Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/livep...
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66
67 #include <asm/sections.h>
68 #include <asm/tlbflush.h>
69 #include <asm/div64.h>
70 #include "internal.h"
71
72 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73 static DEFINE_MUTEX(pcp_batch_high_lock);
74 #define MIN_PERCPU_PAGELIST_FRACTION (8)
75
76 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77 DEFINE_PER_CPU(int, numa_node);
78 EXPORT_PER_CPU_SYMBOL(numa_node);
79 #endif
80
81 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
82 /*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
90 int _node_numa_mem_[MAX_NUMNODES];
91 #endif
92
93 /*
94 * Array of node states.
95 */
96 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99 #ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101 #ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
103 #endif
104 #ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
106 #endif
107 [N_CPU] = { { [0] = 1UL } },
108 #endif /* NUMA */
109 };
110 EXPORT_SYMBOL(node_states);
111
112 /* Protect totalram_pages and zone->managed_pages */
113 static DEFINE_SPINLOCK(managed_page_count_lock);
114
115 unsigned long totalram_pages __read_mostly;
116 unsigned long totalreserve_pages __read_mostly;
117 unsigned long totalcma_pages __read_mostly;
118
119 int percpu_pagelist_fraction;
120 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
121
122 /*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130 static inline int get_pcppage_migratetype(struct page *page)
131 {
132 return page->index;
133 }
134
135 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136 {
137 page->index = migratetype;
138 }
139
140 #ifdef CONFIG_PM_SLEEP
141 /*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
149
150 static gfp_t saved_gfp_mask;
151
152 void pm_restore_gfp_mask(void)
153 {
154 WARN_ON(!mutex_is_locked(&pm_mutex));
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
159 }
160
161 void pm_restrict_gfp_mask(void)
162 {
163 WARN_ON(!mutex_is_locked(&pm_mutex));
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
167 }
168
169 bool pm_suspended_storage(void)
170 {
171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
172 return false;
173 return true;
174 }
175 #endif /* CONFIG_PM_SLEEP */
176
177 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
178 unsigned int pageblock_order __read_mostly;
179 #endif
180
181 static void __free_pages_ok(struct page *page, unsigned int order);
182
183 /*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
193 */
194 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
195 #ifdef CONFIG_ZONE_DMA
196 256,
197 #endif
198 #ifdef CONFIG_ZONE_DMA32
199 256,
200 #endif
201 #ifdef CONFIG_HIGHMEM
202 32,
203 #endif
204 32,
205 };
206
207 EXPORT_SYMBOL(totalram_pages);
208
209 static char * const zone_names[MAX_NR_ZONES] = {
210 #ifdef CONFIG_ZONE_DMA
211 "DMA",
212 #endif
213 #ifdef CONFIG_ZONE_DMA32
214 "DMA32",
215 #endif
216 "Normal",
217 #ifdef CONFIG_HIGHMEM
218 "HighMem",
219 #endif
220 "Movable",
221 #ifdef CONFIG_ZONE_DEVICE
222 "Device",
223 #endif
224 };
225
226 char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231 #ifdef CONFIG_CMA
232 "CMA",
233 #endif
234 #ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236 #endif
237 };
238
239 compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242 #ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244 #endif
245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247 #endif
248 };
249
250 int min_free_kbytes = 1024;
251 int user_min_free_kbytes = -1;
252
253 static unsigned long __meminitdata nr_kernel_pages;
254 static unsigned long __meminitdata nr_all_pages;
255 static unsigned long __meminitdata dma_reserve;
256
257 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
258 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
259 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
260 static unsigned long __initdata required_kernelcore;
261 static unsigned long __initdata required_movablecore;
262 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
263 static bool mirrored_kernelcore;
264
265 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
266 int movable_zone;
267 EXPORT_SYMBOL(movable_zone);
268 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
269
270 #if MAX_NUMNODES > 1
271 int nr_node_ids __read_mostly = MAX_NUMNODES;
272 int nr_online_nodes __read_mostly = 1;
273 EXPORT_SYMBOL(nr_node_ids);
274 EXPORT_SYMBOL(nr_online_nodes);
275 #endif
276
277 int page_group_by_mobility_disabled __read_mostly;
278
279 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
280 static inline void reset_deferred_meminit(pg_data_t *pgdat)
281 {
282 pgdat->first_deferred_pfn = ULONG_MAX;
283 }
284
285 /* Returns true if the struct page for the pfn is uninitialised */
286 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
287 {
288 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
289 return true;
290
291 return false;
292 }
293
294 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
295 {
296 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
297 return true;
298
299 return false;
300 }
301
302 /*
303 * Returns false when the remaining initialisation should be deferred until
304 * later in the boot cycle when it can be parallelised.
305 */
306 static inline bool update_defer_init(pg_data_t *pgdat,
307 unsigned long pfn, unsigned long zone_end,
308 unsigned long *nr_initialised)
309 {
310 /* Always populate low zones for address-contrained allocations */
311 if (zone_end < pgdat_end_pfn(pgdat))
312 return true;
313
314 /* Initialise at least 2G of the highest zone */
315 (*nr_initialised)++;
316 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
317 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
318 pgdat->first_deferred_pfn = pfn;
319 return false;
320 }
321
322 return true;
323 }
324 #else
325 static inline void reset_deferred_meminit(pg_data_t *pgdat)
326 {
327 }
328
329 static inline bool early_page_uninitialised(unsigned long pfn)
330 {
331 return false;
332 }
333
334 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
335 {
336 return false;
337 }
338
339 static inline bool update_defer_init(pg_data_t *pgdat,
340 unsigned long pfn, unsigned long zone_end,
341 unsigned long *nr_initialised)
342 {
343 return true;
344 }
345 #endif
346
347
348 void set_pageblock_migratetype(struct page *page, int migratetype)
349 {
350 if (unlikely(page_group_by_mobility_disabled &&
351 migratetype < MIGRATE_PCPTYPES))
352 migratetype = MIGRATE_UNMOVABLE;
353
354 set_pageblock_flags_group(page, (unsigned long)migratetype,
355 PB_migrate, PB_migrate_end);
356 }
357
358 #ifdef CONFIG_DEBUG_VM
359 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
360 {
361 int ret = 0;
362 unsigned seq;
363 unsigned long pfn = page_to_pfn(page);
364 unsigned long sp, start_pfn;
365
366 do {
367 seq = zone_span_seqbegin(zone);
368 start_pfn = zone->zone_start_pfn;
369 sp = zone->spanned_pages;
370 if (!zone_spans_pfn(zone, pfn))
371 ret = 1;
372 } while (zone_span_seqretry(zone, seq));
373
374 if (ret)
375 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
376 pfn, zone_to_nid(zone), zone->name,
377 start_pfn, start_pfn + sp);
378
379 return ret;
380 }
381
382 static int page_is_consistent(struct zone *zone, struct page *page)
383 {
384 if (!pfn_valid_within(page_to_pfn(page)))
385 return 0;
386 if (zone != page_zone(page))
387 return 0;
388
389 return 1;
390 }
391 /*
392 * Temporary debugging check for pages not lying within a given zone.
393 */
394 static int bad_range(struct zone *zone, struct page *page)
395 {
396 if (page_outside_zone_boundaries(zone, page))
397 return 1;
398 if (!page_is_consistent(zone, page))
399 return 1;
400
401 return 0;
402 }
403 #else
404 static inline int bad_range(struct zone *zone, struct page *page)
405 {
406 return 0;
407 }
408 #endif
409
410 static void bad_page(struct page *page, const char *reason,
411 unsigned long bad_flags)
412 {
413 static unsigned long resume;
414 static unsigned long nr_shown;
415 static unsigned long nr_unshown;
416
417 /* Don't complain about poisoned pages */
418 if (PageHWPoison(page)) {
419 page_mapcount_reset(page); /* remove PageBuddy */
420 return;
421 }
422
423 /*
424 * Allow a burst of 60 reports, then keep quiet for that minute;
425 * or allow a steady drip of one report per second.
426 */
427 if (nr_shown == 60) {
428 if (time_before(jiffies, resume)) {
429 nr_unshown++;
430 goto out;
431 }
432 if (nr_unshown) {
433 pr_alert(
434 "BUG: Bad page state: %lu messages suppressed\n",
435 nr_unshown);
436 nr_unshown = 0;
437 }
438 nr_shown = 0;
439 }
440 if (nr_shown++ == 0)
441 resume = jiffies + 60 * HZ;
442
443 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
444 current->comm, page_to_pfn(page));
445 __dump_page(page, reason);
446 bad_flags &= page->flags;
447 if (bad_flags)
448 pr_alert("bad because of flags: %#lx(%pGp)\n",
449 bad_flags, &bad_flags);
450 dump_page_owner(page);
451
452 print_modules();
453 dump_stack();
454 out:
455 /* Leave bad fields for debug, except PageBuddy could make trouble */
456 page_mapcount_reset(page); /* remove PageBuddy */
457 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
458 }
459
460 /*
461 * Higher-order pages are called "compound pages". They are structured thusly:
462 *
463 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
464 *
465 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
466 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
467 *
468 * The first tail page's ->compound_dtor holds the offset in array of compound
469 * page destructors. See compound_page_dtors.
470 *
471 * The first tail page's ->compound_order holds the order of allocation.
472 * This usage means that zero-order pages may not be compound.
473 */
474
475 void free_compound_page(struct page *page)
476 {
477 __free_pages_ok(page, compound_order(page));
478 }
479
480 void prep_compound_page(struct page *page, unsigned int order)
481 {
482 int i;
483 int nr_pages = 1 << order;
484
485 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
486 set_compound_order(page, order);
487 __SetPageHead(page);
488 for (i = 1; i < nr_pages; i++) {
489 struct page *p = page + i;
490 set_page_count(p, 0);
491 p->mapping = TAIL_MAPPING;
492 set_compound_head(p, page);
493 }
494 atomic_set(compound_mapcount_ptr(page), -1);
495 }
496
497 #ifdef CONFIG_DEBUG_PAGEALLOC
498 unsigned int _debug_guardpage_minorder;
499 bool _debug_pagealloc_enabled __read_mostly
500 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
501 bool _debug_guardpage_enabled __read_mostly;
502
503 static int __init early_debug_pagealloc(char *buf)
504 {
505 if (!buf)
506 return -EINVAL;
507
508 if (strcmp(buf, "on") == 0)
509 _debug_pagealloc_enabled = true;
510
511 if (strcmp(buf, "off") == 0)
512 _debug_pagealloc_enabled = false;
513
514 return 0;
515 }
516 early_param("debug_pagealloc", early_debug_pagealloc);
517
518 static bool need_debug_guardpage(void)
519 {
520 /* If we don't use debug_pagealloc, we don't need guard page */
521 if (!debug_pagealloc_enabled())
522 return false;
523
524 return true;
525 }
526
527 static void init_debug_guardpage(void)
528 {
529 if (!debug_pagealloc_enabled())
530 return;
531
532 _debug_guardpage_enabled = true;
533 }
534
535 struct page_ext_operations debug_guardpage_ops = {
536 .need = need_debug_guardpage,
537 .init = init_debug_guardpage,
538 };
539
540 static int __init debug_guardpage_minorder_setup(char *buf)
541 {
542 unsigned long res;
543
544 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
545 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
546 return 0;
547 }
548 _debug_guardpage_minorder = res;
549 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
550 return 0;
551 }
552 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
553
554 static inline void set_page_guard(struct zone *zone, struct page *page,
555 unsigned int order, int migratetype)
556 {
557 struct page_ext *page_ext;
558
559 if (!debug_guardpage_enabled())
560 return;
561
562 page_ext = lookup_page_ext(page);
563 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
564
565 INIT_LIST_HEAD(&page->lru);
566 set_page_private(page, order);
567 /* Guard pages are not available for any usage */
568 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
569 }
570
571 static inline void clear_page_guard(struct zone *zone, struct page *page,
572 unsigned int order, int migratetype)
573 {
574 struct page_ext *page_ext;
575
576 if (!debug_guardpage_enabled())
577 return;
578
579 page_ext = lookup_page_ext(page);
580 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
581
582 set_page_private(page, 0);
583 if (!is_migrate_isolate(migratetype))
584 __mod_zone_freepage_state(zone, (1 << order), migratetype);
585 }
586 #else
587 struct page_ext_operations debug_guardpage_ops = { NULL, };
588 static inline void set_page_guard(struct zone *zone, struct page *page,
589 unsigned int order, int migratetype) {}
590 static inline void clear_page_guard(struct zone *zone, struct page *page,
591 unsigned int order, int migratetype) {}
592 #endif
593
594 static inline void set_page_order(struct page *page, unsigned int order)
595 {
596 set_page_private(page, order);
597 __SetPageBuddy(page);
598 }
599
600 static inline void rmv_page_order(struct page *page)
601 {
602 __ClearPageBuddy(page);
603 set_page_private(page, 0);
604 }
605
606 /*
607 * This function checks whether a page is free && is the buddy
608 * we can do coalesce a page and its buddy if
609 * (a) the buddy is not in a hole &&
610 * (b) the buddy is in the buddy system &&
611 * (c) a page and its buddy have the same order &&
612 * (d) a page and its buddy are in the same zone.
613 *
614 * For recording whether a page is in the buddy system, we set ->_mapcount
615 * PAGE_BUDDY_MAPCOUNT_VALUE.
616 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
617 * serialized by zone->lock.
618 *
619 * For recording page's order, we use page_private(page).
620 */
621 static inline int page_is_buddy(struct page *page, struct page *buddy,
622 unsigned int order)
623 {
624 if (!pfn_valid_within(page_to_pfn(buddy)))
625 return 0;
626
627 if (page_is_guard(buddy) && page_order(buddy) == order) {
628 if (page_zone_id(page) != page_zone_id(buddy))
629 return 0;
630
631 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
632
633 return 1;
634 }
635
636 if (PageBuddy(buddy) && page_order(buddy) == order) {
637 /*
638 * zone check is done late to avoid uselessly
639 * calculating zone/node ids for pages that could
640 * never merge.
641 */
642 if (page_zone_id(page) != page_zone_id(buddy))
643 return 0;
644
645 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
646
647 return 1;
648 }
649 return 0;
650 }
651
652 /*
653 * Freeing function for a buddy system allocator.
654 *
655 * The concept of a buddy system is to maintain direct-mapped table
656 * (containing bit values) for memory blocks of various "orders".
657 * The bottom level table contains the map for the smallest allocatable
658 * units of memory (here, pages), and each level above it describes
659 * pairs of units from the levels below, hence, "buddies".
660 * At a high level, all that happens here is marking the table entry
661 * at the bottom level available, and propagating the changes upward
662 * as necessary, plus some accounting needed to play nicely with other
663 * parts of the VM system.
664 * At each level, we keep a list of pages, which are heads of continuous
665 * free pages of length of (1 << order) and marked with _mapcount
666 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
667 * field.
668 * So when we are allocating or freeing one, we can derive the state of the
669 * other. That is, if we allocate a small block, and both were
670 * free, the remainder of the region must be split into blocks.
671 * If a block is freed, and its buddy is also free, then this
672 * triggers coalescing into a block of larger size.
673 *
674 * -- nyc
675 */
676
677 static inline void __free_one_page(struct page *page,
678 unsigned long pfn,
679 struct zone *zone, unsigned int order,
680 int migratetype)
681 {
682 unsigned long page_idx;
683 unsigned long combined_idx;
684 unsigned long uninitialized_var(buddy_idx);
685 struct page *buddy;
686 unsigned int max_order = MAX_ORDER;
687
688 VM_BUG_ON(!zone_is_initialized(zone));
689 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
690
691 VM_BUG_ON(migratetype == -1);
692 if (is_migrate_isolate(migratetype)) {
693 /*
694 * We restrict max order of merging to prevent merge
695 * between freepages on isolate pageblock and normal
696 * pageblock. Without this, pageblock isolation
697 * could cause incorrect freepage accounting.
698 */
699 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
700 } else {
701 __mod_zone_freepage_state(zone, 1 << order, migratetype);
702 }
703
704 page_idx = pfn & ((1 << max_order) - 1);
705
706 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
707 VM_BUG_ON_PAGE(bad_range(zone, page), page);
708
709 while (order < max_order - 1) {
710 buddy_idx = __find_buddy_index(page_idx, order);
711 buddy = page + (buddy_idx - page_idx);
712 if (!page_is_buddy(page, buddy, order))
713 break;
714 /*
715 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
716 * merge with it and move up one order.
717 */
718 if (page_is_guard(buddy)) {
719 clear_page_guard(zone, buddy, order, migratetype);
720 } else {
721 list_del(&buddy->lru);
722 zone->free_area[order].nr_free--;
723 rmv_page_order(buddy);
724 }
725 combined_idx = buddy_idx & page_idx;
726 page = page + (combined_idx - page_idx);
727 page_idx = combined_idx;
728 order++;
729 }
730 set_page_order(page, order);
731
732 /*
733 * If this is not the largest possible page, check if the buddy
734 * of the next-highest order is free. If it is, it's possible
735 * that pages are being freed that will coalesce soon. In case,
736 * that is happening, add the free page to the tail of the list
737 * so it's less likely to be used soon and more likely to be merged
738 * as a higher order page
739 */
740 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
741 struct page *higher_page, *higher_buddy;
742 combined_idx = buddy_idx & page_idx;
743 higher_page = page + (combined_idx - page_idx);
744 buddy_idx = __find_buddy_index(combined_idx, order + 1);
745 higher_buddy = higher_page + (buddy_idx - combined_idx);
746 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
747 list_add_tail(&page->lru,
748 &zone->free_area[order].free_list[migratetype]);
749 goto out;
750 }
751 }
752
753 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
754 out:
755 zone->free_area[order].nr_free++;
756 }
757
758 static inline int free_pages_check(struct page *page)
759 {
760 const char *bad_reason = NULL;
761 unsigned long bad_flags = 0;
762
763 if (unlikely(atomic_read(&page->_mapcount) != -1))
764 bad_reason = "nonzero mapcount";
765 if (unlikely(page->mapping != NULL))
766 bad_reason = "non-NULL mapping";
767 if (unlikely(atomic_read(&page->_count) != 0))
768 bad_reason = "nonzero _count";
769 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
770 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
771 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
772 }
773 #ifdef CONFIG_MEMCG
774 if (unlikely(page->mem_cgroup))
775 bad_reason = "page still charged to cgroup";
776 #endif
777 if (unlikely(bad_reason)) {
778 bad_page(page, bad_reason, bad_flags);
779 return 1;
780 }
781 page_cpupid_reset_last(page);
782 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
783 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
784 return 0;
785 }
786
787 /*
788 * Frees a number of pages from the PCP lists
789 * Assumes all pages on list are in same zone, and of same order.
790 * count is the number of pages to free.
791 *
792 * If the zone was previously in an "all pages pinned" state then look to
793 * see if this freeing clears that state.
794 *
795 * And clear the zone's pages_scanned counter, to hold off the "all pages are
796 * pinned" detection logic.
797 */
798 static void free_pcppages_bulk(struct zone *zone, int count,
799 struct per_cpu_pages *pcp)
800 {
801 int migratetype = 0;
802 int batch_free = 0;
803 int to_free = count;
804 unsigned long nr_scanned;
805
806 spin_lock(&zone->lock);
807 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
808 if (nr_scanned)
809 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
810
811 while (to_free) {
812 struct page *page;
813 struct list_head *list;
814
815 /*
816 * Remove pages from lists in a round-robin fashion. A
817 * batch_free count is maintained that is incremented when an
818 * empty list is encountered. This is so more pages are freed
819 * off fuller lists instead of spinning excessively around empty
820 * lists
821 */
822 do {
823 batch_free++;
824 if (++migratetype == MIGRATE_PCPTYPES)
825 migratetype = 0;
826 list = &pcp->lists[migratetype];
827 } while (list_empty(list));
828
829 /* This is the only non-empty list. Free them all. */
830 if (batch_free == MIGRATE_PCPTYPES)
831 batch_free = to_free;
832
833 do {
834 int mt; /* migratetype of the to-be-freed page */
835
836 page = list_last_entry(list, struct page, lru);
837 /* must delete as __free_one_page list manipulates */
838 list_del(&page->lru);
839
840 mt = get_pcppage_migratetype(page);
841 /* MIGRATE_ISOLATE page should not go to pcplists */
842 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
843 /* Pageblock could have been isolated meanwhile */
844 if (unlikely(has_isolate_pageblock(zone)))
845 mt = get_pageblock_migratetype(page);
846
847 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
848 trace_mm_page_pcpu_drain(page, 0, mt);
849 } while (--to_free && --batch_free && !list_empty(list));
850 }
851 spin_unlock(&zone->lock);
852 }
853
854 static void free_one_page(struct zone *zone,
855 struct page *page, unsigned long pfn,
856 unsigned int order,
857 int migratetype)
858 {
859 unsigned long nr_scanned;
860 spin_lock(&zone->lock);
861 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
862 if (nr_scanned)
863 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
864
865 if (unlikely(has_isolate_pageblock(zone) ||
866 is_migrate_isolate(migratetype))) {
867 migratetype = get_pfnblock_migratetype(page, pfn);
868 }
869 __free_one_page(page, pfn, zone, order, migratetype);
870 spin_unlock(&zone->lock);
871 }
872
873 static int free_tail_pages_check(struct page *head_page, struct page *page)
874 {
875 int ret = 1;
876
877 /*
878 * We rely page->lru.next never has bit 0 set, unless the page
879 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
880 */
881 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
882
883 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
884 ret = 0;
885 goto out;
886 }
887 switch (page - head_page) {
888 case 1:
889 /* the first tail page: ->mapping is compound_mapcount() */
890 if (unlikely(compound_mapcount(page))) {
891 bad_page(page, "nonzero compound_mapcount", 0);
892 goto out;
893 }
894 break;
895 case 2:
896 /*
897 * the second tail page: ->mapping is
898 * page_deferred_list().next -- ignore value.
899 */
900 break;
901 default:
902 if (page->mapping != TAIL_MAPPING) {
903 bad_page(page, "corrupted mapping in tail page", 0);
904 goto out;
905 }
906 break;
907 }
908 if (unlikely(!PageTail(page))) {
909 bad_page(page, "PageTail not set", 0);
910 goto out;
911 }
912 if (unlikely(compound_head(page) != head_page)) {
913 bad_page(page, "compound_head not consistent", 0);
914 goto out;
915 }
916 ret = 0;
917 out:
918 page->mapping = NULL;
919 clear_compound_head(page);
920 return ret;
921 }
922
923 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
924 unsigned long zone, int nid)
925 {
926 set_page_links(page, zone, nid, pfn);
927 init_page_count(page);
928 page_mapcount_reset(page);
929 page_cpupid_reset_last(page);
930
931 INIT_LIST_HEAD(&page->lru);
932 #ifdef WANT_PAGE_VIRTUAL
933 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
934 if (!is_highmem_idx(zone))
935 set_page_address(page, __va(pfn << PAGE_SHIFT));
936 #endif
937 }
938
939 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
940 int nid)
941 {
942 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
943 }
944
945 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
946 static void init_reserved_page(unsigned long pfn)
947 {
948 pg_data_t *pgdat;
949 int nid, zid;
950
951 if (!early_page_uninitialised(pfn))
952 return;
953
954 nid = early_pfn_to_nid(pfn);
955 pgdat = NODE_DATA(nid);
956
957 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
958 struct zone *zone = &pgdat->node_zones[zid];
959
960 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
961 break;
962 }
963 __init_single_pfn(pfn, zid, nid);
964 }
965 #else
966 static inline void init_reserved_page(unsigned long pfn)
967 {
968 }
969 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
970
971 /*
972 * Initialised pages do not have PageReserved set. This function is
973 * called for each range allocated by the bootmem allocator and
974 * marks the pages PageReserved. The remaining valid pages are later
975 * sent to the buddy page allocator.
976 */
977 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
978 {
979 unsigned long start_pfn = PFN_DOWN(start);
980 unsigned long end_pfn = PFN_UP(end);
981
982 for (; start_pfn < end_pfn; start_pfn++) {
983 if (pfn_valid(start_pfn)) {
984 struct page *page = pfn_to_page(start_pfn);
985
986 init_reserved_page(start_pfn);
987
988 /* Avoid false-positive PageTail() */
989 INIT_LIST_HEAD(&page->lru);
990
991 SetPageReserved(page);
992 }
993 }
994 }
995
996 static bool free_pages_prepare(struct page *page, unsigned int order)
997 {
998 bool compound = PageCompound(page);
999 int i, bad = 0;
1000
1001 VM_BUG_ON_PAGE(PageTail(page), page);
1002 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1003
1004 trace_mm_page_free(page, order);
1005 kmemcheck_free_shadow(page, order);
1006 kasan_free_pages(page, order);
1007
1008 if (PageAnon(page))
1009 page->mapping = NULL;
1010 bad += free_pages_check(page);
1011 for (i = 1; i < (1 << order); i++) {
1012 if (compound)
1013 bad += free_tail_pages_check(page, page + i);
1014 bad += free_pages_check(page + i);
1015 }
1016 if (bad)
1017 return false;
1018
1019 reset_page_owner(page, order);
1020
1021 if (!PageHighMem(page)) {
1022 debug_check_no_locks_freed(page_address(page),
1023 PAGE_SIZE << order);
1024 debug_check_no_obj_freed(page_address(page),
1025 PAGE_SIZE << order);
1026 }
1027 arch_free_page(page, order);
1028 kernel_poison_pages(page, 1 << order, 0);
1029 kernel_map_pages(page, 1 << order, 0);
1030
1031 return true;
1032 }
1033
1034 static void __free_pages_ok(struct page *page, unsigned int order)
1035 {
1036 unsigned long flags;
1037 int migratetype;
1038 unsigned long pfn = page_to_pfn(page);
1039
1040 if (!free_pages_prepare(page, order))
1041 return;
1042
1043 migratetype = get_pfnblock_migratetype(page, pfn);
1044 local_irq_save(flags);
1045 __count_vm_events(PGFREE, 1 << order);
1046 free_one_page(page_zone(page), page, pfn, order, migratetype);
1047 local_irq_restore(flags);
1048 }
1049
1050 static void __init __free_pages_boot_core(struct page *page,
1051 unsigned long pfn, unsigned int order)
1052 {
1053 unsigned int nr_pages = 1 << order;
1054 struct page *p = page;
1055 unsigned int loop;
1056
1057 prefetchw(p);
1058 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1059 prefetchw(p + 1);
1060 __ClearPageReserved(p);
1061 set_page_count(p, 0);
1062 }
1063 __ClearPageReserved(p);
1064 set_page_count(p, 0);
1065
1066 page_zone(page)->managed_pages += nr_pages;
1067 set_page_refcounted(page);
1068 __free_pages(page, order);
1069 }
1070
1071 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1072 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1073
1074 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1075
1076 int __meminit early_pfn_to_nid(unsigned long pfn)
1077 {
1078 static DEFINE_SPINLOCK(early_pfn_lock);
1079 int nid;
1080
1081 spin_lock(&early_pfn_lock);
1082 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1083 if (nid < 0)
1084 nid = 0;
1085 spin_unlock(&early_pfn_lock);
1086
1087 return nid;
1088 }
1089 #endif
1090
1091 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1092 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1093 struct mminit_pfnnid_cache *state)
1094 {
1095 int nid;
1096
1097 nid = __early_pfn_to_nid(pfn, state);
1098 if (nid >= 0 && nid != node)
1099 return false;
1100 return true;
1101 }
1102
1103 /* Only safe to use early in boot when initialisation is single-threaded */
1104 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1105 {
1106 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1107 }
1108
1109 #else
1110
1111 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1112 {
1113 return true;
1114 }
1115 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1116 struct mminit_pfnnid_cache *state)
1117 {
1118 return true;
1119 }
1120 #endif
1121
1122
1123 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1124 unsigned int order)
1125 {
1126 if (early_page_uninitialised(pfn))
1127 return;
1128 return __free_pages_boot_core(page, pfn, order);
1129 }
1130
1131 /*
1132 * Check that the whole (or subset of) a pageblock given by the interval of
1133 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1134 * with the migration of free compaction scanner. The scanners then need to
1135 * use only pfn_valid_within() check for arches that allow holes within
1136 * pageblocks.
