perf tools: Add support for cycles, weight branch_info field
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/rwsem.h>
22 #include <linux/pagemap.h>
23 #include <linux/jiffies.h>
24 #include <linux/bootmem.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kmemcheck.h>
29 #include <linux/kasan.h>
30 #include <linux/module.h>
31 #include <linux/suspend.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/slab.h>
35 #include <linux/ratelimit.h>
36 #include <linux/oom.h>
37 #include <linux/notifier.h>
38 #include <linux/topology.h>
39 #include <linux/sysctl.h>
40 #include <linux/cpu.h>
41 #include <linux/cpuset.h>
42 #include <linux/memory_hotplug.h>
43 #include <linux/nodemask.h>
44 #include <linux/vmalloc.h>
45 #include <linux/vmstat.h>
46 #include <linux/mempolicy.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66
67 #include <asm/sections.h>
68 #include <asm/tlbflush.h>
69 #include <asm/div64.h>
70 #include "internal.h"
71
72 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73 static DEFINE_MUTEX(pcp_batch_high_lock);
74 #define MIN_PERCPU_PAGELIST_FRACTION (8)
75
76 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77 DEFINE_PER_CPU(int, numa_node);
78 EXPORT_PER_CPU_SYMBOL(numa_node);
79 #endif
80
81 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
82 /*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
90 int _node_numa_mem_[MAX_NUMNODES];
91 #endif
92
93 /*
94 * Array of node states.
95 */
96 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99 #ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101 #ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
103 #endif
104 #ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
106 #endif
107 [N_CPU] = { { [0] = 1UL } },
108 #endif /* NUMA */
109 };
110 EXPORT_SYMBOL(node_states);
111
112 /* Protect totalram_pages and zone->managed_pages */
113 static DEFINE_SPINLOCK(managed_page_count_lock);
114
115 unsigned long totalram_pages __read_mostly;
116 unsigned long totalreserve_pages __read_mostly;
117 unsigned long totalcma_pages __read_mostly;
118 /*
119 * When calculating the number of globally allowed dirty pages, there
120 * is a certain number of per-zone reserves that should not be
121 * considered dirtyable memory. This is the sum of those reserves
122 * over all existing zones that contribute dirtyable memory.
123 */
124 unsigned long dirty_balance_reserve __read_mostly;
125
126 int percpu_pagelist_fraction;
127 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
128
129 #ifdef CONFIG_PM_SLEEP
130 /*
131 * The following functions are used by the suspend/hibernate code to temporarily
132 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
133 * while devices are suspended. To avoid races with the suspend/hibernate code,
134 * they should always be called with pm_mutex held (gfp_allowed_mask also should
135 * only be modified with pm_mutex held, unless the suspend/hibernate code is
136 * guaranteed not to run in parallel with that modification).
137 */
138
139 static gfp_t saved_gfp_mask;
140
141 void pm_restore_gfp_mask(void)
142 {
143 WARN_ON(!mutex_is_locked(&pm_mutex));
144 if (saved_gfp_mask) {
145 gfp_allowed_mask = saved_gfp_mask;
146 saved_gfp_mask = 0;
147 }
148 }
149
150 void pm_restrict_gfp_mask(void)
151 {
152 WARN_ON(!mutex_is_locked(&pm_mutex));
153 WARN_ON(saved_gfp_mask);
154 saved_gfp_mask = gfp_allowed_mask;
155 gfp_allowed_mask &= ~GFP_IOFS;
156 }
157
158 bool pm_suspended_storage(void)
159 {
160 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
161 return false;
162 return true;
163 }
164 #endif /* CONFIG_PM_SLEEP */
165
166 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
167 int pageblock_order __read_mostly;
168 #endif
169
170 static void __free_pages_ok(struct page *page, unsigned int order);
171
172 /*
173 * results with 256, 32 in the lowmem_reserve sysctl:
174 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
175 * 1G machine -> (16M dma, 784M normal, 224M high)
176 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
177 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
178 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
179 *
180 * TBD: should special case ZONE_DMA32 machines here - in those we normally
181 * don't need any ZONE_NORMAL reservation
182 */
183 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
184 #ifdef CONFIG_ZONE_DMA
185 256,
186 #endif
187 #ifdef CONFIG_ZONE_DMA32
188 256,
189 #endif
190 #ifdef CONFIG_HIGHMEM
191 32,
192 #endif
193 32,
194 };
195
196 EXPORT_SYMBOL(totalram_pages);
197
198 static char * const zone_names[MAX_NR_ZONES] = {
199 #ifdef CONFIG_ZONE_DMA
200 "DMA",
201 #endif
202 #ifdef CONFIG_ZONE_DMA32
203 "DMA32",
204 #endif
205 "Normal",
206 #ifdef CONFIG_HIGHMEM
207 "HighMem",
208 #endif
209 "Movable",
210 };
211
212 int min_free_kbytes = 1024;
213 int user_min_free_kbytes = -1;
214
215 static unsigned long __meminitdata nr_kernel_pages;
216 static unsigned long __meminitdata nr_all_pages;
217 static unsigned long __meminitdata dma_reserve;
218
219 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
220 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
221 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
222 static unsigned long __initdata required_kernelcore;
223 static unsigned long __initdata required_movablecore;
224 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
225
226 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
227 int movable_zone;
228 EXPORT_SYMBOL(movable_zone);
229 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
230
231 #if MAX_NUMNODES > 1
232 int nr_node_ids __read_mostly = MAX_NUMNODES;
233 int nr_online_nodes __read_mostly = 1;
234 EXPORT_SYMBOL(nr_node_ids);
235 EXPORT_SYMBOL(nr_online_nodes);
236 #endif
237
238 int page_group_by_mobility_disabled __read_mostly;
239
240 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
241 static inline void reset_deferred_meminit(pg_data_t *pgdat)
242 {
243 pgdat->first_deferred_pfn = ULONG_MAX;
244 }
245
246 /* Returns true if the struct page for the pfn is uninitialised */
247 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
248 {
249 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
250 return true;
251
252 return false;
253 }
254
255 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
256 {
257 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
258 return true;
259
260 return false;
261 }
262
263 /*
264 * Returns false when the remaining initialisation should be deferred until
265 * later in the boot cycle when it can be parallelised.
266 */
267 static inline bool update_defer_init(pg_data_t *pgdat,
268 unsigned long pfn, unsigned long zone_end,
269 unsigned long *nr_initialised)
270 {
271 /* Always populate low zones for address-contrained allocations */
272 if (zone_end < pgdat_end_pfn(pgdat))
273 return true;
274
275 /* Initialise at least 2G of the highest zone */
276 (*nr_initialised)++;
277 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
278 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
279 pgdat->first_deferred_pfn = pfn;
280 return false;
281 }
282
283 return true;
284 }
285 #else
286 static inline void reset_deferred_meminit(pg_data_t *pgdat)
287 {
288 }
289
290 static inline bool early_page_uninitialised(unsigned long pfn)
291 {
292 return false;
293 }
294
295 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296 {
297 return false;
298 }
299
300 static inline bool update_defer_init(pg_data_t *pgdat,
301 unsigned long pfn, unsigned long zone_end,
302 unsigned long *nr_initialised)
303 {
304 return true;
305 }
306 #endif
307
308
309 void set_pageblock_migratetype(struct page *page, int migratetype)
310 {
311 if (unlikely(page_group_by_mobility_disabled &&
312 migratetype < MIGRATE_PCPTYPES))
313 migratetype = MIGRATE_UNMOVABLE;
314
315 set_pageblock_flags_group(page, (unsigned long)migratetype,
316 PB_migrate, PB_migrate_end);
317 }
318
319 #ifdef CONFIG_DEBUG_VM
320 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
321 {
322 int ret = 0;
323 unsigned seq;
324 unsigned long pfn = page_to_pfn(page);
325 unsigned long sp, start_pfn;
326
327 do {
328 seq = zone_span_seqbegin(zone);
329 start_pfn = zone->zone_start_pfn;
330 sp = zone->spanned_pages;
331 if (!zone_spans_pfn(zone, pfn))
332 ret = 1;
333 } while (zone_span_seqretry(zone, seq));
334
335 if (ret)
336 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
337 pfn, zone_to_nid(zone), zone->name,
338 start_pfn, start_pfn + sp);
339
340 return ret;
341 }
342
343 static int page_is_consistent(struct zone *zone, struct page *page)
344 {
345 if (!pfn_valid_within(page_to_pfn(page)))
346 return 0;
347 if (zone != page_zone(page))
348 return 0;
349
350 return 1;
351 }
352 /*
353 * Temporary debugging check for pages not lying within a given zone.
354 */
355 static int bad_range(struct zone *zone, struct page *page)
356 {
357 if (page_outside_zone_boundaries(zone, page))
358 return 1;
359 if (!page_is_consistent(zone, page))
360 return 1;
361
362 return 0;
363 }
364 #else
365 static inline int bad_range(struct zone *zone, struct page *page)
366 {
367 return 0;
368 }
369 #endif
370
371 static void bad_page(struct page *page, const char *reason,
372 unsigned long bad_flags)
373 {
374 static unsigned long resume;
375 static unsigned long nr_shown;
376 static unsigned long nr_unshown;
377
378 /* Don't complain about poisoned pages */
379 if (PageHWPoison(page)) {
380 page_mapcount_reset(page); /* remove PageBuddy */
381 return;
382 }
383
384 /*
385 * Allow a burst of 60 reports, then keep quiet for that minute;
386 * or allow a steady drip of one report per second.
387 */
388 if (nr_shown == 60) {
389 if (time_before(jiffies, resume)) {
390 nr_unshown++;
391 goto out;
392 }
393 if (nr_unshown) {
394 printk(KERN_ALERT
395 "BUG: Bad page state: %lu messages suppressed\n",
396 nr_unshown);
397 nr_unshown = 0;
398 }
399 nr_shown = 0;
400 }
401 if (nr_shown++ == 0)
402 resume = jiffies + 60 * HZ;
403
404 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
405 current->comm, page_to_pfn(page));
406 dump_page_badflags(page, reason, bad_flags);
407
408 print_modules();
409 dump_stack();
410 out:
411 /* Leave bad fields for debug, except PageBuddy could make trouble */
412 page_mapcount_reset(page); /* remove PageBuddy */
413 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
414 }
415
416 /*
417 * Higher-order pages are called "compound pages". They are structured thusly:
418 *
419 * The first PAGE_SIZE page is called the "head page".
420 *
421 * The remaining PAGE_SIZE pages are called "tail pages".
422 *
423 * All pages have PG_compound set. All tail pages have their ->first_page
424 * pointing at the head page.
425 *
426 * The first tail page's ->lru.next holds the address of the compound page's
427 * put_page() function. Its ->lru.prev holds the order of allocation.
428 * This usage means that zero-order pages may not be compound.
429 */
430
431 static void free_compound_page(struct page *page)
432 {
433 __free_pages_ok(page, compound_order(page));
434 }
435
436 void prep_compound_page(struct page *page, unsigned long order)
437 {
438 int i;
439 int nr_pages = 1 << order;
440
441 set_compound_page_dtor(page, free_compound_page);
442 set_compound_order(page, order);
443 __SetPageHead(page);
444 for (i = 1; i < nr_pages; i++) {
445 struct page *p = page + i;
446 set_page_count(p, 0);
447 p->first_page = page;
448 /* Make sure p->first_page is always valid for PageTail() */
449 smp_wmb();
450 __SetPageTail(p);
451 }
452 }
453
454 #ifdef CONFIG_DEBUG_PAGEALLOC
455 unsigned int _debug_guardpage_minorder;
456 bool _debug_pagealloc_enabled __read_mostly;
457 bool _debug_guardpage_enabled __read_mostly;
458
459 static int __init early_debug_pagealloc(char *buf)
460 {
461 if (!buf)
462 return -EINVAL;
463
464 if (strcmp(buf, "on") == 0)
465 _debug_pagealloc_enabled = true;
466
467 return 0;
468 }
469 early_param("debug_pagealloc", early_debug_pagealloc);
470
471 static bool need_debug_guardpage(void)
472 {
473 /* If we don't use debug_pagealloc, we don't need guard page */
474 if (!debug_pagealloc_enabled())
475 return false;
476
477 return true;
478 }
479
480 static void init_debug_guardpage(void)
481 {
482 if (!debug_pagealloc_enabled())
483 return;
484
485 _debug_guardpage_enabled = true;
486 }
487
488 struct page_ext_operations debug_guardpage_ops = {
489 .need = need_debug_guardpage,
490 .init = init_debug_guardpage,
491 };
492
493 static int __init debug_guardpage_minorder_setup(char *buf)
494 {
495 unsigned long res;
496
497 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
498 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
499 return 0;
500 }
501 _debug_guardpage_minorder = res;
502 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
503 return 0;
504 }
505 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
506
507 static inline void set_page_guard(struct zone *zone, struct page *page,
508 unsigned int order, int migratetype)
509 {
510 struct page_ext *page_ext;
511
512 if (!debug_guardpage_enabled())
513 return;
514
515 page_ext = lookup_page_ext(page);
516 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
517
518 INIT_LIST_HEAD(&page->lru);
519 set_page_private(page, order);
520 /* Guard pages are not available for any usage */
521 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
522 }
523
524 static inline void clear_page_guard(struct zone *zone, struct page *page,
525 unsigned int order, int migratetype)
526 {
527 struct page_ext *page_ext;
528
529 if (!debug_guardpage_enabled())
530 return;
531
532 page_ext = lookup_page_ext(page);
533 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
534
535 set_page_private(page, 0);
536 if (!is_migrate_isolate(migratetype))
537 __mod_zone_freepage_state(zone, (1 << order), migratetype);
538 }
539 #else
540 struct page_ext_operations debug_guardpage_ops = { NULL, };
541 static inline void set_page_guard(struct zone *zone, struct page *page,
542 unsigned int order, int migratetype) {}
543 static inline void clear_page_guard(struct zone *zone, struct page *page,
544 unsigned int order, int migratetype) {}
545 #endif
546
547 static inline void set_page_order(struct page *page, unsigned int order)
548 {
549 set_page_private(page, order);
550 __SetPageBuddy(page);
551 }
552
553 static inline void rmv_page_order(struct page *page)
554 {
555 __ClearPageBuddy(page);
556 set_page_private(page, 0);
557 }
558
559 /*
560 * This function checks whether a page is free && is the buddy
561 * we can do coalesce a page and its buddy if
562 * (a) the buddy is not in a hole &&
563 * (b) the buddy is in the buddy system &&
564 * (c) a page and its buddy have the same order &&
565 * (d) a page and its buddy are in the same zone.
566 *
567 * For recording whether a page is in the buddy system, we set ->_mapcount
568 * PAGE_BUDDY_MAPCOUNT_VALUE.
569 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
570 * serialized by zone->lock.
571 *
572 * For recording page's order, we use page_private(page).
573 */
574 static inline int page_is_buddy(struct page *page, struct page *buddy,
575 unsigned int order)
576 {
577 if (!pfn_valid_within(page_to_pfn(buddy)))
578 return 0;
579
580 if (page_is_guard(buddy) && page_order(buddy) == order) {
581 if (page_zone_id(page) != page_zone_id(buddy))
582 return 0;
583
584 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
585
586 return 1;
587 }
588
589 if (PageBuddy(buddy) && page_order(buddy) == order) {
590 /*
591 * zone check is done late to avoid uselessly
592 * calculating zone/node ids for pages that could
593 * never merge.
594 */
595 if (page_zone_id(page) != page_zone_id(buddy))
596 return 0;
597
598 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
599
600 return 1;
601 }
602 return 0;
603 }
604
605 /*
606 * Freeing function for a buddy system allocator.
607 *
608 * The concept of a buddy system is to maintain direct-mapped table
609 * (containing bit values) for memory blocks of various "orders".
610 * The bottom level table contains the map for the smallest allocatable
611 * units of memory (here, pages), and each level above it describes
612 * pairs of units from the levels below, hence, "buddies".
613 * At a high level, all that happens here is marking the table entry
614 * at the bottom level available, and propagating the changes upward
615 * as necessary, plus some accounting needed to play nicely with other
616 * parts of the VM system.
617 * At each level, we keep a list of pages, which are heads of continuous
618 * free pages of length of (1 << order) and marked with _mapcount
619 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
620 * field.
621 * So when we are allocating or freeing one, we can derive the state of the
622 * other. That is, if we allocate a small block, and both were
623 * free, the remainder of the region must be split into blocks.
624 * If a block is freed, and its buddy is also free, then this
625 * triggers coalescing into a block of larger size.
626 *
627 * -- nyc
628 */
629
630 static inline void __free_one_page(struct page *page,
631 unsigned long pfn,
632 struct zone *zone, unsigned int order,
633 int migratetype)
634 {
635 unsigned long page_idx;
636 unsigned long combined_idx;
637 unsigned long uninitialized_var(buddy_idx);
638 struct page *buddy;
639 int max_order = MAX_ORDER;
640
641 VM_BUG_ON(!zone_is_initialized(zone));
642 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
643
644 VM_BUG_ON(migratetype == -1);
645 if (is_migrate_isolate(migratetype)) {
646 /*
647 * We restrict max order of merging to prevent merge
648 * between freepages on isolate pageblock and normal
649 * pageblock. Without this, pageblock isolation
650 * could cause incorrect freepage accounting.
651 */
652 max_order = min(MAX_ORDER, pageblock_order + 1);
653 } else {
654 __mod_zone_freepage_state(zone, 1 << order, migratetype);
655 }
656
657 page_idx = pfn & ((1 << max_order) - 1);
658
659 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
660 VM_BUG_ON_PAGE(bad_range(zone, page), page);
661
662 while (order < max_order - 1) {
663 buddy_idx = __find_buddy_index(page_idx, order);
664 buddy = page + (buddy_idx - page_idx);
665 if (!page_is_buddy(page, buddy, order))
666 break;
667 /*
668 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
669 * merge with it and move up one order.
670 */
671 if (page_is_guard(buddy)) {
672 clear_page_guard(zone, buddy, order, migratetype);
673 } else {
674 list_del(&buddy->lru);
675 zone->free_area[order].nr_free--;
676 rmv_page_order(buddy);
677 }
678 combined_idx = buddy_idx & page_idx;
679 page = page + (combined_idx - page_idx);
680 page_idx = combined_idx;
681 order++;
682 }
683 set_page_order(page, order);
684
685 /*
686 * If this is not the largest possible page, check if the buddy
687 * of the next-highest order is free. If it is, it's possible
688 * that pages are being freed that will coalesce soon. In case,
689 * that is happening, add the free page to the tail of the list
690 * so it's less likely to be used soon and more likely to be merged
691 * as a higher order page
692 */
693 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
694 struct page *higher_page, *higher_buddy;
695 combined_idx = buddy_idx & page_idx;
696 higher_page = page + (combined_idx - page_idx);
697 buddy_idx = __find_buddy_index(combined_idx, order + 1);
698 higher_buddy = higher_page + (buddy_idx - combined_idx);
699 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
700 list_add_tail(&page->lru,
701 &zone->free_area[order].free_list[migratetype]);
702 goto out;
703 }
704 }
705
706 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
707 out:
708 zone->free_area[order].nr_free++;
709 }
710
711 static inline int free_pages_check(struct page *page)
712 {
713 const char *bad_reason = NULL;
714 unsigned long bad_flags = 0;
715
716 if (unlikely(page_mapcount(page)))
717 bad_reason = "nonzero mapcount";
718 if (unlikely(page->mapping != NULL))
719 bad_reason = "non-NULL mapping";
720 if (unlikely(atomic_read(&page->_count) != 0))
721 bad_reason = "nonzero _count";
722 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
723 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
724 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
725 }
726 #ifdef CONFIG_MEMCG
727 if (unlikely(page->mem_cgroup))
728 bad_reason = "page still charged to cgroup";
729 #endif
730 if (unlikely(bad_reason)) {
731 bad_page(page, bad_reason, bad_flags);
732 return 1;
733 }
734 page_cpupid_reset_last(page);
735 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
736 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
737 return 0;
738 }
739
740 /*
741 * Frees a number of pages from the PCP lists
742 * Assumes all pages on list are in same zone, and of same order.
743 * count is the number of pages to free.
744 *
745 * If the zone was previously in an "all pages pinned" state then look to
746 * see if this freeing clears that state.
747 *
748 * And clear the zone's pages_scanned counter, to hold off the "all pages are
749 * pinned" detection logic.
750 */
751 static void free_pcppages_bulk(struct zone *zone, int count,
752 struct per_cpu_pages *pcp)
753 {
754 int migratetype = 0;
755 int batch_free = 0;
756 int to_free = count;
757 unsigned long nr_scanned;
758
759 spin_lock(&zone->lock);
760 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
761 if (nr_scanned)
762 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
763
764 while (to_free) {
765 struct page *page;
766 struct list_head *list;
767
768 /*
769 * Remove pages from lists in a round-robin fashion. A
770 * batch_free count is maintained that is incremented when an
771 * empty list is encountered. This is so more pages are freed
772 * off fuller lists instead of spinning excessively around empty
773 * lists
774 */
775 do {
776 batch_free++;
777 if (++migratetype == MIGRATE_PCPTYPES)
778 migratetype = 0;
779 list = &pcp->lists[migratetype];
780 } while (list_empty(list));
781
782 /* This is the only non-empty list. Free them all. */
783 if (batch_free == MIGRATE_PCPTYPES)
784 batch_free = to_free;
785
786 do {
787 int mt; /* migratetype of the to-be-freed page */
788
789 page = list_entry(list->prev, struct page, lru);
790 /* must delete as __free_one_page list manipulates */
791 list_del(&page->lru);
792 mt = get_freepage_migratetype(page);
793 if (unlikely(has_isolate_pageblock(zone)))
794 mt = get_pageblock_migratetype(page);
795
796 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
797 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
798 trace_mm_page_pcpu_drain(page, 0, mt);
799 } while (--to_free && --batch_free && !list_empty(list));
800 }
801 spin_unlock(&zone->lock);
802 }
803
804 static void free_one_page(struct zone *zone,
805 struct page *page, unsigned long pfn,
806 unsigned int order,
807 int migratetype)
808 {
809 unsigned long nr_scanned;
810 spin_lock(&zone->lock);
811 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
812 if (nr_scanned)
813 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
814
815 if (unlikely(has_isolate_pageblock(zone) ||
816 is_migrate_isolate(migratetype))) {
817 migratetype = get_pfnblock_migratetype(page, pfn);
818 }
819 __free_one_page(page, pfn, zone, order, migratetype);
820 spin_unlock(&zone->lock);
821 }
822
823 static int free_tail_pages_check(struct page *head_page, struct page *page)
824 {
825 if (!IS_ENABLED(CONFIG_DEBUG_VM))
826 return 0;
827 if (unlikely(!PageTail(page))) {
828 bad_page(page, "PageTail not set", 0);
829 return 1;
830 }
831 if (unlikely(page->first_page != head_page)) {
832 bad_page(page, "first_page not consistent", 0);
833 return 1;
834 }
835 return 0;
836 }
837
838 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
839 unsigned long zone, int nid)
840 {
841 set_page_links(page, zone, nid, pfn);
842 init_page_count(page);
843 page_mapcount_reset(page);
844 page_cpupid_reset_last(page);
845
846 INIT_LIST_HEAD(&page->lru);
847 #ifdef WANT_PAGE_VIRTUAL
848 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
849 if (!is_highmem_idx(zone))
850 set_page_address(page, __va(pfn << PAGE_SHIFT));
851 #endif
852 }
853
854 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
855 int nid)
856 {
857 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
858 }
859
860 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
861 static void init_reserved_page(unsigned long pfn)
862 {
863 pg_data_t *pgdat;
864 int nid, zid;
865
866 if (!early_page_uninitialised(pfn))
867 return;
868
869 nid = early_pfn_to_nid(pfn);
870 pgdat = NODE_DATA(nid);
871
872 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
873 struct zone *zone = &pgdat->node_zones[zid];
874
875 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
876 break;
877 }
878 __init_single_pfn(pfn, zid, nid);
879 }
880 #else
881 static inline void init_reserved_page(unsigned long pfn)
882 {
883 }
884 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
885
886 /*
887 * Initialised pages do not have PageReserved set. This function is
888 * called for each range allocated by the bootmem allocator and
889 * marks the pages PageReserved. The remaining valid pages are later
890 * sent to the buddy page allocator.
