr_pages) - 1);
6944 }
6945
6946 static unsigned long pfn_max_align_up(unsigned long pfn)
6947 {
6948 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6949 pageblock_nr_pages));
6950 }
6951
6952 /* [start, end) must belong to a single zone. */
6953 static int __alloc_contig_migrate_range(struct compact_control *cc,
6954 unsigned long start, unsigned long end)
6955 {
6956 /* This function is based on compact_zone() from compaction.c. */
6957 unsigned long nr_reclaimed;
6958 unsigned long pfn = start;
6959 unsigned int tries = 0;
6960 int ret = 0;
6961
6962 migrate_prep();
6963
6964 while (pfn < end || !list_empty(&cc->migratepages)) {
6965 if (fatal_signal_pending(current)) {
6966 ret = -EINTR;
6967 break;
6968 }
6969
6970 if (list_empty(&cc->migratepages)) {
6971 cc->nr_migratepages = 0;
6972 pfn = isolate_migratepages_range(cc, pfn, end);
6973 if (!pfn) {
6974 ret = -EINTR;
6975 break;
6976 }
6977 tries = 0;
6978 } else if (++tries == 5) {
6979 ret = ret < 0 ? ret : -EBUSY;
6980 break;
6981 }
6982
6983 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6984 &cc->migratepages);
6985 cc->nr_migratepages -= nr_reclaimed;
6986
6987 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6988 NULL, 0, cc->mode, MR_CMA);
6989 }
6990 if (ret < 0) {
6991 putback_movable_pages(&cc->migratepages);
6992 return ret;
6993 }
6994 return 0;
6995 }
6996
6997 /**
6998 * alloc_contig_range() -- tries to allocate given range of pages
6999 * @start: start PFN to allocate
7000 * @end: one-past-the-last PFN to allocate
7001 * @migratetype: migratetype of the underlaying pageblocks (either
7002 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7003 * in range must have the same migratetype and it must
7004 * be either of the two.
7005 *
7006 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7007 * aligned, however it's the caller's responsibility to guarantee that
7008 * we are the only thread that changes migrate type of pageblocks the
7009 * pages fall in.
7010 *
7011 * The PFN range must belong to a single zone.
7012 *
7013 * Returns zero on success or negative error code. On success all
7014 * pages which PFN is in [start, end) are allocated for the caller and
7015 * need to be freed with free_contig_range().
7016 */
7017 int alloc_contig_range(unsigned long start, unsigned long end,
7018 unsigned migratetype)
7019 {
7020 unsigned long outer_start, outer_end;
7021 unsigned int order;
7022 int ret = 0;
7023
7024 struct compact_control cc = {
7025 .nr_migratepages = 0,
7026 .order = -1,
7027 .zone = page_zone(pfn_to_page(start)),
7028 .mode = MIGRATE_SYNC,
7029 .ignore_skip_hint = true,
7030 };
7031 INIT_LIST_HEAD(&cc.migratepages);
7032
7033 /*
7034 * What we do here is we mark all pageblocks in range as
7035 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7036 * have different sizes, and due to the way page allocator
7037 * work, we align the range to biggest of the two pages so
7038 * that page allocator won't try to merge buddies from
7039 * different pageblocks and change MIGRATE_ISOLATE to some
7040 * other migration type.
7041 *
7042 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7043 * migrate the pages from an unaligned range (ie. pages that
7044 * we are interested in). This will put all the pages in
7045 * range back to page allocator as MIGRATE_ISOLATE.
7046 *
7047 * When this is done, we take the pages in range from page
7048 * allocator removing them from the buddy system. This way
7049 * page allocator will never consider using them.
7050 *
7051 * This lets us mark the pageblocks back as
7052 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7053 * aligned range but not in the unaligned, original range are
7054 * put back to page allocator so that buddy can use them.
7055 */
7056
7057 ret = start_isolate_page_range(pfn_max_align_down(start),
7058 pfn_max_align_up(end), migratetype,
7059 false);
7060 if (ret)
7061 return ret;
7062
7063 /*
7064 * In case of -EBUSY, we'd like to know which page causes problem.
7065 * So, just fall through. We will check it in test_pages_isolated().
7066 */
7067 ret = __alloc_contig_migrate_range(&cc, start, end);
7068 if (ret && ret != -EBUSY)
7069 goto done;
7070
7071 /*
7072 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7073 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7074 * more, all pages in [start, end) are free in page allocator.
7075 * What we are going to do is to allocate all pages from
7076 * [start, end) (that is remove them from page allocator).
7077 *
7078 * The only problem is that pages at the beginning and at the
7079 * end of interesting range may be not aligned with pages that
7080 * page allocator holds, ie. they can be part of higher order
7081 * pages. Because of this, we reserve the bigger range and
7082 * once this is done free the pages we are not interested in.
7083 *
7084 * We don't have to hold zone->lock here because the pages are
7085 * isolated thus they won't get removed from buddy.