1137 *
1138 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1139 *
1140 * It's possible on some configurations to have a setup like node0 node1 node0
1141 * i.e. it's possible that all pages within a zones range of pages do not
1142 * belong to a single zone. We assume that a border between node0 and node1
1143 * can occur within a single pageblock, but not a node0 node1 node0
1144 * interleaving within a single pageblock. It is therefore sufficient to check
1145 * the first and last page of a pageblock and avoid checking each individual
1146 * page in a pageblock.
1147 */
1148 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1149 unsigned long end_pfn, struct zone *zone)
1150 {
1151 struct page *start_page;
1152 struct page *end_page;
1153
1154 /* end_pfn is one past the range we are checking */
1155 end_pfn--;
1156
1157 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1158 return NULL;
1159
1160 start_page = pfn_to_page(start_pfn);
1161
1162 if (page_zone(start_page) != zone)
1163 return NULL;
1164
1165 end_page = pfn_to_page(end_pfn);
1166
1167 /* This gives a shorter code than deriving page_zone(end_page) */
1168 if (page_zone_id(start_page) != page_zone_id(end_page))
1169 return NULL;
1170
1171 return start_page;
1172 }
1173
1174 void set_zone_contiguous(struct zone *zone)
1175 {
1176 unsigned long block_start_pfn = zone->zone_start_pfn;
1177 unsigned long block_end_pfn;
1178
1179 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1180 for (; block_start_pfn < zone_end_pfn(zone);
1181 block_start_pfn = block_end_pfn,
1182 block_end_pfn += pageblock_nr_pages) {
1183
1184 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1185
1186 if (!__pageblock_pfn_to_page(block_start_pfn,
1187 block_end_pfn, zone))
1188 return;
1189 }
1190
1191 /* We confirm that there is no hole */
1192 zone->contiguous = true;
1193 }
1194
1195 void clear_zone_contiguous(struct zone *zone)
1196 {
1197 zone->contiguous = false;
1198 }
1199
1200 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1201 static void __init deferred_free_range(struct page *page,
1202 unsigned long pfn, int nr_pages)
1203 {
1204 int i;
1205
1206 if (!page)
1207 return;
1208
1209 /* Free a large naturally-aligned chunk if possible */
1210 if (nr_pages == MAX_ORDER_NR_PAGES &&
1211 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1212 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1213 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1214 return;
1215 }
1216
1217 for (i = 0; i < nr_pages; i++, page++, pfn++)
1218 __free_pages_boot_core(page, pfn, 0);
1219 }
1220
1221 /* Completion tracking for deferred_init_memmap() threads */
1222 static atomic_t pgdat_init_n_undone __initdata;
1223 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1224
1225 static inline void __init pgdat_init_report_one_done(void)
1226 {
1227 if (atomic_dec_and_test(&pgdat_init_n_undone))
1228 complete(&pgdat_init_all_done_comp);
1229 }
1230
1231 /* Initialise remaining memory on a node */
1232 static int __init deferred_init_memmap(void *data)
1233 {
1234 pg_data_t *pgdat = data;
1235 int nid = pgdat->node_id;
1236 struct mminit_pfnnid_cache nid_init_state = { };
1237 unsigned long start = jiffies;
1238 unsigned long nr_pages = 0;
1239 unsigned long walk_start, walk_end;
1240 int i, zid;
1241 struct zone *zone;
1242 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1243 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1244
1245 if (first_init_pfn == ULONG_MAX) {
1246 pgdat_init_report_one_done();
1247 return 0;
1248 }
1249
1250 /* Bind memory initialisation thread to a local node if possible */
1251 if (!cpumask_empty(cpumask))
1252 set_cpus_allowed_ptr(current, cpumask);
1253
1254 /* Sanity check boundaries */
1255 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1256 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1257 pgdat->first_deferred_pfn = ULONG_MAX;
1258
1259 /* Only the highest zone is deferred so find it */
1260 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1261 zone = pgdat->node_zones + zid;
1262 if (first_init_pfn < zone_end_pfn(zone))
1263 break;
1264 }
1265
1266 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1267 unsigned long pfn, end_pfn;
1268 struct page *page = NULL;
1269 struct page *free_base_page = NULL;
1270 unsigned long free_base_pfn = 0;
1271 int nr_to_free = 0;
1272
1273 end_pfn = min(walk_end, zone_end_pfn(zone));
1274 pfn = first_init_pfn;
1275 if (pfn < walk_start)
1276 pfn = walk_start;
1277 if (pfn < zone->zone_start_pfn)
1278 pfn = zone->zone_start_pfn;
1279
1280 for (; pfn < end_pfn; pfn++) {
1281 if (!pfn_valid_within(pfn))
1282 goto free_range;
1283
1284 /*
1285 * Ensure pfn_valid is checked every
1286 * MAX_ORDER_NR_PAGES for memory holes
1287 */
1288 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1289 if (!pfn_valid(pfn)) {
1290 page = NULL;
1291 goto free_range;
1292 }
1293 }
1294
1295 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1296 page = NULL;
1297 goto free_range;
1298 }
1299
1300 /* Minimise pfn page lookups and scheduler checks */
1301 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1302 page++;
1303 } else {
1304 nr_pages += nr_to_free;
1305 deferred_free_range(free_base_page,
1306 free_base_pfn, nr_to_free);
1307 free_base_page = NULL;
1308 free_base_pfn = nr_to_free = 0;
1309
1310 page = pfn_to_page(pfn);
1311 cond_resched();
1312 }
1313
1314 if (page->flags) {
1315 VM_BUG_ON(page_zone(page) != zone);
1316 goto free_range;
1317 }
1318
1319 __init_single_page(page, pfn, zid, nid);
1320 if (!free_base_page) {
1321 free_base_page = page;
1322 free_base_pfn = pfn;
1323 nr_to_free = 0;
1324 }
1325 nr_to_free++;
1326
1327 /* Where possible, batch up pages for a single free */
1328 continue;
1329 free_range:
1330 /* Free the current block of pages to allocator */
1331 nr_pages += nr_to_free;
1332 deferred_free_range(free_base_page, free_base_pfn,
1333 nr_to_free);
1334 free_base_page = NULL;
1335 free_base_pfn = nr_to_free = 0;
1336 }
1337
1338 first_init_pfn = max(end_pfn, first_init_pfn);
1339 }
1340
1341 /* Sanity check that the next zone really is unpopulated */
1342 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1343
1344 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1345 jiffies_to_msecs(jiffies - start));
1346
1347 pgdat_init_report_one_done();
1348 return 0;
1349 }
1350 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1351
1352 void __init page_alloc_init_late(void)
1353 {
1354 struct zone *zone;
1355
1356 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1357 int nid;
1358
1359 /* There will be num_node_state(N_MEMORY) threads */
1360 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1361 for_each_node_state(nid, N_MEMORY) {
1362 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1363 }
1364
1365 /* Block until all are initialised */
1366 wait_for_completion(&pgdat_init_all_done_comp);
1367
1368 /* Reinit limits that are based on free pages after the kernel is up */
1369 files_maxfiles_init();
1370 #endif
1371
1372 for_each_populated_zone(zone)
1373 set_zone_contiguous(zone);
1374 }
1375
1376 #ifdef CONFIG_CMA
1377 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1378 void __init init_cma_reserved_pageblock(struct page *page)
1379 {
1380 unsigned i = pageblock_nr_pages;
1381 struct page *p = page;
1382
1383 do {
1384 __ClearPageReserved(p);
1385 set_page_count(p, 0);
1386 } while (++p, --i);
1387
1388 set_pageblock_migratetype(page, MIGRATE_CMA);
1389
1390 if (pageblock_order >= MAX_ORDER) {
1391 i = pageblock_nr_pages;
1392 p = page;
1393 do {
1394 set_page_refcounted(p);
1395 __free_pages(p, MAX_ORDER - 1);
1396 p += MAX_ORDER_NR_PAGES;
1397 } while (i -= MAX_ORDER_NR_PAGES);
1398 } else {
1399 set_page_refcounted(page);
1400 __free_pages(page, pageblock_order);
1401 }
1402
1403 adjust_managed_page_count(page, pageblock_nr_pages);
1404 }
1405 #endif
1406
1407 /*
1408 * The order of subdivision here is critical for the IO subsystem.
1409 * Please do not alter this order without good reasons and regression
1410 * testing. Specifically, as large blocks of memory are subdivided,
1411 * the order in which smaller blocks are delivered depends on the order
1412 * they're subdivided in this function. This is the primary factor
1413 * influencing the order in which pages are delivered to the IO
1414 * subsystem according to empirical testing, and this is also justified
1415 * by considering the behavior of a buddy system containing a single
1416 * large block of memory acted on by a series of small allocations.
1417 * This behavior is a critical factor in sglist merging's success.
1418 *
1419 * -- nyc
1420 */
1421 static inline void expand(struct zone *zone, struct page *page,
1422 int low, int high, struct free_area *area,
1423 int migratetype)
1424 {
1425 unsigned long size = 1 << high;
1426
1427 while (high > low) {
1428 area--;
1429 high--;
1430 size >>= 1;
1431 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1432
1433 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1434 debug_guardpage_enabled() &&
1435 high < debug_guardpage_minorder()) {
1436 /*
1437 * Mark as guard pages (or page), that will allow to
1438 * merge back to allocator when buddy will be freed.
1439 * Corresponding page table entries will not be touched,
1440 * pages will stay not present in virtual address space
1441 */
1442 set_page_guard(zone, &page[size], high, migratetype);
1443 continue;
1444 }
1445 list_add(&page[size].lru, &area->free_list[migratetype]);
1446 area->nr_free++;
1447 set_page_order(&page[size], high);
1448 }
1449 }
1450
1451 /*
1452 * This page is about to be returned from the page allocator
1453 */
1454 static inline int check_new_page(struct page *page)
1455 {
1456 const char *bad_reason = NULL;
1457 unsigned long bad_flags = 0;
1458
1459 if (unlikely(atomic_read(&page->_mapcount) != -1))
1460 bad_reason = "nonzero mapcount";
1461 if (unlikely(page->mapping != NULL))
1462 bad_reason = "non-NULL mapping";
1463 if (unlikely(atomic_read(&page->_count) != 0))
1464 bad_reason = "nonzero _count";
1465 if (unlikely(page->flags & __PG_HWPOISON)) {
1466 bad_reason = "HWPoisoned (hardware-corrupted)";
1467 bad_flags = __PG_HWPOISON;
1468 }
1469 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1470 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1471 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1472 }
1473 #ifdef CONFIG_MEMCG
1474 if (unlikely(page->mem_cgroup))
1475 bad_reason = "page still charged to cgroup";
1476 #endif
1477 if (unlikely(bad_reason)) {
1478 bad_page(page, bad_reason, bad_flags);
1479 return 1;
1480 }
1481 return 0;
1482 }
1483
1484 static inline bool free_pages_prezeroed(bool poisoned)
1485 {
1486 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1487 page_poisoning_enabled() && poisoned;
1488 }
1489
1490 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1491 int alloc_flags)
1492 {
1493 int i;
1494 bool poisoned = true;
1495
1496 for (i = 0; i < (1 << order); i++) {
1497 struct page *p = page + i;
1498 if (unlikely(check_new_page(p)))
1499 return 1;
1500 if (poisoned)
1501 poisoned &= page_is_poisoned(p);
1502 }
1503
1504 set_page_private(page, 0);
1505 set_page_refcounted(page);
1506
1507 arch_alloc_page(page, order);
1508 kernel_map_pages(page, 1 << order, 1);
1509 kernel_poison_pages(page, 1 << order, 1);
1510 kasan_alloc_pages(page, order);
1511
1512 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1513 for (i = 0; i < (1 << order); i++)
1514 clear_highpage(page + i);
1515
1516 if (order && (gfp_flags & __GFP_COMP))
1517 prep_compound_page(page, order);
1518
1519 set_page_owner(page, order, gfp_flags);
1520
1521 /*
1522 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1523 * allocate the page. The expectation is that the caller is taking
1524 * steps that will free more memory. The caller should avoid the page
1525 * being used for !PFMEMALLOC purposes.
1526 */
1527 if (alloc_flags & ALLOC_NO_WATERMARKS)
1528 set_page_pfmemalloc(page);
1529 else
1530 clear_page_pfmemalloc(page);
1531
1532 return 0;
1533 }
1534
1535 /*
1536 * Go through the free lists for the given migratetype and remove
1537 * the smallest available page from the freelists
1538 */
1539 static inline
1540 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1541 int migratetype)
1542 {
1543 unsigned int current_order;
1544 struct free_area *area;
1545 struct page *page;
1546
1547 /* Find a page of the appropriate size in the preferred list */
1548 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1549 area = &(zone->free_area[current_order]);
1550 page = list_first_entry_or_null(&area->free_list[migratetype],
1551 struct page, lru);
1552 if (!page)
1553 continue;
1554 list_del(&page->lru);
1555 rmv_page_order(page);
1556 area->nr_free--;
1557 expand(zone, page, order, current_order, area, migratetype);
1558 set_pcppage_migratetype(page, migratetype);
1559 return page;
1560 }
1561
1562 return NULL;
1563 }
1564
1565
1566 /*
1567 * This array describes the order lists are fallen back to when
1568 * the free lists for the desirable migrate type are depleted
1569 */
1570 static int fallbacks[MIGRATE_TYPES][4] = {
1571 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1572 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1573 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1574 #ifdef CONFIG_CMA
1575 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1576 #endif
1577 #ifdef CONFIG_MEMORY_ISOLATION
1578 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1579 #endif
1580 };
1581
1582 #ifdef CONFIG_CMA
1583 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1584 unsigned int order)
1585 {
1586 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1587 }
1588 #else
1589 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1590 unsigned int order) { return NULL; }
1591 #endif
1592
1593 /*
1594 * Move the free pages in a range to the free lists of the requested type.
1595 * Note that start_page and end_pages are not aligned on a pageblock
1596 * boundary. If alignment is required, use move_freepages_block()
1597 */
1598 int move_freepages(struct zone *zone,
1599 struct page *start_page, struct page *end_page,
1600 int migratetype)
1601 {
1602 struct page *page;
1603 unsigned int order;
1604 int pages_moved = 0;
1605
1606 #ifndef CONFIG_HOLES_IN_ZONE
1607 /*
1608 * page_zone is not safe to call in this context when
1609 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1610 * anyway as we check zone boundaries in move_freepages_block().
1611 * Remove at a later date when no bug reports exist related to
1612 * grouping pages by mobility
1613 */
1614 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1615 #endif
1616
1617 for (page = start_page; page <= end_page;) {
1618 /* Make sure we are not inadvertently changing nodes */
1619 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1620
1621 if (!pfn_valid_within(page_to_pfn(page))) {
1622 page++;
1623 continue;
1624 }
1625
1626 if (!PageBuddy(page)) {
1627 page++;
1628 continue;
1629 }
1630
1631 order = page_order(page);
1632 list_move(&page->lru,
1633 &zone->free_area[order].free_list[migratetype]);
1634 page += 1 << order;
1635 pages_moved += 1 << order;
1636 }
1637
1638 return pages_moved;
1639 }
1640
1641 int move_freepages_block(struct zone *zone, struct page *page,
1642 int migratetype)
1643 {
1644 unsigned long start_pfn, end_pfn;
1645 struct page *start_page, *end_page;
1646
1647 start_pfn = page_to_pfn(page);
1648 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1649 start_page = pfn_to_page(start_pfn);
1650 end_page = start_page + pageblock_nr_pages - 1;
1651 end_pfn = start_pfn + pageblock_nr_pages - 1;
1652
1653 /* Do not cross zone boundaries */
1654 if (!zone_spans_pfn(zone, start_pfn))
1655 start_page = page;
1656 if (!zone_spans_pfn(zone, end_pfn))
1657 return 0;
1658
1659 return move_freepages(zone, start_page, end_page, migratetype);
1660 }
1661
1662 static void change_pageblock_range(struct page *pageblock_page,
1663 int start_order, int migratetype)
1664 {
1665 int nr_pageblocks = 1 << (start_order - pageblock_order);
1666
1667 while (nr_pageblocks--) {
1668 set_pageblock_migratetype(pageblock_page, migratetype);
1669 pageblock_page += pageblock_nr_pages;
1670 }
1671 }
1672
1673 /*
1674 * When we are falling back to another migratetype during allocation, try to
1675 * steal extra free pages from the same pageblocks to satisfy further
1676 * allocations, instead of polluting multiple pageblocks.
1677 *
1678 * If we are stealing a relatively large buddy page, it is likely there will
1679 * be more free pages in the pageblock, so try to steal them all. For
1680 * reclaimable and unmovable allocations, we steal regardless of page size,
1681 * as fragmentation caused by those allocations polluting movable pageblocks
1682 * is worse than movable allocations stealing from unmovable and reclaimable
1683 * pageblocks.
1684 */
1685 static bool can_steal_fallback(unsigned int order, int start_mt)
1686 {
1687 /*
1688 * Leaving this order check is intended, although there is
1689 * relaxed order check in next check. The reason is that
1690 * we can actually steal whole pageblock if this condition met,
1691 * but, below check doesn't guarantee it and that is just heuristic
1692 * so could be changed anytime.
1693 */
1694 if (order >= pageblock_order)
1695 return true;
1696
1697 if (order >= pageblock_order / 2 ||
1698 start_mt == MIGRATE_RECLAIMABLE ||
1699 start_mt == MIGRATE_UNMOVABLE ||
1700 page_group_by_mobility_disabled)
1701 return true;
1702
1703 return false;
1704 }
1705
1706 /*
1707 * This function implements actual steal behaviour. If order is large enough,
1708 * we can steal whole pageblock. If not, we first move freepages in this
1709 * pageblock and check whether half of pages are moved or not. If half of
1710 * pages are moved, we can change migratetype of pageblock and permanently
1711 * use it's pages as requested migratetype in the future.
1712 */
1713 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1714 int start_type)
1715 {
1716 unsigned int current_order = page_order(page);
1717 int pages;
1718
1719 /* Take ownership for orders >= pageblock_order */
1720 if (current_order >= pageblock_order) {
1721 change_pageblock_range(page, current_order, start_type);
1722 return;
1723 }
1724
1725 pages = move_freepages_block(zone, page, start_type);
1726
1727 /* Claim the whole block if over half of it is free */
1728 if (pages >= (1 << (pageblock_order-1)) ||
1729 page_group_by_mobility_disabled)
1730 set_pageblock_migratetype(page, start_type);
1731 }
1732
1733 /*
1734 * Check whether there is a suitable fallback freepage with requested order.
1735 * If only_stealable is true, this function returns fallback_mt only if
1736 * we can steal other freepages all together. This would help to reduce
1737 * fragmentation due to mixed migratetype pages in one pageblock.
1738 */
1739 int find_suitable_fallback(struct free_area *area, unsigned int order,
1740 int migratetype, bool only_stealable, bool *can_steal)
1741 {
1742 int i;
1743 int fallback_mt;
1744
1745 if (area->nr_free == 0)
1746 return -1;
1747
1748 *can_steal = false;
1749 for (i = 0;; i++) {
1750 fallback_mt = fallbacks[migratetype][i];
1751 if (fallback_mt == MIGRATE_TYPES)
1752 break;
1753
1754 if (list_empty(&area->free_list[fallback_mt]))
1755 continue;
1756
1757 if (can_steal_fallback(order, migratetype))
1758 *can_steal = true;
1759
1760 if (!only_stealable)
1761 return fallback_mt;
1762
1763 if (*can_steal)
1764 return fallback_mt;
1765 }
1766
1767 return -1;
1768 }
1769
1770 /*
1771 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1772 * there are no empty page blocks that contain a page with a suitable order
1773 */
1774 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1775 unsigned int alloc_order)
1776 {
1777 int mt;
1778 unsigned long max_managed, flags;
1779
1780 /*
1781 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1782 * Check is race-prone but harmless.
1783 */
1784 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1785 if (zone->nr_reserved_highatomic >= max_managed)
1786 return;
1787
1788 spin_lock_irqsave(&zone->lock, flags);
1789
1790 /* Recheck the nr_reserved_highatomic limit under the lock */
1791 if (zone->nr_reserved_highatomic >= max_managed)
1792 goto out_unlock;
1793
1794 /* Yoink! */
1795 mt = get_pageblock_migratetype(page);
1796 if (mt != MIGRATE_HIGHATOMIC &&
1797 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1798 zone->nr_reserved_highatomic += pageblock_nr_pages;
1799 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1800 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1801 }
1802
1803 out_unlock:
1804 spin_unlock_irqrestore(&zone->lock, flags);
1805 }
1806
1807 /*
1808 * Used when an allocation is about to fail under memory pressure. This
1809 * potentially hurts the reliability of high-order allocations when under
1810 * intense memory pressure but failed atomic allocations should be easier
1811 * to recover from than an OOM.
1812 */
1813 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1814 {
1815 struct zonelist *zonelist = ac->zonelist;
1816 unsigned long flags;
1817 struct zoneref *z;
1818 struct zone *zone;
1819 struct page *page;
1820 int order;
1821
1822 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1823 ac->nodemask) {
1824 /* Preserve at least one pageblock */
1825 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1826 continue;
1827
1828 spin_lock_irqsave(&zone->lock, flags);
1829 for (order = 0; order < MAX_ORDER; order++) {
1830 struct free_area *area = &(zone->free_area[order]);
1831
1832 page = list_first_entry_or_null(
1833 &area->free_list[MIGRATE_HIGHATOMIC],
1834 struct page, lru);
1835 if (!page)
1836 continue;
1837
1838 /*
1839 * It should never happen but changes to locking could
1840 * inadvertently allow a per-cpu drain to add pages
1841 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1842 * and watch for underflows.
1843 */
1844 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1845 zone->nr_reserved_highatomic);
1846
1847 /*
1848 * Convert to ac->migratetype and avoid the normal
1849 * pageblock stealing heuristics. Minimally, the caller
1850 * is doing the work and needs the pages. More
1851 * importantly, if the block was always converted to
1852 * MIGRATE_UNMOVABLE or another type then the number
1853 * of pageblocks that cannot be completely freed
1854 * may increase.
1855 */
1856 set_pageblock_migratetype(page, ac->migratetype);
1857 move_freepages_block(zone, page, ac->migratetype);
1858 spin_unlock_irqrestore(&zone->lock, flags);
1859 return;
1860 }
1861 spin_unlock_irqrestore(&zone->lock, flags);
1862 }
1863 }
1864
1865 /* Remove an element from the buddy allocator from the fallback list */
1866 static inline struct page *
1867 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1868 {
1869 struct free_area *area;
1870 unsigned int current_order;
1871 struct page *page;
1872 int fallback_mt;
1873 bool can_steal;
1874
1875 /* Find the largest possible block of pages in the other list */
1876 for (current_order = MAX_ORDER-1;
1877 current_order >= order && current_order <= MAX_ORDER-1;
1878 --current_order) {
1879 area = &(zone->free_area[current_order]);
1880 fallback_mt = find_suitable_fallback(area, current_order,
1881 start_migratetype, false, &can_steal);
1882 if (fallback_mt == -1)
1883 continue;
1884
1885 page = list_first_entry(&area->free_list[fallback_mt],
1886 struct page, lru);
1887 if (can_steal)
1888 steal_suitable_fallback(zone, page, start_migratetype);
1889
1890 /* Remove the page from the freelists */
1891 area->nr_free--;
1892 list_del(&page->lru);
1893 rmv_page_order(page);
1894
1895 expand(zone, page, order, current_order, area,
1896 start_migratetype);
1897 /*
1898 * The pcppage_migratetype may differ from pageblock's
1899 * migratetype depending on the decisions in
1900 * find_suitable_fallback(). This is OK as long as it does not
1901 * differ for MIGRATE_CMA pageblocks. Those can be used as
1902 * fallback only via special __rmqueue_cma_fallback() function
1903 */
1904 set_pcppage_migratetype(page, start_migratetype);
1905
1906 trace_mm_page_alloc_extfrag(page, order, current_order,
1907 start_migratetype, fallback_mt);
1908
1909 return page;
1910 }
1911
1912 return NULL;
1913 }
1914
1915 /*
1916 * Do the hard work of removing an element from the buddy allocator.
1917 * Call me with the zone->lock already held.
1918 */
1919 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1920 int migratetype)
1921 {
1922 struct page *page;
1923
1924 page = __rmqueue_smallest(zone, order, migratetype);
1925 if (unlikely(!page)) {
1926 if (migratetype == MIGRATE_MOVABLE)
1927 page = __rmqueue_cma_fallback(zone, order);
1928
1929 if (!page)
1930 page = __rmqueue_fallback(zone, order, migratetype);
1931 }
1932
1933 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1934 return page;
1935 }
1936
1937 /*
1938 * Obtain a specified number of elements from the buddy allocator, all under
1939 * a single hold of the lock, for efficiency. Add them to the supplied list.
1940 * Returns the number of new pages which were placed at *list.