891 */
892 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
893 {
894 unsigned long start_pfn = PFN_DOWN(start);
895 unsigned long end_pfn = PFN_UP(end);
896
897 for (; start_pfn < end_pfn; start_pfn++) {
898 if (pfn_valid(start_pfn)) {
899 struct page *page = pfn_to_page(start_pfn);
900
901 init_reserved_page(start_pfn);
902 SetPageReserved(page);
903 }
904 }
905 }
906
907 static bool free_pages_prepare(struct page *page, unsigned int order)
908 {
909 bool compound = PageCompound(page);
910 int i, bad = 0;
911
912 VM_BUG_ON_PAGE(PageTail(page), page);
913 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
914
915 trace_mm_page_free(page, order);
916 kmemcheck_free_shadow(page, order);
917 kasan_free_pages(page, order);
918
919 if (PageAnon(page))
920 page->mapping = NULL;
921 bad += free_pages_check(page);
922 for (i = 1; i < (1 << order); i++) {
923 if (compound)
924 bad += free_tail_pages_check(page, page + i);
925 bad += free_pages_check(page + i);
926 }
927 if (bad)
928 return false;
929
930 reset_page_owner(page, order);
931
932 if (!PageHighMem(page)) {
933 debug_check_no_locks_freed(page_address(page),
934 PAGE_SIZE << order);
935 debug_check_no_obj_freed(page_address(page),
936 PAGE_SIZE << order);
937 }
938 arch_free_page(page, order);
939 kernel_map_pages(page, 1 << order, 0);
940
941 return true;
942 }
943
944 static void __free_pages_ok(struct page *page, unsigned int order)
945 {
946 unsigned long flags;
947 int migratetype;
948 unsigned long pfn = page_to_pfn(page);
949
950 if (!free_pages_prepare(page, order))
951 return;
952
953 migratetype = get_pfnblock_migratetype(page, pfn);
954 local_irq_save(flags);
955 __count_vm_events(PGFREE, 1 << order);
956 set_freepage_migratetype(page, migratetype);
957 free_one_page(page_zone(page), page, pfn, order, migratetype);
958 local_irq_restore(flags);
959 }
960
961 static void __init __free_pages_boot_core(struct page *page,
962 unsigned long pfn, unsigned int order)
963 {
964 unsigned int nr_pages = 1 << order;
965 struct page *p = page;
966 unsigned int loop;
967
968 prefetchw(p);
969 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
970 prefetchw(p + 1);
971 __ClearPageReserved(p);
972 set_page_count(p, 0);
973 }
974 __ClearPageReserved(p);
975 set_page_count(p, 0);
976
977 page_zone(page)->managed_pages += nr_pages;
978 set_page_refcounted(page);
979 __free_pages(page, order);
980 }
981
982 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
983 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
984 /* Only safe to use early in boot when initialisation is single-threaded */
985 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
986
987 int __meminit early_pfn_to_nid(unsigned long pfn)
988 {
989 int nid;
990
991 /* The system will behave unpredictably otherwise */
992 BUG_ON(system_state != SYSTEM_BOOTING);
993
994 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
995 if (nid >= 0)
996 return nid;
997 /* just returns 0 */
998 return 0;
999 }
1000 #endif
1001
1002 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1003 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1004 struct mminit_pfnnid_cache *state)
1005 {
1006 int nid;
1007
1008 nid = __early_pfn_to_nid(pfn, state);
1009 if (nid >= 0 && nid != node)
1010 return false;
1011 return true;
1012 }
1013
1014 /* Only safe to use early in boot when initialisation is single-threaded */
1015 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1016 {
1017 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1018 }
1019
1020 #else
1021
1022 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1023 {
1024 return true;
1025 }
1026 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1027 struct mminit_pfnnid_cache *state)
1028 {
1029 return true;
1030 }
1031 #endif
1032
1033
1034 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1035 unsigned int order)
1036 {
1037 if (early_page_uninitialised(pfn))
1038 return;
1039 return __free_pages_boot_core(page, pfn, order);
1040 }
1041
1042 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1043 static void __init deferred_free_range(struct page *page,
1044 unsigned long pfn, int nr_pages)
1045 {
1046 int i;
1047
1048 if (!page)
1049 return;
1050
1051 /* Free a large naturally-aligned chunk if possible */
1052 if (nr_pages == MAX_ORDER_NR_PAGES &&
1053 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1054 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1055 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1056 return;
1057 }
1058
1059 for (i = 0; i < nr_pages; i++, page++, pfn++)
1060 __free_pages_boot_core(page, pfn, 0);
1061 }
1062
1063 static __initdata DECLARE_RWSEM(pgdat_init_rwsem);
1064
1065 /* Initialise remaining memory on a node */
1066 static int __init deferred_init_memmap(void *data)
1067 {
1068 pg_data_t *pgdat = data;
1069 int nid = pgdat->node_id;
1070 struct mminit_pfnnid_cache nid_init_state = { };
1071 unsigned long start = jiffies;
1072 unsigned long nr_pages = 0;
1073 unsigned long walk_start, walk_end;
1074 int i, zid;
1075 struct zone *zone;
1076 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1077 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1078
1079 if (first_init_pfn == ULONG_MAX) {
1080 up_read(&pgdat_init_rwsem);
1081 return 0;
1082 }
1083
1084 /* Bind memory initialisation thread to a local node if possible */
1085 if (!cpumask_empty(cpumask))
1086 set_cpus_allowed_ptr(current, cpumask);
1087
1088 /* Sanity check boundaries */
1089 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1090 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1091 pgdat->first_deferred_pfn = ULONG_MAX;
1092
1093 /* Only the highest zone is deferred so find it */
1094 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1095 zone = pgdat->node_zones + zid;
1096 if (first_init_pfn < zone_end_pfn(zone))
1097 break;
1098 }
1099
1100 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1101 unsigned long pfn, end_pfn;
1102 struct page *page = NULL;
1103 struct page *free_base_page = NULL;
1104 unsigned long free_base_pfn = 0;
1105 int nr_to_free = 0;
1106
1107 end_pfn = min(walk_end, zone_end_pfn(zone));
1108 pfn = first_init_pfn;
1109 if (pfn < walk_start)
1110 pfn = walk_start;
1111 if (pfn < zone->zone_start_pfn)
1112 pfn = zone->zone_start_pfn;
1113
1114 for (; pfn < end_pfn; pfn++) {
1115 if (!pfn_valid_within(pfn))
1116 goto free_range;
1117
1118 /*
1119 * Ensure pfn_valid is checked every
1120 * MAX_ORDER_NR_PAGES for memory holes
1121 */
1122 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1123 if (!pfn_valid(pfn)) {
1124 page = NULL;
1125 goto free_range;
1126 }
1127 }
1128
1129 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1130 page = NULL;
1131 goto free_range;
1132 }
1133
1134 /* Minimise pfn page lookups and scheduler checks */
1135 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1136 page++;
1137 } else {
1138 nr_pages += nr_to_free;
1139 deferred_free_range(free_base_page,
1140 free_base_pfn, nr_to_free);
1141 free_base_page = NULL;
1142 free_base_pfn = nr_to_free = 0;
1143
1144 page = pfn_to_page(pfn);
1145 cond_resched();
1146 }
1147
1148 if (page->flags) {
1149 VM_BUG_ON(page_zone(page) != zone);
1150 goto free_range;
1151 }
1152
1153 __init_single_page(page, pfn, zid, nid);
1154 if (!free_base_page) {
1155 free_base_page = page;
1156 free_base_pfn = pfn;
1157 nr_to_free = 0;
1158 }
1159 nr_to_free++;
1160
1161 /* Where possible, batch up pages for a single free */
1162 continue;
1163 free_range:
1164 /* Free the current block of pages to allocator */
1165 nr_pages += nr_to_free;
1166 deferred_free_range(free_base_page, free_base_pfn,
1167 nr_to_free);
1168 free_base_page = NULL;
1169 free_base_pfn = nr_to_free = 0;
1170 }
1171
1172 first_init_pfn = max(end_pfn, first_init_pfn);
1173 }
1174
1175 /* Sanity check that the next zone really is unpopulated */
1176 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1177
1178 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1179 jiffies_to_msecs(jiffies - start));
1180 up_read(&pgdat_init_rwsem);
1181 return 0;
1182 }
1183
1184 void __init page_alloc_init_late(void)
1185 {
1186 int nid;
1187
1188 for_each_node_state(nid, N_MEMORY) {
1189 down_read(&pgdat_init_rwsem);
1190 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1191 }
1192
1193 /* Block until all are initialised */
1194 down_write(&pgdat_init_rwsem);
1195 up_write(&pgdat_init_rwsem);
1196 }
1197 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1198
1199 #ifdef CONFIG_CMA
1200 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1201 void __init init_cma_reserved_pageblock(struct page *page)
1202 {
1203 unsigned i = pageblock_nr_pages;
1204 struct page *p = page;
1205
1206 do {
1207 __ClearPageReserved(p);
1208 set_page_count(p, 0);
1209 } while (++p, --i);
1210
1211 set_pageblock_migratetype(page, MIGRATE_CMA);
1212
1213 if (pageblock_order >= MAX_ORDER) {
1214 i = pageblock_nr_pages;
1215 p = page;
1216 do {
1217 set_page_refcounted(p);
1218 __free_pages(p, MAX_ORDER - 1);
1219 p += MAX_ORDER_NR_PAGES;
1220 } while (i -= MAX_ORDER_NR_PAGES);
1221 } else {
1222 set_page_refcounted(page);
1223 __free_pages(page, pageblock_order);
1224 }
1225
1226 adjust_managed_page_count(page, pageblock_nr_pages);
1227 }
1228 #endif
1229
1230 /*
1231 * The order of subdivision here is critical for the IO subsystem.
1232 * Please do not alter this order without good reasons and regression
1233 * testing. Specifically, as large blocks of memory are subdivided,
1234 * the order in which smaller blocks are delivered depends on the order
1235 * they're subdivided in this function. This is the primary factor
1236 * influencing the order in which pages are delivered to the IO
1237 * subsystem according to empirical testing, and this is also justified
1238 * by considering the behavior of a buddy system containing a single
1239 * large block of memory acted on by a series of small allocations.
1240 * This behavior is a critical factor in sglist merging's success.
1241 *
1242 * -- nyc
1243 */
1244 static inline void expand(struct zone *zone, struct page *page,
1245 int low, int high, struct free_area *area,
1246 int migratetype)
1247 {
1248 unsigned long size = 1 << high;
1249
1250 while (high > low) {
1251 area--;
1252 high--;
1253 size >>= 1;
1254 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1255
1256 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1257 debug_guardpage_enabled() &&
1258 high < debug_guardpage_minorder()) {
1259 /*
1260 * Mark as guard pages (or page), that will allow to
1261 * merge back to allocator when buddy will be freed.
1262 * Corresponding page table entries will not be touched,
1263 * pages will stay not present in virtual address space
1264 */
1265 set_page_guard(zone, &page[size], high, migratetype);
1266 continue;
1267 }
1268 list_add(&page[size].lru, &area->free_list[migratetype]);
1269 area->nr_free++;
1270 set_page_order(&page[size], high);
1271 }
1272 }
1273
1274 /*
1275 * This page is about to be returned from the page allocator
1276 */
1277 static inline int check_new_page(struct page *page)
1278 {
1279 const char *bad_reason = NULL;
1280 unsigned long bad_flags = 0;
1281
1282 if (unlikely(page_mapcount(page)))
1283 bad_reason = "nonzero mapcount";
1284 if (unlikely(page->mapping != NULL))
1285 bad_reason = "non-NULL mapping";
1286 if (unlikely(atomic_read(&page->_count) != 0))
1287 bad_reason = "nonzero _count";
1288 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1289 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1290 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1291 }
1292 #ifdef CONFIG_MEMCG
1293 if (unlikely(page->mem_cgroup))
1294 bad_reason = "page still charged to cgroup";
1295 #endif
1296 if (unlikely(bad_reason)) {
1297 bad_page(page, bad_reason, bad_flags);
1298 return 1;
1299 }
1300 return 0;
1301 }
1302
1303 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1304 int alloc_flags)
1305 {
1306 int i;
1307
1308 for (i = 0; i < (1 << order); i++) {
1309 struct page *p = page + i;
1310 if (unlikely(check_new_page(p)))
1311 return 1;
1312 }
1313
1314 set_page_private(page, 0);
1315 set_page_refcounted(page);
1316
1317 arch_alloc_page(page, order);
1318 kernel_map_pages(page, 1 << order, 1);
1319 kasan_alloc_pages(page, order);
1320
1321 if (gfp_flags & __GFP_ZERO)
1322 for (i = 0; i < (1 << order); i++)
1323 clear_highpage(page + i);
1324
1325 if (order && (gfp_flags & __GFP_COMP))
1326 prep_compound_page(page, order);
1327
1328 set_page_owner(page, order, gfp_flags);
1329
1330 /*
1331 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
1332 * allocate the page. The expectation is that the caller is taking
1333 * steps that will free more memory. The caller should avoid the page
1334 * being used for !PFMEMALLOC purposes.
1335 */
1336 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1337
1338 return 0;
1339 }
1340
1341 /*
1342 * Go through the free lists for the given migratetype and remove
1343 * the smallest available page from the freelists
1344 */
1345 static inline
1346 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1347 int migratetype)
1348 {
1349 unsigned int current_order;
1350 struct free_area *area;
1351 struct page *page;
1352
1353 /* Find a page of the appropriate size in the preferred list */
1354 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1355 area = &(zone->free_area[current_order]);
1356 if (list_empty(&area->free_list[migratetype]))
1357 continue;
1358
1359 page = list_entry(area->free_list[migratetype].next,
1360 struct page, lru);
1361 list_del(&page->lru);
1362 rmv_page_order(page);
1363 area->nr_free--;
1364 expand(zone, page, order, current_order, area, migratetype);
1365 set_freepage_migratetype(page, migratetype);
1366 return page;
1367 }
1368
1369 return NULL;
1370 }
1371
1372
1373 /*
1374 * This array describes the order lists are fallen back to when
1375 * the free lists for the desirable migrate type are depleted
1376 */
1377 static int fallbacks[MIGRATE_TYPES][4] = {
1378 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1379 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1380 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1381 #ifdef CONFIG_CMA
1382 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
1383 #endif
1384 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
1385 #ifdef CONFIG_MEMORY_ISOLATION
1386 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
1387 #endif
1388 };
1389
1390 #ifdef CONFIG_CMA
1391 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1392 unsigned int order)
1393 {
1394 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1395 }
1396 #else
1397 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1398 unsigned int order) { return NULL; }
1399 #endif
1400
1401 /*
1402 * Move the free pages in a range to the free lists of the requested type.
1403 * Note that start_page and end_pages are not aligned on a pageblock
1404 * boundary. If alignment is required, use move_freepages_block()
1405 */
1406 int move_freepages(struct zone *zone,
1407 struct page *start_page, struct page *end_page,
1408 int migratetype)
1409 {
1410 struct page *page;
1411 unsigned long order;
1412 int pages_moved = 0;
1413
1414 #ifndef CONFIG_HOLES_IN_ZONE
1415 /*
1416 * page_zone is not safe to call in this context when
1417 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1418 * anyway as we check zone boundaries in move_freepages_block().
1419 * Remove at a later date when no bug reports exist related to
1420 * grouping pages by mobility
1421 */
1422 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1423 #endif
1424
1425 for (page = start_page; page <= end_page;) {
1426 /* Make sure we are not inadvertently changing nodes */
1427 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1428
1429 if (!pfn_valid_within(page_to_pfn(page))) {
1430 page++;
1431 continue;
1432 }
1433
1434 if (!PageBuddy(page)) {
1435 page++;
1436 continue;
1437 }
1438
1439 order = page_order(page);
1440 list_move(&page->lru,
1441 &zone->free_area[order].free_list[migratetype]);
1442 set_freepage_migratetype(page, migratetype);
1443 page += 1 << order;
1444 pages_moved += 1 << order;
1445 }
1446
1447 return pages_moved;
1448 }
1449
1450 int move_freepages_block(struct zone *zone, struct page *page,
1451 int migratetype)
1452 {
1453 unsigned long start_pfn, end_pfn;
1454 struct page *start_page, *end_page;
1455
1456 start_pfn = page_to_pfn(page);
1457 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1458 start_page = pfn_to_page(start_pfn);
1459 end_page = start_page + pageblock_nr_pages - 1;
1460 end_pfn = start_pfn + pageblock_nr_pages - 1;
1461
1462 /* Do not cross zone boundaries */
1463 if (!zone_spans_pfn(zone, start_pfn))
1464 start_page = page;
1465 if (!zone_spans_pfn(zone, end_pfn))
1466 return 0;
1467
1468 return move_freepages(zone, start_page, end_page, migratetype);
1469 }
1470
1471 static void change_pageblock_range(struct page *pageblock_page,
1472 int start_order, int migratetype)
1473 {
1474 int nr_pageblocks = 1 << (start_order - pageblock_order);
1475
1476 while (nr_pageblocks--) {
1477 set_pageblock_migratetype(pageblock_page, migratetype);
1478 pageblock_page += pageblock_nr_pages;
1479 }
1480 }
1481
1482 /*
1483 * When we are falling back to another migratetype during allocation, try to
1484 * steal extra free pages from the same pageblocks to satisfy further
1485 * allocations, instead of polluting multiple pageblocks.
1486 *
1487 * If we are stealing a relatively large buddy page, it is likely there will
1488 * be more free pages in the pageblock, so try to steal them all. For
1489 * reclaimable and unmovable allocations, we steal regardless of page size,
1490 * as fragmentation caused by those allocations polluting movable pageblocks
1491 * is worse than movable allocations stealing from unmovable and reclaimable
1492 * pageblocks.
1493 */
1494 static bool can_steal_fallback(unsigned int order, int start_mt)
1495 {
1496 /*
1497 * Leaving this order check is intended, although there is
1498 * relaxed order check in next check. The reason is that
1499 * we can actually steal whole pageblock if this condition met,
1500 * but, below check doesn't guarantee it and that is just heuristic
1501 * so could be changed anytime.
1502 */
1503 if (order >= pageblock_order)
1504 return true;
1505
1506 if (order >= pageblock_order / 2 ||
1507 start_mt == MIGRATE_RECLAIMABLE ||
1508 start_mt == MIGRATE_UNMOVABLE ||
1509 page_group_by_mobility_disabled)
1510 return true;
1511
1512 return false;
1513 }
1514
1515 /*
1516 * This function implements actual steal behaviour. If order is large enough,
1517 * we can steal whole pageblock. If not, we first move freepages in this
1518 * pageblock and check whether half of pages are moved or not. If half of
1519 * pages are moved, we can change migratetype of pageblock and permanently
1520 * use it's pages as requested migratetype in the future.
1521 */
1522 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1523 int start_type)
1524 {
1525 int current_order = page_order(page);
1526 int pages;
1527
1528 /* Take ownership for orders >= pageblock_order */
1529 if (current_order >= pageblock_order) {
1530 change_pageblock_range(page, current_order, start_type);
1531 return;
1532 }
1533
1534 pages = move_freepages_block(zone, page, start_type);
1535
1536 /* Claim the whole block if over half of it is free */
1537 if (pages >= (1 << (pageblock_order-1)) ||
1538 page_group_by_mobility_disabled)
1539 set_pageblock_migratetype(page, start_type);
1540 }
1541
1542 /*
1543 * Check whether there is a suitable fallback freepage with requested order.
1544 * If only_stealable is true, this function returns fallback_mt only if
1545 * we can steal other freepages all together. This would help to reduce
1546 * fragmentation due to mixed migratetype pages in one pageblock.
1547 */
1548 int find_suitable_fallback(struct free_area *area, unsigned int order,
1549 int migratetype, bool only_stealable, bool *can_steal)
1550 {
1551 int i;
1552 int fallback_mt;
1553
1554 if (area->nr_free == 0)
1555 return -1;
1556
1557 *can_steal = false;
1558 for (i = 0;; i++) {
1559 fallback_mt = fallbacks[migratetype][i];
1560 if (fallback_mt == MIGRATE_RESERVE)
1561 break;
1562
1563 if (list_empty(&area->free_list[fallback_mt]))
1564 continue;
1565
1566 if (can_steal_fallback(order, migratetype))
1567 *can_steal = true;
1568
1569 if (!only_stealable)
1570 return fallback_mt;
1571
1572 if (*can_steal)
1573 return fallback_mt;
1574 }
1575
1576 return -1;
1577 }
1578
1579 /* Remove an element from the buddy allocator from the fallback list */
1580 static inline struct page *
1581 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1582 {
1583 struct free_area *area;
1584 unsigned int current_order;
1585 struct page *page;
1586 int fallback_mt;
1587 bool can_steal;
1588
1589 /* Find the largest possible block of pages in the other list */
1590 for (current_order = MAX_ORDER-1;
1591 current_order >= order && current_order <= MAX_ORDER-1;
1592 --current_order) {
1593 area = &(zone->free_area[current_order]);
1594 fallback_mt = find_suitable_fallback(area, current_order,
1595 start_migratetype, false, &can_steal);
1596 if (fallback_mt == -1)
1597 continue;
1598
1599 page = list_entry(area->free_list[fallback_mt].next,
1600 struct page, lru);
1601 if (can_steal)
1602 steal_suitable_fallback(zone, page, start_migratetype);
1603
1604 /* Remove the page from the freelists */
1605 area->nr_free--;
1606 list_del(&page->lru);
1607 rmv_page_order(page);
1608
1609 expand(zone, page, order, current_order, area,
1610 start_migratetype);
1611 /*
1612 * The freepage_migratetype may differ from pageblock's
1613 * migratetype depending on the decisions in
1614 * try_to_steal_freepages(). This is OK as long as it
1615 * does not differ for MIGRATE_CMA pageblocks. For CMA
1616 * we need to make sure unallocated pages flushed from
1617 * pcp lists are returned to the correct freelist.
1618 */
1619 set_freepage_migratetype(page, start_migratetype);
1620
1621 trace_mm_page_alloc_extfrag(page, order, current_order,
1622 start_migratetype, fallback_mt);
1623
1624 return page;
1625 }
1626
1627 return NULL;
1628 }
1629
1630 /*
1631 * Do the hard work of removing an element from the buddy allocator.
1632 * Call me with the zone->lock already held.
1633 */
1634 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1635 int migratetype)
1636 {
1637 struct page *page;
1638
1639 retry_reserve:
1640 page = __rmqueue_smallest(zone, order, migratetype);
1641
1642 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1643 if (migratetype == MIGRATE_MOVABLE)
1644 page = __rmqueue_cma_fallback(zone, order);
1645
1646 if (!page)
1647 page = __rmqueue_fallback(zone, order, migratetype);
1648
1649 /*
1650 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1651 * is used because __rmqueue_smallest is an inline function
1652 * and we want just one call site
1653 */
1654 if (!page) {
1655 migratetype = MIGRATE_RESERVE;
1656 goto retry_reserve;
1657 }
1658 }
1659
1660 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1661 return page;
1662 }
1663
1664 /*
1665 * Obtain a specified number of elements from the buddy allocator, all under
1666 * a single hold of the lock, for efficiency. Add them to the supplied list.
1667 * Returns the number of new pages which were placed at *list.
1668 */
1669 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1670 unsigned long count, struct list_head *list,
1671 int migratetype, bool cold)
1672 {
1673 int i;
1674
1675 spin_lock(&zone->lock);
1676 for (i = 0; i < count; ++i) {
1677 struct page *page = __rmqueue(zone, order, migratetype);
1678 if (unlikely(page == NULL))
1679 break;
1680
1681 /*
1682 * Split buddy pages returned by expand() are received here
1683 * in physical page order. The page is added to the callers and
1684 * list and the list head then moves forward. From the callers
1685 * perspective, the linked list is ordered by page number in
1686 * some conditions. This is useful for IO devices that can
1687 * merge IO requests if the physical pages are ordered
1688 * properly.
1689 */
1690 if (likely(!cold))
1691 list_add(&page->lru, list);
1692 else
1693 list_add_tail(&page->lru, list);
1694 list = &page->lru;
1695 if (is_migrate_cma(get_freepage_migratetype(page)))
1696 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1697 -(1 << order));
1698 }
1699 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1700 spin_unlock(&zone->lock);
1701 return i;
1702 }
1703
1704 #ifdef CONFIG_NUMA
1705 /*
1706 * Called from the vmstat counter updater to drain pagesets of this
1707 * currently executing processor on remote nodes after they have
1708 * expired.
1709 *
1710 * Note that this function must be called with the thread pinned to
1711 * a single processor.
1712 */
1713 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1714 {
1715 unsigned long flags;
1716 int to_drain, batch;
1717
1718 local_irq_save(flags);
1719 batch = READ_ONCE(pcp->batch);
1720 to_drain = min(pcp->count, batch);
1721 if (to_drain > 0) {
1722 free_pcppages_bulk(zone, to_drain, pcp);
1723 pcp->count -= to_drain;
1724 }
1725 local_irq_restore(flags);
1726 }
1727 #endif
1728
1729 /*
1730 * Drain pcplists of the indicated processor and zone.
1731 *
1732 * The processor must either be the current processor and the
1733 * thread pinned to the current processor or a processor that
1734 * is not online.
1735 */
1736 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1737 {
1738 unsigned long flags;
1739 struct per_cpu_pageset *pset;
1740 struct per_cpu_pages *pcp;
1741
1742 local_irq_save(flags);
1743 pset = per_cpu_ptr(zone->pageset, cpu);
1744
1745 pcp = &pset->pcp;
1746 if (pcp->count) {
1747 free_pcppages_bulk(zone, pcp->count, pcp);
1748 pcp->count = 0;
1749 }
1750 local_irq_restore(flags);
1751 }
1752
1753 /*
1754 * Drain pcplists of all zones on the indicated processor.
1755 *
1756 * The processor must either be the current processor and the
1757 * thread pinned to the current processor or a processor that
1758 * is not online.
1759 */
1760 static void drain_pages(unsigned int cpu)
1761 {
1762 struct zone *zone;
1763
1764 for_each_populated_zone(zone) {
1765 drain_pages_zone(cpu, zone);
1766 }
1767 }
1768
1769 /*
1770 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1771 *
1772 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1773 * the single zone's pages.
1774 */
1775 void drain_local_pages(struct zone *zone)
1776 {
1777 int cpu = smp_processor_id();
1778
1779 if (zone)
1780 drain_pages_zone(cpu, zone);
1781 else
1782 drain_pages(cpu);
1783 }
1784
1785 /*
1786 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1787 *
1788 * When zone parameter is non-NULL, spill just the single zone's pages.
1789 *
1790 * Note that this code is protected against sending an IPI to an offline
1791 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1792 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1793 * nothing keeps CPUs from showing up after we populated the cpumask and
1794 * before the call to on_each_cpu_mask().
1795 */
1796 void drain_all_pages(struct zone *zone)
1797 {
1798 int cpu;
1799
1800 /*
1801 * Allocate in the BSS so we wont require allocation in
1802 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1803 */
1804 static cpumask_t cpus_with_pcps;
1805
1806 /*
1807 * We don't care about racing with CPU hotplug event
1808 * as offline notification will cause the notified
1809 * cpu to drain that CPU pcps and on_each_cpu_mask
1810 * disables preemption as part of its processing
1811 */
1812 for_each_online_cpu(cpu) {
1813 struct per_cpu_pageset *pcp;
1814 struct zone *z;
1815 bool has_pcps = false;
1816
1817 if (zone) {
1818 pcp = per_cpu_ptr(zone->pageset, cpu);
1819 if (pcp->pcp.count)
1820 has_pcps = true;
1821 } else {
1822 for_each_populated_zone(z) {
1823 pcp = per_cpu_ptr(z->pageset, cpu);
1824 if (pcp->pcp.count) {
1825 has_pcps = true;
1826 break;
1827 }
1828 }
1829 }
1830
1831 if (has_pcps)
1832 cpumask_set_cpu(cpu, &cpus_with_pcps);
1833 else
1834 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1835 }
1836 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1837 zone, 1);
1838 }
1839
1840 #ifdef CONFIG_HIBERNATION
1841
1842 void mark_free_pages(struct zone *zone)
1843 {
1844 unsigned long pfn, max_zone_pfn;
1845 unsigned long flags;
1846 unsigned int order, t;
1847 struct list_head *curr;
1848
1849 if (zone_is_empty(zone))
1850 return;
1851
1852 spin_lock_irqsave(&zone->lock, flags);
1853
1854 max_zone_pfn = zone_end_pfn(zone);
1855 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1856 if (pfn_valid(pfn)) {
1857 struct page *page = pfn_to_page(pfn);
1858
1859 if (!swsusp_page_is_forbidden(page))
1860 swsusp_unset_page_free(page);
1861 }
1862
1863 for_each_migratetype_order(order, t) {
1864 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1865 unsigned long i;
1866
1867 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1868 for (i = 0; i < (1UL << order); i++)
1869 swsusp_set_page_free(pfn_to_page(pfn + i));
1870 }
1871 }
1872 spin_unlock_irqrestore(&zone->lock, flags);
1873 }
1874 #endif /* CONFIG_PM */
1875
1876 /*
1877 * Free a 0-order page
1878 * cold == true ? free a cold page : free a hot page
1879 */
1880 void free_hot_cold_page(struct page *page, bool cold)
1881 {
1882 struct zone *zone = page_zone(page);
1883 struct per_cpu_pages *pcp;
1884 unsigned long flags;
1885 unsigned long pfn = page_to_pfn(page);
1886 int migratetype;
1887
1888 if (!free_pages_prepare(page, 0))
1889 return;
1890
1891 migratetype = get_pfnblock_migratetype(page, pfn);
1892 set_freepage_migratetype(page, migratetype);
1893 local_irq_save(flags);
1894 __count_vm_event(PGFREE);
1895
1896 /*
1897 * We only track unmovable, reclaimable and movable on pcp lists.