7086 */
7087
7088 lru_add_drain_all();
7089 drain_all_pages(cc.zone);
7090
7091 order = 0;
7092 outer_start = start;
7093 while (!PageBuddy(pfn_to_page(outer_start))) {
7094 if (++order >= MAX_ORDER) {
7095 outer_start = start;
7096 break;
7097 }
7098 outer_start &= ~0UL << order;
7099 }
7100
7101 if (outer_start != start) {
7102 order = page_order(pfn_to_page(outer_start));
7103
7104 /*
7105 * outer_start page could be small order buddy page and
7106 * it doesn't include start page. Adjust outer_start
7107 * in this case to report failed page properly
7108 * on tracepoint in test_pages_isolated()
7109 */
7110 if (outer_start + (1UL << order) <= start)
7111 outer_start = start;
7112 }
7113
7114 /* Make sure the range is really isolated. */
7115 if (test_pages_isolated(outer_start, end, false)) {
7116 pr_info("%s: [%lx, %lx) PFNs busy\n",
7117 __func__, outer_start, end);
7118 ret = -EBUSY;
7119 goto done;
7120 }
7121
7122 /* Grab isolated pages from freelists. */
7123 outer_end = isolate_freepages_range(&cc, outer_start, end);
7124 if (!outer_end) {
7125 ret = -EBUSY;
7126 goto done;
7127 }
7128
7129 /* Free head and tail (if any) */
7130 if (start != outer_start)
7131 free_contig_range(outer_start, start - outer_start);
7132 if (end != outer_end)
7133 free_contig_range(end, outer_end - end);
7134
7135 done:
7136 undo_isolate_page_range(pfn_max_align_down(start),
7137 pfn_max_align_up(end), migratetype);
7138 return ret;
7139 }
7140
7141 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7142 {
7143 unsigned int count = 0;
7144
7145 for (; nr_pages--; pfn++) {
7146 struct page *page = pfn_to_page(pfn);
7147
7148 count += page_count(page) != 1;
7149 __free_page(page);
7150 }
7151 WARN(count != 0, "%d pages are still in use!\n", count);
7152 }
7153 #endif
7154
7155 #ifdef CONFIG_MEMORY_HOTPLUG
7156 /*
7157 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7158 * page high values need to be recalulated.
7159 */
7160 void __meminit zone_pcp_update(struct zone *zone)
7161 {
7162 unsigned cpu;
7163 mutex_lock(&pcp_batch_high_lock);
7164 for_each_possible_cpu(cpu)
7165 pageset_set_high_and_batch(zone,
7166 per_cpu_ptr(zone->pageset, cpu));
7167 mutex_unlock(&pcp_batch_high_lock);
7168 }
7169 #endif
7170
7171 void zone_pcp_reset(struct zone *zone)
7172 {
7173 unsigned long flags;
7174 int cpu;
7175 struct per_cpu_pageset *pset;
7176
7177 /* avoid races with drain_pages() */
7178 local_irq_save(flags);
7179 if (zone->pageset != &boot_pageset) {
7180 for_each_online_cpu(cpu) {
7181 pset = per_cpu_ptr(zone->pageset, cpu);
7182 drain_zonestat(zone, pset);
7183 }
7184 free_percpu(zone->pageset);
7185 zone->pageset = &boot_pageset;
7186 }
7187 local_irq_restore(flags);
7188 }
7189
7190 #ifdef CONFIG_MEMORY_HOTREMOVE
7191 /*
7192 * All pages in the range must be in a single zone and isolated
7193 * before calling this.
7194 */
7195 void
7196 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7197 {
7198 struct page *page;
7199 struct zone *zone;
7200 unsigned int order, i;
7201 unsigned long pfn;
7202 unsigned long flags;
7203 /* find the first valid pfn */
7204 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7205 if (pfn_valid(pfn))
7206 break;
7207 if (pfn == end_pfn)
7208 return;
7209 zone = page_zone(pfn_to_page(pfn));
7210 spin_lock_irqsave(&zone->lock, flags);
7211 pfn = start_pfn;
7212 while (pfn < end_pfn) {
7213 if (!pfn_valid(pfn)) {
7214 pfn++;
7215 continue;
7216 }
7217 page = pfn_to_page(pfn);
7218 /*
7219 * The HWPoisoned page may be not in buddy system, and
7220 * page_count() is not 0.
7221 */
7222 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7223 pfn++;
7224 SetPageReserved(page);
7225 continue;
7226 }
7227
7228 BUG_ON(page_count(page));
7229 BUG_ON(!PageBuddy(page));
7230 order = page_order(page);
7231 #ifdef CONFIG_DEBUG_VM
7232 pr_info("remove from free list %lx %d %lx\n",
7233 pfn, 1 << order, end_pfn);
7234 #endif
7235 list_del(&page->lru);
7236 rmv_page_order(page);
7237 zone->free_area[order].nr_free--;
7238 for (i = 0; i < (1 << order); i++)
7239 SetPageReserved((page+i));
7240 pfn += (1 << order);
7241 }
7242 spin_unlock_irqrestore(&zone->lock, flags);
7243 }
7244 #endif
7245
7246 bool is_free_buddy_page(struct page *page)
7247 {
7248 struct zone *zone = page_zone(page);
7249 unsigned long pfn = page_to_pfn(page);
7250 unsigned long flags;
7251 unsigned int order;
7252
7253 spin_lock_irqsave(&zone->lock, flags);
7254 for (order = 0; order < MAX_ORDER; order++) {
7255 struct page *page_head = page - (pfn & ((1 << order) - 1));
7256
7257 if (PageBuddy(page_head) && page_order(page_head) >= order)
7258 break;
7259 }
7260 spin_unlock_irqrestore(&zone->lock, flags);
7261
7262 return order < MAX_ORDER;
7263 }
This page took 0.184423 seconds and 5 git commands to generate.