1941 */
1942 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1943 unsigned long count, struct list_head *list,
1944 int migratetype, bool cold)
1945 {
1946 int i;
1947
1948 spin_lock(&zone->lock);
1949 for (i = 0; i < count; ++i) {
1950 struct page *page = __rmqueue(zone, order, migratetype);
1951 if (unlikely(page == NULL))
1952 break;
1953
1954 /*
1955 * Split buddy pages returned by expand() are received here
1956 * in physical page order. The page is added to the callers and
1957 * list and the list head then moves forward. From the callers
1958 * perspective, the linked list is ordered by page number in
1959 * some conditions. This is useful for IO devices that can
1960 * merge IO requests if the physical pages are ordered
1961 * properly.
1962 */
1963 if (likely(!cold))
1964 list_add(&page->lru, list);
1965 else
1966 list_add_tail(&page->lru, list);
1967 list = &page->lru;
1968 if (is_migrate_cma(get_pcppage_migratetype(page)))
1969 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1970 -(1 << order));
1971 }
1972 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1973 spin_unlock(&zone->lock);
1974 return i;
1975 }
1976
1977 #ifdef CONFIG_NUMA
1978 /*
1979 * Called from the vmstat counter updater to drain pagesets of this
1980 * currently executing processor on remote nodes after they have
1981 * expired.
1982 *
1983 * Note that this function must be called with the thread pinned to
1984 * a single processor.
1985 */
1986 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1987 {
1988 unsigned long flags;
1989 int to_drain, batch;
1990
1991 local_irq_save(flags);
1992 batch = READ_ONCE(pcp->batch);
1993 to_drain = min(pcp->count, batch);
1994 if (to_drain > 0) {
1995 free_pcppages_bulk(zone, to_drain, pcp);
1996 pcp->count -= to_drain;
1997 }
1998 local_irq_restore(flags);
1999 }
2000 #endif
2001
2002 /*
2003 * Drain pcplists of the indicated processor and zone.
2004 *
2005 * The processor must either be the current processor and the
2006 * thread pinned to the current processor or a processor that
2007 * is not online.
2008 */
2009 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2010 {
2011 unsigned long flags;
2012 struct per_cpu_pageset *pset;
2013 struct per_cpu_pages *pcp;
2014
2015 local_irq_save(flags);
2016 pset = per_cpu_ptr(zone->pageset, cpu);
2017
2018 pcp = &pset->pcp;
2019 if (pcp->count) {
2020 free_pcppages_bulk(zone, pcp->count, pcp);
2021 pcp->count = 0;
2022 }
2023 local_irq_restore(flags);
2024 }
2025
2026 /*
2027 * Drain pcplists of all zones on the indicated processor.
2028 *
2029 * The processor must either be the current processor and the
2030 * thread pinned to the current processor or a processor that
2031 * is not online.
2032 */
2033 static void drain_pages(unsigned int cpu)
2034 {
2035 struct zone *zone;
2036
2037 for_each_populated_zone(zone) {
2038 drain_pages_zone(cpu, zone);
2039 }
2040 }
2041
2042 /*
2043 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2044 *
2045 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2046 * the single zone's pages.
2047 */
2048 void drain_local_pages(struct zone *zone)
2049 {
2050 int cpu = smp_processor_id();
2051
2052 if (zone)
2053 drain_pages_zone(cpu, zone);
2054 else
2055 drain_pages(cpu);
2056 }
2057
2058 /*
2059 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2060 *
2061 * When zone parameter is non-NULL, spill just the single zone's pages.
2062 *
2063 * Note that this code is protected against sending an IPI to an offline
2064 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2065 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2066 * nothing keeps CPUs from showing up after we populated the cpumask and
2067 * before the call to on_each_cpu_mask().
2068 */
2069 void drain_all_pages(struct zone *zone)
2070 {
2071 int cpu;
2072
2073 /*
2074 * Allocate in the BSS so we wont require allocation in
2075 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2076 */
2077 static cpumask_t cpus_with_pcps;
2078
2079 /*
2080 * We don't care about racing with CPU hotplug event
2081 * as offline notification will cause the notified
2082 * cpu to drain that CPU pcps and on_each_cpu_mask
2083 * disables preemption as part of its processing
2084 */
2085 for_each_online_cpu(cpu) {
2086 struct per_cpu_pageset *pcp;
2087 struct zone *z;
2088 bool has_pcps = false;
2089
2090 if (zone) {
2091 pcp = per_cpu_ptr(zone->pageset, cpu);
2092 if (pcp->pcp.count)
2093 has_pcps = true;
2094 } else {
2095 for_each_populated_zone(z) {
2096 pcp = per_cpu_ptr(z->pageset, cpu);
2097 if (pcp->pcp.count) {
2098 has_pcps = true;
2099 break;
2100 }
2101 }
2102 }
2103
2104 if (has_pcps)
2105 cpumask_set_cpu(cpu, &cpus_with_pcps);
2106 else
2107 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2108 }
2109 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2110 zone, 1);
2111 }
2112
2113 #ifdef CONFIG_HIBERNATION
2114
2115 void mark_free_pages(struct zone *zone)
2116 {
2117 unsigned long pfn, max_zone_pfn;
2118 unsigned long flags;
2119 unsigned int order, t;
2120 struct page *page;
2121
2122 if (zone_is_empty(zone))
2123 return;
2124
2125 spin_lock_irqsave(&zone->lock, flags);
2126
2127 max_zone_pfn = zone_end_pfn(zone);
2128 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2129 if (pfn_valid(pfn)) {
2130 page = pfn_to_page(pfn);
2131 if (!swsusp_page_is_forbidden(page))
2132 swsusp_unset_page_free(page);
2133 }
2134
2135 for_each_migratetype_order(order, t) {
2136 list_for_each_entry(page,
2137 &zone->free_area[order].free_list[t], lru) {
2138 unsigned long i;
2139
2140 pfn = page_to_pfn(page);
2141 for (i = 0; i < (1UL << order); i++)
2142 swsusp_set_page_free(pfn_to_page(pfn + i));
2143 }
2144 }
2145 spin_unlock_irqrestore(&zone->lock, flags);
2146 }
2147 #endif /* CONFIG_PM */
2148
2149 /*
2150 * Free a 0-order page
2151 * cold == true ? free a cold page : free a hot page
2152 */
2153 void free_hot_cold_page(struct page *page, bool cold)
2154 {
2155 struct zone *zone = page_zone(page);
2156 struct per_cpu_pages *pcp;
2157 unsigned long flags;
2158 unsigned long pfn = page_to_pfn(page);
2159 int migratetype;
2160
2161 if (!free_pages_prepare(page, 0))
2162 return;
2163
2164 migratetype = get_pfnblock_migratetype(page, pfn);
2165 set_pcppage_migratetype(page, migratetype);
2166 local_irq_save(flags);
2167 __count_vm_event(PGFREE);
2168
2169 /*
2170 * We only track unmovable, reclaimable and movable on pcp lists.
2171 * Free ISOLATE pages back to the allocator because they are being
2172 * offlined but treat RESERVE as movable pages so we can get those
2173 * areas back if necessary. Otherwise, we may have to free
2174 * excessively into the page allocator
2175 */
2176 if (migratetype >= MIGRATE_PCPTYPES) {
2177 if (unlikely(is_migrate_isolate(migratetype))) {
2178 free_one_page(zone, page, pfn, 0, migratetype);
2179 goto out;
2180 }
2181 migratetype = MIGRATE_MOVABLE;
2182 }
2183
2184 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2185 if (!cold)
2186 list_add(&page->lru, &pcp->lists[migratetype]);
2187 else
2188 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2189 pcp->count++;
2190 if (pcp->count >= pcp->high) {
2191 unsigned long batch = READ_ONCE(pcp->batch);
2192 free_pcppages_bulk(zone, batch, pcp);
2193 pcp->count -= batch;
2194 }
2195
2196 out:
2197 local_irq_restore(flags);
2198 }
2199
2200 /*
2201 * Free a list of 0-order pages
2202 */
2203 void free_hot_cold_page_list(struct list_head *list, bool cold)
2204 {
2205 struct page *page, *next;
2206
2207 list_for_each_entry_safe(page, next, list, lru) {
2208 trace_mm_page_free_batched(page, cold);
2209 free_hot_cold_page(page, cold);
2210 }
2211 }
2212
2213 /*
2214 * split_page takes a non-compound higher-order page, and splits it into
2215 * n (1<<order) sub-pages: page[0..n]
2216 * Each sub-page must be freed individually.
2217 *
2218 * Note: this is probably too low level an operation for use in drivers.
2219 * Please consult with lkml before using this in your driver.
2220 */
2221 void split_page(struct page *page, unsigned int order)
2222 {
2223 int i;
2224 gfp_t gfp_mask;
2225
2226 VM_BUG_ON_PAGE(PageCompound(page), page);
2227 VM_BUG_ON_PAGE(!page_count(page), page);
2228
2229 #ifdef CONFIG_KMEMCHECK
2230 /*
2231 * Split shadow pages too, because free(page[0]) would
2232 * otherwise free the whole shadow.
2233 */
2234 if (kmemcheck_page_is_tracked(page))
2235 split_page(virt_to_page(page[0].shadow), order);
2236 #endif
2237
2238 gfp_mask = get_page_owner_gfp(page);
2239 set_page_owner(page, 0, gfp_mask);
2240 for (i = 1; i < (1 << order); i++) {
2241 set_page_refcounted(page + i);
2242 set_page_owner(page + i, 0, gfp_mask);
2243 }
2244 }
2245 EXPORT_SYMBOL_GPL(split_page);
2246
2247 int __isolate_free_page(struct page *page, unsigned int order)
2248 {
2249 unsigned long watermark;
2250 struct zone *zone;
2251 int mt;
2252
2253 BUG_ON(!PageBuddy(page));
2254
2255 zone = page_zone(page);
2256 mt = get_pageblock_migratetype(page);
2257
2258 if (!is_migrate_isolate(mt)) {
2259 /* Obey watermarks as if the page was being allocated */
2260 watermark = low_wmark_pages(zone) + (1 << order);
2261 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2262 return 0;
2263
2264 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2265 }
2266
2267 /* Remove page from free list */
2268 list_del(&page->lru);
2269 zone->free_area[order].nr_free--;
2270 rmv_page_order(page);
2271
2272 set_page_owner(page, order, __GFP_MOVABLE);
2273
2274 /* Set the pageblock if the isolated page is at least a pageblock */
2275 if (order >= pageblock_order - 1) {
2276 struct page *endpage = page + (1 << order) - 1;
2277 for (; page < endpage; page += pageblock_nr_pages) {
2278 int mt = get_pageblock_migratetype(page);
2279 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2280 set_pageblock_migratetype(page,
2281 MIGRATE_MOVABLE);
2282 }
2283 }
2284
2285
2286 return 1UL << order;
2287 }
2288
2289 /*
2290 * Similar to split_page except the page is already free. As this is only
2291 * being used for migration, the migratetype of the block also changes.
2292 * As this is called with interrupts disabled, the caller is responsible
2293 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2294 * are enabled.
2295 *
2296 * Note: this is probably too low level an operation for use in drivers.
2297 * Please consult with lkml before using this in your driver.
2298 */
2299 int split_free_page(struct page *page)
2300 {
2301 unsigned int order;
2302 int nr_pages;
2303
2304 order = page_order(page);
2305
2306 nr_pages = __isolate_free_page(page, order);
2307 if (!nr_pages)
2308 return 0;
2309
2310 /* Split into individual pages */
2311 set_page_refcounted(page);
2312 split_page(page, order);
2313 return nr_pages;
2314 }
2315
2316 /*
2317 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2318 */
2319 static inline
2320 struct page *buffered_rmqueue(struct zone *preferred_zone,
2321 struct zone *zone, unsigned int order,
2322 gfp_t gfp_flags, int alloc_flags, int migratetype)
2323 {
2324 unsigned long flags;
2325 struct page *page;
2326 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2327
2328 if (likely(order == 0)) {
2329 struct per_cpu_pages *pcp;
2330 struct list_head *list;
2331
2332 local_irq_save(flags);
2333 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2334 list = &pcp->lists[migratetype];
2335 if (list_empty(list)) {
2336 pcp->count += rmqueue_bulk(zone, 0,
2337 pcp->batch, list,
2338 migratetype, cold);
2339 if (unlikely(list_empty(list)))
2340 goto failed;
2341 }
2342
2343 if (cold)
2344 page = list_last_entry(list, struct page, lru);
2345 else
2346 page = list_first_entry(list, struct page, lru);
2347
2348 list_del(&page->lru);
2349 pcp->count--;
2350 } else {
2351 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2352 /*
2353 * __GFP_NOFAIL is not to be used in new code.
2354 *
2355 * All __GFP_NOFAIL callers should be fixed so that they
2356 * properly detect and handle allocation failures.
2357 *
2358 * We most definitely don't want callers attempting to
2359 * allocate greater than order-1 page units with
2360 * __GFP_NOFAIL.
2361 */
2362 WARN_ON_ONCE(order > 1);
2363 }
2364 spin_lock_irqsave(&zone->lock, flags);
2365
2366 page = NULL;
2367 if (alloc_flags & ALLOC_HARDER) {
2368 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2369 if (page)
2370 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2371 }
2372 if (!page)
2373 page = __rmqueue(zone, order, migratetype);
2374 spin_unlock(&zone->lock);
2375 if (!page)
2376 goto failed;
2377 __mod_zone_freepage_state(zone, -(1 << order),
2378 get_pcppage_migratetype(page));
2379 }
2380
2381 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2382 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2383 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2384 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2385
2386 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2387 zone_statistics(preferred_zone, zone, gfp_flags);
2388 local_irq_restore(flags);
2389
2390 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2391 return page;
2392
2393 failed:
2394 local_irq_restore(flags);
2395 return NULL;
2396 }
2397
2398 #ifdef CONFIG_FAIL_PAGE_ALLOC
2399
2400 static struct {
2401 struct fault_attr attr;
2402
2403 bool ignore_gfp_highmem;
2404 bool ignore_gfp_reclaim;
2405 u32 min_order;
2406 } fail_page_alloc = {
2407 .attr = FAULT_ATTR_INITIALIZER,
2408 .ignore_gfp_reclaim = true,
2409 .ignore_gfp_highmem = true,
2410 .min_order = 1,
2411 };
2412
2413 static int __init setup_fail_page_alloc(char *str)
2414 {
2415 return setup_fault_attr(&fail_page_alloc.attr, str);
2416 }
2417 __setup("fail_page_alloc=", setup_fail_page_alloc);
2418
2419 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2420 {
2421 if (order < fail_page_alloc.min_order)
2422 return false;
2423 if (gfp_mask & __GFP_NOFAIL)
2424 return false;
2425 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2426 return false;
2427 if (fail_page_alloc.ignore_gfp_reclaim &&
2428 (gfp_mask & __GFP_DIRECT_RECLAIM))
2429 return false;
2430
2431 return should_fail(&fail_page_alloc.attr, 1 << order);
2432 }
2433
2434 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2435
2436 static int __init fail_page_alloc_debugfs(void)
2437 {
2438 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2439 struct dentry *dir;
2440
2441 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2442 &fail_page_alloc.attr);
2443 if (IS_ERR(dir))
2444 return PTR_ERR(dir);
2445
2446 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2447 &fail_page_alloc.ignore_gfp_reclaim))
2448 goto fail;
2449 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2450 &fail_page_alloc.ignore_gfp_highmem))
2451 goto fail;
2452 if (!debugfs_create_u32("min-order", mode, dir,
2453 &fail_page_alloc.min_order))
2454 goto fail;
2455
2456 return 0;
2457 fail:
2458 debugfs_remove_recursive(dir);
2459
2460 return -ENOMEM;
2461 }
2462
2463 late_initcall(fail_page_alloc_debugfs);
2464
2465 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2466
2467 #else /* CONFIG_FAIL_PAGE_ALLOC */
2468
2469 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2470 {
2471 return false;
2472 }
2473
2474 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2475
2476 /*
2477 * Return true if free base pages are above 'mark'. For high-order checks it
2478 * will return true of the order-0 watermark is reached and there is at least
2479 * one free page of a suitable size. Checking now avoids taking the zone lock
2480 * to check in the allocation paths if no pages are free.
2481 */
2482 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2483 unsigned long mark, int classzone_idx, int alloc_flags,
2484 long free_pages)
2485 {
2486 long min = mark;
2487 int o;
2488 const int alloc_harder = (alloc_flags & ALLOC_HARDER);
2489
2490 /* free_pages may go negative - that's OK */
2491 free_pages -= (1 << order) - 1;
2492
2493 if (alloc_flags & ALLOC_HIGH)
2494 min -= min / 2;
2495
2496 /*
2497 * If the caller does not have rights to ALLOC_HARDER then subtract
2498 * the high-atomic reserves. This will over-estimate the size of the
2499 * atomic reserve but it avoids a search.
2500 */
2501 if (likely(!alloc_harder))
2502 free_pages -= z->nr_reserved_highatomic;
2503 else
2504 min -= min / 4;
2505
2506 #ifdef CONFIG_CMA
2507 /* If allocation can't use CMA areas don't use free CMA pages */
2508 if (!(alloc_flags & ALLOC_CMA))
2509 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2510 #endif
2511
2512 /*
2513 * Check watermarks for an order-0 allocation request. If these
2514 * are not met, then a high-order request also cannot go ahead
2515 * even if a suitable page happened to be free.
2516 */
2517 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2518 return false;
2519
2520 /* If this is an order-0 request then the watermark is fine */
2521 if (!order)
2522 return true;
2523
2524 /* For a high-order request, check at least one suitable page is free */
2525 for (o = order; o < MAX_ORDER; o++) {
2526 struct free_area *area = &z->free_area[o];
2527 int mt;
2528
2529 if (!area->nr_free)
2530 continue;
2531
2532 if (alloc_harder)
2533 return true;
2534
2535 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2536 if (!list_empty(&area->free_list[mt]))
2537 return true;
2538 }
2539
2540 #ifdef CONFIG_CMA
2541 if ((alloc_flags & ALLOC_CMA) &&
2542 !list_empty(&area->free_list[MIGRATE_CMA])) {
2543 return true;
2544 }
2545 #endif
2546 }
2547 return false;
2548 }
2549
2550 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2551 int classzone_idx, int alloc_flags)
2552 {
2553 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2554 zone_page_state(z, NR_FREE_PAGES));
2555 }
2556
2557 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2558 unsigned long mark, int classzone_idx)
2559 {
2560 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2561
2562 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2563 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2564
2565 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2566 free_pages);
2567 }
2568
2569 #ifdef CONFIG_NUMA
2570 static bool zone_local(struct zone *local_zone, struct zone *zone)
2571 {
2572 return local_zone->node == zone->node;
2573 }
2574
2575 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2576 {
2577 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2578 RECLAIM_DISTANCE;
2579 }
2580 #else /* CONFIG_NUMA */
2581 static bool zone_local(struct zone *local_zone, struct zone *zone)
2582 {
2583 return true;
2584 }
2585
2586 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2587 {
2588 return true;
2589 }
2590 #endif /* CONFIG_NUMA */
2591
2592 static void reset_alloc_batches(struct zone *preferred_zone)
2593 {
2594 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2595
2596 do {
2597 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2598 high_wmark_pages(zone) - low_wmark_pages(zone) -
2599 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2600 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2601 } while (zone++ != preferred_zone);
2602 }
2603
2604 /*
2605 * get_page_from_freelist goes through the zonelist trying to allocate
2606 * a page.
2607 */
2608 static struct page *
2609 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2610 const struct alloc_context *ac)
2611 {
2612 struct zonelist *zonelist = ac->zonelist;
2613 struct zoneref *z;
2614 struct page *page = NULL;
2615 struct zone *zone;
2616 int nr_fair_skipped = 0;
2617 bool zonelist_rescan;
2618
2619 zonelist_scan:
2620 zonelist_rescan = false;
2621
2622 /*
2623 * Scan zonelist, looking for a zone with enough free.
2624 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2625 */
2626 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2627 ac->nodemask) {
2628 unsigned long mark;
2629
2630 if (cpusets_enabled() &&
2631 (alloc_flags & ALLOC_CPUSET) &&
2632 !cpuset_zone_allowed(zone, gfp_mask))
2633 continue;
2634 /*
2635 * Distribute pages in proportion to the individual
2636 * zone size to ensure fair page aging. The zone a
2637 * page was allocated in should have no effect on the
2638 * time the page has in memory before being reclaimed.
2639 */
2640 if (alloc_flags & ALLOC_FAIR) {
2641 if (!zone_local(ac->preferred_zone, zone))
2642 break;
2643 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2644 nr_fair_skipped++;
2645 continue;
2646 }
2647 }
2648 /*
2649 * When allocating a page cache page for writing, we
2650 * want to get it from a zone that is within its dirty
2651 * limit, such that no single zone holds more than its
2652 * proportional share of globally allowed dirty pages.
2653 * The dirty limits take into account the zone's
2654 * lowmem reserves and high watermark so that kswapd
2655 * should be able to balance it without having to
2656 * write pages from its LRU list.
2657 *
2658 * This may look like it could increase pressure on
2659 * lower zones by failing allocations in higher zones
2660 * before they are full. But the pages that do spill
2661 * over are limited as the lower zones are protected
2662 * by this very same mechanism. It should not become
2663 * a practical burden to them.
2664 *
2665 * XXX: For now, allow allocations to potentially
2666 * exceed the per-zone dirty limit in the slowpath
2667 * (spread_dirty_pages unset) before going into reclaim,
2668 * which is important when on a NUMA setup the allowed
2669 * zones are together not big enough to reach the
2670 * global limit. The proper fix for these situations
2671 * will require awareness of zones in the
2672 * dirty-throttling and the flusher threads.
2673 */
2674 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2675 continue;
2676
2677 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2678 if (!zone_watermark_ok(zone, order, mark,
2679 ac->classzone_idx, alloc_flags)) {
2680 int ret;
2681
2682 /* Checked here to keep the fast path fast */
2683 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2684 if (alloc_flags & ALLOC_NO_WATERMARKS)
2685 goto try_this_zone;
2686
2687 if (zone_reclaim_mode == 0 ||
2688 !zone_allows_reclaim(ac->preferred_zone, zone))
2689 continue;
2690
2691 ret = zone_reclaim(zone, gfp_mask, order);
2692 switch (ret) {
2693 case ZONE_RECLAIM_NOSCAN:
2694 /* did not scan */
2695 continue;
2696 case ZONE_RECLAIM_FULL:
2697 /* scanned but unreclaimable */
2698 continue;
2699 default:
2700 /* did we reclaim enough */
2701 if (zone_watermark_ok(zone, order, mark,
2702 ac->classzone_idx, alloc_flags))
2703 goto try_this_zone;
2704
2705 continue;
2706 }
2707 }
2708
2709 try_this_zone:
2710 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2711 gfp_mask, alloc_flags, ac->migratetype);
2712 if (page) {
2713 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2714 goto try_this_zone;
2715
2716 /*
2717 * If this is a high-order atomic allocation then check
2718 * if the pageblock should be reserved for the future
2719 */
2720 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2721 reserve_highatomic_pageblock(page, zone, order);
2722
2723 return page;
2724 }
2725 }
2726
2727 /*
2728 * The first pass makes sure allocations are spread fairly within the
2729 * local node. However, the local node might have free pages left
2730 * after the fairness batches are exhausted, and remote zones haven't
2731 * even been considered yet. Try once more without fairness, and
2732 * include remote zones now, before entering the slowpath and waking
2733 * kswapd: prefer spilling to a remote zone over swapping locally.
2734 */
2735 if (alloc_flags & ALLOC_FAIR) {
2736 alloc_flags &= ~ALLOC_FAIR;
2737 if (nr_fair_skipped) {
2738 zonelist_rescan = true;
2739 reset_alloc_batches(ac->preferred_zone);
2740 }
2741 if (nr_online_nodes > 1)
2742 zonelist_rescan = true;
2743 }
2744
2745 if (zonelist_rescan)
2746 goto zonelist_scan;
2747
2748 return NULL;
2749 }
2750
2751 /*
2752 * Large machines with many possible nodes should not always dump per-node
2753 * meminfo in irq context.
2754 */
2755 static inline bool should_suppress_show_mem(void)
2756 {
2757 bool ret = false;
2758
2759 #if NODES_SHIFT > 8
2760 ret = in_interrupt();
2761 #endif
2762 return ret;
2763 }
2764
2765 static DEFINE_RATELIMIT_STATE(nopage_rs,
2766 DEFAULT_RATELIMIT_INTERVAL,
2767 DEFAULT_RATELIMIT_BURST);
2768
2769 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2770 {
2771 unsigned int filter = SHOW_MEM_FILTER_NODES;
2772
2773 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2774 debug_guardpage_minorder() > 0)
2775 return;
2776
2777 /*
2778 * This documents exceptions given to allocations in certain
2779 * contexts that are allowed to allocate outside current's set
2780 * of allowed nodes.
2781 */
2782 if (!(gfp_mask & __GFP_NOMEMALLOC))
2783 if (test_thread_flag(TIF_MEMDIE) ||
2784 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2785 filter &= ~SHOW_MEM_FILTER_NODES;
2786 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2787 filter &= ~SHOW_MEM_FILTER_NODES;
2788
2789 if (fmt) {
2790 struct va_format vaf;
2791 va_list args;
2792
2793 va_start(args, fmt);
2794
2795 vaf.fmt = fmt;
2796 vaf.va = &args;
2797
2798 pr_warn("%pV", &vaf);
2799
2800 va_end(args);
2801 }
2802
2803 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2804 current->comm, order, gfp_mask, &gfp_mask);
2805 dump_stack();
2806 if (!should_suppress_show_mem())
2807 show_mem(filter);
2808 }
2809
2810 static inline struct page *
2811 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2812 const struct alloc_context *ac, unsigned long *did_some_progress)
2813 {
2814 struct oom_control oc = {
2815 .zonelist = ac->zonelist,
2816 .nodemask = ac->nodemask,
2817 .gfp_mask = gfp_mask,
2818 .order = order,
2819 };
2820 struct page *page;
2821
2822 *did_some_progress = 0;
2823
2824 /*
2825 * Acquire the oom lock. If that fails, somebody else is
2826 * making progress for us.
2827 */
2828 if (!mutex_trylock(&oom_lock)) {
2829 *did_some_progress = 1;
2830 schedule_timeout_uninterruptible(1);
2831 return NULL;
2832 }
2833
2834 /*
2835 * Go through the zonelist yet one more time, keep very high watermark
2836 * here, this is only to catch a parallel oom killing, we must fail if
2837 * we're still under heavy pressure.