1898 * Free ISOLATE pages back to the allocator because they are being
1899 * offlined but treat RESERVE as movable pages so we can get those
1900 * areas back if necessary. Otherwise, we may have to free
1901 * excessively into the page allocator
1902 */
1903 if (migratetype >= MIGRATE_PCPTYPES) {
1904 if (unlikely(is_migrate_isolate(migratetype))) {
1905 free_one_page(zone, page, pfn, 0, migratetype);
1906 goto out;
1907 }
1908 migratetype = MIGRATE_MOVABLE;
1909 }
1910
1911 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1912 if (!cold)
1913 list_add(&page->lru, &pcp->lists[migratetype]);
1914 else
1915 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1916 pcp->count++;
1917 if (pcp->count >= pcp->high) {
1918 unsigned long batch = READ_ONCE(pcp->batch);
1919 free_pcppages_bulk(zone, batch, pcp);
1920 pcp->count -= batch;
1921 }
1922
1923 out:
1924 local_irq_restore(flags);
1925 }
1926
1927 /*
1928 * Free a list of 0-order pages
1929 */
1930 void free_hot_cold_page_list(struct list_head *list, bool cold)
1931 {
1932 struct page *page, *next;
1933
1934 list_for_each_entry_safe(page, next, list, lru) {
1935 trace_mm_page_free_batched(page, cold);
1936 free_hot_cold_page(page, cold);
1937 }
1938 }
1939
1940 /*
1941 * split_page takes a non-compound higher-order page, and splits it into
1942 * n (1<<order) sub-pages: page[0..n]
1943 * Each sub-page must be freed individually.
1944 *
1945 * Note: this is probably too low level an operation for use in drivers.
1946 * Please consult with lkml before using this in your driver.
1947 */
1948 void split_page(struct page *page, unsigned int order)
1949 {
1950 int i;
1951 gfp_t gfp_mask;
1952
1953 VM_BUG_ON_PAGE(PageCompound(page), page);
1954 VM_BUG_ON_PAGE(!page_count(page), page);
1955
1956 #ifdef CONFIG_KMEMCHECK
1957 /*
1958 * Split shadow pages too, because free(page[0]) would
1959 * otherwise free the whole shadow.
1960 */
1961 if (kmemcheck_page_is_tracked(page))
1962 split_page(virt_to_page(page[0].shadow), order);
1963 #endif
1964
1965 gfp_mask = get_page_owner_gfp(page);
1966 set_page_owner(page, 0, gfp_mask);
1967 for (i = 1; i < (1 << order); i++) {
1968 set_page_refcounted(page + i);
1969 set_page_owner(page + i, 0, gfp_mask);
1970 }
1971 }
1972 EXPORT_SYMBOL_GPL(split_page);
1973
1974 int __isolate_free_page(struct page *page, unsigned int order)
1975 {
1976 unsigned long watermark;
1977 struct zone *zone;
1978 int mt;
1979
1980 BUG_ON(!PageBuddy(page));
1981
1982 zone = page_zone(page);
1983 mt = get_pageblock_migratetype(page);
1984
1985 if (!is_migrate_isolate(mt)) {
1986 /* Obey watermarks as if the page was being allocated */
1987 watermark = low_wmark_pages(zone) + (1 << order);
1988 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1989 return 0;
1990
1991 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1992 }
1993
1994 /* Remove page from free list */
1995 list_del(&page->lru);
1996 zone->free_area[order].nr_free--;
1997 rmv_page_order(page);
1998
1999 set_page_owner(page, order, __GFP_MOVABLE);
2000
2001 /* Set the pageblock if the isolated page is at least a pageblock */
2002 if (order >= pageblock_order - 1) {
2003 struct page *endpage = page + (1 << order) - 1;
2004 for (; page < endpage; page += pageblock_nr_pages) {
2005 int mt = get_pageblock_migratetype(page);
2006 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2007 set_pageblock_migratetype(page,
2008 MIGRATE_MOVABLE);
2009 }
2010 }
2011
2012
2013 return 1UL << order;
2014 }
2015
2016 /*
2017 * Similar to split_page except the page is already free. As this is only
2018 * being used for migration, the migratetype of the block also changes.
2019 * As this is called with interrupts disabled, the caller is responsible
2020 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2021 * are enabled.
2022 *
2023 * Note: this is probably too low level an operation for use in drivers.
2024 * Please consult with lkml before using this in your driver.
2025 */
2026 int split_free_page(struct page *page)
2027 {
2028 unsigned int order;
2029 int nr_pages;
2030
2031 order = page_order(page);
2032
2033 nr_pages = __isolate_free_page(page, order);
2034 if (!nr_pages)
2035 return 0;
2036
2037 /* Split into individual pages */
2038 set_page_refcounted(page);
2039 split_page(page, order);
2040 return nr_pages;
2041 }
2042
2043 /*
2044 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2045 */
2046 static inline
2047 struct page *buffered_rmqueue(struct zone *preferred_zone,
2048 struct zone *zone, unsigned int order,
2049 gfp_t gfp_flags, int migratetype)
2050 {
2051 unsigned long flags;
2052 struct page *page;
2053 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2054
2055 if (likely(order == 0)) {
2056 struct per_cpu_pages *pcp;
2057 struct list_head *list;
2058
2059 local_irq_save(flags);
2060 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2061 list = &pcp->lists[migratetype];
2062 if (list_empty(list)) {
2063 pcp->count += rmqueue_bulk(zone, 0,
2064 pcp->batch, list,
2065 migratetype, cold);
2066 if (unlikely(list_empty(list)))
2067 goto failed;
2068 }
2069
2070 if (cold)
2071 page = list_entry(list->prev, struct page, lru);
2072 else
2073 page = list_entry(list->next, struct page, lru);
2074
2075 list_del(&page->lru);
2076 pcp->count--;
2077 } else {
2078 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2079 /*
2080 * __GFP_NOFAIL is not to be used in new code.
2081 *
2082 * All __GFP_NOFAIL callers should be fixed so that they
2083 * properly detect and handle allocation failures.
2084 *
2085 * We most definitely don't want callers attempting to
2086 * allocate greater than order-1 page units with
2087 * __GFP_NOFAIL.
2088 */
2089 WARN_ON_ONCE(order > 1);
2090 }
2091 spin_lock_irqsave(&zone->lock, flags);
2092 page = __rmqueue(zone, order, migratetype);
2093 spin_unlock(&zone->lock);
2094 if (!page)
2095 goto failed;
2096 __mod_zone_freepage_state(zone, -(1 << order),
2097 get_freepage_migratetype(page));
2098 }
2099
2100 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2101 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2102 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2103 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2104
2105 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2106 zone_statistics(preferred_zone, zone, gfp_flags);
2107 local_irq_restore(flags);
2108
2109 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2110 return page;
2111
2112 failed:
2113 local_irq_restore(flags);
2114 return NULL;
2115 }
2116
2117 #ifdef CONFIG_FAIL_PAGE_ALLOC
2118
2119 static struct {
2120 struct fault_attr attr;
2121
2122 u32 ignore_gfp_highmem;
2123 u32 ignore_gfp_wait;
2124 u32 min_order;
2125 } fail_page_alloc = {
2126 .attr = FAULT_ATTR_INITIALIZER,
2127 .ignore_gfp_wait = 1,
2128 .ignore_gfp_highmem = 1,
2129 .min_order = 1,
2130 };
2131
2132 static int __init setup_fail_page_alloc(char *str)
2133 {
2134 return setup_fault_attr(&fail_page_alloc.attr, str);
2135 }
2136 __setup("fail_page_alloc=", setup_fail_page_alloc);
2137
2138 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2139 {
2140 if (order < fail_page_alloc.min_order)
2141 return false;
2142 if (gfp_mask & __GFP_NOFAIL)
2143 return false;
2144 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2145 return false;
2146 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
2147 return false;
2148
2149 return should_fail(&fail_page_alloc.attr, 1 << order);
2150 }
2151
2152 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2153
2154 static int __init fail_page_alloc_debugfs(void)
2155 {
2156 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2157 struct dentry *dir;
2158
2159 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2160 &fail_page_alloc.attr);
2161 if (IS_ERR(dir))
2162 return PTR_ERR(dir);
2163
2164 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2165 &fail_page_alloc.ignore_gfp_wait))
2166 goto fail;
2167 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2168 &fail_page_alloc.ignore_gfp_highmem))
2169 goto fail;
2170 if (!debugfs_create_u32("min-order", mode, dir,
2171 &fail_page_alloc.min_order))
2172 goto fail;
2173
2174 return 0;
2175 fail:
2176 debugfs_remove_recursive(dir);
2177
2178 return -ENOMEM;
2179 }
2180
2181 late_initcall(fail_page_alloc_debugfs);
2182
2183 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2184
2185 #else /* CONFIG_FAIL_PAGE_ALLOC */
2186
2187 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2188 {
2189 return false;
2190 }
2191
2192 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2193
2194 /*
2195 * Return true if free pages are above 'mark'. This takes into account the order
2196 * of the allocation.
2197 */
2198 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2199 unsigned long mark, int classzone_idx, int alloc_flags,
2200 long free_pages)
2201 {
2202 /* free_pages may go negative - that's OK */
2203 long min = mark;
2204 int o;
2205 long free_cma = 0;
2206
2207 free_pages -= (1 << order) - 1;
2208 if (alloc_flags & ALLOC_HIGH)
2209 min -= min / 2;
2210 if (alloc_flags & ALLOC_HARDER)
2211 min -= min / 4;
2212 #ifdef CONFIG_CMA
2213 /* If allocation can't use CMA areas don't use free CMA pages */
2214 if (!(alloc_flags & ALLOC_CMA))
2215 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
2216 #endif
2217
2218 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
2219 return false;
2220 for (o = 0; o < order; o++) {
2221 /* At the next order, this order's pages become unavailable */
2222 free_pages -= z->free_area[o].nr_free << o;
2223
2224 /* Require fewer higher order pages to be free */
2225 min >>= 1;
2226
2227 if (free_pages <= min)
2228 return false;
2229 }
2230 return true;
2231 }
2232
2233 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2234 int classzone_idx, int alloc_flags)
2235 {
2236 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2237 zone_page_state(z, NR_FREE_PAGES));
2238 }
2239
2240 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2241 unsigned long mark, int classzone_idx, int alloc_flags)
2242 {
2243 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2244
2245 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2246 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2247
2248 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2249 free_pages);
2250 }
2251
2252 #ifdef CONFIG_NUMA
2253 /*
2254 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
2255 * skip over zones that are not allowed by the cpuset, or that have
2256 * been recently (in last second) found to be nearly full. See further
2257 * comments in mmzone.h. Reduces cache footprint of zonelist scans
2258 * that have to skip over a lot of full or unallowed zones.
2259 *
2260 * If the zonelist cache is present in the passed zonelist, then
2261 * returns a pointer to the allowed node mask (either the current
2262 * tasks mems_allowed, or node_states[N_MEMORY].)
2263 *
2264 * If the zonelist cache is not available for this zonelist, does
2265 * nothing and returns NULL.
2266 *
2267 * If the fullzones BITMAP in the zonelist cache is stale (more than
2268 * a second since last zap'd) then we zap it out (clear its bits.)
2269 *
2270 * We hold off even calling zlc_setup, until after we've checked the
2271 * first zone in the zonelist, on the theory that most allocations will
2272 * be satisfied from that first zone, so best to examine that zone as
2273 * quickly as we can.
2274 */
2275 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2276 {
2277 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2278 nodemask_t *allowednodes; /* zonelist_cache approximation */
2279
2280 zlc = zonelist->zlcache_ptr;
2281 if (!zlc)
2282 return NULL;
2283
2284 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
2285 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2286 zlc->last_full_zap = jiffies;
2287 }
2288
2289 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
2290 &cpuset_current_mems_allowed :
2291 &node_states[N_MEMORY];
2292 return allowednodes;
2293 }
2294
2295 /*
2296 * Given 'z' scanning a zonelist, run a couple of quick checks to see
2297 * if it is worth looking at further for free memory:
2298 * 1) Check that the zone isn't thought to be full (doesn't have its
2299 * bit set in the zonelist_cache fullzones BITMAP).
2300 * 2) Check that the zones node (obtained from the zonelist_cache
2301 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
2302 * Return true (non-zero) if zone is worth looking at further, or
2303 * else return false (zero) if it is not.
2304 *
2305 * This check -ignores- the distinction between various watermarks,
2306 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
2307 * found to be full for any variation of these watermarks, it will
2308 * be considered full for up to one second by all requests, unless
2309 * we are so low on memory on all allowed nodes that we are forced
2310 * into the second scan of the zonelist.
2311 *
2312 * In the second scan we ignore this zonelist cache and exactly
2313 * apply the watermarks to all zones, even it is slower to do so.
2314 * We are low on memory in the second scan, and should leave no stone
2315 * unturned looking for a free page.
2316 */
2317 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
2318 nodemask_t *allowednodes)
2319 {
2320 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2321 int i; /* index of *z in zonelist zones */
2322 int n; /* node that zone *z is on */
2323
2324 zlc = zonelist->zlcache_ptr;
2325 if (!zlc)
2326 return 1;
2327
2328 i = z - zonelist->_zonerefs;
2329 n = zlc->z_to_n[i];
2330
2331 /* This zone is worth trying if it is allowed but not full */
2332 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
2333 }
2334
2335 /*
2336 * Given 'z' scanning a zonelist, set the corresponding bit in
2337 * zlc->fullzones, so that subsequent attempts to allocate a page
2338 * from that zone don't waste time re-examining it.
2339 */
2340 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2341 {
2342 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2343 int i; /* index of *z in zonelist zones */
2344
2345 zlc = zonelist->zlcache_ptr;
2346 if (!zlc)
2347 return;
2348
2349 i = z - zonelist->_zonerefs;
2350
2351 set_bit(i, zlc->fullzones);
2352 }
2353
2354 /*
2355 * clear all zones full, called after direct reclaim makes progress so that
2356 * a zone that was recently full is not skipped over for up to a second
2357 */
2358 static void zlc_clear_zones_full(struct zonelist *zonelist)
2359 {
2360 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2361
2362 zlc = zonelist->zlcache_ptr;
2363 if (!zlc)
2364 return;
2365
2366 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2367 }
2368
2369 static bool zone_local(struct zone *local_zone, struct zone *zone)
2370 {
2371 return local_zone->node == zone->node;
2372 }
2373
2374 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2375 {
2376 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2377 RECLAIM_DISTANCE;
2378 }
2379
2380 #else /* CONFIG_NUMA */
2381
2382 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2383 {
2384 return NULL;
2385 }
2386
2387 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
2388 nodemask_t *allowednodes)
2389 {
2390 return 1;
2391 }
2392
2393 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2394 {
2395 }
2396
2397 static void zlc_clear_zones_full(struct zonelist *zonelist)
2398 {
2399 }
2400
2401 static bool zone_local(struct zone *local_zone, struct zone *zone)
2402 {
2403 return true;
2404 }
2405
2406 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2407 {
2408 return true;
2409 }
2410
2411 #endif /* CONFIG_NUMA */
2412
2413 static void reset_alloc_batches(struct zone *preferred_zone)
2414 {
2415 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2416
2417 do {
2418 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2419 high_wmark_pages(zone) - low_wmark_pages(zone) -
2420 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2421 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2422 } while (zone++ != preferred_zone);
2423 }
2424
2425 /*
2426 * get_page_from_freelist goes through the zonelist trying to allocate
2427 * a page.
2428 */
2429 static struct page *
2430 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2431 const struct alloc_context *ac)
2432 {
2433 struct zonelist *zonelist = ac->zonelist;
2434 struct zoneref *z;
2435 struct page *page = NULL;
2436 struct zone *zone;
2437 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2438 int zlc_active = 0; /* set if using zonelist_cache */
2439 int did_zlc_setup = 0; /* just call zlc_setup() one time */
2440 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2441 (gfp_mask & __GFP_WRITE);
2442 int nr_fair_skipped = 0;
2443 bool zonelist_rescan;
2444
2445 zonelist_scan:
2446 zonelist_rescan = false;
2447
2448 /*
2449 * Scan zonelist, looking for a zone with enough free.
2450 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2451 */
2452 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2453 ac->nodemask) {
2454 unsigned long mark;
2455
2456 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2457 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2458 continue;
2459 if (cpusets_enabled() &&
2460 (alloc_flags & ALLOC_CPUSET) &&
2461 !cpuset_zone_allowed(zone, gfp_mask))
2462 continue;
2463 /*
2464 * Distribute pages in proportion to the individual
2465 * zone size to ensure fair page aging. The zone a
2466 * page was allocated in should have no effect on the
2467 * time the page has in memory before being reclaimed.
2468 */
2469 if (alloc_flags & ALLOC_FAIR) {
2470 if (!zone_local(ac->preferred_zone, zone))
2471 break;
2472 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2473 nr_fair_skipped++;
2474 continue;
2475 }
2476 }
2477 /*
2478 * When allocating a page cache page for writing, we
2479 * want to get it from a zone that is within its dirty
2480 * limit, such that no single zone holds more than its
2481 * proportional share of globally allowed dirty pages.
2482 * The dirty limits take into account the zone's
2483 * lowmem reserves and high watermark so that kswapd
2484 * should be able to balance it without having to
2485 * write pages from its LRU list.
2486 *
2487 * This may look like it could increase pressure on
2488 * lower zones by failing allocations in higher zones
2489 * before they are full. But the pages that do spill
2490 * over are limited as the lower zones are protected
2491 * by this very same mechanism. It should not become
2492 * a practical burden to them.
2493 *
2494 * XXX: For now, allow allocations to potentially
2495 * exceed the per-zone dirty limit in the slowpath
2496 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2497 * which is important when on a NUMA setup the allowed
2498 * zones are together not big enough to reach the
2499 * global limit. The proper fix for these situations
2500 * will require awareness of zones in the
2501 * dirty-throttling and the flusher threads.
2502 */
2503 if (consider_zone_dirty && !zone_dirty_ok(zone))
2504 continue;
2505
2506 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2507 if (!zone_watermark_ok(zone, order, mark,
2508 ac->classzone_idx, alloc_flags)) {
2509 int ret;
2510
2511 /* Checked here to keep the fast path fast */
2512 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2513 if (alloc_flags & ALLOC_NO_WATERMARKS)
2514 goto try_this_zone;
2515
2516 if (IS_ENABLED(CONFIG_NUMA) &&
2517 !did_zlc_setup && nr_online_nodes > 1) {
2518 /*
2519 * we do zlc_setup if there are multiple nodes
2520 * and before considering the first zone allowed
2521 * by the cpuset.
2522 */
2523 allowednodes = zlc_setup(zonelist, alloc_flags);
2524 zlc_active = 1;
2525 did_zlc_setup = 1;
2526 }
2527
2528 if (zone_reclaim_mode == 0 ||
2529 !zone_allows_reclaim(ac->preferred_zone, zone))
2530 goto this_zone_full;
2531
2532 /*
2533 * As we may have just activated ZLC, check if the first
2534 * eligible zone has failed zone_reclaim recently.
2535 */
2536 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2537 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2538 continue;
2539
2540 ret = zone_reclaim(zone, gfp_mask, order);
2541 switch (ret) {
2542 case ZONE_RECLAIM_NOSCAN:
2543 /* did not scan */
2544 continue;
2545 case ZONE_RECLAIM_FULL:
2546 /* scanned but unreclaimable */
2547 continue;
2548 default:
2549 /* did we reclaim enough */
2550 if (zone_watermark_ok(zone, order, mark,
2551 ac->classzone_idx, alloc_flags))
2552 goto try_this_zone;
2553
2554 /*
2555 * Failed to reclaim enough to meet watermark.
2556 * Only mark the zone full if checking the min
2557 * watermark or if we failed to reclaim just
2558 * 1<<order pages or else the page allocator
2559 * fastpath will prematurely mark zones full
2560 * when the watermark is between the low and
2561 * min watermarks.
2562 */
2563 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2564 ret == ZONE_RECLAIM_SOME)
2565 goto this_zone_full;
2566
2567 continue;
2568 }
2569 }
2570
2571 try_this_zone:
2572 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2573 gfp_mask, ac->migratetype);
2574 if (page) {
2575 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2576 goto try_this_zone;
2577 return page;
2578 }
2579 this_zone_full:
2580 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2581 zlc_mark_zone_full(zonelist, z);
2582 }
2583
2584 /*
2585 * The first pass makes sure allocations are spread fairly within the
2586 * local node. However, the local node might have free pages left
2587 * after the fairness batches are exhausted, and remote zones haven't
2588 * even been considered yet. Try once more without fairness, and
2589 * include remote zones now, before entering the slowpath and waking
2590 * kswapd: prefer spilling to a remote zone over swapping locally.
2591 */
2592 if (alloc_flags & ALLOC_FAIR) {
2593 alloc_flags &= ~ALLOC_FAIR;
2594 if (nr_fair_skipped) {
2595 zonelist_rescan = true;
2596 reset_alloc_batches(ac->preferred_zone);
2597 }
2598 if (nr_online_nodes > 1)
2599 zonelist_rescan = true;
2600 }
2601
2602 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2603 /* Disable zlc cache for second zonelist scan */
2604 zlc_active = 0;
2605 zonelist_rescan = true;
2606 }
2607
2608 if (zonelist_rescan)
2609 goto zonelist_scan;
2610
2611 return NULL;
2612 }
2613
2614 /*
2615 * Large machines with many possible nodes should not always dump per-node
2616 * meminfo in irq context.
2617 */
2618 static inline bool should_suppress_show_mem(void)
2619 {
2620 bool ret = false;
2621
2622 #if NODES_SHIFT > 8
2623 ret = in_interrupt();
2624 #endif
2625 return ret;
2626 }
2627
2628 static DEFINE_RATELIMIT_STATE(nopage_rs,
2629 DEFAULT_RATELIMIT_INTERVAL,
2630 DEFAULT_RATELIMIT_BURST);
2631
2632 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2633 {
2634 unsigned int filter = SHOW_MEM_FILTER_NODES;
2635
2636 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2637 debug_guardpage_minorder() > 0)
2638 return;
2639
2640 /*
2641 * This documents exceptions given to allocations in certain
2642 * contexts that are allowed to allocate outside current's set
2643 * of allowed nodes.
2644 */
2645 if (!(gfp_mask & __GFP_NOMEMALLOC))
2646 if (test_thread_flag(TIF_MEMDIE) ||
2647 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2648 filter &= ~SHOW_MEM_FILTER_NODES;
2649 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2650 filter &= ~SHOW_MEM_FILTER_NODES;
2651
2652 if (fmt) {
2653 struct va_format vaf;
2654 va_list args;
2655
2656 va_start(args, fmt);
2657
2658 vaf.fmt = fmt;
2659 vaf.va = &args;
2660
2661 pr_warn("%pV", &vaf);
2662
2663 va_end(args);
2664 }
2665
2666 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2667 current->comm, order, gfp_mask);
2668
2669 dump_stack();
2670 if (!should_suppress_show_mem())
2671 show_mem(filter);
2672 }
2673
2674 static inline struct page *
2675 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2676 const struct alloc_context *ac, unsigned long *did_some_progress)
2677 {
2678 struct page *page;
2679
2680 *did_some_progress = 0;
2681
2682 /*
2683 * Acquire the oom lock. If that fails, somebody else is
2684 * making progress for us.
2685 */
2686 if (!mutex_trylock(&oom_lock)) {
2687 *did_some_progress = 1;
2688 schedule_timeout_uninterruptible(1);
2689 return NULL;
2690 }
2691
2692 /*
2693 * Go through the zonelist yet one more time, keep very high watermark
2694 * here, this is only to catch a parallel oom killing, we must fail if
2695 * we're still under heavy pressure.
2696 */
2697 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2698 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2699 if (page)
2700 goto out;
2701
2702 if (!(gfp_mask & __GFP_NOFAIL)) {
2703 /* Coredumps can quickly deplete all memory reserves */
2704 if (current->flags & PF_DUMPCORE)
2705 goto out;
2706 /* The OOM killer will not help higher order allocs */
2707 if (order > PAGE_ALLOC_COSTLY_ORDER)
2708 goto out;
2709 /* The OOM killer does not needlessly kill tasks for lowmem */
2710 if (ac->high_zoneidx < ZONE_NORMAL)
2711 goto out;
2712 /* The OOM killer does not compensate for IO-less reclaim */
2713 if (!(gfp_mask & __GFP_FS)) {
2714 /*
2715 * XXX: Page reclaim didn't yield anything,
2716 * and the OOM killer can't be invoked, but
2717 * keep looping as per tradition.
2718 */
2719 *did_some_progress = 1;
2720 goto out;
2721 }
2722 if (pm_suspended_storage())
2723 goto out;
2724 /* The OOM killer may not free memory on a specific node */
2725 if (gfp_mask & __GFP_THISNODE)
2726 goto out;
2727 }
2728 /* Exhausted what can be done so it's blamo time */
2729 if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false)
2730 || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
2731 *did_some_progress = 1;
2732 out:
2733 mutex_unlock(&oom_lock);
2734 return page;
2735 }
2736
2737 #ifdef CONFIG_COMPACTION
2738 /* Try memory compaction for high-order allocations before reclaim */
2739 static struct page *
2740 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2741 int alloc_flags, const struct alloc_context *ac,
2742 enum migrate_mode mode, int *contended_compaction,
2743 bool *deferred_compaction)
2744 {
2745 unsigned long compact_result;
2746 struct page *page;
2747
2748 if (!order)
2749 return NULL;
2750
2751 current->flags |= PF_MEMALLOC;
2752 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2753 mode, contended_compaction);
2754 current->flags &= ~PF_MEMALLOC;
2755
2756 switch (compact_result) {
2757 case COMPACT_DEFERRED:
2758 *deferred_compaction = true;
2759 /* fall-through */
2760 case COMPACT_SKIPPED:
2761 return NULL;
2762 default:
2763 break;
2764 }
2765
2766 /*
2767 * At least in one zone compaction wasn't deferred or skipped, so let's
2768 * count a compaction stall
2769 */
2770 count_vm_event(COMPACTSTALL);
2771
2772 page = get_page_from_freelist(gfp_mask, order,
2773 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2774
2775 if (page) {
2776 struct zone *zone = page_zone(page);
2777
2778 zone->compact_blockskip_flush = false;
2779 compaction_defer_reset(zone, order, true);
2780 count_vm_event(COMPACTSUCCESS);
2781 return page;
2782 }
2783
2784 /*
2785 * It's bad if compaction run occurs and fails. The most likely reason
2786 * is that pages exist, but not enough to satisfy watermarks.
2787 */
2788 count_vm_event(COMPACTFAIL);
2789
2790 cond_resched();
2791
2792 return NULL;
2793 }
2794 #else
2795 static inline struct page *
2796 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2797 int alloc_flags, const struct alloc_context *ac,
2798 enum migrate_mode mode, int *contended_compaction,
2799 bool *deferred_compaction)
2800 {
2801 return NULL;
2802 }
2803 #endif /* CONFIG_COMPACTION */
2804
2805 /* Perform direct synchronous page reclaim */
2806 static int
2807 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2808 const struct alloc_context *ac)
2809 {
2810 struct reclaim_state reclaim_state;
2811 int progress;
2812
2813 cond_resched();
2814
2815 /* We now go into synchronous reclaim */
2816 cpuset_memory_pressure_bump();
2817 current->flags |= PF_MEMALLOC;
2818 lockdep_set_current_reclaim_state(gfp_mask);
2819 reclaim_state.reclaimed_slab = 0;
2820 current->reclaim_state = &reclaim_state;
2821
2822 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2823 ac->nodemask);
2824
2825 current->reclaim_state = NULL;
2826 lockdep_clear_current_reclaim_state();
2827 current->flags &= ~PF_MEMALLOC;
2828
2829 cond_resched();
2830
2831 return progress;
2832 }
2833
2834 /* The really slow allocator path where we enter direct reclaim */
2835 static inline struct page *
2836 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2837 int alloc_flags, const struct alloc_context *ac,
2838 unsigned long *did_some_progress)
2839 {
2840 struct page *page = NULL;
2841 bool drained = false;
2842
2843 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2844 if (unlikely(!(*did_some_progress)))
2845 return NULL;
2846
2847 /* After successful reclaim, reconsider all zones for allocation */
2848 if (IS_ENABLED(CONFIG_NUMA))
2849 zlc_clear_zones_full(ac->zonelist);
2850
2851 retry:
2852 page = get_page_from_freelist(gfp_mask, order,
2853 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2854
2855 /*
2856 * If an allocation failed after direct reclaim, it could be because
2857 * pages are pinned on the per-cpu lists. Drain them and try again
2858 */
2859 if (!page && !drained) {
2860 drain_all_pages(NULL);
2861 drained = true;
2862 goto retry;
2863 }
2864
2865 return page;
2866 }
2867
2868 /*
2869 * This is called in the allocator slow-path if the allocation request is of
2870 * sufficient urgency to ignore watermarks and take other desperate measures
2871 */
2872 static inline struct page *
2873 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2874 const struct alloc_context *ac)
2875 {
2876 struct page *page;
2877
2878 do {
2879 page = get_page_from_freelist(gfp_mask, order,
2880 ALLOC_NO_WATERMARKS, ac);
2881
2882 if (!page && gfp_mask & __GFP_NOFAIL)
2883 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2884 HZ/50);
2885 } while (!page && (gfp_mask & __GFP_NOFAIL));
2886
2887 return page;
2888 }
2889
2890 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2891 {
2892 struct zoneref *z;
2893 struct zone *zone;
2894
2895 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2896 ac->high_zoneidx, ac->nodemask)
2897 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2898 }
2899
2900 static inline int
2901 gfp_to_alloc_flags(gfp_t gfp_mask)
2902 {
2903 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2904 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2905
2906 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2907 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2908
2909 /*
2910 * The caller may dip into page reserves a bit more if the caller
2911 * cannot run direct reclaim, or if the caller has realtime scheduling
2912 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2913 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2914 */
2915 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2916
2917 if (atomic) {
2918 /*
2919 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2920 * if it can't schedule.
2921 */
2922 if (!(gfp_mask & __GFP_NOMEMALLOC))
2923 alloc_flags |= ALLOC_HARDER;
2924 /*
2925 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2926 * comment for __cpuset_node_allowed().
2927 */
2928 alloc_flags &= ~ALLOC_CPUSET;
2929 } else if (unlikely(rt_task(current)) && !in_interrupt())
2930 alloc_flags |= ALLOC_HARDER;
2931
2932 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2933 if (gfp_mask & __GFP_MEMALLOC)
2934 alloc_flags |= ALLOC_NO_WATERMARKS;
2935 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2936 alloc_flags |= ALLOC_NO_WATERMARKS;
2937 else if (!in_interrupt() &&
2938 ((current->flags & PF_MEMALLOC) ||
2939 unlikely(test_thread_flag(TIF_MEMDIE))))
2940 alloc_flags |= ALLOC_NO_WATERMARKS;
2941 }
2942 #ifdef CONFIG_CMA
2943 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2944 alloc_flags |= ALLOC_CMA;
2945 #endif
2946 return alloc_flags;
2947 }
2948
2949 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2950 {
2951 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2952 }
2953
2954 static inline struct page *
2955 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2956 struct alloc_context *ac)
2957 {
2958 const gfp_t wait = gfp_mask & __GFP_WAIT;
2959 struct page *page = NULL;
2960 int alloc_flags;
2961 unsigned long pages_reclaimed = 0;
2962 unsigned long did_some_progress;
2963 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2964 bool deferred_compaction = false;
2965 int contended_compaction = COMPACT_CONTENDED_NONE;
2966
2967 /*
2968 * In the slowpath, we sanity check order to avoid ever trying to
2969 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2970 * be using allocators in order of preference for an area that is
2971 * too large.
2972 */
2973 if (order >= MAX_ORDER) {
2974 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2975 return NULL;
2976 }
2977
2978 /*
2979 * If this allocation cannot block and it is for a specific node, then
2980 * fail early. There's no need to wakeup kswapd or retry for a
2981 * speculative node-specific allocation.
2982 */
2983 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !wait)
2984 goto nopage;
2985
2986 retry:
2987 if (!(gfp_mask & __GFP_NO_KSWAPD))
2988 wake_all_kswapds(order, ac);
2989
2990 /*
2991 * OK, we're below the kswapd watermark and have kicked background
2992 * reclaim. Now things get more complex, so set up alloc_flags according
2993 * to how we want to proceed.
2994 */
2995 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2996
2997 /*
2998 * Find the true preferred zone if the allocation is unconstrained by
2999 * cpusets.
3000 */
3001 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
3002 struct zoneref *preferred_zoneref;
3003 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3004 ac->high_zoneidx, NULL, &ac->preferred_zone);
3005 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
3006 }
3007
3008 /* This is the last chance, in general, before the goto nopage. */
3009 page = get_page_from_freelist(gfp_mask, order,
3010 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3011 if (page)
3012 goto got_pg;
3013
3014 /* Allocate without watermarks if the context allows */
3015 if (alloc_flags & ALLOC_NO_WATERMARKS) {
3016 /*
3017 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3018 * the allocation is high priority and these type of
3019 * allocations are system rather than user orientated
3020 */
3021 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3022
3023 page = __alloc_pages_high_priority(gfp_mask, order, ac);
3024
3025 if (page) {
3026 goto got_pg;
3027 }
3028 }
3029
3030 /* Atomic allocations - we can't balance anything */
3031 if (!wait) {
3032 /*
3033 * All existing users of the deprecated __GFP_NOFAIL are
3034 * blockable, so warn of any new users that actually allow this
3035 * type of allocation to fail.
3036 */
3037 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3038 goto nopage;
3039 }
3040
3041 /* Avoid recursion of direct reclaim */
3042 if (current->flags & PF_MEMALLOC)
3043 goto nopage;
3044
3045 /* Avoid allocations with no watermarks from looping endlessly */
3046 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3047 goto nopage;
3048
3049 /*
3050 * Try direct compaction. The first pass is asynchronous. Subsequent
3051 * attempts after direct reclaim are synchronous
3052 */
3053 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3054 migration_mode,
3055 &contended_compaction,
3056 &deferred_compaction);
3057 if (page)
3058 goto got_pg;
3059
3060 /* Checks for THP-specific high-order allocations */
3061 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
3062 /*
3063 * If compaction is deferred for high-order allocations, it is
3064 * because sync compaction recently failed. If this is the case
3065 * and the caller requested a THP allocation, we do not want
3066 * to heavily disrupt the system, so we fail the allocation
3067 * instead of entering direct reclaim.
3068 */
3069 if (deferred_compaction)
3070 goto nopage;
3071
3072 /*
3073 * In all zones where compaction was attempted (and not
3074 * deferred or skipped), lock contention has been detected.
3075 * For THP allocation we do not want to disrupt the others
3076 * so we fallback to base pages instead.
3077 */
3078 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3079 goto nopage;
3080
3081 /*
3082 * If compaction was aborted due to need_resched(), we do not
3083 * want to further increase allocation latency, unless it is
3084 * khugepaged trying to collapse.
3085 */
3086 if (contended_compaction == COMPACT_CONTENDED_SCHED
3087 && !(current->flags & PF_KTHREAD))
3088 goto nopage;
3089 }
3090
3091 /*
3092 * It can become very expensive to allocate transparent hugepages at
3093 * fault, so use asynchronous memory compaction for THP unless it is
3094 * khugepaged trying to collapse.
3095 */
3096 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
3097 (current->flags & PF_KTHREAD))
3098 migration_mode = MIGRATE_SYNC_LIGHT;
3099
3100 /* Try direct reclaim and then allocating */
3101 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3102 &did_some_progress);
3103 if (page)
3104 goto got_pg;
3105
3106 /* Do not loop if specifically requested */
3107 if (gfp_mask & __GFP_NORETRY)
3108 goto noretry;
3109
3110 /* Keep reclaiming pages as long as there is reasonable progress */
3111 pages_reclaimed += did_some_progress;
3112 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3113 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3114 /* Wait for some write requests to complete then retry */
3115 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
3116 goto retry;
3117 }
3118
3119 /* Reclaim has failed us, start killing things */
3120 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3121 if (page)
3122 goto got_pg;
3123
3124 /* Retry as long as the OOM killer is making progress */
3125 if (did_some_progress)
3126 goto retry;
3127
3128 noretry:
3129 /*
3130 * High-order allocations do not necessarily loop after
3131 * direct reclaim and reclaim/compaction depends on compaction
3132 * being called after reclaim so call directly if necessary
3133 */
3134 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3135 ac, migration_mode,
3136 &contended_compaction,
3137 &deferred_compaction);
3138 if (page)
3139 goto got_pg;
3140 nopage:
3141 warn_alloc_failed(gfp_mask, order, NULL);
3142 got_pg:
3143 return page;
3144 }
3145
3146 /*
3147 * This is the 'heart' of the zoned buddy allocator.
3148 */
3149 struct page *
3150 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3151 struct zonelist *zonelist, nodemask_t *nodemask)
3152 {
3153 struct zoneref *preferred_zoneref;
3154 struct page *page = NULL;
3155 unsigned int cpuset_mems_cookie;
3156 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
3157 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
3158 struct alloc_context ac = {
3159 .high_zoneidx = gfp_zone(gfp_mask),
3160 .nodemask = nodemask,
3161 .migratetype = gfpflags_to_migratetype(gfp_mask),
3162 };
3163
3164 gfp_mask &= gfp_allowed_mask;
3165
3166 lockdep_trace_alloc(gfp_mask);
3167
3168 might_sleep_if(gfp_mask & __GFP_WAIT);
3169
3170 if (should_fail_alloc_page(gfp_mask, order))
3171 return NULL;
3172
3173 /*
3174 * Check the zones suitable for the gfp_mask contain at least one
3175 * valid zone. It's possible to have an empty zonelist as a result
3176 * of __GFP_THISNODE and a memoryless node
3177 */
3178 if (unlikely(!zonelist->_zonerefs->zone))
3179 return NULL;
3180
3181 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3182 alloc_flags |= ALLOC_CMA;
3183
3184 retry_cpuset:
3185 cpuset_mems_cookie = read_mems_allowed_begin();
3186
3187 /* We set it here, as __alloc_pages_slowpath might have changed it */
3188 ac.zonelist = zonelist;
3189 /* The preferred zone is used for statistics later */
3190 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3191 ac.nodemask ? : &cpuset_current_mems_allowed,
3192 &ac.preferred_zone);
3193 if (!ac.preferred_zone)
3194 goto out;
3195 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3196
3197 /* First allocation attempt */
3198 alloc_mask = gfp_mask|__GFP_HARDWALL;
3199 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3200 if (unlikely(!page)) {
3201 /*
3202 * Runtime PM, block IO and its error handling path
3203 * can deadlock because I/O on the device might not
3204 * complete.
3205 */
3206 alloc_mask = memalloc_noio_flags(gfp_mask);
3207
3208 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3209 }
3210
3211 if (kmemcheck_enabled && page)
3212 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3213
3214 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3215
3216 out:
3217 /*
3218 * When updating a task's mems_allowed, it is possible to race with
3219 * parallel threads in such a way that an allocation can fail while
3220 * the mask is being updated. If a page allocation is about to fail,
3221 * check if the cpuset changed during allocation and if so, retry.
3222 */
3223 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
3224 goto retry_cpuset;
3225
3226 return page;
3227 }
3228 EXPORT_SYMBOL(__alloc_pages_nodemask);
3229
3230 /*
3231 * Common helper functions.
3232 */
3233 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3234 {
3235 struct page *page;
3236
3237 /*
3238 * __get_free_pages() returns a 32-bit address, which cannot represent
3239 * a highmem page
3240 */
3241 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3242
3243 page = alloc_pages(gfp_mask, order);
3244 if (!page)
3245 return 0;
3246 return (unsigned long) page_address(page);
3247 }
3248 EXPORT_SYMBOL(__get_free_pages);
3249
3250 unsigned long get_zeroed_page(gfp_t gfp_mask)
3251 {
3252 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3253 }
3254 EXPORT_SYMBOL(get_zeroed_page);
3255
3256 void __free_pages(struct page *page, unsigned int order)
3257 {
3258 if (put_page_testzero(page)) {
3259 if (order == 0)
3260 free_hot_cold_page(page, false);
3261 else
3262 __free_pages_ok(page, order);
3263 }
3264 }
3265
3266 EXPORT_SYMBOL(__free_pages);
3267
3268 void free_pages(unsigned long addr, unsigned int order)
3269 {
3270 if (addr != 0) {
3271 VM_BUG_ON(!virt_addr_valid((void *)addr));
3272 __free_pages(virt_to_page((void *)addr), order);
3273 }
3274 }
3275
3276 EXPORT_SYMBOL(free_pages);
3277
3278 /*
3279 * Page Fragment:
3280 * An arbitrary-length arbitrary-offset area of memory which resides
3281 * within a 0 or higher order page. Multiple fragments within that page
3282 * are individually refcounted, in the page's reference counter.
3283 *
3284 * The page_frag functions below provide a simple allocation framework for
3285 * page fragments. This is used by the network stack and network device
3286 * drivers to provide a backing region of memory for use as either an
3287 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3288 */
3289 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3290 gfp_t gfp_mask)
3291 {
3292 struct page *page = NULL;
3293 gfp_t gfp = gfp_mask;
3294
3295 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3296 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3297 __GFP_NOMEMALLOC;
3298 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3299 PAGE_FRAG_CACHE_MAX_ORDER);
3300 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3301 #endif
3302 if (unlikely(!page))
3303 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3304
3305 nc->va = page ? page_address(page) : NULL;
3306
3307 return page;
3308 }
3309
3310 void *__alloc_page_frag(struct page_frag_cache *nc,
3311 unsigned int fragsz, gfp_t gfp_mask)
3312 {
3313 unsigned int size = PAGE_SIZE;
3314 struct page *page;
3315 int offset;
3316
3317 if (unlikely(!nc->va)) {
3318 refill:
3319 page = __page_frag_refill(nc, gfp_mask);
3320 if (!page)
3321 return NULL;
3322
3323 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3324 /* if size can vary use size else just use PAGE_SIZE */
3325 size = nc->size;
3326 #endif
3327 /* Even if we own the page, we do not use atomic_set().
3328 * This would break get_page_unless_zero() users.
3329 */
3330 atomic_add(size - 1, &page->_count);
3331
3332 /* reset page count bias and offset to start of new frag */
3333 nc->pfmemalloc = page->pfmemalloc;
3334 nc->pagecnt_bias = size;
3335 nc->offset = size;
3336 }
3337
3338 offset = nc->offset - fragsz;
3339 if (unlikely(offset < 0)) {
3340 page = virt_to_page(nc->va);
3341
3342 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3343 goto refill;
3344
3345 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3346 /* if size can vary use size else just use PAGE_SIZE */
3347 size = nc->size;
3348 #endif
3349 /* OK, page count is 0, we can safely set it */
3350 atomic_set(&page->_count, size);
3351
3352 /* reset page count bias and offset to start of new frag */
3353 nc->pagecnt_bias = size;
3354 offset = size - fragsz;
3355 }
3356
3357 nc->pagecnt_bias--;
3358 nc->offset = offset;
3359
3360 return nc->va + offset;
3361 }
3362 EXPORT_SYMBOL(__alloc_page_frag);
3363
3364 /*
3365 * Frees a page fragment allocated out of either a compound or order 0 page.
3366 */
3367 void __free_page_frag(void *addr)
3368 {
3369 struct page *page = virt_to_head_page(addr);
3370
3371 if (unlikely(put_page_testzero(page)))
3372 __free_pages_ok(page, compound_order(page));
3373 }
3374 EXPORT_SYMBOL(__free_page_frag);
3375
3376 /*
3377 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3378 * of the current memory cgroup.
3379 *
3380 * It should be used when the caller would like to use kmalloc, but since the
3381 * allocation is large, it has to fall back to the page allocator.
3382 */
3383 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3384 {
3385 struct page *page;
3386 struct mem_cgroup *memcg = NULL;
3387
3388 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3389 return NULL;
3390 page = alloc_pages(gfp_mask, order);
3391 memcg_kmem_commit_charge(page, memcg, order);
3392 return page;
3393 }
3394
3395 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3396 {
3397 struct page *page;
3398 struct mem_cgroup *memcg = NULL;
3399
3400 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3401 return NULL;
3402 page = alloc_pages_node(nid, gfp_mask, order);
3403 memcg_kmem_commit_charge(page, memcg, order);
3404 return page;
3405 }
3406
3407 /*
3408 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3409 * alloc_kmem_pages.
3410 */
3411 void __free_kmem_pages(struct page *page, unsigned int order)
3412 {
3413 memcg_kmem_uncharge_pages(page, order);
3414 __free_pages(page, order);
3415 }
3416
3417 void free_kmem_pages(unsigned long addr, unsigned int order)
3418 {
3419 if (addr != 0) {
3420 VM_BUG_ON(!virt_addr_valid((void *)addr));
3421 __free_kmem_pages(virt_to_page((void *)addr), order);
3422 }
3423 }
3424
3425 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3426 {
3427 if (addr) {
3428 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3429 unsigned long used = addr + PAGE_ALIGN(size);
3430
3431 split_page(virt_to_page((void *)addr), order);
3432 while (used < alloc_end) {
3433 free_page(used);
3434 used += PAGE_SIZE;
3435 }
3436 }
3437 return (void *)addr;
3438 }
3439
3440 /**
3441 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3442 * @size: the number of bytes to allocate
3443 * @gfp_mask: GFP flags for the allocation
3444 *
3445 * This function is similar to alloc_pages(), except that it allocates the
3446 * minimum number of pages to satisfy the request. alloc_pages() can only
3447 * allocate memory in power-of-two pages.
3448 *
3449 * This function is also limited by MAX_ORDER.
3450 *
3451 * Memory allocated by this function must be released by free_pages_exact().
3452 */
3453 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3454 {
3455 unsigned int order = get_order(size);
3456 unsigned long addr;
3457
3458 addr = __get_free_pages(gfp_mask, order);
3459 return make_alloc_exact(addr, order, size);
3460 }
3461 EXPORT_SYMBOL(alloc_pages_exact);
3462
3463 /**
3464 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3465 * pages on a node.
3466 * @nid: the preferred node ID where memory should be allocated
3467 * @size: the number of bytes to allocate
3468 * @gfp_mask: GFP flags for the allocation
3469 *
3470 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3471 * back.
3472 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3473 * but is not exact.
3474 */
3475 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3476 {
3477 unsigned order = get_order(size);
3478 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3479 if (!p)
3480 return NULL;
3481 return make_alloc_exact((unsigned long)page_address(p), order, size);
3482 }
3483
3484 /**
3485 * free_pages_exact - release memory allocated via alloc_pages_exact()
3486 * @virt: the value returned by alloc_pages_exact.
3487 * @size: size of allocation, same value as passed to alloc_pages_exact().
3488 *
3489 * Release the memory allocated by a previous call to alloc_pages_exact.
3490 */
3491 void free_pages_exact(void *virt, size_t size)
3492 {
3493 unsigned long addr = (unsigned long)virt;
3494 unsigned long end = addr + PAGE_ALIGN(size);
3495
3496 while (addr < end) {
3497 free_page(addr);
3498 addr += PAGE_SIZE;
3499 }
3500 }
3501 EXPORT_SYMBOL(free_pages_exact);
3502
3503 /**
3504 * nr_free_zone_pages - count number of pages beyond high watermark
3505 * @offset: The zone index of the highest zone
3506 *
3507 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3508 * high watermark within all zones at or below a given zone index. For each
3509 * zone, the number of pages is calculated as:
3510 * managed_pages - high_pages
3511 */
3512 static unsigned long nr_free_zone_pages(int offset)
3513 {
3514 struct zoneref *z;
3515 struct zone *zone;
3516
3517 /* Just pick one node, since fallback list is circular */
3518 unsigned long sum = 0;
3519
3520 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3521
3522 for_each_zone_zonelist(zone, z, zonelist, offset) {
3523 unsigned long size = zone->managed_pages;
3524 unsigned long high = high_wmark_pages(zone);
3525 if (size > high)
3526 sum += size - high;
3527 }
3528
3529 return sum;
3530 }
3531
3532 /**
3533 * nr_free_buffer_pages - count number of pages beyond high watermark
3534 *
3535 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3536 * watermark within ZONE_DMA and ZONE_NORMAL.
3537 */
3538 unsigned long nr_free_buffer_pages(void)
3539 {
3540 return nr_free_zone_pages(gfp_zone(GFP_USER));
3541 }
3542 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3543
3544 /**
3545 * nr_free_pagecache_pages - count number of pages beyond high watermark
3546 *
3547 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3548 * high watermark within all zones.
3549 */
3550 unsigned long nr_free_pagecache_pages(void)
3551 {
3552 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3553 }
3554
3555 static inline void show_node(struct zone *zone)
3556 {
3557 if (IS_ENABLED(CONFIG_NUMA))
3558 printk("Node %d ", zone_to_nid(zone));
3559 }
3560
3561 void si_meminfo(struct sysinfo *val)
3562 {
3563 val->totalram = totalram_pages;
3564 val->sharedram = global_page_state(NR_SHMEM);
3565 val->freeram = global_page_state(NR_FREE_PAGES);
3566 val->bufferram = nr_blockdev_pages();
3567 val->totalhigh = totalhigh_pages;
3568 val->freehigh = nr_free_highpages();
3569 val->mem_unit = PAGE_SIZE;
3570 }
3571
3572 EXPORT_SYMBOL(si_meminfo);
3573
3574 #ifdef CONFIG_NUMA
3575 void si_meminfo_node(struct sysinfo *val, int nid)
3576 {
3577 int zone_type; /* needs to be signed */
3578 unsigned long managed_pages = 0;
3579 pg_data_t *pgdat = NODE_DATA(nid);
3580
3581 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3582 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3583 val->totalram = managed_pages;
3584 val->sharedram = node_page_state(nid, NR_SHMEM);
3585 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3586 #ifdef CONFIG_HIGHMEM
3587 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3588 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3589 NR_FREE_PAGES);
3590 #else
3591 val->totalhigh = 0;
3592 val->freehigh = 0;
3593 #endif
3594 val->mem_unit = PAGE_SIZE;
3595 }
3596 #endif
3597
3598 /*
3599 * Determine whether the node should be displayed or not, depending on whether
3600 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3601 */
3602 bool skip_free_areas_node(unsigned int flags, int nid)
3603 {
3604 bool ret = false;
3605 unsigned int cpuset_mems_cookie;
3606
3607 if (!(flags & SHOW_MEM_FILTER_NODES))
3608 goto out;
3609
3610 do {
3611 cpuset_mems_cookie = read_mems_allowed_begin();
3612 ret = !node_isset(nid, cpuset_current_mems_allowed);
3613 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3614 out:
3615 return ret;
3616 }
3617
3618 #define K(x) ((x) << (PAGE_SHIFT-10))
3619
3620 static void show_migration_types(unsigned char type)
3621 {
3622 static const char types[MIGRATE_TYPES] = {
3623 [MIGRATE_UNMOVABLE] = 'U',
3624 [MIGRATE_RECLAIMABLE] = 'E',
3625 [MIGRATE_MOVABLE] = 'M',
3626 [MIGRATE_RESERVE] = 'R',
3627 #ifdef CONFIG_CMA
3628 [MIGRATE_CMA] = 'C',
3629 #endif
3630 #ifdef CONFIG_MEMORY_ISOLATION
3631 [MIGRATE_ISOLATE] = 'I',
3632 #endif
3633 };
3634 char tmp[MIGRATE_TYPES + 1];
3635 char *p = tmp;
3636 int i;
3637
3638 for (i = 0; i < MIGRATE_TYPES; i++) {
3639 if (type & (1 << i))
3640 *p++ = types[i];
3641 }
3642
3643 *p = '\0';
3644 printk("(%s) ", tmp);
3645 }
3646
3647 /*
3648 * Show free area list (used inside shift_scroll-lock stuff)
3649 * We also calculate the percentage fragmentation. We do this by counting the
3650 * memory on each free list with the exception of the first item on the list.