2838 */
2839 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2840 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2841 if (page)
2842 goto out;
2843
2844 if (!(gfp_mask & __GFP_NOFAIL)) {
2845 /* Coredumps can quickly deplete all memory reserves */
2846 if (current->flags & PF_DUMPCORE)
2847 goto out;
2848 /* The OOM killer will not help higher order allocs */
2849 if (order > PAGE_ALLOC_COSTLY_ORDER)
2850 goto out;
2851 /* The OOM killer does not needlessly kill tasks for lowmem */
2852 if (ac->high_zoneidx < ZONE_NORMAL)
2853 goto out;
2854 /* The OOM killer does not compensate for IO-less reclaim */
2855 if (!(gfp_mask & __GFP_FS)) {
2856 /*
2857 * XXX: Page reclaim didn't yield anything,
2858 * and the OOM killer can't be invoked, but
2859 * keep looping as per tradition.
2860 */
2861 *did_some_progress = 1;
2862 goto out;
2863 }
2864 if (pm_suspended_storage())
2865 goto out;
2866 /* The OOM killer may not free memory on a specific node */
2867 if (gfp_mask & __GFP_THISNODE)
2868 goto out;
2869 }
2870 /* Exhausted what can be done so it's blamo time */
2871 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
2872 *did_some_progress = 1;
2873
2874 if (gfp_mask & __GFP_NOFAIL) {
2875 page = get_page_from_freelist(gfp_mask, order,
2876 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2877 /*
2878 * fallback to ignore cpuset restriction if our nodes
2879 * are depleted
2880 */
2881 if (!page)
2882 page = get_page_from_freelist(gfp_mask, order,
2883 ALLOC_NO_WATERMARKS, ac);
2884 }
2885 }
2886 out:
2887 mutex_unlock(&oom_lock);
2888 return page;
2889 }
2890
2891 #ifdef CONFIG_COMPACTION
2892 /* Try memory compaction for high-order allocations before reclaim */
2893 static struct page *
2894 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2895 int alloc_flags, const struct alloc_context *ac,
2896 enum migrate_mode mode, int *contended_compaction,
2897 bool *deferred_compaction)
2898 {
2899 unsigned long compact_result;
2900 struct page *page;
2901
2902 if (!order)
2903 return NULL;
2904
2905 current->flags |= PF_MEMALLOC;
2906 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2907 mode, contended_compaction);
2908 current->flags &= ~PF_MEMALLOC;
2909
2910 switch (compact_result) {
2911 case COMPACT_DEFERRED:
2912 *deferred_compaction = true;
2913 /* fall-through */
2914 case COMPACT_SKIPPED:
2915 return NULL;
2916 default:
2917 break;
2918 }
2919
2920 /*
2921 * At least in one zone compaction wasn't deferred or skipped, so let's
2922 * count a compaction stall
2923 */
2924 count_vm_event(COMPACTSTALL);
2925
2926 page = get_page_from_freelist(gfp_mask, order,
2927 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2928
2929 if (page) {
2930 struct zone *zone = page_zone(page);
2931
2932 zone->compact_blockskip_flush = false;
2933 compaction_defer_reset(zone, order, true);
2934 count_vm_event(COMPACTSUCCESS);
2935 return page;
2936 }
2937
2938 /*
2939 * It's bad if compaction run occurs and fails. The most likely reason
2940 * is that pages exist, but not enough to satisfy watermarks.
2941 */
2942 count_vm_event(COMPACTFAIL);
2943
2944 cond_resched();
2945
2946 return NULL;
2947 }
2948 #else
2949 static inline struct page *
2950 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2951 int alloc_flags, const struct alloc_context *ac,
2952 enum migrate_mode mode, int *contended_compaction,
2953 bool *deferred_compaction)
2954 {
2955 return NULL;
2956 }
2957 #endif /* CONFIG_COMPACTION */
2958
2959 /* Perform direct synchronous page reclaim */
2960 static int
2961 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2962 const struct alloc_context *ac)
2963 {
2964 struct reclaim_state reclaim_state;
2965 int progress;
2966
2967 cond_resched();
2968
2969 /* We now go into synchronous reclaim */
2970 cpuset_memory_pressure_bump();
2971 current->flags |= PF_MEMALLOC;
2972 lockdep_set_current_reclaim_state(gfp_mask);
2973 reclaim_state.reclaimed_slab = 0;
2974 current->reclaim_state = &reclaim_state;
2975
2976 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2977 ac->nodemask);
2978
2979 current->reclaim_state = NULL;
2980 lockdep_clear_current_reclaim_state();
2981 current->flags &= ~PF_MEMALLOC;
2982
2983 cond_resched();
2984
2985 return progress;
2986 }
2987
2988 /* The really slow allocator path where we enter direct reclaim */
2989 static inline struct page *
2990 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2991 int alloc_flags, const struct alloc_context *ac,
2992 unsigned long *did_some_progress)
2993 {
2994 struct page *page = NULL;
2995 bool drained = false;
2996
2997 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2998 if (unlikely(!(*did_some_progress)))
2999 return NULL;
3000
3001 retry:
3002 page = get_page_from_freelist(gfp_mask, order,
3003 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3004
3005 /*
3006 * If an allocation failed after direct reclaim, it could be because
3007 * pages are pinned on the per-cpu lists or in high alloc reserves.
3008 * Shrink them them and try again
3009 */
3010 if (!page && !drained) {
3011 unreserve_highatomic_pageblock(ac);
3012 drain_all_pages(NULL);
3013 drained = true;
3014 goto retry;
3015 }
3016
3017 return page;
3018 }
3019
3020 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3021 {
3022 struct zoneref *z;
3023 struct zone *zone;
3024
3025 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3026 ac->high_zoneidx, ac->nodemask)
3027 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3028 }
3029
3030 static inline int
3031 gfp_to_alloc_flags(gfp_t gfp_mask)
3032 {
3033 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3034
3035 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3036 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3037
3038 /*
3039 * The caller may dip into page reserves a bit more if the caller
3040 * cannot run direct reclaim, or if the caller has realtime scheduling
3041 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3042 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3043 */
3044 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3045
3046 if (gfp_mask & __GFP_ATOMIC) {
3047 /*
3048 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3049 * if it can't schedule.
3050 */
3051 if (!(gfp_mask & __GFP_NOMEMALLOC))
3052 alloc_flags |= ALLOC_HARDER;
3053 /*
3054 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3055 * comment for __cpuset_node_allowed().
3056 */
3057 alloc_flags &= ~ALLOC_CPUSET;
3058 } else if (unlikely(rt_task(current)) && !in_interrupt())
3059 alloc_flags |= ALLOC_HARDER;
3060
3061 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3062 if (gfp_mask & __GFP_MEMALLOC)
3063 alloc_flags |= ALLOC_NO_WATERMARKS;
3064 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3065 alloc_flags |= ALLOC_NO_WATERMARKS;
3066 else if (!in_interrupt() &&
3067 ((current->flags & PF_MEMALLOC) ||
3068 unlikely(test_thread_flag(TIF_MEMDIE))))
3069 alloc_flags |= ALLOC_NO_WATERMARKS;
3070 }
3071 #ifdef CONFIG_CMA
3072 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3073 alloc_flags |= ALLOC_CMA;
3074 #endif
3075 return alloc_flags;
3076 }
3077
3078 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3079 {
3080 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
3081 }
3082
3083 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3084 {
3085 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3086 }
3087
3088 static inline struct page *
3089 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3090 struct alloc_context *ac)
3091 {
3092 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3093 struct page *page = NULL;
3094 int alloc_flags;
3095 unsigned long pages_reclaimed = 0;
3096 unsigned long did_some_progress;
3097 enum migrate_mode migration_mode = MIGRATE_ASYNC;
3098 bool deferred_compaction = false;
3099 int contended_compaction = COMPACT_CONTENDED_NONE;
3100
3101 /*
3102 * In the slowpath, we sanity check order to avoid ever trying to
3103 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3104 * be using allocators in order of preference for an area that is
3105 * too large.
3106 */
3107 if (order >= MAX_ORDER) {
3108 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3109 return NULL;
3110 }
3111
3112 /*
3113 * We also sanity check to catch abuse of atomic reserves being used by
3114 * callers that are not in atomic context.
3115 */
3116 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3117 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3118 gfp_mask &= ~__GFP_ATOMIC;
3119
3120 /*
3121 * If this allocation cannot block and it is for a specific node, then
3122 * fail early. There's no need to wakeup kswapd or retry for a
3123 * speculative node-specific allocation.
3124 */
3125 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim)
3126 goto nopage;
3127
3128 retry:
3129 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3130 wake_all_kswapds(order, ac);
3131
3132 /*
3133 * OK, we're below the kswapd watermark and have kicked background
3134 * reclaim. Now things get more complex, so set up alloc_flags according
3135 * to how we want to proceed.
3136 */
3137 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3138
3139 /*
3140 * Find the true preferred zone if the allocation is unconstrained by
3141 * cpusets.
3142 */
3143 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
3144 struct zoneref *preferred_zoneref;
3145 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3146 ac->high_zoneidx, NULL, &ac->preferred_zone);
3147 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
3148 }
3149
3150 /* This is the last chance, in general, before the goto nopage. */
3151 page = get_page_from_freelist(gfp_mask, order,
3152 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3153 if (page)
3154 goto got_pg;
3155
3156 /* Allocate without watermarks if the context allows */
3157 if (alloc_flags & ALLOC_NO_WATERMARKS) {
3158 /*
3159 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3160 * the allocation is high priority and these type of
3161 * allocations are system rather than user orientated
3162 */
3163 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3164 page = get_page_from_freelist(gfp_mask, order,
3165 ALLOC_NO_WATERMARKS, ac);
3166 if (page)
3167 goto got_pg;
3168 }
3169
3170 /* Caller is not willing to reclaim, we can't balance anything */
3171 if (!can_direct_reclaim) {
3172 /*
3173 * All existing users of the __GFP_NOFAIL are blockable, so warn
3174 * of any new users that actually allow this type of allocation
3175 * to fail.
3176 */
3177 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3178 goto nopage;
3179 }
3180
3181 /* Avoid recursion of direct reclaim */
3182 if (current->flags & PF_MEMALLOC) {
3183 /*
3184 * __GFP_NOFAIL request from this context is rather bizarre
3185 * because we cannot reclaim anything and only can loop waiting
3186 * for somebody to do a work for us.
3187 */
3188 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3189 cond_resched();
3190 goto retry;
3191 }
3192 goto nopage;
3193 }
3194
3195 /* Avoid allocations with no watermarks from looping endlessly */
3196 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3197 goto nopage;
3198
3199 /*
3200 * Try direct compaction. The first pass is asynchronous. Subsequent
3201 * attempts after direct reclaim are synchronous
3202 */
3203 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3204 migration_mode,
3205 &contended_compaction,
3206 &deferred_compaction);
3207 if (page)
3208 goto got_pg;
3209
3210 /* Checks for THP-specific high-order allocations */
3211 if (is_thp_gfp_mask(gfp_mask)) {
3212 /*
3213 * If compaction is deferred for high-order allocations, it is
3214 * because sync compaction recently failed. If this is the case
3215 * and the caller requested a THP allocation, we do not want
3216 * to heavily disrupt the system, so we fail the allocation
3217 * instead of entering direct reclaim.
3218 */
3219 if (deferred_compaction)
3220 goto nopage;
3221
3222 /*
3223 * In all zones where compaction was attempted (and not
3224 * deferred or skipped), lock contention has been detected.
3225 * For THP allocation we do not want to disrupt the others
3226 * so we fallback to base pages instead.
3227 */
3228 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3229 goto nopage;
3230
3231 /*
3232 * If compaction was aborted due to need_resched(), we do not
3233 * want to further increase allocation latency, unless it is
3234 * khugepaged trying to collapse.
3235 */
3236 if (contended_compaction == COMPACT_CONTENDED_SCHED
3237 && !(current->flags & PF_KTHREAD))
3238 goto nopage;
3239 }
3240
3241 /*
3242 * It can become very expensive to allocate transparent hugepages at
3243 * fault, so use asynchronous memory compaction for THP unless it is
3244 * khugepaged trying to collapse.
3245 */
3246 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
3247 migration_mode = MIGRATE_SYNC_LIGHT;
3248
3249 /* Try direct reclaim and then allocating */
3250 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3251 &did_some_progress);
3252 if (page)
3253 goto got_pg;
3254
3255 /* Do not loop if specifically requested */
3256 if (gfp_mask & __GFP_NORETRY)
3257 goto noretry;
3258
3259 /* Keep reclaiming pages as long as there is reasonable progress */
3260 pages_reclaimed += did_some_progress;
3261 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3262 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3263 /* Wait for some write requests to complete then retry */
3264 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
3265 goto retry;
3266 }
3267
3268 /* Reclaim has failed us, start killing things */
3269 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3270 if (page)
3271 goto got_pg;
3272
3273 /* Retry as long as the OOM killer is making progress */
3274 if (did_some_progress)
3275 goto retry;
3276
3277 noretry:
3278 /*
3279 * High-order allocations do not necessarily loop after
3280 * direct reclaim and reclaim/compaction depends on compaction
3281 * being called after reclaim so call directly if necessary
3282 */
3283 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3284 ac, migration_mode,
3285 &contended_compaction,
3286 &deferred_compaction);
3287 if (page)
3288 goto got_pg;
3289 nopage:
3290 warn_alloc_failed(gfp_mask, order, NULL);
3291 got_pg:
3292 return page;
3293 }
3294
3295 /*
3296 * This is the 'heart' of the zoned buddy allocator.
3297 */
3298 struct page *
3299 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3300 struct zonelist *zonelist, nodemask_t *nodemask)
3301 {
3302 struct zoneref *preferred_zoneref;
3303 struct page *page = NULL;
3304 unsigned int cpuset_mems_cookie;
3305 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
3306 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
3307 struct alloc_context ac = {
3308 .high_zoneidx = gfp_zone(gfp_mask),
3309 .nodemask = nodemask,
3310 .migratetype = gfpflags_to_migratetype(gfp_mask),
3311 };
3312
3313 gfp_mask &= gfp_allowed_mask;
3314
3315 lockdep_trace_alloc(gfp_mask);
3316
3317 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3318
3319 if (should_fail_alloc_page(gfp_mask, order))
3320 return NULL;
3321
3322 /*
3323 * Check the zones suitable for the gfp_mask contain at least one
3324 * valid zone. It's possible to have an empty zonelist as a result
3325 * of __GFP_THISNODE and a memoryless node
3326 */
3327 if (unlikely(!zonelist->_zonerefs->zone))
3328 return NULL;
3329
3330 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3331 alloc_flags |= ALLOC_CMA;
3332
3333 retry_cpuset:
3334 cpuset_mems_cookie = read_mems_allowed_begin();
3335
3336 /* We set it here, as __alloc_pages_slowpath might have changed it */
3337 ac.zonelist = zonelist;
3338
3339 /* Dirty zone balancing only done in the fast path */
3340 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3341
3342 /* The preferred zone is used for statistics later */
3343 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3344 ac.nodemask ? : &cpuset_current_mems_allowed,
3345 &ac.preferred_zone);
3346 if (!ac.preferred_zone)
3347 goto out;
3348 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3349
3350 /* First allocation attempt */
3351 alloc_mask = gfp_mask|__GFP_HARDWALL;
3352 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3353 if (unlikely(!page)) {
3354 /*
3355 * Runtime PM, block IO and its error handling path
3356 * can deadlock because I/O on the device might not
3357 * complete.
3358 */
3359 alloc_mask = memalloc_noio_flags(gfp_mask);
3360 ac.spread_dirty_pages = false;
3361
3362 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3363 }
3364
3365 if (kmemcheck_enabled && page)
3366 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3367
3368 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3369
3370 out:
3371 /*
3372 * When updating a task's mems_allowed, it is possible to race with
3373 * parallel threads in such a way that an allocation can fail while
3374 * the mask is being updated. If a page allocation is about to fail,
3375 * check if the cpuset changed during allocation and if so, retry.
3376 */
3377 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
3378 goto retry_cpuset;
3379
3380 return page;
3381 }
3382 EXPORT_SYMBOL(__alloc_pages_nodemask);
3383
3384 /*
3385 * Common helper functions.
3386 */
3387 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3388 {
3389 struct page *page;
3390
3391 /*
3392 * __get_free_pages() returns a 32-bit address, which cannot represent
3393 * a highmem page
3394 */
3395 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3396
3397 page = alloc_pages(gfp_mask, order);
3398 if (!page)
3399 return 0;
3400 return (unsigned long) page_address(page);
3401 }
3402 EXPORT_SYMBOL(__get_free_pages);
3403
3404 unsigned long get_zeroed_page(gfp_t gfp_mask)
3405 {
3406 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3407 }
3408 EXPORT_SYMBOL(get_zeroed_page);
3409
3410 void __free_pages(struct page *page, unsigned int order)
3411 {
3412 if (put_page_testzero(page)) {
3413 if (order == 0)
3414 free_hot_cold_page(page, false);
3415 else
3416 __free_pages_ok(page, order);
3417 }
3418 }
3419
3420 EXPORT_SYMBOL(__free_pages);
3421
3422 void free_pages(unsigned long addr, unsigned int order)
3423 {
3424 if (addr != 0) {
3425 VM_BUG_ON(!virt_addr_valid((void *)addr));
3426 __free_pages(virt_to_page((void *)addr), order);
3427 }
3428 }
3429
3430 EXPORT_SYMBOL(free_pages);
3431
3432 /*
3433 * Page Fragment:
3434 * An arbitrary-length arbitrary-offset area of memory which resides
3435 * within a 0 or higher order page. Multiple fragments within that page
3436 * are individually refcounted, in the page's reference counter.
3437 *
3438 * The page_frag functions below provide a simple allocation framework for
3439 * page fragments. This is used by the network stack and network device
3440 * drivers to provide a backing region of memory for use as either an
3441 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3442 */
3443 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3444 gfp_t gfp_mask)
3445 {
3446 struct page *page = NULL;
3447 gfp_t gfp = gfp_mask;
3448
3449 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3450 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3451 __GFP_NOMEMALLOC;
3452 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3453 PAGE_FRAG_CACHE_MAX_ORDER);
3454 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3455 #endif
3456 if (unlikely(!page))
3457 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3458
3459 nc->va = page ? page_address(page) : NULL;
3460
3461 return page;
3462 }
3463
3464 void *__alloc_page_frag(struct page_frag_cache *nc,
3465 unsigned int fragsz, gfp_t gfp_mask)
3466 {
3467 unsigned int size = PAGE_SIZE;
3468 struct page *page;
3469 int offset;
3470
3471 if (unlikely(!nc->va)) {
3472 refill:
3473 page = __page_frag_refill(nc, gfp_mask);
3474 if (!page)
3475 return NULL;
3476
3477 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3478 /* if size can vary use size else just use PAGE_SIZE */
3479 size = nc->size;
3480 #endif
3481 /* Even if we own the page, we do not use atomic_set().
3482 * This would break get_page_unless_zero() users.
3483 */
3484 atomic_add(size - 1, &page->_count);
3485
3486 /* reset page count bias and offset to start of new frag */
3487 nc->pfmemalloc = page_is_pfmemalloc(page);
3488 nc->pagecnt_bias = size;
3489 nc->offset = size;
3490 }
3491
3492 offset = nc->offset - fragsz;
3493 if (unlikely(offset < 0)) {
3494 page = virt_to_page(nc->va);
3495
3496 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3497 goto refill;
3498
3499 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3500 /* if size can vary use size else just use PAGE_SIZE */
3501 size = nc->size;
3502 #endif
3503 /* OK, page count is 0, we can safely set it */
3504 atomic_set(&page->_count, size);
3505
3506 /* reset page count bias and offset to start of new frag */
3507 nc->pagecnt_bias = size;
3508 offset = size - fragsz;
3509 }
3510
3511 nc->pagecnt_bias--;
3512 nc->offset = offset;
3513
3514 return nc->va + offset;
3515 }
3516 EXPORT_SYMBOL(__alloc_page_frag);
3517
3518 /*
3519 * Frees a page fragment allocated out of either a compound or order 0 page.
3520 */
3521 void __free_page_frag(void *addr)
3522 {
3523 struct page *page = virt_to_head_page(addr);
3524
3525 if (unlikely(put_page_testzero(page)))
3526 __free_pages_ok(page, compound_order(page));
3527 }
3528 EXPORT_SYMBOL(__free_page_frag);
3529
3530 /*
3531 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3532 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3533 * equivalent to alloc_pages.
3534 *
3535 * It should be used when the caller would like to use kmalloc, but since the
3536 * allocation is large, it has to fall back to the page allocator.
3537 */
3538 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3539 {
3540 struct page *page;
3541
3542 page = alloc_pages(gfp_mask, order);
3543 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3544 __free_pages(page, order);
3545 page = NULL;
3546 }
3547 return page;
3548 }
3549
3550 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3551 {
3552 struct page *page;
3553
3554 page = alloc_pages_node(nid, gfp_mask, order);
3555 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3556 __free_pages(page, order);
3557 page = NULL;
3558 }
3559 return page;
3560 }
3561
3562 /*
3563 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3564 * alloc_kmem_pages.
3565 */
3566 void __free_kmem_pages(struct page *page, unsigned int order)
3567 {
3568 memcg_kmem_uncharge(page, order);
3569 __free_pages(page, order);
3570 }
3571
3572 void free_kmem_pages(unsigned long addr, unsigned int order)
3573 {
3574 if (addr != 0) {
3575 VM_BUG_ON(!virt_addr_valid((void *)addr));
3576 __free_kmem_pages(virt_to_page((void *)addr), order);
3577 }
3578 }
3579
3580 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3581 size_t size)
3582 {
3583 if (addr) {
3584 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3585 unsigned long used = addr + PAGE_ALIGN(size);
3586
3587 split_page(virt_to_page((void *)addr), order);
3588 while (used < alloc_end) {
3589 free_page(used);
3590 used += PAGE_SIZE;
3591 }
3592 }
3593 return (void *)addr;
3594 }
3595
3596 /**
3597 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3598 * @size: the number of bytes to allocate
3599 * @gfp_mask: GFP flags for the allocation
3600 *
3601 * This function is similar to alloc_pages(), except that it allocates the
3602 * minimum number of pages to satisfy the request. alloc_pages() can only
3603 * allocate memory in power-of-two pages.
3604 *
3605 * This function is also limited by MAX_ORDER.
3606 *
3607 * Memory allocated by this function must be released by free_pages_exact().
3608 */
3609 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3610 {
3611 unsigned int order = get_order(size);
3612 unsigned long addr;
3613
3614 addr = __get_free_pages(gfp_mask, order);
3615 return make_alloc_exact(addr, order, size);
3616 }
3617 EXPORT_SYMBOL(alloc_pages_exact);
3618
3619 /**
3620 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3621 * pages on a node.
3622 * @nid: the preferred node ID where memory should be allocated
3623 * @size: the number of bytes to allocate
3624 * @gfp_mask: GFP flags for the allocation
3625 *
3626 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3627 * back.
3628 */
3629 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3630 {
3631 unsigned int order = get_order(size);
3632 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3633 if (!p)
3634 return NULL;
3635 return make_alloc_exact((unsigned long)page_address(p), order, size);
3636 }
3637
3638 /**
3639 * free_pages_exact - release memory allocated via alloc_pages_exact()
3640 * @virt: the value returned by alloc_pages_exact.
3641 * @size: size of allocation, same value as passed to alloc_pages_exact().
3642 *
3643 * Release the memory allocated by a previous call to alloc_pages_exact.
3644 */
3645 void free_pages_exact(void *virt, size_t size)
3646 {
3647 unsigned long addr = (unsigned long)virt;
3648 unsigned long end = addr + PAGE_ALIGN(size);
3649
3650 while (addr < end) {
3651 free_page(addr);
3652 addr += PAGE_SIZE;
3653 }
3654 }
3655 EXPORT_SYMBOL(free_pages_exact);
3656
3657 /**
3658 * nr_free_zone_pages - count number of pages beyond high watermark
3659 * @offset: The zone index of the highest zone
3660 *
3661 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3662 * high watermark within all zones at or below a given zone index. For each
3663 * zone, the number of pages is calculated as:
3664 * managed_pages - high_pages
3665 */
3666 static unsigned long nr_free_zone_pages(int offset)
3667 {
3668 struct zoneref *z;
3669 struct zone *zone;
3670
3671 /* Just pick one node, since fallback list is circular */
3672 unsigned long sum = 0;
3673
3674 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3675
3676 for_each_zone_zonelist(zone, z, zonelist, offset) {
3677 unsigned long size = zone->managed_pages;
3678 unsigned long high = high_wmark_pages(zone);
3679 if (size > high)
3680 sum += size - high;
3681 }
3682
3683 return sum;
3684 }
3685
3686 /**
3687 * nr_free_buffer_pages - count number of pages beyond high watermark
3688 *
3689 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3690 * watermark within ZONE_DMA and ZONE_NORMAL.
3691 */
3692 unsigned long nr_free_buffer_pages(void)
3693 {
3694 return nr_free_zone_pages(gfp_zone(GFP_USER));
3695 }
3696 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3697
3698 /**
3699 * nr_free_pagecache_pages - count number of pages beyond high watermark
3700 *
3701 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3702 * high watermark within all zones.
3703 */
3704 unsigned long nr_free_pagecache_pages(void)
3705 {
3706 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3707 }
3708
3709 static inline void show_node(struct zone *zone)
3710 {
3711 if (IS_ENABLED(CONFIG_NUMA))
3712 printk("Node %d ", zone_to_nid(zone));
3713 }
3714
3715 void si_meminfo(struct sysinfo *val)
3716 {
3717 val->totalram = totalram_pages;
3718 val->sharedram = global_page_state(NR_SHMEM);
3719 val->freeram = global_page_state(NR_FREE_PAGES);
3720 val->bufferram = nr_blockdev_pages();
3721 val->totalhigh = totalhigh_pages;
3722 val->freehigh = nr_free_highpages();
3723 val->mem_unit = PAGE_SIZE;
3724 }
3725
3726 EXPORT_SYMBOL(si_meminfo);
3727
3728 #ifdef CONFIG_NUMA
3729 void si_meminfo_node(struct sysinfo *val, int nid)
3730 {
3731 int zone_type; /* needs to be signed */
3732 unsigned long managed_pages = 0;
3733 pg_data_t *pgdat = NODE_DATA(nid);
3734
3735 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3736 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3737 val->totalram = managed_pages;
3738 val->sharedram = node_page_state(nid, NR_SHMEM);
3739 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3740 #ifdef CONFIG_HIGHMEM
3741 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3742 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3743 NR_FREE_PAGES);
3744 #else
3745 val->totalhigh = 0;
3746 val->freehigh = 0;
3747 #endif
3748 val->mem_unit = PAGE_SIZE;
3749 }
3750 #endif
3751
3752 /*
3753 * Determine whether the node should be displayed or not, depending on whether
3754 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3755 */
3756 bool skip_free_areas_node(unsigned int flags, int nid)
3757 {
3758 bool ret = false;
3759 unsigned int cpuset_mems_cookie;
3760
3761 if (!(flags & SHOW_MEM_FILTER_NODES))
3762 goto out;
3763
3764 do {
3765 cpuset_mems_cookie = read_mems_allowed_begin();
3766 ret = !node_isset(nid, cpuset_current_mems_allowed);
3767 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3768 out:
3769 return ret;
3770 }
3771
3772 #define K(x) ((x) << (PAGE_SHIFT-10))
3773
3774 static void show_migration_types(unsigned char type)
3775 {
3776 static const char types[MIGRATE_TYPES] = {
3777 [MIGRATE_UNMOVABLE] = 'U',
3778 [MIGRATE_MOVABLE] = 'M',
3779 [MIGRATE_RECLAIMABLE] = 'E',
3780 [MIGRATE_HIGHATOMIC] = 'H',
3781 #ifdef CONFIG_CMA
3782 [MIGRATE_CMA] = 'C',
3783 #endif
3784 #ifdef CONFIG_MEMORY_ISOLATION
3785 [MIGRATE_ISOLATE] = 'I',
3786 #endif
3787 };
3788 char tmp[MIGRATE_TYPES + 1];
3789 char *p = tmp;
3790 int i;
3791
3792 for (i = 0; i < MIGRATE_TYPES; i++) {
3793 if (type & (1 << i))
3794 *p++ = types[i];
3795 }
3796
3797 *p = '\0';
3798 printk("(%s) ", tmp);
3799 }
3800
3801 /*
3802 * Show free area list (used inside shift_scroll-lock stuff)
3803 * We also calculate the percentage fragmentation. We do this by counting the
3804 * memory on each free list with the exception of the first item on the list.