3651 *
3652 * Bits in @filter:
3653 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3654 * cpuset.
3655 */
3656 void show_free_areas(unsigned int filter)
3657 {
3658 unsigned long free_pcp = 0;
3659 int cpu;
3660 struct zone *zone;
3661
3662 for_each_populated_zone(zone) {
3663 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3664 continue;
3665
3666 for_each_online_cpu(cpu)
3667 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3668 }
3669
3670 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3671 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3672 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3673 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3674 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3675 " free:%lu free_pcp:%lu free_cma:%lu\n",
3676 global_page_state(NR_ACTIVE_ANON),
3677 global_page_state(NR_INACTIVE_ANON),
3678 global_page_state(NR_ISOLATED_ANON),
3679 global_page_state(NR_ACTIVE_FILE),
3680 global_page_state(NR_INACTIVE_FILE),
3681 global_page_state(NR_ISOLATED_FILE),
3682 global_page_state(NR_UNEVICTABLE),
3683 global_page_state(NR_FILE_DIRTY),
3684 global_page_state(NR_WRITEBACK),
3685 global_page_state(NR_UNSTABLE_NFS),
3686 global_page_state(NR_SLAB_RECLAIMABLE),
3687 global_page_state(NR_SLAB_UNRECLAIMABLE),
3688 global_page_state(NR_FILE_MAPPED),
3689 global_page_state(NR_SHMEM),
3690 global_page_state(NR_PAGETABLE),
3691 global_page_state(NR_BOUNCE),
3692 global_page_state(NR_FREE_PAGES),
3693 free_pcp,
3694 global_page_state(NR_FREE_CMA_PAGES));
3695
3696 for_each_populated_zone(zone) {
3697 int i;
3698
3699 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3700 continue;
3701
3702 free_pcp = 0;
3703 for_each_online_cpu(cpu)
3704 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3705
3706 show_node(zone);
3707 printk("%s"
3708 " free:%lukB"
3709 " min:%lukB"
3710 " low:%lukB"
3711 " high:%lukB"
3712 " active_anon:%lukB"
3713 " inactive_anon:%lukB"
3714 " active_file:%lukB"
3715 " inactive_file:%lukB"
3716 " unevictable:%lukB"
3717 " isolated(anon):%lukB"
3718 " isolated(file):%lukB"
3719 " present:%lukB"
3720 " managed:%lukB"
3721 " mlocked:%lukB"
3722 " dirty:%lukB"
3723 " writeback:%lukB"
3724 " mapped:%lukB"
3725 " shmem:%lukB"
3726 " slab_reclaimable:%lukB"
3727 " slab_unreclaimable:%lukB"
3728 " kernel_stack:%lukB"
3729 " pagetables:%lukB"
3730 " unstable:%lukB"
3731 " bounce:%lukB"
3732 " free_pcp:%lukB"
3733 " local_pcp:%ukB"
3734 " free_cma:%lukB"
3735 " writeback_tmp:%lukB"
3736 " pages_scanned:%lu"
3737 " all_unreclaimable? %s"
3738 "\n",
3739 zone->name,
3740 K(zone_page_state(zone, NR_FREE_PAGES)),
3741 K(min_wmark_pages(zone)),
3742 K(low_wmark_pages(zone)),
3743 K(high_wmark_pages(zone)),
3744 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3745 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3746 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3747 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3748 K(zone_page_state(zone, NR_UNEVICTABLE)),
3749 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3750 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3751 K(zone->present_pages),
3752 K(zone->managed_pages),
3753 K(zone_page_state(zone, NR_MLOCK)),
3754 K(zone_page_state(zone, NR_FILE_DIRTY)),
3755 K(zone_page_state(zone, NR_WRITEBACK)),
3756 K(zone_page_state(zone, NR_FILE_MAPPED)),
3757 K(zone_page_state(zone, NR_SHMEM)),
3758 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3759 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3760 zone_page_state(zone, NR_KERNEL_STACK) *
3761 THREAD_SIZE / 1024,
3762 K(zone_page_state(zone, NR_PAGETABLE)),
3763 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3764 K(zone_page_state(zone, NR_BOUNCE)),
3765 K(free_pcp),
3766 K(this_cpu_read(zone->pageset->pcp.count)),
3767 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3768 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3769 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3770 (!zone_reclaimable(zone) ? "yes" : "no")
3771 );
3772 printk("lowmem_reserve[]:");
3773 for (i = 0; i < MAX_NR_ZONES; i++)
3774 printk(" %ld", zone->lowmem_reserve[i]);
3775 printk("\n");
3776 }
3777
3778 for_each_populated_zone(zone) {
3779 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3780 unsigned char types[MAX_ORDER];
3781
3782 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3783 continue;
3784 show_node(zone);
3785 printk("%s: ", zone->name);
3786
3787 spin_lock_irqsave(&zone->lock, flags);
3788 for (order = 0; order < MAX_ORDER; order++) {
3789 struct free_area *area = &zone->free_area[order];
3790 int type;
3791
3792 nr[order] = area->nr_free;
3793 total += nr[order] << order;
3794
3795 types[order] = 0;
3796 for (type = 0; type < MIGRATE_TYPES; type++) {
3797 if (!list_empty(&area->free_list[type]))
3798 types[order] |= 1 << type;
3799 }
3800 }
3801 spin_unlock_irqrestore(&zone->lock, flags);
3802 for (order = 0; order < MAX_ORDER; order++) {
3803 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3804 if (nr[order])
3805 show_migration_types(types[order]);
3806 }
3807 printk("= %lukB\n", K(total));
3808 }
3809
3810 hugetlb_show_meminfo();
3811
3812 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3813
3814 show_swap_cache_info();
3815 }
3816
3817 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3818 {
3819 zoneref->zone = zone;
3820 zoneref->zone_idx = zone_idx(zone);
3821 }
3822
3823 /*
3824 * Builds allocation fallback zone lists.
3825 *
3826 * Add all populated zones of a node to the zonelist.
3827 */
3828 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3829 int nr_zones)
3830 {
3831 struct zone *zone;
3832 enum zone_type zone_type = MAX_NR_ZONES;
3833
3834 do {
3835 zone_type--;
3836 zone = pgdat->node_zones + zone_type;
3837 if (populated_zone(zone)) {
3838 zoneref_set_zone(zone,
3839 &zonelist->_zonerefs[nr_zones++]);
3840 check_highest_zone(zone_type);
3841 }
3842 } while (zone_type);
3843
3844 return nr_zones;
3845 }
3846
3847
3848 /*
3849 * zonelist_order:
3850 * 0 = automatic detection of better ordering.
3851 * 1 = order by ([node] distance, -zonetype)
3852 * 2 = order by (-zonetype, [node] distance)
3853 *
3854 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3855 * the same zonelist. So only NUMA can configure this param.
3856 */
3857 #define ZONELIST_ORDER_DEFAULT 0
3858 #define ZONELIST_ORDER_NODE 1
3859 #define ZONELIST_ORDER_ZONE 2
3860
3861 /* zonelist order in the kernel.
3862 * set_zonelist_order() will set this to NODE or ZONE.
3863 */
3864 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3865 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3866
3867
3868 #ifdef CONFIG_NUMA
3869 /* The value user specified ....changed by config */
3870 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3871 /* string for sysctl */
3872 #define NUMA_ZONELIST_ORDER_LEN 16
3873 char numa_zonelist_order[16] = "default";
3874
3875 /*
3876 * interface for configure zonelist ordering.
3877 * command line option "numa_zonelist_order"
3878 * = "[dD]efault - default, automatic configuration.
3879 * = "[nN]ode - order by node locality, then by zone within node
3880 * = "[zZ]one - order by zone, then by locality within zone
3881 */
3882
3883 static int __parse_numa_zonelist_order(char *s)
3884 {
3885 if (*s == 'd' || *s == 'D') {
3886 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3887 } else if (*s == 'n' || *s == 'N') {
3888 user_zonelist_order = ZONELIST_ORDER_NODE;
3889 } else if (*s == 'z' || *s == 'Z') {
3890 user_zonelist_order = ZONELIST_ORDER_ZONE;
3891 } else {
3892 printk(KERN_WARNING
3893 "Ignoring invalid numa_zonelist_order value: "
3894 "%s\n", s);
3895 return -EINVAL;
3896 }
3897 return 0;
3898 }
3899
3900 static __init int setup_numa_zonelist_order(char *s)
3901 {
3902 int ret;
3903
3904 if (!s)
3905 return 0;
3906
3907 ret = __parse_numa_zonelist_order(s);
3908 if (ret == 0)
3909 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3910
3911 return ret;
3912 }
3913 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3914
3915 /*
3916 * sysctl handler for numa_zonelist_order
3917 */
3918 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3919 void __user *buffer, size_t *length,
3920 loff_t *ppos)
3921 {
3922 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3923 int ret;
3924 static DEFINE_MUTEX(zl_order_mutex);
3925
3926 mutex_lock(&zl_order_mutex);
3927 if (write) {
3928 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3929 ret = -EINVAL;
3930 goto out;
3931 }
3932 strcpy(saved_string, (char *)table->data);
3933 }
3934 ret = proc_dostring(table, write, buffer, length, ppos);
3935 if (ret)
3936 goto out;
3937 if (write) {
3938 int oldval = user_zonelist_order;
3939
3940 ret = __parse_numa_zonelist_order((char *)table->data);
3941 if (ret) {
3942 /*
3943 * bogus value. restore saved string
3944 */
3945 strncpy((char *)table->data, saved_string,
3946 NUMA_ZONELIST_ORDER_LEN);
3947 user_zonelist_order = oldval;
3948 } else if (oldval != user_zonelist_order) {
3949 mutex_lock(&zonelists_mutex);
3950 build_all_zonelists(NULL, NULL);
3951 mutex_unlock(&zonelists_mutex);
3952 }
3953 }
3954 out:
3955 mutex_unlock(&zl_order_mutex);
3956 return ret;
3957 }
3958
3959
3960 #define MAX_NODE_LOAD (nr_online_nodes)
3961 static int node_load[MAX_NUMNODES];
3962
3963 /**
3964 * find_next_best_node - find the next node that should appear in a given node's fallback list
3965 * @node: node whose fallback list we're appending
3966 * @used_node_mask: nodemask_t of already used nodes
3967 *
3968 * We use a number of factors to determine which is the next node that should
3969 * appear on a given node's fallback list. The node should not have appeared
3970 * already in @node's fallback list, and it should be the next closest node
3971 * according to the distance array (which contains arbitrary distance values
3972 * from each node to each node in the system), and should also prefer nodes
3973 * with no CPUs, since presumably they'll have very little allocation pressure
3974 * on them otherwise.
3975 * It returns -1 if no node is found.
3976 */
3977 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3978 {
3979 int n, val;
3980 int min_val = INT_MAX;
3981 int best_node = NUMA_NO_NODE;
3982 const struct cpumask *tmp = cpumask_of_node(0);
3983
3984 /* Use the local node if we haven't already */
3985 if (!node_isset(node, *used_node_mask)) {
3986 node_set(node, *used_node_mask);
3987 return node;
3988 }
3989
3990 for_each_node_state(n, N_MEMORY) {
3991
3992 /* Don't want a node to appear more than once */
3993 if (node_isset(n, *used_node_mask))
3994 continue;
3995
3996 /* Use the distance array to find the distance */
3997 val = node_distance(node, n);
3998
3999 /* Penalize nodes under us ("prefer the next node") */
4000 val += (n < node);
4001
4002 /* Give preference to headless and unused nodes */
4003 tmp = cpumask_of_node(n);
4004 if (!cpumask_empty(tmp))
4005 val += PENALTY_FOR_NODE_WITH_CPUS;
4006
4007 /* Slight preference for less loaded node */
4008 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4009 val += node_load[n];
4010
4011 if (val < min_val) {
4012 min_val = val;
4013 best_node = n;
4014 }
4015 }
4016
4017 if (best_node >= 0)
4018 node_set(best_node, *used_node_mask);
4019
4020 return best_node;
4021 }
4022
4023
4024 /*
4025 * Build zonelists ordered by node and zones within node.
4026 * This results in maximum locality--normal zone overflows into local
4027 * DMA zone, if any--but risks exhausting DMA zone.
4028 */
4029 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4030 {
4031 int j;
4032 struct zonelist *zonelist;
4033
4034 zonelist = &pgdat->node_zonelists[0];
4035 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4036 ;
4037 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4038 zonelist->_zonerefs[j].zone = NULL;
4039 zonelist->_zonerefs[j].zone_idx = 0;
4040 }
4041
4042 /*
4043 * Build gfp_thisnode zonelists
4044 */
4045 static void build_thisnode_zonelists(pg_data_t *pgdat)
4046 {
4047 int j;
4048 struct zonelist *zonelist;
4049
4050 zonelist = &pgdat->node_zonelists[1];
4051 j = build_zonelists_node(pgdat, zonelist, 0);
4052 zonelist->_zonerefs[j].zone = NULL;
4053 zonelist->_zonerefs[j].zone_idx = 0;
4054 }
4055
4056 /*
4057 * Build zonelists ordered by zone and nodes within zones.
4058 * This results in conserving DMA zone[s] until all Normal memory is
4059 * exhausted, but results in overflowing to remote node while memory
4060 * may still exist in local DMA zone.
4061 */
4062 static int node_order[MAX_NUMNODES];
4063
4064 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4065 {
4066 int pos, j, node;
4067 int zone_type; /* needs to be signed */
4068 struct zone *z;
4069 struct zonelist *zonelist;
4070
4071 zonelist = &pgdat->node_zonelists[0];
4072 pos = 0;
4073 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4074 for (j = 0; j < nr_nodes; j++) {
4075 node = node_order[j];
4076 z = &NODE_DATA(node)->node_zones[zone_type];
4077 if (populated_zone(z)) {
4078 zoneref_set_zone(z,
4079 &zonelist->_zonerefs[pos++]);
4080 check_highest_zone(zone_type);
4081 }
4082 }
4083 }
4084 zonelist->_zonerefs[pos].zone = NULL;
4085 zonelist->_zonerefs[pos].zone_idx = 0;
4086 }
4087
4088 #if defined(CONFIG_64BIT)
4089 /*
4090 * Devices that require DMA32/DMA are relatively rare and do not justify a
4091 * penalty to every machine in case the specialised case applies. Default
4092 * to Node-ordering on 64-bit NUMA machines
4093 */
4094 static int default_zonelist_order(void)
4095 {
4096 return ZONELIST_ORDER_NODE;
4097 }
4098 #else
4099 /*
4100 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4101 * by the kernel. If processes running on node 0 deplete the low memory zone
4102 * then reclaim will occur more frequency increasing stalls and potentially
4103 * be easier to OOM if a large percentage of the zone is under writeback or
4104 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4105 * Hence, default to zone ordering on 32-bit.
4106 */
4107 static int default_zonelist_order(void)
4108 {
4109 return ZONELIST_ORDER_ZONE;
4110 }
4111 #endif /* CONFIG_64BIT */
4112
4113 static void set_zonelist_order(void)
4114 {
4115 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4116 current_zonelist_order = default_zonelist_order();
4117 else
4118 current_zonelist_order = user_zonelist_order;
4119 }
4120
4121 static void build_zonelists(pg_data_t *pgdat)
4122 {
4123 int j, node, load;
4124 enum zone_type i;
4125 nodemask_t used_mask;
4126 int local_node, prev_node;
4127 struct zonelist *zonelist;
4128 int order = current_zonelist_order;
4129
4130 /* initialize zonelists */
4131 for (i = 0; i < MAX_ZONELISTS; i++) {
4132 zonelist = pgdat->node_zonelists + i;
4133 zonelist->_zonerefs[0].zone = NULL;
4134 zonelist->_zonerefs[0].zone_idx = 0;
4135 }
4136
4137 /* NUMA-aware ordering of nodes */
4138 local_node = pgdat->node_id;
4139 load = nr_online_nodes;
4140 prev_node = local_node;
4141 nodes_clear(used_mask);
4142
4143 memset(node_order, 0, sizeof(node_order));
4144 j = 0;
4145
4146 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4147 /*
4148 * We don't want to pressure a particular node.
4149 * So adding penalty to the first node in same
4150 * distance group to make it round-robin.
4151 */
4152 if (node_distance(local_node, node) !=
4153 node_distance(local_node, prev_node))
4154 node_load[node] = load;
4155
4156 prev_node = node;
4157 load--;
4158 if (order == ZONELIST_ORDER_NODE)
4159 build_zonelists_in_node_order(pgdat, node);
4160 else
4161 node_order[j++] = node; /* remember order */
4162 }
4163
4164 if (order == ZONELIST_ORDER_ZONE) {
4165 /* calculate node order -- i.e., DMA last! */
4166 build_zonelists_in_zone_order(pgdat, j);
4167 }
4168
4169 build_thisnode_zonelists(pgdat);
4170 }
4171
4172 /* Construct the zonelist performance cache - see further mmzone.h */
4173 static void build_zonelist_cache(pg_data_t *pgdat)
4174 {
4175 struct zonelist *zonelist;
4176 struct zonelist_cache *zlc;
4177 struct zoneref *z;
4178
4179 zonelist = &pgdat->node_zonelists[0];
4180 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
4181 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
4182 for (z = zonelist->_zonerefs; z->zone; z++)
4183 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
4184 }
4185
4186 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4187 /*
4188 * Return node id of node used for "local" allocations.
4189 * I.e., first node id of first zone in arg node's generic zonelist.
4190 * Used for initializing percpu 'numa_mem', which is used primarily
4191 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4192 */
4193 int local_memory_node(int node)
4194 {
4195 struct zone *zone;
4196
4197 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4198 gfp_zone(GFP_KERNEL),
4199 NULL,
4200 &zone);
4201 return zone->node;
4202 }
4203 #endif
4204
4205 #else /* CONFIG_NUMA */
4206
4207 static void set_zonelist_order(void)
4208 {
4209 current_zonelist_order = ZONELIST_ORDER_ZONE;
4210 }
4211
4212 static void build_zonelists(pg_data_t *pgdat)
4213 {
4214 int node, local_node;
4215 enum zone_type j;
4216 struct zonelist *zonelist;
4217
4218 local_node = pgdat->node_id;
4219
4220 zonelist = &pgdat->node_zonelists[0];
4221 j = build_zonelists_node(pgdat, zonelist, 0);
4222
4223 /*
4224 * Now we build the zonelist so that it contains the zones
4225 * of all the other nodes.
4226 * We don't want to pressure a particular node, so when
4227 * building the zones for node N, we make sure that the
4228 * zones coming right after the local ones are those from
4229 * node N+1 (modulo N)
4230 */
4231 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4232 if (!node_online(node))
4233 continue;
4234 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4235 }
4236 for (node = 0; node < local_node; node++) {
4237 if (!node_online(node))
4238 continue;
4239 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4240 }
4241
4242 zonelist->_zonerefs[j].zone = NULL;
4243 zonelist->_zonerefs[j].zone_idx = 0;
4244 }
4245
4246 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
4247 static void build_zonelist_cache(pg_data_t *pgdat)
4248 {
4249 pgdat->node_zonelists[0].zlcache_ptr = NULL;
4250 }
4251
4252 #endif /* CONFIG_NUMA */
4253
4254 /*
4255 * Boot pageset table. One per cpu which is going to be used for all
4256 * zones and all nodes. The parameters will be set in such a way
4257 * that an item put on a list will immediately be handed over to
4258 * the buddy list. This is safe since pageset manipulation is done
4259 * with interrupts disabled.
4260 *
4261 * The boot_pagesets must be kept even after bootup is complete for
4262 * unused processors and/or zones. They do play a role for bootstrapping
4263 * hotplugged processors.
4264 *
4265 * zoneinfo_show() and maybe other functions do
4266 * not check if the processor is online before following the pageset pointer.
4267 * Other parts of the kernel may not check if the zone is available.
4268 */
4269 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4270 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4271 static void setup_zone_pageset(struct zone *zone);
4272
4273 /*
4274 * Global mutex to protect against size modification of zonelists
4275 * as well as to serialize pageset setup for the new populated zone.
4276 */
4277 DEFINE_MUTEX(zonelists_mutex);
4278
4279 /* return values int ....just for stop_machine() */
4280 static int __build_all_zonelists(void *data)
4281 {
4282 int nid;
4283 int cpu;
4284 pg_data_t *self = data;
4285
4286 #ifdef CONFIG_NUMA
4287 memset(node_load, 0, sizeof(node_load));
4288 #endif
4289
4290 if (self && !node_online(self->node_id)) {
4291 build_zonelists(self);
4292 build_zonelist_cache(self);
4293 }
4294
4295 for_each_online_node(nid) {
4296 pg_data_t *pgdat = NODE_DATA(nid);
4297
4298 build_zonelists(pgdat);
4299 build_zonelist_cache(pgdat);
4300 }
4301
4302 /*
4303 * Initialize the boot_pagesets that are going to be used
4304 * for bootstrapping processors. The real pagesets for
4305 * each zone will be allocated later when the per cpu
4306 * allocator is available.
4307 *
4308 * boot_pagesets are used also for bootstrapping offline
4309 * cpus if the system is already booted because the pagesets
4310 * are needed to initialize allocators on a specific cpu too.
4311 * F.e. the percpu allocator needs the page allocator which
4312 * needs the percpu allocator in order to allocate its pagesets
4313 * (a chicken-egg dilemma).
4314 */
4315 for_each_possible_cpu(cpu) {
4316 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4317
4318 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4319 /*
4320 * We now know the "local memory node" for each node--
4321 * i.e., the node of the first zone in the generic zonelist.
4322 * Set up numa_mem percpu variable for on-line cpus. During
4323 * boot, only the boot cpu should be on-line; we'll init the
4324 * secondary cpus' numa_mem as they come on-line. During
4325 * node/memory hotplug, we'll fixup all on-line cpus.
4326 */
4327 if (cpu_online(cpu))
4328 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4329 #endif
4330 }
4331
4332 return 0;
4333 }
4334
4335 static noinline void __init
4336 build_all_zonelists_init(void)
4337 {
4338 __build_all_zonelists(NULL);
4339 mminit_verify_zonelist();
4340 cpuset_init_current_mems_allowed();
4341 }
4342
4343 /*
4344 * Called with zonelists_mutex held always
4345 * unless system_state == SYSTEM_BOOTING.
4346 *
4347 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4348 * [we're only called with non-NULL zone through __meminit paths] and
4349 * (2) call of __init annotated helper build_all_zonelists_init
4350 * [protected by SYSTEM_BOOTING].
4351 */
4352 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4353 {
4354 set_zonelist_order();
4355
4356 if (system_state == SYSTEM_BOOTING) {
4357 build_all_zonelists_init();
4358 } else {
4359 #ifdef CONFIG_MEMORY_HOTPLUG
4360 if (zone)
4361 setup_zone_pageset(zone);
4362 #endif
4363 /* we have to stop all cpus to guarantee there is no user
4364 of zonelist */
4365 stop_machine(__build_all_zonelists, pgdat, NULL);
4366 /* cpuset refresh routine should be here */
4367 }
4368 vm_total_pages = nr_free_pagecache_pages();
4369 /*
4370 * Disable grouping by mobility if the number of pages in the
4371 * system is too low to allow the mechanism to work. It would be
4372 * more accurate, but expensive to check per-zone. This check is
4373 * made on memory-hotadd so a system can start with mobility
4374 * disabled and enable it later
4375 */
4376 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4377 page_group_by_mobility_disabled = 1;
4378 else
4379 page_group_by_mobility_disabled = 0;
4380
4381 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
4382 "Total pages: %ld\n",
4383 nr_online_nodes,
4384 zonelist_order_name[current_zonelist_order],
4385 page_group_by_mobility_disabled ? "off" : "on",
4386 vm_total_pages);
4387 #ifdef CONFIG_NUMA
4388 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4389 #endif
4390 }
4391
4392 /*
4393 * Helper functions to size the waitqueue hash table.
4394 * Essentially these want to choose hash table sizes sufficiently
4395 * large so that collisions trying to wait on pages are rare.
4396 * But in fact, the number of active page waitqueues on typical
4397 * systems is ridiculously low, less than 200. So this is even
4398 * conservative, even though it seems large.
4399 *
4400 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4401 * waitqueues, i.e. the size of the waitq table given the number of pages.
4402 */
4403 #define PAGES_PER_WAITQUEUE 256
4404
4405 #ifndef CONFIG_MEMORY_HOTPLUG
4406 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4407 {
4408 unsigned long size = 1;
4409
4410 pages /= PAGES_PER_WAITQUEUE;
4411
4412 while (size < pages)
4413 size <<= 1;
4414
4415 /*
4416 * Once we have dozens or even hundreds of threads sleeping
4417 * on IO we've got bigger problems than wait queue collision.
4418 * Limit the size of the wait table to a reasonable size.
4419 */
4420 size = min(size, 4096UL);
4421
4422 return max(size, 4UL);
4423 }
4424 #else
4425 /*
4426 * A zone's size might be changed by hot-add, so it is not possible to determine
4427 * a suitable size for its wait_table. So we use the maximum size now.
4428 *
4429 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4430 *
4431 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4432 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4433 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4434 *
4435 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4436 * or more by the traditional way. (See above). It equals:
4437 *
4438 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4439 * ia64(16K page size) : = ( 8G + 4M)byte.
4440 * powerpc (64K page size) : = (32G +16M)byte.
4441 */
4442 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4443 {
4444 return 4096UL;
4445 }
4446 #endif
4447
4448 /*
4449 * This is an integer logarithm so that shifts can be used later
4450 * to extract the more random high bits from the multiplicative
4451 * hash function before the remainder is taken.
4452 */
4453 static inline unsigned long wait_table_bits(unsigned long size)
4454 {
4455 return ffz(~size);
4456 }
4457
4458 /*
4459 * Check if a pageblock contains reserved pages
4460 */
4461 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4462 {
4463 unsigned long pfn;
4464
4465 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4466 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4467 return 1;
4468 }
4469 return 0;
4470 }
4471
4472 /*
4473 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4474 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4475 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4476 * higher will lead to a bigger reserve which will get freed as contiguous
4477 * blocks as reclaim kicks in
4478 */
4479 static void setup_zone_migrate_reserve(struct zone *zone)
4480 {
4481 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4482 struct page *page;
4483 unsigned long block_migratetype;
4484 int reserve;
4485 int old_reserve;
4486
4487 /*
4488 * Get the start pfn, end pfn and the number of blocks to reserve
4489 * We have to be careful to be aligned to pageblock_nr_pages to
4490 * make sure that we always check pfn_valid for the first page in
4491 * the block.
4492 */
4493 start_pfn = zone->zone_start_pfn;
4494 end_pfn = zone_end_pfn(zone);
4495 start_pfn = roundup(start_pfn, pageblock_nr_pages);
4496 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4497 pageblock_order;
4498
4499 /*
4500 * Reserve blocks are generally in place to help high-order atomic
4501 * allocations that are short-lived. A min_free_kbytes value that
4502 * would result in more than 2 reserve blocks for atomic allocations
4503 * is assumed to be in place to help anti-fragmentation for the
4504 * future allocation of hugepages at runtime.
4505 */
4506 reserve = min(2, reserve);
4507 old_reserve = zone->nr_migrate_reserve_block;
4508
4509 /* When memory hot-add, we almost always need to do nothing */
4510 if (reserve == old_reserve)
4511 return;
4512 zone->nr_migrate_reserve_block = reserve;
4513
4514 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4515 if (!early_page_nid_uninitialised(pfn, zone_to_nid(zone)))
4516 return;
4517
4518 if (!pfn_valid(pfn))
4519 continue;
4520 page = pfn_to_page(pfn);
4521
4522 /* Watch out for overlapping nodes */
4523 if (page_to_nid(page) != zone_to_nid(zone))
4524 continue;
4525
4526 block_migratetype = get_pageblock_migratetype(page);
4527
4528 /* Only test what is necessary when the reserves are not met */
4529 if (reserve > 0) {
4530 /*
4531 * Blocks with reserved pages will never free, skip
4532 * them.
4533 */
4534 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4535 if (pageblock_is_reserved(pfn, block_end_pfn))
4536 continue;
4537
4538 /* If this block is reserved, account for it */
4539 if (block_migratetype == MIGRATE_RESERVE) {
4540 reserve--;
4541 continue;
4542 }
4543
4544 /* Suitable for reserving if this block is movable */
4545 if (block_migratetype == MIGRATE_MOVABLE) {
4546 set_pageblock_migratetype(page,
4547 MIGRATE_RESERVE);
4548 move_freepages_block(zone, page,
4549 MIGRATE_RESERVE);
4550 reserve--;
4551 continue;
4552 }
4553 } else if (!old_reserve) {
4554 /*
4555 * At boot time we don't need to scan the whole zone
4556 * for turning off MIGRATE_RESERVE.
4557 */
4558 break;
4559 }
4560
4561 /*
4562 * If the reserve is met and this is a previous reserved block,
4563 * take it back
4564 */
4565 if (block_migratetype == MIGRATE_RESERVE) {
4566 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4567 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4568 }
4569 }
4570 }
4571
4572 /*
4573 * Initially all pages are reserved - free ones are freed
4574 * up by free_all_bootmem() once the early boot process is
4575 * done. Non-atomic initialization, single-pass.
4576 */
4577 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4578 unsigned long start_pfn, enum memmap_context context)
4579 {
4580 pg_data_t *pgdat = NODE_DATA(nid);
4581 unsigned long end_pfn = start_pfn + size;
4582 unsigned long pfn;
4583 struct zone *z;
4584 unsigned long nr_initialised = 0;
4585
4586 if (highest_memmap_pfn < end_pfn - 1)
4587 highest_memmap_pfn = end_pfn - 1;
4588
4589 z = &pgdat->node_zones[zone];
4590 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4591 /*
4592 * There can be holes in boot-time mem_map[]s
4593 * handed to this function. They do not
4594 * exist on hotplugged memory.
4595 */
4596 if (context == MEMMAP_EARLY) {
4597 if (!early_pfn_valid(pfn))
4598 continue;
4599 if (!early_pfn_in_nid(pfn, nid))
4600 continue;
4601 if (!update_defer_init(pgdat, pfn, end_pfn,
4602 &nr_initialised))
4603 break;
4604 }
4605
4606 /*
4607 * Mark the block movable so that blocks are reserved for
4608 * movable at startup. This will force kernel allocations
4609 * to reserve their blocks rather than leaking throughout
4610 * the address space during boot when many long-lived
4611 * kernel allocations are made. Later some blocks near
4612 * the start are marked MIGRATE_RESERVE by
4613 * setup_zone_migrate_reserve()
4614 *
4615 * bitmap is created for zone's valid pfn range. but memmap
4616 * can be created for invalid pages (for alignment)
4617 * check here not to call set_pageblock_migratetype() against
4618 * pfn out of zone.
4619 */
4620 if (!(pfn & (pageblock_nr_pages - 1))) {
4621 struct page *page = pfn_to_page(pfn);
4622
4623 __init_single_page(page, pfn, zone, nid);
4624 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4625 } else {
4626 __init_single_pfn(pfn, zone, nid);
4627 }
4628 }
4629 }
4630
4631 static void __meminit zone_init_free_lists(struct zone *zone)
4632 {
4633 unsigned int order, t;
4634 for_each_migratetype_order(order, t) {
4635 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4636 zone->free_area[order].nr_free = 0;
4637 }
4638 }
4639
4640 #ifndef __HAVE_ARCH_MEMMAP_INIT
4641 #define memmap_init(size, nid, zone, start_pfn) \
4642 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4643 #endif
4644
4645 static int zone_batchsize(struct zone *zone)
4646 {
4647 #ifdef CONFIG_MMU
4648 int batch;
4649
4650 /*
4651 * The per-cpu-pages pools are set to around 1000th of the
4652 * size of the zone. But no more than 1/2 of a meg.
4653 *
4654 * OK, so we don't know how big the cache is. So guess.
4655 */
4656 batch = zone->managed_pages / 1024;
4657 if (batch * PAGE_SIZE > 512 * 1024)
4658 batch = (512 * 1024) / PAGE_SIZE;
4659 batch /= 4; /* We effectively *= 4 below */
4660 if (batch < 1)
4661 batch = 1;
4662
4663 /*
4664 * Clamp the batch to a 2^n - 1 value. Having a power
4665 * of 2 value was found to be more likely to have
4666 * suboptimal cache aliasing properties in some cases.
4667 *
4668 * For example if 2 tasks are alternately allocating
4669 * batches of pages, one task can end up with a lot
4670 * of pages of one half of the possible page colors
4671 * and the other with pages of the other colors.
4672 */
4673 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4674
4675 return batch;
4676
4677 #else
4678 /* The deferral and batching of frees should be suppressed under NOMMU
4679 * conditions.
4680 *
4681 * The problem is that NOMMU needs to be able to allocate large chunks
4682 * of contiguous memory as there's no hardware page translation to
4683 * assemble apparent contiguous memory from discontiguous pages.
4684 *
4685 * Queueing large contiguous runs of pages for batching, however,
4686 * causes the pages to actually be freed in smaller chunks. As there
4687 * can be a significant delay between the individual batches being
4688 * recycled, this leads to the once large chunks of space being
4689 * fragmented and becoming unavailable for high-order allocations.
4690 */
4691 return 0;
4692 #endif
4693 }
4694
4695 /*
4696 * pcp->high and pcp->batch values are related and dependent on one another:
4697 * ->batch must never be higher then ->high.
4698 * The following function updates them in a safe manner without read side
4699 * locking.
4700 *
4701 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4702 * those fields changing asynchronously (acording the the above rule).
4703 *
4704 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4705 * outside of boot time (or some other assurance that no concurrent updaters
4706 * exist).
4707 */
4708 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4709 unsigned long batch)
4710 {
4711 /* start with a fail safe value for batch */
4712 pcp->batch = 1;
4713 smp_wmb();
4714
4715 /* Update high, then batch, in order */
4716 pcp->high = high;
4717 smp_wmb();
4718
4719 pcp->batch = batch;
4720 }
4721
4722 /* a companion to pageset_set_high() */
4723 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4724 {
4725 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4726 }
4727
4728 static void pageset_init(struct per_cpu_pageset *p)
4729 {
4730 struct per_cpu_pages *pcp;
4731 int migratetype;
4732
4733 memset(p, 0, sizeof(*p));
4734
4735 pcp = &p->pcp;
4736 pcp->count = 0;
4737 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4738 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4739 }
4740
4741 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4742 {
4743 pageset_init(p);
4744 pageset_set_batch(p, batch);
4745 }
4746
4747 /*
4748 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4749 * to the value high for the pageset p.
4750 */
4751 static void pageset_set_high(struct per_cpu_pageset *p,
4752 unsigned long high)
4753 {
4754 unsigned long batch = max(1UL, high / 4);
4755 if ((high / 4) > (PAGE_SHIFT * 8))
4756 batch = PAGE_SHIFT * 8;
4757
4758 pageset_update(&p->pcp, high, batch);
4759 }
4760
4761 static void pageset_set_high_and_batch(struct zone *zone,
4762 struct per_cpu_pageset *pcp)
4763 {
4764 if (percpu_pagelist_fraction)
4765 pageset_set_high(pcp,
4766 (zone->managed_pages /
4767 percpu_pagelist_fraction));
4768 else
4769 pageset_set_batch(pcp, zone_batchsize(zone));
4770 }
4771
4772 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4773 {
4774 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4775
4776 pageset_init(pcp);
4777 pageset_set_high_and_batch(zone, pcp);
4778 }
4779
4780 static void __meminit setup_zone_pageset(struct zone *zone)
4781 {
4782 int cpu;
4783 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4784 for_each_possible_cpu(cpu)
4785 zone_pageset_init(zone, cpu);
4786 }
4787
4788 /*
4789 * Allocate per cpu pagesets and initialize them.
4790 * Before this call only boot pagesets were available.
4791 */
4792 void __init setup_per_cpu_pageset(void)
4793 {
4794 struct zone *zone;
4795
4796 for_each_populated_zone(zone)
4797 setup_zone_pageset(zone);
4798 }
4799
4800 static noinline __init_refok
4801 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4802 {
4803 int i;
4804 size_t alloc_size;
4805
4806 /*
4807 * The per-page waitqueue mechanism uses hashed waitqueues
4808 * per zone.
4809 */
4810 zone->wait_table_hash_nr_entries =
4811 wait_table_hash_nr_entries(zone_size_pages);
4812 zone->wait_table_bits =
4813 wait_table_bits(zone->wait_table_hash_nr_entries);
4814 alloc_size = zone->wait_table_hash_nr_entries
4815 * sizeof(wait_queue_head_t);
4816
4817 if (!slab_is_available()) {
4818 zone->wait_table = (wait_queue_head_t *)
4819 memblock_virt_alloc_node_nopanic(
4820 alloc_size, zone->zone_pgdat->node_id);
4821 } else {
4822 /*
4823 * This case means that a zone whose size was 0 gets new memory
4824 * via memory hot-add.
4825 * But it may be the case that a new node was hot-added. In
4826 * this case vmalloc() will not be able to use this new node's
4827 * memory - this wait_table must be initialized to use this new
4828 * node itself as well.
4829 * To use this new node's memory, further consideration will be
4830 * necessary.
4831 */
4832 zone->wait_table = vmalloc(alloc_size);
4833 }
4834 if (!zone->wait_table)
4835 return -ENOMEM;
4836
4837 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4838 init_waitqueue_head(zone->wait_table + i);
4839
4840 return 0;
4841 }
4842
4843 static __meminit void zone_pcp_init(struct zone *zone)
4844 {
4845 /*
4846 * per cpu subsystem is not up at this point. The following code
4847 * relies on the ability of the linker to provide the
4848 * offset of a (static) per cpu variable into the per cpu area.
4849 */
4850 zone->pageset = &boot_pageset;
4851
4852 if (populated_zone(zone))
4853 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4854 zone->name, zone->present_pages,
4855 zone_batchsize(zone));
4856 }
4857
4858 int __meminit init_currently_empty_zone(struct zone *zone,
4859 unsigned long zone_start_pfn,
4860 unsigned long size,
4861 enum memmap_context context)
4862 {
4863 struct pglist_data *pgdat = zone->zone_pgdat;
4864 int ret;
4865 ret = zone_wait_table_init(zone, size);
4866 if (ret)
4867 return ret;
4868 pgdat->nr_zones = zone_idx(zone) + 1;
4869
4870 zone->zone_start_pfn = zone_start_pfn;
4871
4872 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4873 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4874 pgdat->node_id,
4875 (unsigned long)zone_idx(zone),
4876 zone_start_pfn, (zone_start_pfn + size));
4877
4878 zone_init_free_lists(zone);
4879
4880 return 0;
4881 }
4882
4883 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4884 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4885
4886 /*
4887 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4888 */
4889 int __meminit __early_pfn_to_nid(unsigned long pfn,
4890 struct mminit_pfnnid_cache *state)
4891 {
4892 unsigned long start_pfn, end_pfn;
4893 int nid;
4894
4895 if (state->last_start <= pfn && pfn < state->last_end)
4896 return state->last_nid;
4897
4898 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4899 if (nid != -1) {
4900 state->last_start = start_pfn;
4901 state->last_end = end_pfn;
4902 state->last_nid = nid;
4903 }
4904
4905 return nid;
4906 }
4907 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4908
4909 /**
4910 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4911 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4912 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4913 *
4914 * If an architecture guarantees that all ranges registered contain no holes
4915 * and may be freed, this this function may be used instead of calling
4916 * memblock_free_early_nid() manually.
4917 */
4918 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4919 {
4920 unsigned long start_pfn, end_pfn;
4921 int i, this_nid;
4922
4923 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4924 start_pfn = min(start_pfn, max_low_pfn);
4925 end_pfn = min(end_pfn, max_low_pfn);
4926
4927 if (start_pfn < end_pfn)
4928 memblock_free_early_nid(PFN_PHYS(start_pfn),
4929 (end_pfn - start_pfn) << PAGE_SHIFT,
4930 this_nid);
4931 }
4932 }
4933
4934 /**
4935 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4936 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4937 *
4938 * If an architecture guarantees that all ranges registered contain no holes and may
4939 * be freed, this function may be used instead of calling memory_present() manually.
4940 */
4941 void __init sparse_memory_present_with_active_regions(int nid)
4942 {
4943 unsigned long start_pfn, end_pfn;
4944 int i, this_nid;
4945
4946 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4947 memory_present(this_nid, start_pfn, end_pfn);
4948 }
4949
4950 /**
4951 * get_pfn_range_for_nid - Return the start and end page frames for a node
4952 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4953 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4954 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4955 *
4956 * It returns the start and end page frame of a node based on information
4957 * provided by memblock_set_node(). If called for a node
4958 * with no available memory, a warning is printed and the start and end
4959 * PFNs will be 0.
4960 */
4961 void __meminit get_pfn_range_for_nid(unsigned int nid,
4962 unsigned long *start_pfn, unsigned long *end_pfn)
4963 {
4964 unsigned long this_start_pfn, this_end_pfn;
4965 int i;
4966
4967 *start_pfn = -1UL;
4968 *end_pfn = 0;
4969
4970 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4971 *start_pfn = min(*start_pfn, this_start_pfn);
4972 *end_pfn = max(*end_pfn, this_end_pfn);
4973 }
4974
4975 if (*start_pfn == -1UL)
4976 *start_pfn = 0;
4977 }
4978
4979 /*
4980 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4981 * assumption is made that zones within a node are ordered in monotonic
4982 * increasing memory addresses so that the "highest" populated zone is used
4983 */
4984 static void __init find_usable_zone_for_movable(void)
4985 {
4986 int zone_index;
4987 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4988 if (zone_index == ZONE_MOVABLE)
4989 continue;
4990
4991 if (arch_zone_highest_possible_pfn[zone_index] >
4992 arch_zone_lowest_possible_pfn[zone_index])
4993 break;
4994 }
4995
4996 VM_BUG_ON(zone_index == -1);
4997 movable_zone = zone_index;
4998 }
4999
5000 /*
5001 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5002 * because it is sized independent of architecture. Unlike the other zones,
5003 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5004 * in each node depending on the size of each node and how evenly kernelcore
5005 * is distributed. This helper function adjusts the zone ranges
5006 * provided by the architecture for a given node by using the end of the
5007 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5008 * zones within a node are in order of monotonic increases memory addresses
5009 */
5010 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5011 unsigned long zone_type,
5012 unsigned long node_start_pfn,
5013 unsigned long node_end_pfn,
5014 unsigned long *zone_start_pfn,
5015 unsigned long *zone_end_pfn)
5016 {
5017 /* Only adjust if ZONE_MOVABLE is on this node */
5018 if (zone_movable_pfn[nid]) {
5019 /* Size ZONE_MOVABLE */
5020 if (zone_type == ZONE_MOVABLE) {
5021 *zone_start_pfn = zone_movable_pfn[nid];
5022 *zone_end_pfn = min(node_end_pfn,
5023 arch_zone_highest_possible_pfn[movable_zone]);
5024
5025 /* Adjust for ZONE_MOVABLE starting within this range */
5026 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
5027 *zone_end_pfn > zone_movable_pfn[nid]) {
5028 *zone_end_pfn = zone_movable_pfn[nid];
5029
5030 /* Check if this whole range is within ZONE_MOVABLE */
5031 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5032 *zone_start_pfn = *zone_end_pfn;
5033 }
5034 }
5035
5036 /*
5037 * Return the number of pages a zone spans in a node, including holes
5038 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5039 */
5040 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5041 unsigned long zone_type,
5042 unsigned long node_start_pfn,
5043 unsigned long node_end_pfn,
5044 unsigned long *ignored)
5045 {
5046 unsigned long zone_start_pfn, zone_end_pfn;
5047
5048 /* Get the start and end of the zone */
5049 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5050 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5051 adjust_zone_range_for_zone_movable(nid, zone_type,
5052 node_start_pfn, node_end_pfn,
5053 &zone_start_pfn, &zone_end_pfn);
5054
5055 /* Check that this node has pages within the zone's required range */
5056 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
5057 return 0;
5058
5059 /* Move the zone boundaries inside the node if necessary */
5060 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
5061 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
5062
5063 /* Return the spanned pages */
5064 return zone_end_pfn - zone_start_pfn;
5065 }
5066
5067 /*
5068 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5069 * then all holes in the requested range will be accounted for.
5070 */
5071 unsigned long __meminit __absent_pages_in_range(int nid,
5072 unsigned long range_start_pfn,
5073 unsigned long range_end_pfn)
5074 {
5075 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5076 unsigned long start_pfn, end_pfn;
5077 int i;
5078
5079 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5080 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5081 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5082 nr_absent -= end_pfn - start_pfn;
5083 }
5084 return nr_absent;
5085 }
5086
5087 /**
5088 * absent_pages_in_range - Return number of page frames in holes within a range
5089 * @start_pfn: The start PFN to start searching for holes
5090 * @end_pfn: The end PFN to stop searching for holes
5091 *
5092 * It returns the number of pages frames in memory holes within a range.
5093 */
5094 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5095 unsigned long end_pfn)
5096 {
5097 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5098 }
5099
5100 /* Return the number of page frames in holes in a zone on a node */
5101 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5102 unsigned long zone_type,
5103 unsigned long node_start_pfn,
5104 unsigned long node_end_pfn,
5105 unsigned long *ignored)
5106 {
5107 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5108 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5109 unsigned long zone_start_pfn, zone_end_pfn;
5110
5111 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5112 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5113
5114 adjust_zone_range_for_zone_movable(nid, zone_type,
5115 node_start_pfn, node_end_pfn,
5116 &zone_start_pfn, &zone_end_pfn);
5117 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5118 }
5119
5120 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5121 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5122 unsigned long zone_type,
5123 unsigned long node_start_pfn,
5124 unsigned long node_end_pfn,
5125 unsigned long *zones_size)
5126 {
5127 return zones_size[zone_type];
5128 }
5129
5130 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5131 unsigned long zone_type,
5132 unsigned long node_start_pfn,
5133 unsigned long node_end_pfn,
5134 unsigned long *zholes_size)
5135 {
5136 if (!zholes_size)
5137 return 0;
5138
5139 return zholes_size[zone_type];
5140 }
5141
5142 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5143
5144 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5145 unsigned long node_start_pfn,
5146 unsigned long node_end_pfn,
5147 unsigned long *zones_size,
5148 unsigned long *zholes_size)
5149 {
5150 unsigned long realtotalpages = 0, totalpages = 0;
5151 enum zone_type i;
5152
5153 for (i = 0; i < MAX_NR_ZONES; i++) {
5154 struct zone *zone = pgdat->node_zones + i;
5155 unsigned long size, real_size;
5156
5157 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5158 node_start_pfn,
5159 node_end_pfn,
5160 zones_size);
5161 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5162 node_start_pfn, node_end_pfn,
5163 zholes_size);
5164 zone->spanned_pages = size;
5165 zone->present_pages = real_size;
5166
5167 totalpages += size;
5168 realtotalpages += real_size;
5169 }
5170
5171 pgdat->node_spanned_pages = totalpages;
5172 pgdat->node_present_pages = realtotalpages;
5173 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5174 realtotalpages);
5175 }
5176
5177 #ifndef CONFIG_SPARSEMEM
5178 /*
5179 * Calculate the size of the zone->blockflags rounded to an unsigned long
5180 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5181 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5182 * round what is now in bits to nearest long in bits, then return it in
5183 * bytes.
5184 */
5185 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5186 {
5187 unsigned long usemapsize;
5188
5189 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5190 usemapsize = roundup(zonesize, pageblock_nr_pages);
5191 usemapsize = usemapsize >> pageblock_order;
5192 usemapsize *= NR_PAGEBLOCK_BITS;
5193 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5194
5195 return usemapsize / 8;
5196 }
5197
5198 static void __init setup_usemap(struct pglist_data *pgdat,
5199 struct zone *zone,
5200 unsigned long zone_start_pfn,
5201 unsigned long zonesize)
5202 {
5203 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5204 zone->pageblock_flags = NULL;
5205 if (usemapsize)
5206 zone->pageblock_flags =
5207 memblock_virt_alloc_node_nopanic(usemapsize,
5208 pgdat->node_id);
5209 }
5210 #else
5211 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5212 unsigned long zone_start_pfn, unsigned long zonesize) {}
5213 #endif /* CONFIG_SPARSEMEM */
5214
5215 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5216
5217 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5218 void __paginginit set_pageblock_order(void)
5219 {
5220 unsigned int order;
5221
5222 /* Check that pageblock_nr_pages has not already been setup */
5223 if (pageblock_order)
5224 return;
5225
5226 if (HPAGE_SHIFT > PAGE_SHIFT)
5227 order = HUGETLB_PAGE_ORDER;
5228 else
5229 order = MAX_ORDER - 1;
5230
5231 /*
5232 * Assume the largest contiguous order of interest is a huge page.
5233 * This value may be variable depending on boot parameters on IA64 and
5234 * powerpc.
5235 */
5236 pageblock_order = order;
5237 }
5238 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5239
5240 /*
5241 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5242 * is unused as pageblock_order is set at compile-time. See
5243 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5244 * the kernel config
5245 */
5246 void __paginginit set_pageblock_order(void)
5247 {
5248 }
5249
5250 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5251
5252 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5253 unsigned long present_pages)
5254 {
5255 unsigned long pages = spanned_pages;
5256
5257 /*
5258 * Provide a more accurate estimation if there are holes within
5259 * the zone and SPARSEMEM is in use. If there are holes within the
5260 * zone, each populated memory region may cost us one or two extra
5261 * memmap pages due to alignment because memmap pages for each
5262 * populated regions may not naturally algined on page boundary.
5263 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5264 */
5265 if (spanned_pages > present_pages + (present_pages >> 4) &&
5266 IS_ENABLED(CONFIG_SPARSEMEM))
5267 pages = present_pages;
5268
5269 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5270 }
5271
5272 /*
5273 * Set up the zone data structures:
5274 * - mark all pages reserved
5275 * - mark all memory queues empty
5276 * - clear the memory bitmaps
5277 *
5278 * NOTE: pgdat should get zeroed by caller.
5279 */
5280 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
5281 unsigned long node_start_pfn, unsigned long node_end_pfn)
5282 {
5283 enum zone_type j;
5284 int nid = pgdat->node_id;
5285 unsigned long zone_start_pfn = pgdat->node_start_pfn;
5286 int ret;
5287
5288 pgdat_resize_init(pgdat);
5289 #ifdef CONFIG_NUMA_BALANCING
5290 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5291 pgdat->numabalancing_migrate_nr_pages = 0;
5292 pgdat->numabalancing_migrate_next_window = jiffies;
5293 #endif
5294 init_waitqueue_head(&pgdat->kswapd_wait);
5295 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5296 pgdat_page_ext_init(pgdat);
5297
5298 for (j = 0; j < MAX_NR_ZONES; j++) {
5299 struct zone *zone = pgdat->node_zones + j;
5300 unsigned long size, realsize, freesize, memmap_pages;
5301
5302 size = zone->spanned_pages;
5303 realsize = freesize = zone->present_pages;
5304
5305 /*
5306 * Adjust freesize so that it accounts for how much memory
5307 * is used by this zone for memmap. This affects the watermark
5308 * and per-cpu initialisations
5309 */
5310 memmap_pages = calc_memmap_size(size, realsize);
5311 if (!is_highmem_idx(j)) {
5312 if (freesize >= memmap_pages) {
5313 freesize -= memmap_pages;
5314 if (memmap_pages)
5315 printk(KERN_DEBUG
5316 " %s zone: %lu pages used for memmap\n",
5317 zone_names[j], memmap_pages);
5318 } else
5319 printk(KERN_WARNING
5320 " %s zone: %lu pages exceeds freesize %lu\n",
5321 zone_names[j], memmap_pages, freesize);
5322 }
5323
5324 /* Account for reserved pages */
5325 if (j == 0 && freesize > dma_reserve) {
5326 freesize -= dma_reserve;
5327 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5328 zone_names[0], dma_reserve);
5329 }
5330
5331 if (!is_highmem_idx(j))
5332 nr_kernel_pages += freesize;
5333 /* Charge for highmem memmap if there are enough kernel pages */
5334 else if (nr_kernel_pages > memmap_pages * 2)
5335 nr_kernel_pages -= memmap_pages;
5336 nr_all_pages += freesize;
5337
5338 /*
5339 * Set an approximate value for lowmem here, it will be adjusted
5340 * when the bootmem allocator frees pages into the buddy system.