3805 *
3806 * Bits in @filter:
3807 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3808 * cpuset.
3809 */
3810 void show_free_areas(unsigned int filter)
3811 {
3812 unsigned long free_pcp = 0;
3813 int cpu;
3814 struct zone *zone;
3815
3816 for_each_populated_zone(zone) {
3817 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3818 continue;
3819
3820 for_each_online_cpu(cpu)
3821 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3822 }
3823
3824 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3825 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3826 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3827 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3828 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3829 " free:%lu free_pcp:%lu free_cma:%lu\n",
3830 global_page_state(NR_ACTIVE_ANON),
3831 global_page_state(NR_INACTIVE_ANON),
3832 global_page_state(NR_ISOLATED_ANON),
3833 global_page_state(NR_ACTIVE_FILE),
3834 global_page_state(NR_INACTIVE_FILE),
3835 global_page_state(NR_ISOLATED_FILE),
3836 global_page_state(NR_UNEVICTABLE),
3837 global_page_state(NR_FILE_DIRTY),
3838 global_page_state(NR_WRITEBACK),
3839 global_page_state(NR_UNSTABLE_NFS),
3840 global_page_state(NR_SLAB_RECLAIMABLE),
3841 global_page_state(NR_SLAB_UNRECLAIMABLE),
3842 global_page_state(NR_FILE_MAPPED),
3843 global_page_state(NR_SHMEM),
3844 global_page_state(NR_PAGETABLE),
3845 global_page_state(NR_BOUNCE),
3846 global_page_state(NR_FREE_PAGES),
3847 free_pcp,
3848 global_page_state(NR_FREE_CMA_PAGES));
3849
3850 for_each_populated_zone(zone) {
3851 int i;
3852
3853 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3854 continue;
3855
3856 free_pcp = 0;
3857 for_each_online_cpu(cpu)
3858 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3859
3860 show_node(zone);
3861 printk("%s"
3862 " free:%lukB"
3863 " min:%lukB"
3864 " low:%lukB"
3865 " high:%lukB"
3866 " active_anon:%lukB"
3867 " inactive_anon:%lukB"
3868 " active_file:%lukB"
3869 " inactive_file:%lukB"
3870 " unevictable:%lukB"
3871 " isolated(anon):%lukB"
3872 " isolated(file):%lukB"
3873 " present:%lukB"
3874 " managed:%lukB"
3875 " mlocked:%lukB"
3876 " dirty:%lukB"
3877 " writeback:%lukB"
3878 " mapped:%lukB"
3879 " shmem:%lukB"
3880 " slab_reclaimable:%lukB"
3881 " slab_unreclaimable:%lukB"
3882 " kernel_stack:%lukB"
3883 " pagetables:%lukB"
3884 " unstable:%lukB"
3885 " bounce:%lukB"
3886 " free_pcp:%lukB"
3887 " local_pcp:%ukB"
3888 " free_cma:%lukB"
3889 " writeback_tmp:%lukB"
3890 " pages_scanned:%lu"
3891 " all_unreclaimable? %s"
3892 "\n",
3893 zone->name,
3894 K(zone_page_state(zone, NR_FREE_PAGES)),
3895 K(min_wmark_pages(zone)),
3896 K(low_wmark_pages(zone)),
3897 K(high_wmark_pages(zone)),
3898 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3899 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3900 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3901 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3902 K(zone_page_state(zone, NR_UNEVICTABLE)),
3903 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3904 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3905 K(zone->present_pages),
3906 K(zone->managed_pages),
3907 K(zone_page_state(zone, NR_MLOCK)),
3908 K(zone_page_state(zone, NR_FILE_DIRTY)),
3909 K(zone_page_state(zone, NR_WRITEBACK)),
3910 K(zone_page_state(zone, NR_FILE_MAPPED)),
3911 K(zone_page_state(zone, NR_SHMEM)),
3912 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3913 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3914 zone_page_state(zone, NR_KERNEL_STACK) *
3915 THREAD_SIZE / 1024,
3916 K(zone_page_state(zone, NR_PAGETABLE)),
3917 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3918 K(zone_page_state(zone, NR_BOUNCE)),
3919 K(free_pcp),
3920 K(this_cpu_read(zone->pageset->pcp.count)),
3921 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3922 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3923 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3924 (!zone_reclaimable(zone) ? "yes" : "no")
3925 );
3926 printk("lowmem_reserve[]:");
3927 for (i = 0; i < MAX_NR_ZONES; i++)
3928 printk(" %ld", zone->lowmem_reserve[i]);
3929 printk("\n");
3930 }
3931
3932 for_each_populated_zone(zone) {
3933 unsigned int order;
3934 unsigned long nr[MAX_ORDER], flags, total = 0;
3935 unsigned char types[MAX_ORDER];
3936
3937 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3938 continue;
3939 show_node(zone);
3940 printk("%s: ", zone->name);
3941
3942 spin_lock_irqsave(&zone->lock, flags);
3943 for (order = 0; order < MAX_ORDER; order++) {
3944 struct free_area *area = &zone->free_area[order];
3945 int type;
3946
3947 nr[order] = area->nr_free;
3948 total += nr[order] << order;
3949
3950 types[order] = 0;
3951 for (type = 0; type < MIGRATE_TYPES; type++) {
3952 if (!list_empty(&area->free_list[type]))
3953 types[order] |= 1 << type;
3954 }
3955 }
3956 spin_unlock_irqrestore(&zone->lock, flags);
3957 for (order = 0; order < MAX_ORDER; order++) {
3958 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3959 if (nr[order])
3960 show_migration_types(types[order]);
3961 }
3962 printk("= %lukB\n", K(total));
3963 }
3964
3965 hugetlb_show_meminfo();
3966
3967 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3968
3969 show_swap_cache_info();
3970 }
3971
3972 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3973 {
3974 zoneref->zone = zone;
3975 zoneref->zone_idx = zone_idx(zone);
3976 }
3977
3978 /*
3979 * Builds allocation fallback zone lists.
3980 *
3981 * Add all populated zones of a node to the zonelist.
3982 */
3983 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3984 int nr_zones)
3985 {
3986 struct zone *zone;
3987 enum zone_type zone_type = MAX_NR_ZONES;
3988
3989 do {
3990 zone_type--;
3991 zone = pgdat->node_zones + zone_type;
3992 if (populated_zone(zone)) {
3993 zoneref_set_zone(zone,
3994 &zonelist->_zonerefs[nr_zones++]);
3995 check_highest_zone(zone_type);
3996 }
3997 } while (zone_type);
3998
3999 return nr_zones;
4000 }
4001
4002
4003 /*
4004 * zonelist_order:
4005 * 0 = automatic detection of better ordering.
4006 * 1 = order by ([node] distance, -zonetype)
4007 * 2 = order by (-zonetype, [node] distance)
4008 *
4009 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4010 * the same zonelist. So only NUMA can configure this param.
4011 */
4012 #define ZONELIST_ORDER_DEFAULT 0
4013 #define ZONELIST_ORDER_NODE 1
4014 #define ZONELIST_ORDER_ZONE 2
4015
4016 /* zonelist order in the kernel.
4017 * set_zonelist_order() will set this to NODE or ZONE.
4018 */
4019 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4020 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4021
4022
4023 #ifdef CONFIG_NUMA
4024 /* The value user specified ....changed by config */
4025 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4026 /* string for sysctl */
4027 #define NUMA_ZONELIST_ORDER_LEN 16
4028 char numa_zonelist_order[16] = "default";
4029
4030 /*
4031 * interface for configure zonelist ordering.
4032 * command line option "numa_zonelist_order"
4033 * = "[dD]efault - default, automatic configuration.
4034 * = "[nN]ode - order by node locality, then by zone within node
4035 * = "[zZ]one - order by zone, then by locality within zone
4036 */
4037
4038 static int __parse_numa_zonelist_order(char *s)
4039 {
4040 if (*s == 'd' || *s == 'D') {
4041 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4042 } else if (*s == 'n' || *s == 'N') {
4043 user_zonelist_order = ZONELIST_ORDER_NODE;
4044 } else if (*s == 'z' || *s == 'Z') {
4045 user_zonelist_order = ZONELIST_ORDER_ZONE;
4046 } else {
4047 printk(KERN_WARNING
4048 "Ignoring invalid numa_zonelist_order value: "
4049 "%s\n", s);
4050 return -EINVAL;
4051 }
4052 return 0;
4053 }
4054
4055 static __init int setup_numa_zonelist_order(char *s)
4056 {
4057 int ret;
4058
4059 if (!s)
4060 return 0;
4061
4062 ret = __parse_numa_zonelist_order(s);
4063 if (ret == 0)
4064 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4065
4066 return ret;
4067 }
4068 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4069
4070 /*
4071 * sysctl handler for numa_zonelist_order
4072 */
4073 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4074 void __user *buffer, size_t *length,
4075 loff_t *ppos)
4076 {
4077 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4078 int ret;
4079 static DEFINE_MUTEX(zl_order_mutex);
4080
4081 mutex_lock(&zl_order_mutex);
4082 if (write) {
4083 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4084 ret = -EINVAL;
4085 goto out;
4086 }
4087 strcpy(saved_string, (char *)table->data);
4088 }
4089 ret = proc_dostring(table, write, buffer, length, ppos);
4090 if (ret)
4091 goto out;
4092 if (write) {
4093 int oldval = user_zonelist_order;
4094
4095 ret = __parse_numa_zonelist_order((char *)table->data);
4096 if (ret) {
4097 /*
4098 * bogus value. restore saved string
4099 */
4100 strncpy((char *)table->data, saved_string,
4101 NUMA_ZONELIST_ORDER_LEN);
4102 user_zonelist_order = oldval;
4103 } else if (oldval != user_zonelist_order) {
4104 mutex_lock(&zonelists_mutex);
4105 build_all_zonelists(NULL, NULL);
4106 mutex_unlock(&zonelists_mutex);
4107 }
4108 }
4109 out:
4110 mutex_unlock(&zl_order_mutex);
4111 return ret;
4112 }
4113
4114
4115 #define MAX_NODE_LOAD (nr_online_nodes)
4116 static int node_load[MAX_NUMNODES];
4117
4118 /**
4119 * find_next_best_node - find the next node that should appear in a given node's fallback list
4120 * @node: node whose fallback list we're appending
4121 * @used_node_mask: nodemask_t of already used nodes
4122 *
4123 * We use a number of factors to determine which is the next node that should
4124 * appear on a given node's fallback list. The node should not have appeared
4125 * already in @node's fallback list, and it should be the next closest node
4126 * according to the distance array (which contains arbitrary distance values
4127 * from each node to each node in the system), and should also prefer nodes
4128 * with no CPUs, since presumably they'll have very little allocation pressure
4129 * on them otherwise.
4130 * It returns -1 if no node is found.
4131 */
4132 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4133 {
4134 int n, val;
4135 int min_val = INT_MAX;
4136 int best_node = NUMA_NO_NODE;
4137 const struct cpumask *tmp = cpumask_of_node(0);
4138
4139 /* Use the local node if we haven't already */
4140 if (!node_isset(node, *used_node_mask)) {
4141 node_set(node, *used_node_mask);
4142 return node;
4143 }
4144
4145 for_each_node_state(n, N_MEMORY) {
4146
4147 /* Don't want a node to appear more than once */
4148 if (node_isset(n, *used_node_mask))
4149 continue;
4150
4151 /* Use the distance array to find the distance */
4152 val = node_distance(node, n);
4153
4154 /* Penalize nodes under us ("prefer the next node") */
4155 val += (n < node);
4156
4157 /* Give preference to headless and unused nodes */
4158 tmp = cpumask_of_node(n);
4159 if (!cpumask_empty(tmp))
4160 val += PENALTY_FOR_NODE_WITH_CPUS;
4161
4162 /* Slight preference for less loaded node */
4163 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4164 val += node_load[n];
4165
4166 if (val < min_val) {
4167 min_val = val;
4168 best_node = n;
4169 }
4170 }
4171
4172 if (best_node >= 0)
4173 node_set(best_node, *used_node_mask);
4174
4175 return best_node;
4176 }
4177
4178
4179 /*
4180 * Build zonelists ordered by node and zones within node.
4181 * This results in maximum locality--normal zone overflows into local
4182 * DMA zone, if any--but risks exhausting DMA zone.
4183 */
4184 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4185 {
4186 int j;
4187 struct zonelist *zonelist;
4188
4189 zonelist = &pgdat->node_zonelists[0];
4190 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4191 ;
4192 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4193 zonelist->_zonerefs[j].zone = NULL;
4194 zonelist->_zonerefs[j].zone_idx = 0;
4195 }
4196
4197 /*
4198 * Build gfp_thisnode zonelists
4199 */
4200 static void build_thisnode_zonelists(pg_data_t *pgdat)
4201 {
4202 int j;
4203 struct zonelist *zonelist;
4204
4205 zonelist = &pgdat->node_zonelists[1];
4206 j = build_zonelists_node(pgdat, zonelist, 0);
4207 zonelist->_zonerefs[j].zone = NULL;
4208 zonelist->_zonerefs[j].zone_idx = 0;
4209 }
4210
4211 /*
4212 * Build zonelists ordered by zone and nodes within zones.
4213 * This results in conserving DMA zone[s] until all Normal memory is
4214 * exhausted, but results in overflowing to remote node while memory
4215 * may still exist in local DMA zone.
4216 */
4217 static int node_order[MAX_NUMNODES];
4218
4219 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4220 {
4221 int pos, j, node;
4222 int zone_type; /* needs to be signed */
4223 struct zone *z;
4224 struct zonelist *zonelist;
4225
4226 zonelist = &pgdat->node_zonelists[0];
4227 pos = 0;
4228 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4229 for (j = 0; j < nr_nodes; j++) {
4230 node = node_order[j];
4231 z = &NODE_DATA(node)->node_zones[zone_type];
4232 if (populated_zone(z)) {
4233 zoneref_set_zone(z,
4234 &zonelist->_zonerefs[pos++]);
4235 check_highest_zone(zone_type);
4236 }
4237 }
4238 }
4239 zonelist->_zonerefs[pos].zone = NULL;
4240 zonelist->_zonerefs[pos].zone_idx = 0;
4241 }
4242
4243 #if defined(CONFIG_64BIT)
4244 /*
4245 * Devices that require DMA32/DMA are relatively rare and do not justify a
4246 * penalty to every machine in case the specialised case applies. Default
4247 * to Node-ordering on 64-bit NUMA machines
4248 */
4249 static int default_zonelist_order(void)
4250 {
4251 return ZONELIST_ORDER_NODE;
4252 }
4253 #else
4254 /*
4255 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4256 * by the kernel. If processes running on node 0 deplete the low memory zone
4257 * then reclaim will occur more frequency increasing stalls and potentially
4258 * be easier to OOM if a large percentage of the zone is under writeback or
4259 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4260 * Hence, default to zone ordering on 32-bit.
4261 */
4262 static int default_zonelist_order(void)
4263 {
4264 return ZONELIST_ORDER_ZONE;
4265 }
4266 #endif /* CONFIG_64BIT */
4267
4268 static void set_zonelist_order(void)
4269 {
4270 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4271 current_zonelist_order = default_zonelist_order();
4272 else
4273 current_zonelist_order = user_zonelist_order;
4274 }
4275
4276 static void build_zonelists(pg_data_t *pgdat)
4277 {
4278 int i, node, load;
4279 nodemask_t used_mask;
4280 int local_node, prev_node;
4281 struct zonelist *zonelist;
4282 unsigned int order = current_zonelist_order;
4283
4284 /* initialize zonelists */
4285 for (i = 0; i < MAX_ZONELISTS; i++) {
4286 zonelist = pgdat->node_zonelists + i;
4287 zonelist->_zonerefs[0].zone = NULL;
4288 zonelist->_zonerefs[0].zone_idx = 0;
4289 }
4290
4291 /* NUMA-aware ordering of nodes */
4292 local_node = pgdat->node_id;
4293 load = nr_online_nodes;
4294 prev_node = local_node;
4295 nodes_clear(used_mask);
4296
4297 memset(node_order, 0, sizeof(node_order));
4298 i = 0;
4299
4300 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4301 /*
4302 * We don't want to pressure a particular node.
4303 * So adding penalty to the first node in same
4304 * distance group to make it round-robin.
4305 */
4306 if (node_distance(local_node, node) !=
4307 node_distance(local_node, prev_node))
4308 node_load[node] = load;
4309
4310 prev_node = node;
4311 load--;
4312 if (order == ZONELIST_ORDER_NODE)
4313 build_zonelists_in_node_order(pgdat, node);
4314 else
4315 node_order[i++] = node; /* remember order */
4316 }
4317
4318 if (order == ZONELIST_ORDER_ZONE) {
4319 /* calculate node order -- i.e., DMA last! */
4320 build_zonelists_in_zone_order(pgdat, i);
4321 }
4322
4323 build_thisnode_zonelists(pgdat);
4324 }
4325
4326 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4327 /*
4328 * Return node id of node used for "local" allocations.
4329 * I.e., first node id of first zone in arg node's generic zonelist.
4330 * Used for initializing percpu 'numa_mem', which is used primarily
4331 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4332 */
4333 int local_memory_node(int node)
4334 {
4335 struct zone *zone;
4336
4337 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4338 gfp_zone(GFP_KERNEL),
4339 NULL,
4340 &zone);
4341 return zone->node;
4342 }
4343 #endif
4344
4345 #else /* CONFIG_NUMA */
4346
4347 static void set_zonelist_order(void)
4348 {
4349 current_zonelist_order = ZONELIST_ORDER_ZONE;
4350 }
4351
4352 static void build_zonelists(pg_data_t *pgdat)
4353 {
4354 int node, local_node;
4355 enum zone_type j;
4356 struct zonelist *zonelist;
4357
4358 local_node = pgdat->node_id;
4359
4360 zonelist = &pgdat->node_zonelists[0];
4361 j = build_zonelists_node(pgdat, zonelist, 0);
4362
4363 /*
4364 * Now we build the zonelist so that it contains the zones
4365 * of all the other nodes.
4366 * We don't want to pressure a particular node, so when
4367 * building the zones for node N, we make sure that the
4368 * zones coming right after the local ones are those from
4369 * node N+1 (modulo N)
4370 */
4371 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4372 if (!node_online(node))
4373 continue;
4374 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4375 }
4376 for (node = 0; node < local_node; node++) {
4377 if (!node_online(node))
4378 continue;
4379 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4380 }
4381
4382 zonelist->_zonerefs[j].zone = NULL;
4383 zonelist->_zonerefs[j].zone_idx = 0;
4384 }
4385
4386 #endif /* CONFIG_NUMA */
4387
4388 /*
4389 * Boot pageset table. One per cpu which is going to be used for all
4390 * zones and all nodes. The parameters will be set in such a way
4391 * that an item put on a list will immediately be handed over to
4392 * the buddy list. This is safe since pageset manipulation is done
4393 * with interrupts disabled.
4394 *
4395 * The boot_pagesets must be kept even after bootup is complete for
4396 * unused processors and/or zones. They do play a role for bootstrapping
4397 * hotplugged processors.
4398 *
4399 * zoneinfo_show() and maybe other functions do
4400 * not check if the processor is online before following the pageset pointer.
4401 * Other parts of the kernel may not check if the zone is available.
4402 */
4403 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4404 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4405 static void setup_zone_pageset(struct zone *zone);
4406
4407 /*
4408 * Global mutex to protect against size modification of zonelists
4409 * as well as to serialize pageset setup for the new populated zone.
4410 */
4411 DEFINE_MUTEX(zonelists_mutex);
4412
4413 /* return values int ....just for stop_machine() */
4414 static int __build_all_zonelists(void *data)
4415 {
4416 int nid;
4417 int cpu;
4418 pg_data_t *self = data;
4419
4420 #ifdef CONFIG_NUMA
4421 memset(node_load, 0, sizeof(node_load));
4422 #endif
4423
4424 if (self && !node_online(self->node_id)) {
4425 build_zonelists(self);
4426 }
4427
4428 for_each_online_node(nid) {
4429 pg_data_t *pgdat = NODE_DATA(nid);
4430
4431 build_zonelists(pgdat);
4432 }
4433
4434 /*
4435 * Initialize the boot_pagesets that are going to be used
4436 * for bootstrapping processors. The real pagesets for
4437 * each zone will be allocated later when the per cpu
4438 * allocator is available.
4439 *
4440 * boot_pagesets are used also for bootstrapping offline
4441 * cpus if the system is already booted because the pagesets
4442 * are needed to initialize allocators on a specific cpu too.
4443 * F.e. the percpu allocator needs the page allocator which
4444 * needs the percpu allocator in order to allocate its pagesets
4445 * (a chicken-egg dilemma).
4446 */
4447 for_each_possible_cpu(cpu) {
4448 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4449
4450 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4451 /*
4452 * We now know the "local memory node" for each node--
4453 * i.e., the node of the first zone in the generic zonelist.
4454 * Set up numa_mem percpu variable for on-line cpus. During
4455 * boot, only the boot cpu should be on-line; we'll init the
4456 * secondary cpus' numa_mem as they come on-line. During
4457 * node/memory hotplug, we'll fixup all on-line cpus.
4458 */
4459 if (cpu_online(cpu))
4460 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4461 #endif
4462 }
4463
4464 return 0;
4465 }
4466
4467 static noinline void __init
4468 build_all_zonelists_init(void)
4469 {
4470 __build_all_zonelists(NULL);
4471 mminit_verify_zonelist();
4472 cpuset_init_current_mems_allowed();
4473 }
4474
4475 /*
4476 * Called with zonelists_mutex held always
4477 * unless system_state == SYSTEM_BOOTING.
4478 *
4479 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4480 * [we're only called with non-NULL zone through __meminit paths] and
4481 * (2) call of __init annotated helper build_all_zonelists_init
4482 * [protected by SYSTEM_BOOTING].
4483 */
4484 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4485 {
4486 set_zonelist_order();
4487
4488 if (system_state == SYSTEM_BOOTING) {
4489 build_all_zonelists_init();
4490 } else {
4491 #ifdef CONFIG_MEMORY_HOTPLUG
4492 if (zone)
4493 setup_zone_pageset(zone);
4494 #endif
4495 /* we have to stop all cpus to guarantee there is no user
4496 of zonelist */
4497 stop_machine(__build_all_zonelists, pgdat, NULL);
4498 /* cpuset refresh routine should be here */
4499 }
4500 vm_total_pages = nr_free_pagecache_pages();
4501 /*
4502 * Disable grouping by mobility if the number of pages in the
4503 * system is too low to allow the mechanism to work. It would be
4504 * more accurate, but expensive to check per-zone. This check is
4505 * made on memory-hotadd so a system can start with mobility
4506 * disabled and enable it later
4507 */
4508 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4509 page_group_by_mobility_disabled = 1;
4510 else
4511 page_group_by_mobility_disabled = 0;
4512
4513 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
4514 "Total pages: %ld\n",
4515 nr_online_nodes,
4516 zonelist_order_name[current_zonelist_order],
4517 page_group_by_mobility_disabled ? "off" : "on",
4518 vm_total_pages);
4519 #ifdef CONFIG_NUMA
4520 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4521 #endif
4522 }
4523
4524 /*
4525 * Helper functions to size the waitqueue hash table.
4526 * Essentially these want to choose hash table sizes sufficiently
4527 * large so that collisions trying to wait on pages are rare.
4528 * But in fact, the number of active page waitqueues on typical
4529 * systems is ridiculously low, less than 200. So this is even
4530 * conservative, even though it seems large.
4531 *
4532 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4533 * waitqueues, i.e. the size of the waitq table given the number of pages.
4534 */
4535 #define PAGES_PER_WAITQUEUE 256
4536
4537 #ifndef CONFIG_MEMORY_HOTPLUG
4538 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4539 {
4540 unsigned long size = 1;
4541
4542 pages /= PAGES_PER_WAITQUEUE;
4543
4544 while (size < pages)
4545 size <<= 1;
4546
4547 /*
4548 * Once we have dozens or even hundreds of threads sleeping
4549 * on IO we've got bigger problems than wait queue collision.
4550 * Limit the size of the wait table to a reasonable size.
4551 */
4552 size = min(size, 4096UL);
4553
4554 return max(size, 4UL);
4555 }
4556 #else
4557 /*
4558 * A zone's size might be changed by hot-add, so it is not possible to determine
4559 * a suitable size for its wait_table. So we use the maximum size now.
4560 *
4561 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4562 *
4563 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4564 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4565 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4566 *
4567 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4568 * or more by the traditional way. (See above). It equals:
4569 *
4570 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4571 * ia64(16K page size) : = ( 8G + 4M)byte.
4572 * powerpc (64K page size) : = (32G +16M)byte.
4573 */
4574 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4575 {
4576 return 4096UL;
4577 }
4578 #endif
4579
4580 /*
4581 * This is an integer logarithm so that shifts can be used later
4582 * to extract the more random high bits from the multiplicative
4583 * hash function before the remainder is taken.
4584 */
4585 static inline unsigned long wait_table_bits(unsigned long size)
4586 {
4587 return ffz(~size);
4588 }
4589
4590 /*
4591 * Initially all pages are reserved - free ones are freed
4592 * up by free_all_bootmem() once the early boot process is
4593 * done. Non-atomic initialization, single-pass.