5341 * And all highmem pages will be managed by the buddy system.
5342 */
5343 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5344 #ifdef CONFIG_NUMA
5345 zone->node = nid;
5346 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5347 / 100;
5348 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5349 #endif
5350 zone->name = zone_names[j];
5351 spin_lock_init(&zone->lock);
5352 spin_lock_init(&zone->lru_lock);
5353 zone_seqlock_init(zone);
5354 zone->zone_pgdat = pgdat;
5355 zone_pcp_init(zone);
5356
5357 /* For bootup, initialized properly in watermark setup */
5358 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5359
5360 lruvec_init(&zone->lruvec);
5361 if (!size)
5362 continue;
5363
5364 set_pageblock_order();
5365 setup_usemap(pgdat, zone, zone_start_pfn, size);
5366 ret = init_currently_empty_zone(zone, zone_start_pfn,
5367 size, MEMMAP_EARLY);
5368 BUG_ON(ret);
5369 memmap_init(size, nid, j, zone_start_pfn);
5370 zone_start_pfn += size;
5371 }
5372 }
5373
5374 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5375 {
5376 /* Skip empty nodes */
5377 if (!pgdat->node_spanned_pages)
5378 return;
5379
5380 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5381 /* ia64 gets its own node_mem_map, before this, without bootmem */
5382 if (!pgdat->node_mem_map) {
5383 unsigned long size, start, end;
5384 struct page *map;
5385
5386 /*
5387 * The zone's endpoints aren't required to be MAX_ORDER
5388 * aligned but the node_mem_map endpoints must be in order
5389 * for the buddy allocator to function correctly.
5390 */
5391 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5392 end = pgdat_end_pfn(pgdat);
5393 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5394 size = (end - start) * sizeof(struct page);
5395 map = alloc_remap(pgdat->node_id, size);
5396 if (!map)
5397 map = memblock_virt_alloc_node_nopanic(size,
5398 pgdat->node_id);
5399 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
5400 }
5401 #ifndef CONFIG_NEED_MULTIPLE_NODES
5402 /*
5403 * With no DISCONTIG, the global mem_map is just set as node 0's
5404 */
5405 if (pgdat == NODE_DATA(0)) {
5406 mem_map = NODE_DATA(0)->node_mem_map;
5407 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5408 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5409 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
5410 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5411 }
5412 #endif
5413 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5414 }
5415
5416 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5417 unsigned long node_start_pfn, unsigned long *zholes_size)
5418 {
5419 pg_data_t *pgdat = NODE_DATA(nid);
5420 unsigned long start_pfn = 0;
5421 unsigned long end_pfn = 0;
5422
5423 /* pg_data_t should be reset to zero when it's allocated */
5424 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5425
5426 reset_deferred_meminit(pgdat);
5427 pgdat->node_id = nid;
5428 pgdat->node_start_pfn = node_start_pfn;
5429 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5430 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5431 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5432 (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
5433 #endif
5434 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5435 zones_size, zholes_size);
5436
5437 alloc_node_mem_map(pgdat);
5438 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5439 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5440 nid, (unsigned long)pgdat,
5441 (unsigned long)pgdat->node_mem_map);
5442 #endif
5443
5444 free_area_init_core(pgdat, start_pfn, end_pfn);
5445 }
5446
5447 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5448
5449 #if MAX_NUMNODES > 1
5450 /*
5451 * Figure out the number of possible node ids.
5452 */
5453 void __init setup_nr_node_ids(void)
5454 {
5455 unsigned int node;
5456 unsigned int highest = 0;
5457
5458 for_each_node_mask(node, node_possible_map)
5459 highest = node;
5460 nr_node_ids = highest + 1;
5461 }
5462 #endif
5463
5464 /**
5465 * node_map_pfn_alignment - determine the maximum internode alignment
5466 *
5467 * This function should be called after node map is populated and sorted.
5468 * It calculates the maximum power of two alignment which can distinguish
5469 * all the nodes.
5470 *
5471 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5472 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5473 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5474 * shifted, 1GiB is enough and this function will indicate so.
5475 *
5476 * This is used to test whether pfn -> nid mapping of the chosen memory
5477 * model has fine enough granularity to avoid incorrect mapping for the
5478 * populated node map.
5479 *
5480 * Returns the determined alignment in pfn's. 0 if there is no alignment
5481 * requirement (single node).
5482 */
5483 unsigned long __init node_map_pfn_alignment(void)
5484 {
5485 unsigned long accl_mask = 0, last_end = 0;
5486 unsigned long start, end, mask;
5487 int last_nid = -1;
5488 int i, nid;
5489
5490 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5491 if (!start || last_nid < 0 || last_nid == nid) {
5492 last_nid = nid;
5493 last_end = end;
5494 continue;
5495 }
5496
5497 /*
5498 * Start with a mask granular enough to pin-point to the
5499 * start pfn and tick off bits one-by-one until it becomes
5500 * too coarse to separate the current node from the last.
5501 */
5502 mask = ~((1 << __ffs(start)) - 1);
5503 while (mask && last_end <= (start & (mask << 1)))
5504 mask <<= 1;
5505
5506 /* accumulate all internode masks */
5507 accl_mask |= mask;
5508 }
5509
5510 /* convert mask to number of pages */
5511 return ~accl_mask + 1;
5512 }
5513
5514 /* Find the lowest pfn for a node */
5515 static unsigned long __init find_min_pfn_for_node(int nid)
5516 {
5517 unsigned long min_pfn = ULONG_MAX;
5518 unsigned long start_pfn;
5519 int i;
5520
5521 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5522 min_pfn = min(min_pfn, start_pfn);
5523
5524 if (min_pfn == ULONG_MAX) {
5525 printk(KERN_WARNING
5526 "Could not find start_pfn for node %d\n", nid);
5527 return 0;
5528 }
5529
5530 return min_pfn;
5531 }
5532
5533 /**
5534 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5535 *
5536 * It returns the minimum PFN based on information provided via
5537 * memblock_set_node().
5538 */
5539 unsigned long __init find_min_pfn_with_active_regions(void)
5540 {
5541 return find_min_pfn_for_node(MAX_NUMNODES);
5542 }
5543
5544 /*
5545 * early_calculate_totalpages()
5546 * Sum pages in active regions for movable zone.
5547 * Populate N_MEMORY for calculating usable_nodes.
5548 */
5549 static unsigned long __init early_calculate_totalpages(void)
5550 {
5551 unsigned long totalpages = 0;
5552 unsigned long start_pfn, end_pfn;
5553 int i, nid;
5554
5555 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5556 unsigned long pages = end_pfn - start_pfn;
5557
5558 totalpages += pages;
5559 if (pages)
5560 node_set_state(nid, N_MEMORY);
5561 }
5562 return totalpages;
5563 }
5564
5565 /*
5566 * Find the PFN the Movable zone begins in each node. Kernel memory
5567 * is spread evenly between nodes as long as the nodes have enough
5568 * memory. When they don't, some nodes will have more kernelcore than
5569 * others
5570 */
5571 static void __init find_zone_movable_pfns_for_nodes(void)
5572 {
5573 int i, nid;
5574 unsigned long usable_startpfn;
5575 unsigned long kernelcore_node, kernelcore_remaining;
5576 /* save the state before borrow the nodemask */
5577 nodemask_t saved_node_state = node_states[N_MEMORY];
5578 unsigned long totalpages = early_calculate_totalpages();
5579 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5580 struct memblock_region *r;
5581
5582 /* Need to find movable_zone earlier when movable_node is specified. */
5583 find_usable_zone_for_movable();
5584
5585 /*
5586 * If movable_node is specified, ignore kernelcore and movablecore
5587 * options.
5588 */
5589 if (movable_node_is_enabled()) {
5590 for_each_memblock(memory, r) {
5591 if (!memblock_is_hotpluggable(r))
5592 continue;
5593
5594 nid = r->nid;
5595
5596 usable_startpfn = PFN_DOWN(r->base);
5597 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5598 min(usable_startpfn, zone_movable_pfn[nid]) :
5599 usable_startpfn;
5600 }
5601
5602 goto out2;
5603 }
5604
5605 /*
5606 * If movablecore=nn[KMG] was specified, calculate what size of
5607 * kernelcore that corresponds so that memory usable for
5608 * any allocation type is evenly spread. If both kernelcore
5609 * and movablecore are specified, then the value of kernelcore
5610 * will be used for required_kernelcore if it's greater than
5611 * what movablecore would have allowed.
5612 */
5613 if (required_movablecore) {
5614 unsigned long corepages;
5615
5616 /*
5617 * Round-up so that ZONE_MOVABLE is at least as large as what
5618 * was requested by the user
5619 */
5620 required_movablecore =
5621 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5622 corepages = totalpages - required_movablecore;
5623
5624 required_kernelcore = max(required_kernelcore, corepages);
5625 }
5626
5627 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5628 if (!required_kernelcore)
5629 goto out;
5630
5631 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5632 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5633
5634 restart:
5635 /* Spread kernelcore memory as evenly as possible throughout nodes */
5636 kernelcore_node = required_kernelcore / usable_nodes;
5637 for_each_node_state(nid, N_MEMORY) {
5638 unsigned long start_pfn, end_pfn;
5639
5640 /*
5641 * Recalculate kernelcore_node if the division per node
5642 * now exceeds what is necessary to satisfy the requested
5643 * amount of memory for the kernel
5644 */
5645 if (required_kernelcore < kernelcore_node)
5646 kernelcore_node = required_kernelcore / usable_nodes;
5647
5648 /*
5649 * As the map is walked, we track how much memory is usable
5650 * by the kernel using kernelcore_remaining. When it is
5651 * 0, the rest of the node is usable by ZONE_MOVABLE
5652 */
5653 kernelcore_remaining = kernelcore_node;
5654
5655 /* Go through each range of PFNs within this node */
5656 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5657 unsigned long size_pages;
5658
5659 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5660 if (start_pfn >= end_pfn)
5661 continue;
5662
5663 /* Account for what is only usable for kernelcore */
5664 if (start_pfn < usable_startpfn) {
5665 unsigned long kernel_pages;
5666 kernel_pages = min(end_pfn, usable_startpfn)
5667 - start_pfn;
5668
5669 kernelcore_remaining -= min(kernel_pages,
5670 kernelcore_remaining);
5671 required_kernelcore -= min(kernel_pages,
5672 required_kernelcore);
5673
5674 /* Continue if range is now fully accounted */
5675 if (end_pfn <= usable_startpfn) {
5676
5677 /*
5678 * Push zone_movable_pfn to the end so
5679 * that if we have to rebalance
5680 * kernelcore across nodes, we will
5681 * not double account here
5682 */
5683 zone_movable_pfn[nid] = end_pfn;
5684 continue;
5685 }
5686 start_pfn = usable_startpfn;
5687 }
5688
5689 /*
5690 * The usable PFN range for ZONE_MOVABLE is from
5691 * start_pfn->end_pfn. Calculate size_pages as the
5692 * number of pages used as kernelcore
5693 */
5694 size_pages = end_pfn - start_pfn;
5695 if (size_pages > kernelcore_remaining)
5696 size_pages = kernelcore_remaining;
5697 zone_movable_pfn[nid] = start_pfn + size_pages;
5698
5699 /*
5700 * Some kernelcore has been met, update counts and
5701 * break if the kernelcore for this node has been
5702 * satisfied
5703 */
5704 required_kernelcore -= min(required_kernelcore,
5705 size_pages);
5706 kernelcore_remaining -= size_pages;
5707 if (!kernelcore_remaining)
5708 break;
5709 }
5710 }
5711
5712 /*
5713 * If there is still required_kernelcore, we do another pass with one
5714 * less node in the count. This will push zone_movable_pfn[nid] further
5715 * along on the nodes that still have memory until kernelcore is
5716 * satisfied
5717 */
5718 usable_nodes--;
5719 if (usable_nodes && required_kernelcore > usable_nodes)
5720 goto restart;
5721
5722 out2:
5723 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5724 for (nid = 0; nid < MAX_NUMNODES; nid++)
5725 zone_movable_pfn[nid] =
5726 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5727
5728 out:
5729 /* restore the node_state */
5730 node_states[N_MEMORY] = saved_node_state;
5731 }
5732
5733 /* Any regular or high memory on that node ? */
5734 static void check_for_memory(pg_data_t *pgdat, int nid)
5735 {
5736 enum zone_type zone_type;
5737
5738 if (N_MEMORY == N_NORMAL_MEMORY)
5739 return;
5740
5741 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5742 struct zone *zone = &pgdat->node_zones[zone_type];
5743 if (populated_zone(zone)) {
5744 node_set_state(nid, N_HIGH_MEMORY);
5745 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5746 zone_type <= ZONE_NORMAL)
5747 node_set_state(nid, N_NORMAL_MEMORY);
5748 break;
5749 }
5750 }
5751 }
5752
5753 /**
5754 * free_area_init_nodes - Initialise all pg_data_t and zone data
5755 * @max_zone_pfn: an array of max PFNs for each zone
5756 *
5757 * This will call free_area_init_node() for each active node in the system.
5758 * Using the page ranges provided by memblock_set_node(), the size of each
5759 * zone in each node and their holes is calculated. If the maximum PFN
5760 * between two adjacent zones match, it is assumed that the zone is empty.
5761 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5762 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5763 * starts where the previous one ended. For example, ZONE_DMA32 starts
5764 * at arch_max_dma_pfn.
5765 */
5766 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5767 {
5768 unsigned long start_pfn, end_pfn;
5769 int i, nid;
5770
5771 /* Record where the zone boundaries are */
5772 memset(arch_zone_lowest_possible_pfn, 0,
5773 sizeof(arch_zone_lowest_possible_pfn));
5774 memset(arch_zone_highest_possible_pfn, 0,
5775 sizeof(arch_zone_highest_possible_pfn));
5776 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5777 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5778 for (i = 1; i < MAX_NR_ZONES; i++) {
5779 if (i == ZONE_MOVABLE)
5780 continue;
5781 arch_zone_lowest_possible_pfn[i] =
5782 arch_zone_highest_possible_pfn[i-1];
5783 arch_zone_highest_possible_pfn[i] =
5784 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5785 }
5786 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5787 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5788
5789 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5790 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5791 find_zone_movable_pfns_for_nodes();
5792
5793 /* Print out the zone ranges */
5794 pr_info("Zone ranges:\n");
5795 for (i = 0; i < MAX_NR_ZONES; i++) {
5796 if (i == ZONE_MOVABLE)
5797 continue;
5798 pr_info(" %-8s ", zone_names[i]);
5799 if (arch_zone_lowest_possible_pfn[i] ==
5800 arch_zone_highest_possible_pfn[i])
5801 pr_cont("empty\n");
5802 else
5803 pr_cont("[mem %#018Lx-%#018Lx]\n",
5804 (u64)arch_zone_lowest_possible_pfn[i]
5805 << PAGE_SHIFT,
5806 ((u64)arch_zone_highest_possible_pfn[i]
5807 << PAGE_SHIFT) - 1);
5808 }
5809
5810 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5811 pr_info("Movable zone start for each node\n");
5812 for (i = 0; i < MAX_NUMNODES; i++) {
5813 if (zone_movable_pfn[i])
5814 pr_info(" Node %d: %#018Lx\n", i,
5815 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5816 }
5817
5818 /* Print out the early node map */
5819 pr_info("Early memory node ranges\n");
5820 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5821 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5822 (u64)start_pfn << PAGE_SHIFT,
5823 ((u64)end_pfn << PAGE_SHIFT) - 1);
5824
5825 /* Initialise every node */
5826 mminit_verify_pageflags_layout();
5827 setup_nr_node_ids();
5828 for_each_online_node(nid) {
5829 pg_data_t *pgdat = NODE_DATA(nid);
5830 free_area_init_node(nid, NULL,
5831 find_min_pfn_for_node(nid), NULL);
5832
5833 /* Any memory on that node */
5834 if (pgdat->node_present_pages)
5835 node_set_state(nid, N_MEMORY);
5836 check_for_memory(pgdat, nid);
5837 }
5838 }
5839
5840 static int __init cmdline_parse_core(char *p, unsigned long *core)
5841 {
5842 unsigned long long coremem;
5843 if (!p)
5844 return -EINVAL;
5845
5846 coremem = memparse(p, &p);
5847 *core = coremem >> PAGE_SHIFT;
5848
5849 /* Paranoid check that UL is enough for the coremem value */
5850 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5851
5852 return 0;
5853 }
5854
5855 /*
5856 * kernelcore=size sets the amount of memory for use for allocations that
5857 * cannot be reclaimed or migrated.
5858 */
5859 static int __init cmdline_parse_kernelcore(char *p)
5860 {
5861 return cmdline_parse_core(p, &required_kernelcore);
5862 }
5863
5864 /*
5865 * movablecore=size sets the amount of memory for use for allocations that
5866 * can be reclaimed or migrated.
5867 */
5868 static int __init cmdline_parse_movablecore(char *p)
5869 {
5870 return cmdline_parse_core(p, &required_movablecore);
5871 }
5872
5873 early_param("kernelcore", cmdline_parse_kernelcore);
5874 early_param("movablecore", cmdline_parse_movablecore);
5875
5876 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5877
5878 void adjust_managed_page_count(struct page *page, long count)
5879 {
5880 spin_lock(&managed_page_count_lock);
5881 page_zone(page)->managed_pages += count;
5882 totalram_pages += count;
5883 #ifdef CONFIG_HIGHMEM
5884 if (PageHighMem(page))
5885 totalhigh_pages += count;
5886 #endif
5887 spin_unlock(&managed_page_count_lock);
5888 }
5889 EXPORT_SYMBOL(adjust_managed_page_count);
5890
5891 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5892 {
5893 void *pos;
5894 unsigned long pages = 0;
5895
5896 start = (void *)PAGE_ALIGN((unsigned long)start);
5897 end = (void *)((unsigned long)end & PAGE_MASK);
5898 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5899 if ((unsigned int)poison <= 0xFF)
5900 memset(pos, poison, PAGE_SIZE);
5901 free_reserved_page(virt_to_page(pos));
5902 }
5903
5904 if (pages && s)
5905 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5906 s, pages << (PAGE_SHIFT - 10), start, end);
5907
5908 return pages;
5909 }
5910 EXPORT_SYMBOL(free_reserved_area);
5911
5912 #ifdef CONFIG_HIGHMEM
5913 void free_highmem_page(struct page *page)
5914 {
5915 __free_reserved_page(page);
5916 totalram_pages++;
5917 page_zone(page)->managed_pages++;
5918 totalhigh_pages++;
5919 }
5920 #endif
5921
5922
5923 void __init mem_init_print_info(const char *str)
5924 {
5925 unsigned long physpages, codesize, datasize, rosize, bss_size;
5926 unsigned long init_code_size, init_data_size;
5927
5928 physpages = get_num_physpages();
5929 codesize = _etext - _stext;
5930 datasize = _edata - _sdata;
5931 rosize = __end_rodata - __start_rodata;
5932 bss_size = __bss_stop - __bss_start;
5933 init_data_size = __init_end - __init_begin;
5934 init_code_size = _einittext - _sinittext;
5935
5936 /*
5937 * Detect special cases and adjust section sizes accordingly:
5938 * 1) .init.* may be embedded into .data sections
5939 * 2) .init.text.* may be out of [__init_begin, __init_end],
5940 * please refer to arch/tile/kernel/vmlinux.lds.S.
5941 * 3) .rodata.* may be embedded into .text or .data sections.
5942 */
5943 #define adj_init_size(start, end, size, pos, adj) \
5944 do { \
5945 if (start <= pos && pos < end && size > adj) \
5946 size -= adj; \
5947 } while (0)
5948
5949 adj_init_size(__init_begin, __init_end, init_data_size,
5950 _sinittext, init_code_size);
5951 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5952 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5953 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5954 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5955
5956 #undef adj_init_size
5957
5958 pr_info("Memory: %luK/%luK available "
5959 "(%luK kernel code, %luK rwdata, %luK rodata, "
5960 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5961 #ifdef CONFIG_HIGHMEM
5962 ", %luK highmem"
5963 #endif
5964 "%s%s)\n",
5965 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5966 codesize >> 10, datasize >> 10, rosize >> 10,
5967 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5968 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5969 totalcma_pages << (PAGE_SHIFT-10),
5970 #ifdef CONFIG_HIGHMEM
5971 totalhigh_pages << (PAGE_SHIFT-10),
5972 #endif
5973 str ? ", " : "", str ? str : "");
5974 }
5975
5976 /**
5977 * set_dma_reserve - set the specified number of pages reserved in the first zone
5978 * @new_dma_reserve: The number of pages to mark reserved
5979 *
5980 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5981 * In the DMA zone, a significant percentage may be consumed by kernel image
5982 * and other unfreeable allocations which can skew the watermarks badly. This
5983 * function may optionally be used to account for unfreeable pages in the
5984 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5985 * smaller per-cpu batchsize.
5986 */
5987 void __init set_dma_reserve(unsigned long new_dma_reserve)
5988 {
5989 dma_reserve = new_dma_reserve;
5990 }
5991
5992 void __init free_area_init(unsigned long *zones_size)
5993 {
5994 free_area_init_node(0, zones_size,
5995 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5996 }
5997
5998 static int page_alloc_cpu_notify(struct notifier_block *self,
5999 unsigned long action, void *hcpu)
6000 {
6001 int cpu = (unsigned long)hcpu;
6002
6003 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6004 lru_add_drain_cpu(cpu);
6005 drain_pages(cpu);
6006
6007 /*
6008 * Spill the event counters of the dead processor
6009 * into the current processors event counters.
6010 * This artificially elevates the count of the current
6011 * processor.
6012 */
6013 vm_events_fold_cpu(cpu);
6014
6015 /*
6016 * Zero the differential counters of the dead processor
6017 * so that the vm statistics are consistent.
6018 *
6019 * This is only okay since the processor is dead and cannot
6020 * race with what we are doing.
6021 */
6022 cpu_vm_stats_fold(cpu);
6023 }
6024 return NOTIFY_OK;
6025 }
6026
6027 void __init page_alloc_init(void)
6028 {
6029 hotcpu_notifier(page_alloc_cpu_notify, 0);
6030 }
6031
6032 /*
6033 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
6034 * or min_free_kbytes changes.
6035 */
6036 static void calculate_totalreserve_pages(void)
6037 {
6038 struct pglist_data *pgdat;
6039 unsigned long reserve_pages = 0;
6040 enum zone_type i, j;
6041
6042 for_each_online_pgdat(pgdat) {
6043 for (i = 0; i < MAX_NR_ZONES; i++) {
6044 struct zone *zone = pgdat->node_zones + i;
6045 long max = 0;
6046
6047 /* Find valid and maximum lowmem_reserve in the zone */
6048 for (j = i; j < MAX_NR_ZONES; j++) {
6049 if (zone->lowmem_reserve[j] > max)
6050 max = zone->lowmem_reserve[j];
6051 }
6052
6053 /* we treat the high watermark as reserved pages. */
6054 max += high_wmark_pages(zone);
6055
6056 if (max > zone->managed_pages)
6057 max = zone->managed_pages;
6058 reserve_pages += max;
6059 /*
6060 * Lowmem reserves are not available to
6061 * GFP_HIGHUSER page cache allocations and
6062 * kswapd tries to balance zones to their high
6063 * watermark. As a result, neither should be
6064 * regarded as dirtyable memory, to prevent a
6065 * situation where reclaim has to clean pages
6066 * in order to balance the zones.
6067 */
6068 zone->dirty_balance_reserve = max;
6069 }
6070 }
6071 dirty_balance_reserve = reserve_pages;
6072 totalreserve_pages = reserve_pages;
6073 }
6074
6075 /*
6076 * setup_per_zone_lowmem_reserve - called whenever
6077 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
6078 * has a correct pages reserved value, so an adequate number of
6079 * pages are left in the zone after a successful __alloc_pages().
6080 */
6081 static void setup_per_zone_lowmem_reserve(void)
6082 {
6083 struct pglist_data *pgdat;
6084 enum zone_type j, idx;
6085
6086 for_each_online_pgdat(pgdat) {
6087 for (j = 0; j < MAX_NR_ZONES; j++) {
6088 struct zone *zone = pgdat->node_zones + j;
6089 unsigned long managed_pages = zone->managed_pages;
6090
6091 zone->lowmem_reserve[j] = 0;
6092
6093 idx = j;
6094 while (idx) {
6095 struct zone *lower_zone;
6096
6097 idx--;
6098
6099 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6100 sysctl_lowmem_reserve_ratio[idx] = 1;
6101
6102 lower_zone = pgdat->node_zones + idx;
6103 lower_zone->lowmem_reserve[j] = managed_pages /
6104 sysctl_lowmem_reserve_ratio[idx];
6105 managed_pages += lower_zone->managed_pages;
6106 }
6107 }
6108 }
6109
6110 /* update totalreserve_pages */
6111 calculate_totalreserve_pages();
6112 }
6113
6114 static void __setup_per_zone_wmarks(void)
6115 {
6116 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6117 unsigned long lowmem_pages = 0;
6118 struct zone *zone;
6119 unsigned long flags;
6120
6121 /* Calculate total number of !ZONE_HIGHMEM pages */
6122 for_each_zone(zone) {
6123 if (!is_highmem(zone))
6124 lowmem_pages += zone->managed_pages;
6125 }
6126
6127 for_each_zone(zone) {
6128 u64 tmp;
6129
6130 spin_lock_irqsave(&zone->lock, flags);
6131 tmp = (u64)pages_min * zone->managed_pages;
6132 do_div(tmp, lowmem_pages);
6133 if (is_highmem(zone)) {
6134 /*
6135 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6136 * need highmem pages, so cap pages_min to a small
6137 * value here.
6138 *
6139 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6140 * deltas control asynch page reclaim, and so should
6141 * not be capped for highmem.
6142 */
6143 unsigned long min_pages;
6144
6145 min_pages = zone->managed_pages / 1024;
6146 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6147 zone->watermark[WMARK_MIN] = min_pages;
6148 } else {
6149 /*
6150 * If it's a lowmem zone, reserve a number of pages
6151 * proportionate to the zone's size.
6152 */
6153 zone->watermark[WMARK_MIN] = tmp;
6154 }
6155
6156 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6157 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
6158
6159 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6160 high_wmark_pages(zone) - low_wmark_pages(zone) -
6161 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6162
6163 setup_zone_migrate_reserve(zone);
6164 spin_unlock_irqrestore(&zone->lock, flags);
6165 }
6166
6167 /* update totalreserve_pages */
6168 calculate_totalreserve_pages();
6169 }
6170
6171 /**
6172 * setup_per_zone_wmarks - called when min_free_kbytes changes
6173 * or when memory is hot-{added|removed}
6174 *
6175 * Ensures that the watermark[min,low,high] values for each zone are set
6176 * correctly with respect to min_free_kbytes.
6177 */
6178 void setup_per_zone_wmarks(void)
6179 {
6180 mutex_lock(&zonelists_mutex);
6181 __setup_per_zone_wmarks();
6182 mutex_unlock(&zonelists_mutex);
6183 }
6184
6185 /*
6186 * The inactive anon list should be small enough that the VM never has to
6187 * do too much work, but large enough that each inactive page has a chance
6188 * to be referenced again before it is swapped out.
6189 *
6190 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6191 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6192 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6193 * the anonymous pages are kept on the inactive list.
6194 *
6195 * total target max
6196 * memory ratio inactive anon
6197 * -------------------------------------
6198 * 10MB 1 5MB
6199 * 100MB 1 50MB
6200 * 1GB 3 250MB
6201 * 10GB 10 0.9GB
6202 * 100GB 31 3GB
6203 * 1TB 101 10GB
6204 * 10TB 320 32GB
6205 */
6206 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6207 {
6208 unsigned int gb, ratio;
6209
6210 /* Zone size in gigabytes */
6211 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6212 if (gb)
6213 ratio = int_sqrt(10 * gb);
6214 else
6215 ratio = 1;
6216
6217 zone->inactive_ratio = ratio;
6218 }
6219
6220 static void __meminit setup_per_zone_inactive_ratio(void)
6221 {
6222 struct zone *zone;
6223
6224 for_each_zone(zone)
6225 calculate_zone_inactive_ratio(zone);
6226 }
6227
6228 /*
6229 * Initialise min_free_kbytes.
6230 *
6231 * For small machines we want it small (128k min). For large machines
6232 * we want it large (64MB max). But it is not linear, because network
6233 * bandwidth does not increase linearly with machine size. We use
6234 *
6235 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6236 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6237 *
6238 * which yields
6239 *
6240 * 16MB: 512k
6241 * 32MB: 724k
6242 * 64MB: 1024k
6243 * 128MB: 1448k
6244 * 256MB: 2048k
6245 * 512MB: 2896k
6246 * 1024MB: 4096k
6247 * 2048MB: 5792k
6248 * 4096MB: 8192k
6249 * 8192MB: 11584k
6250 * 16384MB: 16384k
6251 */
6252 int __meminit init_per_zone_wmark_min(void)
6253 {
6254 unsigned long lowmem_kbytes;
6255 int new_min_free_kbytes;
6256
6257 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6258 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6259
6260 if (new_min_free_kbytes > user_min_free_kbytes) {
6261 min_free_kbytes = new_min_free_kbytes;
6262 if (min_free_kbytes < 128)
6263 min_free_kbytes = 128;
6264 if (min_free_kbytes > 65536)
6265 min_free_kbytes = 65536;
6266 } else {
6267 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6268 new_min_free_kbytes, user_min_free_kbytes);
6269 }
6270 setup_per_zone_wmarks();
6271 refresh_zone_stat_thresholds();
6272 setup_per_zone_lowmem_reserve();
6273 setup_per_zone_inactive_ratio();
6274 return 0;
6275 }
6276 module_init(init_per_zone_wmark_min)
6277
6278 /*
6279 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6280 * that we can call two helper functions whenever min_free_kbytes
6281 * changes.
6282 */
6283 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6284 void __user *buffer, size_t *length, loff_t *ppos)
6285 {
6286 int rc;
6287
6288 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6289 if (rc)
6290 return rc;
6291
6292 if (write) {
6293 user_min_free_kbytes = min_free_kbytes;
6294 setup_per_zone_wmarks();
6295 }
6296 return 0;
6297 }
6298
6299 #ifdef CONFIG_NUMA
6300 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6301 void __user *buffer, size_t *length, loff_t *ppos)
6302 {
6303 struct zone *zone;
6304 int rc;
6305
6306 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6307 if (rc)
6308 return rc;
6309
6310 for_each_zone(zone)
6311 zone->min_unmapped_pages = (zone->managed_pages *
6312 sysctl_min_unmapped_ratio) / 100;
6313 return 0;
6314 }
6315
6316 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6317 void __user *buffer, size_t *length, loff_t *ppos)
6318 {
6319 struct zone *zone;
6320 int rc;
6321
6322 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6323 if (rc)
6324 return rc;
6325
6326 for_each_zone(zone)
6327 zone->min_slab_pages = (zone->managed_pages *
6328 sysctl_min_slab_ratio) / 100;
6329 return 0;
6330 }
6331 #endif
6332
6333 /*
6334 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6335 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6336 * whenever sysctl_lowmem_reserve_ratio changes.
6337 *
6338 * The reserve ratio obviously has absolutely no relation with the
6339 * minimum watermarks. The lowmem reserve ratio can only make sense
6340 * if in function of the boot time zone sizes.
6341 */
6342 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6343 void __user *buffer, size_t *length, loff_t *ppos)
6344 {
6345 proc_dointvec_minmax(table, write, buffer, length, ppos);
6346 setup_per_zone_lowmem_reserve();
6347 return 0;
6348 }
6349
6350 /*
6351 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6352 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6353 * pagelist can have before it gets flushed back to buddy allocator.
6354 */
6355 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6356 void __user *buffer, size_t *length, loff_t *ppos)
6357 {
6358 struct zone *zone;
6359 int old_percpu_pagelist_fraction;
6360 int ret;
6361
6362 mutex_lock(&pcp_batch_high_lock);
6363 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6364
6365 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6366 if (!write || ret < 0)
6367 goto out;
6368
6369 /* Sanity checking to avoid pcp imbalance */
6370 if (percpu_pagelist_fraction &&
6371 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6372 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6373 ret = -EINVAL;
6374 goto out;
6375 }
6376
6377 /* No change? */
6378 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6379 goto out;
6380
6381 for_each_populated_zone(zone) {
6382 unsigned int cpu;
6383
6384 for_each_possible_cpu(cpu)
6385 pageset_set_high_and_batch(zone,
6386 per_cpu_ptr(zone->pageset, cpu));
6387 }
6388 out:
6389 mutex_unlock(&pcp_batch_high_lock);
6390 return ret;
6391 }
6392
6393 #ifdef CONFIG_NUMA
6394 int hashdist = HASHDIST_DEFAULT;
6395
6396 static int __init set_hashdist(char *str)
6397 {
6398 if (!str)
6399 return 0;
6400 hashdist = simple_strtoul(str, &str, 0);
6401 return 1;
6402 }
6403 __setup("hashdist=", set_hashdist);
6404 #endif
6405
6406 /*
6407 * allocate a large system hash table from bootmem
6408 * - it is assumed that the hash table must contain an exact power-of-2
6409 * quantity of entries
6410 * - limit is the number of hash buckets, not the total allocation size
6411 */
6412 void *__init alloc_large_system_hash(const char *tablename,
6413 unsigned long bucketsize,
6414 unsigned long numentries,
6415 int scale,
6416 int flags,
6417 unsigned int *_hash_shift,
6418 unsigned int *_hash_mask,
6419 unsigned long low_limit,
6420 unsigned long high_limit)
6421 {
6422 unsigned long long max = high_limit;
6423 unsigned long log2qty, size;
6424 void *table = NULL;
6425
6426 /* allow the kernel cmdline to have a say */
6427 if (!numentries) {
6428 /* round applicable memory size up to nearest megabyte */
6429 numentries = nr_kernel_pages;
6430
6431 /* It isn't necessary when PAGE_SIZE >= 1MB */
6432 if (PAGE_SHIFT < 20)
6433 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6434
6435 /* limit to 1 bucket per 2^scale bytes of low memory */
6436 if (scale > PAGE_SHIFT)
6437 numentries >>= (scale - PAGE_SHIFT);
6438 else
6439 numentries <<= (PAGE_SHIFT - scale);
6440
6441 /* Make sure we've got at least a 0-order allocation.. */
6442 if (unlikely(flags & HASH_SMALL)) {
6443 /* Makes no sense without HASH_EARLY */
6444 WARN_ON(!(flags & HASH_EARLY));
6445 if (!(numentries >> *_hash_shift)) {
6446 numentries = 1UL << *_hash_shift;
6447 BUG_ON(!numentries);
6448 }
6449 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6450 numentries = PAGE_SIZE / bucketsize;
6451 }
6452 numentries = roundup_pow_of_two(numentries);
6453
6454 /* limit allocation size to 1/16 total memory by default */
6455 if (max == 0) {
6456 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6457 do_div(max, bucketsize);
6458 }
6459 max = min(max, 0x80000000ULL);
6460
6461 if (numentries < low_limit)
6462 numentries = low_limit;
6463 if (numentries > max)
6464 numentries = max;
6465
6466 log2qty = ilog2(numentries);
6467
6468 do {
6469 size = bucketsize << log2qty;
6470 if (flags & HASH_EARLY)
6471 table = memblock_virt_alloc_nopanic(size, 0);
6472 else if (hashdist)
6473 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6474 else {
6475 /*
6476 * If bucketsize is not a power-of-two, we may free
6477 * some pages at the end of hash table which
6478 * alloc_pages_exact() automatically does
6479 */
6480 if (get_order(size) < MAX_ORDER) {
6481 table = alloc_pages_exact(size, GFP_ATOMIC);
6482 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6483 }
6484 }
6485 } while (!table && size > PAGE_SIZE && --log2qty);
6486
6487 if (!table)
6488 panic("Failed to allocate %s hash table\n", tablename);
6489
6490 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6491 tablename,
6492 (1UL << log2qty),
6493 ilog2(size) - PAGE_SHIFT,
6494 size);
6495
6496 if (_hash_shift)
6497 *_hash_shift = log2qty;
6498 if (_hash_mask)
6499 *_hash_mask = (1 << log2qty) - 1;
6500
6501 return table;
6502 }
6503
6504 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6505 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6506 unsigned long pfn)
6507 {
6508 #ifdef CONFIG_SPARSEMEM
6509 return __pfn_to_section(pfn)->pageblock_flags;
6510 #else
6511 return zone->pageblock_flags;
6512 #endif /* CONFIG_SPARSEMEM */
6513 }
6514
6515 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6516 {
6517 #ifdef CONFIG_SPARSEMEM
6518 pfn &= (PAGES_PER_SECTION-1);
6519 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6520 #else
6521 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6522 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6523 #endif /* CONFIG_SPARSEMEM */
6524 }
6525
6526 /**
6527 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6528 * @page: The page within the block of interest
6529 * @pfn: The target page frame number
6530 * @end_bitidx: The last bit of interest to retrieve
6531 * @mask: mask of bits that the caller is interested in
6532 *
6533 * Return: pageblock_bits flags
6534 */
6535 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6536 unsigned long end_bitidx,
6537 unsigned long mask)
6538 {
6539 struct zone *zone;
6540 unsigned long *bitmap;
6541 unsigned long bitidx, word_bitidx;
6542 unsigned long word;
6543
6544 zone = page_zone(page);
6545 bitmap = get_pageblock_bitmap(zone, pfn);
6546 bitidx = pfn_to_bitidx(zone, pfn);
6547 word_bitidx = bitidx / BITS_PER_LONG;
6548 bitidx &= (BITS_PER_LONG-1);
6549
6550 word = bitmap[word_bitidx];
6551 bitidx += end_bitidx;
6552 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6553 }
6554
6555 /**
6556 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6557 * @page: The page within the block of interest
6558 * @flags: The flags to set
6559 * @pfn: The target page frame number
6560 * @end_bitidx: The last bit of interest
6561 * @mask: mask of bits that the caller is interested in
6562 */
6563 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6564 unsigned long pfn,
6565 unsigned long end_bitidx,
6566 unsigned long mask)
6567 {
6568 struct zone *zone;
6569 unsigned long *bitmap;
6570 unsigned long bitidx, word_bitidx;
6571 unsigned long old_word, word;
6572
6573 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6574
6575 zone = page_zone(page);
6576 bitmap = get_pageblock_bitmap(zone, pfn);
6577 bitidx = pfn_to_bitidx(zone, pfn);
6578 word_bitidx = bitidx / BITS_PER_LONG;
6579 bitidx &= (BITS_PER_LONG-1);
6580
6581 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6582
6583 bitidx += end_bitidx;
6584 mask <<= (BITS_PER_LONG - bitidx - 1);
6585 flags <<= (BITS_PER_LONG - bitidx - 1);
6586
6587 word = READ_ONCE(bitmap[word_bitidx]);
6588 for (;;) {
6589 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6590 if (word == old_word)
6591 break;
6592 word = old_word;
6593 }
6594 }
6595
6596 /*
6597 * This function checks whether pageblock includes unmovable pages or not.
6598 * If @count is not zero, it is okay to include less @count unmovable pages
6599 *
6600 * PageLRU check without isolation or lru_lock could race so that
6601 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6602 * expect this function should be exact.
6603 */
6604 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6605 bool skip_hwpoisoned_pages)
6606 {
6607 unsigned long pfn, iter, found;
6608 int mt;
6609
6610 /*
6611 * For avoiding noise data, lru_add_drain_all() should be called
6612 * If ZONE_MOVABLE, the zone never contains unmovable pages
6613 */
6614 if (zone_idx(zone) == ZONE_MOVABLE)
6615 return false;
6616 mt = get_pageblock_migratetype(page);
6617 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6618 return false;
6619
6620 pfn = page_to_pfn(page);
6621 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6622 unsigned long check = pfn + iter;
6623
6624 if (!pfn_valid_within(check))
6625 continue;
6626
6627 page = pfn_to_page(check);
6628
6629 /*
6630 * Hugepages are not in LRU lists, but they're movable.
6631 * We need not scan over tail pages bacause we don't
6632 * handle each tail page individually in migration.
6633 */
6634 if (PageHuge(page)) {
6635 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6636 continue;
6637 }
6638
6639 /*
6640 * We can't use page_count without pin a page
6641 * because another CPU can free compound page.
6642 * This check already skips compound tails of THP
6643 * because their page->_count is zero at all time.
6644 */
6645 if (!atomic_read(&page->_count)) {
6646 if (PageBuddy(page))
6647 iter += (1 << page_order(page)) - 1;
6648 continue;
6649 }
6650
6651 /*
6652 * The HWPoisoned page may be not in buddy system, and
6653 * page_count() is not 0.
6654 */
6655 if (skip_hwpoisoned_pages && PageHWPoison(page))
6656 continue;
6657
6658 if (!PageLRU(page))
6659 found++;
6660 /*
6661 * If there are RECLAIMABLE pages, we need to check
6662 * it. But now, memory offline itself doesn't call
6663 * shrink_node_slabs() and it still to be fixed.
6664 */
6665 /*
6666 * If the page is not RAM, page_count()should be 0.
6667 * we don't need more check. This is an _used_ not-movable page.
6668 *
6669 * The problematic thing here is PG_reserved pages. PG_reserved
6670 * is set to both of a memory hole page and a _used_ kernel
6671 * page at boot.
6672 */
6673 if (found > count)
6674 return true;
6675 }
6676 return false;
6677 }
6678
6679 bool is_pageblock_removable_nolock(struct page *page)
6680 {
6681 struct zone *zone;
6682 unsigned long pfn;
6683
6684 /*
6685 * We have to be careful here because we are iterating over memory
6686 * sections which are not zone aware so we might end up outside of
6687 * the zone but still within the section.
6688 * We have to take care about the node as well. If the node is offline
6689 * its NODE_DATA will be NULL - see page_zone.
6690 */
6691 if (!node_online(page_to_nid(page)))
6692 return false;
6693
6694 zone = page_zone(page);
6695 pfn = page_to_pfn(page);
6696 if (!zone_spans_pfn(zone, pfn))
6697 return false;
6698
6699 return !has_unmovable_pages(zone, page, 0, true);
6700 }
6701
6702 #ifdef CONFIG_CMA
6703
6704 static unsigned long pfn_max_align_down(unsigned long pfn)
6705 {
6706 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6707 pageblock_nr_pages) - 1);
6708 }
6709
6710 static unsigned long pfn_max_align_up(unsigned long pfn)
6711 {
6712 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6713 pageblock_nr_pages));
6714 }
6715
6716 /* [start, end) must belong to a single zone. */
6717 static int __alloc_contig_migrate_range(struct compact_control *cc,
6718 unsigned long start, unsigned long end)
6719 {
6720 /* This function is based on compact_zone() from compaction.c. */
6721 unsigned long nr_reclaimed;
6722 unsigned long pfn = start;
6723 unsigned int tries = 0;
6724 int ret = 0;
6725
6726 migrate_prep();
6727
6728 while (pfn < end || !list_empty(&cc->migratepages)) {
6729 if (fatal_signal_pending(current)) {
6730 ret = -EINTR;
6731 break;
6732 }
6733
6734 if (list_empty(&cc->migratepages)) {
6735 cc->nr_migratepages = 0;
6736 pfn = isolate_migratepages_range(cc, pfn, end);
6737 if (!pfn) {
6738 ret = -EINTR;
6739 break;
6740 }
6741 tries = 0;
6742 } else if (++tries == 5) {
6743 ret = ret < 0 ? ret : -EBUSY;
6744 break;
6745 }
6746
6747 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6748 &cc->migratepages);
6749 cc->nr_migratepages -= nr_reclaimed;
6750
6751 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6752 NULL, 0, cc->mode, MR_CMA);
6753 }
6754 if (ret < 0) {
6755 putback_movable_pages(&cc->migratepages);
6756 return ret;
6757 }
6758 return 0;
6759 }
6760
6761 /**
6762 * alloc_contig_range() -- tries to allocate given range of pages
6763 * @start: start PFN to allocate
6764 * @end: one-past-the-last PFN to allocate
6765 * @migratetype: migratetype of the underlaying pageblocks (either
6766 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6767 * in range must have the same migratetype and it must
6768 * be either of the two.
6769 *
6770 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6771 * aligned, however it's the caller's responsibility to guarantee that
6772 * we are the only thread that changes migrate type of pageblocks the
6773 * pages fall in.
6774 *
6775 * The PFN range must belong to a single zone.
6776 *
6777 * Returns zero on success or negative error code. On success all
6778 * pages which PFN is in [start, end) are allocated for the caller and
6779 * need to be freed with free_contig_range().
6780 */
6781 int alloc_contig_range(unsigned long start, unsigned long end,
6782 unsigned migratetype)
6783 {
6784 unsigned long outer_start, outer_end;
6785 int ret = 0, order;
6786
6787 struct compact_control cc = {
6788 .nr_migratepages = 0,
6789 .order = -1,
6790 .zone = page_zone(pfn_to_page(start)),
6791 .mode = MIGRATE_SYNC,
6792 .ignore_skip_hint = true,
6793 };
6794 INIT_LIST_HEAD(&cc.migratepages);
6795
6796 /*
6797 * What we do here is we mark all pageblocks in range as
6798 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6799 * have different sizes, and due to the way page allocator
6800 * work, we align the range to biggest of the two pages so
6801 * that page allocator won't try to merge buddies from
6802 * different pageblocks and change MIGRATE_ISOLATE to some
6803 * other migration type.
6804 *
6805 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6806 * migrate the pages from an unaligned range (ie. pages that
6807 * we are interested in). This will put all the pages in
6808 * range back to page allocator as MIGRATE_ISOLATE.
6809 *
6810 * When this is done, we take the pages in range from page
6811 * allocator removing them from the buddy system. This way
6812 * page allocator will never consider using them.
6813 *
6814 * This lets us mark the pageblocks back as
6815 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6816 * aligned range but not in the unaligned, original range are
6817 * put back to page allocator so that buddy can use them.
6818 */
6819
6820 ret = start_isolate_page_range(pfn_max_align_down(start),
6821 pfn_max_align_up(end), migratetype,
6822 false);
6823 if (ret)
6824 return ret;
6825
6826 ret = __alloc_contig_migrate_range(&cc, start, end);
6827 if (ret)
6828 goto done;
6829
6830 /*
6831 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6832 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6833 * more, all pages in [start, end) are free in page allocator.
6834 * What we are going to do is to allocate all pages from
6835 * [start, end) (that is remove them from page allocator).
6836 *
6837 * The only problem is that pages at the beginning and at the
6838 * end of interesting range may be not aligned with pages that
6839 * page allocator holds, ie. they can be part of higher order
6840 * pages. Because of this, we reserve the bigger range and
6841 * once this is done free the pages we are not interested in.
6842 *
6843 * We don't have to hold zone->lock here because the pages are
6844 * isolated thus they won't get removed from buddy.
6845 */
6846
6847 lru_add_drain_all();
6848 drain_all_pages(cc.zone);
6849
6850 order = 0;
6851 outer_start = start;
6852 while (!PageBuddy(pfn_to_page(outer_start))) {
6853 if (++order >= MAX_ORDER) {
6854 ret = -EBUSY;
6855 goto done;
6856 }
6857 outer_start &= ~0UL << order;
6858 }
6859
6860 /* Make sure the range is really isolated. */
6861 if (test_pages_isolated(outer_start, end, false)) {
6862 pr_info("%s: [%lx, %lx) PFNs busy\n",
6863 __func__, outer_start, end);
6864 ret = -EBUSY;
6865 goto done;
6866 }
6867
6868 /* Grab isolated pages from freelists. */
6869 outer_end = isolate_freepages_range(&cc, outer_start, end);
6870 if (!outer_end) {
6871 ret = -EBUSY;
6872 goto done;
6873 }
6874
6875 /* Free head and tail (if any) */
6876 if (start != outer_start)
6877 free_contig_range(outer_start, start - outer_start);
6878 if (end != outer_end)
6879 free_contig_range(end, outer_end - end);
6880
6881 done:
6882 undo_isolate_page_range(pfn_max_align_down(start),
6883 pfn_max_align_up(end), migratetype);
6884 return ret;
6885 }
6886
6887 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6888 {
6889 unsigned int count = 0;
6890
6891 for (; nr_pages--; pfn++) {
6892 struct page *page = pfn_to_page(pfn);
6893
6894 count += page_count(page) != 1;
6895 __free_page(page);
6896 }
6897 WARN(count != 0, "%d pages are still in use!\n", count);
6898 }
6899 #endif
6900
6901 #ifdef CONFIG_MEMORY_HOTPLUG
6902 /*
6903 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6904 * page high values need to be recalulated.
6905 */
6906 void __meminit zone_pcp_update(struct zone *zone)
6907 {
6908 unsigned cpu;
6909 mutex_lock(&pcp_batch_high_lock);
6910 for_each_possible_cpu(cpu)
6911 pageset_set_high_and_batch(zone,
6912 per_cpu_ptr(zone->pageset, cpu));
6913 mutex_unlock(&pcp_batch_high_lock);
6914 }
6915 #endif
6916
6917 void zone_pcp_reset(struct zone *zone)
6918 {
6919 unsigned long flags;
6920 int cpu;
6921 struct per_cpu_pageset *pset;
6922
6923 /* avoid races with drain_pages() */
6924 local_irq_save(flags);
6925 if (zone->pageset != &boot_pageset) {
6926 for_each_online_cpu(cpu) {
6927 pset = per_cpu_ptr(zone->pageset, cpu);
6928 drain_zonestat(zone, pset);
6929 }
6930 free_percpu(zone->pageset);
6931 zone->pageset = &boot_pageset;
6932 }
6933 local_irq_restore(flags);
6934 }
6935
6936 #ifdef CONFIG_MEMORY_HOTREMOVE
6937 /*
6938 * All pages in the range must be isolated before calling this.
6939 */
6940 void
6941 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6942 {
6943 struct page *page;
6944 struct zone *zone;
6945 unsigned int order, i;
6946 unsigned long pfn;
6947 unsigned long flags;
6948 /* find the first valid pfn */
6949 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6950 if (pfn_valid(pfn))
6951 break;
6952 if (pfn == end_pfn)
6953 return;
6954 zone = page_zone(pfn_to_page(pfn));
6955 spin_lock_irqsave(&zone->lock, flags);
6956 pfn = start_pfn;
6957 while (pfn < end_pfn) {
6958 if (!pfn_valid(pfn)) {
6959 pfn++;
6960 continue;
6961 }
6962 page = pfn_to_page(pfn);
6963 /*
6964 * The HWPoisoned page may be not in buddy system, and
6965 * page_count() is not 0.
6966 */
6967 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6968 pfn++;
6969 SetPageReserved(page);
6970 continue;
6971 }
6972
6973 BUG_ON(page_count(page));
6974 BUG_ON(!PageBuddy(page));
6975 order = page_order(page);
6976 #ifdef CONFIG_DEBUG_VM
6977 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6978 pfn, 1 << order, end_pfn);
6979 #endif
6980 list_del(&page->lru);
6981 rmv_page_order(page);
6982 zone->free_area[order].nr_free--;
6983 for (i = 0; i < (1 << order); i++)
6984 SetPageReserved((page+i));
6985 pfn += (1 << order);
6986 }
6987 spin_unlock_irqrestore(&zone->lock, flags);
6988 }
6989 #endif
6990
6991 #ifdef CONFIG_MEMORY_FAILURE
6992 bool is_free_buddy_page(struct page *page)
6993 {
6994 struct zone *zone = page_zone(page);
6995 unsigned long pfn = page_to_pfn(page);
6996 unsigned long flags;
6997 unsigned int order;
6998
6999 spin_lock_irqsave(&zone->lock, flags);
7000 for (order = 0; order < MAX_ORDER; order++) {
7001 struct page *page_head = page - (pfn & ((1 << order) - 1));
7002
7003 if (PageBuddy(page_head) && page_order(page_head) >= order)
7004 break;
7005 }
7006 spin_unlock_irqrestore(&zone->lock, flags);
7007
7008 return order < MAX_ORDER;
7009 }
7010 #endif
This page took 0.276002 seconds and 5 git commands to generate.