4594 */
4595 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4596 unsigned long start_pfn, enum memmap_context context)
4597 {
4598 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
4599 unsigned long end_pfn = start_pfn + size;
4600 pg_data_t *pgdat = NODE_DATA(nid);
4601 unsigned long pfn;
4602 unsigned long nr_initialised = 0;
4603 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4604 struct memblock_region *r = NULL, *tmp;
4605 #endif
4606
4607 if (highest_memmap_pfn < end_pfn - 1)
4608 highest_memmap_pfn = end_pfn - 1;
4609
4610 /*
4611 * Honor reservation requested by the driver for this ZONE_DEVICE
4612 * memory
4613 */
4614 if (altmap && start_pfn == altmap->base_pfn)
4615 start_pfn += altmap->reserve;
4616
4617 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4618 /*
4619 * There can be holes in boot-time mem_map[]s handed to this
4620 * function. They do not exist on hotplugged memory.
4621 */
4622 if (context != MEMMAP_EARLY)
4623 goto not_early;
4624
4625 if (!early_pfn_valid(pfn))
4626 continue;
4627 if (!early_pfn_in_nid(pfn, nid))
4628 continue;
4629 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4630 break;
4631
4632 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4633 /*
4634 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4635 * from zone_movable_pfn[nid] to end of each node should be
4636 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4637 */
4638 if (!mirrored_kernelcore && zone_movable_pfn[nid])
4639 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4640 continue;
4641
4642 /*
4643 * Check given memblock attribute by firmware which can affect
4644 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
4645 * mirrored, it's an overlapped memmap init. skip it.
4646 */
4647 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4648 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4649 for_each_memblock(memory, tmp)
4650 if (pfn < memblock_region_memory_end_pfn(tmp))
4651 break;
4652 r = tmp;
4653 }
4654 if (pfn >= memblock_region_memory_base_pfn(r) &&
4655 memblock_is_mirror(r)) {
4656 /* already initialized as NORMAL */
4657 pfn = memblock_region_memory_end_pfn(r);
4658 continue;
4659 }
4660 }
4661 #endif
4662
4663 not_early:
4664 /*
4665 * Mark the block movable so that blocks are reserved for
4666 * movable at startup. This will force kernel allocations
4667 * to reserve their blocks rather than leaking throughout
4668 * the address space during boot when many long-lived
4669 * kernel allocations are made.
4670 *
4671 * bitmap is created for zone's valid pfn range. but memmap
4672 * can be created for invalid pages (for alignment)
4673 * check here not to call set_pageblock_migratetype() against
4674 * pfn out of zone.
4675 */
4676 if (!(pfn & (pageblock_nr_pages - 1))) {
4677 struct page *page = pfn_to_page(pfn);
4678
4679 __init_single_page(page, pfn, zone, nid);
4680 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4681 } else {
4682 __init_single_pfn(pfn, zone, nid);
4683 }
4684 }
4685 }
4686
4687 static void __meminit zone_init_free_lists(struct zone *zone)
4688 {
4689 unsigned int order, t;
4690 for_each_migratetype_order(order, t) {
4691 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4692 zone->free_area[order].nr_free = 0;
4693 }
4694 }
4695
4696 #ifndef __HAVE_ARCH_MEMMAP_INIT
4697 #define memmap_init(size, nid, zone, start_pfn) \
4698 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4699 #endif
4700
4701 static int zone_batchsize(struct zone *zone)
4702 {
4703 #ifdef CONFIG_MMU
4704 int batch;
4705
4706 /*
4707 * The per-cpu-pages pools are set to around 1000th of the
4708 * size of the zone. But no more than 1/2 of a meg.
4709 *
4710 * OK, so we don't know how big the cache is. So guess.
4711 */
4712 batch = zone->managed_pages / 1024;
4713 if (batch * PAGE_SIZE > 512 * 1024)
4714 batch = (512 * 1024) / PAGE_SIZE;
4715 batch /= 4; /* We effectively *= 4 below */
4716 if (batch < 1)
4717 batch = 1;
4718
4719 /*
4720 * Clamp the batch to a 2^n - 1 value. Having a power
4721 * of 2 value was found to be more likely to have
4722 * suboptimal cache aliasing properties in some cases.
4723 *
4724 * For example if 2 tasks are alternately allocating
4725 * batches of pages, one task can end up with a lot
4726 * of pages of one half of the possible page colors
4727 * and the other with pages of the other colors.
4728 */
4729 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4730
4731 return batch;
4732
4733 #else
4734 /* The deferral and batching of frees should be suppressed under NOMMU
4735 * conditions.
4736 *
4737 * The problem is that NOMMU needs to be able to allocate large chunks
4738 * of contiguous memory as there's no hardware page translation to
4739 * assemble apparent contiguous memory from discontiguous pages.
4740 *
4741 * Queueing large contiguous runs of pages for batching, however,
4742 * causes the pages to actually be freed in smaller chunks. As there
4743 * can be a significant delay between the individual batches being
4744 * recycled, this leads to the once large chunks of space being
4745 * fragmented and becoming unavailable for high-order allocations.
4746 */
4747 return 0;
4748 #endif
4749 }
4750
4751 /*
4752 * pcp->high and pcp->batch values are related and dependent on one another:
4753 * ->batch must never be higher then ->high.
4754 * The following function updates them in a safe manner without read side
4755 * locking.
4756 *
4757 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4758 * those fields changing asynchronously (acording the the above rule).
4759 *
4760 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4761 * outside of boot time (or some other assurance that no concurrent updaters
4762 * exist).
4763 */
4764 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4765 unsigned long batch)
4766 {
4767 /* start with a fail safe value for batch */
4768 pcp->batch = 1;
4769 smp_wmb();
4770
4771 /* Update high, then batch, in order */
4772 pcp->high = high;
4773 smp_wmb();
4774
4775 pcp->batch = batch;
4776 }
4777
4778 /* a companion to pageset_set_high() */
4779 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4780 {
4781 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4782 }
4783
4784 static void pageset_init(struct per_cpu_pageset *p)
4785 {
4786 struct per_cpu_pages *pcp;
4787 int migratetype;
4788
4789 memset(p, 0, sizeof(*p));
4790
4791 pcp = &p->pcp;
4792 pcp->count = 0;
4793 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4794 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4795 }
4796
4797 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4798 {
4799 pageset_init(p);
4800 pageset_set_batch(p, batch);
4801 }
4802
4803 /*
4804 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4805 * to the value high for the pageset p.
4806 */
4807 static void pageset_set_high(struct per_cpu_pageset *p,
4808 unsigned long high)
4809 {
4810 unsigned long batch = max(1UL, high / 4);
4811 if ((high / 4) > (PAGE_SHIFT * 8))
4812 batch = PAGE_SHIFT * 8;
4813
4814 pageset_update(&p->pcp, high, batch);
4815 }
4816
4817 static void pageset_set_high_and_batch(struct zone *zone,
4818 struct per_cpu_pageset *pcp)
4819 {
4820 if (percpu_pagelist_fraction)
4821 pageset_set_high(pcp,
4822 (zone->managed_pages /
4823 percpu_pagelist_fraction));
4824 else
4825 pageset_set_batch(pcp, zone_batchsize(zone));
4826 }
4827
4828 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4829 {
4830 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4831
4832 pageset_init(pcp);
4833 pageset_set_high_and_batch(zone, pcp);
4834 }
4835
4836 static void __meminit setup_zone_pageset(struct zone *zone)
4837 {
4838 int cpu;
4839 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4840 for_each_possible_cpu(cpu)
4841 zone_pageset_init(zone, cpu);
4842 }
4843
4844 /*
4845 * Allocate per cpu pagesets and initialize them.
4846 * Before this call only boot pagesets were available.
4847 */
4848 void __init setup_per_cpu_pageset(void)
4849 {
4850 struct zone *zone;
4851
4852 for_each_populated_zone(zone)
4853 setup_zone_pageset(zone);
4854 }
4855
4856 static noinline __init_refok
4857 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4858 {
4859 int i;
4860 size_t alloc_size;
4861
4862 /*
4863 * The per-page waitqueue mechanism uses hashed waitqueues
4864 * per zone.
4865 */
4866 zone->wait_table_hash_nr_entries =
4867 wait_table_hash_nr_entries(zone_size_pages);
4868 zone->wait_table_bits =
4869 wait_table_bits(zone->wait_table_hash_nr_entries);
4870 alloc_size = zone->wait_table_hash_nr_entries
4871 * sizeof(wait_queue_head_t);
4872
4873 if (!slab_is_available()) {
4874 zone->wait_table = (wait_queue_head_t *)
4875 memblock_virt_alloc_node_nopanic(
4876 alloc_size, zone->zone_pgdat->node_id);
4877 } else {
4878 /*
4879 * This case means that a zone whose size was 0 gets new memory
4880 * via memory hot-add.
4881 * But it may be the case that a new node was hot-added. In
4882 * this case vmalloc() will not be able to use this new node's
4883 * memory - this wait_table must be initialized to use this new
4884 * node itself as well.
4885 * To use this new node's memory, further consideration will be
4886 * necessary.
4887 */
4888 zone->wait_table = vmalloc(alloc_size);
4889 }
4890 if (!zone->wait_table)
4891 return -ENOMEM;
4892
4893 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4894 init_waitqueue_head(zone->wait_table + i);
4895
4896 return 0;
4897 }
4898
4899 static __meminit void zone_pcp_init(struct zone *zone)
4900 {
4901 /*
4902 * per cpu subsystem is not up at this point. The following code
4903 * relies on the ability of the linker to provide the
4904 * offset of a (static) per cpu variable into the per cpu area.
4905 */
4906 zone->pageset = &boot_pageset;
4907
4908 if (populated_zone(zone))
4909 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4910 zone->name, zone->present_pages,
4911 zone_batchsize(zone));
4912 }
4913
4914 int __meminit init_currently_empty_zone(struct zone *zone,
4915 unsigned long zone_start_pfn,
4916 unsigned long size)
4917 {
4918 struct pglist_data *pgdat = zone->zone_pgdat;
4919 int ret;
4920 ret = zone_wait_table_init(zone, size);
4921 if (ret)
4922 return ret;
4923 pgdat->nr_zones = zone_idx(zone) + 1;
4924
4925 zone->zone_start_pfn = zone_start_pfn;
4926
4927 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4928 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4929 pgdat->node_id,
4930 (unsigned long)zone_idx(zone),
4931 zone_start_pfn, (zone_start_pfn + size));
4932
4933 zone_init_free_lists(zone);
4934
4935 return 0;
4936 }
4937
4938 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4939 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4940
4941 /*
4942 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4943 */
4944 int __meminit __early_pfn_to_nid(unsigned long pfn,
4945 struct mminit_pfnnid_cache *state)
4946 {
4947 unsigned long start_pfn, end_pfn;
4948 int nid;
4949
4950 if (state->last_start <= pfn && pfn < state->last_end)
4951 return state->last_nid;
4952
4953 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4954 if (nid != -1) {
4955 state->last_start = start_pfn;
4956 state->last_end = end_pfn;
4957 state->last_nid = nid;
4958 }
4959
4960 return nid;
4961 }
4962 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4963
4964 /**
4965 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4966 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4967 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4968 *
4969 * If an architecture guarantees that all ranges registered contain no holes
4970 * and may be freed, this this function may be used instead of calling
4971 * memblock_free_early_nid() manually.
4972 */
4973 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4974 {
4975 unsigned long start_pfn, end_pfn;
4976 int i, this_nid;
4977
4978 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4979 start_pfn = min(start_pfn, max_low_pfn);
4980 end_pfn = min(end_pfn, max_low_pfn);
4981
4982 if (start_pfn < end_pfn)
4983 memblock_free_early_nid(PFN_PHYS(start_pfn),
4984 (end_pfn - start_pfn) << PAGE_SHIFT,
4985 this_nid);
4986 }
4987 }
4988
4989 /**
4990 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4991 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4992 *
4993 * If an architecture guarantees that all ranges registered contain no holes and may
4994 * be freed, this function may be used instead of calling memory_present() manually.
4995 */
4996 void __init sparse_memory_present_with_active_regions(int nid)
4997 {
4998 unsigned long start_pfn, end_pfn;
4999 int i, this_nid;
5000
5001 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5002 memory_present(this_nid, start_pfn, end_pfn);
5003 }
5004
5005 /**
5006 * get_pfn_range_for_nid - Return the start and end page frames for a node
5007 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5008 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5009 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5010 *
5011 * It returns the start and end page frame of a node based on information
5012 * provided by memblock_set_node(). If called for a node
5013 * with no available memory, a warning is printed and the start and end
5014 * PFNs will be 0.
5015 */
5016 void __meminit get_pfn_range_for_nid(unsigned int nid,
5017 unsigned long *start_pfn, unsigned long *end_pfn)
5018 {
5019 unsigned long this_start_pfn, this_end_pfn;
5020 int i;
5021
5022 *start_pfn = -1UL;
5023 *end_pfn = 0;
5024
5025 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5026 *start_pfn = min(*start_pfn, this_start_pfn);
5027 *end_pfn = max(*end_pfn, this_end_pfn);
5028 }
5029
5030 if (*start_pfn == -1UL)
5031 *start_pfn = 0;
5032 }
5033
5034 /*
5035 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5036 * assumption is made that zones within a node are ordered in monotonic
5037 * increasing memory addresses so that the "highest" populated zone is used
5038 */
5039 static void __init find_usable_zone_for_movable(void)
5040 {
5041 int zone_index;
5042 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5043 if (zone_index == ZONE_MOVABLE)
5044 continue;
5045
5046 if (arch_zone_highest_possible_pfn[zone_index] >
5047 arch_zone_lowest_possible_pfn[zone_index])
5048 break;
5049 }
5050
5051 VM_BUG_ON(zone_index == -1);
5052 movable_zone = zone_index;
5053 }
5054
5055 /*
5056 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5057 * because it is sized independent of architecture. Unlike the other zones,
5058 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5059 * in each node depending on the size of each node and how evenly kernelcore
5060 * is distributed. This helper function adjusts the zone ranges
5061 * provided by the architecture for a given node by using the end of the
5062 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5063 * zones within a node are in order of monotonic increases memory addresses
5064 */
5065 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5066 unsigned long zone_type,
5067 unsigned long node_start_pfn,
5068 unsigned long node_end_pfn,
5069 unsigned long *zone_start_pfn,
5070 unsigned long *zone_end_pfn)
5071 {
5072 /* Only adjust if ZONE_MOVABLE is on this node */
5073 if (zone_movable_pfn[nid]) {
5074 /* Size ZONE_MOVABLE */
5075 if (zone_type == ZONE_MOVABLE) {
5076 *zone_start_pfn = zone_movable_pfn[nid];
5077 *zone_end_pfn = min(node_end_pfn,
5078 arch_zone_highest_possible_pfn[movable_zone]);
5079
5080 /* Check if this whole range is within ZONE_MOVABLE */
5081 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5082 *zone_start_pfn = *zone_end_pfn;
5083 }
5084 }
5085
5086 /*
5087 * Return the number of pages a zone spans in a node, including holes
5088 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5089 */
5090 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5091 unsigned long zone_type,
5092 unsigned long node_start_pfn,
5093 unsigned long node_end_pfn,
5094 unsigned long *zone_start_pfn,
5095 unsigned long *zone_end_pfn,
5096 unsigned long *ignored)
5097 {
5098 /* When hotadd a new node from cpu_up(), the node should be empty */
5099 if (!node_start_pfn && !node_end_pfn)
5100 return 0;
5101
5102 /* Get the start and end of the zone */
5103 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5104 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5105 adjust_zone_range_for_zone_movable(nid, zone_type,
5106 node_start_pfn, node_end_pfn,
5107 zone_start_pfn, zone_end_pfn);
5108
5109 /* Check that this node has pages within the zone's required range */
5110 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5111 return 0;
5112
5113 /* Move the zone boundaries inside the node if necessary */
5114 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5115 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5116
5117 /* Return the spanned pages */
5118 return *zone_end_pfn - *zone_start_pfn;
5119 }
5120
5121 /*
5122 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5123 * then all holes in the requested range will be accounted for.
5124 */
5125 unsigned long __meminit __absent_pages_in_range(int nid,
5126 unsigned long range_start_pfn,
5127 unsigned long range_end_pfn)
5128 {
5129 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5130 unsigned long start_pfn, end_pfn;
5131 int i;
5132
5133 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5134 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5135 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5136 nr_absent -= end_pfn - start_pfn;
5137 }
5138 return nr_absent;
5139 }
5140
5141 /**
5142 * absent_pages_in_range - Return number of page frames in holes within a range
5143 * @start_pfn: The start PFN to start searching for holes
5144 * @end_pfn: The end PFN to stop searching for holes
5145 *
5146 * It returns the number of pages frames in memory holes within a range.
5147 */
5148 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5149 unsigned long end_pfn)
5150 {
5151 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5152 }
5153
5154 /* Return the number of page frames in holes in a zone on a node */
5155 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5156 unsigned long zone_type,
5157 unsigned long node_start_pfn,
5158 unsigned long node_end_pfn,
5159 unsigned long *ignored)
5160 {
5161 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5162 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5163 unsigned long zone_start_pfn, zone_end_pfn;
5164 unsigned long nr_absent;
5165
5166 /* When hotadd a new node from cpu_up(), the node should be empty */
5167 if (!node_start_pfn && !node_end_pfn)
5168 return 0;
5169
5170 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5171 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5172
5173 adjust_zone_range_for_zone_movable(nid, zone_type,
5174 node_start_pfn, node_end_pfn,
5175 &zone_start_pfn, &zone_end_pfn);
5176 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5177
5178 /*
5179 * ZONE_MOVABLE handling.
5180 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5181 * and vice versa.
5182 */
5183 if (zone_movable_pfn[nid]) {
5184 if (mirrored_kernelcore) {
5185 unsigned long start_pfn, end_pfn;
5186 struct memblock_region *r;
5187
5188 for_each_memblock(memory, r) {
5189 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5190 zone_start_pfn, zone_end_pfn);
5191 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5192 zone_start_pfn, zone_end_pfn);
5193
5194 if (zone_type == ZONE_MOVABLE &&
5195 memblock_is_mirror(r))
5196 nr_absent += end_pfn - start_pfn;
5197
5198 if (zone_type == ZONE_NORMAL &&
5199 !memblock_is_mirror(r))
5200 nr_absent += end_pfn - start_pfn;
5201 }
5202 } else {
5203 if (zone_type == ZONE_NORMAL)
5204 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5205 }
5206 }
5207
5208 return nr_absent;
5209 }
5210
5211 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5212 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5213 unsigned long zone_type,
5214 unsigned long node_start_pfn,
5215 unsigned long node_end_pfn,
5216 unsigned long *zone_start_pfn,
5217 unsigned long *zone_end_pfn,
5218 unsigned long *zones_size)
5219 {
5220 unsigned int zone;
5221
5222 *zone_start_pfn = node_start_pfn;
5223 for (zone = 0; zone < zone_type; zone++)
5224 *zone_start_pfn += zones_size[zone];
5225
5226 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5227
5228 return zones_size[zone_type];
5229 }
5230
5231 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5232 unsigned long zone_type,
5233 unsigned long node_start_pfn,
5234 unsigned long node_end_pfn,
5235 unsigned long *zholes_size)
5236 {
5237 if (!zholes_size)
5238 return 0;
5239
5240 return zholes_size[zone_type];
5241 }
5242
5243 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5244
5245 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5246 unsigned long node_start_pfn,
5247 unsigned long node_end_pfn,
5248 unsigned long *zones_size,
5249 unsigned long *zholes_size)
5250 {
5251 unsigned long realtotalpages = 0, totalpages = 0;
5252 enum zone_type i;
5253
5254 for (i = 0; i < MAX_NR_ZONES; i++) {
5255 struct zone *zone = pgdat->node_zones + i;
5256 unsigned long zone_start_pfn, zone_end_pfn;
5257 unsigned long size, real_size;
5258
5259 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5260 node_start_pfn,
5261 node_end_pfn,
5262 &zone_start_pfn,
5263 &zone_end_pfn,
5264 zones_size);
5265 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5266 node_start_pfn, node_end_pfn,
5267 zholes_size);
5268 if (size)
5269 zone->zone_start_pfn = zone_start_pfn;
5270 else
5271 zone->zone_start_pfn = 0;
5272 zone->spanned_pages = size;
5273 zone->present_pages = real_size;
5274
5275 totalpages += size;
5276 realtotalpages += real_size;
5277 }
5278
5279 pgdat->node_spanned_pages = totalpages;
5280 pgdat->node_present_pages = realtotalpages;
5281 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5282 realtotalpages);
5283 }
5284
5285 #ifndef CONFIG_SPARSEMEM
5286 /*
5287 * Calculate the size of the zone->blockflags rounded to an unsigned long
5288 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5289 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5290 * round what is now in bits to nearest long in bits, then return it in
5291 * bytes.
5292 */
5293 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5294 {
5295 unsigned long usemapsize;
5296
5297 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5298 usemapsize = roundup(zonesize, pageblock_nr_pages);
5299 usemapsize = usemapsize >> pageblock_order;
5300 usemapsize *= NR_PAGEBLOCK_BITS;
5301 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5302
5303 return usemapsize / 8;
5304 }
5305
5306 static void __init setup_usemap(struct pglist_data *pgdat,
5307 struct zone *zone,
5308 unsigned long zone_start_pfn,
5309 unsigned long zonesize)
5310 {
5311 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5312 zone->pageblock_flags = NULL;
5313 if (usemapsize)
5314 zone->pageblock_flags =
5315 memblock_virt_alloc_node_nopanic(usemapsize,
5316 pgdat->node_id);
5317 }
5318 #else
5319 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5320 unsigned long zone_start_pfn, unsigned long zonesize) {}
5321 #endif /* CONFIG_SPARSEMEM */
5322
5323 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5324
5325 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5326 void __paginginit set_pageblock_order(void)
5327 {
5328 unsigned int order;
5329
5330 /* Check that pageblock_nr_pages has not already been setup */
5331 if (pageblock_order)
5332 return;
5333
5334 if (HPAGE_SHIFT > PAGE_SHIFT)
5335 order = HUGETLB_PAGE_ORDER;
5336 else
5337 order = MAX_ORDER - 1;
5338
5339 /*
5340 * Assume the largest contiguous order of interest is a huge page.
5341 * This value may be variable depending on boot parameters on IA64 and
5342 * powerpc.
5343 */
5344 pageblock_order = order;
5345 }
5346 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5347
5348 /*
5349 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5350 * is unused as pageblock_order is set at compile-time. See
5351 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5352 * the kernel config
5353 */
5354 void __paginginit set_pageblock_order(void)
5355 {
5356 }
5357
5358 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5359
5360 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5361 unsigned long present_pages)
5362 {
5363 unsigned long pages = spanned_pages;
5364
5365 /*
5366 * Provide a more accurate estimation if there are holes within
5367 * the zone and SPARSEMEM is in use. If there are holes within the
5368 * zone, each populated memory region may cost us one or two extra
5369 * memmap pages due to alignment because memmap pages for each
5370 * populated regions may not naturally algined on page boundary.
5371 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5372 */
5373 if (spanned_pages > present_pages + (present_pages >> 4) &&
5374 IS_ENABLED(CONFIG_SPARSEMEM))
5375 pages = present_pages;
5376
5377 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5378 }
5379
5380 /*
5381 * Set up the zone data structures:
5382 * - mark all pages reserved
5383 * - mark all memory queues empty
5384 * - clear the memory bitmaps
5385 *
5386 * NOTE: pgdat should get zeroed by caller.
5387 */
5388 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5389 {
5390 enum zone_type j;
5391 int nid = pgdat->node_id;
5392 int ret;
5393
5394 pgdat_resize_init(pgdat);
5395 #ifdef CONFIG_NUMA_BALANCING
5396 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5397 pgdat->numabalancing_migrate_nr_pages = 0;
5398 pgdat->numabalancing_migrate_next_window = jiffies;
5399 #endif
5400 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5401 spin_lock_init(&pgdat->split_queue_lock);
5402 INIT_LIST_HEAD(&pgdat->split_queue);
5403 pgdat->split_queue_len = 0;
5404 #endif
5405 init_waitqueue_head(&pgdat->kswapd_wait);
5406 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5407 pgdat_page_ext_init(pgdat);
5408
5409 for (j = 0; j < MAX_NR_ZONES; j++) {
5410 struct zone *zone = pgdat->node_zones + j;
5411 unsigned long size, realsize, freesize, memmap_pages;
5412 unsigned long zone_start_pfn = zone->zone_start_pfn;
5413
5414 size = zone->spanned_pages;
5415 realsize = freesize = zone->present_pages;
5416
5417 /*
5418 * Adjust freesize so that it accounts for how much memory
5419 * is used by this zone for memmap. This affects the watermark
5420 * and per-cpu initialisations
5421 */
5422 memmap_pages = calc_memmap_size(size, realsize);
5423 if (!is_highmem_idx(j)) {
5424 if (freesize >= memmap_pages) {
5425 freesize -= memmap_pages;
5426 if (memmap_pages)
5427 printk(KERN_DEBUG
5428 " %s zone: %lu pages used for memmap\n",
5429 zone_names[j], memmap_pages);
5430 } else
5431 printk(KERN_WARNING
5432 " %s zone: %lu pages exceeds freesize %lu\n",
5433 zone_names[j], memmap_pages, freesize);
5434 }
5435
5436 /* Account for reserved pages */
5437 if (j == 0 && freesize > dma_reserve) {
5438 freesize -= dma_reserve;
5439 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5440 zone_names[0], dma_reserve);
5441 }
5442
5443 if (!is_highmem_idx(j))
5444 nr_kernel_pages += freesize;
5445 /* Charge for highmem memmap if there are enough kernel pages */
5446 else if (nr_kernel_pages > memmap_pages * 2)
5447 nr_kernel_pages -= memmap_pages;
5448 nr_all_pages += freesize;
5449
5450 /*
5451 * Set an approximate value for lowmem here, it will be adjusted
5452 * when the bootmem allocator frees pages into the buddy system.
5453 * And all highmem pages will be managed by the buddy system.
5454 */
5455 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5456 #ifdef CONFIG_NUMA
5457 zone->node = nid;
5458 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5459 / 100;
5460 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5461 #endif
5462 zone->name = zone_names[j];
5463 spin_lock_init(&zone->lock);
5464 spin_lock_init(&zone->lru_lock);
5465 zone_seqlock_init(zone);
5466 zone->zone_pgdat = pgdat;
5467 zone_pcp_init(zone);
5468
5469 /* For bootup, initialized properly in watermark setup */
5470 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5471
5472 lruvec_init(&zone->lruvec);
5473 if (!size)
5474 continue;
5475
5476 set_pageblock_order();
5477 setup_usemap(pgdat, zone, zone_start_pfn, size);
5478 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5479 BUG_ON(ret);
5480 memmap_init(size, nid, j, zone_start_pfn);
5481 }
5482 }
5483
5484 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5485 {
5486 unsigned long __maybe_unused start = 0;
5487 unsigned long __maybe_unused offset = 0;
5488
5489 /* Skip empty nodes */
5490 if (!pgdat->node_spanned_pages)
5491 return;
5492
5493 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5494 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5495 offset = pgdat->node_start_pfn - start;
5496 /* ia64 gets its own node_mem_map, before this, without bootmem */
5497 if (!pgdat->node_mem_map) {
5498 unsigned long size, end;
5499 struct page *map;
5500
5501 /*
5502 * The zone's endpoints aren't required to be MAX_ORDER
5503 * aligned but the node_mem_map endpoints must be in order
5504 * for the buddy allocator to function correctly.
5505 */
5506 end = pgdat_end_pfn(pgdat);
5507 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5508 size = (end - start) * sizeof(struct page);
5509 map = alloc_remap(pgdat->node_id, size);
5510 if (!map)
5511 map = memblock_virt_alloc_node_nopanic(size,
5512 pgdat->node_id);
5513 pgdat->node_mem_map = map + offset;
5514 }
5515 #ifndef CONFIG_NEED_MULTIPLE_NODES
5516 /*
5517 * With no DISCONTIG, the global mem_map is just set as node 0's
5518 */
5519 if (pgdat == NODE_DATA(0)) {
5520 mem_map = NODE_DATA(0)->node_mem_map;
5521 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5522 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5523 mem_map -= offset;
5524 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5525 }
5526 #endif
5527 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5528 }
5529
5530 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5531 unsigned long node_start_pfn, unsigned long *zholes_size)
5532 {
5533 pg_data_t *pgdat = NODE_DATA(nid);
5534 unsigned long start_pfn = 0;
5535 unsigned long end_pfn = 0;
5536
5537 /* pg_data_t should be reset to zero when it's allocated */
5538 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5539
5540 reset_deferred_meminit(pgdat);
5541 pgdat->node_id = nid;
5542 pgdat->node_start_pfn = node_start_pfn;
5543 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5544 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5545 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5546 (u64)start_pfn << PAGE_SHIFT,
5547 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5548 #else
5549 start_pfn = node_start_pfn;
5550 #endif
5551 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5552 zones_size, zholes_size);
5553
5554 alloc_node_mem_map(pgdat);
5555 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5556 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5557 nid, (unsigned long)pgdat,
5558 (unsigned long)pgdat->node_mem_map);
5559 #endif
5560
5561 free_area_init_core(pgdat);
5562 }
5563
5564 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5565
5566 #if MAX_NUMNODES > 1
5567 /*
5568 * Figure out the number of possible node ids.
5569 */
5570 void __init setup_nr_node_ids(void)
5571 {
5572 unsigned int highest;
5573
5574 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5575 nr_node_ids = highest + 1;
5576 }
5577 #endif
5578
5579 /**
5580 * node_map_pfn_alignment - determine the maximum internode alignment
5581 *
5582 * This function should be called after node map is populated and sorted.
5583 * It calculates the maximum power of two alignment which can distinguish
5584 * all the nodes.
5585 *
5586 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5587 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5588 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5589 * shifted, 1GiB is enough and this function will indicate so.
5590 *
5591 * This is used to test whether pfn -> nid mapping of the chosen memory
5592 * model has fine enough granularity to avoid incorrect mapping for the
5593 * populated node map.
5594 *
5595 * Returns the determined alignment in pfn's. 0 if there is no alignment
5596 * requirement (single node).
5597 */
5598 unsigned long __init node_map_pfn_alignment(void)
5599 {
5600 unsigned long accl_mask = 0, last_end = 0;
5601 unsigned long start, end, mask;
5602 int last_nid = -1;
5603 int i, nid;
5604
5605 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5606 if (!start || last_nid < 0 || last_nid == nid) {
5607 last_nid = nid;
5608 last_end = end;
5609 continue;
5610 }
5611
5612 /*
5613 * Start with a mask granular enough to pin-point to the
5614 * start pfn and tick off bits one-by-one until it becomes
5615 * too coarse to separate the current node from the last.
5616 */
5617 mask = ~((1 << __ffs(start)) - 1);
5618 while (mask && last_end <= (start & (mask << 1)))
5619 mask <<= 1;
5620
5621 /* accumulate all internode masks */
5622 accl_mask |= mask;
5623 }
5624
5625 /* convert mask to number of pages */
5626 return ~accl_mask + 1;
5627 }
5628
5629 /* Find the lowest pfn for a node */
5630 static unsigned long __init find_min_pfn_for_node(int nid)
5631 {
5632 unsigned long min_pfn = ULONG_MAX;
5633 unsigned long start_pfn;
5634 int i;
5635
5636 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5637 min_pfn = min(min_pfn, start_pfn);
5638
5639 if (min_pfn == ULONG_MAX) {
5640 printk(KERN_WARNING
5641 "Could not find start_pfn for node %d\n", nid);
5642 return 0;
5643 }
5644
5645 return min_pfn;
5646 }
5647
5648 /**
5649 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5650 *
5651 * It returns the minimum PFN based on information provided via
5652 * memblock_set_node().
5653 */
5654 unsigned long __init find_min_pfn_with_active_regions(void)
5655 {
5656 return find_min_pfn_for_node(MAX_NUMNODES);
5657 }
5658
5659 /*
5660 * early_calculate_totalpages()
5661 * Sum pages in active regions for movable zone.
5662 * Populate N_MEMORY for calculating usable_nodes.
5663 */
5664 static unsigned long __init early_calculate_totalpages(void)
5665 {
5666 unsigned long totalpages = 0;
5667 unsigned long start_pfn, end_pfn;
5668 int i, nid;
5669
5670 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5671 unsigned long pages = end_pfn - start_pfn;
5672
5673 totalpages += pages;
5674 if (pages)
5675 node_set_state(nid, N_MEMORY);
5676 }
5677 return totalpages;
5678 }
5679
5680 /*
5681 * Find the PFN the Movable zone begins in each node. Kernel memory
5682 * is spread evenly between nodes as long as the nodes have enough
5683 * memory. When they don't, some nodes will have more kernelcore than
5684 * others
5685 */
5686 static void __init find_zone_movable_pfns_for_nodes(void)
5687 {
5688 int i, nid;
5689 unsigned long usable_startpfn;
5690 unsigned long kernelcore_node, kernelcore_remaining;
5691 /* save the state before borrow the nodemask */
5692 nodemask_t saved_node_state = node_states[N_MEMORY];
5693 unsigned long totalpages = early_calculate_totalpages();
5694 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5695 struct memblock_region *r;
5696
5697 /* Need to find movable_zone earlier when movable_node is specified. */
5698 find_usable_zone_for_movable();
5699
5700 /*
5701 * If movable_node is specified, ignore kernelcore and movablecore
5702 * options.
5703 */
5704 if (movable_node_is_enabled()) {
5705 for_each_memblock(memory, r) {
5706 if (!memblock_is_hotpluggable(r))
5707 continue;
5708
5709 nid = r->nid;
5710
5711 usable_startpfn = PFN_DOWN(r->base);
5712 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5713 min(usable_startpfn, zone_movable_pfn[nid]) :
5714 usable_startpfn;
5715 }
5716
5717 goto out2;
5718 }
5719
5720 /*
5721 * If kernelcore=mirror is specified, ignore movablecore option
5722 */
5723 if (mirrored_kernelcore) {
5724 bool mem_below_4gb_not_mirrored = false;
5725
5726 for_each_memblock(memory, r) {
5727 if (memblock_is_mirror(r))
5728 continue;
5729
5730 nid = r->nid;
5731
5732 usable_startpfn = memblock_region_memory_base_pfn(r);
5733
5734 if (usable_startpfn < 0x100000) {
5735 mem_below_4gb_not_mirrored = true;
5736 continue;
5737 }
5738
5739 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5740 min(usable_startpfn, zone_movable_pfn[nid]) :
5741 usable_startpfn;
5742 }
5743
5744 if (mem_below_4gb_not_mirrored)
5745 pr_warn("This configuration results in unmirrored kernel memory.");
5746
5747 goto out2;
5748 }
5749
5750 /*
5751 * If movablecore=nn[KMG] was specified, calculate what size of
5752 * kernelcore that corresponds so that memory usable for
5753 * any allocation type is evenly spread. If both kernelcore
5754 * and movablecore are specified, then the value of kernelcore
5755 * will be used for required_kernelcore if it's greater than
5756 * what movablecore would have allowed.
5757 */
5758 if (required_movablecore) {
5759 unsigned long corepages;
5760
5761 /*
5762 * Round-up so that ZONE_MOVABLE is at least as large as what
5763 * was requested by the user
5764 */
5765 required_movablecore =
5766 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5767 required_movablecore = min(totalpages, required_movablecore);
5768 corepages = totalpages - required_movablecore;
5769
5770 required_kernelcore = max(required_kernelcore, corepages);
5771 }
5772
5773 /*
5774 * If kernelcore was not specified or kernelcore size is larger
5775 * than totalpages, there is no ZONE_MOVABLE.
5776 */
5777 if (!required_kernelcore || required_kernelcore >= totalpages)
5778 goto out;
5779
5780 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5781 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5782
5783 restart:
5784 /* Spread kernelcore memory as evenly as possible throughout nodes */
5785 kernelcore_node = required_kernelcore / usable_nodes;
5786 for_each_node_state(nid, N_MEMORY) {
5787 unsigned long start_pfn, end_pfn;
5788
5789 /*
5790 * Recalculate kernelcore_node if the division per node
5791 * now exceeds what is necessary to satisfy the requested
5792 * amount of memory for the kernel
5793 */
5794 if (required_kernelcore < kernelcore_node)
5795 kernelcore_node = required_kernelcore / usable_nodes;
5796
5797 /*
5798 * As the map is walked, we track how much memory is usable
5799 * by the kernel using kernelcore_remaining. When it is
5800 * 0, the rest of the node is usable by ZONE_MOVABLE
5801 */
5802 kernelcore_remaining = kernelcore_node;
5803
5804 /* Go through each range of PFNs within this node */
5805 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5806 unsigned long size_pages;
5807
5808 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5809 if (start_pfn >= end_pfn)
5810 continue;
5811
5812 /* Account for what is only usable for kernelcore */
5813 if (start_pfn < usable_startpfn) {
5814 unsigned long kernel_pages;
5815 kernel_pages = min(end_pfn, usable_startpfn)
5816 - start_pfn;
5817
5818 kernelcore_remaining -= min(kernel_pages,
5819 kernelcore_remaining);
5820 required_kernelcore -= min(kernel_pages,
5821 required_kernelcore);
5822
5823 /* Continue if range is now fully accounted */
5824 if (end_pfn <= usable_startpfn) {
5825
5826 /*
5827 * Push zone_movable_pfn to the end so
5828 * that if we have to rebalance
5829 * kernelcore across nodes, we will
5830 * not double account here
5831 */
5832 zone_movable_pfn[nid] = end_pfn;
5833 continue;
5834 }
5835 start_pfn = usable_startpfn;
5836 }
5837
5838 /*
5839 * The usable PFN range for ZONE_MOVABLE is from
5840 * start_pfn->end_pfn. Calculate size_pages as the
5841 * number of pages used as kernelcore
5842 */
5843 size_pages = end_pfn - start_pfn;
5844 if (size_pages > kernelcore_remaining)
5845 size_pages = kernelcore_remaining;
5846 zone_movable_pfn[nid] = start_pfn + size_pages;
5847
5848 /*
5849 * Some kernelcore has been met, update counts and
5850 * break if the kernelcore for this node has been
5851 * satisfied
5852 */
5853 required_kernelcore -= min(required_kernelcore,
5854 size_pages);
5855 kernelcore_remaining -= size_pages;
5856 if (!kernelcore_remaining)
5857 break;
5858 }
5859 }
5860
5861 /*
5862 * If there is still required_kernelcore, we do another pass with one
5863 * less node in the count. This will push zone_movable_pfn[nid] further
5864 * along on the nodes that still have memory until kernelcore is
5865 * satisfied
5866 */
5867 usable_nodes--;
5868 if (usable_nodes && required_kernelcore > usable_nodes)
5869 goto restart;
5870
5871 out2:
5872 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5873 for (nid = 0; nid < MAX_NUMNODES; nid++)
5874 zone_movable_pfn[nid] =
5875 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5876
5877 out:
5878 /* restore the node_state */
5879 node_states[N_MEMORY] = saved_node_state;
5880 }
5881
5882 /* Any regular or high memory on that node ? */
5883 static void check_for_memory(pg_data_t *pgdat, int nid)
5884 {
5885 enum zone_type zone_type;
5886
5887 if (N_MEMORY == N_NORMAL_MEMORY)
5888 return;
5889
5890 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5891 struct zone *zone = &pgdat->node_zones[zone_type];
5892 if (populated_zone(zone)) {
5893 node_set_state(nid, N_HIGH_MEMORY);
5894 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5895 zone_type <= ZONE_NORMAL)
5896 node_set_state(nid, N_NORMAL_MEMORY);
5897 break;
5898 }
5899 }
5900 }
5901
5902 /**
5903 * free_area_init_nodes - Initialise all pg_data_t and zone data
5904 * @max_zone_pfn: an array of max PFNs for each zone
5905 *
5906 * This will call free_area_init_node() for each active node in the system.
5907 * Using the page ranges provided by memblock_set_node(), the size of each
5908 * zone in each node and their holes is calculated. If the maximum PFN
5909 * between two adjacent zones match, it is assumed that the zone is empty.
5910 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5911 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5912 * starts where the previous one ended. For example, ZONE_DMA32 starts
5913 * at arch_max_dma_pfn.
5914 */
5915 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5916 {
5917 unsigned long start_pfn, end_pfn;
5918 int i, nid;
5919
5920 /* Record where the zone boundaries are */
5921 memset(arch_zone_lowest_possible_pfn, 0,
5922 sizeof(arch_zone_lowest_possible_pfn));
5923 memset(arch_zone_highest_possible_pfn, 0,
5924 sizeof(arch_zone_highest_possible_pfn));
5925 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5926 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5927 for (i = 1; i < MAX_NR_ZONES; i++) {
5928 if (i == ZONE_MOVABLE)
5929 continue;
5930 arch_zone_lowest_possible_pfn[i] =
5931 arch_zone_highest_possible_pfn[i-1];
5932 arch_zone_highest_possible_pfn[i] =
5933 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5934 }
5935 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5936 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5937
5938 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5939 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5940 find_zone_movable_pfns_for_nodes();
5941
5942 /* Print out the zone ranges */
5943 pr_info("Zone ranges:\n");
5944 for (i = 0; i < MAX_NR_ZONES; i++) {
5945 if (i == ZONE_MOVABLE)
5946 continue;
5947 pr_info(" %-8s ", zone_names[i]);
5948 if (arch_zone_lowest_possible_pfn[i] ==
5949 arch_zone_highest_possible_pfn[i])
5950 pr_cont("empty\n");
5951 else
5952 pr_cont("[mem %#018Lx-%#018Lx]\n",
5953 (u64)arch_zone_lowest_possible_pfn[i]
5954 << PAGE_SHIFT,
5955 ((u64)arch_zone_highest_possible_pfn[i]
5956 << PAGE_SHIFT) - 1);
5957 }
5958
5959 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5960 pr_info("Movable zone start for each node\n");
5961 for (i = 0; i < MAX_NUMNODES; i++) {
5962 if (zone_movable_pfn[i])
5963 pr_info(" Node %d: %#018Lx\n", i,
5964 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5965 }
5966
5967 /* Print out the early node map */
5968 pr_info("Early memory node ranges\n");
5969 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5970 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5971 (u64)start_pfn << PAGE_SHIFT,
5972 ((u64)end_pfn << PAGE_SHIFT) - 1);
5973
5974 /* Initialise every node */
5975 mminit_verify_pageflags_layout();
5976 setup_nr_node_ids();
5977 for_each_online_node(nid) {
5978 pg_data_t *pgdat = NODE_DATA(nid);
5979 free_area_init_node(nid, NULL,
5980 find_min_pfn_for_node(nid), NULL);
5981
5982 /* Any memory on that node */
5983 if (pgdat->node_present_pages)
5984 node_set_state(nid, N_MEMORY);
5985 check_for_memory(pgdat, nid);
5986 }
5987 }
5988
5989 static int __init cmdline_parse_core(char *p, unsigned long *core)
5990 {
5991 unsigned long long coremem;
5992 if (!p)
5993 return -EINVAL;
5994
5995 coremem = memparse(p, &p);
5996 *core = coremem >> PAGE_SHIFT;
5997
5998 /* Paranoid check that UL is enough for the coremem value */
5999 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6000
6001 return 0;
6002 }
6003
6004 /*
6005 * kernelcore=size sets the amount of memory for use for allocations that
6006 * cannot be reclaimed or migrated.
6007 */
6008 static int __init cmdline_parse_kernelcore(char *p)
6009 {
6010 /* parse kernelcore=mirror */
6011 if (parse_option_str(p, "mirror")) {
6012 mirrored_kernelcore = true;
6013 return 0;
6014 }
6015
6016 return cmdline_parse_core(p, &required_kernelcore);
6017 }
6018
6019 /*
6020 * movablecore=size sets the amount of memory for use for allocations that
6021 * can be reclaimed or migrated.
6022 */
6023 static int __init cmdline_parse_movablecore(char *p)
6024 {
6025 return cmdline_parse_core(p, &required_movablecore);
6026 }
6027
6028 early_param("kernelcore", cmdline_parse_kernelcore);
6029 early_param("movablecore", cmdline_parse_movablecore);
6030
6031 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6032
6033 void adjust_managed_page_count(struct page *page, long count)
6034 {
6035 spin_lock(&managed_page_count_lock);
6036 page_zone(page)->managed_pages += count;
6037 totalram_pages += count;
6038 #ifdef CONFIG_HIGHMEM
6039 if (PageHighMem(page))
6040 totalhigh_pages += count;
6041 #endif
6042 spin_unlock(&managed_page_count_lock);
6043 }
6044 EXPORT_SYMBOL(adjust_managed_page_count);
6045
6046 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6047 {
6048 void *pos;
6049 unsigned long pages = 0;
6050
6051 start = (void *)PAGE_ALIGN((unsigned long)start);
6052 end = (void *)((unsigned long)end & PAGE_MASK);
6053 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6054 if ((unsigned int)poison <= 0xFF)
6055 memset(pos, poison, PAGE_SIZE);
6056 free_reserved_page(virt_to_page(pos));
6057 }
6058
6059 if (pages && s)
6060 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6061 s, pages << (PAGE_SHIFT - 10), start, end);
6062
6063 return pages;
6064 }
6065 EXPORT_SYMBOL(free_reserved_area);
6066
6067 #ifdef CONFIG_HIGHMEM
6068 void free_highmem_page(struct page *page)
6069 {
6070 __free_reserved_page(page);
6071 totalram_pages++;
6072 page_zone(page)->managed_pages++;
6073 totalhigh_pages++;
6074 }
6075 #endif
6076
6077
6078 void __init mem_init_print_info(const char *str)
6079 {
6080 unsigned long physpages, codesize, datasize, rosize, bss_size;
6081 unsigned long init_code_size, init_data_size;
6082
6083 physpages = get_num_physpages();
6084 codesize = _etext - _stext;
6085 datasize = _edata - _sdata;
6086 rosize = __end_rodata - __start_rodata;
6087 bss_size = __bss_stop - __bss_start;
6088 init_data_size = __init_end - __init_begin;
6089 init_code_size = _einittext - _sinittext;
6090
6091 /*
6092 * Detect special cases and adjust section sizes accordingly:
6093 * 1) .init.* may be embedded into .data sections
6094 * 2) .init.text.* may be out of [__init_begin, __init_end],
6095 * please refer to arch/tile/kernel/vmlinux.lds.S.
6096 * 3) .rodata.* may be embedded into .text or .data sections.
6097 */
6098 #define adj_init_size(start, end, size, pos, adj) \
6099 do { \
6100 if (start <= pos && pos < end && size > adj) \
6101 size -= adj; \
6102 } while (0)
6103
6104 adj_init_size(__init_begin, __init_end, init_data_size,
6105 _sinittext, init_code_size);
6106 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6107 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6108 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6109 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6110
6111 #undef adj_init_size
6112
6113 pr_info("Memory: %luK/%luK available "
6114 "(%luK kernel code, %luK rwdata, %luK rodata, "
6115 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
6116 #ifdef CONFIG_HIGHMEM
6117 ", %luK highmem"
6118 #endif
6119 "%s%s)\n",
6120 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
6121 codesize >> 10, datasize >> 10, rosize >> 10,
6122 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6123 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
6124 totalcma_pages << (PAGE_SHIFT-10),
6125 #ifdef CONFIG_HIGHMEM
6126 totalhigh_pages << (PAGE_SHIFT-10),
6127 #endif
6128 str ? ", " : "", str ? str : "");
6129 }
6130
6131 /**
6132 * set_dma_reserve - set the specified number of pages reserved in the first zone
6133 * @new_dma_reserve: The number of pages to mark reserved
6134 *
6135 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6136 * In the DMA zone, a significant percentage may be consumed by kernel image
6137 * and other unfreeable allocations which can skew the watermarks badly. This
6138 * function may optionally be used to account for unfreeable pages in the
6139 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6140 * smaller per-cpu batchsize.
6141 */
6142 void __init set_dma_reserve(unsigned long new_dma_reserve)
6143 {
6144 dma_reserve = new_dma_reserve;
6145 }
6146
6147 void __init free_area_init(unsigned long *zones_size)
6148 {
6149 free_area_init_node(0, zones_size,
6150 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6151 }
6152
6153 static int page_alloc_cpu_notify(struct notifier_block *self,
6154 unsigned long action, void *hcpu)
6155 {
6156 int cpu = (unsigned long)hcpu;
6157
6158 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6159 lru_add_drain_cpu(cpu);
6160 drain_pages(cpu);
6161
6162 /*
6163 * Spill the event counters of the dead processor
6164 * into the current processors event counters.
6165 * This artificially elevates the count of the current
6166 * processor.
6167 */
6168 vm_events_fold_cpu(cpu);
6169
6170 /*
6171 * Zero the differential counters of the dead processor
6172 * so that the vm statistics are consistent.
6173 *
6174 * This is only okay since the processor is dead and cannot
6175 * race with what we are doing.
6176 */
6177 cpu_vm_stats_fold(cpu);
6178 }
6179 return NOTIFY_OK;
6180 }
6181
6182 void __init page_alloc_init(void)
6183 {
6184 hotcpu_notifier(page_alloc_cpu_notify, 0);
6185 }
6186
6187 /*
6188 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6189 * or min_free_kbytes changes.
6190 */
6191 static void calculate_totalreserve_pages(void)
6192 {
6193 struct pglist_data *pgdat;
6194 unsigned long reserve_pages = 0;
6195 enum zone_type i, j;
6196
6197 for_each_online_pgdat(pgdat) {
6198 for (i = 0; i < MAX_NR_ZONES; i++) {
6199 struct zone *zone = pgdat->node_zones + i;
6200 long max = 0;
6201
6202 /* Find valid and maximum lowmem_reserve in the zone */
6203 for (j = i; j < MAX_NR_ZONES; j++) {
6204 if (zone->lowmem_reserve[j] > max)
6205 max = zone->lowmem_reserve[j];
6206 }
6207
6208 /* we treat the high watermark as reserved pages. */
6209 max += high_wmark_pages(zone);
6210
6211 if (max > zone->managed_pages)
6212 max = zone->managed_pages;
6213
6214 zone->totalreserve_pages = max;
6215
6216 reserve_pages += max;
6217 }
6218 }
6219 totalreserve_pages = reserve_pages;
6220 }
6221
6222 /*
6223 * setup_per_zone_lowmem_reserve - called whenever
6224 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6225 * has a correct pages reserved value, so an adequate number of
6226 * pages are left in the zone after a successful __alloc_pages().
6227 */
6228 static void setup_per_zone_lowmem_reserve(void)
6229 {
6230 struct pglist_data *pgdat;
6231 enum zone_type j, idx;
6232
6233 for_each_online_pgdat(pgdat) {
6234 for (j = 0; j < MAX_NR_ZONES; j++) {
6235 struct zone *zone = pgdat->node_zones + j;
6236 unsigned long managed_pages = zone->managed_pages;
6237
6238 zone->lowmem_reserve[j] = 0;
6239
6240 idx = j;
6241 while (idx) {
6242 struct zone *lower_zone;
6243
6244 idx--;
6245
6246 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6247 sysctl_lowmem_reserve_ratio[idx] = 1;
6248
6249 lower_zone = pgdat->node_zones + idx;
6250 lower_zone->lowmem_reserve[j] = managed_pages /
6251 sysctl_lowmem_reserve_ratio[idx];
6252 managed_pages += lower_zone->managed_pages;
6253 }
6254 }
6255 }
6256
6257 /* update totalreserve_pages */
6258 calculate_totalreserve_pages();
6259 }
6260
6261 static void __setup_per_zone_wmarks(void)
6262 {
6263 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6264 unsigned long lowmem_pages = 0;
6265 struct zone *zone;
6266 unsigned long flags;
6267
6268 /* Calculate total number of !ZONE_HIGHMEM pages */
6269 for_each_zone(zone) {
6270 if (!is_highmem(zone))
6271 lowmem_pages += zone->managed_pages;
6272 }
6273
6274 for_each_zone(zone) {
6275 u64 tmp;
6276
6277 spin_lock_irqsave(&zone->lock, flags);
6278 tmp = (u64)pages_min * zone->managed_pages;
6279 do_div(tmp, lowmem_pages);
6280 if (is_highmem(zone)) {
6281 /*
6282 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6283 * need highmem pages, so cap pages_min to a small
6284 * value here.
6285 *
6286 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6287 * deltas control asynch page reclaim, and so should
6288 * not be capped for highmem.
6289 */
6290 unsigned long min_pages;
6291
6292 min_pages = zone->managed_pages / 1024;
6293 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6294 zone->watermark[WMARK_MIN] = min_pages;
6295 } else {
6296 /*
6297 * If it's a lowmem zone, reserve a number of pages
6298 * proportionate to the zone's size.
6299 */
6300 zone->watermark[WMARK_MIN] = tmp;
6301 }
6302
6303 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6304 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
6305
6306 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6307 high_wmark_pages(zone) - low_wmark_pages(zone) -
6308 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6309
6310 spin_unlock_irqrestore(&zone->lock, flags);
6311 }
6312
6313 /* update totalreserve_pages */
6314 calculate_totalreserve_pages();
6315 }
6316
6317 /**
6318 * setup_per_zone_wmarks - called when min_free_kbytes changes
6319 * or when memory is hot-{added|removed}
6320 *
6321 * Ensures that the watermark[min,low,high] values for each zone are set
6322 * correctly with respect to min_free_kbytes.
6323 */
6324 void setup_per_zone_wmarks(void)
6325 {
6326 mutex_lock(&zonelists_mutex);
6327 __setup_per_zone_wmarks();
6328 mutex_unlock(&zonelists_mutex);
6329 }
6330
6331 /*
6332 * The inactive anon list should be small enough that the VM never has to
6333 * do too much work, but large enough that each inactive page has a chance
6334 * to be referenced again before it is swapped out.
6335 *
6336 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6337 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6338 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6339 * the anonymous pages are kept on the inactive list.
6340 *
6341 * total target max
6342 * memory ratio inactive anon
6343 * -------------------------------------
6344 * 10MB 1 5MB
6345 * 100MB 1 50MB
6346 * 1GB 3 250MB
6347 * 10GB 10 0.9GB
6348 * 100GB 31 3GB
6349 * 1TB 101 10GB
6350 * 10TB 320 32GB
6351 */
6352 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6353 {
6354 unsigned int gb, ratio;
6355
6356 /* Zone size in gigabytes */
6357 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6358 if (gb)
6359 ratio = int_sqrt(10 * gb);
6360 else
6361 ratio = 1;
6362
6363 zone->inactive_ratio = ratio;
6364 }
6365
6366 static void __meminit setup_per_zone_inactive_ratio(void)
6367 {
6368 struct zone *zone;
6369
6370 for_each_zone(zone)
6371 calculate_zone_inactive_ratio(zone);
6372 }
6373
6374 /*
6375 * Initialise min_free_kbytes.
6376 *
6377 * For small machines we want it small (128k min). For large machines
6378 * we want it large (64MB max). But it is not linear, because network
6379 * bandwidth does not increase linearly with machine size. We use
6380 *
6381 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6382 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6383 *
6384 * which yields
6385 *
6386 * 16MB: 512k
6387 * 32MB: 724k
6388 * 64MB: 1024k
6389 * 128MB: 1448k
6390 * 256MB: 2048k
6391 * 512MB: 2896k
6392 * 1024MB: 4096k
6393 * 2048MB: 5792k
6394 * 4096MB: 8192k
6395 * 8192MB: 11584k
6396 * 16384MB: 16384k
6397 */
6398 int __meminit init_per_zone_wmark_min(void)
6399 {
6400 unsigned long lowmem_kbytes;
6401 int new_min_free_kbytes;
6402
6403 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6404 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6405
6406 if (new_min_free_kbytes > user_min_free_kbytes) {
6407 min_free_kbytes = new_min_free_kbytes;
6408 if (min_free_kbytes < 128)
6409 min_free_kbytes = 128;
6410 if (min_free_kbytes > 65536)
6411 min_free_kbytes = 65536;
6412 } else {
6413 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6414 new_min_free_kbytes, user_min_free_kbytes);
6415 }
6416 setup_per_zone_wmarks();
6417 refresh_zone_stat_thresholds();
6418 setup_per_zone_lowmem_reserve();
6419 setup_per_zone_inactive_ratio();
6420 return 0;
6421 }
6422 module_init(init_per_zone_wmark_min)
6423
6424 /*
6425 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6426 * that we can call two helper functions whenever min_free_kbytes
6427 * changes.
6428 */
6429 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6430 void __user *buffer, size_t *length, loff_t *ppos)
6431 {
6432 int rc;
6433
6434 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6435 if (rc)
6436 return rc;
6437
6438 if (write) {
6439 user_min_free_kbytes = min_free_kbytes;
6440 setup_per_zone_wmarks();
6441 }
6442 return 0;
6443 }
6444
6445 #ifdef CONFIG_NUMA
6446 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6447 void __user *buffer, size_t *length, loff_t *ppos)
6448 {
6449 struct zone *zone;
6450 int rc;
6451
6452 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6453 if (rc)
6454 return rc;
6455
6456 for_each_zone(zone)
6457 zone->min_unmapped_pages = (zone->managed_pages *
6458 sysctl_min_unmapped_ratio) / 100;
6459 return 0;
6460 }
6461
6462 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6463 void __user *buffer, size_t *length, loff_t *ppos)
6464 {
6465 struct zone *zone;
6466 int rc;
6467
6468 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6469 if (rc)
6470 return rc;
6471
6472 for_each_zone(zone)
6473 zone->min_slab_pages = (zone->managed_pages *
6474 sysctl_min_slab_ratio) / 100;
6475 return 0;
6476 }
6477 #endif
6478
6479 /*
6480 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6481 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6482 * whenever sysctl_lowmem_reserve_ratio changes.
6483 *
6484 * The reserve ratio obviously has absolutely no relation with the
6485 * minimum watermarks. The lowmem reserve ratio can only make sense
6486 * if in function of the boot time zone sizes.
6487 */
6488 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6489 void __user *buffer, size_t *length, loff_t *ppos)
6490 {
6491 proc_dointvec_minmax(table, write, buffer, length, ppos);
6492 setup_per_zone_lowmem_reserve();
6493 return 0;
6494 }
6495
6496 /*
6497 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6498 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6499 * pagelist can have before it gets flushed back to buddy allocator.
6500 */
6501 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6502 void __user *buffer, size_t *length, loff_t *ppos)
6503 {
6504 struct zone *zone;
6505 int old_percpu_pagelist_fraction;
6506 int ret;
6507
6508 mutex_lock(&pcp_batch_high_lock);
6509 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6510
6511 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6512 if (!write || ret < 0)
6513 goto out;
6514
6515 /* Sanity checking to avoid pcp imbalance */
6516 if (percpu_pagelist_fraction &&
6517 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6518 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6519 ret = -EINVAL;
6520 goto out;
6521 }
6522
6523 /* No change? */
6524 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6525 goto out;
6526
6527 for_each_populated_zone(zone) {
6528 unsigned int cpu;
6529
6530 for_each_possible_cpu(cpu)
6531 pageset_set_high_and_batch(zone,
6532 per_cpu_ptr(zone->pageset, cpu));
6533 }
6534 out:
6535 mutex_unlock(&pcp_batch_high_lock);
6536 return ret;
6537 }
6538
6539 #ifdef CONFIG_NUMA
6540 int hashdist = HASHDIST_DEFAULT;
6541
6542 static int __init set_hashdist(char *str)
6543 {
6544 if (!str)
6545 return 0;
6546 hashdist = simple_strtoul(str, &str, 0);
6547 return 1;
6548 }
6549 __setup("hashdist=", set_hashdist);
6550 #endif
6551
6552 /*
6553 * allocate a large system hash table from bootmem
6554 * - it is assumed that the hash table must contain an exact power-of-2
6555 * quantity of entries
6556 * - limit is the number of hash buckets, not the total allocation size
6557 */
6558 void *__init alloc_large_system_hash(const char *tablename,
6559 unsigned long bucketsize,
6560 unsigned long numentries,
6561 int scale,
6562 int flags,
6563 unsigned int *_hash_shift,
6564 unsigned int *_hash_mask,
6565 unsigned long low_limit,
6566 unsigned long high_limit)
6567 {
6568 unsigned long long max = high_limit;
6569 unsigned long log2qty, size;
6570 void *table = NULL;
6571
6572 /* allow the kernel cmdline to have a say */
6573 if (!numentries) {
6574 /* round applicable memory size up to nearest megabyte */
6575 numentries = nr_kernel_pages;
6576
6577 /* It isn't necessary when PAGE_SIZE >= 1MB */
6578 if (PAGE_SHIFT < 20)
6579 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6580
6581 /* limit to 1 bucket per 2^scale bytes of low memory */
6582 if (scale > PAGE_SHIFT)
6583 numentries >>= (scale - PAGE_SHIFT);
6584 else
6585 numentries <<= (PAGE_SHIFT - scale);
6586
6587 /* Make sure we've got at least a 0-order allocation.. */
6588 if (unlikely(flags & HASH_SMALL)) {
6589 /* Makes no sense without HASH_EARLY */
6590 WARN_ON(!(flags & HASH_EARLY));
6591 if (!(numentries >> *_hash_shift)) {
6592 numentries = 1UL << *_hash_shift;
6593 BUG_ON(!numentries);
6594 }
6595 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6596 numentries = PAGE_SIZE / bucketsize;
6597 }
6598 numentries = roundup_pow_of_two(numentries);
6599
6600 /* limit allocation size to 1/16 total memory by default */
6601 if (max == 0) {
6602 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6603 do_div(max, bucketsize);
6604 }
6605 max = min(max, 0x80000000ULL);
6606
6607 if (numentries < low_limit)
6608 numentries = low_limit;
6609 if (numentries > max)
6610 numentries = max;
6611
6612 log2qty = ilog2(numentries);
6613
6614 do {
6615 size = bucketsize << log2qty;
6616 if (flags & HASH_EARLY)
6617 table = memblock_virt_alloc_nopanic(size, 0);
6618 else if (hashdist)
6619 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6620 else {
6621 /*
6622 * If bucketsize is not a power-of-two, we may free
6623 * some pages at the end of hash table which
6624 * alloc_pages_exact() automatically does
6625 */
6626 if (get_order(size) < MAX_ORDER) {
6627 table = alloc_pages_exact(size, GFP_ATOMIC);
6628 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6629 }
6630 }
6631 } while (!table && size > PAGE_SIZE && --log2qty);
6632
6633 if (!table)
6634 panic("Failed to allocate %s hash table\n", tablename);
6635
6636 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6637 tablename,
6638 (1UL << log2qty),
6639 ilog2(size) - PAGE_SHIFT,
6640 size);
6641
6642 if (_hash_shift)
6643 *_hash_shift = log2qty;
6644 if (_hash_mask)
6645 *_hash_mask = (1 << log2qty) - 1;
6646
6647 return table;
6648 }
6649
6650 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6651 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6652 unsigned long pfn)
6653 {
6654 #ifdef CONFIG_SPARSEMEM
6655 return __pfn_to_section(pfn)->pageblock_flags;
6656 #else
6657 return zone->pageblock_flags;
6658 #endif /* CONFIG_SPARSEMEM */
6659 }
6660
6661 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6662 {
6663 #ifdef CONFIG_SPARSEMEM
6664 pfn &= (PAGES_PER_SECTION-1);
6665 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6666 #else
6667 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6668 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6669 #endif /* CONFIG_SPARSEMEM */
6670 }
6671
6672 /**
6673 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6674 * @page: The page within the block of interest
6675 * @pfn: The target page frame number
6676 * @end_bitidx: The last bit of interest to retrieve
6677 * @mask: mask of bits that the caller is interested in
6678 *
6679 * Return: pageblock_bits flags
6680 */
6681 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6682 unsigned long end_bitidx,
6683 unsigned long mask)
6684 {
6685 struct zone *zone;
6686 unsigned long *bitmap;
6687 unsigned long bitidx, word_bitidx;
6688 unsigned long word;
6689
6690 zone = page_zone(page);
6691 bitmap = get_pageblock_bitmap(zone, pfn);
6692 bitidx = pfn_to_bitidx(zone, pfn);
6693 word_bitidx = bitidx / BITS_PER_LONG;
6694 bitidx &= (BITS_PER_LONG-1);
6695
6696 word = bitmap[word_bitidx];
6697 bitidx += end_bitidx;
6698 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6699 }
6700
6701 /**
6702 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6703 * @page: The page within the block of interest
6704 * @flags: The flags to set
6705 * @pfn: The target page frame number
6706 * @end_bitidx: The last bit of interest
6707 * @mask: mask of bits that the caller is interested in
6708 */
6709 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6710 unsigned long pfn,
6711 unsigned long end_bitidx,
6712 unsigned long mask)
6713 {
6714 struct zone *zone;
6715 unsigned long *bitmap;
6716 unsigned long bitidx, word_bitidx;
6717 unsigned long old_word, word;
6718
6719 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6720
6721 zone = page_zone(page);
6722 bitmap = get_pageblock_bitmap(zone, pfn);
6723 bitidx = pfn_to_bitidx(zone, pfn);
6724 word_bitidx = bitidx / BITS_PER_LONG;
6725 bitidx &= (BITS_PER_LONG-1);
6726
6727 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6728
6729 bitidx += end_bitidx;
6730 mask <<= (BITS_PER_LONG - bitidx - 1);
6731 flags <<= (BITS_PER_LONG - bitidx - 1);
6732
6733 word = READ_ONCE(bitmap[word_bitidx]);
6734 for (;;) {
6735 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6736 if (word == old_word)
6737 break;
6738 word = old_word;
6739 }
6740 }
6741
6742 /*
6743 * This function checks whether pageblock includes unmovable pages or not.
6744 * If @count is not zero, it is okay to include less @count unmovable pages
6745 *
6746 * PageLRU check without isolation or lru_lock could race so that
6747 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6748 * expect this function should be exact.
6749 */
6750 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6751 bool skip_hwpoisoned_pages)
6752 {
6753 unsigned long pfn, iter, found;
6754 int mt;
6755
6756 /*
6757 * For avoiding noise data, lru_add_drain_all() should be called
6758 * If ZONE_MOVABLE, the zone never contains unmovable pages
6759 */
6760 if (zone_idx(zone) == ZONE_MOVABLE)
6761 return false;
6762 mt = get_pageblock_migratetype(page);
6763 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6764 return false;
6765
6766 pfn = page_to_pfn(page);
6767 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6768 unsigned long check = pfn + iter;
6769
6770 if (!pfn_valid_within(check))
6771 continue;
6772
6773 page = pfn_to_page(check);
6774
6775 /*
6776 * Hugepages are not in LRU lists, but they're movable.
6777 * We need not scan over tail pages bacause we don't
6778 * handle each tail page individually in migration.
6779 */
6780 if (PageHuge(page)) {
6781 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6782 continue;
6783 }
6784
6785 /*
6786 * We can't use page_count without pin a page
6787 * because another CPU can free compound page.
6788 * This check already skips compound tails of THP
6789 * because their page->_count is zero at all time.
6790 */
6791 if (!atomic_read(&page->_count)) {
6792 if (PageBuddy(page))
6793 iter += (1 << page_order(page)) - 1;
6794 continue;
6795 }
6796
6797 /*
6798 * The HWPoisoned page may be not in buddy system, and
6799 * page_count() is not 0.
6800 */
6801 if (skip_hwpoisoned_pages && PageHWPoison(page))
6802 continue;
6803
6804 if (!PageLRU(page))
6805 found++;
6806 /*
6807 * If there are RECLAIMABLE pages, we need to check
6808 * it. But now, memory offline itself doesn't call
6809 * shrink_node_slabs() and it still to be fixed.
6810 */
6811 /*
6812 * If the page is not RAM, page_count()should be 0.
6813 * we don't need more check. This is an _used_ not-movable page.
6814 *
6815 * The problematic thing here is PG_reserved pages. PG_reserved
6816 * is set to both of a memory hole page and a _used_ kernel
6817 * page at boot.
6818 */
6819 if (found > count)
6820 return true;
6821 }
6822 return false;
6823 }
6824
6825 bool is_pageblock_removable_nolock(struct page *page)
6826 {
6827 struct zone *zone;
6828 unsigned long pfn;
6829
6830 /*
6831 * We have to be careful here because we are iterating over memory
6832 * sections which are not zone aware so we might end up outside of
6833 * the zone but still within the section.
6834 * We have to take care about the node as well. If the node is offline
6835 * its NODE_DATA will be NULL - see page_zone.
6836 */
6837 if (!node_online(page_to_nid(page)))
6838 return false;
6839
6840 zone = page_zone(page);
6841 pfn = page_to_pfn(page);
6842 if (!zone_spans_pfn(zone, pfn))
6843 return false;
6844
6845 return !has_unmovable_pages(zone, page, 0, true);
6846 }
6847
6848 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
6849
6850 static unsigned long pfn_max_align_down(unsigned long pfn)
6851 {
6852 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6853 pageblock_nr_pages) - 1);
6854 }
6855
6856 static unsigned long pfn_max_align_up(unsigned long pfn)
6857 {
6858 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6859 pageblock_nr_pages));
6860 }
6861
6862 /* [start, end) must belong to a single zone. */
6863 static int __alloc_contig_migrate_range(struct compact_control *cc,
6864 unsigned long start, unsigned long end)
6865 {
6866 /* This function is based on compact_zone() from compaction.c. */
6867 unsigned long nr_reclaimed;
6868 unsigned long pfn = start;
6869 unsigned int tries = 0;
6870 int ret = 0;
6871
6872 migrate_prep();
6873
6874 while (pfn < end || !list_empty(&cc->migratepages)) {
6875 if (fatal_signal_pending(current)) {
6876 ret = -EINTR;
6877 break;
6878 }
6879
6880 if (list_empty(&cc->migratepages)) {
6881 cc->nr_migratepages = 0;
6882 pfn = isolate_migratepages_range(cc, pfn, end);
6883 if (!pfn) {
6884 ret = -EINTR;
6885 break;
6886 }
6887 tries = 0;
6888 } else if (++tries == 5) {
6889 ret = ret < 0 ? ret : -EBUSY;
6890 break;
6891 }
6892
6893 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6894 &cc->migratepages);
6895 cc->nr_migratepages -= nr_reclaimed;
6896
6897 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6898 NULL, 0, cc->mode, MR_CMA);
6899 }
6900 if (ret < 0) {
6901 putback_movable_pages(&cc->migratepages);
6902 return ret;
6903 }
6904 return 0;
6905 }
6906
6907 /**
6908 * alloc_contig_range() -- tries to allocate given range of pages
6909 * @start: start PFN to allocate
6910 * @end: one-past-the-last PFN to allocate
6911 * @migratetype: migratetype of the underlaying pageblocks (either
6912 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6913 * in range must have the same migratetype and it must
6914 * be either of the two.
6915 *
6916 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6917 * aligned, however it's the caller's responsibility to guarantee that
6918 * we are the only thread that changes migrate type of pageblocks the
6919 * pages fall in.
6920 *
6921 * The PFN range must belong to a single zone.
6922 *
6923 * Returns zero on success or negative error code. On success all
6924 * pages which PFN is in [start, end) are allocated for the caller and
6925 * need to be freed with free_contig_range().
6926 */
6927 int alloc_contig_range(unsigned long start, unsigned long end,
6928 unsigned migratetype)
6929 {
6930 unsigned long outer_start, outer_end;
6931 unsigned int order;
6932 int ret = 0;
6933
6934 struct compact_control cc = {
6935 .nr_migratepages = 0,
6936 .order = -1,
6937 .zone = page_zone(pfn_to_page(start)),
6938 .mode = MIGRATE_SYNC,
6939 .ignore_skip_hint = true,
6940 };
6941 INIT_LIST_HEAD(&cc.migratepages);
6942
6943 /*
6944 * What we do here is we mark all pageblocks in range as
6945 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6946 * have different sizes, and due to the way page allocator
6947 * work, we align the range to biggest of the two pages so
6948 * that page allocator won't try to merge buddies from
6949 * different pageblocks and change MIGRATE_ISOLATE to some
6950 * other migration type.
6951 *
6952 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6953 * migrate the pages from an unaligned range (ie. pages that
6954 * we are interested in). This will put all the pages in
6955 * range back to page allocator as MIGRATE_ISOLATE.
6956 *
6957 * When this is done, we take the pages in range from page
6958 * allocator removing them from the buddy system. This way
6959 * page allocator will never consider using them.
6960 *
6961 * This lets us mark the pageblocks back as
6962 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6963 * aligned range but not in the unaligned, original range are
6964 * put back to page allocator so that buddy can use them.
6965 */
6966
6967 ret = start_isolate_page_range(pfn_max_align_down(start),
6968 pfn_max_align_up(end), migratetype,
6969 false);
6970 if (ret)
6971 return ret;
6972
6973 /*
6974 * In case of -EBUSY, we'd like to know which page causes problem.
6975 * So, just fall through. We will check it in test_pages_isolated().
6976 */
6977 ret = __alloc_contig_migrate_range(&cc, start, end);
6978 if (ret && ret != -EBUSY)
6979 goto done;
6980
6981 /*
6982 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6983 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6984 * more, all pages in [start, end) are free in page allocator.
6985 * What we are going to do is to allocate all pages from
6986 * [start, end) (that is remove them from page allocator).
6987 *
6988 * The only problem is that pages at the beginning and at the
6989 * end of interesting range may be not aligned with pages that
6990 * page allocator holds, ie. they can be part of higher order
6991 * pages. Because of this, we reserve the bigger range and
6992 * once this is done free the pages we are not interested in.
6993 *
6994 * We don't have to hold zone->lock here because the pages are
6995 * isolated thus they won't get removed from buddy.
6996 */
6997
6998 lru_add_drain_all();
6999 drain_all_pages(cc.zone);
7000
7001 order = 0;
7002 outer_start = start;
7003 while (!PageBuddy(pfn_to_page(outer_start))) {
7004 if (++order >= MAX_ORDER) {
7005 outer_start = start;
7006 break;
7007 }
7008 outer_start &= ~0UL << order;
7009 }
7010
7011 if (outer_start != start) {
7012 order = page_order(pfn_to_page(outer_start));
7013
7014 /*
7015 * outer_start page could be small order buddy page and
7016 * it doesn't include start page. Adjust outer_start
7017 * in this case to report failed page properly
7018 * on tracepoint in test_pages_isolated()
7019 */
7020 if (outer_start + (1UL << order) <= start)
7021 outer_start = start;
7022 }
7023
7024 /* Make sure the range is really isolated. */
7025 if (test_pages_isolated(outer_start, end, false)) {
7026 pr_info("%s: [%lx, %lx) PFNs busy\n",
7027 __func__, outer_start, end);
7028 ret = -EBUSY;
7029 goto done;
7030 }
7031
7032 /* Grab isolated pages from freelists. */
7033 outer_end = isolate_freepages_range(&cc, outer_start, end);
7034 if (!outer_end) {
7035 ret = -EBUSY;
7036 goto done;
7037 }
7038
7039 /* Free head and tail (if any) */
7040 if (start != outer_start)
7041 free_contig_range(outer_start, start - outer_start);
7042 if (end != outer_end)
7043 free_contig_range(end, outer_end - end);
7044
7045 done:
7046 undo_isolate_page_range(pfn_max_align_down(start),
7047 pfn_max_align_up(end), migratetype);
7048 return ret;
7049 }
7050
7051 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7052 {
7053 unsigned int count = 0;
7054
7055 for (; nr_pages--; pfn++) {
7056 struct page *page = pfn_to_page(pfn);
7057
7058 count += page_count(page) != 1;
7059 __free_page(page);
7060 }
7061 WARN(count != 0, "%d pages are still in use!\n", count);
7062 }
7063 #endif
7064
7065 #ifdef CONFIG_MEMORY_HOTPLUG
7066 /*
7067 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7068 * page high values need to be recalulated.
7069 */
7070 void __meminit zone_pcp_update(struct zone *zone)
7071 {
7072 unsigned cpu;
7073 mutex_lock(&pcp_batch_high_lock);
7074 for_each_possible_cpu(cpu)
7075 pageset_set_high_and_batch(zone,
7076 per_cpu_ptr(zone->pageset, cpu));
7077 mutex_unlock(&pcp_batch_high_lock);
7078 }
7079 #endif
7080
7081 void zone_pcp_reset(struct zone *zone)
7082 {
7083 unsigned long flags;
7084 int cpu;
7085 struct per_cpu_pageset *pset;
7086
7087 /* avoid races with drain_pages() */
7088 local_irq_save(flags);
7089 if (zone->pageset != &boot_pageset) {
7090 for_each_online_cpu(cpu) {
7091 pset = per_cpu_ptr(zone->pageset, cpu);
7092 drain_zonestat(zone, pset);
7093 }
7094 free_percpu(zone->pageset);
7095 zone->pageset = &boot_pageset;
7096 }
7097 local_irq_restore(flags);
7098 }
7099
7100 #ifdef CONFIG_MEMORY_HOTREMOVE
7101 /*
7102 * All pages in the range must be isolated before calling this.
7103 */
7104 void
7105 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7106 {
7107 struct page *page;
7108 struct zone *zone;
7109 unsigned int order, i;
7110 unsigned long pfn;
7111 unsigned long flags;
7112 /* find the first valid pfn */
7113 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7114 if (pfn_valid(pfn))
7115 break;
7116 if (pfn == end_pfn)
7117 return;
7118 zone = page_zone(pfn_to_page(pfn));
7119 spin_lock_irqsave(&zone->lock, flags);
7120 pfn = start_pfn;
7121 while (pfn < end_pfn) {
7122 if (!pfn_valid(pfn)) {
7123 pfn++;
7124 continue;
7125 }
7126 page = pfn_to_page(pfn);
7127 /*
7128 * The HWPoisoned page may be not in buddy system, and
7129 * page_count() is not 0.
7130 */
7131 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7132 pfn++;
7133 SetPageReserved(page);
7134 continue;
7135 }
7136
7137 BUG_ON(page_count(page));
7138 BUG_ON(!PageBuddy(page));
7139 order = page_order(page);
7140 #ifdef CONFIG_DEBUG_VM
7141 printk(KERN_INFO "remove from free list %lx %d %lx\n",
7142 pfn, 1 << order, end_pfn);
7143 #endif
7144 list_del(&page->lru);
7145 rmv_page_order(page);
7146 zone->free_area[order].nr_free--;
7147 for (i = 0; i < (1 << order); i++)
7148 SetPageReserved((page+i));
7149 pfn += (1 << order);
7150 }
7151 spin_unlock_irqrestore(&zone->lock, flags);
7152 }
7153 #endif
7154
7155 #ifdef CONFIG_MEMORY_FAILURE
7156 bool is_free_buddy_page(struct page *page)
7157 {
7158 struct zone *zone = page_zone(page);
7159 unsigned long pfn = page_to_pfn(page);
7160 unsigned long flags;
7161 unsigned int order;
7162
7163 spin_lock_irqsave(&zone->lock, flags);
7164 for (order = 0; order < MAX_ORDER; order++) {
7165 struct page *page_head = page - (pfn & ((1 << order) - 1));
7166
7167 if (PageBuddy(page_head) && page_order(page_head) >= order)
7168 break;
7169 }
7170 spin_unlock_irqrestore(&zone->lock, flags);
7171
7172 return order < MAX_ORDER;
7173 }
7174 #endif
This page took 0.164028 seconds and 6 git commands to generate.